
Parallelizing the Linkage Tree Genetic
Algorithm and Searching for the

Optimal Replacement for the Linkage
Tree

Master’s Thesis

Roy de Bokx

Parallelizing the Linkage Tree Genetic
Algorithm and Searching for the

Optimal Replacement for the Linkage
Tree

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Roy de Bokx
born in Vlissingen, the Netherlands

Algorithmics Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Centrum Wiskunde & Informatica
Science Park 123

Amsterdam, the Netherlands
www.cwi.nl

www.ewi.tudelft.nl
www.cwi.nl

c©2015 Roy de Bokx. All rights reserved.

Parallelizing the Linkage Tree Genetic
Algorithm and Searching for the

Optimal Replacement for the Linkage
Tree

Author: Roy de Bokx
Student id: 1515624
Email: R.deBokx@student.tudelft.nl

Abstract

The recently introduced Linkage Tree Genetic Algorithm (LTGA) has shown to
exhibit excellent scalability on a variety of optimization problems. LTGA employs
Linkage Trees (LTs) to identify and exploit linkage information between problem vari-
ables. In this work we present two parallel implementations of LTGA that enable us to
leverage the computational power of a multi-processor architecture.

These algorithm extensions for LTGA enable us to solve a problem that previ-
ously could not be solved, being the problem of finding high-quality predetermined
linkage models that result in a better performance of LTGA for intricate problems by
replacing the online-learned LTs. This is done by learning high-quality LTs offline by
optimizing LTGAs performance as a function of static LTs. This results in a better per-
formance of LTGA than with online-learned LTs as the problem complexity increases.
A parameter-free implementation is used to search optimal subsets of linkage sets in
the offline-learned LTs. This pruning of the LT results in a further performance im-
provement of the LTGA by, on average, removing about 50% of the linkage sets from
the offline-learned LTs. This suggests that LTs contain redundancies that may possibly
still be exploited to improve the performance of LTGA with online-learned LTs.

R.deBokx@student.tudelft.nl

Thesis Committee:

Chair: Prof. Dr. C. Witteveen, Faculty EEMCS, TU Delft
University supervisor: Prof. Dr. C. Witteveen, Faculty EEMCS, TU Delft
Company supervisor: Dr. P.A.N. Bosman, Life Sciences, Centrum Wiskunde & Informatica
Committee Member: Prof. Dr. C. Vuik, Faculty EEMCS, TU Delft

ii

Preface

This report contains the final results of my Master’s thesis and is the conclusion of my
Computer Science study at Delft University of Technology. Centrum Wiskunde & Infor-
matica (CWI) gave me the opportunity to investigate and conduct research on a state of the
art algorithm in an academical environment, under the supervision of Peter Bosman, senior
researcher at the department of Life Sciences. Aimed at improving the performance of this
algorithm in order to solve larger and more complex problems, this research provided us
with a faster implementation of this algorithm which enabled us to investigate more funda-
mental improvements to the algorithm for which the results encountered will be presented
in this report.

I would like to use this opportunity to thank the people that made this possible. Foremost
I would like to thank Peter Bosman for giving me this great opportunity to graduate at
an academic institute and visit one of the most renown conferences, GECCO’15, though
most of all I would like to thank him for his guidance throughout this Master’s thesis and
for his relentless but always accurate and constructive feedback. Second, I would like to
thank Cees Witteveen for providing feedback and for guiding me through the process of
graduating at Delft University of Technology, as well as Dirk Thierens for providing critical
feedback on the numerous ideas that have passed and for his collaboration in writing the
paper submission for the GECCO’15 conference. Last, I would like to thank my family and
friends for their support, love, critical feedback and causing the necessary distraction in the
past months.

Roy de Bokx
Delft, the Netherlands

July 18, 2015

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

Glossary xi

Acronyms xiii

1 Introduction 1

2 Background and Problem Description 5
2.1 Background . 5
2.2 The Linkage Tree Genetic Algorithm . 9
2.3 Problem Description . 19
2.4 Related Work . 20

3 Implementation Validation and Analysis 27
3.1 Implementation Validation . 28
3.2 Algorithm Analysis . 35

4 Algorithm Parallelization 41
4.1 Code Optimizations . 41
4.2 Parallelization Approaches . 42
4.3 Perfect Parallel . 44
4.4 Embarrassingly Parallel . 50
4.5 Parallel Implementation Comparison . 52

v

CONTENTS

5 Searching for the Optimal Linkage Tree Replacement 57
5.1 Background and Motivation . 57
5.2 Parameter-free Implementation . 58
5.3 Learning LTs Offline . 59
5.4 Introducing Local Search . 62
5.5 Pruning Offline-learned LTs . 63
5.6 Conclusions . 66

6 Discussion 73
6.1 Algorithm Complexity and Bottlenecks 73
6.2 Parallelization Improvements . 74
6.3 Hardware . 75
6.4 Fuzzy Linkage Modeling . 75

7 Conclusions and Future Work 77
7.1 Conclusions . 77
7.2 Future work . 80

Bibliography 81

A Diagrams 87

B LTGA Complexity Analysis 89

C Profiling Results 93

D Offline-learned LT Linkage Sets Frequencies 97

E GECCO’15 Conference Paper Submission: In Search of Optimal Linkage
Trees 101

F GECCO’15 Conference accepted Poster Paper: In Search of Optimal Link-
age Trees 109

vi

List of Figures

2.1 LTGA General outline. 10
2.2 Creating Offspring. 10
2.3 Learning the LT. 11
2.4 An incomplete LT. 13
2.5 An incomplete LT. 14
2.6 A complete LT. 15

3.1 f sub
Trap-k function of Deceptive Trap. 29

3.2 An example of a MAXCUT problem instance. 31
3.3 MRPS for the Sequential Implementation of LTGA. 34
3.4 MRNE for the Sequential Implementation of LTGA. 34

4.1 Execution Time for the Sequential Implementation of LTGA. 47
4.2 Execution Time and Speedup for PP-LTGA. 53
4.3 MRPS and MRNE for EP-LTGA. 54
4.4 Execution Time and Speedup for EP-LTGA. 55
4.5 Comparison of PP-LTGA and EP-LTGA. 56

5.1 Required evaluations when using LToff s and pruned LToff s. 61
5.2 Required evaluations when using LToff s and pruned LToff s. 68
5.3 Required evaluations when using local search or a randomly halved LT. 69
5.4 Required evaluations when using local search or a randomly halved LT. 70
5.5 An example of a MAXCUT problem instance. 71

A.1 Gene-pool Optimal Mixing. 88

vii

List of Tables

2.1 Cropped example of an MIMatrix. 13
2.2 Cropped example of an MIMatrix after first merge. 13
2.3 Population contents per generation. 17

3.1 64-Core server specifications. 28
3.2 Visualization of sub-function overlap in NK-Landscapes. 30
3.3 An NK-Landscapes problem instance example. 31

4.1 Median MAXCUT Instances. 47

C.1 Sequential Profiling before initial optimizations. 94
C.2 Sequential Profiling after initial optimizations. 95
C.3 PP-LTGA Profiling. 96

D.1 Percentual Frequencies for Onemax, `= 10. 98
D.2 Percentual Frequencies for Deceptive Trap, `= 15. 98
D.3 Percentual Frequencies for NK-Landscapes, `= 20. 99
D.4 Percentual Frequencies for MAXCUT, `= 12. 100

ix

Glossary

` Number of parameters in a problem encoding.

O Offspring in a Genetic Algorithm. This is a collection of solutions.

P Population in a Genetic Algorithm. This is a collection of solutions.

d A donor solution from P used during Gene-pool Optimal Mixing (GOM).

f Fitness function evaluation time.

g Number of generations required by the Linkage Tree Genetic Algorithm (LTGA).

n Population size.

p Available number of processors.

s A solution in P.

xi

Acronyms

EA Evolutionary Algorithm.

EDA Estimation of Distribution Algorithm.

EP Embarrassingly Parallel.

EP-LTGA Embarrassingly Parallel implementation of LTGA.

FI Forced Improvement.

FOS Family of Subsets.

GA Genetic Algorithm.

GOM Gene-pool Optimal Mixing.

GOMEA Gene-pool Optimal Mixing Evolutionary Algorithm.

LT Linkage Tree.

LToff offline-learned LT.

LTon online-learned LT.

LTGA Linkage Tree Genetic Algorithm.

MI Mutual Information.

MIMatrix Mutual Information Matrix.

MPM Marginal Product Model.

MRNE Minimally Required Number of Evalutations.

MRPS Minimally Required Population Size.

xiii

ACRONYMS ACRONYMS

NN-Chain Nearest Neighbor Chain.

OM Optimal Mixing.

PP-LTGA Perfect Parallel implementation of LTGA.

xiv

Chapter 1

Introduction

Every day we all make hundreds if not thousands of decisions that together determine the
course of our lives. Of most decisions we are not aware that we make them, however as the
number of options increases, we tend to find it harder to make a decision. This can vary from
choosing clothes to wear to determining what route to choose on your way home at the end
of day. Behind most of these decisions, a problem can be found for which multiple aspects
influence the consequences of this decision. One could for instance choose the shortest
way home, though the fact that other people choose the same route, or that you first have
to stop by a supermarket can influence whether or not this is a good idea. Some of those
problems have so many aspects, variables and constraints that we are not able to evaluate
what the best solution is, which is usually also due to the vast amount of options available.
Ever since the first computer was invented, computers have been deployed to support people
in solving problems they cannot solve themselves. This started off with solving relatively
simple mathematical problems, though as the computational power of computers increased,
more complex problems could be addressed, including complex combinatorial problems.
Combinatorial problems are problems that yield multiple variables for which a solution
consists of a specific assignment to those variables. These variables could for instance be
indicators, e.g. for whether or not you’re going to stop by the supermarket. A solution
for this problem can be evaluated to rank it among other solutions. Some solution might
be better than others, because for instance with this solution you do all the errands you
need, while also spending little time in traffic. This way, everyday problems can be solved
with the use of computers, though also more complex ones such as routing and planning
problems can be mapped to this structure.

As the dimensionality, i.e. the number of variables, of combinatorial problems in-
creases, they become harder to understand for humans, which is why computers are used
to search for optimal solutions for these problems. Imagine an introduction camp for first
year students of Computer Science and Mathematics at the TU Delft. One of the main pur-
poses of such an introduction camp is to mingle and meet new fellow-students. Assume that
for each student we know how well they know all other students, which is expressed by a
value between 0 and 10, meaning that a connection exists between every two students with
a weight between 0 and 10 expressing their mutual acquaintance. For the next activity of the
camp we need two groups, so we want to split the group of first year students such that on

1

Introduction

average students that already know each other are separated as much as possible. To reach
this goal, it is important to put students that already have a strong connection in separate
groups. More specifically, the sum of weights of the connections that are cut by splitting the
group of students in two has to be as big as possible. However, as we have only two groups
to assign students to, this can be far from trivial, even when, as in this example, the two
groups do not have to be of equal size. As an example, separating two strongly connected
students might prevent cutting other strong connections, for instance if these students both
have a strong connection with a third student.

This problem is also known as the MAXCUT problem of which we will give a more
technical description in Chapter 3. For a group of 10 people this problem can still be solved
by hand, however not for an introduction camp for first year Computer Science and Math-
ematics students, which is attended by roughly 220 students, which means that roughly
48,180 connections have to be considered. This problem is one of many complex combina-
torial optimization problems for which no computer programs are known yet that are able
to solve them efficiently, which is usually due to the lacking ability to identify, efficiently
represent or efficiently exploit the problem’s structure due to the complexity of the prob-
lem. Finding a suitable representation of the most important parts of a problem’s structure
is often of great importance for efficiently exploiting the structural features of such a prob-
lem, for instance when it is decomposable, meaning that it can be decomposed into smaller
sub-problems. In the example of our introduction camp this is for instance the case when
our group of students consist of isolated groups, meaning that students of such an isolated
group know each other, but don’t know any other students. In this situation, our problem
can be decomposed into a sub-problem for each isolated group, meaning that an optimal
division can be constructed by finding an optimal division for each isolated group and com-
bining these optimal sub-solutions. The combined complexity of these sub-problems for a
problem like MAXCUT is far smaller than the complexity of the overall problem, which is
why by identifying and exploiting this composition, an optimal solution can be found more
efficiently. In reality, however, the decomposition of a problem is often complex and hard
to identify, let alone represent and exploit efficiently, which is why for a large collection of
combinatorial optimization problems no algorithms are known yet that can guarantee the
finding of an optimal solution within polynomial time.

Many these problems are at the basis of every-day optimization problems in large or-
ganizations. This can vary from optimizing variables for the modeling of an airplane wing
to optimizing routes of package delivery companies. Finding an optimal configuration is of
great importance for these companies, as for some of these problems, small alterations to
variable values can have great consequences for the outcome, for instance for the integrity
of such an airplane wing, or the fuel costs for a package delivery company. Although for
relatively small or simple problems often structural features can be identified by hand, large
organizations often face problems so large or complex that automatic detection of these
structural features is required.

In order to solve these optimization problems, many algorithms have been presented
so far. One of these algorithms is the Linkage Tree Genetic Algorithm (LTGA) which is
a state of the art algorithm that was first presented by Bosman and Thierens [6, 56]. This
algorithm has shown to be able to efficiently find optimal solutions to complex problems

2

Introduction

due to its unique approach by using novel techniques to identify the structure of a problem
and efficiently exploit this when searching for the optimal solution, which enables LTGA
to outperform its competitors on most problems it has been tested on. However, still many
problems of great importance remain unsolved, which is why research in combinatorial
problem solving is mainly aimed at expanding the collection of problems that can be solved
within reasonable time.

This Master’s thesis is aimed at expanding the problem solving capabilities of LTGA
by investigating possible improvements, which is done according to the following research-
questions:

1. What is currently preventing us from solving more complex problems with LTGA?

2. How can we increase the potential of LTGA to solve larger and more complex prob-
lems?

This Master’s thesis describes the identified potential extensions for LTGA, how these
were implemented and the results that have been achieved by leveraging these extensions,
including insights gathered in the methodology used by LTGA to model the structure of
a problem. This will be done by first discussing the background of this project, including
the implementation of LTGA and use this to formulate more concrete research questions
in Chapter 2. Next, we will validate and analyze the implementation that we developed of
LTGA in Java 8 in Chapter 3 after which we will present the extensions that were imple-
mented in Chapter 4. We will use these extensions to investigate the model used by LTGA to
increase its potential, which will be discussed in Chapter 5. Finally, we will conclude with a
discussion in Chapter 6 and present our conclusions and suggested future work in Chapter 7
where we will also revisit our research questions. The findings of this Master’s thesis have
been submitted to the Genetic and Evolutionary Computation Conference (GECCO) 2015,
of which the full paper submission can be found in Appendix E. This submission has been
accepted as a poster, of which the two-page abstract can be found in Appendix F and in the
ACM Digital Library1.

1http://dl.acm.org/citation.cfm?id=2739482.2764679

3

http://dl.acm.org/citation.cfm?id=2739482.2764679

Chapter 2

Background and Problem
Description

As stated in the previous chapter, we wish to expand the problem-solving capabilities of the
Linkage Tree Genetic Algorithm (LTGA) such that larger and more complex problems can
be solved efficiently by investigating and improving this algorithm that has already shown
to have great potential. In this chapter, we will give a brief description of the background of
optimization algorithms in general to give insight into the various possibilities for solving
combinatorial optimization problems. Subsequently, we will zoom in on a selection of
optimization algorithms, which will eventually bring us to a detailed description of the
implementation of LTGA. This will support us in revisiting the research questions posed
in the previous chapter to present a more concrete formulation, after which related work
will be discussed to complete the context in which the research in this Master’s thesis was
performed.

2.1 Background

For many everyday problems, no computer programs are known yet that are able to solve
them efficiently, which eventually brings us back to the P=NP millennium problem [14].
This problem questions whether it holds that if a problem is in NP it is also in P and visa
versa. Problems in P are problems for which the solution can be found in polynomial time.
A trivial example would be for instance finding the maximum value in a sequence of n
integers, which can simply be done by traversing this sequence in O(n) time. Problems
in NP are problems of which the validity of a solution can be verified in polynomial time.
Although solutions for any problem in P can be verified in polynomial time, many problems
exist for which solutions can be verified in polynomial time while no algorithm is known
yet to actually find a solution in polynomial time. An example of a so called NP-complete
problem, which is a problem in NP that is at least as hard as any other problem in NP, is the
problem presented in the previous chapter where a group of students has to be split in two
groups, which is also known as the MAXCUT problem. For this problem we can verify in
polynomial time whether a found cut is at least larger than any other known cut, however no

5

2.1 Background Background and Problem Description

algorithm is known yet that can guarantee the finding of a maximum cut within polynomial
time.

Although not proven, for now it is assumed that P 6=NP, which means that it is not
guaranteed that solutions to problems in NP can be found in polynomial time. The most
important impediment on finding optimal solutions for NP-complete problems efficiently is
usually finding the problem’s structure and modeling it such that it is efficiently exploitable.
Note that in this work we do not consider any problems outside NP, being problems for
which the solution cannot be verified within polynomial time.

In the past, a scala of possible approaches for solving combinatorial problems has been
presented, all attempting to solve problems from a different perspective, resulting in dif-
ferences in outcomes and applicability. For instance there is the class of guaranteed exact
optimization algorithms that guarantee to find an optimal solution. This could for instance
be done by exploring the entire solution space or by using the problem structure in order
to find the optimal solution more efficiently, if this is known and sufficiently understood.
These algorithms can be applied to problems in P, however assuming that P 6=NP, these al-
gorithms cannot be applied to NP-complete problems of non-trivial sizes, as they do not
scale efficiently with the size of an NP-complete problem. For such problems, guaranteed
approximation algorithms and non-guaranteed approximation algorithms are used, which
are both aimed at finding an answer within polynomial time that is within a certain distance
from the optimal solution. They differ in being either able or unable to guarantee the finding
of such a solution.

2.1.1 Evolutionary Algorithms

A class of algorithms that has shown to be good at solving complex problems that are not
fully understood, is the class of Evolutionary Algorithms (EAs). EAs are algorithms that use
the principle of evolution in order to find the optimal solution for a given problem [2, 33].
Instead of focusing on one single solution, these algorithms consider population P, which
is a collection of n solutions. The main characteristics of EAs is that they use variation
and selection to repeatedly create offspring O using the information contained by this pop-
ulation, where O is a collection of solutions that are aimed to be of higher quality than the
ones contained by the population they originated from. In this situation, variation is defined
as the act of creating new solutions based on solutions in the population, while selection
again decreases the number of solutions to n by choosing well performing solutions over
poorly performing solutions, based on their fitness. The fitness of a solution is the rating of
such a solution for the problem at hand, expressing how well the solution performs. Unless
indicated otherwise, scores are to be maximized by the algorithms presented in this work.

Often starting with an initial population that consists of randomly generated solutions,
creating offspring based on a population is done repeatedly and each iteration is called a
generation. In each generation, the offspring of the previous generation will be used as
population to create improved solutions from. By doing so, EAs evolve a given population
such that it will contain increasingly better solutions, which should eventually result in the
finding of the optimal solution. This is illustrated by the following pseudo-code:

6

Background and Problem Description 2.1 Background

Algorithm 2.1: Evolutionary Algorithm Outline
1 P = generateRandomSolutions(n)
2 while(!stopConditionMet){
3 O = performVariation(P)
4 O = performSelection(P, O, n)
5 P = O
6 }
7 return P.getBestFound()

The specific combination of variation and selection enables an EA to traverse a much
larger solution space compared to other algorithms. The only prerequisite for an EA is that
the fitness of possible solutions can be evaluated, which makes them particularly useful
for finding solutions to problems that are not fully understood or to problems that cannot
be solved efficiently using guaranteed optimization algorithms. The finding of the optimal
solution is often not guaranteed, which is why EAs generally belong to the class of non-
guaranteed approximation algorithms.

2.1.2 Genetic Algorithms

There are different types of EAs. For traditional combinatorial optimization problems, solu-
tions can often be binary encoded, which is why often Genetic Algorithms (GAs) are used
to solve such problems. GAs are EAs of which the solution space is binary or cartesian
encoded. Without loss of generality, we wille only consider problems with binary variables
in this work, meaning that a possible solution consists of a sequence of ` binary values, also
called a bitstring. The basic principles of adaptation were first presented by J.H. Holland
back in 1975 [33], which later presented a paper that first introduced GAs [34]. Like EAs,
GAs start with an initial population of solutions. Next, a GA performs variation and selec-
tion for every generation. A basic example of variation that is traditionally used by GAs is
uniform cross-over, which creates two new solutions from two parent solutions from P by
means of mixing. In pseudo-code:

Algorithm 2.2: performVariation(P) for Uniform Cross-over
1 O = {}
2 for(i in 0 to |P|){
3 parent1 = P.getRandom()
4 parent2 = P.getRandom()
5 child1 = []
6 child2 = []
7
8 for(k in 0 to `){
9 if(getRandomBoolean()){
10 child1[k] = parent1[k]; child2[k] = parent2[k]
11 } else {
12 child1[k] = parent2[k]; child2[k] = parent1[k]
13 }
14 }
15 O ++ child1 ++ child2
16 }
17 return O

7

2.1 Background Background and Problem Description

Consider the following example. Assume P contains two solutions 011010 and 110110
that are chosen for uniform cross-over. This could for instance mean that, using the pseudo-
code, from the solutions 011010 and 110110, the children 010010 and 111110 originate.
Performing uniform cross-over is traditionally performed n times, where n is the size of
the population and where for each uniform cross-over operation two solutions are randomly
drawn from P to serve as parents. After variation is performed, selection is used to select
n solutions from all 3n parents and children. This can be done by simply selecting the best
n solutions, however also other heuristics exist such as tournament selection that causes
high-quality solutions to be copied to the offspring multiple times, which will discard more
low-performing solutions and increase the chance of a high-quality solution to be used when
variation is performed during the next generation [57]. By combining important parts of so-
lutions present in a population in this way, GAs are able to evolve a population of binary
encoded solutions such that eventually the optimal value assignment for the problem’s vari-
ables can be found.

2.1.3 Linkage Learning

As shown above, uniform cross-over can be used as variation technique in GAs. However,
uniform cross-over only has a limited applicability, as it performs very strong variation that
does not take into account that for some problems correlations or dependencies might ex-
ist between problem variables [58]. Consider for instance a problem with ` = 6 variables,
where the fitness function considers the first 3 variables as one block, while the other vari-
ables are independent of each other. Consider solutions 100110 and 111001, where the
assignment of 100 to the first three variables constitutes a high fitness. In this situation,
copying the first 3 variables from 100110 to a child solution constitutes a faster conver-
gence towards the optimal solution, while uniform cross-over would most likely disrupt this
so called building block.

This shows that uniform cross-over can be efficiently applied to relatively simple prob-
lems, however, for more complex problems, uniform cross-over does not constitute an ef-
ficient search for the optimal solution. For long, it is known that this can be caused by the
linkage problem [61], in which linkage is described as follows by Yu [66]:

If linkage exists between two genes, recombination might result in lowly fit offspring
with high probability if those two genes are not transferred together from parents to
offspring.

Here, genes refer to the variables in the encoding of the problem. In in this work we
will only consider problems that can be binary encoded, which means that every position in
a bitstring corresponds to a gene. In our example of the introduction camp, this means that
linkage exists between the genes corresponding to students between which a relatively high
or relatively low connection exists, as not transferring these genes together from a solution
that has an assignment for these genes that constitutes a high fitness, can be detrimental for
the fitness of the offspring solution. If this happens, we say that an important building block
has been disrupted.

8

Background and Problem Description 2.2 The Linkage Tree Genetic Algorithm

In order to perform variation effectively, linkages between genes have to be identified
on forehand. Identification of linkages is called linkage learning, which is a field in which
extensive research has already been performed, as will be discussed in section 2.4.

2.2 The Linkage Tree Genetic Algorithm

The LTGA is a state of the art linkage-learning algorithm that was first presented by Thierens
in 2010 [56]. This novel algorithm distinguished itself from other algorithms by using a
tree-structured model that contains all identified variable linkages, which together represent
the identified problem structure. This so called linkage model is called the Linkage Tree
(LT) and is defined by Thierens as follows [56]:

Definition 1. The Linkage Tree (LT) of a population of solutions is the hierarchical cluster
tree of the problem variables using an agglomerative hierarchical clustering algorithm with
a distance measure D. The distance measure D(X1,X2) measures the degree of dependency
between two sets of variables X1 and X2.

D measures the degree of dependency between two sets of variables X1 and X2, meaning
that a smaller distance corresponds to stronger linkage between X1 and X2. This is based
on linkage learning of which the implementation in LTGA will be discussed in the next
subsection.

In a sense, LTGA can be placed between conventional GAs and Estimation of Distribu-
tion Algorithms (EDAs), which are algorithms that attempt to find an optimal solution by
estimating the probability distribution of solutions in the solution space. LTGA uses a more
novel approach than conventional GAs for exchanging information with the use of linkage
learning, aimed at identifying building blocks of the problem at hand. However, although
it tries to identify the structure of a problem based on statistics of solutions in a population,
it is not an EDA, as it does not attempt to approximate a probability distribution of such a
population.

In this section, we will discuss the internal mechanics of LTGA, of which a general
outline is presented in Figure 2.2. Just like traditional EAs, LTGA starts with generating
a random population P, being a collection consisting of n solutions randomly drawn from
a uniform distribution. Next, LTGA will generate offspring based on P by improving its
solutions for each generation. After each generation, the best found solution so far will
be saved, until one of the stop criteria is met. In LTGA, the following stop criteria are
implemented:

1 The maximum number of fitness function evaluations has been reached.
2 A minimal fitness value has been reached by the best solution found so far.
3 The fitness variance of P has dropped below a certain threshold. This can be used to

stop LTGA upon convergence, meaning that all solutions in P have the same
fitness value and no further improvement is to be expected.

4 The maximum no improvement stretch has been reached, meaning that the number
of generations not showing any improvement has exceeded a certain threshold.

9

2.2 The Linkage Tree Genetic Algorithm Background and Problem Description

Figure 2.1: LTGA General outline.

L
T
G
A

Create random
P of size n

Create offspring O
to replace P

Save best
solution found so far

Stop condition
met?

No

Yes

Best found

so far

Population P

Figure 2.2: Creating Offspring.

Create offspring

Learn LT from P
Improve P

based on LT

Offspring OPopulation P LT

For each generation, LTGA first constructs an LT, which is discussed in the subsection
below. Using this LT, Gene-pool Optimal Mixing (GOM) is performed in order to generate
improved offspring based on P, which will be discussed consequently. This offspring O
will replace P for the next generation and after each generation, LTGA checks for the stop
criteria and will halt if any of these criteria are met, returning the best solution found so far.
If none of the stop criteria are met, a subsequent generation will follow.

2.2.1 Building the Linkage Tree

Each generation starts by learning the Linkage Tree (LT), which is implemented as follows,
as also illustrated in Figure 2.3. First, the Marginal Product Model (MPM) and LT are
initialized to the univariate FOS. A Family of Subsets (FOS) is a subset of the power set
of all problem encoding variables. An MPM is a FOS in which each problem variable is
contained by exactly one set and the univariate FOS is a FOS that contains all variables in
a singleton linkage set:

{
{x0}, {x1}, ..., {x`−1}

}
[57]. Based on this MPM, the distance

matrix D is constructed, containing the distances between all clusters currently contained
by in the MPM, which is defined as the difference between the joint entropy and the Mutual
Information (MI) of the clusters, divided by the total information as presented by the en-

10

Background and Problem Description 2.2 The Linkage Tree Genetic Algorithm

Figure 2.3: Learning the LT.

Learn Linkage Tree

Initialize MPM
to univariate

FOS

Construct
MIMatrix

Initalize /
complete
NN-Chain

based on the
MIMatrix

Combine
reciprocal
nearest

neighbor
linkage sets.

Place new
linkage set

in LT

Update
MIMatrix
and MPM

Size of MPM is
larger than 1?

Yes

No

MIMatrix

MPM

NN-Chain LT

tropy, in order to normalize the metric. These metrics are defined by the definitions below,
in which pi(Xk) is the chance that variables in Xk have a configuration i, which in the imple-
mentation used is approximated by the relative frequency of i for Xk in P. In other words,
every cell in D quantifies the linkage between two sets of variables, based on the correlation
between these variables that was found among the solutions in the current population.

Joint Entropy:
H(Xk) =−∑

i
pi(Xk) log pi(Xk) (2.1)

Mutual Information (MI):

I(X1, . . . ,X`) =
`

∑
k=1

H(Xk)−H(X1, . . . ,X`) (2.2)

Proximity metric:

D(X1,X2) =
H(X1,X2)− I(X1,X2)

H(X1,X2)
(2.3)

Using a metric that is based on MI is beneficial to the scalability of the algorithm be-
cause of the grouping property, which states [56]:

Definition 2. The mutual information between three clusters of random variables C1,C2
and C3 is equal to the sum of the mutual information between two clusters C1 and C2, plus
the mutual information between the union of the two clusters C1∪C2 and C3: I(C1,C2,C3) =
I(C1,C2)+ I((C1∪C2),C3)

This means that when clusters are grouped, only entries in D have to be changed that
are related to these clusters. In LTGA, the negated MI is used in D, as a larger MI value
indicates a stronger correlation between two clusters, indicating that the distance between

11

2.2 The Linkage Tree Genetic Algorithm Background and Problem Description

these clusters is smaller. Therefore, in LTGA, the distance matrix is called the Mutual
Information Matrix (MIMatrix). According to the terminology used by Chen [12], this is
the centralized model of the algorithm.

Next, a Nearest Neighbor Chain (NN-Chain) is initialized, which is a chain of linkage
sets [26, 57]. In this chain, each element is the nearest neighbor of its predecessor, meaning
that the linkage set Xk+1 in the NN-Chain is the set that is closest to set Xk according to D.
If indeed a strong correlation exists between the variables in Xk and Xk+1, as the algorithm
progresses, solutions in P are likely to have a specific configuration in common for variables
in Xk and Xk+1 that constitutes a better fitness. This corresponds to a high MI which means
these linkage sets will be considered as nearest neighbors. If we look back to our example
of an introduction camp as presented in Chapter 1, then the students that correspond to the
variables in Xk on average would have relatively strong or weak connections to students in
Xk+1.

Initializing this NN-Chain is done by starting off with a random element from the MPM.
Next, the nearest neighbor of the last element in the NN-Chain will be added to the chain
repeatedly, until a loop was introduced. If such a loop is introduced, this will always mean
that the last element is equal to the third-last element. This is called a complete NN-Chain.
In pseudo-code:

Algorithm 2.3: InitializeNNChain()
1 NNChain = {}
2 NNChain.add(MPM.getRandom())
3 NNChain.makeComplete(MPM)
4 return NNChain

Algorithm 2.4: NNChain.makeComplete(MPM)
1 while(NNChain.size < 3)
2 NNChain.add(MPM.getNearestNeighbor(NNChain.last))
3
4 while(NNChain.last != NNChain.thirdLast)
5 NNChain.add(MPM.getNearestNeighbor(NNChain.last))
6
7 return NNChain

Consider for example the MIMatrix presented in Table 2.1 that contains a part of the MI
values calculated from some population P with ` = 10 where ` is the number of variables
in the problem’s binary encoding. To provide a clear overview of how an LT is constructed,
we will only consider the variables {x0, ...,x4} in this example. As mentioned before, after
constructing an MIMatrix, the NN-Chain is initialized with a random element, for instance
{x4}. As presented by Table 2.1, the nearest neighbor of {x4} is {x2}, which will therefore
be added to the chain. Adding the nearest neighbor of the last element in the chain is
repeated until a loop is introduced which in this case results in the following complete NN-
Chain:

NNChaincomplete = {x4}→ {x2}→ {x0}→ {x1}→ {x0}
After constructing a complete NN-Chain, the last three elements, being essentially two

different sets from the MPM, are removed from the NN-Chain and MPM, merged and added

12

Background and Problem Description 2.2 The Linkage Tree Genetic Algorithm

Table 2.1: Cropped example of an MIMa-
trix.

{x0} {x1} {x2} {x3} {x4} ...
{x0} - 0.1 0.2 0.8 0.8 ...
{x1} 0.1 - 0.4 0.4 0.9 ...
{x2} 0.2 0.4 - 0.9 0.3 ...
{x3} 0.8 0.4 0.9 - 0.4 ...
{x4} 0.8 0.9 0.3 0.4 - ...

