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Preface

This thesis titled ”Addressing voltage sag contribution of an optimally sized Industrial Hybrid Power
System” introduces a framework for sizing an industrial Hybrid Power System (HPS) to minimise Cost
and CO2 emissions relative to connecting the industrial site directly to the grid with the help of a genetic
algorithm, specifically NSGA-II. The framework utilises an Energy Management System (EMS) that is
based on a rolling average principle which attempts to restrict the change in grid consumption from
one time step to the next. The optimally sized configuration and its new grid consumption profile are
analysed in the CIGREMV Distribution Network to assess the effects of the new consumption profile on
the bus voltages. The combination of a rolling average-based EMS and an optimal sizing with NSGA-II
resulted in a 47% reduction of the CO2 emissions while not worsening the voltage behaviour in the
system (with a focus on voltage sag introduced by large loads).

In the journey of research and exploration, there are moments that stand as pivotal milestones. This
thesis represents such a moment for me as it marks the end of my Master Electrical Power Engineer-
ing. It’s a culmination of tireless efforts, invaluable guidance, and the pursuit of contributing to solving
real-world problems.

As I look back on this journey, I am profoundly grateful for the support, mentorship, and encouragement
provided by my supervisory team: Laura Ramírez Elizondo and Joel Alpízar Castillo for their support
on the academic side of the thesis and George Koolman for his support in enabling me to perform
this thesis at Royal HaskoningDHV in collaboration with DC Systems, Energy Conversion & Storage
headed by Pavol Bauer.

The research done for this thesis has increased my understanding of real-world power systems, their
challenges, and possible solutions to tackle these challenges.

I would like to express my sincere appreciation to all the individuals who have been part of this journey,
providing insights, engaging in discussions, and offering unwavering support. The collaborative spirit
within Royal HaskoningDHV, as well as the motivation derived from peers and mentors, has been a
driving force throughout this research.

Last but certainly not least, I would like to thank my family and friends for their emotional, social, and
financial support during my studies at TU Delft.

Max Deutman

Friday 8th September, 2023
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1
Introduction

The Dutch industry plays a significant role in the nation’s energy consumption, accounting for around a
third of the total energy usage [1] and being heavily reliant on fossil fuels as can be seen in Figure 1.11,
resulting in being responsible for a third of the total CO2 emissions in the Netherlands [2]. This heavy
reliance on conventional energy sources raises environmental concerns and highlights the need for
sustainable energy solutions. The transition to a more sustainable energy system is crucial to mitigate
climate change, reduce greenhouse gas emissions, and ensure long-term energy security.

Figure 1.1: 2020 Total (including energy sector) and Industrial Sector Energy Consumption [3]

To address these challenges, the concept of Hybrid Power Systems (HPS) has emerged as a promis-
ing solution [4]. HPS combines different energy sources, including Renewable Energy Sources (RES),
Energy Storage Systems (ESS), and supplementary generation capabilities, to achieve a more bal-
anced and efficient energy supply. By integrating these diverse components, HPS offers the potential
to optimise energy generation, enhance grid stability, and reduce both costs and environmental im-
pact. HPSs are also particularly popular for remote energy applications where a diverse portfolio of
energy-producing technologies is valued more highly than in grid-connected areas.

Optimal sizing of HPS components is a critical aspect of designing an efficient and cost-effective
system. The size of each component, such as the PhotoVoltaic (PV) system, diesel generator, micro-
turbine, Wind Turbine (WT), Battery Energy Storage System (BESS), etc. must be carefully determined
to ensure optimal performance, considering factors such as energy demand, resource availability, grid
capacity, and economic viability. With the changing landscape of emission regulations, this sizing can
become extra difficult for fossil-fuel-based components, as emission penalties can be applied to these
components.

1The heat consumption is not reported for the total energy consumption, the electricity usage is negative due to electricity
being exported to other countries
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The Dutch industry, heavily dependent on fossil fuel-based energy sources, faces the challenge
of transitioning towards a more sustainable energy system. This is in part done by replacing existing
processes with electrical counterparts, in other words: The electrification of industry. This electrification
of industry poses an issue when the grid is in a congested state, as is the case in the Netherlands [5].
This is simply due to the fact that electrification replaces a fossil-fuel-based energy carrier with electricity,
thus increasing the overall electricity demand. A solution for this issue is to bring in other sources of
energy to the industrial site, in the form of HPSs. A first step into achieving a net-zero industry would
thus be to investigate the introduction of HPSs for industrial loads.

The optimal sizing of HPS components for industrial applications poses a complex task. The sizing
process involves finding the right balance between cost reduction and CO2 emission reduction, while
ensuring grid stability. Industrial loads simplify and complicate this last issue simultaneously. It is
not difficult to imagine industrial loads exhibiting constant behaviour or loads being predicted based
on production quotas while also having very high power demands that incur huge costs if they are
interrupted.

Moreover, the traditional approach to sizing energy components often overlooks the interconnected
nature of the energy infrastructure. Individual sizing decisions are made without considering the po-
tential impact on the overall energy system and voltage stability within an industrial bus system. Con-
sequently, there is a need for a comprehensive multi-objective framework that incorporates cost, CO2
emissions, and voltage stability considerations to guide the sizing process of HPS components for
industrial applications.

This master’s thesis project aims to develop a comprehensive multi-objective framework for sizing
an industrial Hybrid Power System that minimises cost and CO2 emissions while ensuring voltage
stability within the industrial bus system. The research will be conducted in collaboration between Max
Deutman and Royal HaskoningDHV, leveraging a multidisciplinary approach and real-world industry
insights.

The methodology involves a thorough literature review on optimisation methods and Hybrid Power
Systems for industrial applications. This review will establish a foundation of knowledge and identify the
state-of-the-art techniques for HPS sizing. Based on the literature review, mathematical models for the
PV, diesel, and BESS components will be developed and validated. These models will be integrated
into an Energy Management System (EMS) to ensure the smooth operation and optimal control of the
HPS.

A Genetic Algorithm optimisation approach will be employed to determine the optimal size of each
component within the HPS. This approach will enable the exploration of the trade-off between cost
and CO2 emissions, considering the specific constraints of the industrial load and grid capacity. The
effectiveness of the optimised HPS configuration will be assessed by analysing its impact on voltage
sag within an industrial bus system.

The main objective of this research is to optimally size a Hybrid Power System (PV-DSL-BAT) for an
industrial load, minimising cost and CO2 emissions while ensuring voltage stability within the industrial
bus system. To achieve this objective, the following research questions will be addressed:

1. Which equations and parameters can be utilised to implement models (PV, Diesel, or BESS) for
the use in an Energy Management Systems designated to supply an industrial load?

2. What cost and emission savings can be achieved by sizing components to create a Hybrid Power
System for an industrial load using a Genetic Algorithm, compared to directly supplying the load
from the grid?

3. What effect does the optimal sizing of an individual node have on the voltage stability of an indus-
trial distribution system?

By addressing these research questions, this thesis aims to contribute to the development of a com-
prehensive and practical framework for optimal Hybrid Power System sizing in industrial applications.
The findings of this research will provide valuable insights for decision-making processes in achieving
sustainable energy solutions for the Dutch industry.



2
Previous Literature

In order to gain an understanding of existing literature for the subject ”Addressing voltage sag contri-
bution of an optimally sized Industrial Hybrid Power System - Using a multi-objective sizing framework
considering cost and CO2 emission” it is convenient to divide the subject into smaller themes. The
smaller themes that were identified for the literature research done in this paper are:

• (voltage) Influence of introducing PV, BESS, and/or Diesel Generators into an existing electrical
infrastructure

• Sizing of (Industrial) Hybrid Power Systems
• Multi-objective optimisation techniques

2.1. Influence of PV, BESS, and/or Diesel Generators
In previous research and real-world data collected from completed projects, the addition of Distributed
Generation (DG) to power systems has been analysed and conclusions can be drawn that DG is not a
perfect solution. As mentioned in [6][7][8][9], DG with Renewable Energy Sources (RES), has benefits
and downsides that are listed below in a summary:

Merits
• Reduced (transmission/distribution) system
resources

• Increased reliability
• Decreased emissions
• Improve independence and adaptability

Demerits

• Low and/or variable resource availability
• Increased scheduling complexity
• Decreased power quality
• Possible impairment of protection systems

With this summary in mind, the voltage sag effects of an optimally sized HPS becomes a valuable
research contribution. Firstly, voltage sag is a common power quality issue that can lead to disruptions
in industrial processes and their surrounding electrical infrastructure. Sensitive equipment can be dam-
aged and even black-outs can be caused by voltage instability [10]. Understanding the impact of an
optimally sized HPS on voltage sag helps assess its effect on power quality and grid stability, especially
with the integration of distributed generation sources like PV and BESS. Secondly, as industries strive
for a sustainable energy transition, HPS configurations offer a promising solution. By studying their
voltage sag effects, researchers contribute to the development of cleaner, more reliable, and resilient
energy systems. This research ensures that the selected HPS configuration not only minimises cost
and CO2 emissions but also maintains voltage within acceptable limits.

2.2. Sizing of (Industrial) Hybrid Power Systems
Throughout the design process of any new power system, careful considerations need to bemade when
sizing components. The optimal sizing of components in Hybrid Power Systems (HPS) is an important
aspect of designing a stable and cost-effective system. To gain an understanding of how previous

3
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Table 2.1: The optimisation methods used within other research articles.

Optimization Method
Source GA PSO HOMER MILP Other

[11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]
[23] [24] [25] [26] [27] [28] [29] [30] [31] [32]

X

[33] [34] [35] [36] X X
[37] [38] X X X
[39] [40] [41] X X X
[42] X X
[43] [44] [45] [46] [47] [48] X
[49] [50] [51] X
[52] [53] [54] [55] [56] [57] X
[58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69]
[70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80]

X

Total: 32 15 7 9 23

Table 2.2: The objective functions used within other research articles.

Objectives
Source Cost Emission Other

[54] [56] [79] [40] [35] [47] [55] [59] [71] [48] [15] [73] [57] [20] [69]
[74] [12] [76] [75] [25] [36] [78] [39] [50] [26] [13] [28] [45] [51] [33]
[16] [70] [31] [53] [24] [30] [64] [60] [77] [42] [17] [32] [29] [23] [41]
[67] [63] [80] [14]

X

[58] [19] [62] [61] [37] [65] [44] [46] [27] [11] [72] [38] [52] [43] [66] X X
[49] X X
[18] X
[22] [21] [68] [34] X
Total: 66 16 6

literature approached this process, 71 papers were examined and categorised. These categories can
be seen in Table 2.1, Table 2.2, and Table 2.3. Previous literature has explored various approaches
and methodologies for sizing components to achieve specific goals and objectives. In the context
of industrial applications, the sizing process becomes even more complex due to the higher energy
demands of industrial loads.

Previous literature used different optimisation techniques, such as Genetic Algorithms, Particle
Swarm Optimisation, and Ant Colony Optimisation, to determine the optimal size of components (rang-
ing from wind turbines to combined heat process systems) in HPS configurations. The objective func-
tions used in these optimisation processes often consider factors such as system cost and sometimes
CO2 emissions. Moreover, the optimisation process is usually subject to constraints to ensure that the
HPS operates within the specified limits. Constraints may include limits on system capacity, voltage
levels, or grid integration requirements.

When Table 2.1, Table 2.2, and Table 2.3 are examined. It becomes apparent that Genetic Algo-
rithms are usually utilised to tackle the objective problem. When the papers are studied further, it also
becomes clear that fewer papers deal with both cost and CO2 objective functions. The last examina-
tion that can be made is the type of power system that is used for the sizing. The research papers
that were observed to focus on industrial loads always examined at least cost as an objective function.
Adding CO2 to the objective function for this paper, while utilising the Genetic Algorithm to tackle this
multi-objective problem for sizing already gives an interesting contribution to the available research
specifying industrial loads.

Of the research papers that size components for industrial loads [14] [19] [49] [54] [56] [58] [62]
[79], only [58], [19], and [62] appear to consider two objectives (cost and emissions). The research
performed in [19] appears to be the only paper focusing on the sizing aspect of industrial loads with
cost and emissions as objective functions, this paper is thus the most similar to the work that will be
presented in this thesis and forms a solid base of knowledge for the work to be done. The scope of [62]
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Table 2.3: The types of power systems used within other research articles.

Type of power system
Source Residential Industrial Stand-alone Microgrid Other

[77] [43] [11] [64] [70] [74] [75]
[76] [78] [53] [42] [50] [47] [13]
[16] [24] [25] [26] [30] [32]

X

[56] X X
[58] [62] [79] [54] [49] [14] [19] X
[59] X X
[61] [66] [72] [52] [46] [27] [28]
[67] [69] [71] [73] [51] [33] [45]
[48] [12] [15] [17] [20] [23] [29]
[31] [68] [21]

X

[65] [37] [38] [44] [60] [63] [80]
[55] [57] [39] [40] [41] [35] [36]
[18] [34] [22]

X

Total: 22 9 25 17

includes emissions into its research, but only as an analysis step after the selected size of components
has been added to the existing system, it does not include emissions into the objective functions. In-
vestigated in [58], the use of a genetic algorithm (with both cost and emissions as objective functions)
to optimise the Energy Management System (EMS) of an existing HPS. This does not translate directly
to the work done in this thesis, but it already illuminates a research path that can be taken after optimal
sizing: optimise the Energy Management System.

