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SUMMARY

Networked Control Systems (NCSs) are control systems, where the different components
(sensors, controllers and actuators) communicate through a network, which is usually
shared among multiple control systems or other processes. NCSs have become ubiqui-
tous, due to their reduced deployment costs and simpler maintenance. Nevertheless,
they, also, pose new challenges. A fundamental challenge is reducing the amount of
communications of each system in the network, so that bandwidth and energy are used
efficiently.

Towards such a communication reduction, the research community has shifted its
focus to Event-Triggered Control (ETC). ETC is a sampling paradigm where communi-
cation between the control system’s different components takes place only when it is
necessary (when a state-dependent triggering condition is satisfied). ETC’s event-based
nature of sampling often results into a big reduction in communications, when compared
to the widely adopted periodic-sampling paradigm. On the other hand, communication
times (or sampling times) of ETC are unknown beforehand and predictions thereof re-
quire intricate mathematical analysis on the system’s (perturbed) dynamics. Nonetheless,
predicting ETC’s sampling is of paramount importance, as it enables:

• Self-Triggered Control (STC): STC is a more economic implementation of ETC. In
STC, the controller, at each communication time, decides the next communication
time based on the received state-measurement; this removes the need for continu-
ous monitoring of the triggering condition and the intelligent hardware needed to
do so, which is necessary for ETC. STC needs 1-step predictions of ETC’s sampling
to operate; given a state measurement it predicts ETC’s next communication time.

• Traffic Scheduling: Traffic scheduling is planning bandwidth allocation to each
entity using the network. For control applications, it is very important; without
it, many systems may access the network at the same time, resulting into net-
work overflow and hindering the systems’ stability. For scheduling, a multi-step or
infinite-step prediction of communication times is needed, to ensure that there are
no unsafe phenomena in the future by a scheduling action taken at the present.

• Formal Assessment: Usually, the performance of an ETC design in terms of sam-
pling and control is validated through simulations. However, simulations do not
provide definite formal results, but indications. To obtain formal guarantees on
the sampling (vs. control) performance of ETC, e.g. by computing associated long-
term metrics, knowledge on its communication patterns is needed. Multi-step or
infinite-step predictions of ETC’s sampling constitute exactly such knowledge.

The present dissertation studies ETC’s sampling behaviour and derives predictions thereof
in all three aforementioned contexts.

xi



xii SUMMARY

Research on STC for nonlinear systems is relatively scarce. Most existing works are
tailored to emulate (i.e., predict the sampling of) a specific ETC design, thus providing
a specific performance specification (e.g., stability). Moreover, they do not provide a
method to trade off sampling performance and online computational load. To address
these issues, we propose a novel STC scheme, termed region-based STC, for nonlinear
systems with bounded disturbances or uncertainties. The system’s state-space is parti-
tioned into a finite number of regions, and to each region a uniform STC intersampling
time is assigned. To decide the next sampling time, at each sampling time the controller
simply checks to which region the measured state belongs. To derive the partition and
corresponding intersampling times, such that a given ETC design is emulated, we use
approximations of isochronous manifolds (sets of points in the state space that corre-
spond to the same ETC intersampling time). To derive the approximations, we address
certain theoretical issues of prior works and propose a computational algorithm. Finally,
to account for disturbances or uncertainties, we employ differential inclusions.

Regarding traffic scheduling, our work is placed in the recent direction of the so-called
abstraction-based approach. This approach offers a more versatile alternative to the estab-
lished controller-scheduler co-design, where, whenever a new system joins the network,
the design process has to be applied from scratch. According to the abstraction-based
approach, the sampling behaviour of a given ETC system is modelled by a finite-state
system (the abstraction), offering an infinite-horizon prediction on ETC’s sampling, that
can be leveraged for scheduling. Thus far, such abstractions have been constructed only
for linear ETC systems. To extend the applicability of abstraction-based scheduling, we
construct abstractions of nonlinear ETC systems with bounded disturbances or uncer-
tainties. The system’s state-space is partitioned into finitely many regions, representing
the abstraction’s states. For each region, a timing interval is determined, containing all
intersampling times corresponding to states in the region. These intervals serve as the
abstraction’s output. Finally, the abstraction’s transitions, given a starting region, indicate
where the system’s trajectories end up after an elapsed intersampling time. To determine
the timing intervals and the transitions, we propose algorithms based on reachability
analysis. Regarding state-space partitioning, we propose a partition similar to that of
region-based STC, aiming at providing control over the timing intervals and improving
their tightness, thus containing the abstraction’s non-determinism.