...

Table 2.2: Cropped example of an MIMa-
trix after first merge.

{x0,x1} {x2} {x3} {x4} ...
{x0,x1} - 0.3 0.6 0.85 ...
{x2} 0.3 - 0.9 0.3 ...
{x3} 0.6 0.9 - 0.4 ...
{x4} 0.85 0.3 0.4 - ...

...

Figure 2.4: An incomplete LT after merging the mutually nearest neighbors {x0} and {x1}.

{x
0
} {x

1
} {x

2
} {x

3
} {x

4
} {x

5
} {x

6
} {x

7
} {x

8
} {x

9
}

{x
0
, x

1
}

to the LT and MPM again as a new linkage set. In in our example this results in the incom-
plete LT as shown in Figure 2.4, an MPM containing the sets

{
{x0,x1},{x2},{x3},{x4}, ...

}
and the following NN-Chain:

NNChain = {x4}→ {x2}

The MIMatrix is updated accordingly, meaning that the sets that were merged are re-
moved and the MIMatrix entries for the new linkage set are generated with the use of the
Unweighted Pair Group Method with Arithmetic-mean (UPGMA). This method defines
distances between a cluster Ck and (Ci ∪C j) as the average distance between (Ck,Ci) and
(Ck,C j), as defined by the formula (2.4) [26]. In our example, this would result in the
MIMatrix shown in Table 2.2.

D(Ck,(Ci∪C j)) =
|Ci|

|Ci|+ |C j|
D(Ck,Ci)+

|C j|
|Ci|+ |C j|

D(Ck,C j) (2.4)

Merging nearest neighbor linkage sets is done repeatedly which means that in our ex-
ample in the next iteration, based on the MIMatrix shown in Table 2.2 and the incomplete
NN-Chain above, the following complete NN-Chain is constructed:

NNChaincomplete = {x4}→ {x2}→ {x0,x1}→ {x2}

From this complete NN-Chain, the linkage sets {x0,x1} and {x2} are removed, merged and
added to the LT as shown in Figure 2.5 and the MPM and MIMatrix are updated accord-
ingly. This merging of nearest neighbor linkage sets is repeated until only the union of all
variables remains in the MPM. This linkage set will not be added, as using this linkage set
during GOM would mean rather copying an entire solution, which is unwanted when per-
forming variation as will be illustrated in the next subsection. This results in a bottom-up
agglomerative hierarchical clustering mechanism that produces a tree-like linkage model

13

2.2 The Linkage Tree Genetic Algorithm Background and Problem Description

Figure 2.5: An incomplete LT after merging the mutually nearest neighbors {x0,x1} and
{x2}.

{x
0
, x

1
,x

2
}

{x
0
} {x

1
} {x

2
} {x

3
} {x

4
} {x

5
} {x

6
} {x

7
} {x

8
} {x

9
}

{x
0
, x

1
}

which is called the Linkage Tree (LT). This LT essentially models the most important ele-
ments of the problem based on the correlations that could be identified in the current pop-
ulation. In our introduction camp example this could correspond to significantly strong or
weak connections between students. As the solutions in P improve per generation, this LT
will represent the true structure of the problem better and better, supporting the combina-
tion of important building blocks and with that an efficient convergence towards the optimal
solution, as will be shown next. An example of such an LT is displayed in Figure 2.6.

Note that an advantage of using a distance metric that is based on MI, is that only one
row or column of values has to be calculated, rather than recalculating the entire distance
matrix, due to the grouping property [56]. Additionally, with the use of the UPGMA, only
pairs of distances are considered which further increases the efficiency of updating MIMa-
trix as shown by Thierens, Bosman and Gronau [26, 57].

In this way, a linkage model is build by iteratively combining locally closest pairs, in
contrast to the previous implementation of LTGA that merged globally closest pairs. The
advantage of using locally closest pairs is that it enables us to reduce the time complexity
for constructing a linkage neighbor model from O(n ∗ `3) to O(n ∗ `2) when using UP-
GMA, while the output is equivalent compared to the globally closest pair implementation
as shown by Gronay and Moran [26]. This way of linkage learning is called virtual linkage
learning, as the physical locations of the variables in the chromosome, i.e. the ordering of
variables, do not affect their linkage [12].

Also note that, in contrast to the earlier version of LTGA of Bosman and Thierens
[8], in this implementation the LT is not learned from a selection of P as it was found
by Bosman and Thierens that this generates too much selection pressure, impeding the
exploratory capabilities of LTGA.

2.2.2 Gene-pool Optimal Mixing

After the LT has been learned, the offspring collection O is to be created from the current
population P. This is done by means of Gene-pool Optimal Mixing (GOM), which is aimed
at improving all solutions contained by P with the use a FOS of the variables in a problem’s
encoding [6, 57]. In LTGA, this FOS is represented by the LT, enabling GOM to perform
optimal mixing while respecting the linkages that were identified.

14

Background and Problem Description 2.2 The Linkage Tree Genetic Algorithm

Figure 2.6: A complete Linkage Tree (LT).

{x
0
} {x

1
} {x

2
} {x

3
} {x

4
} {x

5
} {x

6
} {x

7
} {x

8
} {x

9
}

{x
0
,x
1
} {x

3
,x
4
} {x

5
,x
6
} {x

7
,x
8
}

{x
0
,x
1
,x
2
} {x

7
,x
8
,x
9
}{x

3
,x
4
,x
5
,x
6
}

{x
0
,x
1
,x
2
,x
3
,x
4
,x
5
,x
6
}

{x
0
,x
1
,x
2
,x
3
,x
4
,x
5
,x
6
,x
7
,x
8
,x
9
}

As shown by Figure A.1, which can be found in Appendix A, the GOM phase attempts
to improve a copy of each solution s in P. This is done by traversing the LT in a random
order for each solution, as this gives on average a slightly better performance compared to
a top-down traversal [8]. For each linkage set in the LT, a donor solution d is randomly
picked from P and the linkage set is used as a cross-over mask to perform Optimal Mixing
(OM). This means that by using the linkage set and a random donor d, s is to be improved by
copying the values for the variables in the linkage set from d to s. In terms of our example
of Chapter 1, this means that given some division of students, parts of some other possible
division are adopted. If this does not impose a lower fitness value, the improved solution is
used for further traversing the LT. Note that changes that impose no change in the fitness of
the solution are also accepted. This can cause a severe performance improvement of LTGA
for problems that contain plateaus in the fitness landscape, such as the MAXSAT problem,
as this enables LTGA to move across these plateaus and explore symmetries in the solution
space [8, 52]. If copying values from d to s imposes a lower fitness, the changes to s are
reverted before further traversing the LT. This is done until improvement with all linkage
sets in the LT is tried. Note that Figure A.1 is aimed at giving a general impression of
how GOM works. Our actual implementation also uses Forced Improvement (FI), which
means that GOM is again performed on s if after traversing the entire LT no changes have
been made to s, however now the best solution found so far will be used as donor with each
linkage set [6]. Note that FI will stop when improvement has been encountered, or when the
LT is fully traversed. If this still does not not result in a better fitness, all values of the best
solution found so far are copied. FI replaces the selection step traditionally done by EAs at
the end of a generation as it was found that this selection step causes a selection pressure
that impedes LTGA’s exploration capabilities [6]. Bosman and Thierens state that FI does
not continuously increase the selection pressure, but only puts a very specific convergence
pressure on a solution that could otherwise not be improved, being less detrimental in terms
of diversity loss. This enables efficient convergence in LTGA, even if there are multiple
global optima. In this situation, with the use of FI, LTGA will choose one optimum, instead
of alternating between them.

15

2.2 The Linkage Tree Genetic Algorithm Background and Problem Description

After improving s, it is stored in O. This implementation is illustrated by the following
pseudo-code:

Algorithm 2.5: generateNewSolution(Solution s)
1 result = s.copy(), backup = s.copy()
2 int[] order = getRandomOrder(lt.size)
3 for i = 0 to lt.size -1
4 donor = population.getRandom()
5 result = copyForLinkageSet(donor , result , lt[order[i]])
6 if(result != backup && fitness(result) >= fitness(backup))
7 backup = result
8 else
9 result = backup

10
11 //Forced Improvement
12 if(result == s || noImprovementStretch > (1 + log10(n)))
13 i = 0
14 order = getRandomOrder(lt.size)
15 while i < lt.size && result == s
16 result = copyValues(bestSoFar , result , lt[order[i]])
17 if(result != backup && fitness(result) > fitness(backup))
18 backup = result
19 else
20 result = backup
21 i++
22 if(result == s)
23 result = bestSoFar
24
25 return result

Note that s is copied before any improvements are done, which means that constructing
O does not affect P while GOM is performed. Also note that fitness function evaluations
are only done when s has actually changed.

This way, LTGA is able to find the optimal solution to binary encoded combinatorial
problems. Nevertheless, it is not proven that the returned solution is always the optimal
solution, which makes it a non-guaranteed approximation algorithm, also called a heuristic.
More specifically, as LTGA is not problem-specific, it is a meta-heuristic, which makes it
particularly interesting to investigate due to its general applicability.

Although the performance and capabilities of this algorithm have been evaluated based
on a set of problems of which we know the structure and optimal solution, note that LTGA
is a black-box optimization heuristic, which means that it is aimed at operating in a con-
text in which no problem-specific knowledge is available. Therefore, this algorithm is to
be compared with other black-box optimization algorithms rather than algorithms that use
problem-specific knowledge to solve problems more efficiently, though at the cost of being
less generally applicable.

2.2.3 Execution Example

To provide insight into how the combination of linkage learning and GOM can support the
finding of an optimal solution for a wide variety of problems, we will present an example

16

Background and Problem Description 2.2 The Linkage Tree Genetic Algorithm

of a possible execution of LTGA for Deceptive Trap with `= 10 and k = 5. We will discuss
this problem in detail in Chapter 3, however for now it is only important to know that in this
problem linkage exists between variables {x0,x1,x2,x3,x4} and {x5,x6,x7,x8,x9} and the
local optimum is 0000000000 while the global optimum is 1111111111. In our example,
LTGA will terminate when the fitness variance in P has dropped below 0.0001, meaning that
the population has fully converged. To maintain a clear overview of what happens during
an execution of LTGA, a population size of n = 10 was chosen for this example, although a
larger population size is needed in order to find the optimal solution to this problem with a
high probability [6].

As presented in Figure 2.2, LTGA starts with initializing a population of randomly gen-
erated solutions, which can be found in Table 2.3 in the column for g0, where every solution
is accompanied by its fitness. As this population is randomly generated, no correlation to
the linkage structure of the Deceptive Trap problem is to be expected yet.

Next, LTGA will traverse several generations until the population has fully converged,
where during each generation offspring will be created by learning an LT and using this LT
during GOM. For the first generation, an LT is learned from the population with randomly
generated solutions, which in our case resulted in an LT that contained the linkage sets{
{x0}, {x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}, {x8}, {x9}, {x0,x5}, {x0,x3,x5}, {x2,x9},
{x1,x2,x9}, {x1,x2,x8,x9}, {x0,x1,x2,x3,x5,x8,x9}, {x6,x7}, {x4,x6,x7}

}
. Using this LT,

GOM is performed in which for each solution this LT is traversed in a random order for
which for each linkage set a random donor from the population is used.

We illustrate how GOM is able to construct improved solutions by investigating how the
first solution of this population, being 0010101101, was transformed into 0000000001. The
first linkage set used when randomly traversing the LT for this solution was {x0,x3,x5}, for
which the donor 0111000011 was randomly chosen. This would have copied the values 0,
1 and 0 for x0, x3 and x5 respectively from the donor to our solution, however as this would
cause a decrease in the fitness of this solution, this operation was reverted and no changes
were made to our solution.

Next, the linkage set {x6,x7} was used with donor 0011000111, which resulted in the
improved solution 0010100101, entailing an increase in fitness from 0.6 to 0.8. Several
linkage sets were tried after this that could not impose an improvement of the fitness, which

Table 2.3: Population contents per generation for an execution example for Deceptive Trap.
Every solution is accompanied by its fitness.

g0 g1 g2 g3 g4 g5

0010101101 (0.6) 0000000001 (1.4) 0100000000 (1.4) 0000000000 (1.6) 0000011111 (1.8) 1111111111 (2.0)
0101000000 (1.2) 0000000000 (1.6) 0000000000 (1.6) 0000011111 (1.8) 1111111111 (2.0) 1111111111 (2.0)
0011000111 (0.6) 0000000000 (1.6) 0000000000 (1.6) 0000011111 (1.8) 1111111111 (2.0) 1111111111 (2.0)
1010011110 (0.4) 0010011111 (1.6) 0000011111 (1.8) 0000011111 (1.8) 1111111111 (2.0) 1111111111 (2.0)
1010010001 (0.8) 0100000000 (1.4) 0000000000 (1.6) 0000011111 (1.8) 1111111111 (2.0) 1111111111 (2.0)
0011100011 (0.6) 0000000000 (1.6) 0000000000 (1.6) 0000011111 (1.8) 1111111111 (2.0) 1111111111 (2.0)
0101111100 (0.4) 0100010000 (1.2) 0000000000 (1.6) 0000011111 (1.8) 1111111111 (2.0) 1111111111 (2.0)
0111000011 (0.6) 0100000000 (1.4) 0000000000 (1.6) 0000011111 (1.8) 1111111111 (2.0) 1111111111 (2.0)
1111101101 (1.2) 1111100001 (1.6) 1111100000 (1.8) 1111111111 (2.0) 1111111111 (2.0) 1111111111 (2.0)
0100000000 (1.4) 0000000000 (1.6) 1111100001 (1.6) 1111100000 (1.8) 1111111111 (2.0) 1111111111 (2.0)

17

2.2 The Linkage Tree Genetic Algorithm Background and Problem Description

could be due to the fact that copying variables from donors did not entail any change in
the solution, or due to the fact that copying these variables imposed a worse fitness of the
solution. With the use of linkage sets like {x2} and {x4,x6,x7} and donors 0100000000
and 0101000000 respectively, performing GOM on this solution resulted in the improved
solution 0000000001 that has a fitness of 1.4, which was stored in the offspring.

Similar GOM operations are performed on all other solutions in the population, which
resulted in offspring that was used as population in the next generation, presented in the
column of g1 in Table 2.3. This population already shows more resemblance with the struc-
ture of Deceptive Trap as for most solutions you can clearly see that the first building block
of 5 variables or the second building block has converged to either the global or local op-
timum. This is reflected by the LT that is learned from this population, which contains the
linkage sets

{
{x0}, {x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}, {x8}, {x9}, {x2,x9}, {x3,x4},

{x0,x3,x4}, {x0,x2,x3,x4,x9}, {x0,x1,x2,x3,x4,x9}, {x6,x7}, {x6,x7,x8}, {x5,x6,x7,x8}
}

.
Here we see that this LT contains only few linkage sets that contain variables from both
building blocks, which means that when using this LT, LTGA will attempt to find an opti-
mal solution by copying important building blocks from high-quality solutions rather than
disrupting them, in a sense solving the problems it can be decomposed to separately.

Considering the contents of this LT and the P of this generation, chances are generally
small that a solution can be improved using randomly selected donors. Therefore, it is ex-
pected that often the FI mechanism is triggered, which will perform another GOM operation
if a solution could not be improved, however now with the best solution of this population,
where in this example 0000000000 was chosen as the best solution. Therefore, more build-
ing blocks of solutions converge towards the local optimum, however of some solutions the
building blocks that were converged towards the global optimum were preserved.

This results in the population as presented in column g2, where an even stronger pat-
tern is shown that corresponds to the structure of the problem. With this, also the chance
increases of learning an LT that contains linkage sets that essentially represent the problem
structure, which for this problem would be the linkage sets {x0,x1,x2,x3,x4} and {x5,x6,
x7,x8,x9}. This is reflected by the LT learned for this generation, which contains the link-
age sets

{
{x0}, {x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}, {x8}, {x9}, {x0,x4}, {x2,x3},

{x0,x2,x3,x4}, {x0,x1,x2,x3,x4}, {x5,x7}, {x6,x8}, {x5,x6,x7,x8}, {x5,x6,x7,x8,x9}
}

. With
this LT again GOM is performed. Here again it is expected that for most linkage sets
in the LT no improvement can be obtained, however note that by using the linkage sets
{x0,x1,x2,x3,x4} and {x5,x6,x7,x8,x9}, high-quality solutions are built quite efficiently by
replacing non-optimal building blocks by building blocks that have already converged to
the global optimum for most solutions. This can be done by using random donors, however
note that if this is not possible, FI will use the best solution of this population to copy this
optimal building block to solutions that have not been improved yet.

As shown in column g3, this enables LTGA to already find the globally optimal solution
once, whereas for all other solutions a clear correlation to the problem’s structure is shown.
Therefore, roughly the same operations are performed in this generation compared to the
previous generation, however because now the optimal solution is also the best solution
of this population, all solutions that did not receive an optimal building block yet from a
random donor, will receive one from this optimal solution during FI. Therefore, generation

18

Background and Problem Description 2.3 Problem Description

g3 and g4 are merely needed to converge the population to the optimal solution by copying
optimal building blocks from high-quality solutions, which eventually results in the con-
verged population as presented in column g5 where all solutions are identical and LTGA is
terminated after returning this optimal solution.

2.3 Problem Description

We have shown how LTGA is able to find optimal solutions by means of linkage learning
and Gene-pool Optimal Mixing (GOM) and why it is particularly suitable for solving com-
plex problems for which no algorithms are known yet that can guarantee a solution within
polynomial time. It is unique in its approach as it constructs a hierarchical linkage model
of the dependencies that exist between the problem’s variables, called a Linkage Tree (LT).
It uses this model to enhance the generation of offspring, which enables it to generate off-
spring with solutions of higher quality. This in turn enables LTGA to converge efficiently
towards the optimal solution and outperform its competitors for most problems that were
tested, being other black-box optimization meta-heuristics that do not require any a-priori
knowledge.

Even though LTGA shows excellent performance, there are still possibilities to improve
the algorithm’s applicability. First of all, the current implementation is only single-threaded,
meaning that it is not able to use all computational power available when run on a multi-
core architecture. At this moment, this is the biggest impediment on deploying LTGA on
real-world problems as the computational demands for such problems are increasingly high.
Also because nowadays computational power becomes more easily available, even for small
businesses and private users, this seems to be the most promising possible extension to the
algorithm for which straight forward implementations are available. Secondly, the current
implementation still requires one parameter. Coming from an algorithm with at least 6 and
up to 12 parameters, Bosman and Thierens spent extensive effort on simplifying the use
of LTGA, ultimately aimed at developing a parameterless black-box algorithm that needs
no a priori knowledge about the problem at hand. Although they constructed well-founded
guidelines for most parameters, still one parameter remains, being the population size. In
Chapter 3 we will present what the influence is of the population size on the performance of
LTGA, however for now it is important to note that the required population size for solving a
problem with a certain probability is highly dependent on the problem and problem size and
no heuristics for this could be constructed so far. This has a severe impact on the usability
of the algorithm and means that the algorithm can neither easily nor efficiently be used by
other than experts.

This Master’s thesis is focused on this state of the art algorithm due to it’s potential
and robustness. Our goal is to push the boundaries of optimization problem solving by ex-
panding the potential of LTGA, though if we look at the research questions presented in
Chapter 1 and take into account the details discussed in this chapter, it is clear that more de-
tailed research questions are needed to define a more concrete approach and give our search
for a more powerful optimization algorithm direction. We therefore present the following
sub-goals that we aim to achieve:

19

2.4 Related Work Background and Problem Description

1. Develop an implementation of LTGA that is able to harness the computational power
of multi-processor architectures.

2. Develop an implementation of LTGA that can be executed on combinatorial problems
without requiring problem-specific parameters.

3. Provide insight into LTGA’s true potential.

a) Investigate the model used by LTGA using the implementations mentioned
above.

b) Investigate alternative models such that a better performance of LTGA can be
achieved.

We pursue to achieve these goals by answering the following research questions:

1. What part of LTGA has the most significant impact on the performance of the algo-
rithm?

2. What are different ways LTGA can be redesigned in order to use the computing power
available in multi-processor architectures efficiently?

a) What are their advantages?
b) What are their disadvantages?
c) How does the performance of the improved implementation relate to the perfor-

mance of the original sequential implementation?
3. How can we determine the population size used by LTGA such that LTGA no longer

requires any parameters?
4. Can a fixed structure be found that supports a better performance of LTGA by replac-

ing the LT?

a) In what way does this fixed structure differ from the LT used by LTGA?

If we are able to answer the questions above, more insight can be obtained into LTGA’s
performance and with that, into possible improvements to the algorithm. This is an im-
portant goal as this can increase the performance of LTGA and with that it’s applicability.
This should ultimately expand the collection of problems solvable by LTGA, including new
problems of great importance that could not be solved before.

2.4 Related Work

In this section, we will briefly discuss related publications that were studied in order to put
the research conducted on LTGA into context.

2.4.1 Linkage Learning

LTGA uses linkage learning in order to construct an LT, which is a field in which already
extensive research has been performed [11, 12, 15, 27, 28, 29, 31, 61, 67]. Starting from
work presented by Thierens back in 1993 [61], linkage learning has a long history, however,
in this section we will primarily focus on more recent developments in the field of linkage
learning. For example, Yu et al. investigate how linkage learning can benefit situations in
which a problem has to be solved with overlapping building blocks, which are defined as

20

Background and Problem Description 2.4 Related Work

variable sets into which a problem can be decomposed [67]. If a problem can be decom-
posed into building blocks, it means that the problem can be split up into sub-problems,
each sub-problem solely considering the variables of a particular building block. These
sub-problems can be solved independently, after which the solution to the original problem
can be found by aggregating over the solutions found for the sub-problems. Yu et al. show
that when trying to increase the efficiency of the cross-over operation, there is a trade-off
between the amount of disruption of building blocks and the amount of mixing that occurs.
They propose an algorithm that identifies the overlapping building block topology of the
problem, identifies the relations between these building blocks and then partitions the graph
of building blocks such that the number of disrupted building blocks is minimized. The
pitfall of this algorithm is that it requires calculating an optimal partition of a graph, which
itself is an NP-hard problem, indicating that this algorithm is quite costly. Using this algo-
rithm, however, they were able to show that detection failure and false linkage both have
an impact on the algorithm convergence time, which is the time that the algorithm needs
before the entire population has converged towards one solution. This can be a local op-
timum, meaning that there might be a better solution, however ideally this should be the
global optimum, meaning that no better solution exists. Yu et al. define detection failure
as the inability of the algorithm to identify variable sets with high linkage, while false link-
age is defined as the act of linking variables that do not have high linkage in reality. They
show that for up to 60 building blocks, the negative impact of detection failure is severely
larger than the impact of false linkage, while for problems with more building blocks, false
linkage has a slightly bigger negative impact on the convergence time.

Linkage learning has also been studied in the context of EDAs [5, 11, 15, 22]. EDAs
are able to find global optima in complex problems, by estimating the probability distri-
bution of solutions in the solution space and using this to perform variation by drawing
samples from this distribution. This is done with the use of higher-order statistics that in-
troduce high computational complexity. Lower-order statistics require less execution time,
however when using lower-order statistics, EDAs are usually not able to find global op-
tima in complex problems, being problems in which interaction between variables exists.
Emmendorfer and Pozo discuss the use of lower-order statistics combined with a cluster-
ing technique based on linkage learning in order to efficiently find global optima, even for
complex problems [22]. This strategy is embodied by the ϕ-PBIL algorithm. The authors
show that this outperforms Bayesian networks, which are considered to be very efficient in
solving complex problems [32]. According to the authors this might be due to the fact that
the algorithm uses an approximation of the structure of the problem, instead of calculating
the exact structure.

However, also outside the field of EDAs linkage learning has been used for efficient
problem solving. An example is the Linkage Learning Genetic Algorithm (LLGA) that
was first presented by Harik and later investigated by Chen and Goldberg[13, 27]. Chen
had already done extensive research on the scalability of the LLGA [12], where we define
the scalibility of an algorithm as the ability to terminate within reasonable time as the di-
mensionality of a problem increases. Together with Goldberg, he presented three linkage
learning techniques for GAs: perturbation-based methods, linkage adaptation techniques
and probabilistic model builders. With these techniques, the LLGA is capable of solving

21

2.4 Related Work Background and Problem Description

problems for which the complexity scales exponentially compared to the number of build-
ing blocks in linear time, while it needs an exponentially growing population size compared
to the number of building blocks when the problem is uniformly scaled. This due to the fact
that although it is long believed that a GA optimizes multiple building blocks simultane-
ously, Chen and Goldberg show that GAs first work on the most important building block,
then the second most important building block, and so on. For the exponentially scaled
problem this means that the most important building block is tightened first with very high
probability due to the selection advantage. In contrast, building blocks in the uniformly
scaled problem have the same probability of being tightened first. The authors state that
in order to improve the performance of GAs, a mechanism has to be used that reduces the
number of building blocks that are processed simultaneously.

Later, Duque and Goldberg also discuss the principle of linkage learning and in fact,
their approach has been the basis for the linkage learning mechanism used by LTGA [21].
Duque and Goldberg present ClusterMI, which is a new method for linkage detection in the
Extended Compact Genetic Algorithm (ECGA). This ClusterMI procedure hierarchically
clusters variables by repeatedly clustering linkage sets, that have highest linkage, based on
the MI, where linkage sets are sets of variables between which linkage has been identified
[40]. Experiments show that an ECGA with the ClusterMI procedure needs a larger popu-
lation than conventional ECGA implementations and therefore also more function evalua-
tions. However, the model building step in the ClusterMI implementation is more efficient
by one order of magnitude, therefore the ClusterMI implementation is both faster and better
scalable than conventional ECGA implementations.

2.4.2 Pairwise and problem-specific metrics

Pelikan et al. [47] discuss the effects of pairwise and problem-specific metrics on the
first implementation of LTGA. The authors show that a pairwise metric reduces not only
the computational complexity of LTGA, but also the Minimally Required Population Size
(MRPS), which causes a significant reduction in the required execution time of the algo-
rithm. Another remarkable result that was presented by Pelikan et al., was that using
problem-specific metrics does not necessarily mean that a better LT is created. In some
cases, the use of problem-specific metrics causes the algorithm to identify linkage in too
much detail, which means that the linkages that were defined might not be as important as
other linkages or might not even be relevant for the current population. Experiments show
that with the use of problem-specific distance metrics, LTGA does not always perform bet-
ter.

2.4.3 Gene-pool Optimal Mixing and Forced Improvement

LTGA is a member of the Optimal Mixing Evolutionary Algorithm (OMEA) family as first
presented by Thierens and Bosman [57]. In this paper, the authors investigated the effi-
ciency of mixing in GAs and EDAs and present two implementations of Optimal Mixing
(OM): the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) and Recombina-
tive Optimal Mixing Algorithm (ROMEA). While then LTGA was still a ROMEA, Thierens

22

Background and Problem Description 2.4 Related Work

and Bosman show that the use of GOM often results in better performance, which is why
GOM is used by LTGA from that point on.

Later, the mixing phase of LTGA was improved by combining GOM with FI [6]. The
authors describe how in LTGA selection was done at two points in the algorithm by per-
forming tournament selection. Tournament selection is a selection mechanism that selects
n solutions from P by holding n tournaments of size t. This means that for each tournament,
t solutions will be compared of which the best solutions will be placed in selection S. In
LTGA, S was used to learn linkages from, which is known to be beneficial in certain EDAs
[55]. Note that S was only used for learning the LT; the GOM phase is executed on the
population that S originated from. Secondly, at the end of every generation again tourna-
ment selection was performed to converge by logistic growth of the optimal solutions over
multiple generations. Bosman and Thierens find, that with the additional selection step at
the end of every generation, the diversity is reduced faster than needed. They show that
when removing this additional selection step, the MRPS, as well as the required number of
fitness function evaluations to solve typical benchmark problems decreases. Therefore, they
replace this step by FI that is applied during the GOM phase of the algorithm as described
before.

2.4.4 Measuring LTGA

In 2012, Bosman and Thierens published two other papers related to LTGA. The first paper
discusses the effects of different measures used for detecting linkage, as to study what it
is that is needed from a measure in order for LTGA to converge to the optimal solution
efficiently [7]. In this paper, they review five measures:

1 H: Entropy: H(Xk) =−∑i pi(Xk) log pi(Xk)

2 MI: Mutual Information: MI(X1, . . . ,X`) = ∑
`
k=1 H(Xk)−H(X1, . . . ,X`)

3 MNI: Mutual Normalized Information: MNI(X ,Y) = MI(X ,Y)/H(X ∪Y)
4 VI: Variation Information: V I(X ,Y) = H(X ∪Y)−MI(X ,Y)
5 NVI: Normalized Variation Information: NV I(X ,Y) =V I(X ,Y)/H(X ∪Y)

Of these metrics, using the Entropy causes a bad performance for LTGA. The other metrics
show better results, although they differ only marginally, not providing enough support to
prefer one of these measures over the other. The second paper they presented focused on
measuring to what extend linkage learning by means of the LT contributes to converging
towards the optimal solution in LTGA [58]. This was analyzed according to four measure-
ments:

1 Hamming Distance: the minimum and median hamming distance to the global
optimum from the solutions in the current population.

2 Evolvability: the evolvability is defined as the probability of success, being the
probability that a new solution will have a better fitness than its parents [1].

3 Linkage Model Evolvability: the Linkage Model Evolvability is the evolvability as
a function of the size of the masks of successive LTs.

4 Evolvability-Based Fitness Distance Correlation (EFDC): This measure is
considered to give the best insight in the contribution of an LT towards the

23

2.4 Related Work Background and Problem Description

optimal solution, as it measures the correlation between the fitness value and
the hamming distance towards the global optimal solution.

The authors show that of these metrics, the Hamming Distance does not give enough insight
in whether LTGA is making structural progress or not, while other metrics are useful tools
for obtaining insight in the characteristics of linkage model building in GAs. With these
tools it is shown that LTGA is able to efficiently construct a linkage model that benefits the
algorithm’s performance.

2.4.5 Improving LTGA

As mentioned before, we aim to investigate the model used by LTGA in order to obtain
insight into possible improvements to this model. Some research in this was already done
by Thierens and Bosman.

Overlapping Linkages and Linkage Filtering

In 2013, again Bosman and Thierens published two papers that were related to LTGA.
One of the papers discusses the ability of LTGA to solve problems with a hierarchical
structure such as shuffled HIFF problems [63] and shuffled HTRAP [46] problems [60].
They show that for these problems, LTGA is efficient, reliable and scalable. The other paper
presents results on tests that were performed with the Linkage Tree and Neighbors Genetic
Algorithm (LTNGA) [8]. This algorithm combines the linkage learning Mechanisms of
LTGA and the Multi-scale Linkage Neighbors Genetic Algorithm (MLNGA) [6] by using
the intersect of their linkage models. This results in an algorithm that is able to combine
the efficient model building of LTGA with the ability of MLNGA to represent overlapping
building blocks, though still LTGA was preferred due to its robustness.

Furthermore, Bosman and Thierens attempted to improve LTGA by implementing link-
age hierarchy filtering, which is aimed at filtering out potentially inefficient linkage sets
from the linkage model. They base this on the Linkage Strength (LS), which is defined as
the average MI between all pairs of variables in a set F . If LS(F j)> LS(F i), where F j ∈ F i,
the linkages in F j are stronger on average and combining this cluster with other vari-
ables, resulting in F i, would result in rather disrupting larger building blocks than im-
proving them. Therefore, after constructing the linkage model, all linkage sets for which
LS(F i) ≤ 0.99LS(F j) are removed from the linkage model. This resulted in only a slight
performance improvement of LTGA.

Predetermined versus Learned Linkage Models

Thierens and Bosman also investigated whether LTGA would perform better if the LT were
to be replaced by a fixed structure that resembles the problem formulation structure per-
fectly [59]. This is done by inserting a fixed structure for the Onemax, Deceptive Trap,
NK-Landscapes and MAXCUT problems. Results show that for Onemax and Deceptive
Trap, LTGA indeed performs better in terms of required number of fitness function eval-
uations if the LT is replaced by a fixed structure that resembles the problem’s formulation

24

Background and Problem Description 2.4 Related Work

structure. This is expected, as for these relatively simple problems, the formulation exactly
identifies the most important building blocks of the problem. Surprisingly, however, for
NK-Landscapes and MAXCUT, which are considered to be more realistic problems, LTGA
using the online-learned LT not only generally performs better, but also scales significantly
better compared to when the LT were to be replaced with a fixed structure. This shows that
the actual problem structure of these problems is all but trivial and cannot be derived from
the problem’s formulation in a straight-forward way.