Innovative method for energy management: Modelling and optimal operation of energy systems
In this document, a comprehensive case study of a pharmaceutical industrial plant and its optimisation
procedure is presented. The study delves into the various components of the power plant, including the
characteristics of a natural gas internal combustion engine, steam boiler, hot water boiler, mechanical
chiller, and absorption chillers. Additionally, it examines the energy flows and interconnections among
these components, providing insight into the purpose and functionality of the installation. An essential
aspect highlighted in the document is the significance of the electricity rate and the time scale in the
economical optimisation of the power plant. By considering varying electricity rates and load demands,
the optimisation process aims to achieve cost-effectiveness and minimise fuel consumption and pollu-
tant emissions. It is important to note that this paper does not solely focus on the sizing of elements.
Instead, it emphasises the broader challenge of optimising the Energy Management System (EMS)
that governs the interactions and operations of the power plant components. While the optimal sizes of
the components are determined, the document further explores the intricate task of optimising the EMS
to enhance the overall efficiency and environmental performance of the power plant. The optimisation
criteria discussed encompass minimising total cost, fuel consumption, and pollutant emissions. The
results showcased in the document reveal that optimal management of the power plant components
can lead to substantial gains in terms of cost-effectiveness, fuel consumption reduction, and emission
mitigation. Overall, this case study serves as a comprehensive exploration of energy management
in industrial applications. It demonstrates the importance of integrating component sizing and EMS
optimisation to achieve sustainable and efficient energy solutions. By dynamically coordinating the op-
eration of various components based on electricity rates and load demands, the EMS plays a pivotal
role in optimising the overall performance of the pharmaceutical industrial plant.

Optimal sizing of an industrial microgrid considering socio-organisational aspects
This document discusses the concept of industrial symbiosis and its application in eco-industrial parks
for achieving sustainable development. It focuses on the power system of an industrial park located in
the region of Ghent, highlighting the integration of renewable energy sources and the use of microgrids.
The document explores the optimal sizing of collective energy systems, considering factors such as
renewable generation, storage control, and demand response. It also discusses the economic and
environmental evaluation of these systems. The paper utilises a genetic algorithm for optimisation
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in combination with hourly historical data over the course of 1 year to observe seasonal and daily
meteorological patterns. The system parameters (implemented using MATLAB) considered for sizing
the installation include installed solar power, installed wind power, installed combined heat and power
(CHP), battery storage capacity, and maximum battery power. The objective functions considered in
this paper for the sizing are the minimisation of the levelized cost of electricity and the reduction of CO2
emissions.

Optimization of Distributed Energy Resources in an Industrial Microgrid
This research paper introduces a comprehensive model for an industrial microgrid with integrated dis-
tributed energy resources. The context of this study revolves around an existing manufacturing facility
situated in Ireland. The core objective of this model is to meticulously compute both the cost and emis-
sions associated with the utilisation of a diverse array of resources aimed at fulfilling the electricity
demand of the facility.

The paper is composed of multiple elements including load forecasting, analysis of pricing and
emissions, utilisation of wind power, management of demand response, and the integration of energy
storage systems. Collectively, these components weave a robust framework capable of assessing
the economic benefits of harnessing DERs and their potential to reduce the facility’s reliance on the
conventional power grid.

The results stemming from the model are marked by their accuracy in forecasting the facility’s load
demand. Indicators such as a Mean Absolute Percentage Error (MAPE) of 4.1% underline the model’s
reliability in predicting energy consumption patterns. However, it’s worth noting that the specific imple-
mentation of sizing components within the model is not explicitly addressed, it rather showcases the
potential economic benefits achievable through the strategic deployment of DERs.

Optimal sizing of battery storage systems for industrial applications when uncertainties exist
The objective of the paper is to propose a new method for sizing a battery energy storage system
(BESS) in the presence of uncertainties. The paper aims to address the problem of determining the
optimal size of a BESS installed in an industrial facility to reduce the facility’s electricity bill. The main
focus is on considering the uncertainties involved in the electricity bill cost coefficients and the profile
of the facility’s load demand. The paper formulates the optimisation problem for calculating the total
costs of the BESS. The problem takes into account the investment costs, maintenance costs, and
benefits derived from the installation of the BESS. The objective is to minimise the total costs incurred
for energy. The optimisation problem is solved using a constrained optimisation model that considers
the daily optimal operation of the battery. The paper applies decision theory to choose the best size for
the BESS. Three different decision theory approaches are used: (i) minimising the expected cost, (ii)
minimising the regret felt by the decision maker (DM), and (iii) a combination of (i) and (ii). The expected
cost and regret are calculated for each alternative and future scenario. The best sizing alternative is
chosen based on the minimum expected cost or the minimum regret, depending on the approach used.
The proposed procedure is applied to an actual industrial facility to demonstrate its practicality. The
uncertainties in the sizing of the BESS are represented by different future scenarios, each characterised
by assigned probabilities.

Hybrid-Microgrid Planning, Sizing and Optimization for an Industrial Demand in Pakistan
This paper aims to analyse the sizing and optimisation of a hybrid microgrid system to meet the electric-
ity demand of an industrial load in Faisalabad city, Pakistan. The objective of the study is to determine
the optimal sizing and configuration of the hybrid microgrid system that can meet the industrial elec-
tricity demand reliably and sustainably. The paper uses the HOMER software for optimisation, which
employs an enumeration method to simulate all possible system configurations. The optimisation vari-
ables include the size of the PV array, number of wind turbines, size of each generator, number of
batteries, size of the converter, and dispatch strategy. The optimisation is based on the Net Present
Cost (NPC), which is a measure of the life cycle cost of the system. The paper also considers various
constraints and control parameters, such as the minimum renewable energy requirement, maximum
annual capacity shortage, operating reserve from PV output, simulation time step, and set point state
of charge. These constraints and parameters help in designing a cost-effective and reliable hybrid
microgrid system.
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Holistic Approach for the Optimization of Industrial Hybrid Energy Hubs with MILP
This paper presents a holistic approach for optimising Energy Hubs in industrial applications using
Mixed Integer Linear Programming (MILP). The objective is to achieve optimal production and energy
scheduling while considering different scenarios within an industrial process. The paper proposes a
modular modelling approach with five generic modules: converter, storage, input, output, and connec-
tion. The optimisation problem is formulated as a MILP problem with linear constraints and a linear
objective function. The approach allows for the integration of different energy carriers and networks
into the modelling and optimisation of industrial plants. The objective function in the optimisation prob-
lem includes real costs, penalties, or rewards on decision variables to shift the optimisation towards a
desired goal. By using a MILP problem formulation, the optimisation can be solved with state-of-the-art
solvers and results in a global optimum.

Optimal techno-economic sizing of a multi-generation microgrid system with reduced depen-
dency on grid for critical health-care, educational and industrial facilities
This document focuses on the optimal sizing and configuration of a multi-generation microgrid sys-
tem. It addresses the challenges of energy security and power supply quality by integrating renewable
energy sources and energy storage technologies. The paper presents a generalised model for techno-
economic optimisation and applies it to different types of facilities such as healthcare, educational, and
industrial facilities. The goal is to minimise the lifetime cost of energy supply while reducing dependency
on the grid. It generalised model considers the configuration of battery energy storage systems, solar
PV systems, biomass, and diesel generators. The paper highlights the economic benefits of operating
the battery system alongside different distributed generators, compared to existing utility pricing mod-
els. The results of the case studies show that the optimal asset configuration with renewable energy
sources can provide cost-effective solutions with a minimal carbon footprint.

The economic value of combined PV-battery systems for an industrial load under different price
scenarios
This document discusses the economic value of combined PV and BESS for industrial loads in the
Netherlands. It highlights the need for energy storage systems in a future renewable-based power sys-
tem and the challenges faced in integrating them. The document presents a basis for the valuation of
BESS for industrial sites and provides insights into the energy systemmodelling and simulation. Energy
storage systems are crucial for maintaining the stability of the electricity grid in the face of increasing
deployment of variable renewable energy sources. The original grid design was not based on de-
centralised and variable generation, leading to challenges in integrating Energy storage systems. The
simulation of different configurations of PV and battery systems provides insights into self-consumption,
self-sufficiency, and the potential economic benefits for industrial loads.

2.3. Multi-Objective Optimisation Techniques
Multi-objective optimisation techniques play a crucial role in addressing the complex trade-offs that
arise in designing Hybrid Power Systems. The simultaneous consideration of multiple objectives, such
as cost and CO2 emissions, allows decision-makers to identify a range of Pareto-optimal solutions that
offer different trade-offs between these objectives. In the case of this thesis, Cost and CO2 emissions.
Identified techniques to tackle thesemulti-objective problems aremost prominently: Genetic Algorithms
(GA), Particle Swarm Optimisation (PSO), HOMER, and Mixed Integer Linear Programming (MILP)

While PSO and HOMER have shown promise in certain optimisation tasks, they may not be inher-
ently suited for multi-objective optimisation [81], requiring weights to be added to multiple objectives
effectively turning it into a mono-objective optimisation problem. Additionally, HOMER, often consid-
ered a black box model [50], may lack transparency in its optimisation process, making it challenging
to understand and verify the obtained results. Furthermore, in literature when HOMER is used for
optimisations, GA is used as a verification technique with similar results [42].

Genetic Algorithms (GA) have demonstrated their effectiveness and suitability for multi-objective
optimisation tasks [82] making it an ideal choice for tackling the intricate trade-offs in designing HPS
components. The transparent nature of GA also allows for better insight into the optimisation process
and easier validation of results. Even when a comparison is made between PSO, HOMER, and GA
with a mono-objective optimisation, the results are similar [40].
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As a result, in this research, we have opted to utilise Genetic Algorithms as our primary multi-
objective optimisation technique. Subsequently, the GA will be expanded with elitism and nondomi-
nation into the Nondominated Sorting Genetic Algorithm II (NSGA-II) [36]. Key differences between
GA and NSGA-II (and the reason for utilising it) [36] is the use of nondominated sorting, elitism, and
crowding distance sorting in NSGA-II. Nondominated sorting divides the population into multiple fronts
based on their dominance relationship, allowing NSGA-II to maintain a diverse set of solutions that are
close to the Pareto-optimal front. Elitism keeps the best individuals from each generation preserved in
the next generation. This helps to maintain the best solutions over generations and prevents the loss of
valuable information. Crowding distance helps to maintain diversity by assigning a fitness value based
on the density of solutions in a particular region of the objective space. It encourages the exploration
of different regions and prevents the convergence of a single solution.

Overall, NSGA-II performs better than regular GA in multi-objective optimisation problems. It pro-
vides a more diverse set of solutions that cover a wider range of trade-offs between conflicting objec-
tives. This makes it a powerful tool for decision-making in complex problems. Leveraging the power
of NSGA-II effective sizing of HPS components, considering Cost and CO2 emissions, is attempted
through the comparison of a diverse range of optimal solutions on the Pareto front.



3
Methodology

For the work completed in this Thesis, three main subjects were adhered to: Modelling, Sizing, and
Analysing. For the modelling of the PV-DSL-BAT and grid components, Mosaik [83] will be used as
co-simulation software in combination with a custom EMS and industrial load profiles [84]. The sizing
will be done with a Genetic Algorithm to tackle the multi-objective problem: Total Cost of the System
and CO2 emissions in one year of operation. The analysis of the bus voltages will be performed
on the CIGRE MV Distribution Network [85] with PandaPower [86] to perform unbalanced load flow
calculations. A comparison will be made of the system before and after the optimal sizing has taken
place. These three subjects combine towards reaching the research objective: ”Optimally size a Hybrid
Power System (composed of a PV system, Diesel Generator, and Battery Energy Storage System; PV-
DSL-BAT) to minimise cost and CO2 emissions for an industrial load and analyse the effect of this
optimally sized profile on voltage sag in an industrial bus system.”

3.1. Modelling
In this work, mathematical models will be created in Python for the use in co-simulation software Mosaik.
These models will replicate behaviours of Grid connection, PV, Diesel Generator, and BESS systems in
response to an industrial load profile. An EMSwill also be created to route the power exchange between
these components. The necessary behaviours of the created models in this work are limited to the
exchange of power within certain thresholds/limits and to keep track of the exchanged energy and used
resources. The exchanged energy and used resources will be used to calculate the objective functions,
cost andCO2 emissions, of the system through the Levelized Cost of Energy (LCOE) andCO2 emission
factors. The LCOE and CO2 emission factors are multiplied by the energy and resources used in one
year of simulation to calculate the average cost and CO2 emission for a full year of operation.

For the CO2 emissions considered in this thesis, the scope 1 and 2 emissions are addressed. These
are defined by the World Economic Forum [87] as:

• Scope 1: These are “direct” emissions – those that a company causes by operating the things
that it owns or controls. These can be a result of running machinery to make products, driving
vehicles, or just heating buildings and powering computers.

• Scope 2: These are “indirect” emissions created by the production of the energy that an organ-
isation buys. Installing solar panels or sourcing renewable energy rather than using electricity
generated using fossil fuels would cut a company’s Scope 2 emissions.

In this thesis, these scope definitions translate to the direct release of CO2 through the burning of
diesel in the diesel generator (Scope 1) and the purchasing of electricity from the grid (Scope 2).

3.1.1. Mosaik
Before the models are created, it is necessary to become familiar with the co-simulation software Mo-
saik. This ensures that the models are created in a manner compatible with Mosaik.

MOSAIK [83] is a co-simulation framework that focuses on providing high usability and flexibility.
MOSAIK is closely linked to the same approach used for multi-agent systems (MAS), which allows

9
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for modelling components and their interactions in different domains. MAS-type solutions are espe-
cially beneficial for complex Cyber-Physical Energy Systems (CPES)1, similar to the energy system(s)
modelled in this work.

MOSAIK has been applied in various CPES test cases, including the evaluation of optimisation
strategies for dynamic virtual power plants, market-based re-dispatch solutions, congestion manage-
ment in distribution systems, and large-scale roll-out of CPES solutions. It has also been used in
hardware-related projects focused on microgrid testing and improving laboratory and co-simulation
platforms for CPES testing.

Figure 3.1: Simulation process for an individual
simulator [83]

The MOSAIK system architecture follows a modu-
lar approach, with the core framework serving as the
central component. The framework does not contain
simulation models itself but interfaces with a growing
ecosystem of simulators. Users can interact with MO-
SAIK through two APIs: the component API for estab-
lishing an interface between MOSAIK and a new sim-
ulator, and the scenario API for setting up executable
co-simulation scenarios.

The scheduling algorithm used by MOSAIK is a
flexible discrete-time simulation. It employs a data flow
graph to indicate the data dependencies between sim-
ulators in the co-simulation. The graph is automatically
established at the beginning of the co-simulation pro-
cess based on the connections defined by the user.
Each simulator has predecessors that provide data
and successors that require data. The simulation pro-
cess for each simulator progresses in steps until the
end of the co-simulation is reached.

The simulation process for each individual simu-
lator in MOSAIK is structured in steps that indicate
its temporal progression, represented visually in Fig-
ure 3.1. The step size is measured in integers to en-
sure comparability between different simulators. The
simulation process iterates for each simulator, per-
forming a step each time until the end of the co-
simulation is reached. The data exchange between
simulators is conducted asynchronously to improve performance.

The data exchange between a simulator and MOSAIK is divided into three stages. First, the input
data required by the simulator is read from MOSAIK’s internal buffer and put into the simulator’s input
buffer. The data requirement is specified via the data flow graph. The actual exchange of data between
simulators is managed via the discrete event simulation framework Simpy, which allows for efficient
management of the timing of asynchronous simulation processes.

Levelized Cost Of Energy
In this thesis, the LCOE is utilised to calculate the objective function, while it can also provide a com-
parison with LCOE values available in existing literature to benchmark the calculated values. The
LCOE calculation offers additional insights into the long-term economic viability of HPS configurations,
supporting the selection of sustainable energy solutions that align with industrial load demands and
environmental objectives.

The LCOE calculates a value for the price per generated kWh. The calculation includes the invest-
ment expenditures, operations and maintenance expenditures, fuel expenditures, electricity generated,
discount rate, and the lifetime of the system. These parameters, summarised in Table 3.1, are used in
the LCOE function given by Equation 3.1 [88] with the following assumptions:

• The investment expenditures only consider the initial capital investments and installation costs.
1A Cyber-Physical Energy System is a complex system that combines physical energy systems, such as electric power grids

and distributed energy resources, with the digital world of information and communication infrastructure. CPES also takes into
account human behaviour, economic factors, and environmental considerations.
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• The discount rate is taken as the Weighted Average Cost of Capital (WACC) and has a value of
1.15% [89].

• The lifetime of the system is set to 10 years. This is based on the shortest lifetime between PV (25
years [29]), BESS (20 years [90]), and, even though it is not directly modelled, the BESS inverter
(10 years)2.

LCOE =

∑n
t=1

It+Mt+Ft

(1+r)t∑n
t=1

Et

(1+r)t

(3.1)

Table 3.1: Parameters for LCOE calculation

Parameter Symbol
Investment expenditures in the year t It
Operations and maintenance expenditures in the year t Mt

Fuel expenditures in the year t Ft

Electricity generation in year t Et

Discount rate r
Lifetime of the system n

3.1.2. Grid

Diesel

Energy Management System (EMS)
Grid

BESSPV

Load

Figure 3.2: Simplified diagram of the models created in Mosaik

The grid connection, depicted as one of the model blocks in Figure 3.23, which will only consist of
an upper power limit, the contracted capacity. The assumption is made that the Grid model can also
accept power being supplied into it with the same magnitude limit. Per kWh that is supplied by the grid,
a cost and CO2 metric is calculated based on data summarised in 3.2. The grid model keeps track of
the maximum injected power in a time step (OG−kW ) and the total energy injected by the grid (OG−kWh).
Together with the maximum power, total kWh, and the parameters in 3.2 the cost and CO2 emission of
the grid is calculated according to 3.2 and 3.3 respectively. The Python code for the grid model can be
found in A.1.

F (CostGrid) = OG−kW (tend) ∗ CG−TP ∗ 12+
OG−kWh(tend) ∗ (CG−TE + CG−E)+

IG−kW ∗ (CG−C + CG−T + CG−TC) ∗ 12
(3.2)

2The Diesel Generator is not mentioned in years but rather in operating hours, namely 7000 [29]. A maximum operating
lifetime of 10 years is also mentioned for grid-supporting and off-grid applications [91]

3The squares indicate models that are controlled by the EMS during a timestep. The diamonds indicate data sets, these
provide values to the EMS during a timestep
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Table 3.2: 2022 Grid connection parameters for cost and CO2 calculation

Parameter [unit] Amount Symbol
Grid Model Input Contracted Capacity [kW] − IG−kW

Grid Model Output Maximum Power up until current time step [kW] − OG−kW

Grid Model Output total kWh injected up until current time step [kWh] − OG−kWh

Average Market Price [€/kWh] [92] 0.24124 CG−P

Grid CO2 Emission Factor 2022 [kg/kWh] [93] 0.526 EG
Grid Connection Fixed Rate [€/Month] [94] 12.65− 709.00 CG−CF

Grid Transport Fixed Rate [€/Month] [94] 36.75− 230.00 CG−TF

Grid Transport kWh Rate [€/kWh] [94] 0.00− 0.0107 CG−TE

Grid Transport Contract Rate [€/kW/Month] [94] 1.21− 1.94 CG−TC

Grid Transport Maximum kW Rate [€/kWmax/Month] [94] 1.73− 2.70 CG−TP

F (CO2Grid) = OG−kW (tend) ∗ EG (3.3)

3.1.3. PV
The PV model used for the simulation is in the form of a power profile that is created beforehand
according to a specific location and the chosen scale of PV installation. This scalable PV profile is
generated with PVGIS [95][96] based on the installed capacity (kWp) and a chosen location. In the
case of this thesis, the location is set in Pernis, Netherlands [51.889, 4.388] (an industrial site best known
for its petrochemical industry) to mimic the industrial setting in which the simulation, optimisation, and
analysis should take place. Based on the selected location, a yearly profile is generated using PVGIS.
This tool, developed by the Joint Research Centre, uses horizon information, solar radiation databases,
terrain elevation, temperatures, and numerous other models and/or calculations to provide an hourly
PV output power profile. The most recent dataset available in PVGIS is from the year 2020 (a leap
year), which will be used in this thesis. PVGIS includes a system loss component (equal to 14%) and
calculates the slope and azimuth of the PV system that gives the highest energy output for the whole
year for the given location.

The PV model will provide the EMS with a PV power value for each timestep. The EMS will keep
track of the utilised PV power and potential curtailment. This curtailment will be used to determine the
netto PV energy usage from the total PV injected power. The netto PV energy consists of all usage,
including injection into the grid. No direct monetary compensation for injected PV power into the grid
will be given, as the Netherlands is removing its net metering construction [97]. The netto PV energy
will be used for the calculation of the total cost, including the calculation of the LCOE. The Cost and
CO2 emission of the PV system are then calculated according to 3.4 and 3.5 respectively.

F (CostPV) = max(1, OPV−kWh(tend)) ∗ LCOEPV (3.4)

F (CO2PV) = 0 (3.5)

Validation
The PVGIS system has already validated its outputs with measurements from the European Solar
Test Installation (ESTI) [100]. The performance of PVGIS can be evaluated based on the deviation of

4 the 2021 USD prices are converted to 2022 Euro prices with [98] [99]

Table 3.3: 2022 PV parameters for cost calculation

Parameter [unit] Amount Symbol
PV Output netto kWh generated [kWh] − OPV−kWh

PV Investment Cost [€/kWp] [88] 4 950.85 CPV−I

PV Operating and Maintenance Cost [€/kWp/year] [88] 4 16.93 CPV−OM

PV Levelized Cost Of Energy [€/kWh] − LCOEPV
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its energy production calculations from real data. A comparison of the energy production for a roof-
mounted photovoltaic installation of 9.6 kWp in the area of Athens and a 105.6 kWp open field array
in Asopos, Lakonia is evaluated in [101]. PVGIS achieved an annual energy production deviation of
−2.0% and+3.0% from the measurements. This indicates that PVGIS estimates the energy production
of photovoltaic systems with a relatively high level of accuracy. In Cabauw, Netherlands a comparison
of the global horizontal irradiance measured and calculated by PVGIS achieved a Root Mean Square
Deviation (RMSD)5 of 86.9 W/M2. As this thesis is focused on industrial loads these error margins are
considered acceptable, particularly when realising that the deviation in the Netherlands is in the order
of watts while the system for industrial application will be in the order of kilowatts.

The validation that needs to be done for this thesis encompasses the sizing aspect, where the
validation needs to be made that the dataset of 1 kWp solar installation multiplied by a scalar gives
the same results as the scalar kWp solar installation. This involved generating multiple datasets from
PVGIS, each corresponding to different installed PV capacity values: 1 kWp, 2 kWp, 5 kWp, 10 kWp,
50 kWp, 100 kWp, 500 kWp.

The 1 kWp dataset was scaled with the corresponding integer values (i.e. 2, 3, 5, 10, 50, 100, 500) to
create simulated profiles for each installed capacity. By comparing the simulated profiles to the PVGIS
datasets for the same capacities, the validation aimed to assess the accuracy and scalability of the
PVGIS outputs.

Two figures were created to assess the scalability of PVGIS datasets Figure 3.4 and Figure 3.3.
Figure 3.4 shows the different datasets created by PVGIS and Figure 3.3 shows these PV profiles
divided by the 1 kWp dataset. It can be observed from the figure that these profiles are an exact match
with the integer scales of the 1 kWp dataset. This ensures that for the sizing done in this thesis, the
integer scaling of the 1 kWp dataset can be used as opposed to configuring a setup that downloads
new datasets for each new size. This also shows that PVGIS scales the data with the installed peak
power linearly.

Figure 3.3: PVGIS PV Profiles for 1 kWp, 2 kWp, 5 kWp, 10 kWp, 50 kWp, 100 kWp, 500 kWp installed capacity at
[51.889, 4.388]

5This is similar to the Root Mean Square Error (RMSE) listed in Equation 3.8
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Figure 3.4

3.1.4. Diesel Generator
Within an HPS, it is advisable to incorporate dispatchable energy sources to increase power production
during the intermittency of renewable energy sources. For this thesis, a model is created with the help of
diesel generator datasets. This process can be repeated for different types of dispatchable generators,
but for this thesis diesel generator data is used as it is probably the most popular type of generator and
the choice for industrial applications [102].

To model the cost and CO2 characteristics of a diesel generator, datasets from a diesel generator
manufacturer will be used in combination with the parameters mentioned in literature. The generator
will work similarly to the grid in the sense that it will provide power below a certain upper limit, but will
also use a threshold value. This threshold indicates that diesel generators are not suited to be operated
at low power outputs relative to their maximum capacity [29].

The dataset used provides the output power and the corresponding fuel consumption for different
sizes of generators. For each of these generators, a fuel consumption for different power output per-
centages (25%, 50%, 75%, 100%) is also given. These power outputs, together with the corresponding
fuel consumption are plotted in a scatter plot Figure 3.5. For these scatter points a trend line is added
through linear regression that solves Equation 3.6 [103], where X is the vector containing the power of
the generators and y is the vector containing the corresponding fuel consumption. The resulting trend-
line and thus the equation used to calculate the fuel usage per time step can be seen in Equation 3.7.
With this model (trend line), the Root Mean Square Error (RMSE) is calculated with Equation 3.8 to
indicate the error of the model to the actual data points.

min
w

||Xw − y||22 (3.6)

OD−L(t) =

{
OD−L(t− 1) + (0.0513 ∗ P (t) + 1.562), if P (t) > 0

OD−L(t− 1), otherwise
(3.7)

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(3.8)

To calculate the costs and CO2 emissions of the diesel generator that has supplied a certain amount
of kWh, formulas 3.9 and 3.10 are used. Herein 3.9 uses the total energy injected by the diesel gen-
erator (OD−kWh) and the Levelized Cost Of Energy (LCOE) to calculate the average cost of the diesel
generator over one year of simulation. The cost function of the diesel generator includes a minimum
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Table 3.4: 2022 Diesel Generator parameters for cost and CO2 calculation

Parameter [unit] Amount Symbol
Diesel Generator Model Output total kWh injected [kWh] − OD−kWh

Diesel Generator Model Output total litres consumed [L] − OD−L

Average Diesel Price [€/L] [104] 2.09 CD−P

Diesel CO2 Emission Factor 6 [kg/L] [93] 3.473 ED
Diesel Generator Investment Cost [€/kW] [Appendix B] 450 CD−I

Diesel Generator Operating and Maintenance Cost [€/kW/year] [Appendix B] 10 CD−OM

Diesel Generator Levelized Cost Of Energy [€/kWh] − LCOEDiesel

of 1 kWh to ensure the costs of the installed diesel generator are always taken into account, even if
the diesel generator does not provide any power throughout the simulation. The total CO2 emissions
for one year of operation of the diesel generator are calculated through the consumed litres of diesel
(OD−kWh), which the diesel generator model keeps track of. The Python code for the Diesel Generator
model can be found in A.2.