This raises the question whether fixed structures exist that can support a better perfor-
mance for LTGA also for realistic problems. An answer to this question could indicate
what the main reasons are for LTGA’s excellent performance and with that enable us to
leverage the true potential of LTGA, expanding the domain of problems to which LTGA
can be applied.

25

Chapter 3

Implementation Validation and
Analysis

As stated in the previous chapter, we aim to expand the potential of the Linkage Tree Ge-
netic Algorithm (LTGA), however in order to do that, it is first important that our current
implementation of LTGA is validated and analyzed as we translated the existing implemen-
tation of LTGA from the C programming language to Java 8. Often, C is preferred over
Java for its unbeaten performance, however although C is indeed faster than Java, Java is
generally only slower by a factor 1.5 to 2, which is not bad compared to other programming
languages [19]. Additionally, for real-world problems, LTGA often has to be integrated
with some other program to evaluate the fitness of possible solutions, for instance when the
fitness is based on some simulation. Evaluating possible solutions for real-world problems
is often costly, meaning that it requires significant CPU time. Therefore, choosing Java 8
over C will only have a limited impact on the execution time for such problems. Finally,
Java 8 had shown to contain new features that would provide better support for developing
a parallel implementation, such as lambda functions [44], which, together with the Execu-
torService [43] would support an easy, clean and efficient implementation of a parallelized
LTGA. Together with our more extensive experience with Java and the limited time avail-
able, Java 8 was therefore preferred over C.

The core of LTGA was implemented using Object Oriented Programming (OOP), which
enabled us to design and organize the codebase according to best practice coding principles.
Additionally, the JUnit framework was used to implement unit tests in order to verify in-
ternal functionalities [38]. The complete pseudo-code of the implementation can be found
in Appendix B, together with the complexity analysis, which will also be discussed in this
chapter.

To verify the soundness of our implementation a validation of our implementation of
LTGA will be presented in this chapter. This will be followed by a complexity and cost
analysis that will enable us to eliminate any impediments on possible algorithm improve-
ments and determine what components of LTGA should be focused on when designing
algorithm improvements or extensions.

For this project, hardware was made available by CWI for testing how the performance
of LTGA could be improved. CWI recently invested in two identical 64-core servers, of

27

3.1 Implementation Validation Implementation Validation and Analysis

Table 3.1: 64-Core server specifications.

CPU(s) 4 x 16-core AMD Opteron(tm) Processor 6386 SE
CPU Cores 64
CPU min clockspeed 1.4 GHz
CPU max clockspeed 2.8 GHz
CPU cache 2048 KB
Memory 252 GiB

which the specifications can be found in Table 3.1. All results presented are based on this
architecture, as we could use one of these servers to run our experiments.

3.1 Implementation Validation

In this section, we will first present the benchmarking problems which are not only used to
validate this implementation of LTGA, but also to evaluate the performance of the improved
or extended versions of LTGA presented in this work. Next, we will briefly discuss the setup
and results of the experiments performed to verify that the Java implementation is sound,
which are the same tests as presented by Bosman and Thierens [6, 8]. This experimental
setup will also be used to verify or investigate other implementations that will be presented
later on.

3.1.1 The Evaluation Problems

LTGA is considered to be a black-box meta-heuristic for combinatorial optimization prob-
lems that is able to optimize combinatorial problems without requiring any a priori knowl-
edge about the problem structure. In previous publications about LTGA, a collection of
combinatorial benchmarking problems were used that vary in difficulty and linkage struc-
ture. As these problems are considered suitable for investigating the performance of LTGA
on combinatorial optimization problems, the base implementation, as well as any future im-
proved versions of LTGA, will be verified performing experiments on these problems with
varying dimensionalities. In this section, these problems will be illustrated where, without
loss of generality, we will only consider binary variables. Formulas for these problems are
given below and express how the fitness of a solution x will be evaluated. For all problems,
an optimal solution has to be found, being a solution that corresponds to the maximum fit-
ness value. In other words, the outcome of formulas presented below has to be maximized.
Note that for testing purposes, for all benchmark problem instances used in our experiments
the optimal solutions are known.

Onemax

The first and most trivial problem is the well-known Onemax problem, in which no signif-
icant linkage between variables exists. For this problem, the sum over all variables must

28

Implementation Validation and Analysis 3.1 Implementation Validation

be maximized, as expressed by formula (3.1). Obviously, this means that in the optimal
solution all binary variables are assigned a value of 1, resulting in the optimal score of `.

fOnemax(x) =
`−1

∑
i=0

xi (3.1)

Deceptive Trap

The second problem on which the performance of LTGA is evaluated is the additively de-
composable composition of k-order Deceptive Trap functions, which is aimed at drawing
a deceivable optimization algorithm away from the global optimum, into a local optimum
[17, 18, 21]. In our experiments, we used a tight encoding, meaning that the problem can be
decomposed into `/k non-overlapping sub-problems of size k, where each block i encapsu-
lates the variables i∗k to (i+1)k−1. For each sub-problem, the corresponding sub-function
contains a deceptive trap, meaning that this sub-function is structured in such a way that a
simple algorithm would naturally be drawn towards the local optimum, instead of the global
optimum.

Figure 3.1: The f sub
Trap-k function of Deceptive Trap, k = 5. Building block score defined by

the number of 1s contained.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5

B
u

ild
in

g
 b

lo
c
k
 s

c
o

re

Number of 1’s

To illustrate, all experiments presented are performed for k = 5, which means that each
consecutive group of 5 variables corresponds to a sub-problem. If a building block contains
the bits 00000, it yields a score of 0.8 and this score decreases as the number of 1’s in the
block increases. If the block contains 11111, however, the solution will yields a score of 1 as
illustrated in Figure 3.1. For example, the solution 01101000001101111111 is evaluated by
summing the score of the 4 blocks it consists of (01101, 00000, 11011 and 11111), resulting
in a score of 0.2+0.8+0+1= 2. Evidently, for the optimal solution, all consecutive blocks
must consist of 11111 for k = 5, however, for each block, straight-forward algorithms are
drawn towards the local optimum as soon as a block contains less than k 1s. This means
that also for the solution as a whole, straight-forward algorithms will be drawn towards the
local optimum, being a solution containing k 0s for every building block, yielding a total

29

3.1 Implementation Validation Implementation Validation and Analysis

score of (k−1)`
k2 instead of `

k . The formula for this fitness evaluation function is defined as
follows:

fTrap(x) =
(`/k)−1

∑
i=0

f sub
Trap-k

(ki+k−1

∑
j=ki

x j

)
(3.2)

where

f sub
Trap-k(u) =

{
1 if u = k
k−1−u

k otherwise

This function is useful for evaluating the performance of an algorithm as it contains so
called deceptive traps and linkage between variables in each of the `/5 consecutive non-
overlapping groups of variables. These deceptive traps are also often contained by real-
world problems, which is why it is important to evaluate whether an algorithm is able to
overcome these local optima and converge towards a global optimum by means of linkage
learning.

NK-Landscapes

The third problem that is considered is the nearest-neighbor maximum overlapping addi-
tively decomposable composition of predetermined random sub-functions of length k, also
known as the nearest-neighbors NK-Landscapes problem [48]. This problem is designed to
be decomposible into sub-problems of length k that are maximum overlapping. Each NK-
Landscapes problem instance therefore consists of `−k+1 sub-problems in which the first
k− 1 variables of each sub-problem overlap with the last k− 1 variables of the preceding
sub-problem, as is visualized in Table 3.2.

For each problem instance, these f sub
NK sub-functions are defined by predetermined ran-

domly generated lookup tables, being tables that provide a mapping from each possible
composition of variables xi,i+1,...,i+k to a real value. An example of a problem instance for
` = 5,k = 3 is presented in Table 3.3. The fitness function of a solution is then defined by
the sum over the outcomes of all these sub-functions, as defined by the following formula:

fNK-S1(x) =
`−k

∑
i=0

f sub
NK (xi,i+1,...,i+k−1) (3.3)

Table 3.2: Visualization of variable overlap of sub-functions in NK-Landscapes for k = 5.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

f0
f1
f2
f3
f4
f5

30

Implementation Validation and Analysis 3.1 Implementation Validation

Table 3.3: An NK-Landscapes problem instance example. f sub
NK functions for `= 5, k = 3.

x0x1x2 score
000 0.3
001 0.3
010 0.1
011 0.9
100 0.8
101 0.0
110 0.2
111 0.4

x1x2x3 score
000 0.1
001 0.4
010 0.1
011 0.5
100 0.9
101 0.2
110 0.3
111 0.2

x2x3x4 score
000 0.8
001 0.6
010 0.5
011 0.8
100 0.0
101 0.0
110 0.4
111 0.2

As an example, this means that for the problem instance presented in Table 3.3, the so-
lution 11001 would be evaluated by summing the outcomes of f0(11001), f1(11001) and
f2(11001), resulting in a score of 0.2+ 0.9+ 0.6 = 1.7. For the experiments presented in
this work, the same randomly generated problem instances were used as the ones used by
Bosman and Thierens [6, 7, 8, 56, 57, 58, 59, 60].

The purpose of this problem is to study the behavior of LTGA on problems that contain
an intricate overlapping linkage structure. Clearly, the f sub

NK subfunctions indirectly define
the linkage between variables, however as these sub-functions are overlapping and do not
contain a specific structure, the exact degree of linkage between variables, which is deter-
mined by the total composition of all f sub

NK , is unknown.

Figure 3.2: An example of a MAXCUT problem instance.

v
0

v
6

v
8

v
3

v
2

6

3

2

6

1 5

6

2

8
1

6

3

6

v
1

v
4

v
5

v
7

v
9

31

3.1 Implementation Validation Implementation Validation and Analysis

Weighted MAXCUT

The last, but certainly not trivial benchmark problem that was used is the well-known NP-
Complete weighted MAXCUT problem. This problem is defined given a weighted undi-
rected graph with a set of ` vertices V = {v0,v1, ...,v`−1}, a set of edges E and a weight
wi j for each edge (vi,v j) ∈ E. In this problem the sum of the weights of edges that were
cut when splitting the graph in two parts is to be maximized. The division of vertices over
the two parts in the graph can be encoded by binary variables, each variable indicating
whether a vertex is in cut 0 or 1. To illustrate, in the MAXCUT instance presented in Figure
3.2, an arbitrary cut C0 = {v1,v4,v5,v7,v9}, C1 = {v0,v2,v3,v6,v8} can be encoded with
x1,x4,x5,x7,x9 = 0, x0,x2,x3,x6,x8 = 1. This corresponds to the solution x = 1011001010,
of which the fitness is defined by the sum of the weights all cut edges, which in this case is
19. This means that the MAXCUT problem can be formulated as follows:

fweighted MAXCUT(x) = ∑
(vi,v j)∈E

{
wi j if xi 6= x j

0 otherwise
(3.4)

The MAXCUT problem is a more realistic problem than aforementioned problems and
is at the basis of a variety of real-world problems. As mentioned earlier, our example where
Computer Science and Mathematics students are to be split over two groups is a practical
application of this problem, however also finding an optimal partition of delivery addresses
to distribute over the available trucks for a package delivery company can require solving a
MAXCUT instance.

Linkage will exist between i and j for which wi j is relatively large or small, as either
having the corresponding vertices in the same part or not will have a significant influence
on the outcome. However, as more edges might exist with relatively large or small weights,
defining an appropriate linkage model is also for this problem non-trivial. MAXCUT differs
from the aforementioned problems, because, in contrast to the other problems, MAXCUT
is NP-hard. Instances with fully connected graphs for l ∈ {6,12,25,50,100} that were
generated using the approach presented by Rubinstein were provided [51]. These are the
same instances that were used in previous experiments by Bosman and Thierens [6, 7, 8,
57, 58, 59, 60].

3.1.2 Experimental Setup

The performance of LTGA is ultimately defined by how much time the algorithm needs in
order to find the optimal solution. However, it is hard to base any conclusions on time mea-
surements, as clock speeds and architectures used for experiments are ever changing. For
real-world problems, this required execution time is mainly dictated by the time required
for the evaluation of the fitness function. In the example of optimizing the design of an
airplane wing, as mentioned in the introduction, evaluating a solution could mean actually
running aerodynamically accurate simulations with specific parameter values. Therefore,
in all publications about LTGA, the performance of the algorithm has been expressed by
the Minimally Required Number of Evalutations (MRNE). These results have always been

32

Implementation Validation and Analysis 3.1 Implementation Validation

accompanied by the Minimally Required Population Size (MRPS), as the number of evalu-
ations for a specific problem is highly dependent on the population size n.

Taking this into consideration, Bosman and Thierens determined the performance of
the various versions of LTGA using the following setup, which is based the binary search
approach as presented by Sastry [53]. Given a specific problem with ` variables, the MRPS
and MRNE are determined by incrementally verifying whether this problem could be solved
for a given population size n. In this setup, we consider a problem solved for a specific n if
and only if at least 99 out of 100 independent runs have converged towards the optimal so-
lution. Starting for n = 1, if a problem could not be solved for a specific n, it is tried for 2n.
This is done iteratively until the problem could be solved for a population size that was large
enough. Next, in order to determine the exact threshold at which the algorithm could solve
the given problem, a bisection search is done between max{nunsolved} and min{nsolved}. Bi-
section search is implemented as follows:

Algorithm 3.1: doBinSearch(x, y)

1 if(y - x > 1)
2 middle = (x+y)/2
3 isFound = tryForPopSize(middle)
4 if(isFound)
5 return doBinSearch(x, middle)
6 else
7 return doBinSearch(middle , y)
8 else
9 return y

Because the algorithm is stochastic, the outcome of such a search is subject to noise. There-
fore, this entire search, consisting of an incremental search and a binary search, is performed
10 times for each experiment and the median required population size is considered as the
MRPS. The MRNE is then defined as the median number of evaluations out of 100 inde-
pendent runs of LTGA with n = MRPS. Note that for the NK-Landscapes problems, 100
random instances were provided per problem dimensionality so the aforementioned 100
independent runs can be run on separate instances. For MAXCUT also random problem in-
stances were provided, however, every problem instance is considered separately as this is
more typical for combinatorial problems, since the difference in hardness between problem
instances can vary significantly. Note that this means that the graphs for MAXCUT should
be interpreted differently, as the results are aggregated over 10 random instances on which
10 searches are performed per problem instance. This means that the error bars are much
larger for MAXCUT.

3.1.3 Experimental Results

Using the presented setup, tests were performed on the Java implementation in order to
verify its behavior. The results of these experimens are shown in the graphs of Figure
3.3 and 3.4. These graphs show the distribution of the results found. The line in the graphs
connects average values, while the ”X” symbols mark the median of the values found. These

33

3.1 Implementation Validation Implementation Validation and Analysis

run within the marked boundaries, that indicate the 10th and the 90th percentile. This
fashion of presentation will be used throughout this report.

The results shown in Figure 3.3 and 3.4, are practically identical to what was presented
by Bosman and Thierens [6, 8]. There is a slight difference in performance compared
to the results as presented by Bosman and Thierens, being that the results show that our
implementation performs slightly better. This is expressed in a slightly lower MRPS and
MRNE, which is due to the fact that the selection step before learning the Linkage Tree (LT)
was omitted, as discussed before. These results show that the implementation performs as
required, supporting further analysis and development.

Figure 3.3: MRPS for the Sequential Implementation of LTGA.

 10

 100

 1000

 10000

 25 50 100 200 400

P
o
p
u
la

ti
o
n
 S

iz
e

Problem Size

Onemax
Deceptive Trap

NK-Landscapes

 1

 10

 100

 1000

 10000

 100000

 6 12 25 50 100

P
o
p
u
la

ti
o
n
 S

iz
e

Problem Size

MAXCUT

Figure 3.4: MRNE for the Sequential Implementation of LTGA.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 25 50 100 200 400

#
 E

v
a
lu

a
ti
o
n
s

Problem Size

Onemax
Deceptive Trap

NK-Landscapes

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 6 12 25 50 100

#
 E

v
a
lu

a
ti
o
n
s

Problem Size

MAXCUT

34

Implementation Validation and Analysis 3.2 Algorithm Analysis

3.2 Algorithm Analysis

In order to increase the performance of an algorithm, it is required that one first determines
where possible performance gains could be achieved. In this section, an analysis of the
algorithm will be given both in terms of complexity and costs, where costs are here defined
as the actual execution time needed. Besides the algorithm’s complexity, these costs are
analyzed as they may not always comply with the theoretical complexity, for instance when
a component with a low order of complexity entails costly data access or network commu-
nication. In order to implement parallelization efficiently, it is important that both poorly
scalable and blocking elements in the algorithm are identified.

3.2.1 Complexity analysis

A complexity analysis is done in order to determine what elements in LTGA are most ex-
pensive in terms of computational complexity. When a component in LTGA has a high
complexity, this primarily means that it is less scalable than other components, meaning
that as a parameter related to the problem size increases, the execution time required by this
component will increase faster than the required execution time of components with a lower
computational complexity. The pseudo code of the complete implementation, as well as the
complete complexity analysis can be found in Appendix B. As shown, the complexity is
expressed with the use of 4 parameters:

`= number of variables
n = population size
g = number of generations needed
f = fitness function evaluation time

It is important to note that these parameters are all but independent of each other as pre-
sented by Bosman and Thierens [6, 8, 56, 60]. At this point of time, the following correla-
tions are known:

1 Between ` and n: As ` increases, the problem gets harder, meaning that the chance
of finding the optimal solution with a particular value for n decreases. As n
increases for a fixed `, the chance of finding the optimal solution increases.
Ergo, as ` increases, the MRPS for finding the optimal solution with a certain
probability increases as well.

2 Between ` and f: For most problems it holds that as ` increases, f increases as well.
3 Between `,n and goptimalSolution, where goptimalSolution is the number of generations

needed in order to find the optimal solution: for larger `, goptimalSolution
increases, however as n increases, goptimalSolution decreases.

4 Between n and gconvergence, where gconvergence is the number of generations needed
for the algorithm to converge: as n increases, gconvergence also increases.

As no explicit formulas for these correlations are known at this point in time, the time
complexity can best be expressed by means of these four parameters.

From the complexity analysis it shows that, in terms of complexity, the algorithm can be
split in two main parts for each generation, being the construction of the LT and performing

35

3.2 Algorithm Analysis Implementation Validation and Analysis

Gene-pool Optimal Mixing (GOM). This is also backed by Pelikan, who stated that ”from
the perspective of time complexity, the building of the LT and the evaluation of candidate
solutions are the two computational bottlenecks of LTGA.” [47]

As shown, the total time complexity of building the LT is:

OBuildLT = 3O(`)+O(n∗ `2)+2O(`2)+2O(1) = O(n∗ `2) (3.5)

This is because filling the distance matrix has the highest time complexity. Note that con-
structing an LT based on a distance matrix, as done in the block starting from line 16 in
Appendix B, might seem to have a complexity of O(`3), which would result in a total time
complexity for constructing the LT of O(n ∗ `2 + `3). However, as shown by Gronau and
Moran, these steps have a complexity of O(` ∗ 2(`− 1)) = O(`2) [26]. This is because
determining the nearest neighbor and adding this cluster to the chain has O(`) time com-
plexity, which is done at most O(2(`− 1)) times: each cluster in the Marginal Product
Model (MPM) is added at most 2 times and is removed at some point, not to be added again
as it got merged with another cluster. Therefore the time complexity of constructing the LT
is as stated above.

Obviously, the time complexity of the GOM phase is primarily determined by the loop
that fills O with improved solutions. The complexity of this loop is given by Formula (3.6).
As this loop is iterated over n times, Formula (3.7) denotes the total time complexity for
GOM.

OImproveSolution = 4O(`)+2O
(
`(`+ f)

)
+5O(1) = O

(
`(`+ f)

)
(3.6)

OGOM = O
(
n∗ `(`+ f)

)
(3.7)

As shown in the pseudo code, there are more statements that have a non-trivial time
complexity, however they do not influence the total time complexity of LTGA. This is
shown by the formula below, which defines the total time complexity of LTGA. As can be
seen, eventually the GOM phase has the highest complexity per generation and is therefore
dictative for the total time complexity of LTGA.

OLT GA =O(n∗`)+O(n)+g
(

O(n∗`2)+O
(
n∗`(`+ f)

)
+O(n)+O(1)

)
=O

(
g∗n∗`(`+ f)

)
(3.8)

3.2.2 Costs analysis

As discussed in the previous section, the GOM phase is the primary element that affects
the total computational complexity of LTGA. However, this does not always mean that this
part will require the most computation time, compared to other non-trivial components.
Therefore, we decided to profile LTGA’s implementation.

Profiling Setup

As a start, several profilers were investigated, aimed at finding a profiler that could provide
us with tools to give an insight in the required computation time of LTGA’s components.

36

Implementation Validation and Analysis 3.2 Algorithm Analysis

More specifically, we were looking for a profiler that could provide us with statistics such
as the number of function calls and the total time spent per function. Additionally, a profiler
was preferred that could be used using a command line interface, as the 64-core servers were
only accessible through SSH. Finally, the overhead imposed by the profiler is also important.
Profilers usually work by injecting additional code at the start and end of functions, in order
to track calls to these functions. Obviously, this imposes a certain overhead, however, a
profiler with minimal overhead is desired, as significant overhead will reduce the reliability
of the test results.

The first profiler we therefore investigated was the profiler that comes with the Java
Development Kit (JDK), called HPROF [42]. HPROF was easy to use, already installed,
met all the requirements mentioned above and could save results to file. Some initial ex-
periments showed, however, that HPROF came with overhead that was vastly greater than
expected. Experiments showed that when HPROF was enabled, on average the execution
time of our implementation increased by roughly a factor 20. As HPROF still based its
results on the total execution time, this meant that the reliability of the returned results was
diminished, as about 95% of the total execution time was imposed by HPROF itself.

Therefore, we investigated other profilers, among which were DJProf [36], Oktech-
profiler [39], Perf4j [49], JRat [54], EJP [62], JConsole [45] and JIP [37, 64, 65]. Of these
profilers, the Java Interactive Profiler (JIP) seemed like the most promising alternative as
it was best recommended across several Java profiler comparisons and because it was well
documented. It claimed to have the same abilities as HPROF, however with less overhead
while providing additional features such as the ability to enable or disable the profiler while
the algorithm is running. It was claimed that this does not influence the results returned, as
JIP does not take execution time in account that was consumed by the profiler itself.

The overhead of the profiler is claimed usually to be around 1-3%, with a worst case
scenario of 100%. Initial profiling gave unexpected results, however, showing that sim-
ply counting the frequency of variable values in the population, in order to calculate the
Joint Entropy, required 46.7% of the total execution time. Additional tests showed this
was merely caused by the vast amount of function calls to the corresponding updateFre-
quencies function, rather than the functionality contained by this function. As it was not
expected that this vast amount of function calls would require 46.7% of the execution time,
we concluded that also the overhead introduced by JIP was too large and would signifi-
cantly influence our tests results, leaving us with little reliable information about possible
bottlenecks in the algorithm.

As a result, we implemented a minimalistic profiling framework, aimed at simplicity
and minimal overhead. This was done by simply injecting function calls at the begin and
end of every function we wanted to profile, that solely saved the start and end time stamp.
The differences in time between the beginning and the end of the function, as well as the
call frequency were saved. Upon termination, this information was used to calculate the
profiling statistics required. This should mean that the introduced overhead is minimal, also
because of all the functions in the code base, probably only a handful would be interesting
to profile. With some experimenting, these functions could be tracked down and functions
that were trivial in terms of computation time could be omitted from profiling. On average,
no significant overhead was encountered when using this profiling implementation.

37

3.2 Algorithm Analysis Implementation Validation and Analysis

This profiler was used for all time-related experiments presented. As mentioned above,
only functions were tracked that showed to have a significant impact on the execution time.
This means that minor discrepancies may be encountered in the figures that will be pre-
sented. These are caused by the execution time required by functions that were not tracked
by the profiler, but should never be of any importance to the conclusions drawn from these
experiments.

Profiling Results

As a first start, a cost analysis was done of the sequential implementation of LTGA. The
average values that were found while profiling 10 executions of LTGA on 100 independent
NK-Landscape problem instances with ` = 400,n = 400 can be found in Appendix C, in
Table C.2. This table shows the call count and the execution time that profiled functions
consumed. Note that some functions are indented, which means that they are part of the
first function above this line that is less indented, e.g. constructMIMatrix is called by
learnStructure, which means that the time shown for learnStructure consists of the
time consumed by constructMIMatrix, plus the time consumed by any other statements
in learnStructure. Also note that there are 3 lines for the constructMIMatrix func-
tion. This is because after some initial profiling, it became clear that this was one of the
bottlenecks. It was not certain, however, if this was either caused by filling the Mutual In-
formation Matrix (MIMatrix) with entropy values, or by iterating over these values in order
to calculate Mutual Information (MI) values. Therefore we traced these two functionali-
ties separately, which means they are represented by the constructMIMatrix - Entropy
and constructMIMatrix - MIValues record respectively. Last, it is important to note
that the results in this table are based on the implementation of LTGA, after some initial
optimizations were done, which will be discussed in the next chapter.

When performing this profiling, it became clear that there are two main bottlenecks:
filling the MIMatrix with entropy values and generating new solutions by performing GOM,
of which the consumed execution time was mainly imposed by evaluating the fitness of
possible solutions. Note that this profiling is done with NK-Landscapes instances, for which
the evaluation of a solution is slower than that of problems with less complex evaluation
functions, such as Onemax or Deceptive Trap. When evaluating more realistic problems,
however, it can be assumed that evaluating the fitness of a solution will take even more time,
as for instance more data has to be processed, or, even worse, a complete simulation has to
be run. This would drastically increase the required computation time for generating new
solutions, increasing the impact of GOM on the total execution time even more.

To clarify, these results do not give us insight in the scalibility of the algorithm, nor
does the complexity analysis give a definite answer to the question of what components re-
quire the most computation time. These two combined, however, give a good indication of
what components are bottlenecks in the algorithm. As discussed in the previous section, the
complexity analysis showed that there are two components in the algorithm which showed
to be most complex: building the LT and generating new solutions. Eventually, generating
new solutions determined the overall time complexity of LTGA. The costs analysis as dis-
cussed above also shows that generating new solutions dominates the execution time of the

38

Implementation Validation and Analysis 3.2 Algorithm Analysis

algorithm, although filling the MIMatrix with entropy values, which is part of generating
the LT, has shown to be also computationally intensive. As the results of these two analyses
overlap, it can be concluded that filling an MIMatrix with entropy values, as well as improv-
ing solutions using GOM, have the most significant impact on LTGA’s performance, which
answers the the first research question posed in Section 2.3. These components of LTGA
should be focal points when improving the performance of the algorithm, as they account
over 99% of the execution time and form a significant scalibility impediment.

39

Chapter 4

Algorithm Parallelization

In the previous chapters, the internals and context of the Linkage Tree Genetic Algorithm
(LTGA) have been described, as well as some of its shortcomings. In this chapter, the par-
allelization of LTGA will be discussed that will ultimately enable us to leverage more com-
putational power in order to address new and more complex problems. More specifically,
these algorithm extensions should support us in finding a more suitable problem structure
representation, ultimately providing insight into possible improvements for the Family of
Subsets (FOS) used by LTGA.

4.1 Code Optimizations

As described in the previous chapter, the LTGA was translated from C to Java 8. This
was initially done by implementing a translation that was as close to the C implementation
as possible, while respecting best practice coding principles and the Object Oriented Pro-
gramming principle. After this implementation was finished and verified, a critical review
was done to eliminate any inefficiencies in the implementation as these could impede the
eventual performance gain that could be achieved. The most important optimization that
was implemented, considered the implementation of the NK-Landscapes fitness evaluation
function. This function was based on lookup tables of the provided instance files that pro-
vided a mapping of all possible compositions of variables xi,i+1,...,i+k to double values for
each f sub

NK . The initial implementation was based on Java HashMaps as this data structure
best reflected the structure of the data provided. When performing tests, however, the differ-
ence in required fitness function evaluation time for NK-Landscapes compared to problems
such as Onemax and Deceptive Trap was significant. Obviously, a higher evaluation time
was expected compared to Onemax and Deceptive Trap, as these are merely mathematical
formulas that hardly need to access any data, other than the solution that is to be evaluated.
However, the evaluation of solutions against the NK-Landscape problem seemed rather in-
efficient, which is why we changed the data structure used by this fitness function.

As described, the NK-Landscape lookup tables consisted of a mapping from all possible
compositions of variables xi,i+1,...,i+k, stored as bit strings, to double values for each f sub

NK .
These bit strings are all of a fixed length k and a lookup table contains values for all possible

41

4.2 Parallelization Approaches Algorithm Parallelization

values of such a fixed-length bit string, meaning that it contains 2k entries. As these bit
strings can be seen as binary representations of integer values from 0 to 2k−1, such lookup
tables can also be saved in Arrays of doubles. Values for each f sub

NK can then be obtained
by converting the bitstring containing the variable values for xi,i+1,...,i+k to an integer and
accessing the array of a f sub

NK at this position. This implies more efficient memory usage,
however the biggest gain is achieved by now being able to skip the hashing step used by
HashMaps to determine the physical memory address of the requested value [50, 41].

Apart from this optimization, several smaller improvements were implemented, al-
though these merely consist of code simplifications, which usually are expected to be
done immediately while implementing an algorithm. Together, however, these optimiza-
tions caused a significant performance improvement, as illustrated by Table C.1 and C.2.
Both tables show profiling results averaged over 100 independent NK-Landscape instances
with ` = 400, n = 400. Table C.1 shows results for the initial implementation, in which
no optimizations were performed yet, while Table C.2 shows results for the implementa-
tion on which the previously described optimizations are performed. It is clear that these
optimizations cause a severe improvement in the algorithm’s performance, as shown by the
reduction of the total execution time by more than 90%, caused by the reduced fitness evalu-
ation time. With this, a severe impediment in harnessing the available computational power
was removed.

4.2 Parallelization Approaches

After these code optimizations were implemented, providing a sound basis for taking the
next step to a more powerful algorithm, we focussed on harnessing the available multi-
processor computation power, which was the first goal presented in Section 2.3. When
considering parallel algorithms, one can either focus on implementation parallelization or
problem parallellization, which will both be discussed in this section, answering part of our
second research question also posed in Section 2.3.

4.2.1 Implementation parallelization

We investigated the concept of implementation parallelization as presented by Grama et al.
[25]. Implementation parallelization consists of redesigning an existing sequential imple-
mentation such that the workload of computationally expensive components can be spread
over multiple processors. The reduced execution time that can be achieved by doing this is
defined by Brent’s scheduling principle, which states [9]:

Tp(n)≤
W (n)

p
+Ts(n)

Where:

Tp(n): Time complexity of the parallel algorithm
W (n): Work complexity of the algorithm
p: Available processors
Ts(n): Time complexity of the sequential algorithm

42

Algorithm Parallelization 4.2 Parallelization Approaches

Note that throughout this work, CPU cores in the multi-core architecture used are seen as
virtual processors, meaning that when the term processors is used, this refers to CPU cores
in the architecture used.

Parallelizing an implementation starts with making a clear division between paralleliz-
able and unparallelizable components in an implementation. Parallelizable components are
components that consists of smaller elements that can be executed in parallel. This requires
that these smaller elements are either independent of each other, or a decent messaging
infrastructure can be implemented to exchange required information between processors.
These parallelizable components are, in the field of parallelization, the components that
are to be focussed on as the workload that they embody can be distributed over multiple
processors, reducing the total execution time.

Cantú-Paz published an extensive study on parallel Genetic Algorithms (GAs) [10], in
which he shows that implementations of GAs are generally very suitable for parallelization,
because the solutions in a population can usually be evaluated and mutated completely
independently. Therefore, creating new solutions can often be done in parallel. Cantú-paz
divides parallel GAs in 3 different classes:

1 Global single-population master-slave GAs: GAs that evolve one population at a
time and distribute the evaluations of fitness functions over multiple processors
according to a master−slave architecture, where one master processor
distributes the workload by submitting tasks to slave processors.