F (CostDiesel) = max(1, OD−kWh(tend)) ∗ LCOEDiesel (3.9)

F (CO2Diesel) = OD−L(tend) ∗ ED (3.10)

Validation
The validation of our model (trend line) is the RMSE (Equation 3.8) of all the actual data sheet values to
all the values predicted by the linear regression line. This RMSE value of 2.43 gives the error indication
of the model over the complete range of 0 to 3600 kVA7. When the RMSE is calculated for lower ranges
of generators the RMSE is lower. The larger diesel generators introduce more volatility in the fuel
consumption values. The RMSE for lower power ranges can be seen in Appendix C, showcasing that
the RMSE value of 2.43 is an upper limit.

Figure 3.5: Linear Regression line used as the model for Diesel Generator

3.1.5. Battery Energy Storage System
Battery Energy Storage Systems are well suited for renewable energy storage and backup power ap-
plications [105], which increase the sustainability of the electricity grid and its operational reliability.
Within BESSs, Li-Ion stands out as the new dominating technology for stationary applications, where
previously this title was held by Lead-Acid technologies [106]. Within Li-Ion technologies, NMC (Nickel
Manganese Cobalt) and LFP (Lithium Iron Phosphate) are two of the main technologies used for grid

6The Well-To-Wheel (WTW) Emission Factor
7Larger diesel generators exist, but the data sheets examined did not readily provide fuel efficiencies
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Table 3.5: BESS model parameters for Equation 3.11, Equation 3.12, and Equation 3.13

Parameter [unit] Source Value
ηcharge [%] subsection 3.1.5 - Validation 0.9
ηdischarge [%] subsection 3.1.5 - Validation 0.998
σself [%/day] [110] [108] [111] 0.1

applications. Even though literature sometimes suggests that LFP dominates grid-connected uses
while NMC dominates Electric Vehicle applications [107]. A comparison of these technologies’ per-
formance in [105] and [108] shows that they are both suited for usage in stationary applications (e.g.
grid frequency regulation, forecast accuracy improvement, power gradient reduction, and uninterrupt-
ible power supply). In this thesis, the NMC technology is chosen, as the verification of battery models
based on [109] utilises NMC Li-Ion technology for stationary applications.

The BESS model for this thesis is based on elementary energy and power equations where the
energy in a time step is increased or decreased by a certain amount. These equations are split into three
parts: charging Equation 3.11, discharging Equation 3.12, and idling (self-discharge) Equation 3.13.
Somemodels of Battery systems use the round trip efficiency instead of separate charge and discharge
efficiencies, but this can be calculated simply by multiplying charge and discharge efficiencies together
ηroundtrip = ηcharge ∗ ηdischarge [90]. The values used for ηcharge, ηdischarge, and σself and their sources are
given in Table 3.5.

For the BESS in this thesis, the State Of Charge (SOC) will be limited between 20%and 90% [112] by
the Energy Management System (EMS) described in subsection 3.1.6. The capacity [kWh] and power
rating [kW] ratio of the BESS will be set to a fixed value, which will be elaborated in subsection 3.1.5 -
Validation.

To calculate the cost function associated with the discharged kWh of the BESS, a specific LCOE for
storage applications is used, namely the Levelized Cost Of Storage (LCOS) 3.14 [113]. This is similar
to the LCOE 3.1, except the electricity generated Et is equal to the discharged energy and the fuel
expenditure Ft is equal to the cost of electricity8.

Similarly to the other models, the BESS Cost and CO2 functions are calculated using Equation 3.15,
Equation 3.15, and Table 3.6. The Python code for the BESS model can be found in A.3.

E(t) = E(t− 1) + P (t)ηcharge∆t (3.11)

E(t) = E(t− 1) +
P (t)∆t

ηdischarge
(3.12)

E(t) = E(t− 1)− σself∆t (3.13)

LCOS =

∑n
t=1

It+Mt+Ft

(1+r)t∑n
t=1

Et

(1+r)t

(3.14)

F (CostBESS) = max(1, OB−kWh(tend)) ∗ LCOSBESS (3.15)

F (CO2BESS) = 0 (3.16)

Validation
The validation process for the BESS systemwill be done to extract correct values for ηcharge and ηdischarge
that gives the BESS system real-world behaviour including any possible inverters. This involves com-
paring the SOC of the BESS model at the end of a defined power profile, with the SOC measurements
obtained from an actual BESS with an inverter that is described in [109].

The real-world BESS system from which ηcharge and ηdischarge values will be extracted is shown in
Figure 3.7 and its details are summarised in Table 3.7. Here the BESS model energy-to-power ratio

8The cost of electricity generated by either the grid, diesel generator, or PV is taken into account in these models themselves
and not additionally in the LCOS formula
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Table 3.6: 2022 BESS parameters for cost calculation

Parameter [unit] Amount Symbol
BESS Output kWh injected [kWh] − OB−kWh

BESS Investment Cost [€/kWh] [114] 142.65 CB−I

BESS Operating and Maintenance Cost [€/kW/year] [113] 4 10 CB−OM

BESS Levelized Cost Of Storage [€/kWh] − LCOSBESS

Table 3.7: [109] BESS system specifications

Parameter [unit] Amount
Technology Li-Ion NMC
Design capacity [kWh] 571.9
Nominal power [kW] 250
Energy-to-Power Ratio [h] 2.28

is also set to a value of 2.28 similar to its real-world counterpart. This value is within the bounds of
energy-to-power ratios of 0.17 to 8 found in literature [115][113][55].

Figure 3.6: [109] Power Profile for test setup in Figure 3.7

A predetermined power profile (given in Fig-
ure 3.6 [109]) is run through the real-world test
setup, and also through the proposed BESS
model. The ηcharge and ηdischarge parameters of
the proposed BESS model are then adjusted un-
til both the real-world and model BESS achieve
similar SOC readings at the end of the predeter-
mined power profile.

The starting SOC for the real-world andmodel
BESS systems is 92.8% and the end SOC for the
real-world model is 15.75%. Tuning the ηcharge
and ηdischarge to values of 0.9 and 0.998 respec-
tively resulted in an end SOC for the model of
15.74%and whose SOC progression can be seen
in Figure 3.8. The blue star indicates the ”perfect” value of 15.75%. The downside of this method of
tuning is that only the end SOC of the real-world BESS system is known and thus the model parameters
are only tuned to mimic this end SOC. Herein it is thus not possible to complete an RMSE calculation
of all the SOC points to check if the RMSE is smaller than 2.00%, a threshold mentioned in [116].

The values of 0.9 and 0.998 for the ηcharge and ηdischarge and thus a value of ηroundtrip = ηcharge ∗
ηdischarge = 0.8982 are supported by values used in other literature. [30] [117] mention ηdischarge values
of (nearly) 100%, [90] [117] [111] mention ηroundtrip values of 90%, and [45] [118]mention a ηcharge value
of 90%.

Figure 3.7: Li-Ion NMC BESS setup used in [109]
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Figure 3.8: SOC progression of the proposed BESS model reacting to the power profile in Figure 3.6

3.1.6. Energy Management System
With the models for the grid, PV, diesel generator, and BESS system, an EMS can be created to
schedule power to and from components in order to supply the industrial load. This EMS will be based
on an elementary method, namely a rolling average in combination with a priority list.

Firstly the load profile is chosen at random out of a dataset. The choice is made randomly to mimic
the behaviour of an industrial site that sets out to optimally size components for itself without consulting
all of its ”neighbours”. Industrial sites usually have their management structure and can make decisions
autonomously (within regulations) regarding their bottom line, Costs. The dataset ”Load profile data of
50 industrial plants in Germany for one year” [84] contains 20 load profiles for the year 2016 and 30 load
profiles for the year 2017 in increments of 15 minutes (which will be the increments used throughout
this EMS). The dataset for the year 2016 is chosen because it is a leap year and thus has the same
amount of data points as the PVGIS dataset mentioned in subsection 3.1.3.

Within this total dataset of 20 load profiles, the load profile that will be used in the EMS and thus will
also be sized and analysed in section 3.2 and section 3.3 is ”LG 1”, which was randomly chosen with
[119]. The ”LG 1” profile can be seen in Figure 3.9.

Figure 3.9: ”LG 1” [84] load profile in 2016

For the EMS power scheduling Apparent power is considered. The assumption is made that in-
dustrial sites perform power factor compensation themselves for their equipment and/or processes if
necessary, but the grid point connection has a power factor of 0.85 [120] [121]. The PV, BESS, and
Diesel generators are all assumed to be able to supply (and extract) at least up to 0.85 power factor
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[122] [123] [124]. Their power scheduling will be according to the apparent power of the load profile.
When power is supplied or extracted by the components, the assumption is made that the active and
reactive power are increased/lowered in the same ratio as the 0.85 power factor. After the sizing for
example, the new apparent power profile of the grid usage will be different, but the ratios of active and
reactive power will stay the same.

The EMS can be seen depicted as a flowchart in Figure 3.10 and an illustration of the workings of the
EMS can be seen in Figure 3.11. The steps of the EMS depicted in the flowchart and the accompanying
example are segmented below:

1. (3.11a) A Rolling Average (RA) is created between the Load and PV profiles (a 6 hour rolling
average in the example Figure 3.11a).

2. (3.11b) Bounds (RAlower and RAupper) are added to the Rolling Average, which can be static or
proportional. The bounds seen in Figure 3.11b are a static percentage (25% in this example) of
the grid capacity. The proportional bound would be a percentage of the rolling average. The static
bound is chosen for the explanation of the EMS as it is easier to understand.

3. (3.11c) The Grid usage is set within the bounds to as close as possible to the load profile, also
ensuring the Grid usage stays within its own capacity limit Gridlimit.

4. (3.11d) The PV is used to supply power to the load and grid within the rolling average bounds.
The ”PV Usage” is not an actual model output, but rather a variable in the EMS where the energy
used by the PV profile is recorded so the EMS does not request this energy from another model
(BESS or diesel generator) as well. The ”shortage” after the Grid and PV (ShGPV ) is calculated
also for this reason, to dispatch power to other components if the Grid and PV are insufficient.

5. (3.11e) The BESS system is used to supply or extract power between the current power combi-
nation and the load profile (ShGPV ). During the night the BESS discharges with a power equal
to the last SOC during the day (PV ̸= 0) minus the SOC lower bound, divided by 18 hours9, also
shown in Equation 3.17. This will let the BESS system provide a small power benefit to the grid
usage during the night.

6. (3.11f) The Diesel generator is used to supply power (within its rater power limit Diesellimit where
the current power combination (”shortage after Grid, PV, and BESS ShGPV B) is still below the
load profile. The diesel generator model has a lower threshold and will thus not turn on for small
power demands (30% of diesel generator rating).

7. (3.11g) The PV is once again used to minimise curtailment with the grid usage staying within the
rolling average bounds.

8. (3.11h) In the final step, if the power combination is not satisfactory to supply the load demand
(”shortage after Grid, PV, BESS, and Diesel ShGPV BD), the grid is allowed to exit the Rolling
Average bound to supply the load. If the final power combination does not match the Load profile,
the Power Not Supplied is recorded. The curtailed PV power is also recorded during this step.

Pnight =
SOCPV̸=0[end]− SOClower-bound

hnight
(3.17)

This EMS will be used in combination with the sizing mentioned in section 3.2 and the analysis men-
tioned in section 3.3. The EMS will be used to determine the grid usage profile (with sized components)
that will be entered into PandaPower for analysis with the CIGRE MV Distribution Network.

918 hours is the largest time span between PV generation in the PVGIS dataset
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Figure 3.10: Energy Management System explained in steps 1 - 8
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(a) EMS step 1 (b) EMS step 2

(c) EMS step 3 (d) EMS step 4

(e) EMS step 5 (f) EMS step 6

(g) EMS step 7 (h) EMS step 8

Figure 3.11: Explanation of the EMS (with a a 6 hour rolling average and a static bound of 25% in this example), timestamp of
01 July 00:00 to 02 July 00:00
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3.2. Sizing
With the models created in section 3.1, the optimal size of each component can be determined. This
optimal size will be determined through a Genetic Algorithm (GA), a multi-objective optimisation algo-
rithm. To determine when a component is sized correctly, objective functions need to be made, which
will be explained in subsection 3.2.1. For the sizing, four different scenarios will be examined. These
scenarios are different in terms of parameters relating to the Energy Management System (EMS). As
explained in subsection 3.1.6, the EMS is based on a rolling average and a static or dynamic bound
around this rolling average. Because these two parameters could affect the sizing, four scenarios are
proposed, as seen in Table 3.8. In this table, the Rolling Average Hours determines the number of time
steps that are taken into the average. A 12 hour rolling average will have 12 ∗ 4 15-minute time steps in
the average. The static or dynamic component of the rolling average bound, as seen in Figure 3.11b,
determines if the bound around the rolling average is a fixed interval (static) or based on a percentage
of the current grid-usage (dynamic). The static bounds are calculated with respect to the grid capacity.
The percentage bound is the percentage of either the grid capacity (static) or the current grid-usage
(dynamic) that surrounds the rolling average line.

3.2.1. Objective Functions
The objective functions created for Cost and CO2 emissions give a value to a certain combination of
component sizes which will help identify better or worse performance. This will create a Pareto front
from which an optimal solution will be chosen that has the shortest Euclidean distance to (0, 0) (a
solution that has no Costs or CO2 emissions).

For the Cost Objective function, each component (PV, BESS, Diesel Generator) will be evaluated
based on LCOE/LCOS and the Grid connection will be evaluated on yearly cost and cost of energy (we
assume the grid connection is already installed). The cost formulas for each component have already
been explained in Equation 3.2, Equation 3.4, Equation 3.9, and Equation 3.15. These can then be
combined into the total Cost function by simply summing them into Equation 3.18. Additionally, a hefty
Energy Not Supplied (ENS) [kWh] penalty is added to ensure the solutions given always supply the
load profile. The ENS is rounded up the the nearest integer.

F (Cost) = (F (CostGrid) + F (CostPV) + F (CostBESS)+

F (CostDiesel) + round(ENS)) ∗ (1 + 10 ∗ round(ENS))
(3.18)

The CO2 Emissions Objective function evaluates the environmental performance of the HPS con-
figuration, considering the total CO2 emissions resulting from grid usage and the consumption of diesel
by the diesel generator. The total CO2 emission objective function can be created by again summing
the sub-functions and adding a penalty function for Energy Not Supplied. The individual CO2 cost func-
tions for the grid and diesel generator were explained in Equation 3.3 and Equation 3.10 and combined
into Equation 3.19.

F (CO2) = (F (CO2Grid) + F (CO2Diesel) + round(ENS)) ∗ (1 + 10 ∗ round(ENS)) (3.19)

These two objective functions are both normalised to aid the interpretation of the results. The base
scenario, with which the objective functions are normalised, is when no PV-DSL-BAT components
have been added and the load profile is sent directly to the grid. For the chosen load profile ”LG 1”,
the maximum power is 391 kVA and this will be chosen as the grid capacity connection for calculating
the base objective functions. The base scenario parameters and resulting Cost and CO2 function are
summarised in Table 3.9. These values give a starting point from which differently sized HPSs can

Table 3.8: Four EMS scenarios that will be sized

Scenario Rolling Average Hours Static or Dynamic bound Percentage bound
1 12 Static 100%
2 12 Dynamic 100%
3 6 Static 50%
4 6 Dynamic 50%
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Table 3.9: Base scenario parameters

Parameter [unit] Amount
Grid capacity [kVa] 391
PV capacity [kWp] 0
Diesel generator capacity [kVa] 0
BESS capacity [kWh] 0
F (CostBase) [1000×€] 559
F (CO2Base) [tonne] 306

be compared. Together with the EMS created in subsection 3.1.6, the load profile can be seen in
Figure 3.12. The line thickness of the ’Grid usage’ is smaller than the ’Demand’ line to be able to see
both lines, they follow each other perfectly.

(a) Yearly power profile of base HPS (b) Power profile of base HPS, 01 July 00:00 to 02 July 00:00

Figure 3.12

3.2.2. Pseudo Pareto Front
With the definition of the objective functions and the base scenario, the sizing can be commenced.
However, it is advisable to have a prediction before the sizing commences to make sense of possible
outcomes. This will be done with a ”pseudo” Pareto front, where the size of one component is changed
and the effect is observed in the Cost and CO2 function values. This is not a multi-objective optimisation
but a sequential optimisation, where the resulting optimum for a variable in one optimisation is used to
optimise another variable. For this ”Pseudo” Pareto front, the grid capacity is sized first, then the PV
system, then the diesel generator, and finally the BESS; all from 0 to 1000 in steps of 100. This is done
to create a large spread of solutions as a starting point.

An example (scenario 3) of the ”pseudo” Pareto fronts can be seen in Figure 3.13. Here the fronts
can be seen when the sizing is done sequentially: First, the grid is sized to 391 kVA (with grid capacity
below 391 kVA, there is ENS and thus a very high penalty), then the PV is sized to 300 kWp, and
the Diesel and BESS systems appear to only worsen the Cost function while not improving the CO2
function. This gives an estimate for the optimal size of the HPS, with a grid capacity near 391 kVA
and a PV system in the neighbourhood of 300 kWp. Because this is a sequential optimisation with
only a small test population, this estimate needs to be taken with a fair amount of scepticism. Only
after the optimisation with GA has been completed, does it become clear if the estimate with sequential
optimisation provides meaning.

3.2.3. Genetic Algorithm
With the first steps taken towards an optimal combination of grid capacity, PV, Diesel, and BESS with
a sequential optimisation, the optimisation can be extended with Genetic Algorithm (GA) optimisation.
In chapter 2 the suitability of GA for this type of optimisation was explained, specifically Nondominated
Sorting Genetic Algorithm (NSGA-II) [36]. NSGA-II incorporates nondominated sorting, elitism, and
crowding distance to improve on the standard implementation of GA. These additions to GA and the
overall workflow of NSGA-II is presented below, as well as the initialisation of the algorithm.
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(a) (b)

(c) (d)

Figure 3.13: ”Pseudo” Pareto front created for scenario 2: a 12 hour rolling average and a dynamic boundary of 100%

NSGA-II

Figure 3.14: NSGA-II algorithm flowchart [125]

The overall workflow of the NSGA-II algorithm
can be seen in Figure 3.14. And comprises of
the following steps:

1. The population is initialised, for this thesis
the initialisation is based on [12].

2. The population is ranked with nondomi-
nated sorting and crowding distancewith an
elitist approach. The parent and offspring
are regarded as unique individuals and are
sorted together, this can result in a new gen-
eration consisting of only parents, only off-
spring, or anything in between.

3. M top-ranking individuals are chosen to be
the parents of the new generation.

4. Mutation and Crossover occurs inside the
Genetic Operator to create N offspring.

5. The new generation of sizeM+N is ranked
with nondominated sorting and crowding
distance.

6. Steps 2 - 5 are repeated until a termination
criterion is reached, a maximum number of
generations.

The sorting step 2, which includes nondomi-
nated sorting and crowding distance, is illustrated
in Figure 3.15
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Figure 3.15: Illustration of selection in NSGA-II with nondomination and crowding distance sorting [126]

Nondominated Sorting
Nondominated sorting is a method of ranking indi-
viduals and creating nondominated fronts by ex-
amining how many solutions dominate another solution. A solution dominates another if it is better
performing in at least one objective function while not being worse than another. A nondominated
individual cannot be improved in one objective function without sacrificing performance in another ob-
jective. In this sorting approach, each solution is assigned two entities: domination count (the number
of solutions that dominate this solution) and a set of solutions that it dominates. The solutions in the
first nondominated front have a domination count of zero. Then, for each solution, the domination
count of each member in its set is reduced by one. If the domination count of a member becomes zero,
it is placed in a separate list, which represents a new nondominated front. This process is repeated
until all fronts are identified. This process becomes apparent if it is examined visually, an example of
nondomination can be seen in Figure 3.16a.

(a) Illustration of dominated and nondominated (blue) individuals [36] (b) Illustration of crowding distance sorting [127]

Crowding Distance
When the nondominated fronts are identified, the combination of the best nondominated fronts may
contain more individuals than the parent population. When this occurs crowding distance sorting is
utilised to reduce the total solution set toM individuals. Crowding distance uses theManhattan distance
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normalised to the difference between the worst and best-performing solution per objective function.
This can better be illustrated with the crowding distance loop expanded in Equation 3.20, the Crowding
distance assignment for all solutions in a nondominated set I [127]. The crowding distance of all
solutions is first set to zero. Then for each objective (Cost and CO2), the solutions are sorted based
on their value for that objective function. The crowding distances of the worst and best solution of the
objective function are set to infinity to ensure that they are always considered for the next population.
For every other solution between the worst and best-performing solution, the distances are increased
by the difference in distance between the solution behind and in front of it, normalised to the difference
between the value of the worst and best solution. I[i].m refers to the mth objective function value of
the ith individual in the set I and fmax

m and fmin
m are the maximum and minimum values of the mth

objective function [127].

l = |I| number of solutions in I
for each i, set I[i]Distance = 0 initialise distance
for each objective m
I = sort(I,m) sort using each objective value
I[1]Distance = I[l]Distance = inf so that boundary points are always selected
for i = 2 to (l − 1) for all other points
I[i]Distance = I[i]Distance + (I[i+ 1].m− I[i− 1].m)/(fmax

m − fmin
m )

(3.20)

Genetic Operator
Based on [127] [18] the NSGA-II algorithm will incorporate Simulated Binary Crossover and polynomial
mutation [128] for the genetic operator. An implementation of this combination can also be observed
in [129].

Simulated Binary Crossover (SBX) creates two children (x(1,t+1)
i and x

(2,t+1)
i ) from two parent solu-

tions (x(1,t)
i and x

(2,t)
i ) with the help of a random number ui ∈ [0, 1], a crossover index ηc, Equation 3.21,

and Equation 3.22 [130].

βqi =

 (2ui)
1

ηc+1 , ui ≤ 0.5(
1

2(1−ui)

) 1
ηc+1

, otherwise
(3.21)

x
(1,t+1)
i = 0.5

[
(1 + βqi)x

(1,t)
i + (1− βqi)x

(2,t)
i

]
x
(2,t+1)
i = 0.5

[
(1− βqi)x

(1,t)
i + (1 + βqi)x

(2,t)
i

]
.

(3.22)

Polynomial Mutation is designed for variables with a predefined minimum xU
i and maximum value

xL
i (which is the case in this thesis, as will be illustrated later). The newly created offspring with SBX

x
(1,t+1)
i is mutated to y(1,t+1)

i . This is done through Equation 3.23, Equation 3.24, uri (a pseudo random
number) 0 ≤ ri < 1, and a parameter ηm that determines the mutation range [131][130].

y
(1,t+1)
i = x

(1,t+1)
i +

(
xU
i − xL

i

)
δ̄i (3.23)

δ̄i =

{
(2ri)

1
1+ηm − 1, ri < 0.5

(1− (2(1− ri))
1

1+ηm , ri ≥ 0.5
(3.24)

Initialisation
The initialisation of the algorithm is based on parameters found in [12] [132] [18]. The parameters
chosen for the optimisation are summarised in Table 3.10. The population is set by first calculating
the maximum number of solutions and taking 0.003% of this value. For the sizing in this thesis, four
variables (Grid, PV, Diesel, BESS) are considered to have a minimum and maximum value.

For the grid connection, based on [94], the minimum capacity is chosen to be 50 kVA and the
maximum at 2000 kVA. The sizing of the grid is then chosen to be done in steps of 25, giving a total of
78 different grid capacity possibilities.
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Table 3.10: Parameters for the NSGA-II algorithm

Parameter Value
Population 395
Number of offspring 99
Crossover rate 0.9
Mutation rate 0.01

For the PV system, an attempt to limit this based on real-world data [133] was made. But the
difference between the maximum power of the load evaluated in this thesis 391 kVA and the real-world
PV system 26200 kWp is too large. This would result in a PV system that is always generating towards
the grid, instead of mainly being used for the load. We therefore limit the size of the PV system to 10
times the maximum power of the load 3910 kVA. With sizing steps of 100, this results in 39 different PV
installation possibilities. For the diesel generator, the maximum value was set to the largest generator
found in the dataset [134], 3600 kVA. With sizing steps of 100, this results in 36 different diesel generator
possibilities. Finally, for the BESS, the sizing was limited again by real-world counterparts found in [135]
to 48000 kWh. This is however a search area that would make the optimisation take days, it is halved to
24000 (Enough to supply the maximum load of ”LG 1” for 2.5 days). With sizing steps of 200, 96 different
BESS possibilities can be examined. This gives a total of 10513152 possibilities. Multiplied by 0.003%
gives a starting population of 395. With the same population to offspring ratio in [132], the number of
offspring is calculated to be 99. The crossover and mutation rates are set to 0.9 and 0.01 as presented
in [12].

With these parameters, the sizing can be mathematically expressed as Equation 3.25

minF (m)(xGrid, xPV, xDiesel, xBESS) m = Cost, CO2

s.t. 50 ≤ xGrid ≤ 2000

0 ≤ xPV ≤ 3910

0 ≤ xDiesel ≤ 3600

0 ≤ xBESS ≤ 24000

xGrid ∈ N | xGrid = 25g, g ∈ N
xPV ∈ N | xPV = 100i, i ∈ N
xDiesel ∈ N | xDiesel = 100j, j ∈ N
xBESS ∈ N | xBESS = 200k, k ∈ N

(3.25)

This minimisation equation takes the previously mentioned constraints and displays them in a univer-
sal language. The objective functions are Cost and CO2, which are calculated by running a year-long
power profile with a combination (within certain limits) of variables: Grid, PV, Diesel, and BESS. This
minimisation is done until 15 generations of solutions are reached.
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3.3. Analysing
In this section, the methodology for the voltage analysis on the CIGRE Medium Voltage (MV) Distribu-
tion system before and after the optimal sizing of the Hybrid Power System (HPS) is presented. The
main objective is to evaluate the impact of the optimally sized HPS on the voltage behaviour of the
network. For industrial applications, the IEEE recommends performing a balanced steady-state load
flow analysis [136]. A tool that can achieve such an analysis on the CIGRE MV distribution system is
PandaPower [86].