2 Single-population fine-grained GAs: GAs that evolve one population at a time,
however evolving a population is divided over multiple processors.

3 Multiple-population coarse-grained GAs: GAs that evolve multiple populations
over multiple processors, but exchange individuals occasionally, which is
called migration. The internal logic in multiple−population coarse−grained
GAs is different and therefore the behavior of this class of parallel GAs is
different from the aforementioned classes.

Frameworks exist that support implementing parallel Evolutionary Algorithms (EAs).
An example of such a framework is the Distributed Evolutionary Algorithms in Python
(DEAP) framework that aims at rapid prototyping and testing of ideas for EAs in an ex-
plicit and transparent way [16, 23]. This is done by providing a predefined infrastructure in
which the specific functionalities of an EA can be inserted. Although experiments and doc-
umentation on DEAP show that this framework makes it very easy to quickly implement
an parallel EA, we decided not to use it. This was mainly done because of performance
reasons, as C and Java are at this moment considerably faster than Python, but also because
luxuries that come with a framework usually also come with the costs of additional over-
head [20]. Therefore we felt that more performance gain could be achieved when custom
parallelization was done that would suit the current implementation of LTGA best.

4.2.2 Problem Parallelization

Problem parallelization is a parallelization approach that is aimed at problems for which a
straight-forward implementation for solving the problem is not suitable for implementation

43

4.3 Perfect Parallel Algorithm Parallelization

parallelization. A trivial example of such a problem is generating a sequence R consisting
of the cumulative sums of a sequence S. JáJá describes various ways to solve such problems
in parallel [35]. However, we felt that the most computationally intensive components of
LTGA were very suitable for implementation parallelization and as this was also backed by
Cantú-Paz [10] and Thierens [56], no further research was done in this field as this did not
seem relevant enough.

4.3 Perfect Parallel

As discussed above, implementation parallelization seemed most suitable for parallelizing
LTGA. This approach, however, can again be split in two sub-approaches, which we call
internal parallelization and external parallelization. The first extension that was imple-
mented to harness the available computational power was the implementation of internal
parallelization, which is aimed at redesigning the algorithm such that the work of the most
computationally intensive components can be distributed over multiple processors. This
implementation we call the Perfect Parallel implementation of LTGA (PP-LTGA), as it is
aimed at achieving the theoretically ideal speedup of a factor p.

4.3.1 Implementation

As shown in Table C.2, the constructMIMatrix - Entropy entry for the Mutual Infor-
mation Matrix (MIMatrix) class and the generateNewSolution function in the Population
class are the most computationally intensive. Note that for all the function names used in
this section, we refer to this Table. These two functions make up for over 99% of the exe-
cution time in these experiments and are important components in the overall complexity of
the algorithm, as discussed in the previous chapter. Parallelizing these components is very
feasible, as calculating entropy values for cells in the MIMatrix can be done completely
independently for each cell and also solutions in a population P can be improved indepen-
dently from each other. Note that problems might exist, for which the fitness of solutions
might be dependent on the evaluation of other solutions, in which case more advanced paral-
lelization techniques might be required. As this does not hold for the benchmark problems
considered so far, distributing the solutions in P across the available processors is most
promising for solving these problems using internal parallelization.

Implementation of internal parallelization is supported by the use of the Java Execu-
torService class, which enables the scheduling of Runnables over the available processors.
A clean and clear way to submit these Runnables is with the use of Lambda expressions,
which are supported since Java 8. Note that also the evaluation of random solutions when
initializing the first population is parallelized, as this showed to be beneficial and parts of
the design and implementation for parallelizing generateNewSolution could be reused.
After parallelizing these three functions, other functions were also paralellized that seemed
suitable for workload distribution. It turned out, however, that these parallelizations were
not beneficial, which will be discussed further on in this chapter. Therefore, calculating the
entropy values for the MIMatrix, as well as the generation of new solutions and the evalua-

44

Algorithm Parallelization 4.3 Perfect Parallel

tion of solutions in the population of the first generation are the only three components that
were parallelized.

In the constructMIMatrix function, the workload of filling cells in the MIMatrix with
entropy values was distributed statically, meaning that each processor gets a static number
of cells in the MIMatrix it has to fill by simply dividing the number of cells to be filled
evenly over the available processors. This way, all processors have all required information
available on forehand. As mentioned before, ideally a speedup of p would be achieved,
which means that as the construction of the MIMatrix is the dominating term in the com-
putational complexity of learning the Linkage Tree (LT), the complexity of learning the LT
should be reduced from O(n∗ `2) to O(n∗`2

p).
For parallelizing the generateNewSolution function, a more sophisticated approach of

workload distribution was needed. While filling the MIMatrix with entropy values consists
of tasks that are of virtually equal costs, the costs for generating new solutions can vary
significantly. This is mainly due to the stochastic nature of Gene-pool Optimal Mixing
(GOM). The variance in complexity caused by this stochastic nature is further amplified by
Forced Improvement (FI) that is incorporated in GOM. To illustrate, the improvement of a
solution s can simply consists of copying values from random donor solutions for all linkage
sets in the LT, of which only one of these operations results in a change in s. Assume that
this results in a better fitness of s, then this means that only one function evaluation was
required for improving s. In terms of required processor time this would be the best case
when solely considering the improvement of this single solution. In contrast, in the worst
case scenario all solution mixing operations result in a change in s, requiring `(`−1) fitness
function evaluations. Then, assume that all these changes do not result in a better fitness.
This means that they are all reverted and after traversing the LT, FI is executed doing the
same operations but then with the best solution found so far as a donor. Assume that all
these mixing operations again result in solutions that are different from the original, but
do not have an improved fitness. FI will then finish by simply copying all values from
the best solution found so far. When comparing this best case and worst case scenario,
it is clear that the number of required fitness function evaluations, which have a severe
impact on the total required execution time, can vary from 1 to 2`(`−1), simply because of
the stochastic nature of GOM. Additionally, for other problems than the ones presented in
the previous chapter, it is possible that the fitness function evaluation time f can also vary
significantly which further amplifies this variance in time required for the improvement of
a single solution.

Evidently, the approach as presented for filling the MIMatrix with entropy values is not
suitable for this situation, as dividing the number of solutions that have to be generated
statically over the available processors will imply that severe variance of required execution
time among processors is to be expected. Chances are high that there will be a significant
difference in time between the termination of the first finished processor and the last finished
processor, meaning that processors are idling while still tasks are available that need to be
processed. This would prevent PP-LTGA from achieving an optimal speedup of a factor
p, as the GOM phase is only as fast as the processor that will need most time to finish its
assigned tasks.

Therefore a task pool architecture was implemented to reduce this effect. Before dis-

45

4.3 Perfect Parallel Algorithm Parallelization

patching tasks to the available processors, a pool of all solutions in P is made that still need
to be improved using GOM. Upon starting GOM, every processor will request a solution
from this pool and improve it. When a processor is finished with improving its solution, it
will store it in O and request a new solution from this pool to improve until the pool is empty.
When the pool is empty and all processors are done, all solutions in the current population
are improved and GOM is complete. With this implementation, in the worst case all but
the largest task, being the improvement of a solution that eventually required most time, are
finished at the same time, after which this largest task is submitted to one of the processors
while all other processors are idling. With this approach, the possible processor idling time
is significantly reduced, providing a better support for LTGA to approach an ideal speedup
of a factor p. In the worst case scenario as illustrated above, the complexity of improving all
solutions in P can be reduced from O((n−1)faverage + fmax) to O(n−1

p faverage + fmax), where
faverage is the average fitness function evaluation time of all but the most expensive fitness
function evaluation and fmax is the fitness function evaluation time of the most expensive
fitness function evaluation.

The parallelization of filling the MIMatrix and generating offspring results in a single-
population fine-grained GA, according to Cantú-paz [10]. An important difference between
the description that was given by Cantú-paz and our implementation, however, is that in
the original description, individuals in a population are only allowed to mate with their
neighbors, while in our GOM implementation, solutions are mixed with random donors.

4.3.2 Experimental Results

With the implementation discussed in the previous section, experiments were performed to
determine the effect of internal parallelization on the required execution time. This was
done for all benchmark problems presented before, for varying values for ` and p. Exper-
iments were performed with optimal values for the population size n, being the Minimally
Required Population Size (MRPS) as presented earlier in Figure 3.3. In the experiments
performed, LTGA is run until it was fully converged. The average required execution time
for 100 independent runs is saved for every problem size, for various numbers of processors
used. The results found are shown in Figure 4.2. Note that for NK-Landscapes, the average
over 100 independent randomly generated instances was taken, while for MAXCUT the re-
sults shown consider 100 independent runs on one specific MAXCUT problem instance per
problem size, being the instance of which the MRPS was the median of the MRPSs of all 10
problem instances for that problem size. For future reference, these instances are displayed
in Table 4.1.

The graphs in the left column of Figure 4.2 show the execution times that were found
during the experiments, while the right column shows the speedup factor that was achieved
compared to the sequential implementation. This provides insight into how the execution
time of our parallel implementation relates to the original implementation, as questioned
by the second research question in Section 2.3. As a reference, the execution times for the
sequential implementation for the same experimental setup as discussed above are shown
in Figure 4.1.

46

Algorithm Parallelization 4.3 Perfect Parallel

Table 4.1: MAXCUT instances of median difficulty.

` Instance filename
6 n0000006i01
12 n0000012i02
25 n0000025i05
50 n0000050i06
100 n0000100i02

Figure 4.1: Execution Time for the Sequential Implementation of LTGA.

 1

 10

 100

 1000

 10000

 100000

 25 50 100 200 400

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Problem Size (l)

Onemax
Deceptive Trap

NK-Landscapes

 0.1

 1

 10

 100

 1000

 10000

 100000

 6 12 25 50 100

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Problem Size (l)

MAXCUT

Figure 4.2 clearly shows that parallelization introduces significant overhead as even
when using only one processor, PP-LTGA performs significantly worse than the sequential
implementation of LTGA for small problem sizes, while apart from managing a separate
thread, it is actually identical to the sequential implementation of LTGA. The effect of this
overhead clearly increases as the number of processors increases since for small problem
sizes the required execution time even increases, which is contrary to our expectations. For
more complex problems, being for `= 100 for MAXCUT or for `= 400 for other problems,
the results show that dividing the workload over the available processors can sometimes be
beneficial, however still the speedup is far from the ideal speedup.

Further investigation was therefore done to determine what prevented us from achiev-
ing the desired speedup. Several causes were found, which will be discussed below. It is
important to note, however, that the overhead introduced by the Java thread scheduler is at
the root of several of these causes, which is why a short brief description of this overhead is
discussed first.

Java Thread Scheduler Overhead

Experiments with the Java thread scheduler were performed on the 64-core server and show
that solely the start up and termination of 1 empty thread requires 1.3 ms on average, while

47

4.3 Perfect Parallel Algorithm Parallelization

starting up and terminating 64 empty threads even requires an average of 15.5 ms. This
overhead of thread management is to be called significant compared to the execution time
of the sequential implementation of LTGA as per generation 2p additional threads are used
each generation and typically it holds for the number of generations g that 0 < g < 15. As
an example, Deceptive Trap, with `= 25 and MRPS = 87, typically requires 6 generations,
which means that even when using only 1 processor, the PP-LTGA will need an additional
15.6 ms for thread management, while the sequential implementation of LTGA only re-
quires a total execution time of 8.39 ms. When using 64 processors, PP-LTGA requires an
impressive additional 186 ms due to thread management. We will show that causes 1, 2 and
4 are strongly related to this overhead and influence the magnitude of the impediment this
overhead will be on the performance of LTGA.

Cause 1: Problem Size

For most of the problems shown in Figure 4.2, the main impediment on reaching the ideal
speedup is the fact that these are toy-size problems. These problems do not entail enough
work to be distributed efficiently over the available processors as the overhead introduced by
the Java scheduler is too significant compared to the total time required when the problem
would be solved by the sequential implementation. For instance, in the case of Deceptive
Trap with `= 25, MRPS = 87, as presented above, the sequential implementation of LTGA
only requires 8.39 ms on average to terminate. In this case, the overhead as presented above
is not just significant, but in fact dominating the required execution time of PP-LTGA,
preventing it from achieving the optimal speedup and in fact making parallelization in this
situation detrimental to the algorithm’s performance.

Cause 2: Granularity

An important aspect of parallel algorithms is the granularity in which the algorithm is par-
allelized. We define granularity as the size of the chunks of parallel processable tasks. A
chunk is a set of tasks that are processed sequentially by one single processor, meaning
that multiple chunks of parallelizable tasks can be processed in parallel when using a multi-
processor architecture. The largest possible granularity is when all tasks are contained by
one chunk, which is equivalent to a sequential implementation, not considering thread man-
agement. In contrast, the smallest possible granularity is when each parallel processable
task is contained by a separate chunk. Ideally, the amount of parallel processable work
is divided over the number of processors such that each processor gets exactly the same
amount of work as only then a theoretical speedup of p can be achieved. Furthermore it is
important to note that, in order to reduce the overhead of workload distribution, introduced
by thread management, the granularity should be as large as possible, while still enabling
an even distribution of the workload over the available processors.

Parallel processable tasks for filling the MIMatrix are divided into chunks statically as
described before. Static workload division is suitable for components that consist of parallel
processable tasks of which the (relative) execution time is known on forehand. In this situ-
ation, the granularity can be determined such that the workload can be distributed over the

48

Algorithm Parallelization 4.3 Perfect Parallel

available processors as evenly as possible, which in the case of filling the MIMatrix means
that p chunks exist, each embodying the calculation of (`2− `)/2p cells in the MIMatrix.

In contrast, the (relative) execution time of a single processable task in GOM, in our
implementation consisting of the improvement of a single solution, cannot be known on
forehand due to its stochastic nature and therefore, a more dynamic approach for workload
division is chosen, as discussed before. In this situation, when choosing the granularity,
there is a clear trade-off between workload distribution overhead and processor idling time.
A larger granularity decreases the workload distribution overhead, however increases the
average time that processors will be idling while still parallel processable tasks are avail-
able. Decreasing the granularity decreases the processor idling time, however also imposes
a larger workload distribution overhead. In our implementation, we have chosen for the
smallest possible granularity on the level of improving single solutions as for more com-
plex problems the overhead imposed by the dynamic workload distribution will be negli-
gible compared to the fitness function evaluation time and the level of improving single
solutions is a natural point to initiate parallelization [34]. However, in this implementa-
tion, still a certain overhead is experienced which prevents PP-LTGA to achieve its optimal
speedup factor. This effect decreases as the complexity of the problem increases, as also
shown by our results.

Cause 3: Parallel Data Access

The third cause that was found was simultaneous data access operations of multiple proces-
sors. Experiments were performed in which all values from an array of 64.000 integers are
accessed. The values read from this array are disposed immediately so the execution time
in these experiments solely consists of memory access costs and thread management costs.
When doing this sequentially, only 2 ms is needed. However, when 64 processors all read
all values from the array in the same, consecutive order, this requires an impressive 235 ms,
excluding the time needed to start up and terminate one thread per processor. When these
64 processors all access a separate part of the array, containing 1000 integers, still 12 ms is
required. This shows that when data is accessed in the memory simultaneously, additional
overhead can be expected, especially when the same physical memory addresses need to be
accessed.

This is applicable to filling the MIMatrix in parallel as for each cell in the MIMatrix,
over all solutions in P is iterated in the same order to calculate the entropy value. However,
also in other parts of PP-LTGA simultaneous data access is causing overhead, such as in the
fitness function for NK-Landscapes, which iterates over the same lookup tables for every
function evaluation. Experiments were done to prevent simultaneous memory access of the
same physical addresses by introducing redundancy by providing each processor with its
own copy of the data it needs. Copying this data, however, requires more time then the
overhead introduced by simultaneous data access. Another possible approach is advanced
low-level coordination of memory access. However, this also comes with additional over-
head at a low-level which is expected to generate significant overhead overall.

49

4.4 Embarrassingly Parallel Algorithm Parallelization

Cause 4: Remaining Sequential Components

As mentioned above, components were parallelized that showed to have most impact on the
required execution time. Although less significant, still components remain that are exe-
cuted sequentially, preventing PP-LTGA from achieving optimal speedup. Some of these
components were theoretically suitable for parallelization, such as the updateMIMatrix
and constructNewMpm functions, meaning that they consisted of smaller parallel process-
able tasks. However, experiments showed that parallelizing these components is unfruitful,
as no reduction in required execution time could be achieved due to aforementioned causes.

Conclusion

The causes described above explain why the theoretical optimal speedup of a factor p cannot
be achieved with the implementation of PP-LTGA as presented. Considering the time avail-
able, we found that with PP-LTGA as presented above, encountered trade-offs were care-
fully considered, resulting in an implementation that on average will perform well across
a wide variety of situations and can support us in solving more complex problems in the
future.

4.4 Embarrassingly Parallel

The second approach for harnessing the computational power available, was implemented
by simply executing multiple instances of the LTGA in parallel and considering the best
found solution over all these instances as the final solution found. This implementation
of external parallelization is populairly called Embarrassingly Parallel (EP). The power of
the Embarrassingly Parallel implementation of LTGA (EP-LTGA) is that, because it takes
the best solution over all instances, the chance of finding the optimal solution for a single
instance is allowed to be lower. This means that a smaller value for n will suffice for
these instances, causing a reduction in the MRPS and therefore the required execution time.
Therefore, by executing instances of the LTGA over all processors available with a smaller
value for n, EP-LTGA is able to find the optimal solution while requiring less execution
time. The correlation between the population size and the chance of finding the optimal
solution as well as the correlation between the population size and the required execution
time could not be accurately quantified so far, which means that no exact expression of
the expected speedup could be constructed. Nevertheless, experimental results will also
include the encountered speedup as also constructed for PP-LTGA, in order to make a good
comparison between the scalability of these two parallel implementations.

Note that it is expected that there will be a limit to the reduction in MRPS and with that
the execution time, because in the end a minimum population size of 1 is required in order
to let the algorithm return a solution at all. In this situation the instances are not able to
improve their one solution due to the lack of donors when performing GOM. This means
that this limit for the MRPS will be reached when a number of processors is used that is
large enough to support a 99% chance of finding the optimal solution, simply by generating
p random solutions, as the MRPS represents the minimum population size for which at least

50

Algorithm Parallelization 4.4 Embarrassingly Parallel

a chance of 99% exists of finding the optimal solution as discussed in Section 3.1.2. From
that point on, using more processors will for sure impose a larger execution time due to
increasing multi-threading overhead.

4.4.1 Implementation

As illustrated above, EP-LTGA rather consists of starting up p instances of LTGA. Because
of the Object Oriented design of the code base, this only required the implementation of
a wrapper class that could do this and collect the results when all instances were finished.
When again looking at the terminology used by Cantú-paz, EP-LTGA can be classified as
a multiple-population coarse-grained GA [10]. Again there is a slight difference between
the description provided by Cantú-paz and our implementation, as in our implementation
the instances operate completely independent and do not exchange individuals during the
execution, because it was expected that this requires thread synchronization, which would
introduce significant overhead.

4.4.2 Experimental Results

With this implementation, experiments were done in order to see what speedup the EP-
LTGA could entail. However, as the behavior of this implementation is different from the
implementation of the original LTGA and PP-LTGA, it was first important to determine the
MRPS, as the potential of parallelization can best be measured when the algorithm parame-
ters are optimal. Determining the MRPS and Minimally Required Number of Evalutations
(MRNE) was done with the same experimental setup as described in section 3.1.2. Fig-
ure 4.3 clearly shows how the use of multiple instances of the LTGA simultaneously can
significantly decrease the MRPS and MRNE. Note that this effect is the strongest for the
MAXCUT problem, as all corresponding graphs show a stronger decreasing MRPS and
MRNE as compared to other problems. Also note, however, that eventually all graphs seem
to stagnate, which we think is due to the theoretical limit as discussed above, which we
think it asymptotically converges towards.

In the end, however, the performance of this implementation will be measured in terms
of required execution time. Note that although the decrease in MRPS and MRNE is promis-
ing, the algorithm is still as fast as the longest instance running, which poses the question
how much performance increase actually can be achieved. Therefore, experiments have
been performed on measuring the required execution time, of which the results are shown
in Figure 4.4. The times measured again consider the average of 100 independent runs of
EP-LTGA using n = MRPS.

For the smallest problem instances processed by EP-LTGA, it is shown that generally
the use of Embarrassingly Parallel (EP) is not beneficial as no speedup could be achieved
compared to the sequential implementation of LTGA and execution times further increase
as p increases due to additional overhead. For more complex problems, however, the re-
sults show interesting behavior. It seems that that at first, the execution time decreases as
more processors are used. This effect stagnates, however, as p increases, meaning that at
some point, the minimum required execution time possible for this problem for EP-LTGA

51

4.5 Parallel Implementation Comparison Algorithm Parallelization

is reached, after which the execution time increases again. Moreover, it seems that as the
complexity of the problem increases, this minimum moves towards a higher number of used
processors. This can be explained by the observation that, although decreasing, the MRPS
and MRNE for EP-LTGA stagnate as p increases, as shown in Figure 4.3. With that, the
reduction in required execution time also stagnates while at the same time the overhead
imposed by multi-threading increases, as also discussed for PP-LTGA. Graphs in Figure
4.4 show that at some point, the decrease in MRPS and MRNE cannot compensate for the
increase in overhead of using more processors, though as the size and complexity of the
problem increases, this overhead becomes smaller compared to the execution time needed
by the LTGA instances, meaning that this overhead will only be dominant for a larger num-
ber of processors. These findings are also reflected by the speedup that was encountered
compared to the sequential implementation, as shown by the graphs in the right column of
Figure 4.4.

4.5 Parallel Implementation Comparison

For both PP-LTGA and EP-LTGA it is shown that, as the complexity of the problems in-
creases, their potential increases, showing a significant speedup compared to the sequential
implementation of the LTGA. However, in order to solve the problem of finding the optimal
LT replacement, as will be discussed in the next chapter, we need to investigate whether one
implementation can be preferred over the other. As both implementations seem to overcome
impediments of parallelization as the problem size increases, experiments were performed
with the largest problem instances we currently have to our disposal that mimic more re-
alistic problems, being problem instances for the NK-Landscapes problem for ` = 1600.
Results of these experiments are shown in Figure 4.5 that again shows execution times av-
eraged over 100 independent runs.

These graphs clearly show that PP-LTGA is more scalable than EP-LTGA as it not
only outperforms EP-LTGA, but also shows a stronger and more persistent decrease in
execution time as the number of processors increases. With that, PP-LTGA is more capable
of leveraging the computational power available, with which our first goal as presented in
Section 2.3 is achieved. PP-LTGA will therefore be used to solve considerably complex
problems in all future experiments.

52

Algorithm Parallelization 4.5 Parallel Implementation Comparison

Figure 4.2: Execution Time and Speedup for PP-LTGA.

 1

 10

 100

 1000

 1 2 4 8 16 32 64

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Processors

Onemax, l=25
Deceptive Trap, l=25

NK-Landscapes, l=25
MAXCUT, l=6

 0.001

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64

S
p
e
e
d
u
p
 f
a
c
to

r

Processors

Onemax, l=25
Deceptive Trap, l=25

NK-Landscapes, l=25
MAXCUT, l=6
Ideal speedup

 10

 100

 1000

 10000

 1 2 4 8 16 32 64

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Processors

Onemax, l=100
Deceptive Trap, l=100

NK-Landscapes, l=100
MAXCUT, l=25

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64

S
p
e
e
d
u
p
 f
a
c
to

r

Processors

Onemax, l=100
Deceptive Trap, l=100

NK-Landscapes, l=100
MAXCUT, l=25
Ideal speedup

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Processors

Onemax, l=400
Deceptive Trap, l=400

NK-Landscapes, l=400
MAXCUT, l=100

 0.1

 1

 10

 100

 1 2 4 8 16 32 64

S
p
e
e
d
u
p
 f
a
c
to

r

Processors

Onemax, l=400
Deceptive Trap, l=400

NK-Landscapes, l=400
MAXCUT, l=100

Ideal speedup

53

4.5 Parallel Implementation Comparison Algorithm Parallelization

Figure 4.3: MRPS and MRNE for EP-LTGA.

 1

 10

 100

 1 2 4 8 16 32 64

P
o
p
u
la

ti
o
n
 s

iz
e

Processors

Onemax, l=25
Deceptive Trap, l=25

NK-Landscapes, l=25
MAXCUT, l=6

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64

#
 E

v
a
lu

a
ti
o
n
s

Processors

Onemax, l=25
Deceptive Trap, l=25

NK-Landscapes, l=25
MAXCUT, l=6

 1

 10

 100

 1000

 1 2 4 8 16 32 64

P
o
p
u
la

ti
o
n
 s

iz
e

Processors

Onemax, l=100
Deceptive Trap, l=100

NK-Landscapes, l=100
MAXCUT, l=25

 100

 1000

 10000

 100000

 1e+06

 1 2 4 8 16 32 64

#
 E

v
a
lu

a
ti
o
n
s

Processors

Onemax, l=100
Deceptive Trap, l=100

NK-Landscapes, l=100
MAXCUT, l=25

 1

 10

 100

 1000

 1 2 4 8 16 32 64

P
o
p
u
la

ti
o
n
 s

iz
e

Processors

Onemax, l=400
Deceptive Trap, l=400

NK-Landscapes, l=400
MAXCUT, l=100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 4 8 16 32 64

#
 E

v
a
lu

a
ti
o
n
s

Processors

Onemax, l=400
Deceptive Trap, l=400

NK-Landscapes, l=400
MAXCUT, l=100

54

Algorithm Parallelization 4.5 Parallel Implementation Comparison

Figure 4.4: Execution Time and Speedup for EP-LTGA.

 1

 10

 100

 1 2 4 8 16 32 64

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Processors

Onemax, l=25
Deceptive Trap, l=25

NK-Landscapes, l=25
MAXCUT, l=6

 0.1

 1

 10

 1 2 4 8 16 32 64

S
p
e
e
d
u
p
 f
a
c
to

r

Processors

Onemax, l=25
Deceptive Trap, l=25

NK-Landscapes, l=25
MAXCUT, l=6
Ideal speedup

 10

 100

 1000

 1 2 4 8 16 32 64

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Processors

Onemax, l=100
Deceptive Trap, l=100

NK-Landscapes, l=100
MAXCUT, l=25

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64

S
p
e
e
d
u
p
 f
a
c
to

r

Processors

Onemax, l=100
Deceptive Trap, l=100

NK-Landscapes, l=100
MAXCUT, l=25
Ideal speedup

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Processors

Onemax, l=400
Deceptive Trap, l=400

NK-Landscapes, l=400
MAXCUT, l=100

 0.1

 1

 10

 100

 1 2 4 8 16 32 64

S
p
e
e
d
u
p
 f
a
c
to

r

Processors

Onemax, l=400
Deceptive Trap, l=400

NK-Landscapes, l=400
MAXCUT, l=100

Ideal speedup

55

4.5 Parallel Implementation Comparison Algorithm Parallelization

Figure 4.5: Comparison of PP-LTGA and EP-LTGA for NK-Landscapes with `= 1600.

 10000

 100000

 1e+06

 1e+07

 1 2 4 8 16 32 64

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Processors

PP-LTGA

EP-LTGA

 0.1

 1

 10

 100

 1 2 4 8 16 32 64

S
p
e
e
d
u
p
 f
a
c
to

r

Processors

PP-LTGA
EP-LTGA

Ideal speedup

56

Chapter 5

Searching for the Optimal Linkage
Tree Replacement

In the previous chapters, the details of the Linkage Tree Genetic Algorithm (LTGA) have
been discussed, as well as how the currently existing implementation has been improved.
This resulted in the Perfect Parallel implementation of LTGA (PP-LTGA) that enables us to
solve problems faster and, moreover, solve more complex problems that previously could
not be solved within reasonable time. However, still one of the most important questions re-
mains unanswered: why is LTGA able to outperform its competitors on most problems? As
using a Linkage Tree (LT) to store important linkages is the most distinctive characteristic
of LTGA, it is believed that its robustness and good performance is due to the use of this LT.
However, it has never been proven that this model is optimal. Therefore, we investigated
what improvements could be made to the linkage model used by LTGA, of which the results
are presented in this chapter.

5.1 Background and Motivation

As stated before, LTGA outperforms its competitors, being other black-box meta-heuristics,
on a variety of structured optimization problems by exploiting an LT in which important
variable linkages are stored. Remarkably, however, LTGA is also able to outperform its
competitors on problems for which a tree-structured model seems rather inappropriate, for
instance on problems that are not hierarchically structured. This poses the question what
actually is causing this robust and excellent performance of LTGA.

As discussed in Chapter 2, Bosman and Thierens have already done extensive research
aimed at unveiling the true strength of the LTGA. They researched the effects of different
metrics on the construction of the LT and also implemented tools that enable us to create
insight into the quality of the LTs used, which showed that the Mutual Information (MI)
is a suitable measure to be in the distance matrix for the construction of the LT [7, 58].
Further research was aimed at explicitly changing the structure of the model used by the
LTGA. This was first done by replacing the online-learned LTs (LTons), being the LTs that
are learned every generation based on the current population by LTGA, with predetermined

57

5.2 Parameter-free Implementation Searching for the Optimal Linkage Tree Replacement

models that exactly resemble the problem’s formulation structure [59]. As an example, this
would be the univariate Family of Subsets (FOS), i.e.

{
{x0}, {x1}, ..., {x`−1

}
, for Onemax

and a model containing all consecutive k-length variable clusters, i.e.
{
{x0,x1,x2,x3,x4},

..., {x`−5, x`−4, x`−3, x`−2, x`−1}
}

, for Deceptive Trap. Although these models imposed
a better performance of LTGA for Onemax and Deceptive Trap, for NK-Landscapes and
MAXCUT such models imposed a worse performance and in fact scaled very poorly. Here,
the performance of LTGA is measured in terms of Minimally Required Population Size
(MRPS) and Minimally Required Number of Evalutations (MRNE), meaning that a better
performance corresponds to a lower MRPS and MRNE. Finally, they attempted to remove
superfluous linkage sets from the LT by means of linkage hierarchy filtering, as also dis-
cussed in Chapter 2 [8].

Although the aforementioned attempts have showed us that one of the strengths of the
LTGA is the use of a hierarchically structured linkage model, none of them resulted in a
clearly and consistently better performing algorithm, nor did they give a clear indication
about whether this linkage model can be fundamentally improved. Since we are now able
to solve more complex problems than before using the algorithm extensions implemented,
perhaps it would be possible to bootstrap LTGA such that it could be used to optimize its
own model. If this will indeed result in better linkage models, being models that, when
replacing the LTons, cause LTGA to require less fitness function evaluations, the perfor-
mance of LTGA could potentially be fundamentally improved, enabling us to solve even
more complex problems within reasonable time.

5.2 Parameter-free Implementation

Apart form the extensions presented in the previous chapter, also a parameter-free imple-
mentation was implemented. As stated by Goldman and Punch, up until now, there has
not been an implementation of LTGA that can overcome the problem of premature con-
vergence without requiring expert knowledge about the algorithm and the problem at hand
[24]. Premature convergence means that the algorithm has converged towards a non-optimal
solution, which is usually due to using a value for n that is too small. As the population size
used by LTGA decreases, the chance of premature convergence increases. A large value
for n decreases the chance of permature convergence, however imposes the algorithm to re-
quire more execution time. Therefore, in order to increase the usability of LTGA such that
problems can be solved about which only little is known, a novel implementation is needed
that does not require any expert knowledge about the required population size, while it is
still able to find the optimal solution within reasonable time, as also stated in Section 2.3.

Implementation

In order to achieve this, the parameter-free implementation is presented, inspired by the
parameter-free scheme presented by Harik and Lobo [30]. The parameter-free implemen-
tation will run PP-LTGA with an ever increasing population size. It starts by executing
PP-LTGA on the problem with n0 = 1, after which PP-LTGA will be run for ni = 2ni−1
iteratively. After each iteration the best found solution of that execution is saved. This is

58

Searching for the Optimal Linkage Tree Replacement 5.3 Learning LTs Offline

done until the algorithm is stopped. Note that if any knowledge is available considering the
MRPS, a different value for n0 can be used to trim redundant runs of the PP-LTGA. As will
be shown later on in this chapter, this parameter-free implementation helped us in solving
the problem of finding the optimal replacement for the online-learned LTs for the LTGA.