PandaPower presents a model for the CIGRE MV Distribution system for which load profiles can be
entered into each load element so that a load flow analysis can be performed over the course of a whole
year. The load profiles of German industries [84] will be distributed across the load elements of the
CIGRE MV Distribution network. This is done to assess the capabilities of the elements in the CIGRE
MV Distribution network (Lines, Transformer, etc.) and ensure they are at least capable of enduring
the load profiles of the German Industry.

Because there are more load profiles than loads/busses, a randomizer is used to assign certain load
profiles to the load elements. The resulting allocation can be seen in Table 3.1110. With this allocation
of load profiles to load elements, it becomes clear which busses will be interesting to examine: the
busses surrounding bus 11 which has been allocated load profile LG1 (the optimally sized profile).

The PandaPower equivalent of the CIGRE MV distribution network can be seen in Figure 3.19b.
The interconnection between elements is the same, except that PandaPower displays switch ”S2” at
the bottom of the topology.

The last step before a load flow can be performed is to calculate the reactive and active power
profiles from the apparent power load profiles. This is necessary to ensure the load flow analysis
calculates bus voltages correctly. The active and reactive power profiles will be calculated using a
power factor of 0.85 [120] [121]. The active power P is calculated using Equation 3.26 and the reactive
powerQ is calculated through Equation 3.27 using the power factor pf and the apparent power S. From
the apparent power profiles provided in [84], two profiles for the active and reactive power are created.

|P | = S ∗ pf (3.26)

|Q| =
√
(S2 − P 2) (3.27)

The CIGREMV distribution network contains 14 loads that are connected through a series of busses,
lines, and switches. In the ordinary scenario, all the switches are in the open position. This essentially
creates two separated feeders for the grid connection, which might cause the line loading of the left
feeder (in Figure 3.19: Feeder 1) to jump to values outside its limits. The first load flow that is thus
performed is a load flow with all the switches open, to make sure that the scenario before introducing
optimal HPS sizing does not already exhibit critical behaviour. This examination can be seen in Fig-
ure 3.17. Line ”line1_2” is overloaded (> 100%) with switch ”S1” in the open position during some time
intervals. Even though some cables could potentially handle short duration of overloading, this is not a
scenario that is ideal to use as a comparison basis. Thus, the base scenario, from which the compari-
son of load flow analysis for the CIGRE MV Distribution system without and with optimally sized HPS
will be made, will have the switch ”S1” closed. This relieves the overloading of the lines as can be seen
in Figure 3.18.

An added layer of complexity in the analysis arises from the potential injection of power from the
optimally sized HPS into adjacent nodes(feed-in). This intriguing scenario comes into play when the
sizing of components, encompassing the Grid, PV, Diesel Generator, and BESS leads to the PV gen-
eration surpassing the actual load profile in a given time step. This overabundance of PV generation
triggers a situation where the surplus power can potentially be injected back into the grid. The way the
EMS is defined in subsection 3.1.6, this is technically allowed.

While this surplus PV power injection doesn’t translate into direct monetary compensation for the
Cost objective function (due to the feed-in tariffs set to zero [97]), it might still hold significant merit.
The deliberation around this revolves around the prospect that a larger PV system could indeed be the
optimal solution, even when the excess power injection doesn’t yield direct financial returns. This per-
spective underscores the intricate considerations and nuanced decision-making inherent in optimising
HPS components.

10This allocation was done at the same time as the random allocation of the loads to busses that are mentioned in section 3.3
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To delve deeper into this scenario, an additional layer of analysis is added. This involves imposing a
limitation on the grid-usage profile, effectively curbing any surplus power injection from the PV system
into the grid. In essence, this secondary analysis aims to simulate a scenario where the industrial load
is not permitted to inject power back into the grid.

This extra analysis also alleviates one of the negative effects of distributed generation, volatility. As
mentioned earlier, renewable generation is very intermittent and could cause unwanted voltage devia-
tions. A feed-in restriction is thus a simple way to overcome this negative effect, while still witnessing
the effects of optimally sized components for the industrial profile LG1.

Figure 3.17: Line loading of CIGRE MV network with all switches in open position

Figure 3.18: Line loading of CIGRE MV network with all switches in open position except S1
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(a) (b)

Figure 3.19: The CIGRE MV Distribution network and its counterpart in PandaPower

Table 3.11: Random load profile assignment to busses in CIGRE MV distribution network [119]

CIGRE MV Bus # 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Load Profile # 3 20 17 7 8 5 14 9 12 18 1 2 16 10



4
Results

In this chapter, the results obtained from the multi-objective optimisation process with NSGA-II are
presented. They are presented in the form of four Pareto fronts, one for each EMS scenario. The
Pareto fronts represent the trade-off between the two objective functions: Cost and CO2 emissions.
The optimal solution within the four Pareto fronts will be taken as the solution with the smallest Eu-
clidean distance from the origin. With this optimal solution, the analysis mentioned in section 3.3 will
be performed on the CIGRE MV Distribution Network. The analysis will showcase the workings of the
CIGRE network in a base case scenario without an optimally sized Hybrid Power System (HPS). The
analysis will then elaborate on the differences in voltage behaviour when the optimally sized HPS is
implemented.

4.1. Sizing
Before the optimisation was conducted with the Genetic Algorithm NSGA-II, a ”Pseudo” Pareto front
was created with sequential optimisation. An optimisation that consisted of starting from a Power Sys-
tem with a Grid connection that is sized to an optimal value (the maximum power requested by the load
in a year), Sizing a PV connection to supplement this grid connection, Sizing a BESS, and finally sizing
a Diesel Generator. The sequential optimisation resulted in similar results for all four EMS scenarios,
which can be viewed in Appendix D. The results all favoured a grid connection equal to the maximum
value of the load profile1, a PV system of 300 kVA, and no diesel generator or BESS system. This is
not a good way to approach an optimisation, because the components are all optimised separately and
the amount of different combinations is very limited. This sequential optimisation is helpful in gaining
an expectation of where an optimisation with NSGA-II will lead.

For the actual optimisation with the NSGA-II algorithm and its initialisation presented in subsec-
tion 3.2.3 - Initialisation the Pareto fronts (or rather the nondominated front in the last generation of
solutions) for each scenario can be seen in Figure 4.1. The four different EMS scenarios (described
in Table 3.8) result in different Pareto fronts with the two dynamic fronts (scenario 2 and 4) showing
more environmentally favourable solutions, shown by there lower CO2 objective functions. This can be
explained by the dynamic bound that is utilised in EMS scenarios 2 and 4. The dynamic bound restricts
the Grid usage to a smaller allowable window, which lowers the Grid Scope 2 CO2 emissions.

A single optimisation of a scenario took anywhere between 24 and 76 hours. This is partly due
to the rather long simulation time within Mosaik, here a full year of simulation can sometimes take
minutes, depending on how many components the EMS needs to schedule. These few minutes result
in a singular output value of the Cost and CO2 objective functions for the given combination of Grid,
PV, Diesel, and BESS. The NSGA-II algorithm will need to perform this workflow for 15 generations of
solutions based on 395 parents and 99 offspring, this results in a long simulation time.

1Because the grid is sized first in the sequential optimisation, the most economical value is equal to the maximum power value
of the load profile. If the grid capacity is lower than the maximum power value, the Energy Not Supplied penalty will severely
worsen the Cost and CO2 objective functions. On the other hand, a grid capacity larger than the maximum power value is
unnecessary. It will only increase the Cost objective function.

31
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Figure 4.1: Pareto fronts created for scenarios 1, 2, 3, and 4 described in Table 3.8

Table 4.1: Optimal HPS configurations for the four EMS scenarios described in Table 3.8

Scenario 1 2 3 4
€ Objective Function 1.055 0.913 1.080 1.045
CO2 Objective Function 0.514 0.533 0.556 0.312
Euclidean distance to (0,0) 1.174 1.058 1.214 1.090
Sized Grid Capacity [kVA] 375 325 425 300
Sized PV Capacity [kWp] 800 500 600 1400
Sized Diesel Generator [kVA] 100 100 0 100
Sized BESS [kWh] 1000 1200 200 2600

From the NSGA-II optimisation for each scenario, a last nondominated front is extracted (the solu-
tions). These will be evaluated as the optimal Pareto fronts of solutions and for each scenario, these
Pareto fronts can be seen in Figure 4.1. The final singular solutions chosen from each scenario to be
analysed, are the solutions with the shortest Euclidean distance to the origin and are marked within the
figure.

Besides the objective function values of the optimal solutions, the combination of component sizes
and the new grid-usage profile is important for the voltage analysis that needs to be performed. For
each of the optimal solutions presented in Figure 4.1, the corresponding HPS configurations can be
found in Table 4.1. From these four optimal configurations, the configuration of scenario 2 is taken
because of its shortest Euclidean distance to the origin in the Pareto plot with CO2 and Cost in its axes.
This is the configuration that will be analysed with PandaPower. The other solutions within the Pareto
fronts and their corresponding combination of components can be examined in Appendix E.

The solution chosen for the evaluation with PandaPower is different from the estimate made from
the ”Pseudo” Pareto fronts. The estimate consisted of a grid connection equal to 391 kWh and a PV
capacity of 300 kWp with no Diesel or BESS components. The optimal HPS configuration presented
by the NSGA-II algorithm consists of a similar grid and PV capacities, but an additional 100 kVA Diesel
Generator and a 1200 kWh BESS, equivalent to 12 Tesla Model X cars [137].

4.2. Analysis
With the optimal PV-DSL-BAT HPS configuration (Table 4.1) provided by the NSGA-II optimisation, the
analysis of this HPS on the CIGRE MV Distribution Network can be performed. Firstly the new re-
sulting power profile for the optimal configuration can be seen in Figure 4.2. Comparing the figure to
Figure 3.12, it becomes clear that the combination of components lowered the grid-usage profile, some-
times even below zero. These feed-in moments will be removed for the final analysis as mentioned in
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section 3.3. This is to ensure the voltage behaviour within the CIGRE MV Distribution Network does
not worsen when the HPS is implemented.

(a) Yearly power profile of optimised HPS (b) Power profile of optimised HPS, 01 March 00:00 to 02 March 00:00

(c) Power profile of optimised HPS, 01 July 00:00 to 02 July 00:00
(d) Power profile of optimised HPS, 01 October 00:00 to 02 October

00:00

Figure 4.2

With the new power profile (namely the Grid usage), a load flow analysis is performed on the CIGRE
MV Distribution Network. The voltages of the buses are plotted in Figure 4.3, without and with optimal
HPS components added to bus 11 or the ”LG 1” profile.

From an initial examination of the two voltage graphs (Figure 4.3a and Figure 4.3b) before and after
sizing, there appears to be little difference except for a few peaks above 1.03p.u. that were not present
before and are thus viewed as a worsening of the voltage behaviour in the CIGRE MV Distribution
network. These peaks are introduced because of PV power being sent into the network. These peaks
disappear when PV feed-in is not allowed and PV power is thus curtailed, this can be seen in Figure 4.3c.
In the case of this thesis, these observations can be viewed as positive, as a PV-DSL-BAT Hybrid
Power System achieves similar performance to the base case scenario while improving the Cost and
CO2 emissions in one year.

The new optimal power profiles allocated by the EMS to the different components also show an
interesting behaviour in the BESS. The BESS is (dis)charging at very low power ratings, this indicates
the BESS is being used to alleviate minor deviations within the rolling average EMS. The low power
ratings are also in part due to the BESS energy-to-power ratio of 2.28. Increasing this ratio would result
in a lower nominal power of the BESS, and thus result in higher power ratings being issued by the EMS
to the BESS. A negative effect of utilising low power ratios in BESSs is the (in)efficiency of inverters at
low power ratings [29]. This results in the BESS charge level being depleted more during discharging
or increased less during charging. If Figure 4.4a is examined, it shows that the SOC of the BESS is
not near the lower bound during most of the year, indicating possible leeway in terms of handling lower
efficiencies provided by the inverter.

No feed-in
As shown in Figure 4.3c, the thorough analysis of the voltage behaviour in the CIGRE MV Distribution
Network will be done with a restriction: no feed-in is allowed from the HPS (load 11) into the distribu-
tion network. This restriction can be implemented because the power that the EMS dispatches to the
grid (feed-in) originates from PV power, and can thus be curtailed. The curtailment of the PV results
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(a) Bus Voltages of CIGRE MV Distribution Network without HPS
components

(b) Bus Voltages of CIGRE MV Distribution Network with optimal HPS
components installed at bus 11

(c) Bus Voltages of CIGRE MV Distribution Network with optimal HPS components installed at bus 11 and no feed-in to the grid
allowed

Figure 4.3

in 135949 kWh not being fed into the grid. By comparison, the PV system (with feed-in disabled) con-
tributes 287409 kWh to the HPS. This curtailment has an effect on the LCOE of the PV system, but
because the Cost objective function is calculated with the netto PV production and then afterwards
multiplied by the netto PV production, it does not change the Cost of the PV system in one year2.