5.3 Learning LTs Offline

Initially, we aimed at finding an optimal linkage model to replace the LT by searching in
the entire solution space of all possible linkage models and find an optimal replacement of
the LT for every generation. Soon this turned out to be not feasible, however. First of all,
we were not able to find an efficient way to traverse the total space of all possible linkage
models. This space is spanned by the power set of all problem variables, meaning that it is
spanned by O(2`) possible linkage sets, form which in total O(22`) linkage models can be
constructed. To find high-quality linkage models in this solution space efficiently, a clever
mechanism is needed due to the exponential growth of this solution space as ` increases.
Using LTGA itself in this situation showed to be hardly of any use. Using a straight-forward
encoding for this solution space would provide LTGA with O(2`) variables, which would
rapidly grow beyond LTGA’s capabilities as the dimensionality of the considered problem
increases. Several attempts were therefore done to construct a scalable collection of linkage
sets that could be provided to LTGA to choose an optimal combination from. All these
attempts resulted in collections of linkage sets that either did not contain the important
linkage sets needed, meaning that LTGA was not able to construct a high-quality linkage
model from this collection, or did not scale efficiently, meaning that as the problem size
increased, the collection of interesting linkage sets expanded with such a rate that it soon
grew beyond LTGA’s capabilities.

Secondly, finding an optimal linkage model for every generation is a problem of vast
complexity as what it is that makes a particular linkage model optimal to be used for gen-
eration gi, is highly dependent on the effects of the linkage model used for generation gi−1.
Moreover, it is hard to estimate how these linkage models exactly are related and whether a
linkage model that is optimal to be used just for a particular generation, will also support a
fast convergence towards high-quality solutions in consecutive generations.

Therefore, we limited our search to finding a high-quality predetermined offline-learned
LT (LToff). An LToff is an LT that is learned offline, i.e. on forehand, and is used as a
predetermined linkage model to replace the traditionally used LTons for every generation
in LTGA. Note that this means that every generation uses the same LToff that was learned
on forehand. Although also in this situation LTGA itself could not be used to find such
LToff s, we already had a mechanism to construct LTs efficiently, which can be manipulated
to construct LToff s as will be illustrated next.

5.3.1 Experimental Setup

Recall that the construction of the LT is based on the contents of the Nearest Neighbor Chain
(NN-Chain), as discussed in Chapter 2. The contents of the NN-Chain are determined by
the first element the NN-Chain is initialized with and the contents of the Mutual Information

59

5.3 Learning LTs Offline Searching for the Optimal Linkage Tree Replacement

Matrix (MIMatrix). Given the stochastic behavior that determines what element the NN-
Chain is initialized with when it is empty, a certain MIMatrix can create a specific set of NN-
Chains and with that a specific set of LTs. By manipulating the values in the MIMatrix, the
set of LTs that can originate from this MIMatrix can be manipulated. Therefore, in a sense,
the MIMatrix can be seen as an encoding of all possible LTs. We employed iAMaLGaM,
a numerical optimization Estimation of Distribution Algorithm (EDA) [4], to optimize over
the contents of the MIMatrix resulting in the creation of a high-quality LToff . iAMaLGaM
was chosen over other real-valued Evolutionary Algorithms (EAs) due to its robustness
[3]. The fitness of an LToff is evaluated by executing 1000 independent instances of the
parameter-free implementation of LTGA with this LToff replacing the traditional LTons.
Each of these 1000 runs will terminate when it has found the optimal solution. The fitness
of an LToff is then defined as the negated average number of required function evaluations
over these instances and is to be maximized. This means that an LToff is considered to be
better than some other LToff if it supports a better performance of LTGA in terms of the
number of fitness function evaluations required by the parameter-free implementation.

Note that the problem that iAMaLGaM is solving is vastly more complex than the
benchmark problem considered, as for a benchmark problem with ` variables, `(`− 1)/2
continuous variables in the MIMatrix have to be optimized where for each fitness function
evaluation in iAMaLGaM, the benchmark problem has to be solved 1000 times. There-
fore, this setup is not aimed at finding the optimal solution to this benchmark problem, but
aimed at creating insight into what it is that makes an LToff optimal. Because of this vast
complexity, only high-quality LToff s could be found for problems with `≤ 25.

5.3.2 Experimental Results

Performance Analysis

Figures 5.1 and 5.2 show the results corresponding to the LToff s found by iAMaLGaM.
They show the performance of LTGA when using LToff s as predetermined models and the
performance of LTGA when using LTons. Note that the performance of LTGA that uses
LTons is determined using the same procedure as for LToff s, however now without replac-
ing LTons with LToff s. Additionally, these graphs show the performance of pruned LToffs,
however, these will be discussed further on.

The graphs clearly show that for Onemax no improvement was found, however this is
rather trivial as it is known that the optimal predetermined linkage model for Onemax is the
univariate FOS, which is always included by any LT. For Deceptive Trap only marginal im-
provement in LTGA’s performance was found, however for more realistic problems, such as
the NK-Landscapes problem and the MAXCUT problem indeed LToff s were found that sup-
port a better performance of LTGA as the complexity of the problem increases. Moreover,
these results show that the LToff s found are more scalable than the LTons originally used
by LTGA. Note, however, that finding such optimal LToff s comes at high costs imposed by
iAMaLGaM as stated before.

60

Searching for the Optimal Linkage Tree Replacement 5.3 Learning LTs Offline

Figure 5.1: Required number of evaluations when using LToff s and pruned LToff s.

 1

 10

 100

 1000

 10000

 5 10 15 20 25

#
E

v
a
lu

a
ti
o
n
s

Number of variables

Onemax

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25

#
E

v
a
lu

a
ti
o
n
s

Number of variables

Deceptive Trap

LTGA using LToff LTGA using pruned LToffLTGA using LTons

Contents Analysis

Apart from comparing the performance imposed by the LTons and LToff s, also the contents
of these LTs were analyzed. Results can be found in Appendix D, in which columns titled
”in pruned LToff ” can be ignored for now. The results for Onemax as shown in Table D.1 are
rather trivial, as stated before, however the results for Deceptive Trap as presented in Table
D.2 are more insightful. For Deceptive Trap it is known that the exact variable linkage is
given by the set containing all consecutive k-length blocks of variables. Results for Decep-
tive Trap are presented for k = 5 and `= 15 which means that the exact variable linkage is
given by the FOS:

{
{x0,x1,x2,x3,x4}, {x5,x6,x7,x8,x9}, {x10,x11,x12,x13,x14}

}
. Note that

the optimal linkage model does not have to be equal to this FOS, as will be discussed later.
The results presented in Table D.2 correspond to the known variable linkage, as these

linkage sets are included in the LToff found. However, these results also show that LTGA
aims to include these linkage sets in the LTons used. Consider the higher order linkage
sets, being all but the singleton linkage sets in the LToff . Results show that, while most of
these higher order linkage sets do not occur in more than 25% of the LTons on average, the
aforementioned important linkage sets show an average frequency of 70% to 75%.

However, if these linkage sets indeed represent the most significant variable linkages
for Deceptive Trap, why do they not hold an average frequency of 100%? Looking at the
results it is clear that this is caused by lower frequencies in the first and last generations. The
same behavior is found for different problem sizes, which can be explained by a discrepancy
between the population of these generations and the actual variable linkage as defined by
the problem. In the first generations this is because the LTGA starts with a population
of randomly generated solutions, which does not show any relation yet to the linkages as
defined by the problem. As solutions improve, a clear correlation emerges between the
content of these solutions and the problem’s structure. This is reflected by the results found,

61

5.4 Introducing Local Search Searching for the Optimal Linkage Tree Replacement

which show that the frequencies in the LTon of the important linkage sets rapidly increase
to a frequency of 100%. This shows how LTGA is able to rapidly uncover the problem’s
structure and therefore the overhead encountered in the first generations caused by imperfect
LTons should be seen as the costs of learning the problem’s structure online, rather than an
inefficiency. Results of experiments aimed at decreasing these costs by performing local
search will be discussed in the next section.

In the last generations, frequencies of these important linkage sets decrease again, which
can be explained by the phenomenon that as soon as the optimal solution is present in
the current population, LTGA will converge towards this solution. This means that the
frequency of this optimal solution in P increases rapidly, which causes a skewed distribution
of solutions and with that a skew distribution of identifiable linkages in the consecutive
populations.

For NK-Landscapes and MAXCUT problem instances, as presented in Table D.3 and
D.4, also particular linkage sets seem to be more dominantly represented than others, al-
though they do not show a clear division as shown for Deceptive Trap. This could be due
to the fact that, in contrast to Deceptive Trap, which has non-overlapping linkages of equal
strength, these more complex problems contain overlapping linkages among which linkage
strengths can vary, which can only limitedly be represented by an LT. As an example, it
could be that for the MAXCUT instance shown in Table D.4, both {x3,x6} and {x3,x9} are
important linkage sets, of which an LT can only include one. Assuming that stronger link-
age exists between the variables in {x3,x9} than those in {x3,x6}, one would expect that,
while LTGA generally includes {x3,x9} in its LTons, it will also occur that {x3,x6} is in-
cluded instead of {x3,x9}, due to LTGA’s stochastic behavior. If this is indeed the case, it
is expected that the frequencies of {x3,x6} and {x3,x9} correspond to the relative linkage
strength between variables inside these linkage sets, meaning that neither of these linkage
sets will have a frequency of 100% in the LTons, though both should have a relatively high
frequency. This explains why a clear division as seen for Deceptive Trap is not encountered
in the results for NK-Landscapes and MAXCUT.

In general, however, the results show that also for NK-Landscapes and MAXCUT the
found LToff s contain linkage sets that LTGA aims to include in its LTons, showing that with
finding these high-quality LToff s, indeed collections containing important linkage sets have
been constructed.

5.4 Introducing Local Search

Based on the findings presented above, experiments were done aimed at decreasing the costs
of online linkage learning by adding local search to LTGA. Local search is aimed at finding
local optima using a low-cost and simple heuristic, which has often been shown to be a
beneficial addition to evolutionary algorithms.

First, we attempted to reduce the costs of online linkage learning by replacing the first
LTon, which would be learned based on a population of randomly generated solutions, by
the univariate FOS. It was expected that this would result in performance increase as, by
performing Gene-pool Optimal Mixing (GOM) with this univariate FOS, a limited local

62

Searching for the Optimal Linkage Tree Replacement 5.5 Pruning Offline-learned LTs

search would be done that would save evaluations spent on performing GOM with higher
order linkage sets that were not aligned with the problem’s structure. Results, however,
showed the contrary, as this resulted in a worse performing algorithm, requiring a higher
population size and more fitness function evaluations. Upon analyzing the behavior of
LTGA using this implementation of local search, we discovered that this was in fact caused
by the fact that using a full LTon, albeit based on a population of random solutions, a stronger
local search on the first generation was performed. The additional higher order linkage sets
showed to have two functions in this situation. In the situation that such a linkage set could
be used by GOM to improve a solution, this linkage set in a sense contributed to local search
in a way comparable to singleton linkage sets. However, if this was not the case, this linkage
set increased the selection pressure due to the Forced Improvement (FI) mechanism, which
turned out to contribute to local search as well.

Based on these results, a stronger implementation of local search was used that was
similar to the local search as presented by Goldman and Punch [24]. This implementation
would, for each solution in the first generation, iterate over all variables in that solution in a
random order and invert the value of a variable if and only if this imposed an improvement
to the fitness of the solution. Note that, in contrast to the implementation of Goldman
and Punch, our implementation will iterate over all variables in a solution only once per
solution. Results for these experiments are shown in Figures 5.3 and 5.4, which show the
performance of LTGA and LTGA when using this implementation of local search. Results
shown in these graphs for LTGA when using only 50% of the LToff s can be ignored for now
as this will be discussed in the next section.

These results show that for Onemax this obviously imposed a severe performance im-
provement, as this problem is structured such that after performing this implementation of
local search, all solutions in the first population are changed to the optimal solution and
no further generations are needed. For Deceptive Trap and NK-Landscapes only marginal
improvement could be achieved. For MAXCUT, it was shown that this implementation of
local search could significantly decrease the initial costs of online linkage learning. How-
ever, when comparing this to the total costs of finding the optimal solution, the reduction in
required number of evaluations turned out to be limited.

5.5 Pruning Offline-learned LTs

With the LToff s presented in Section 5.3, collections of variable sets were found that contain
important linkage sets. These same results, however, also contain linkage sets that are very
poorly represented in the LTons used by LTGA. What is the role of these linkage sets and
to what extend do they support an efficient search for the optimal solution? What if we
take away the constraint of using a tree-structured linkage model? What if we use LTGA
itself to only select the truly necessary linkage sets from the LToff s that were found using
iAMaLGaM? The fact that some linkage sets of the found LToff s are so poorly represented in
LTons, while LTGA is still able to find the solution quite efficiently, could indicate that these
linkage sets are not so important and that by removing them, less fitness function evaluations
would be required during GOM. On the other hand, these poorly represented linkage sets

63

5.5 Pruning Offline-learned LTs Searching for the Optimal Linkage Tree Replacement

could be the reason why the LToff s found support a better performance of LTGA. Therefore,
additional experiments were done aimed at pruning the found LToff s in order to improve the
performance of LTGA, but also to create better insight into what linkage sets are actually
essential to a high quality linkage model.

5.5.1 Experimental Setup

In order to filter the essential linkage sets from the LToff s that were found using iAMaL-
GAM, LTGA itself was used, in a sense optimizing its own linkage model. For clarification
reasons, we will call this LTGA instance that is used to prune LToff s the ”meta-LTGA”.
Given an LToff that was found using iAMaLGaM, each linkage set in this tree is assigned
a binary variable, which encoding is then used by this meta-LTGA to find the optimal sub-
set of this LToff . This means that, when searching for a high-quality pruned LToff for a
benchmark problem with ` variables, the encoding used by the meta-LTGA to find such a
high-quality pruned LToff consist of 2`− 2 variables in which each variable indicates the
presence of a linkage set of the LToff in the pruned LToff . For instance, if the LToff would
be
{
{x0}, {x1}, {x2}, {x1,x2}, {x0,x1,x2}

}
, the solution 10010 would represent the pruned

LToff
{
{x0}, {x1,x2}

}
. The fitness of such a pruned LToff will be evaluated in the same way

as LToff s were evaluated as described in Section 5.3.1.
By using this encoding, the meta-LTGA can be used to find hiqh-quality subsets of

linkage sets of an LToff , in a sense searching for the optimal linkage model within the search
space spanned by this LToff . Note that this approach is expected to find pruned LToff s that
do not impose a worse performance of LTGA than the considered LToff does, as in the worst
case scenario, the optimal pruned LToff has the same performance as the full LToff for it is
always possible to select all linkage sets from this LToff . To find high-quality pruned LToff s,
the parameter-free scheme was used for iteratively starting meta-LTGA instances with ever
increasing population sizes as we have no knowledge about the ideal population size to
be used to solve this problem. Execution was stopped as soon as two consecutive runs of
the meta-LTGA initiated by the parameter-free scheme resulted in finding the same linkage
model, as for less complex problems tested this had shown to be an indication for finding
the global optimum.

5.5.2 Experimental Results

Performance Analysis

As stated before, results found for these experiments are included in Figures 5.1 and 5.2,
while in Appendix D the contents of some pruned LToff s are presented by the column ”in
pruned LToff ”. In Figure 5.1 it is shown that for Onemax, linkage models are found that sup-
port LTGA in significantly outperforming its original implementation by a constant factor
in terms of the required number of evaluations. To illustrate, in terms of required exe-
cution time, 1.782 milliseconds was required on average when using the a parameter-free
implementation which uses the sequential implementation of LTGA with LTons for solving
Onemax with ` = 25, while only 0.626 milliseconds was required when using the pruned
LToff . This is as expected, as the univariate FOS is considered as the optimal representation

64

Searching for the Optimal Linkage Tree Replacement 5.5 Pruning Offline-learned LTs

of the linkages in this problem, which LTGA was indeed able to find, as shown in Table D.1.
Here, we see that all singleton linkage sets but one are selected from the LToff for the best
found linkage model, which corresponds to our expectations as this is equivalent to using
the univariate FOS, on a conceptual level. Assume that a solution s exists in population P
in which the value for some variable si = 0. Then assume a donor d in P exists for which
di = 1. This means that s can be improved using d and the univariate FOS as a linkage
model. However, on a conceptual level, this is equivalent to improving d using s as a donor
with a linkage model consisting of all singleton linkage sets but {xi}. The only practical
difference is that, due to our implementation, this alternative linkage model will require one
fitness function evaluation less on average, meaning that the linkage model that contains all
but one linkage set will have a slightly better fitness. Therefore, LTGA omits one of the
essential linkage sets randomly.

For Deceptive Trap, similar results are shown in which the pruned LToff imposes a per-
formance that is better than the original performance of LTGA by a constant factor. To
illustrate, the use of the pruned LToff reduced the required execution time from 7.593 mil-
liseconds to 1.774 milliseconds for `= 25 on average. Also in this situation, this seems to be
caused by the use of a pruned LToff that consists of all but one of the essential linkage sets.
Recall that for `= 15 for Deceptive Trap the best representation of the most important link-
ages are given by the FOS

{
{x0,x1,x2,x3,x4}, {x5,x6,x7,x8,x9}, {x10,x11,x12,x13,x14}

}
,

then indeed Table D.2 shows that the best found subset of the LToff consists of two of these
three linkage sets, being {x0,x1,x2,x3,x4} and {x10,x11,x12,x13,x14}.

This already shows us that, using this approach, high-quality linkage models can be
found at high costs that support a significantly better performance of LTGA when such
a subset is to replace the LTons. However, aforementioned benchmark problems are rather
simplistic, which is why this approach has also been applied to more realistic problems such
as the NK-Landscapes problem and the MAXCUT problem, for which the exact variable
linkages are unknown. The graphs in Figure 5.2 show that also for these problems, pruned
LToff s were found that impose a better performance than the full LToff s. To illustrate, the use
of the pruned LToff reduced the required execution time from 6.464 milliseconds to 2.588
milliseconds for NK-Landscapes with ` = 25. Note that therefore also these pruned LToff s
impose LTGA to be more scalable compared to when LTons are used.

Contents Analysis

Results presented above are as expected, however analyzing the exact contents of these
pruned LToff s turned out to be less insightful. Consider the results presented in Table D.3
for NK-Landscapes with `= 20. These results show that roughly half of the linkage sets of
the found LToff were omitted in order to find an optimal subset of this LToff . This finding
is particularly interesting because the same behavior has been found across multiple prob-
lem instances for NK-Landscapes and MAXCUT. Especially for more complex instances,
roughly between 49% and 53% of the linkage sets were consistently filtered out.

Despite this clear trend in our results, no clear correlation could be found between the
linkage sets that were selected. Roughly half of the singleton linkage sets are selected
of the pruned LToff but also among higher order sets, roughly half of the linkage sets are

65

5.6 Conclusions Searching for the Optimal Linkage Tree Replacement

selected. On first sight, no linkage sets of a particular size or content, nor linkage sets that
were dominantly represented in the LTons seem to be preferred, which is contrary to our
expectations. Additional experiments were performed to verify that the omitted linkage
sets were not randomly selected, by using only a random 50% of the linkage sets from the
LTon during GOM. As shown in Figure 5.3 and 5.4 this indeed did not result in the same
performance improvement, indicating that indeed some correlation should exist between the
selected linkage sets.

Results for MAXCUT, as presented in Table D.4, were studied in detail in which also
a seemingly random half of the linkage sets was selected. When comparing the pruned
LToff s with the problem instance data, it seemed that linkage sets were preferred that could
contribute to strong subcuts. We define a subcut as a division between a subset of the
vertices of the graph considered in a MAXCUT problem instance. For a different MAXCUT
instance, which is presented in Figure 5.5, this could for instance be A = {v1,v4},B =
{v2,v7}, where A and B define the cut between the vertices {v1,v2,v4,v7}. A strong subcut
is a subcut that, when combined with other strong subcuts, defines the maximum cut for a
graph. In the example presented in Figure 5.5, this could for instance be A = {v2,v6},B =
{v7}, because in this subcut, two edges with high weights are cut. In this situation, the
linkage set {x2,x6,x7} would have been selected for a pruned LToff .

Although the linkage sets in the pruned LToff s often seem to correspond to such strong
subcuts, we were not able to exploit this. Experiments were performed in which a link-
age model would be built that contained linkage sets that could support the construction
of strong subcuts, based on the problem instance data provided. However, results showed
that this approach did not cause a significant performance increase for the LTGA. Also
for NK-Landscapes, experiments were performed in which a linkage model would be con-
structed based on the variance of variables in the provided lookup tables, though also these
experiments turned out to be unfruitful.

5.6 Conclusions

Results presented in this chapter have shown us that the LTons used by LTGA are not optimal
and predetermined LTs exist that enable the LTGA to find optimal solutions while requir-
ing less evaluations. Finding these LToff s using iAMaLGaM comes at a high cost, which
is why the presented approach is not suitable for substituting the currently used LT con-
struction implementation. These results did, however, provide us with high-quality LToff s
that are expected to contain linkage sets which are important for solving the problem at
hand. Additional experiments have shown that pruning these LToff s results in linkage mod-
els that support an even better performance of LTGA, albeit at an even higher cost. Finding
high-quality subsets of the LToff s found by iAMaLGaM was expected to provide us with
information that could provide insight into the true reason for LTGA’s excellent perfor-
mance. Although in these results consistently around 50% of the linkage sets in the LToff s
were omitted, no clear correlation could be found between the linkage sets that remained.
Therefore we were not able to improve LTGA’s linkage learning mechanism based on this
information.

66

Searching for the Optimal Linkage Tree Replacement 5.6 Conclusions

Note, however, that such a correlation should exist, as randomly using only 50% of the
LTon during GOM did not result in the same performance improvement. Understanding
why these linkage sets constituted a better linkage model is of great importance as this can
support us in reflecting upon the currently used linkage learning mechanism but perhaps
also on other components of LTGA. Ultimately, this could support us in improving LTGA
by for instance using better linkage models or more efficient variation operations, enabling
LTGA to solve problems while requiring significantly less fitness function evaluations. It
should be noted, however, that an important requirement for such improvements is that they
can be applied without increasing the computational complexity of LTGA as only then the
required execution time of LTGA can be decreased for more complex problems.

67

5.6 Conclusions Searching for the Optimal Linkage Tree Replacement

Figure 5.2: Required number of evaluations when using LToff s and pruned LToff s.

 10

 100

 1000

 10000

 100000

 10 15 20 25

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

NK-Landscapes Easy

 1

 10

 100

 1000

 10000

 6 12 25
#
 E

v
a
lu

a
ti
o
n
s

Number of variables

MAXCUT Easy

 10

 100

 1000

 10000

 100000

 10 15 20 25

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

NK-Landscapes Median

 1

 10

 100

 1000

 10000

 100000

 6 12 25

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

MAXCUT Median

 10

 100

 1000

 10000

 100000

 10 15 20 25

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

NK-Landscapes Hard

 1

 10

 100

 1000

 10000

 100000

 6 12 25

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

MAXCUT Hard

LTGA using LToff LTGA using pruned LToffLTGA using LTons

68

Searching for the Optimal Linkage Tree Replacement 5.6 Conclusions

Figure 5.3: Required number of evaluations when using LTGA with local search or a ran-
domly halved LT.

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 50 100 200 400

#
E

v
a
lu

a
ti
o
n
s

Number of variables

Onemax

 1

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20 25 50 100 200 400

#
E

v
a
lu

a
ti
o
n
s

Number of variables

Deceptive Trap

LTGA LTGA using local search LTGA using halved LT

69

5.6 Conclusions Searching for the Optimal Linkage Tree Replacement

Figure 5.4: Required number of evaluations when using local search or a randomly halved
LT.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 15 20 25 50 100 200 400

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

NK-Landscapes Easy

 1

 10

 100

 1000

 10000

 100000

 1e+06

 6 12 25 50 100

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

MAXCUT Easy

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 15 20 25 50 100 200 400

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

NK-Landscapes Median

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 6 12 25 50 100

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

MAXCUT Median

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 15 20 25 50 100 200 400

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

NK-Landscapes Hard

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 6 12 25 50 100

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

MAXCUT Hard

LTGA LTGA using local search LTGA using halved LT

70

Searching for the Optimal Linkage Tree Replacement 5.6 Conclusions

Figure 5.5: An example of a MAXCUT problem instance.

v
0

v
7

v
5v

4

v
1

v
6

v
8

v
3

v
2

v
9

6

3

2

6

1 5

6

2

8
1

6

3

6

71

Chapter 6

Discussion

In this thesis, results have been presented of research done on extending the implementation
of the Linkage Tree Genetic Algorithm (LTGA). With these extensions, new doors have
opened, enabling us to use LTGA to find high-quality predetermined linkage models that
impose a better performance of LTGA when replacing the traditionally used online-learned
LTs (LTons). However, upon analyzing the results of experiments performed, it became clear
that still improvements exist for LTGA. It became clear that with these new possibilities new
aspects came into view that are still to be investigated. In this chapter, the most important
aspects will briefly be discussed.

6.1 Algorithm Complexity and Bottlenecks

In the analysis of the LTGA in Chapter 3 it was shown that Gene-pool Optimal Mixing
(GOM) dictates the complexity of the algorithm and, together with the filling of the Mu-
tual Information Matrix (MIMatrix), determines the required execution time. Moreover,
it was shown that because of this, improving the implementation of the fitness function
for NK-Landscapes significantly reduced the time required by GOM. Inefficiencies in the
evaluation of fitness functions may still exist in the currently implemented fitness function
and might exist in future fitness functions. that can give room for further improvement to
the performance of LTGA. A small reduction in the fitness function evaluation time can
have great impact, due to the vast amount of fitness function evaluations done for complex
problems.

However, on a slightly higher level, a far more promising extension can be added to
GOM, being the integration of caching of fitness function evaluations to avoid redundant
function evaluations. By maintaining a map that saves the fitness of every solution evaluated
so far, no fitness function evaluation is required if a solution gets created during GOM
that has been evaluated before. Initially this extension was not added to the algorithm
as experiments were mainly performed on toy-size problems. Using caching for toy-size
problems will not benefit the algorithm, as the overhead introduced by caching might be
too big compared to the actual fitness function evaluation time. However, for more complex

73

6.2 Parallelization Improvements Discussion

problems such as the problem of pruning offline-learned LTs (LToff s), this reduction in
function evaluations is expected to cause a severe reduction in required execution time.

6.2 Parallelization Improvements

In Chapter 4, several aspects were presented that prevent the Perfect Parallel implementa-
tion of LTGA (PP-LTGA) from reaching the optimal speedup. As mentioned before, we feel
that, on average, this implementation is able to efficiently leverage the computational power
available, however, still some fine-tuning can be done that could increase the performance
of PP-LTGA. The first subject worth further investigation could be ways to decrease the
processor idling time by, for instance, trying to find more appropriate ways to estimate the
workload of parallel processable tasks in order to dynamically fine-tune the used granularity
or scheduling of tasks. Second, it might be worthwhile to investigate whether performance
improvement can be achieved by using memory that is more suitable for parallel data ac-
cess. Last, it might be interesting to investigate the optimal configuration for PP-LTGA.
Experiments showed that the overhead introduced by the Java Thread Scheduler increases
as the number of processors increases. As the complexity of the problem increases, the
effect of this overhead decreases compared to the total execution time required. However,
even for NK-Landscapes with n = 1600, using 32 processors imposed a better performance
than using 64 processors. We think this is due to the fact that in reality not all 64 processors
were freely available. For instance, the Java Garbage Collector is scheduled on a separate
thread, meaning that when the Garbage Collector is initiated, some processors need to serve
more than 1 thread, which is not optimal. We therefore think that in general for large-scale
problems, an even better performance could be achieved by using 32 < p < 64 when using
a machine with 64 cores.

Also for the Embarrassingly Parallel implementation of LTGA (EP-LTGA), some as-
pects are still to be investigated. As stated in Chapter 4, EP-LTGA can be classified as
a multiple-population coarse-grained Genetic Algorithm (GA) as described by Cantú-Paz.
However, in contrast to the description provided by Cantú-Paz, in EP-LTGA no solutions
are exchanged between the populations of separate instances, which is called migration.
We implemented EP-LTGA this way because we expected that migration required thread
synchronization, which was expected to create a bottleneck in the algorithm. It might be
interesting to investigate, however, whether migration could be implemented without block-
ing threads and what effect this has on the performance of EP-LTGA. Recall that EP-LTGA
is only as fast as the longest running instances. One would expect that this instance requires
more time because it has trouble finding high-quality solutions. Exchanging high-quality
solutions between populations might significantly speed up the process of finding the op-
timal solution for such an instance, decreasing the processor idling time and significantly
reducing the required execution time for EP-LTGA.

74

Discussion 6.3 Hardware

6.3 Hardware

6.3.1 GPUs

When executing a large number of numerical operations, often GPUs are used as they are
optimized to execute such operations at a higher speed than CPUs and usually contain more
processor cores in order to do this in parallel. When looking at LTGA, we felt that the only
component suitable for being executed on a GPU, would be the filling of the MIMatrix as
this is the only component entailing vast amounts of numerical operations. As the execution
time was mainly dominated by the execution of GOM, we did not further investigate this.
However, when integrated appropriately, LTGA might still benefit from using GPUs for
calculating entries in the MIMatrix.

6.3.2 Using large numbers of processors

As mentioned before, a server with 64 virtual processors was used for all the experiments
presented, of which the specifications are presented in Table 3.1. When the experiments
were performed, this was considered a very powerful machine, however parallel hardware
develops fast. Already architectures are available to consumers and small businesses that
contain a multitude of processors of the server used for our research and it is expected that
the computational power available for customers and small businesses will continue to in-
crease in the form of increasing numbers of processors per machine. We have seen that an
increasing amount of processors implies an increasing overhead imposed by thread man-
agement. At some point this might be a severe impediment for an algorithm like PP-LTGA,
which means a different approach will be needed. Recall that EP-LTGA only encountered
minimal overhead imposed by the Java Thread Scheduler due to the limited amount of
threads. It might be interesting to investigate the potential of a hybrid implementation, be-
ing an extension to EP-LTGA that uses PP-LTGA instances that each get assigned a cluster
with a limited number of processors. Note that in order to properly investigate the potential
of such a hybrid implementation, indeed an architecture is needed with a multitude of the
processors used for our experiments.

6.4 Fuzzy Linkage Modeling

Last but not least, still problems are to be addressed on a more conceptual level that could
have a fundamental impact on the performance of LTGA. Our research has been aimed at
finding reasons why some linkage sets should be chosen over others by linkage learning
mechanisms. By learning Linkage Trees (LTs) offline and pruning them, we were able to
find linkage models that outperformed linkage models produced by renown learning link-
age mechanisms. However, why were we able to find these high-quality linkage models,
while previous attempts did not result in any models that supported a significant and con-
sistent better performance of LTGA? What is the reason why the pruned LToff s that were
found supported a better performance of LTGA than the linkage models used in previous
publications?

75

6.4 Fuzzy Linkage Modeling Discussion

One of the main inspirations for learning LTs offline has been the research performed
by Thierens and Bosman on predetermined linkage models [59]. Despite using an approach
which seemed to be bound to result in a linkage model that aligns better with the reality,
their linkage models did not seem to contain the right linkage sets. This can also be said
for the results published by Pelikan et al. [47], which concluded that by using problem-
specific distance metrics, linkages were identified in too much detail, resulting in linkage
models that contained linkage sets in which relatively weak linkage existed between the
variables contained. Though, what if Thierens and Bosman in fact were facing the same
problem? For Onemax and Deceptive Trap they were able to construct linkage models that
supported a better performance of LTGA in two of their publications [8, 59], however, these
are problems for which an easy distinction can be made between relevant and irrelevant
linkage sets. In contrast, the models they constructed for NK-Landscapes and MAXCUT
did not cause a better performance; problems for which the relevance of linkage sets can be
hard to determine.