In order to more thoroughly assess the changes in voltage behaviour when feed-in is disallowed
(this is chosen because feed-in introduces voltage behaviour that was not present before sizing), the
voltages of bus 10, 9, and 8 (and the lines connected to them) are examined separately alongside bus
11 and can be seen in Figure 4.6. The time frames of March 1st, July 1st, and October 1st were chosen
to be spread out evenly across the year. Figures for the active power, reactive power, line loading, and
bus voltages of busses 10, 9, 8, and 11 can also be found in Appendix F.

In Figure 4.6 a clear sag in voltage can be observed when the voltages are plotted for a day, espe-
cially in Figure 4.6b and Figure 4.6c. This voltage sag is due to a large load in the system, namely load
8, which can be seen in Figure 4.7. The effect of introducing the optimally sized components at bus 11
shows a small positive effect in combating this voltage sag. The voltage sag does not get worse when
bus 11 has PV-DSL-BAT elements added to it. When Figure 4.8 is examined, the voltage is seen to
rise during its lowest point slightly. This can be explained by examining the Equation 4.1 for voltage

2This has been confirmed by altering the EMS not to allow feed-in. The LCOE of the PV system with feed-in was 0.13 with
a netto PV production of 450 MWh and the LCOE of the PV system without feed-in was 0.19 with a netto PV production of 315
MWh
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(a) BESS SOC through a full year of simulation
(b) BESS power usage concerning nominal power throughout a

full year of simulation

Figure 4.4

drop derived from Figure 4.5.
Within transmission systems, the equation can be simplified to showcase the voltage drop being

largely dependent on the reactive power [138]. However, in this thesis, the CIGRE MV Distribution
system is considered and this simplification does not hold. With an R/X ratio of 2.3 [139] (which does
signify R << X), the Equation 4.1 cannot be simplified for the CIGRE MV Distribution system. The
effects of both active and reactive power must be considered when assessing the contribution of load
8 to the sag in voltage seen in Figure 4.6.

∆u =
RP2 +XQ2

V2
(4.1)

The new grid-usage profile, consequent to the optimally sized HPS components and the EMS, at
bus 11 results in a decreased voltage sag. This is because the HPS demands both less reactive and
less active power from the distribution network. Equation 4.1 explains how this reduced demand of
power alleviates, albeit minor, the voltage sag as a result of the significant loading at bus 8. This can
be seen in Figure 4.8. Here the voltages of all the busses are plotted before and after introducing
the HPS, the absolute differences between are also plotted. These difference all show an upward
contribution of the voltage.

(a) Short line model one-line diagram [138] (b) Short line model phasor diagram [138]

Figure 4.5

This conclusion is rather elementary, but it still poses a good result for the current study case. Less
grid usage is simply better for the voltage level of the grid. When the EMS with rolling average is
utilised in combination with a diverse power portfolio (PV, Diesel, BESS) Cost and CO2 decreases can
be achieved without compromising the current situation. The importance of the rolling average EMS is
not directly measured, but it can be inferred that an EMS not utilising a rolling average could result in
a very choppy grid-usage profile, possibly worsening the voltage behaviour.
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(a) Bus 8, 9, 10, 11 voltages before and after sizing
(b) Bus 8, 9, 10, 11 voltages before and after sizing, 01 March 00:00 to

02 March 00:00

(c) Bus 8, 9, 10, 11 voltages before and after sizing, 01 July 00:00 to 02
July 00:00

(d) Bus 8, 9, 10, 11 voltages before and after sizing, 01 October 00:00
to 02 October 00:00

Figure 4.6

(a) Loads for bus 8, 9, 10, and 11 (with and without sizing)
(b) Loads for bus 8, 9, 10, and 11 (with and without sizing), 01 March

00:00 to 02 March 00:00

(c) Loads for bus 8, 9, 10, and 11 (with and without sizing), 01 July
00:00 to 02 July 00:00

(d) Loads for bus 8, 9, 10, and 11 (with and without sizing), 01 October
00:00 to 02 October 00:00

Figure 4.7
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(a) Bus voltages before and after sizing, 01 March 00:00 to 02 March
00:00

(b) Bus voltage deviation after sizing, 01 March 00:00 to 02 March
00:00

(c) Bus voltages before and after sizing, 01 July 00:00 to 02 July 00:00 (d) Bus voltage deviation after sizing, 01 July 00:00 to 02 July 00:00

(e) Bus voltages before and after sizing, 01 October 00:00 to 02
October 00:00

(f) Bus voltage deviation after sizing, 01 October 00:00 to 02 October
00:00

Figure 4.8



5
Conclusion and Discussion

This thesis addressed the topic of ”Addressing voltage sag contribution of an optimally sized Industrial
Hybrid Power System - Using a multi-objective sizing framework considering cost and CO2 emission.”

The objective of this research was to optimally size a Hybrid Power System (PV-DSL-BAT) for an
industrial load, minimising cost and CO2 emissions and assess the effects of this sizing on the voltage
sag within an appropriate industrial system (MV distribution system). After this sizing was completed,
the voltage within the CIGRE MV Distribution system was analysed through a balanced load flow study.
The load flow was performed on the CIGRE MV Distribution system with loads sourced from a dataset
of industrial loads and once more on the same system, but with one of the load profiles being altered
as a result of the sizing (the grid-usage profile changes when PV, Diesel, and BESS power sources
are added). The resulting analysis briefly showed the negative (albeit small) effect of grid feed-in from
an industrial load that was not there before. Further analysis showed the sizing of load ”LG 1” (which
was randomly selected from the available profiles) did not have a negative effect on the voltage sag
introduced by a large load in the system. It had a little positive effect on the voltage sag, but more
importantly, it didn’t appear to have a negative impact.

With the chapters written in this thesis, the corresponding research questions answered along the
way were:

1. Which equations and parameters can be utilised to implement models (PV, Diesel, or BESS) for
the use in an Energy Management Systems designated to supply an industrial load?

2. What cost and emission savings can be achieved by sizing components to create a Hybrid Power
System for an industrial load using a Genetic Algorithm, compared to directly supplying the load
from the grid?

3. What effect does the optimal sizing of an individual node have on the voltage stability of an indus-
trial distribution system?

The work presented in this thesis contributed to the research of optimally sizing Hybrid Power Sys-
tems for Industrial applications with the proven method of multi-objective optimisation through a genetic
algorithm. The combination of Cost and CO2 as objective functions results in a feasible Hybrid Power
System (HPS) that is less dependent on the grid connection, resulting in the utilisation of components
that improve the cost-effectiveness and released emissions of an industrial site. The key component
of this thesis, that allowed the addition of optimally sized components to the HPS without worsening
the voltage behaviour of surrounding nodes in a Medium Voltage distribution system, is the Energy
Management System (EMS) based on a rolling average principle. This elementary EMS showcased
the feasibility of combining PV, BESS, and Diesel Generator systems with an industrial load, without
worsening any existing voltage behaviour. An inference that could benefit the decision-making for im-
plementing similar Hybrid Power Systems that could lower the carbon footprint of the Dutch industry.

Which equations and parameters can be utilised to implement models (PV, Diesel, or BESS) for
the use in an Energy Management Systems designated to supply an industrial load?
The first research question was answered in the validation sections of the models in chapter 3. The
validation sections listed the error margins of the models, giving a basis from which the significance of

38
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the results can be assessed.
The grid model did not have an error margin in terms of power output, as it was modelled as purely

an upper limit. The error margins for the Cost and CO2 functions are also not addressed as all the
parameters are based on available sources.

The PV model, or rather the dataset that is scaled beforehand, has an acceptable error margin as
mentioned in subsection 3.1.3. The deviation in the order of watts for the Netherlands gives reassur-
ance for the data that is provided for larger installations (in the 100s of kilowatts)

The diesel generator model also exhibits acceptable levels of error for the application in this thesis.
These error levels are further decreased when lower values of diesel generators are considered (which
is the case for the optimal size determined by the NSGA-II algorithm).

The BESS model has an error limit of 0.01% when the power profile (mentioned in [109]) is used.
Unfortunately, this error margin is only for this specific power profile and the last SOC measurement.
It does not consider the error across the whole test profile, and no other test profiles are used for
validation. However, because the calculated values of ηcharge and ηdischarge are similar to values found
in the literature, the BESS model can be used with the confidence introduced by these literature values.

What cost and emission savings can be achieved by sizing components to create a Hybrid Power
System for an industrial load using a Genetic Algorithm, compared to directly supplying the load
from the grid?
The research objective was to optimally size a Hybrid Power System (HPS) for an industrial load, com-
posed of PV, Diesel Generator, and Battery Energy Storage System (BESS), to minimise cost and CO2
emissions while adhering to grid capacity limitations.

Through a literature review, insights into possible sizing algorithms for use in industrial loads were
gained. The most promising solution for a multi-objective optimisation was determined to be the Ge-
netic Algorithm, particularly the Nondominated Sorting Genetic Algorithm II (NSGA-II). The addition of
nondominated sorting, elitism, and crowding distance sorting results in an algorithm that is capable of
generating Pareto fronts from which an optimal solution can be chosen. The manner of choosing the
optimal solution was based on a technique taught in elementary school, the Pythagorean theorem (or
otherwise the Euclidean distance).

With the initialisation of the algorithm supported by parameters and formulas found in literature and
a fair amount of simulation time, the Pareto fronts for four different EMS scenarios were given. The
optimal solution provided significant CO2 savings almost, 47%, while also reducing the Cost by a little
less than 9%. Herein lies the additional benefit of multi-objective optimisation. It is apparently easier to
lower the emissions, but doing this in a cost-effective way presents challenges.

What effect does the optimal sizing of an individual node have on the voltage stability of an
industrial distribution system?
The voltage sag analysis of the optimally sized HPS was conducted to evaluate its impact on power
quality and grid stability. The CIGRE MV Distribution network provided a solid basis from which bal-
anced load flow analyses could be performed on a configuration of industrial loads (without and with
one of these loads optimally sized). After removing a negative effect of the sizing (feed-in), the voltage
behaviour of the system was almost unchanged, with even slight positive effects in voltage sag caused
by the largest load in the network.

This analysis provided essential validation of the optimal sizing of a Hybrid Power System controlled
by a rolling average EMS. This insight could provide decision-makers with more options to tackle the
emissions produced in the Netherlands.

5.1. Discussion and Recommendations
While the research presented in this thesis answers several important research questions and provides
valuable insights that could potentially lead to a reduction in emissions in the Netherlands, there are
some shortcomings that can be improved on and areas identified for further research.

One of the shortcomings of the research is the limited validation of the BESSmodel used in the study.
Although the validation sections provide error margins for the PV and diesel generator, the validation for
the BESS model is not comprehensive enough to assess the accuracy and reliability across different
scenarios. Further validation using a wider range of test profiles and real-world data would enhance
the credibility of the research findings.
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The paper focuses on Cost and CO2 emissions related to the grid usage of an industrial site, neglect-
ing other important sources of emissions, namely the industrial processes. Identifying and incorporating
electrification as a means to reduce CO2 (with a certain cost) could provide even more valuable insights
into the possibility of fully electrifying the Dutch industry.

The research does not explicitly address the implementation of the sized components in terms of
size. While the economic benefits of optimal sizing are showcased, the practical aspects of implement-
ing the recommended sizes are not discussed. Investigating the feasibility and challenges of imple-
menting the optimal sizes in real-world industrial sites would be a valuable addition to the research to
increase the grasp on feasibility.

The random allocation of load profiles to busses in the CIGRE MV Distribution network does mimic
the real-world behaviour of a diverse landscape of industrial sites and the scenario that a single site
decides to invest in Cost and CO2 saving measures. The effect of sizing the largest load profile in the
system could be a better stress test of the distribution system.

To address the aforementioned shortcomings and further enhance the research, the following
extra steps could be considered:
The Lio-Ion NMC BESS that was used for the validation of the BESS model in this thesis can be cycled
with other load profiles, and probably already has. using a wider range of test data benefits the BESS
model’s accuracy in terms of charge and discharge parameters. Another bold step that could be taken
is to separately model the inverter of the BESS. As the inverter exhibits power efficiency characteristics
of its own. This would provide a more accurate implementation of a BESS model.

Electrification could be incorporated in a rather simple way by researching available technologies
and noting their electricity usage and the process they replace. The replaced process (that was first
operated by a fossil fuel-based counterpart) has a certain emission. The extra electricity demand of
the electrified process can be added to the EMS, and the reduced emission could be subtracted from
the CO2 objective function (and the costs added to the Cost objective function)

The practical aspects of implementing the recommended component sizes in real-world industrial
applications can be investigated. This could for example be done with the physical size of components.
Datasheets can provide a certain footprint for a given power/energy output. These footprints can then
be fit into satellite images of existing industrial sites to examine crudely if the sized components would
fit.

The NSGA-II algorithm can be run for the largest load in the CIGRE MV Distribution system with
the same allocation as Table 3.11. Because of the larger load profile and thus larger consideration
for maximum PV, the total number of solutions would increase, and thus also the starting population
and number of offspring. This would require a longer simulation time than is currently available for the
remaining time in the thesis period.