Assuming that the models presented by aforementioned authors indeed lacked an ap-
propriate level of linkage detail, this should mean that with the approach presented in this
thesis, we were able to overcome this problem. Although it can be interesting to perform
more experiments as presented in the previous chapter in order to find heuristics that ap-
proach this correct level of detail, there is a more fundamental problem if indeed linkage
strength is the main property that is at the root of the performance imposed by linkage mod-
els. Currently we are using linkage learning techniques in which variable linkages are either
acknowledged or not. This results in linkage models containing variable sets of which we
find the linkage is relevant. However, this does not mean that variable sets that are not in-
cluded in such a linkage model do not contain significant linkage, especially in a model like
the LT that has only a limited ability to model overlapping linkages. We feel that this way
of linkage learning does not comply with the reality, as we think that in reality linkage is
not a property that is either existent between variables or not. Linkage might exist between
all variables of all possible variable sets, though some linkages are stronger than others.

Therefore, we feel that a fundamentally different approach, aimed modeling this fuzzy
linkage, is needed in order to construct a model that finds better alignment with reality.
This can be done by, for instance, constructing a linkage distribution in which the linkage
strengths of all variable sets are contained. Being able to construct such a linkage distribu-
tion can provide numerous new ways for performing variation in LTGA and perhaps GAs
in general. A straight-forward way for using this linkage distribution could be by selecting
a fixed amount of linkage sets from this distribution according to their linkage strength.
This means that linkage sets for which strong linkage exists between the contained vari-
ables have a higher chance of being used during for instance a GOM operation compared to
weaker linkage sets. This in turn means that strong linkage sets will be used more often than
weak linkage sets. If a linkage distribution that aligns better with reality can be exploited
appropriately, fundamental changes in the performance of LTGA can be expected, possibly
fundamentally expanding the collection of problems that can be solved by LTGA.

76

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has been aimed at increasing the problem solving capabilities of the Linkage
Tree Genetic Algorithm (LTGA). This started with an introduction into the background of
LTGA, after which the details of LTGA were discussed. The most significant impediment
on solving large-scale problems with LTGA was its lacking ability to use computational
power present in multi-processor architectures. As we are approaching the economical limit
of the maximum clock speed of a single-core CPU, current technological developments are
aimed at increasing the number of CPU cores on a single chip. With that, machines with
tens or even hundreds of CPU cores also become available to small businesses and even
consumers. This called for a parallel implementation of LTGA to leverage the computation
power in multi-processor architectures as illustrated by the goals and research questions
presented in Section 2.3. We presented both an internally parallelized and externally par-
allelized implementation of LTGA, which were called the Perfect Parallel implementation
of LTGA (PP-LTGA) and Embarrassingly Parallel implementation of LTGA (EP-LTGA)
respectively. These implementation were then used to harness the computational power
available to perform experiments for gathering insight into the model used by LTGA to
investigate whether the potential of LTGA could be further increased.

7.1.1 Parallelizing LTGA

The first approach for developing a parallel implementation of LTGA that was investigated
was internal parallelization, for which computationally intensive components of LTGA
were to be parallelized, which resulted in the PP-LTGA. An analysis was performed aimed
at identifying the most computationally intensive components of LTGA, as questioned by
our first research question in Section 2.3. This analysis has shown that the execution time
of LTGA is dictated by the filling of the Mutual Information Matrix (MIMatrix) and the
generation of new solutions using Gene-pool Optimal Mixing (GOM). This means that
LTGA is very suitable for internal parallelization as the workload of these most expensive
components can be distributed over multiple processors using a straight-forward approach.
This is due to the fact that cells in the MIMatrix can be filled independently of each other

77

7.1 Conclusions Conclusions and Future Work

and also solutions can be generated independently of each other. However, although the
structure of LTGA is very suitable for applying internal parallelization, several overhead
aspects impede the performance increase that can be achieved, which are mainly due to
the overhead introduced by the Java Thread Scheduler. Although in our experiments a
maximum speedup of 10x on 32 cores was encountered, it is expected that a larger speedup
can be achieved for larger and more complex problems.

The second approach for developing a parallel implementation of LTGA that was in-
vestigated according to our second research question posed in Section 2.3 was external
parallelization in which multiple instances of LTGA are executed simultaneously, spread
over a number of processors, after which only the best solution of these runs is considered.
This allows for a smaller population size per instances, causing a reduction in the execution
time required by this EP-LTGA. Nevertheless, this reduction stagnates as the number of
instances increases, which we think is due to a limit below which LTGA no longer has any
significant problem solving capabilities. Therefore, as the number of processors increases,
at some point the decrease in population size can no longer compensate for the increasing
multi-threading overhead. Although this pivot point moves towards a higher number of
processors as the size and complexity of the problem increases, this still impedes EP-LTGA
from efficiently leveraging the computational power available.

Therefore, PP-LTGA is considered as a more scalable implementation of LTGA, of
which the performance can still be improved by applying techniques like caching of function
evaluations and the use of novel heuristics to better estimate the workload that is to be
distributed for better job scheduling and less processor idling time. With this, we achieved
our first goal as presented in Section 2.3.

Learning Linkage Trees Offline

In order for LTGA to be used to optimize its own linkage model, a limited collection of
linkage sets is to be supplied to chose from, or a novel encoding for the total solution space
of all possible linkage model has to be found. By manipulating the contents of the MIMa-
trix, the linkage learning mechanism of LTGA can be used to construct specific collections
of Linkage Trees (LTs). Therefore, by optimizing over the contents of the MIMatrix, high-
quality offline-learned LTs (LToff s) can be found using iAMaLGaM that can support a better
performance of LTGA when used as a predetermined linkage model, albeit at high costs. By
doing so, LToff s could be found for problems with ` < 25. These high-quality LToff s sup-
port a better and more scalable performance of LTGA compared to the traditionally used
online-learned LTs (LTons), which means that the LTons used by LTGA are not optimal and
LTGA’s performance can perhaps still be improved.

These LToff s also showed that LTGA is capable of quickly uncovering the problem’s
structure. The overhead encountered in the first generations where LTons do not align with
the problem yet, should therefore not be seen as an inefficiency, but merely as the costs
of learning the problem’s structure online. With the use of local search these costs can
be reduced, however the impact of this reduction is limited compared to the total costs of
executing LTGA.

78

Conclusions and Future Work 7.1 Conclusions

Pruning the Offline-learned LTs

Experiments presented in this work show that particular linkage sets contained by the LToff s
found by iAMaLGaM are dominantly represented in the LTons learned by LTGA, while
other linkage sets are very poorly represented. Using a parameter-free implementation,
the solution space spanned by an LToff can be traversed efficiently to prune such an LToff

by removing these seemingly redundant linkage sets. This parameter-free implementation
executes instances of LTGA, which we called the ”meta-LTGA” with ever increasing pop-
ulation sizes, enabling us to solve problems efficiently for which no knowledge is available
about the optimal population size to be used while overcoming the problem of premature
convergence. With this parameter-free scheme, pruned LToff s can be found that support
an even better performance of LTGA, albeit at even higher costs. This answers the third
research question and enabled us to achieve our second goal as presented in Section 2.3

To achieve this even better performance of LTGA, roughly 50% of the linkage sets were
filtered out from LToff s found by iAMaLGaM for NK-Landscapes and MAXCUT problem
instances. This strongly suggests that the Linkage Tree model traditionally used by LTGA
contains redundancies that, if filtered out correctly, could fundamentally improve the per-
formance of LTGA.

Randomly removing 50% of the linkage sets in LTons does not result in a comparable
performance improvement, indicating that some correlation exists between the linkage sets
selected by the meta-LTGA. This means that the linkage learning mechanism that is cur-
rently used returns a linkage model that does not align with the actual linkage structure of
the problem. Unfortunately, we were not able to identify this correlation, which prevented
us from leveraging this new information. Constructing a fixed linkage model a priori that
would contain linkage sets that support the construction of strong subcuts, which the pruned
LToff s suggested to be beneficial when solving a MAXCUT problem instance, did not result
in a performance improvement. Also experiments performed for NK-Landscapes in which
predetermined linkage models were constructed based on the variance of variables in the
provided problem data were unfruitful.

Contrary to past research, however, we are now able to show that it is possible to find
consistently better linkage models for LTGA, albeit at high costs. In the end, no definite
answer could be given to the question of what is exactly causing LTGA’s excellent per-
formance and robustness, however with the linkage models that were found, initial insight
has been gathered into the true potential of LTGA, with which we answered the remaining
research questions and achieved the goals presented in Section 2.3. These insights enabled
us to propose a variety of possible improvements for LTGA, of which perhaps the most
fundamentally changing concept would be the introduction of fuzzy linkage into the linkage
learning mechanisms that are currently used.

Finally, these insights show that creating a better understanding of high-quality linkage
models is of great importance as it can give direction to enhancing the linkage learning
mechanism of LTGA and to fine-tuning the algorithm so its potential can be fully harnessed,
fundamentally improving the performance and with that the problem solving capabilities of
LTGA.

79

7.2 Future work Conclusions and Future Work

7.2 Future work

To further improve our understanding of high-quality linkage models for LTGA, some ex-
tensions to the algorithm can be implemented and more experiments can be performed. We
feel that future work should first of all be aimed at integrating the caching of fitness function
evaluations into GOM in order to avoid fitness function evaluations of solutions that have
already been evaluated before. We feel that this should be the first extension to be made
to LTGA as straight-forward and well documented approaches for integrating caching are
available and with this extension, the applicability of LTGA is extended to more complex
and larger scale problems, as for such problems in particular the integration of caching is
expected to have a significant impact on the required execution time.

Secondly, we feel that the most interesting aspect to focus future work on would be
finding ways to model fuzzy linkage as discussed in the previous chapter. In order to con-
struct a linkage distribution, the linkage strength between variables of all possible variable
sets has to be quantified. Although Bosman and Thierens showed that Mutual Information
(MI) is a suitable metric for the linkage learning mechanism used in LTGA [7], it is not
known whether this metric is also suitable for constructing a linkage distribution, which is
why this should be verified. Consequently, after being able to construct such a linkage dis-
tribution, possible ways to perform variation can be evaluated to investigate what variation
operations could be used that fully exploit the information contained by a linkage distribu-
tion. A straight-forward implementation could be using GOM with this linkage distribution,
during which for each solution a fixed amount of linkage sets are drawn from the distribu-
tion to be used as cross-over masks. Strong linkage sets then have a higher chance of being
drawn from this distribution than weaker linkage sets, which means that stronger linkage
sets will in general be used more often than linkage sets containing variables with weaker
linkage. We believe that constructing a linkage model that is better aligned with reality and
exploiting such a model accordingly can fundamentally improve the performance and the
applicability of LTGA, fundamentally changing what problems it can be applied to.

80

Bibliography

[1] Lee Altenberg. Fitness distance correlation analysis: An instructive counterexample.
In Proceedings of the Seventh International Conference on Genetic Algorithms, pages
57–64. Morgan Kaufmann, 1997.

[2] Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for
parameter optimization. Evolutionary Computation, 1(1):1–23, March 1993.

[3] Peter A. N. Bosman. On empirical memory design, faster selection of bayesian fac-
torizations and parameter-free gaussian EDAs. In Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’09, pages 389–396,
New York, NY, USA, 2009. ACM.

[4] Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. Benchmarking parameter-
free AMaLGaM on functions with and without noise. Evolutionary Computation,
21(3):445–469, September 2013.

[5] Peter A. N. Bosman and Dirk Thierens. Linkage information processing in distribution
estimation algorithms. In GECCO, pages 60–67, 1999.

[6] Peter A. N. Bosman and Dirk Thierens. Linkage neighbors, optimal mixing and forced
improvements in genetic algorithms. In Proceedings of the 14th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’12, pages 585–592, New York,
NY, USA, 2012. ACM.

[7] Peter A. N. Bosman and Dirk Thierens. On measures to build linkage trees in LTGA.
In Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy Deb, Stephanie Forrest,
Giuseppe Nicosia, and Mario Pavone, editors, Parallel Problem Solving from Nature
- PPSN XII, volume 7491 of Lecture Notes in Computer Science, pages 276–285.
Springer Berlin Heidelberg, 2012.

[8] Peter A. N. Bosman and Dirk Thierens. More concise and robust linkage learning
by filtering and combining linkage hierarchies. In Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’13, pages 359–366,
New York, NY, USA, 2013. ACM.

81

BIBLIOGRAPHY

[9] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM,
21(2):201–206, April 1974.

[10] Erick Cantú-Paz. A survey of parallel genetic algorithms. Calculeurs Parallelles,
Reseax et Systems Repartis, 10, 1998.

[11] Si-Cheng Chen and Tian-Li Yu. Difficulty of linkage learning in estimation of dis-
tribution algorithms. In Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’09, pages 397–404, New York, NY, USA, 2009.
ACM.

[12] Ying-Ping Chen. Extending the Scalability of Linkage Learning Genetic Algorithms:
Theory and Practice. PhD thesis, Champaign, IL, USA, 2004. AAI3130894.

[13] Ying-Ping Chen and David E. Goldberg. Convergence time for the linkage learning
genetic algorithm. Evol. Comput., 13(3):279–302, September 2005.

[14] Clay Mathematics Institute. P vs NP problem. http://www.claymath.org/
millenium-problems/p-vs-np-problem. [Online; accessed February 14, 2014].

[15] David J. Coffin and Robert E. Smith. The limitations of distribution sampling for
linkage learning. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on,
pages 364–369. IEEE, 2007.

[16] François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: A python framework for evolutionary algo-
rithms. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’12, pages 85–92, New York, NY, USA, 2012. ACM.

[17] Kalyanmoy Deb and David E. Goldberg. Analyzing deception in trap functions. In
FOGA, volume 2, pages 98–108, 1992.

[18] Kalyanmoy Deb and David E. Goldberg. Sufficient conditions for deceptive and easy
binary functions. Annals of Mathematics and Artificial Intelligence, 10(4):385–408,
1994.

[19] Debian.org. The computer language benchmarks game - Java vs C gcc.
http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=
all&lang=java&lang2=gcc&data=u64q. [Online; accessed November 25, 2014].

[20] Debian.org. The computer language benchmarks game - Java vs Python.
http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=
all&lang=java&lang2=python3&data=u64q. [Online; accessed November 14,
2014].

[21] Thyago S. P. C. Duque and David E. Goldberg. A new method for linkage learning
in the ECGA. In Proceedings of the 11th Annual Conference on Genetic and Evo-
lutionary Computation, GECCO ’09, pages 1819–1820, New York, NY, USA, 2009.
ACM.

82

http://www.claymath.org/millenium-problems/p-vs-np-problem
http://www.claymath.org/millenium-problems/p-vs-np-problem
http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=all&lang=java&lang2=gcc&data=u64q
http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=all&lang=java&lang2=gcc&data=u64q
http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=all&lang=java&lang2=python3&data=u64q
http://benchmarksgame.alioth.debian.org/u64q/benchmark.php?test=all&lang=java&lang2=python3&data=u64q

BIBLIOGRAPHY

[22] Leonardo R. Emmendorfer and Aurora T. R. Pozo. Effective linkage learning using
low-order statistics and clustering. Trans. Evol. Comp, 13(6):1233–1246, December
2009.

[23] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy. J. Mach.
Learn. Res., 13(1):2171–2175, July 2012.

[24] Brian W. Goldman and William F. Punch. Parameter-less population pyramid. In Pro-
ceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO
’14, pages 785–792, New York, NY, USA, 2014. ACM.

[25] Ananth Grama. Introduction to parallel computing. Pearson Education, 2003.

[26] Ilan Gronau and Shlomo Moran. Optimal implementations of UPGMA and other
common clustering algorithms. Information Processing Letters, 104(6):205 – 210,
2007.

[27] Georges R. Harik. Learning gene linkage to efficiently solve problems of bounded
difficulty using genetic algorithms. PhD thesis, The University of Michigan, 1997.

[28] Georges R. Harik. Linkage learning via probabilistic modeling in the ECGA. Urbana,
51(61):801, 1999.

[29] Georges R. Harik and David E. Goldberg. Linkage learning through probabilistic
expression. Computer Methods in Applied Mechanics and Engineering, 186(24):295
– 310, 2000.

[30] Georges R Harik and Fernando G Lobo. A parameter-less genetic algorithm. In
GECCO, volume 99, pages 258–267, 1999.

[31] Georges R. Harik, Fernando G. Lobo, and Kumara Sastry. Linkage learning via prob-
abilistic modeling in the extended compact genetic algorithm (ECGA). In Scalable
optimization via probabilistic modeling, pages 39–61. Springer, 2006.

[32] David Heckerman, Dan Geiger, and David M. Chickering. Learning bayesian net-
works: The combination of knowledge and statistical data. Machine Learning,
20(3):197–243, 1995.

[33] John H. Holland. Adaptation in natural and artificial systems: an introductory anal-
ysis with applications to biology, control, and artificial intelligence. Michigan Univ.
Press, Ann Arbor, MI, 1975.

[34] John H. Holland. Genetic algorithms. Scientific american, 267(1):66–72, 1992.

[35] Joseph JáJá. An Introduction to Parallel Algorithms. Addison Wesley Longman Pub-
lishing Co., Inc., Redwood City, CA, USA, 1992.

83

BIBLIOGRAPHY

[36] Java-Source.net. DJProf: an aspect-oriented java profiler. http://homepages.mcs.
vuw.ac.nz/˜djp/djprof/. [Online; accessed November 15, 2014].

[37] Java-Source.net. Open source profilers in java. http://java-source.net/
open-source/profilers. [Online; accessed November 15, 2014].

[38] JUnit. Junit - about. http://junit.org/. [Online; accessed November 27, 2014].

[39] OKTECH-Info Kft. OKTECH profiler. https://code.google.com/p/
oktech-profiler/. [Online; accessed November 15, 2014].

[40] A. Kraskov, H. Stögbauer, R. G. Andrzejak, and P. Grassberger. Hierarchical cluster-
ing using mutual information. EPL (Europhysics Letters), 70(2):278, 2005.

[41] Oracle. Hashmap (Java Platform SE 8). https://docs.oracle.com/javase/8/
docs/api/java/util/HashMap.html. [Online; accessed December 2, 2014].

[42] Oracle. Hprof: A heap/CPU profiling tool. https://docs.oracle.com/javase/8/
docs/technotes/samples/hprof.html. [Online; accessed November 14, 2014].

[43] Oracle. Interface executorservice. https://docs.oracle.com/javase/8/docs/
api/java/util/concurrent/ExecutorService.html. [Online; accessed Novem-
ber 20, 2014].

[44] Oracle. Lambda expressions. https://docs.oracle.com/javase/tutorial/
java/javaOO/lambdaexpressions.html. [Online; accessed November 20, 2014].

[45] Oracle. Using JConsole. https://docs.oracle.com/javase/8/docs/
technotes/guides/management/jconsole.html. [Online; accessed November
15, 2014].

[46] Martin Pelikan and David E. Goldberg. Escaping hierarchical traps with competent
genetic algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), 2001.

[47] Martin Pelikan, Mark W. Hauschild, and Dirk Thierens. Pairwise and problem-specific
distance metrics in the linkage tree genetic algorithm. In Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, pages
1005–1012, New York, NY, USA, 2011. ACM.

[48] Martin Pelikan, Kumara Sastry, David E. Goldberg, Martin V. Butz, and Mark
Hauschild. Performance of evolutionary algorithms on NK Landscapes with nearest
neighbor interactions and tunable overlap. In Proceedings of the 11th Annual Confer-
ence on Genetic and Evolutionary Computation, GECCO ’09, pages 851–858, New
York, NY, USA, 2009. ACM.

[49] perf4j.org. Perf4J home. http://perf4j.codehaus.org/. [Online; accessed
November 15, 2014].

84

http://homepages.mcs.vuw.ac.nz/~djp/djprof/
http://homepages.mcs.vuw.ac.nz/~djp/djprof/
http://java-source.net/open-source/profilers
http://java-source.net/open-source/profilers
http://junit.org/
https://code.google.com/p/oktech-profiler/
https://code.google.com/p/oktech-profiler/
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html
https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
http://perf4j.codehaus.org/

BIBLIOGRAPHY

[50] Aaron Kans Quentin Charatan. Java in Two Semesters. The McGraw-Hill Companies,
second edition, 2006.

[51] Reuven Y. Rubinstein. Cross-entropy and rare events for maximal cut and partition
problems. ACM Trans. Model. Comput. Simul., 12(1):27–53, January 2002.

[52] Krzysztof L. Sadowski, Peter A.N. Bosman, and Dirk Thierens. On the usefulness of
linkage processing for solving max-sat. In Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’13, pages 853–860, New York,
NY, USA, 2013. ACM.

[53] Kumara Sastry. Evaluation-relaxation schemes for genetic and evolutionary algo-
rithms. PhD thesis, 2002.

[54] Sourceforge.net. JRat the java runtime analysis toolkit. http://jrat.sourceforge.
net/. [Online; accessed November 15, 2014].

[55] Fabien Teytaud and Olivier Teytaud. Why one must use reweighting in estimation of
distribution algorithms. In Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’09, pages 453–460, New York, NY, USA, 2009.
ACM.

[56] Dirk Thierens. The linkage tree genetic algorithm. In Robert Schaefer, Carlos Cotta,
Joanna Koodziej, and Gnter Rudolph, editors, Parallel Problem Solving from Na-
ture, PPSN XI, volume 6238 of Lecture Notes in Computer Science, pages 264–273.
Springer Berlin Heidelberg, 2010.

[57] Dirk Thierens and Peter A. N. Bosman. Optimal mixing evolutionary algorithms. In
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computa-
tion, GECCO ’11, pages 617–624, New York, NY, USA, 2011. ACM.

[58] Dirk Thierens and Peter A. N. Bosman. Evolvability analysis of the linkage tree
genetic algorithm. In Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy Deb,
Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone, editors, Parallel Problem
Solving from Nature - PPSN XII, volume 7491 of Lecture Notes in Computer Science,
pages 286–295. Springer Berlin Heidelberg, 2012.

[59] Dirk Thierens and Peter A. N. Bosman. Predetermined versus learned linkage models.
In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Compu-
tation, GECCO ’12, pages 289–296, New York, NY, USA, 2012. ACM.

[60] Dirk Thierens and Peter A. N. Bosman. Hierarchical problem solving with the linkage
tree genetic algorithm. In Proceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’13, pages 877–884, New York, NY, USA, 2013.
ACM.

[61] Dirk Thierens and David E Goldberg. Mixing in genetic algorithms. Urbana,
51:61801, 1993.

85

http://jrat.sourceforge.net/
http://jrat.sourceforge.net/

BIBLIOGRAPHY

[62] Sebastien Vauclair. Extensible java profiler. http://ejp.sourceforge.net/. [On-
line; accessed November 15, 2014].

[63] Richard A. Watson and Jordan B. Pollack. A computational model of symbiotic com-
position in evolutionary transitions. Biosystems, 69(23):187 – 209, 2003.

[64] Andrew Wilcox. Jip - the java interactive profiler. http://jiprof.sourceforge.
net/. [Online; accessed November 14, 2014].

[65] Andrew Wilcox. JIP - the java interactive profiler. an effective new configurable pro-
filer for java. 2006.

[66] Tian-Li Yu and David E. Goldberg. Toward an understanding of the quality and effi-
ciency of model building for genetic algorithms. In Kalyanmoy Deb, editor, Genetic
and Evolutionary Computation GECCO 2004, volume 3103 of Lecture Notes in Com-
puter Science, pages 367–378. Springer Berlin Heidelberg, 2004.

[67] Tian-Li Yu, Kumara Sastry, and David E. Goldberg. Linkage learning, overlapping
building blocks, and systematic strategy for scalable recombination. In Proceedings
of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO
’05, pages 1217–1224, New York, NY, USA, 2005. ACM.

86

http://ejp.sourceforge.net/
http://jiprof.sourceforge.net/
http://jiprof.sourceforge.net/

Appendix A

Diagrams

87

Diagrams

Figure A.1: Gene-pool Optimal Mixing.

Im
p

ro
v
e
 P

o
p

u
la

ti
o

n
 b

a
s
e
d

 o
n

 L
in

k
a
g

e
 T

re
e

C
o
p
y
 a

 r
a
n
d
o
m

s
o
lu

ti
o
n

fr
o
m

 P
 t
h
a
t

h
a
s
 n

o
t
b
e
e
n

im
p
ro

v
e
d
 y

e
t,

c
a
lle

d
 s

.

T
a

k
e

 r
a

n
d

o
m

lin
k
a
g
e
 s

e
t

fr
o
m

 L
T

th
a
t
is

 n
o
t

u
s
e
d
 y

e
t
fo

r
th

is
 s

o
lu

ti
o
n
.

T
a

k
e

a
 r

a
n
d
o
m

s
o
lu

ti
o
n
 d

fr
o
m

 P
.

C
o
p
y
 t
h
e

v
a
lu

e
s
 o

f
v
a
ri
a
b
le

s
 i
n

th
e
 l
in

k
a
g
e
 s

e
t

fr
o
m

 d
 t
o
 s

.

C
a
lc

u
la

te
th

e
 n

e
w

fi
tn

e
s
s
 o

f
s

d
id

 f
it
n
e
s
s
 o

f
s

im
p
ro

v
e
?

W
e

re
 a

ll
lin

k
a
g
e
 s

e
ts

in
 L

T
 t
ri
e

d
?

R
e
v
e
rt

c
h
a
n
g
e
s

m
a
d
e
 t
o
 s

N
o

W
e

re
 a

ll
s
o
lu

ti
o
n
s
 i
n

P
 i
m

p
ro

v
e

d
?

Y
e

s
Y

e
s

Y
e

s

N
o

N
o

P
u
t
s

in
 O

.

O
ff
s
p

ri
n

g
 O

L
T

P
o
p
u
la

ti
o
n
 P

88

Appendix B

LTGA Complexity Analysis

In this complexity analysis, the complexity is expressed in terms of the following parame-
ters:

`= number of parameters
n = population size
g = amount of generations needed
f = fitness function evaluation time

89

LTGA Complexity Analysis

1. population = createRandomPopulation() O(n∗ `)
2. bestFound = population.getBestFound() O(n)
3. while(!stopConditionMet(population)) O

(
g ∗ n ∗

`(`+ f)
)

4. //Initialize MPM and LT
5. int[] order = getRandomOrder(`) O(`)
6. mpm = initMPM(order) O(`)
7. lt = initLT(mpm) O(`)
8. MIMatrix = new MIMatrix[`][`] O(`2)
9. for all `∗ (`+1)/2 elements in MIMatrix upper triangle O(n∗ `2)
10. dist = new Distribution(population, i, j) O(n)
11. MIMatrix[i, j] = dist.getJointEntropy() O(1)
12. calculateMIValues(MIMatrix) O(`2)
13.
14. //Construct LT
15. nnChain = new NearestNeighborChain() O(1)
16. while(mpm.size > 1) O(`2)
17. while(!nnChain.isComplete()) O(`)
18. nnChain.add(getNearestNeighbor(nnChain.last)) O(`)
19. MIMatrix = updateMIMatrix(MIMatrix, nnChain.last,

nnChain.secondLast)
O(`)

20. mpm = updateMpm(mpm, nnChain.last,
nnChain.secondLast)

O(`)

21. nnChain.truncate(nnChain.size - 3) O(1)
22.
23. //Generate offspring
24. offspring = [] O(1)
25. for i = 0 → n O

(
n∗ `(`+ f)

)
26. result = population[i].copy() O(`)
27. backup = population[i].copy() O(`)
28. order = getRandomOrder(lt.size) O(`)
29. for j = 0 → lt.size O

(
`(`+ f)

)
30. donor = population.getRandom() O(1)
31. result = copyForLinkageSet(result, donor,

lt[order[j]])
O(`)

32. if(result != backup && fitness(result) >=
fitness(backup))

O(f)

33. backup = result O(1)
34. else
35. result = backup O(1)
36.
37. //Forced Improvement
38. if(result == population[i] || noImprovementStretch

> 1+log(n))
O(1)

39. order = getRandomOrder(lt.size) O(`)

90

LTGA Complexity Analysis

40. j = 0 O(1)
41. while j < lt.size && result == population[i] O

(
`(`+ f)

)
42. result = copyForLinkageSet(result, bestFound,

lt[order[j]])
O(`)

43. if(result != backup && fitness(result) >
fitness(backup))

O(f)

44. backup = result O(1)
45. else
46. result = backup O(1)
47. j++ O(1)
48. if(result == population[i]) O(1)
49. result = bestFound O(1)
50. offspring[i] = result O(1)
51.
52. population = offspring O(1)
53. bestFound = population.getBestFound() O(n)
54.return bestFound O(1)

91

Appendix C

Profiling Results

93

Profiling Results

Table C.1: Sequential Profiling for NK-Landscape, ` = 400,n = 400. Before initial opti-
mizations.

A
ve

ra
ge

to
ta

le
xe

cu
tio

n
tim

e:
23

9.
46

68
7

se
co

nd
s.

M
et

ho
d

C
al

lc
ou

nt
Ti

m
e

(s
)

Ti
m

e
(%

)
se

qu
en

ti
al

.P
op

ul
at

io
n.

in
it

ia
li

ze
1.

00
0.

14
99

0.
06

se
qu

en
ti

al
.L

in
ka

ge
Tr

ee
.l

ea
rn

St
ru

ct
ur

e
7.

26
1.

72
61

6
0.

72
se

qu
en

ti
al

.M
IM

at
ri

x.
co

ns
tr

uc
tM

IM
at

ri
x

7.
26

1.
69

61
5

0.
71

se
qu

en
ti

al
.M

IM
at

ri
x.

co
ns

tr
uc

tM
IM

at
ri

x
-

En
tr

op
y

7.
26

1.
69

19
4

0.
71

se
qu

en
ti

al
.M

IM
at

ri
x.

co
ns

tr
uc

tM
IM

at
ri

x
-

MI
Va

lu
es

7.
26

0.
00

41
4

0.
00

sh
ar

ed
.N

ea
re

st
Ne

ig
hb

or
Ch

ai
n.

ge
tN

NT
up

le
28

96
.7

4
0.

00
73

2
0.

00
se

qu
en

ti
al

.M
IM

at
ri

x.
up

da
te

MI
Ma

tr
ix

28
96

.7
4

0.
00

90
4

0.
00

se
qu

en
ti

al
.L

in
ka

ge
Tr

ee
.c

on
st

ru
ct

Ne
wM

pm
28

96
.7

4
0.

00
57

4
0.

00
se

qu
en

ti
al

.P
op

ul
at

io
n.

ma
ke

Of
fs

pr
in

g
7.

26
23

9.
17

43
99

.8
8

se
qu

en
ti

al
.P

op
ul

at
io

n.
ge

ne
ra

te
An

dE
va

lu
at

eN
ew

So
lu

ti
on

sT
oF

il
lO

ff
sp

ri
ng

7.
26

23
7.

44
79

7
99

.1
6

sh
ar

ed
.P

ro
bl

em
Ev

al
ua

to
r.

in
st

al
le

dP
ro

bl
em

Ev
al

ua
ti

on
80

96
12

.8
3

23
5.

44
04

6
98

.3
2

94

Profiling Results

Table C.2: Sequential Profiling for NK-Landscape, `= 400,n = 400. After initial optimiza-
tions.

A
ve

ra
ge

to
ta

le
xe

cu
tio

n
tim

e:
18

.7
68

41
se

co
nd

s.
M

et
ho

d
C

al
lc

ou
nt

Ti
m

e
(s

)
Ti

m
e

(%
)

se
qu

en
ti

al
.P

op
ul

at
io

n.
in

it
ia

li
ze

1.
00

0.
01

00
3

0.
05

se
qu

en
ti

al
.L

in
ka

ge
Tr

ee
.l

ea
rn

St
ru

ct
ur

e
7.

88
2.

10
21

8
11

.2
0

se
qu

en
ti

al
.M

IM
at

ri
x.

co
ns

tr
uc

tM
IM

at
ri

x
7.

88
2.

06
44

2
11

.0
0

se
qu

en
ti

al
.M

IM
at

ri
x.

co
ns

tr
uc

tM
IM

at
ri

x
-

En
tr

op
y

7.
88

2.
05

90
4

10
.9

7
se

qu
en

ti
al

.M
IM

at
ri

x.
co

ns
tr

uc
tM

IM
at

ri
x

-
MI

Va
lu

es
7.

88
0.

00
53

4
0.

03
sh

ar
ed

.N
ea

re
st

Ne
ig

hb
or

Ch
ai

n.
ge

tN
NT

up
le

31
44

.1
2

0.
00

78
7

0.
04

se
qu

en
ti

al
.M

IM
at

ri
x.

up
da

te
MI

Ma
tr

ix
31

44
.1

2
0.

01
06

6
0.

06
se

qu
en

ti
al

.L
in

ka
ge

Tr
ee

.c
on

st
ru

ct
Ne

wM
pm

31
44

.1
2

0.
00

68
4

0.
04

se
qu

en
ti

al
.P

op
ul

at
io

n.
ma

ke
Of

fs
pr

in
g

7.
88

16
.5

82
47

88
.3

5
se

qu
en

ti
al

.P
op

ul
at

io
n.

ge
ne

ra
te

An
dE

va
lu

at
eN

ew
So

lu
ti

on
sT

oF
il

lO
ff

sp
ri

ng
7.

88
16

.5
82

45
88

.3
5

sh
ar

ed
.P

op
ul

at
io

n.
ge

ne
ra

te
Ne

wS
ol

ut
io

n
31

52
.0

0
16

.5
79

79
88

.3
4

sh
ar

ed
.P

ro
bl

em
Ev

al
ua

to
r.

in
st

al
le

dP
ro

bl
em

Ev
al

ua
ti

on
92

97
44

.5
1

14
.5

54
43

77
.5

5

95

Profiling Results

Table C.3: PP-LTGA Profiling for NK-Landscape, `= 400, n = 400, p = 64

A
ve

ra
ge

to
ta

le
xe

cu
tio

n
tim

e:
3.

70
88

35
se

co
nd

s.
M

et
ho

d
C

al
lc

ou
nt

Ti
m

e
(s

)
Ti

m
e

(%
)

pa
ra

ll
el

.P
op

ul
at

io
n.

in
it

ia
li

ze
1.

00
0.

01
73

1
0.

47
pa

ra
ll

el
.L

in
ka

ge
Tr

ee
.l

ea
rn

St
ru

ct
ur

e
7.

84
0.

87
99

8
23

.7
3

pa
ra

ll
el

.M
IM

at
ri

x.
co

ns
tr

uc
tM

IM
at

ri
x

7.
84

0.
40

30
8

10
.8

7
pa

ra
ll

el
.M

IM
at

ri
x.

co
ns

tr
uc

tM
IM

at
ri

x
-

En
tr

op
y

7.
84

0.
29

06
1

7.
84

pa
ra

ll
el

.M
IM

at
ri

x.
co

ns
tr

uc
tM

IM
at

ri
x

-
MI

Va
lu

es
7.

84
0.

11
16

5
3.

01
sh

ar
ed

.N
ea

re
st

Ne
ig

hb
or

Ch
ai

n.
ge

tN
NT

up
le

31
26

.9
6

0.
01

39
0.

28
pa

ra
ll

el
.M

IM
at

ri
x.

up
da

te
MI

Ma
tr

ix
31

26
.9

6
0.

01
94

0.
52

pa
ra

ll
el

.L
in

ka
ge

Tr
ee

.c
on

st
ru

ct
Ne

wM
pm

31
26

.9
6

0.
40

40
9

10
.9

0
pa

ra
ll

el
.P

op
ul

at
io

n.
ma

ke
Of

fs
pr

in
g

7.
84

2.
81

03
75

.7
7

pa
ra

ll
el

.P
op

ul
at

io
n.

ge
ne

ra
te

An
dE

va
lu

at
eN

ew
So

lu
ti

on
sT

oF
il

lO
ff

sp
ri

ng
7.

84
2.

80
97

5
75

.7
6

96

Appendix D

Offline-learned LT Linkage Sets
Frequencies

In this Appendix, percentual frequencies in LTons of linkage sets contained by LToff s are
shown per generation, based on 100 independent executions of the LTGA. Results are only
shown for the generations encountered in these 100 executions. We use the following nota-
tions:

[i, j, k] = linkage set {xi,x j,xk}
Fgi

(x) = percentual frequency of linkage set x in the LTons learned for generation i
Favg(x) = average percentual frequency of linkage set x in the LTons over all

generations

To illustrate, this means that if Fg2([0, 2, 4, 5]) = 75%, linkage set {x0,x2,x4,x5} was
contained by the LTon of generation 2 in 75 out the 100 executions performed.

Additionally, in the results shown for Onemax and Deceptive Trap, elements are printed
in bold that are known to be part of the Family of Subsets (FOS) that perfectly represents the
linkage between variables in these problems. Note that for NK-Landscapes and MAXCUT
no such FOS is known. For each problem, results are shown for a specific size, and for NK-
Landscapes and MAXCUT for a specific instance, that are suitable for showing behavior
that is representative for other problem instances in an orderly fashion.

97

Offline-learned LT Linkage Sets Frequencies

Table D.1: Percentual Frequencies for Onemax, `= 10.

Linkage Set in LToff Fg0 Fg1 Fg2 Fg3 Favg in pruned LToff

[0] 100% 100% 100% 100% 100% 1
[1] 100% 100% 100% 100% 100% 1
[2] 100% 100% 100% 100% 100% 1
[3] 100% 100% 100% 100% 100% 1
[4] 100% 100% 100% 100% 100% 1
[5] 100% 100% 100% 100% 100% 1
[6] 100% 100% 100% 100% 100% 1
[7] 100% 100% 100% 100% 100% 0
[8] 100% 100% 100% 100% 100% 1
[9] 100% 100% 100% 100% 100% 1

[4, 5] 7% 9% 8% 25% 12% 0
[4, 5, 7] 2% 1% 0% 0% 1% 0
[1, 6] 5% 7% 6% 17% 9% 0
[0, 9] 10% 10% 15% 0% 9% 0
[2, 3] 5% 9% 12% 8% 9% 0

[2, 3, 4, 5, 7] 0% 0% 0% 0% 0% 0
[0, 8, 9] 0% 0% 0% 0% 0% 0

[0, 1, 6, 8, 9] 1% 0% 0% 0% 0% 0

Table D.2: Percentual Frequencies for Deceptive Trap, `= 15.

Linkage Set in LToff Fg0 Fg1 Fg2 Fg3 Fg4 Fg5 Fg6 Favg in pruned LToff

[0] 100% 100% 100% 100% 100% 100% 100% 100% 0
[1] 100% 100% 100% 100% 100% 100% 100% 100% 0
[2] 100% 100% 100% 100% 100% 100% 100% 100% 0
[3] 100% 100% 100% 100% 100% 100% 100% 100% 0
[4] 100% 100% 100% 100% 100% 100% 100% 100% 0
[5] 100% 100% 100% 100% 100% 100% 100% 100% 0
[6] 100% 100% 100% 100% 100% 100% 100% 100% 0
[7] 100% 100% 100% 100% 100% 100% 100% 100% 0
[8] 100% 100% 100% 100% 100% 100% 100% 100% 0
[9] 100% 100% 100% 100% 100% 100% 100% 100% 0
[10] 100% 100% 100% 100% 100% 100% 100% 100% 0
[11] 100% 100% 100% 100% 100% 100% 100% 100% 0
[12] 100% 100% 100% 100% 100% 100% 100% 100% 0
[13] 100% 100% 100% 100% 100% 100% 100% 100% 0
[14] 100% 100% 100% 100% 100% 100% 100% 100% 0
[6, 8] 0% 11% 15% 27% 21% 17% 0% 15% 0
[5, 7] 5% 11% 14% 26% 15% 14% 100% 14% 0

[5, 6, 7, 8] 0% 10% 16% 0% 0% 0% 0% 4% 0
[0, 2] 4% 10% 16% 15% 24% 10% 0% 13% 0

[0, 2, 3] 0% 7% 6% 8% 13% 5% 0% 6% 0
[5, 6, 7, 8, 9] 0% 74% 100% 100% 99% 69% 0% 74% 0

[11, 13] 4% 15% 12% 17% 19% 17% 0% 14% 0
[0, 1, 2, 3] 0% 15% 17% 0% 0% 0% 0% 5% 0
[12, 14] 7% 14% 15% 19% 18% 12% 0% 14% 0

[11, 12, 13, 14] 0% 19% 15% 0% 0% 2% 0% 6% 0
[10, 11, 12, 13, 14] 0% 83% 99% 100% 99% 43% 0% 71% 1

[0, 1, 2, 3, 4] 1% 80% 99% 100% 98% 55% 100% 72% 1
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 0% 24% 35% 34% 41% 17% 0% 25% 0

98

Offline-learned LT Linkage Sets Frequencies

Table D.3: Percentual Frequencies for NK-Landscapes, ` = 20, instance of median diffi-
culty.

Linkage Set in LToff Fg0 Fg1 Fg2 Fg3 Fg4 Fg5 Fg6 Favg in pruned LToff

[0] 100% 100% 100% 100% 100% 100% 100% 100% 1
[1] 100% 100% 100% 100% 100% 100% 100% 100% 0
[2] 100% 100% 100% 100% 100% 100% 100% 100% 1
[3] 100% 100% 100% 100% 100% 100% 100% 100% 1
[4] 100% 100% 100% 100% 100% 100% 100% 100% 0
[5] 100% 100% 100% 100% 100% 100% 100% 100% 0
[6] 100% 100% 100% 100% 100% 100% 100% 100% 1
[7] 100% 100% 100% 100% 100% 100% 100% 100% 0
[8] 100% 100% 100% 100% 100% 100% 100% 100% 0
[9] 100% 100% 100% 100% 100% 100% 100% 100% 1
[10] 100% 100% 100% 100% 100% 100% 100% 100% 0
[11] 100% 100% 100% 100% 100% 100% 100% 100% 0
[12] 100% 100% 100% 100% 100% 100% 100% 100% 0
[13] 100% 100% 100% 100% 100% 100% 100% 100% 1
[14] 100% 100% 100% 100% 100% 100% 100% 100% 1
[15] 100% 100% 100% 100% 100% 100% 100% 100% 0
[16] 100% 100% 100% 100% 100% 100% 100% 100% 1
[17] 100% 100% 100% 100% 100% 100% 100% 100% 0
[18] 100% 100% 100% 100% 100% 100% 100% 100% 1
[19] 100% 100% 100% 100% 100% 100% 100% 100% 0

[9, 10] 4% 5% 1% 0% 0% 2% 0% 2% 0
[7, 8] 6% 1% 0% 0% 0% 0% 0% 1% 1

[16, 19] 9% 0% 0% 0% 0% 2% 0% 2% 0
[11, 12] 5% 100% 100% 99% 56% 9% 0% 53% 1

[14, 16, 19] 1% 0% 0% 0% 0% 0% 0% 0% 1
[1, 3] 4% 12% 3% 3% 11% 9% 0% 6% 1
[4, 6] 3% 13% 6% 2% 2% 7% 0% 5% 1

[1, 2, 3] 0% 3% 20% 60% 71% 7% 0% 23% 0
[1, 2, 3, 18] 0% 0% 0% 0% 0% 2% 0% 0% 0

[4, 5, 6] 0% 6% 7% 4% 2% 0% 0% 3% 0
[1, 2, 3, 4, 5, 6, 18] 0% 0% 0% 0% 0% 0% 0% 0% 0

[1, 2, 3, 4, 5, 6, 7, 8, 18] 0% 0% 0% 0% 0% 0% 0% 0% 1
[13, 15] 4% 35% 44% 63% 74% 32% 25% 40% 1

[9, 10, 11, 12] 0% 2% 4% 0% 0% 0% 0% 1% 1
[13, 15, 17] 0% 0% 1% 7% 13% 12% 0% 5% 0

[9, 10, 11, 12, 14, 16, 19] 0% 0% 0% 0% 0% 0% 0% 0% 1
[9, 10, 11, 12, 13, 14, 15, 16, 17, 19] 0% 0% 2% 0% 0% 0% 0% 0% 0

[0, 1, 2, 3, 4, 5, 6, 7, 8, 18] 0% 0% 0% 0% 0% 0% 0% 0% 0

99

Offline-learned LT Linkage Sets Frequencies

Table D.4: Percentual Frequencies for MAXCUT, `= 12, instance of median difficulty.

Linkage Set in LToff Fg0 Fg1 Fg2 Fg3 Fg4 Fg5 Fg6 Favg in pruned LToff

[0] 100% 100% 100% 100% 100% 100% 100% 100% 1
[1] 100% 100% 100% 100% 100% 100% 100% 100% 1
[2] 100% 100% 100% 100% 100% 100% 100% 100% 0
[3] 100% 100% 100% 100% 100% 100% 100% 100% 0
[4] 100% 100% 100% 100% 100% 100% 100% 100% 1
[5] 100% 100% 100% 100% 100% 100% 100% 100% 1
[6] 100% 100% 100% 100% 100% 100% 100% 100% 0
[7] 100% 100% 100% 100% 100% 100% 100% 100% 0
[8] 100% 100% 100% 100% 100% 100% 100% 100% 1
[9] 100% 100% 100% 100% 100% 100% 100% 100% 1
[10] 100% 100% 100% 100% 100% 100% 100% 100% 1
[11] 100% 100% 100% 100% 100% 100% 100% 100% 0

[7, 10] 6% 14% 6% 5% 12% 6% 0% 7% 1
[3, 9] 5% 38% 70% 64% 24% 18% 0% 31% 1
[5, 11] 7% 27% 45% 35% 19% 29% 0% 23% 0
[1, 8] 9% 39% 56% 32% 23% 18% 0% 25% 1

[1, 5, 8, 11] 1% 9% 31% 18% 5% 6% 0% 10% 1
[0, 2] 5% 10% 2% 2% 9% 12% 0% 6% 0
[4, 6] 11% 58% 90% 94% 73% 71% 100% 71% 1

[0, 2, 3, 9] 0% 9% 8% 8% 4% 6% 0% 5% 0
[0, 2, 3, 4, 6, 9] 0% 4% 8% 7% 4% 12% 0% 5% 0

[1, 5, 7, 8, 10, 11] 0% 2% 5% 3% 5% 6% 0% 3% 0

100

In Search of Optimal Linkage Trees

Roy de Bokx
Delft University of Technology

Delft, The Netherlands
Rdebokx1990@gmail.com

Dirk Thierens
Utrecht University

Utrecht, The Netherlands
D.Thierens@uu.nl

Peter A.N. Bosman
Centrum Wiskunde &

Informatica (CWI)
Amsterdam, The Netherlands

Peter.Bosman@cwi.nl

ABSTRACT
The recently introduced Linkage Tree Genetic Algorithm
(LTGA) has been shown to exhibit excellent scalability on
a variety of optimization problems. LTGA employs Linkage
Trees (LTs) to identify and exploit linkage information be-
tween problem variables. Much is already understood about
LTGA’s performance, but it is still unclear whether the LT
model can be further improved upon. In this paper we ana-
lyze the results of learning LTs offline by optimizing LTGA’s
performance as a function of static LTs. This results in a
better performance of LTGA than with online-learned LTs
as problem complexity increases. Further analysis of the
offline-learned LTs indicates that pruning the LT can result
in a further performance improvement of the LTGA. Using a
population-size-free internally parallelized version of LTGA,
we found that the optimal subset of the offline-learned LT
typically contains only about 50% of the nodes. This sug-
gests that the LT contains redundancies that may possibly
still be exploited to improve the performance of LTGA with
online-learned LTs.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Algorithms, Performance, Experimentation

Keywords
Evolutionary Computation, Parallel Computation, Genetic
Algorithms, Estimation-of-Distribution Algorithms, Linkage
Learning, Optimal Mixing, Linkage Tree Genetic Algorithm

1. INTRODUCTION
It is known that variable linkage is highly important in

solving certain problems efficiently. In particular, if strong

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’15, July 11-15, 2015, Madrid, Spain.
Copyright 2015 ACM TBA ...$15.00.

linkage exists between a set of variables, the chance of gen-
erating low-fitness offspring is high when these variables
are not transferred to the offspring together [12]. Linkage-
learning Evolutionary Algorithms (EAs) use linkage learn-
ing to construct a linkage model, which is exploited to solve
problems efficiently by taking into account important link-
ages during variation. It has been shown that when this
linkage model is aligned correctly with the structure of the
problem that is to be solved, EAs are capable of solving
such problems efficiently by performing variation based on
this linkage model, see e.g. [1]. One algorithm in particular
has shown to be very promising, which is the Linkage Tree
Genetic Algorithm (LTGA). This algorithm uses a Linkage
Tree (LT) as a linkage model to identify the problem’s struc-
ture, enabling it to solve various problems very efficiently,
requiring a smaller population size and less execution time
than most well-known problem-structure exploiting Evolu-
tionary Algorithms, such as those in the class of Estimation-
of-Distribution Algorithms (EDAs). This holds for well-
known benchmark problems, including Onemax, k -order De-
ceptive Trap, maximum overlapping nearest-neighbor NK-
Landscapes, MAXCUT and hierarchically structured HIFF
and HTRAP problems.

Understanding the reasons for the excellent performance
of LTGA is highly valuable. Besides hierarchically struc-
tured problems, LTGA is also able to efficiently solve prob-
lems for which a tree-like linkage model seems inappropri-
ate. Moreover, it has been shown that using a predetermined
linkage model that exactly resembles a problem’s formula-
tion structure instead of the LTs that are learned from the
population for every generation, not always results in a bet-
ter performance, especially for more complex problems such
as the NK-Landscapes and MAXCUT problem, where the
results are even much worse [10].

This brings us to ask the question what in fact makes a
linkage model ideal for LTGA to be used, either predeter-
mined, or learned online. This paper pursues to answer this
question by searching for an optimal replacement for the LT
in LTGA within the space of binary trees and subsets of
binary trees. Finding such an optimal replacement can pro-
vide great insights. Ultimately, this might even enable us to
improve the linkage model used by LTGA.

The remainder of this paper is organized as follows. We
first provide a basic understanding of LTGA in Section 2 to
support further sections. This is followed by a brief sum-
mary of related work in Section 3. Next, experiments aimed
at finding the optimal offline-learned LT are discussed in
section 4. Based on the results of these experiments, addi-

tional experiments are done aimed at investigating the ef-
fects of local search in Section 5 and the effects of pruning
the offline-learned LTs in Section 6. Finally, conclusions are
presented in Section 7.

2. LTGA
The Linkage Tree Genetic Algorithm (LTGA) is a state-

of-the-art linkage learning EA that uses a Linkage Tree (LT)
as linkage model to model and exploit variable linkages [1].
This LT supports efficient variation operations with the use
of Optimal Mixing (OM), enabling LTGA to converge to-
wards the optimal solution efficiently, requiring a smaller
population size and less run time than most Linkage Learn-
ing Evolutionary Algorithms for all benchmark problems
tested so far. A selection of these benchmark problems will
also be considered in this paper. In the remainder of this
section we will present a short outline of LTGA itself.

2.1 Benchmark problems
Let ` be the number of variables. The first problem is

the well-known Onemax problem, which can be expressed
by the following formula.

fOnemax(x) =

`−1∑

i=0

xi (1)

The second benchmark problem is the non-overlapping
additively decomposable composition of k -order Deceptive
Trap functions, denoted by the formula below. We consider
subfunctions with k = 5.

fTrap(x) =

(`/k)−1∑

i=0

f sub
Trap-k

(ki+k−1∑

j=ki

xj

)
(2)

where

f sub
Trap-k(u) =

{
1 if u = k
k−1−u

k
otherwise

Thirdly, the problem of maximum overlapping nearest-
neighbor NK-Landscapes is considered, which is a additively
decomposable composition of predetermined, but completely
random subfunctions of length k. Again, problem instances
with k = 5 are considered. This problem is expressed by
formula (3). For this problem, for each problem size, 100
randomly generated problem instances were used.

fNK-S1(x) =

`−k∑

i=0

f sub
NK(xi,i+1,...,i+k−1) (3)

Last, the well-known NP-Complete weighted MAXCUT
problem is used as a benchmark, which is defined given
a weighted undirected graph with a set of ` vertices V =
{v0, v1, ..., v`−1}, a set of edges E between the vertices, and
a weight wij for each edge (vi, vj) ∈ E. The goal in weighted
MAXCUT is to split V into two sets such that the sum of
the weights of all edges that are thereby cut, i.e. running be-
tween vertices in different sets, is maximized. By introduc-
ing a single binary variable xi for every vertex that indicates
if vertex vi is either in set 0 or set 1, the function to be op-
timized can be expressed by formula (4). For this problem,

1. P = generateRandomSolutions(n)

2. while stopCriteriaNotMet()

3. M = buildDistanceMatrix(P)

4. LT = learnLinkageTree(M)

5. Offspring = GOM(P, LT)

6. bestSoFar = Offspring.getBest()

7. P = Offspring

8. return bestSoFar

Figure 1: The Linkage Tree Genetic Algorithm

for each problem size, 10 randomly generated fully connected
graphs were generated. Weights were set randomly using a
β distribution with parameters α = 100, β = 1 and scaled
to the range of [1...5].

fweighted MAXCUT(x) =
∑

(vi,vj)∈E

{
wij if xi 6= xj

0 otherwise
(4)

2.2 The Algorithm
In 2010, Thierens presented the first implementation of

the Linkage Tree Genetic Algorithm (LTGA) [8]. Experi-
ments discussed in this paper were done with the most re-
cent version of LTGA [1] of which the code can be found
online1. However, Tournament Selection performed before
learning the LT in every generation was removed as it was
found that the additional selection pressure imposed by this
increases the minimally required population size, which ul-
timately negatively influences performance.

LTGA distinguishes itself from earlier model-based EAs
by learning an LT to drive variation. This LT is learned
online based on the population in each generation. This
way, LTGA aims to identify important variable linkages and
exploit these such that important building blocks are effi-
ciently exchanged between candidate solutions. Since the
first implementation of LTGA, several improvements were
developed, such as the use of Gene-pool Optimal Mixing
(GOM), Unweighted Pair Group Method with Arithmetic-
mean (UPGMA) [5] and Forced Improvement.

A high-level outline of LTGA is presented in Figure 1.
LTGA starts with a population P of n randomly generated
solutions. Every generation, first a distance matrix is built,
containing pair-wise distances for all variable pairs. The
distances are in turn based on the frequencies of variable
values in P [1]. A typical measure used is the Mutual In-
formation (MI) between two variables, which is a statistical
expression of dependency between stochastic random vari-
ables, rooted in information theory. MI is large for close
neighbors, i.e. strongly dependent variables, which is why
the distance matrix used by LTGA, also called the MIMa-
trix, contains negated MI values. Next, the LT is learned
based on this MIMatrix. Starting with all singleton vari-
able sets, also called linkage sets, a bottom-up agglomerative
hierarchical clustering algorithm repeatedly merges linkage
sets. By merging reciprocal nearest neighbors, based on the
MIMatrix, a tree-like linkage model, called the Linkage Tree,
can be constructed in only O(n`2) time, where ` is the num-
ber of variables [5]. An example of such an LT is displayed
in Figure 2.

1http://homepages.cwi.nl/~bosman/source_code.php

{0} {1} {2} {3} {4} {5} {6} {7} {8} {9}

{0, 1} {3, 4} {5, 6} {7, 8}

{0, 1, 2} {7, 8, 9}{3, 4, 5, 6}

{0, 1, 2, 3, 4, 5, 6}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Figure 2: An example Linkage Tree.

After the LT is learned, offspring are generated by per-
forming a procedure called Gene-pool Optimal Mixing (GOM)
[1]. During GOM, for each solution, the LT is traversed in a
per-solution random order, in which for each linkage set in
the LT a random donor solution from P is chosen. The val-
ues of the variables contained by the linkage set are copied
from the donor to the solution if and only if this results in a
solution of which the fitness is at least as good as the origi-
nal, which is called Optimal Mixing. After this is done, the
improved solution is stored in the collection of offspring.

Conclusively, after each generation the best solution found
so far is replaced by the best solution of the generated off-
spring and P is replaced by the generated offspring. A con-
secutive generation follows based on this new population if
none of the stop criteria are met, otherwise the best solution
found so far will be returned.

Note that any iterative process that concerns learning or
variation is done in a per-case random order, meaning that
the performance of LTGA, as well as the results of the exper-
iments shown in this paper are independent of the variable
ordering of problem formulations.

3. RELATED WORK
Related research has been performed on topics aimed at

uncovering the reasons behind the strengths of LTGA, such
as on the effects of different metrics for detecting linkage, as
to study what it is that is needed from a measure in order
for LTGA to converge to the optimal solution efficiently [3].
Mutual Information showed to have useful properties, which
is used in the current implementation of LTGA. Addition-
ally, metrics were presented aimed at evaluating the extent
to which the linkage sets in an LT support convergence to-
wards the optimal solution. The Linkage Model Evolvabil-
ity and the Evolvability-Based Fitness Distance Correlation
showed to be most useful for providing insight into the per-
formance of LTGA, showing that even though LTGA is not
always able to represent all (overlapping) information, it is
able to capture enough of the problem’s structure to solve
it reliably and efficiently [9].

Ensuing these results, Thierens and Bosman studied al-
ternatives to online-learned LTs (LTons), targeted explic-
itly at modeling linkage overlap [1]. This resulted in the
Linkage Trees and Neighbors Genetic Algorithm (LTNGA)
that constructs a linkage model by taking the intersection
of the linkage models learned by LTGA and the Multi-scale
Linkage Neighbors Genetic Algorithm (MLNGA) for each
generation. This LTNGA performs comparable to LTGA

for Onemax and Deceptive Trap, and slightly better for NK-
Landscapes and MAXCUT. Additionally, research has been
done aimed at constructing optimal fixed structures to re-
place the online-learned LTs of LTGA, which showed that
for the Onemax and Deceptive Trap a straight-forward fixed
structure indeed supports a better performance for LTGA
[10, 11]. For problems with a more intricate structure, how-
ever, such as the NK-Landscapes and MAXCUT problems,
such predetermined models were shown to be far less scal-
able, meaning that for larger problem instances the optimal
solution could not be found within reasonable time using
the predetermined linkage models, in contrast to the con-
ventional LTGA [10]. This is contrary to what is expected
and poses the question what in fact makes a linkage model
ideal for LTGA to be used, either predetermined, or learned
dynamically.

4. OFFLINE LINKAGE TREE LEARNING
To study the strengths and weaknesses of LTGA, we per-

formed experiments aimed at learning LT offline to be used
as a predetermined linkage model for LTGA, replacing the
LTons. Contrary to conventional approaches, this is done
by searching in the space of LTs and evaluating the associ-
ated performance of LTGA, as will be discussed below. It
is expected that an offline-learned LT (LToff) will contain
linkage sets that will best support LTGA in converging to-
wards the optimal solution. By constructing LToff s in this
manner and comparing them with the LTons used by LTGA,
we can verify to what extent LTGA is actually able to cap-
ture the structure of the problem at hand, and moreover,
whether this is actually beneficial to the performance of the
algorithm.

4.1 Search Space
As discussed in Section 2.2, the LT is built based on a

distance matrix by means of a hierarchical clustering algo-
rithm that iteratively combines nearest linkage neighbors.
The exact contents of the LT therefore depend on the spe-
cific contents of the distance matrix.

When searching for the optimal LToff , an efficient mech-
anism is needed to traverse the space of possible LToff s.
Using a binary encoding to represent all possible LToff s is
non-trivial and would result in a problem with high dimen-
sionality, of which it is questionable whether it can be solved
within reasonable time. Instead, the outcome of the hierar-
chical clustering algorithm as discussed above can be ma-
nipulated by changing the contents of the distance matrix,
resulting in LTs that represent different linkage contexts.
Using the iAMaLGaM algorithm, a real-valued EA [2], the
solution space of possible LToff s can be traversed efficiently
by finding optimal values for the continuous parameters in
the upper triangle of the distance matrix. Note that the
problem that iAMaLGaM is solving is far more complex
than the original problem, as for a problem with ` vari-
ables, the upper triangle of the distance matrix consists of
`(`−1)/2 continuous parameters that have to be optimized.
Additionally, fitness function evaluations are far more ex-
pensive. Therefore, generally only LToff s could be found
within reasonable time for problems with ` ≤ 25. The fit-
ness of a distance matrix is then defined by the performance
of LTGA with the associated LToff , for which a novel metric
was implemented.

4.2 Fitness
In this work, a metric is used for evaluating the perfor-

mance of predetermined linkage models that is less expen-
sive than the typical use of multiple bisections to determine
the minimally required population size [1]. As indicated by
Goldman and Punch, no implementation of LTGA existed
yet that could overcome the problem of premature conver-
gence without first requiring information about the ideal
population size to be set [4]. Therefore, we implemented a
population-size-free scheme of LTGA that iteratively starts
an instance of LTGA with an increasing population size n. If
after the termination of an instance, starting at n = 1, none
of the stop criteria, e.g. the optimal solution was found,
were met, a new instance is started with population size
n = 2nprevious.

The average number of evaluations needed by this popula-
tion-size-free scheme over 1000 independent runs with fixed,
but random, seeds defines the fitness of an LToff , where
per run the population-size-free scheme is stopped when the
optimal solution was found. In this situation, the average
number of evaluations is preferred over the median number
of evaluations as the average contains more information, for
the number of evaluations can be largely varying between
independent runs. For Onemax and Deceptive Trap, 1000
independent runs are performed. For NK-Landscapes and
MAXCUT, 1000 independent runs were performed for each
problem size on the easiest, median and hardest problem
instances. These are the instances that require the least,
median and largest minimally required population size re-
spectively for which LTGA is able to solve the problem for
99 out of 100 runs [1].

This metric is far less computationally intensive than find-
ing the minimally required population size with multiple bi-
sections [1] and could therefore be used by iAMaLGaM to
optimize distance matrices in search for the optimal LToff .

4.3 Results
We compare the performance of LTGA using LToff s found

by iAMaLGaM with the conventional LTGA that uses LTons
learned by hierarchical clustering of the population-based
MIMatrix in order to give insight into the extent to which
LTGA is able to identify linkage sets that contribute to a
better performance.

4.3.1 Linkage Tree Performance Comparison
LToff s are compared with LTons in terms of performance

of LTGA with the population-size-free scheme described above.
Note that just comparing the performance of LTGA using
these LTs is in a sense not a fair comparison, as the perfor-
mance of the conventional LTGA includes the costs of both
exploration, being the learning of the problem’s structure
online, and exploitation, being the traversal of the search
space using this structure. For the LToff s, exploration is
done by iAMaLGaM and using the LToff , LTGA only per-
forms exploitation. The costs of learning LToff s with iA-
MaLGaM are not considered as this is vastly more expensive
and is solely aimed at unveiling characteristics of optimal
linkage models, rather than functioning as an alternative
linkage learning mechanism. However, defining the exact
costs of online linkage learning is all but trivial. For One-
max no significant linkage learning can be done. For a prob-
lem with a clear problem structure, such as Deceptive Trap,
a very rough indication of the costs can be made. Exper-

iments showed that after the first, and for larger problems
after the second, generation, the important linkage sets are
present in the LT more than 98% of the time. However, the
exact costs of online linkage learning cannot be accurately
expressed in terms of generations. Moreover, for more intri-
cate problems such as NK-Landscapes and MAXCUT, the
learning process might not be as straight-forward as for De-
ceptive Trap, because there may be other important problem
structures in addition to the linkage structure, such as sym-
metries and multi-modalities, i.e. local optima. Therefore,
in order to make an accurate comparison, more research has
to be done in exactly defining the costs of online linkage
learning.

4.3.2 Offline-learned Linkage Tree Performance
The results in Figure 3 show that the LToff s found for

Onemax cause a slightly worse performance compared to
LTons. This is rather trivial, as for Onemax no variable
dependencies exist, meaning that the set of singleton link-
age sets, ideally represents the linkage structure, which is
always included by both LToff s and LTons. For Deceptive
Trap, iAMaLGaM is able to learn LToff s that make LTGA
perform slightly better, however also here the difference is
marginal and even decreasing for larger problem sizes.

For NK-Landscapes, however, results show that LTGA us-
ing the LToff s substantially outperforms the conventional
LTGA for all problem instances tested. Moreover, results
with LToff s seem to be slightly better scalable, as the dif-
ference with the performance of the conventional LTGA in-
creases with the complexity of the problem instances. This
suggests that the LToff s learned are intrinsically better than
the LTons used by LTGA. This also applies to MAXCUT,
for which also increasingly better performing LToff s could
be found as the problem complexity increases.

While earlier attempts to construct a predetermined model
that could outperform the LTons were not fruitful [10], it is
now shown that indeed such predetermined linkage mod-
els exist. This shows that the LTons used by LTGA might
not be optimal linkage models. In order to understand why
the LTons could be outperformed and what flaws these LTs
have, the differences between the LToff s and LTons have to
be investigated in more detail, which we do next.