Extra Research
In addition to the suggested steps that could be readily implemented, further research could be con-
ducted in the following areas:

Optimal Energy Management System. As briefly mentioned in [58], the Energy Management Sys-
tem is a research topic of its own. The Energy Management System can also be controlled by a Genetic
Algorithm for example, instead of using a rolling average and a priority list. For each time step, the EMS
(based on a genetic algorithm) could calculate the optimal dispatch strategy. Other implementations
of EMSs could also benefit the sizing of the components, but this would have to be researched and
implemented.

The research done in this thesis could also be extended to the optimisation of other power system
configurations. Extending the research to optimise Hybrid Power Systems for microgrid applications,
where the system operates in isolation or in conjunction with the main grid could provide additional
insights into the self-sufficiency provided by the PV-DSL-BAT components. Another power system
configuration that could provide additional security and energy efficiency is the interconnection of loads
in a Virtual Power Plant. The optimal sizing of one load, with allowable feed-in, could benefit other
loads if the dispatch between them is controlled to limit deviation in supply and demand.

By addressing these suggestions and conducting further research in these areas, the knowledge
and understanding of optimal Hybrid Power Systems in industrial energy management can be signifi-
cantly advanced, leading to more sustainable and efficient energy solutions for the industry.
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In conclusion, this research contributes to the advancement of Hybrid Power Systems for industrial
applications. Themulti-objective optimisation approach allows for the identification of cost-effective and
environmentally friendly HPS configurations. The voltage sag analysis validates the system’s power
quality, ensuring its reliable and stable operation. By continually improving HPS models and explor-
ing innovative EMS solutions, the industrial sector can embrace sustainable energy practices, reduce
carbon emissions, and foster a more resilient energy future.
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A
Python Codes

A.1. Grid
1 def step(self):
2 """Perform a simulation step"""
3

4 if self.grid_power >= 0:
5 # Keep track of the kWh's that is asked of the grid
6 self.grid_kWh += self.grid_power*(self.time_step/60)
7

8 # Keep track of the maximum power [kW] that is asked of the grid
9 if abs(self.grid_power) > abs(self.grid_kW_max):
10 self.grid_kW_max = self.grid_power
11 else:
12 self.grid_kW_max = self.grid_kW_max

A.2. Diesel Generator
1 def step(self):
2 """Perform a simulation step"""
3

4 if self.dies_power > 0:
5 # Calculate the litres of diesel used per timestep
6 self.dies_litre = 0.05125128596647235*self.dies_power + 1.5621789108886397
7 else:
8 self.dies_litre = 0
9

10 # Keep track of the kWh's and litres that is asked of the Diesel Generator
11 self.dies_kWh += self.dies_power*(self.time_step/60)
12 self.dies_litre_tot += self.dies_litre

A.3. BESS
1 def step(self, time):
2 """Perform a simulation step by adding *batt_power* to *batt_charge*."""
3

4 # The power [kW] is converted to [kWh] by multiplying the power by the amount of minutes
in time_step by 60 minutes per hour.

5

6 # Negative incoming power indicates charging, here the inputted power is "converted" to
actual input by multiplying the input power with the charge efficiency

7 if self.batt_power < 0:
8 self.batt_charge1 = round(self.batt_charge - (self.time_step/60)*self.batt_power*self

.batt_charge_eff, 6)
9 self.batt_charge_kWh += (self.batt_charge - self.batt_charge1)
10 self.batt_charge = self.batt_charge1
11
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12 # Positive incoming power indicates discharging, here the outputted power is "converted"
to actual output by dividing the output power with the discharge efficiency

13 elif self.batt_power > 0:
14 self.batt_charge1 = round(self.batt_charge - (self.time_step/60)*self.batt_power/self

.batt_discharge_eff, 6)
15

16 # Keep track of the discharged kWh for the LCOS calculation
17 self.batt_discharge_kWh += (self.batt_charge - self.batt_charge1)
18 self.batt_charge = self.batt_charge1
19

20 # No incomping power indicates idling.
21 else:
22 self.batt_charge = round(self.batt_charge - (self.batt_self_discharge_per_time_step)*

self.batt_charge, 6)



B
Diesel Generator Cost Assumptions

The assumptions made for the financial parameters of diesel generators are based on multiple sources,
and an average is taken. The sources are a combination of literature and webpages containing prices
for diesel generator sets. The prices are converted to Euro’s if necessary and then to the 2022 value
of the Euro through price histories [140]. The average normalised costs for capital and maintenance
both include an outlier upwards, so these values are rounded to the nearest 50 and 5 multiple: €450
and €10 for the initial cost [€/kW] and the yearly cost [€/kW/year].

Table B.1: 2022 adjusted Diesel Generator Cost Parameters

Rating Capital Installation Maintenance Initial Maintenance Source
[kVA] [€] [€] [€/year] [€/kVA] [€/year/kVA]

- - - - 543.90 2.18 [68]
100 16500.00 - 1320.00 165.00 13.20 [141]
100 32002.10 14265 570.60 462.67 5.71 [142] [143]
1000 302500.00 81707.38 26499.00 433.96 29.93 [144]
1000 228240.00 - 5706.00 819.54 20.49 [145]
1600 382765.83 228240.00 1997.10 381.88 1.25 [142] [146]

467.82 12.12
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C
Diesel Generator Validation RMSE

Values

Because larger diesel generators introduce more volatility in terms of the ratio’s between fuel consump-
tion and power output, graphs for lower power ranges are also created. This is to put the RMSE value
of 2.43 (for the whole datasheet range of diesel generators) into perspective.

(a) Power range until 500 (b) Power range until 1000

(c) Power range until 2000 (d) Power range until 3000

Figure C.1: RMSE values for different power ranges available in the datasheets
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D
Pseduo Pareto fronts of four scenarios

(a) (b)

(c) (d)

Figure D.1: ”Pseudo” Pareto front created for scenario 1: a 12 hour rolling average and a static boundary of 100%
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(a) (b)

(c) (d)

Figure D.2: ”Pseudo” Pareto front created for scenario 2: a 12 hour rolling average and a dynamic boundary of 100%

(a) (b)

(c) (d)

Figure D.3: ”Pseudo” Pareto front created for scenario 3: a 6 hour rolling average and a static boundary of 50%
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(a) (b)

(c) (d)

Figure D.4: ”Pseudo” Pareto front created for scenario 4: a 6 hour rolling average and a dynamic boundary of 50%



E
HPS configurations of Pareto fronts for

four scenarios

The following tables present the solutions of the nondominated front of the last population for each
scenario. This is the reason that the solutions sets are not the same size, as the final population is
sorted with nondominted sorting to create different fronts. From these fronts the nondominated front is
taken as the final Pareto front from which the optimal solution is extracted per scenario.
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Table E.1: Optimization Results for Scenario 1

Objective Functions Sized Components
€ CO2 Grid Capacity PV Capacity Diesel Generator BESS

[kVA] [kWp] [kVA] [kWh]
5.793 0.275 1750 3500 300 1000
1.417 0.407 425 2400 0 200
5.884 0.275 1775 3500 500 1000
2.511 0.345 925 2300 1500 1200
1.190 0.462 400 1200 200 1200
2.614 0.338 975 2400 1400 1200
3.161 0.321 1000 3800 3400 1400
1.983 0.366 550 2900 2100 800
6.090 0.272 1750 3600 3000 1000
1.055 0.514 375 800 100 1000
4.898 0.298 1425 3200 900 1400
1.764 0.371 525 3000 0 1400
2.856 0.330 875 3600 3100 1400
5.419 0.285 1525 3600 2600 1000
4.878 0.300 1425 3100 900 1400
2.086 0.362 600 2900 2200 800
1.370 0.407 400 2400 0 200
2.557 0.343 1000 2400 300 1400
6.255 0.271 1900 3600 500 1000
1.582 0.376 450 2900 0 800
1.091 0.505 375 900 200 1200
5.725 0.282 1625 3800 2300 1400
2.215 0.359 600 2900 3400 1000
4.919 0.297 1425 3300 900 1400
1.221 0.454 425 1200 200 800
1.139 0.473 375 1200 200 1000
5.270 0.289 1550 3600 300 1400
4.195 0.307 1175 3700 0 1000
1.293 0.451 475 1100 200 800
4.143 0.319 1050 3400 3500 1000
6.433 0.268 1950 3700 600 1200
5.250 0.295 1400 3900 3600 1400
1.914 0.370 400 3800 2200 1200
2.960 0.328 925 3600 3200 1400
1.128 0.492 400 900 200 1000
6.063 0.273 1700 3900 3500 1000
1.103 0.493 375 1100 200 400
2.082 0.365 475 3800 2400 1400
2.350 0.346 925 2200 200 1000
5.259 0.289 1550 3600 200 1400
3.171 0.320 1000 3800 3500 1400
1.237 0.452 400 1200 900 600
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Table E.2: Optimization Results for Scenario 2

Objective Functions Sized Components
€ CO2 Grid Capacity PV Capacity Diesel Generator BESS

[kVA] [kWp] [kVA] [kWh]
1.105 0.283 325 1500 100 2600
1.382 0.202 325 3100 100 1600
1.657 0.165 350 3900 300 3000
1.442 0.192 325 3400 100 1600
1.482 0.188 350 3000 300 3200
1.124 0.281 325 1500 300 2600
1.541 0.183 325 3100 100 6200
1.134 0.279 325 1500 400 2600
3.324 0.163 825 3900 600 23600
2.202 0.163 500 3900 0 11200
1.807 0.163 350 3900 300 7200
0.927 0.529 325 500 100 1600
0.913 0.533 325 500.0 100 1200.0
1.011 0.424 350 900 200 800
1.452 0.192 325 3400 200 1600
1.492 0.188 350 3000 400 3200
1.055 0.309 325 1400 100 1600
2.038 0.163 400 3900 800 9600
7.041 0.163 1800 3900 2600 23800
1.003 0.484 350 800 400 200
1.534 0.183 325 3100 100 6000
2.714 0.163 475 3900 1100 23200
0.941 0.529 325 500 100 2000
1.646 0.176 375 3400 100 4800
2.395 0.163 375 3900 300 21800
1.179 0.251 325 1800 300 2600
1.696 0.164 325 3900 100 6000
1.548 0.176 325 3400 200 4400
3.173 0.163 625 3900 2800 23400
2.359 0.163 425 3900 500 17800
2.522 0.163 425 3900 200 23000
0.983 0.520 350 500 300 1400
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Table E.3: Optimization Results for Scenario 2

Objective Functions Sized Components
€ CO2 Grid Capacity PV Capacity Diesel Generator BESS

[kVA] [kWp] [kVA] [kWh]
1.657 0.330 350 2900 100 8200
1.600 0.332 350 2900 100 6600
1.152 0.520 450 800 0 0
1.267 0.505 425 1000 1000 600
1.488 0.402 350 2000 100 8200
1.143 0.537 450 700 0 200
1.244 0.508 425 1000 700 800
1.213 0.508 400 1200 100 1800
1.282 0.498 425 1300 200 1600
1.080 0.556 425 600 0 200
2.102 0.300 425 3900 1100 8200
1.362 0.429 400 2300 0 400
1.933 0.301 400 3800 600 6800
2.130 0.299 425 3900 400 11000
1.650 0.330 350 2900 100 8000
1.447 0.421 450 2300 0 200
1.876 0.325 425 3800 500 4000
1.338 0.460 350 2300 100 1800
1.898 0.309 400 3800 800 5200
1.526 0.359 375 2800 100 3600
2.234 0.299 425 3900 700 13000
1.143 0.552 425 800 200 200
1.815 0.329 425 3700 100 4000

Table E.4: Optimization Results for Scenario 4

Objective Functions Sized Components
€ CO2 Grid Capacity PV Capacity Diesel Generator BESS

[kVA] [kWp] [kVA] [kWh]
0.917 0.651 325 300 100 1600
1.063 0.302 300 1500 100 2600
1.018 0.486 350 600 100 2600
1.946 0.165 350 3800 300 11600
2.127 0.162 420 3900 1000 10200
1.877 0.166 370 3800 1000 6400
1.045 0.312 300 1400 100 2600
1.654 0.175 350 3700 300 4000
2.161 0.162 320 3900 100 18600
1.581 0.201 370 3200 300 3400
1.954 0.165 350 3800 300 11800
1.025 0.485 350 900 100 1000
1.467 0.248 350 3000 200 2600
1.297 0.256 350 2100 300 2800
0.926 0.580 320 400 100 1800
2.332 0.162 400 3900 500 18400
0.954 0.564 350 500 100 800
1.076 0.300 300 1600 100 2400
1.963 0.163 420 3900 100 8200
1.537 0.206 370 2900 400 3600
1.081 0.293 300 1600 100 2600
1.785 0.166 370 3800 100 6400
1.623 0.186 350 3200 300 6000



F
Load Flow results of the Cigre MV

Distribution System before and after
Sizing

(a) (b)

(c) (d)

Figure F.1: Load Flow results of the CIGRE MV Distribution System before sizing
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(a) (b)

(c) (d)

Figure F.2: Load Flow results of the CIGRE MV Distribution System after sizing

(a) (b)

(c) (d)

Figure F.3: Load Flow results of the CIGRE MV Distribution System after sizing but with feed-in disallowed
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