4.3.3 Linkage Tree Comparison
Linkage Subsets in LToff s are driven by LTGA’s perfor-

mance with these LToff s and thus in a sense must contain
key linkage structures. To obtain insight into the extent to
which LTGA also identifies these structures, we study the
overlap between the LToff s and the LTons used by LTGA.
We perform 100 independent runs of LTGA with the mini-
mally required population size, in which occurrences of the
linkage sets of the LToff are tracked for every LTon , i.e. for
every generation in every run. As an example, for Deceptive
Trap with ` = 10 the occurrence ratios are presented in Ta-
ble 1 and for the easy problem instance of NK-Landscapes
with ` = 10 the occurrence ratios are presented in Table 2.

For Onemax, these results are rather trivial, as the im-
portant linkage sets of this problem consist of all singleton
linkage sets, which is always contained in both LToff s and
LTons. This is backed by the fact that all other sets in the
LToff have a low occurrence ratio in the LTons found.

For Deceptive Trap, however, results are more insightful.
Experiments were performed for k = 5, meaning that the

 10

 100

 1000

 5 10 15 20 25

#
E

v
a

lu
a

ti
o

n
s

Onemax

 10

 100

 1000

 10000

 10 15 20 25

NK-Landscapes Easy

 10

 100

 1000

 10000

 10 15 20 25

NK-Landscapes Median

 100

 1000

 10000

 100000

 10 15 20 25

NK-Landscapes Hard

 10

 100

 1000

 10000

 5 10 15 20 25

#
E

v
a

lu
a

ti
o

n
s

Number of variables

Deceptive Trap

Offline-learned LT

 1

 10

 100

 1000

 10000

 6 12 25

Number of variables

MAXCUT Easy

Filtered Offline-learned LT

 1

 10

 100

 1000

 10000

 6 12 25

Number of variables

MAXCUT Median

LTGA

 1

 10

 100

 1000

 10000

 6 12 25

Number of variables

MAXCUT Hard

Figure 3: Experimental results of LTGA using (filtered) offline-learned LTs.

Table 1: LToff linkage set average occurrence ra-
tios over 100 LTGA runs for Deceptive Trap, ` = 10,
including average occurrence ratio. Bold sets were
selected during meta-optimization.

Linkage set g0 g1 g2 g3 g4 Avg
{0} 100% 100% 100% 100% 100% 100%
{1} 100% 100% 100% 100% 100% 100%
{2} 100% 100% 100% 100% 100% 100%
{3} 100% 100% 100% 100% 100% 100%
{4} 100% 100% 100% 100% 100% 100%
{5} 100% 100% 100% 100% 100% 100%
{6} 100% 100% 100% 100% 100% 100%
{7} 100% 100% 100% 100% 100% 100%
{8} 100% 100% 100% 100% 100% 100%
{9} 100% 100% 100% 100% 100% 100%
{0, 2} 11% 14% 8% 26% 23% 16%
{6, 8} 6% 11% 9% 22% 18% 13%
{6, 8, 9} 2% 11% 11% 10% 3% 7%
{6, 7, 8, 9} 0% 19% 25% 0% 0% 9%
{5, 6, 7, 8, 9} 0% 77% 98% 99% 100% 75%
{0, 2, 3} 0% 12% 6% 12% 11% 8%
{0, 1, 2, 3} 0% 12% 24% 2% 0% 8%

{0, 1, 2, 3, 4} 0% 82% 99% 99% 100% 76%

building blocks of the problem are found at {0, 1, 2, 3, 4},
{5, 6, 7, 8, 9}, For ` = 10, results show that indeed the
two important linkage sets {0, 1, 2, 3, 4} and {5, 6, 7, 8, 9},
which are both present in the LToff , are also dominantly
represented in the LTons, occurring in 75% and 76% of the
LTons on average respectively, while other sets have an oc-
currence ratio of 16% or less. For ` = 15, 20, 25, this clear
division also occurred: all important linkage sets had an av-
erage occurrence ratio of over 60%, while all other linkage
sets in the offline LT had an occurrence ratio below 20%.

A question that naturally arises is why these important
linkage sets do not have an average occurrence ratio of 100%.
First of all, the occurrence ratios of all linkage sets in the

Table 2: LToff linkage set average occurrence ra-
tios over LTGA 100 runs for NK-Landscapes, ` = 10,
median difficulty problem instance, including aver-
age occurrence ratio. Bold sets were selected during
meta-optimization.

Linkage set g0 g1 g2 g3 g4 Avg
{0} 100% 100% 100% 100% 100% 100%
{1} 100% 100% 100% 100% 100% 100%
{2} 100% 100% 100% 100% 100% 100%
{3} 100% 100% 100% 100% 100% 100%
{4} 100% 100% 100% 100% 100% 100%
{5} 100% 100% 100% 100% 100% 100%
{6} 100% 100% 100% 100% 100% 100%
{7} 100% 100% 100% 100% 100% 100%
{8} 100% 100% 100% 100% 100% 100%
{9} 100% 100% 100% 100% 100% 100%
{3, 5} 6% 31% 33% 29% 28% 25%

{1, 3, 5} 1% 21% 38% 12% 0% 14%
{7, 8} 10% 10% 14% 16% 0% 10%
{2, 4} 11% 23% 3% 0% 0% 7%
{7, 8, 9} 1% 0% 2% 0% 0% 1%

{2, 4, 7, 8, 9} 0% 0% 0% 0% 0% 0%
{0, 1, 3, 5} 0% 6% 8% 4% 4% 4%
{0, 1, 2, 3,
4, 5, 7, 8,
9}

4% 0% 0% 0% 0% 1%

offline-learned LT are between 0% and 10% for the first gen-
eration, which is rather obvious as in the first generation,
an LT is built based on a random population which does
not contain any signs of linkage until GOM is performed.
Results show however, that as generations progress, LTGA
is quickly able to identify the building blocks of the Decep-
tive Trap problem, as the occurrence of the building block
linkage sets rapidly increases, showing percentages between
65% and 85% for the second generation and 98% and over
for subsequent generations for all problem sizes. These val-
ues decrease again for the last two generations, because by

then the algorithm is mainly converging towards, i.e. copy-
ing from, the optimal solution that is already dominantly
represented in the population.

Additionally, tests were performed for the NK-Landscapes
and MAXCUT problem, for which the problem structure is
more intricate and the optimal linkage structure is unknown.
Figure 3 shows for NK-Landscapes that iAMaLGaM is able
to learn LToff s that impose a better performance for LTGA
compared to the use of LTons, even showing to be more
scalable for larger problem instances tested. This difference
in performance is reflected by the lack of overlap between
the LToff s and LTons, as generally the sets contained by
the LToff s are only poorly represented in the LTons, as also
shown in Table 2. On rare occasions, some sets have an
occurrence ratio of around 40%-50%, while generally, occur-
rence ratios do not exceed 30%.

For MAXCUT, tests show that learning an LToff is less
fruitful for less complex problems, however as the problem
size and complexity increases, iAMaLGaM was able to learn
LToff s that support a better performance for LTGA com-
pared to when LTons are used. Also here the difference
is backed by a general mismatch between the LToff s and
LTons.

The construction of LTons is subject to the exploration
scheme used by LTGA and to the properties of Mutual In-
formation. It has been shown that finding an alternative,
better approach for these factors is non-trivial [10, 3]. Re-
sults presented in this paper show that although LTGA is
able to capture important linkages, the resulting LTons dif-
fer significantly from optimal LToff s. Moreover, LTGA per-
forms significantly better when using these LToff s instead
of LTons for more complex problems, even showing to be
more scalable. This suggests that these LTons might not
be optimal and a more appropriate exploration scheme or
distance quantity might exist.

5. INTRODUCING LOCAL SEARCH
No appropriate linkage model can be learned in the first

generation of LTGA as it is based on a randomly generated
population. However, in subsequent generations, LTGA is
able to capture important Linkage Sets in the LT that are
necessary to find the optimal solution. A natural question
that arises is whether the costs of this online linkage learning
can be reduced.

First, experiments were performed by replacing the LTon

in the first generation with only the singleton linkage sets.
This however gives a worse performance of LTGA, which
can be explained by the observation that an LT learned from
a randomly generated population contains, besides the set
of all singleton linkage sets, additional linkage sets. These
linkage sets might seem inappropriate, however, they cause
additional selection pressure which also contributes to un-
veiling the problem’s structure.

Additionally, single-pass first improvement local search was
implemented. Goldman and Punch presented a hill climb-
ing algorithm that iteratively inverts variables of a solution
in a random order if and only if this imposes an improve-
ment of the solution [4]. While in their implementation this
is repeated until no further improvement could be achieved,
our implementation only performs such a cycle once for each
solution in the first, randomly generated, population. Note
that as in our experiments no partial evaluation is used, as
this is not applicable to all benchmark problems, every bit

flip invokes one function evaluation, resulting in a total of
O(n ∗ `) evaluations. If partial evaluation can be used, this
can possibly be reduced to O(n).

Results of experiments with local search are shown in Fig-
ure 3, showing that generally the population-size-free scheme
using this form of local search only slightly outperforms
the conventional LTGA for most problems. For more com-
plex problems, such as MAXCUT, local search was found
to be a suitable substitute for the learning process in the
first generations, significantly reducing the costs of learn-
ing the problem’s structure. Note that on the total number
of evaluations this still implies only marginal improvement,
contrary to results presented by Goldman and Punch, sug-
gesting there might be a subtle difference in their implemen-
tation of LTGA [4]. The only problem for which outstanding
results are found, is for Onemax, which is rather obvious, as
a hill climbing algorithm as described above is able to find
the optimal solution immediately, requiring only a popula-
tion size of n = 1 and making LTGA itself redundant.

6. PRUNING THE LINKAGE TREE
A further attempt at finding the optimal LT is the pruning

of the LT. LTGA is already able to outperform other black-
box optimization algorithms, such as ECGA and hBOA with
the use of an LT[6, 7]. Though what if we take away the con-
straint of using a tree-structured linkage model? Additional
overhead may exist in the LT in the form of superfluous
linkage sets that require additional evaluations. In the past,
both attempts to use predetermined linkage models and to
filter superfluous linkage sets from the LTons were shown
to meet with checkered results [1, 10]. Filtering LToff s has
not been tried before. Given that results so far showed that
the LToff s already outperform the conventional LTGA, this
approach seems most promising as in the worst case, the
optimal subset of an LToff is the LToff itself.

6.1 Meta Optimization using LTGA
Searching for an optimal subset of the linkage sets of the

LToff is a combinatorial problem of which the solution space
can be binary encoded in a straightforward manner. For in-
stance if the LToff would be

{
{0}, {1}, {2}, {1, 2}, {0, 1,

2}
}

, the solution 10010 would represent the linkage model{
{0}, {1, 2}

}
. Such a linkage model can then be evaluated

as described in Section 4.2, which means that LTGA can be
used to search an optimal linkage model within the space
spanned by the LToff . Because for this problem no knowl-
edge is available about the complexity of the problem and
the required population size, the population-size-free scheme
for LTGA is used. LTGA was halted when two consecutive
runs returned the same answer, as for all benchmark prob-
lems tested so far it was found that this often means that
the returned solution is in fact the optimal solution.

6.2 Parallelization
Finding the optimal subset of linkage sets of LToff s is far

from trivial and requires far more evaluations than previ-
ously faced problems. Evaluations also require more time, as
1000 instances of the population-size-free scheme for LTGA
are executed for every evaluation. Therefore, a parallelized
implementation of LTGA was developed that could be run
on a multi-core architecture.

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 50 100 200 400

#
E

v
a

lu
a

ti
o

n
s

Onemax

 100

 1000

 10000

 100000

 1e+06

 10 15 20 25 50 100 200 400

NK-Landscapes Easy

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 15 20 25 50 100 200 400

NK-Landscapes Median

 1000

 10000

 100000

 1e+06

 1e+07

 10 15 20 25 50 100 200 400

NK-Landscapes Hard

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20 25 50 100 200 400

#
E

v
a

lu
a

ti
o

n
s

Number of variables

Deceptive Trap

Online-learned LT + local search

 1

 10

 100

 1000

 10000

 100000

 1e+06

 6 12 25 50 100

Number of variables

MAXCUT Easy

Randomly halved online-learned LT

 10

 100

 1000

 10000

 100000

 1e+06

 6 12 25 50 100

Number of variables

MAXCUT Median

LTGA

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 6 12 25 50 100

Number of variables

MAXCUT Hard

Figure 4: Experimental results of LTGA using online-learned LTs.

Parallelization can be done internally and externally. Ex-
ternal parallelization, popularly called Embarrasingly Par-
allel, is done by running single-threaded instances of the
program on multiple CPU cores simultaneously, discarding
all but the best of the solutions found by these instances.
As only one instance has to find the optimal solution, the
chance of finding the optimal solution per instance is allowed
to be less, requiring a smaller population size per instance,
which in turn implies a lower required execution time.

Internal parallelization is done by parallelizing the compo-
nents of the algorithm that require significant computation
time. For LTGA, extensive profiling showed that this con-
cerned the construction of the MIMatrix and the generation
of new solutions, the latter mainly being caused by the time
required for evaluating possible solutions. Because all cells
in the MIMatrix can be calculated independently and all
solutions in a population can be improved independently,
LTGA was found very suitable for internal parallelization.

Parallelization comes with a certain overhead, for instance
caused by a thread scheduler and the access of shared data.
Results show, however, that it is almost always profitable
to use the internally parallelized implementation over the
externally parallelized implementation for the populations-
size-free LTGA as the number of available CPU cores in-
creased. Using a 64-core server, we were able to perform the
meta optimization as described above.

6.3 Experimental Results
A first analysis of the results of the meta-optimization of

LTGA is done by comparing the performance of LTGA using
the offline-learned filtered LTs with the performance of the
conventional LTGA that uses LTons. Also these results can
be found in Figure 3. It is clear that LTGA, when using
the selected subsets of the LToff s as linkage models, shows
an even better performance than LTGA when using the full
LToff s, further outperforming the conventional LTGA. This

enforces our finding that the linkage models used by LTGA
might not be optimal and performance improvements can
still be gained by using more suitable linkage models. Note
of course, that such performance improvement can only be
gained if costs of constructing more suitable linkage models
are comparable to the current costs of learning LTs online.

In Tables 1 and 2, the linkage sets that were selected by
meta-optimization are shown in bold. For Onemax, the op-
timal subset of the LToff consists of all singleton linkage sets
but one. This is not exactly as expected, as the complete
set of singleton linkage sets represents the structure of this
problem best, as discussed before. However, assume that a
solution s could be improved using a singleton linkage set
k, which in the case of Onemax means that the value of
the variable in k is set to 0 in s. If a donor d exists for
which the value of the variable in k is set to 1, performing
GOM with donor d on s will improve s. However, this is
equivalent to applying GOM to d with s as a donor with
the same linkage model minus k. The only difference is that
this linkage model will require one evaluation less on aver-
age, meaning that the optimal linkage model for Onemax is
the set of singleton linkage sets, minus one singleton linkage
set. In theory, when using the minimally required popula-
tion size, which implies that for every variable there is at
least one solution that has a value of 1 for this variable,
the initial population consists of uniformly distributed solu-
tions, meaning that any singleton linkage set can be chosen
as the one to discard, as no linkage set can be preferred
of the other. Meta-optimization is therefore able construct
an optimal Subset of the LToff by discarding one singleton
linkage set from the set of singleton linkage sets.

Comparable results were found for Deceptive Trap, for
which an example is shown in Table 1. Also for larger
problem instances all but one important linkage sets were
selected. Also for NK-Landscapes MAXCUT results were
studied, though no clear correlation nor pattern could be

found for the selected linkage sets, for which the intricate
problem structure is the most important reason.

One clear pattern that was found in the results was the
fact that in general only half of the linkage sets in the LToff s
were selected by the meta-optimization, which is likely due
to the overlap between linkage sets contained in the LT. For
instance in the example in Table 2, the set {7, 8} is also
contained in the sets {7, 8, 9}, {2, 4, 7, 8, 9} and {0, 1, 2, 3,
4, 5, 7, 8, 9}. As no clear correlation could be found about
which 50% was removed or maintained, an experiment was
performed where during GOM for each solution only half of
the LT was traversed, simulating the discarding of 50% of
the LT randomly for every solution. Results can be found in
Figure 3, showing that, although better than expected, the
performance does not consistently exceed the performance
of the conventional LTGA. As per solution only 50% of the
evaluations are performed while the total number of evalua-
tions is quite similar to the number of evaluations required
by the conventional LTGA, these results indicate that when
using only a random half of the LT, LTGA will need a larger
population size or more generations to find the optimal so-
lution. This shows that indeed a specific underlying scheme
is causing half of the LTs to be redundant and a more ad-
vanced heuristic is needed to efficiently determine a more
suitable linkage model for LTGA, either for fully learning
the LT in a different manner of by pruning LTons.

7. CONCLUSIONS
In this paper, results were presented that were found in

search of the optimal Linkage Tree to use in LTGA. To this
end we learned predetermined LTs by offline optimizing the
performance of LTGA. For all benchmark problems, LToff s
could be learned that resulted in linkage models that are
better as the complexity of the problem increases, resulting
in a better performance of LTGA when they were used as a
predetermined linkage model, replacing the LTons. Analyz-
ing these results, the LTons used by LTGA were found to
contain inefficiencies caused by the presence of superfluous
linkage sets in the LT. An internally parallelized version of
LTGA was implemented, leveraging computational power
of multi-core CPU architectures. Combining this with a
population-size-free scheme of the LTGA enabled us to find
optimal subsets of these LToff s, which in turn showed a per-
formance increase by up to a factor of 6. These results show
that the LTons used by LTGA might not be optimal and per-
formance improvement might be still be gained when more
suitable linkage models can be constructed. It is important
to note, however, that the magnitude of this performance
improvement is subject to the costs implied by constructing
such linkage models, meaning that significant performance
improvement can only be achieved when they can be con-
structed at costs that are comparable to the current costs
of learning the LTs online. Future work includes construct-
ing a suitable metric for defining these exact costs of online
linkage learning.

In general, about 50% of the linkage sets contained by
the LToff s were filtered out, though experiments in which
per solution only a random 50% of the linkage sets in the
LT were used during GOM showed not to be fruitful. As
no clear correlation between the linkage sets in the pruned
LToff s could be found for problems other than Onemax and
Deceptive Trap, future work also includes research aimed at
gaining more insight into the contents of pruned LToff s in
order to find a method for constructing optimal linkage mod-

els. This might ultimately enable us to reduce the number of
evaluations, resulting in further performance improvement
for LTGA.

8. REFERENCES
[1] P. A. Bosman and D. Thierens. More concise and robust

linkage learning by filtering and combining linkage
hierarchies. In Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’13,
pages 359–366, New York, NY, USA, 2013. ACM.

[2] P. A. N. Bosman, J. Grahl, and D. Thierens. Benchmarking
parameter-free AMaLGaM on functions with and without
noise. Evolutionary Computation, 21(3):445–469, Sept.
2013.

[3] P. A. N. Bosman and D. Thierens. On measures to build
linkage trees in LTGA. In Parallel Problem Solving from
Nature - PPSN XII, volume 7491, pages 276–285. Springer,
2012.

[4] B. W. Goldman and W. F. Punch. Parameter-less
population pyramid. In Proceedings of the 2014 Conference
on Genetic and Evolutionary Computation, GECCO ’14,
pages 785–792, New York, NY, USA, 2014. ACM.

[5] I. Gronau and S. Moran. Optimal implementations of
UPGMA and other common clustering algorithms. Inf.
Process. Lett., 104(6):205–210, Dec. 2007.

[6] G. R. Harik, F. G. Lobo, and K. Sastry. Linkage learning
via probabilistic modeling in the extended compact genetic
algorithm (ECGA). In Scalable optimization via
probabilistic modeling, pages 39–61. Springer, 2006.

[7] M. Pelikan and D. Goldberg. Hierarchical bayesian
optimization algorithm. In M. Pelikan, K. Sastry, and
E. Cantú-Paz, editors, Scalable Optimization via
Probabilistic Modeling, volume 33 of Studies in
Computational Intelligence, pages 63–90. Springer, 2006.

[8] D. Thierens. The linkage tree genetic algorithm. In
R. Schaefer, C. Cotta, J. Ko lodziej, and G. Rudolph,
editors, Parallel Problem Solving from Nature, PPSN XI,
volume 6238 of Lecture Notes in Computer Science, pages
264–273. Springer Berlin Heidelberg, 2010.

[9] D. Thierens and P. A. N. Bosman. Evolvability analysis of
the linkage tree genetic algorithm. In C. A. C. Coello,
V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone,
editors, Parallel Problem Solving from Nature - PPSN XII,
volume 7491 of Lecture Notes in Computer Science, pages
286–295. Springer Berlin Heidelberg, 2012.

[10] D. Thierens and P. A. N. Bosman. Predetermined versus
learned linkage models. In Proceedings of the 14th Annual
Conference on Genetic and Evolutionary Computation,
GECCO ’12, pages 289–296, New York, NY, USA, 2012.
ACM.

[11] S.-M. Wang, Y.-F. Tung, and T.-L. Yu. Investigation on
efficiency of optimal mixing on various linkage sets. In
Evolutionary Computation (CEC), 2014 IEEE Congress
on, pages 2475–2482, July 2014.

[12] T.-L. Yu, K. Sastry, and D. E. Goldberg. Linkage learning,
overlapping building blocks, and systematic strategy for
scalable recombination. In Proceedings of the 7th Annual
Conference on Genetic and Evolutionary Computation,
GECCO ’05, pages 1217–1224, New York, NY, USA, 2005.
ACM.

In Search of Optimal Linkage Trees

Roy de Bokx
Delft University of Technology

Delft, The Netherlands
Rdebokx1990@gmail.com

Dirk Thierens
Utrecht University

Utrecht, The Netherlands
D.Thierens@uu.nl

Peter A.N. Bosman
Centrum Wiskunde &

Informatica (CWI)
Amsterdam, The Netherlands

Peter.Bosman@cwi.nl

Keywords
Evolutionary Computation; Parallel Computation; Genetic
Algorithms; Estimation-of-Distribution Algorithms; Link-
age Learning; Optimal Mixing; Linkage Tree Genetic Al-
gorithm

CCS Concepts
•Mathematics of computing → Evolutionary algo-
rithms; •Computing methodologies → Model veri-
fication and validation;

1. INTRODUCTION
Linkage-learning Evolutionary Algorithms (EAs) use link-

age learning to construct a linkage model, which is exploited
to solve problems efficiently by taking into account impor-
tant linkages, i.e. dependencies between problem variables,
during variation. It has been shown that when this linkage
model is aligned correctly with the structure of the problem,
these EAs are capable of solving problems efficiently by per-
forming variation based on this linkage model [2]. The Link-
age Tree Genetic Algorithm (LTGA) uses a Linkage Tree
(LT) as a linkage model to identify the problem’s structure
hierarchically, enabling it to solve various problems very ef-
ficiently. Understanding the reasons for LTGA’s excellent
performance is highly valuable as LTGA is also able to ef-
ficiently solve problems for which a tree-like linkage model
seems inappropriate. This brings us to ask what in fact
makes a linkage model ideal for LTGA to be used.

2. OFFLINE LINKAGE TREE LEARNING
To study the strengths and weaknesses of LTGA, we per-

formed experiments aimed at learning LTs offline to be used
as predetermined linkage models for LTGA, that replace the
online-learned LTs (LTons). Contrary to conventional ap-
proaches, this is done by searching in the space of LTs and
evaluating the associated performance of LTGA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764679

 10

 100

 1000

 10000

 100000

 10 15 20 25

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

NK-Landscapes Hard

 1

 10

 100

 1000

 10000

 100000

 6 12 25

#
 E

v
a
lu

a
ti
o
n
s

Number of variables

MAXCUT Hard

LTGA using LToff LTGA using pruned LToffLTGA using LTons

Figure 1: Experimental results of LTGA using
(pruned) offline-learned LTs for the hardest NK-
Landscapes and MAXCUT instances.

Using a binary encoding to represent all possible offline-
learned LTs (LToff s) is non-trivial and would result in a
problem with high dimensionality, of which it is questionable
whether it can be solved within reasonable time. Instead,
the outcome of the hierarchical clustering algorithm used by
LTGA to learn LTons based on a population can be manip-
ulated by forcing different contents into the distance matrix
used, resulting in LTs that represent different linkage con-
texts. We used the real-valued EA known as iAMaLGaM to
this end, as it was found to be very robust in finding suitable
contents for a distance matrix [1]. The fitness of solutions,
i.e. distance matrices, evaluated by iAMaLGaM was defined
as the number of evaluations needed by LTGA with a newly
implemented population-size-free scheme when the LTons of
LTGA are replaced by the corresponding offline-learned LT
(LToff), averaged over 1000 runs. This population-size-free-
scheme repeatedly initiates instances of LTGA, ever dou-
bling the population size until a stopping condition is met.

This resulted in distance matrices that support the cre-
ation of optimal LToff s, being LTs that cause the largest
reduction in required number of evaluations by LTGA when
such an LToff is used as a predetermined linkage model, re-
placing the LTons of LTGA.

2.1 Experimental Results
We compare the LToff s found by iAMaLGaM with the

LTons learned by the conventional LTGA in terms of LTGA’s
performance and by the contents of these LTs. Figure 1
shows the performance imposed by LTGA when using ei-
ther LToff s or LTons, which corresponds to the fitness values
found by iAMaLGaM. Results for pruned LToffs in Figure
1 can be ignored for now.

For NK-Landscapes and MAXCUT, experiments show that
LTGA using the LToff s substantially outperforms the con-
ventional LTGA, as reflected by Figure 1. Moreover, LTGA
using LToff s seems to be slightly better scalable, suggest-
ing that the LToff s learned are intrinsically better than the
LTonand raising the question why this is the case.

Linkage sets in LToff s are determined based on LTGA’s
performance when using these LToff s and thus in a sense
must contain key linkage structures. To obtain insight into
the extent to which LTGA also identifies these structures,
we study the overlap between the LToff s and the LTons used
by LTGA over 100 independent runs of LTGA. For Onemax,
results of these experiments are rather trivial, however for
Deceptive Trap, these experiments show that after the sec-
ond generation all important linkage sets are present in the
LTon more than 98% of the time. This verifies that LTGA
is able to identify important linkages and represent these in
the LTs learned for problems with clear linkage structures.

While earlier attempts to construct appropriate predeter-
mined linkage models were not fruitful for more intricate
problems such as NK-Landscapes and MAXCUT [3], these
results show that indeed such predetermined linkage models
exist. This indicates that the LTons used by LTGA might
not be optimal linkage models as iAMaLGaM is able to
learn LToff s that differ significantly from the LTons while
containing important linkage sets and supporting a better
performance of LTGA. A clear explanation for this phe-
nomenon was not found after inspecting the differences be-
tween LToff s and LTons.

3. PRUNING THE LINKAGE TREE
Experiments described above resulted in intrinsically bet-

ter LTs. Though what if we take away the constraint of
using a tree-structured linkage model? Additional overhead
may exist in the LT in the form of superfluous linkage sets
that impose additional evaluations when performing varia-
tion. Therefore, the found LToff s were pruned to filter out
such linkage sets.

This was done with the use of LTGA itself by encoding
subsets of an LToff in a straightforward manner. For in-

stance if the LToff would be
{
{0}, {1}, {2}, {1, 2}, {0, 1,

2}
}

, the solution 10010 would represent the linkage model{
{0}, {1, 2}

}
. As no knowledge was available about the re-

quired population size for this problem, the population-size-
free scheme was used. Moreover, an internally parallelized
implementation of LTGA was used in this scheme that is
able to distribute the workload of the construction of the
distance matrix and the generation of new solutions over
processor cores available in a multi-core architecture.

3.1 Experimental Results
Experimental results show that LTGA, when using the se-

lected subsets of the LToff s as linkage models, exhibits even
better performance than LTGA when using the full LToff s,
further outperforming the conventional LTGA. The perfor-
mance of LTGA when using the pruned LToff s is included in
Figure 1 for the hardest problem instances of NK-Landscapes
and MAXCUT in a randomly generated test-suite of 100 in-
stances.

An analysis of the contents of the pruned LToff s show
that for Onemax and Deceptive Trap, the pruned LToff con-
tains all but one of the important linkage sets, which is as

expected. For NK-Landscapes and MAXCUT, however, no
clear correlation nor pattern could be found among the se-
lected linkage sets. One clear pattern that was found in
general, was that only half of the linkage sets in the LToff s
were selected, which is likely due to the overlap between
linkage sets contained in the LT. Experiments performed in
which for each solution only a random half of the LT was
used when performing variation, show that, although better
than expected, the performance does not consistently exceed
the performance of the conventional LTGA. This indicates
that indeed a specific underlying scheme is causing half of
the LTs to be redundant and a more advanced heuristic is
needed to efficiently determine a more suitable linkage model
for LTGA, either for fully learning the LT in a different man-
ner of by pruning LTons at low costs.

4. CONCLUSIONS & FUTURE WORK
The recently introduced Linkage Tree Genetic Algorithm

(LTGA) has been shown to exhibit excellent scalability on
a variety of optimization problems. LTGA employs Link-
age Trees (LTs) to identify and exploit linkage information
between problem variables. Much is already understood
about LTGA’s performance, but it is still unclear whether
the LT model can be further improved upon. In this work
we analyzed the results of learning LTs offline by optimiz-
ing LTGA’s performance as a function of static LTs. This
resulted in a better performance of LTGA than with online-
learned LTs as problem complexity increases. Further anal-
ysis of the offline-learned LTs indicated that pruning the
LT can result in a further performance improvement of the
LTGA up to a factor 6. Using a population-size-free inter-
nally parallelized version of LTGA, we found that the opti-
mal subset of the offline-learned LT typically contains only
about 50% of the nodes. This suggests that the LT model
contains redundancies that may possibly still be exploited to
improve the performance of LTGA with online-learned LTs.
The magnitude of this performance improvement is subject
to the costs implied by constructing improved linkage mod-
els, meaning that significant performance improvement can
only be achieved when they can be constructed at costs that
are comparable to the current costs of learning the LTs on-
line. Future work is aimed at constructing a suitable metric
for defining these exact costs of online linkage learning and
gaining more insight into the contents of pruned LToff s in
order to find a method for constructing linkage models of
higher quality. This might ultimately enable us to reduce
the number of evaluations, increasing the performance of
LTGA and supporting the ability to solve more complex
problems.

5. REFERENCES
[1] P. A. N. Bosman. On empirical memory design, faster

selection of bayesian factorizations and parameter-free
gaussian EDAs. In Proc. of the 11th Annual Conf. on
Genetic and Evolutionary Computation, GECCO ’09, pages
389–396, New York, NY, USA, 2009. ACM.

[2] P. A. N. Bosman and D. Thierens. More concise and robust
linkage learning by filtering and combining linkage
hierarchies. In Proc. of the 15th Annual Conf. on Genetic
and Evolutionary Computation, GECCO ’13, pages 359–366,
New York, USA, 2013. ACM.

[3] D. Thierens and P. A. N. Bosman. Predetermined versus
learned linkage models. In Proc. of the 14th Annual Conf.
on Genetic and Evolutionary Computation, GECCO ’12,
pages 289–296, New York, USA, 2012. ACM.

	Preface
	Contents
	List of Figures
	List of Tables
	Glossary
	Acronyms
	Introduction
	Background and Problem Description
	Background
	The Linkage Tree Genetic Algorithm
	Problem Description
	Related Work

	Implementation Validation and Analysis
	Implementation Validation
	Algorithm Analysis

	Algorithm Parallelization
	Code Optimizations
	Parallelization Approaches
	Perfect Parallel
	Embarrassingly Parallel
	Parallel Implementation Comparison

	Searching for the Optimal Linkage Tree Replacement
	Background and Motivation
	Parameter-free Implementation
	Learning LTs Offline
	Introducing Local Search
	Pruning Offline-learned LTs
	Conclusions

	Discussion
	Algorithm Complexity and Bottlenecks
	Parallelization Improvements
	Hardware
	Fuzzy Linkage Modeling

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Diagrams
	LTGA Complexity Analysis
	Profiling Results
	Offline-learned LT Linkage Sets Frequencies
	GECCO'15 Conference Paper Submission: In Search of Optimal Linkage Trees
	GECCO'15 Conference accepted Poster Paper: In Search of Optimal Linkage Trees