Finally, research on formal analysis and assessment of ETC’s sampling behaviour is
surprisingly scarce. A recent research direction employs the aforementioned abstrac-
tions, to utilize the information they provide on ETC’s sampling patterns and compute
metrics associated to ETC’s sampling. Specifically, a recent work showed how abstrac-
tions of linear PETC (periodic ETC; a practical variant of ETC) systems can be used to
compute their average intersampling time. However, a generic framework that allows
the study of ETC’s sampling behaviour through general associated metrics is still miss-
ing. Moreover, stochastic systems, which model more accurately processes affected by
random noise, remain unaddressed. In fact, for assessment purposes, the probabilistic
framework of stochastic systems is naturally less strict than the deterministic one, as it
takes into account the disturbances’ probability distribution, instead of being bound by
the worst case scenario. In this work, we formally analyze the sampling behaviour of
stochastic linear PETC systems by computing bounds on associated metrics. Specifically,
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we consider functions over sequences of state measurements and intersampling times
that can be expressed as average, multiplicative or cumulative rewards, and introduce
their expectations as metrics on PETC’s sampling behaviour. We compute bounds on
these expectations, by constructing appropriate Interval Markov Chains (IMCs) equipped
with suitable reward structures, that abstract stochastic PETC’s sampling behaviour, and
employing value iteration over these IMCs.





SAMENVATTING

Networked Control Systems (NCS’en) (Netwerk regelsystemen) zijn regelsystemen, waarbij
de verschillende componenten (sensoren, controllers en actuatoren) communiceren via
een netwerk, dat meestal wordt gedeeld door meerdere regelsystemen of andere proces-
sen. NCS’en zijn overal aanwezig geworden vanwege hun lagere implementatiekosten
en eenvoudiger onderhoud. Toch stellen ze ook nieuwe uitdagingen. Een fundamentele
uitdaging is het verminderen van de hoeveelheid communicatie van elk systeem in het
netwerk, zodat bandbreedte en energie worden bespaard.

Voor een dergelijke communicatievermindering heeft de onderzoeksgemeenschap
haar focus verlegd naar Event-Triggered Control (ETC) (gebeurtenis-gestuurde regeling).
ETC is een bemonsteringsparadigma waarbij communicatie tussen de verschillende
componenten van het regelsysteem alleen plaatsvindt wanneer dat nodig is (wanneer
aan een toestandsafhankelijke triggervoorwaarde is voldaan). De bemonstering basis van
gebeurtenissen van ETC resulteert vaak in een grote vermindering van communicatie,
in vergelijking met het algemeen aanvaarde paradigma van periodieke bemonstering.
Aan de andere kant zijn de communicatietijden (of bemonsteringstijden) van ETC vooraf
onbekend en voorspellingen daarvan vereisen een ingewikkelde wiskundige analyse van
de (verstoorde) dynamica van het systeem. Desalniettemin is het voorspellen van de
bemonstering van ETC van het grootste belang, omdat het het volgende mogelijk maakt:

• Self-Triggered Control (STC) (zelf-gestuurde regeling): STC is een meer economische
implementatie van ETC. In STC bepaalt de regelaar op elk communicatietijdstip
het volgende communicatietijdstip op basis van de ontvangen toestandsmeting;
dit elimineert de noodzaak voor continue monitoring van de triggerconditie en
de intelligente hardware die nodig is om dit te doen, wat nodig is voor ETC. STC
heeft 1-staps voorspellingen van ETC’s bemonstering nodig om te kunnen werken;
gegeven een toestandsmeting voorspelt het de volgende communicatietijd van
ETC.

• Verkeersplanning: Verkeersplanning plant bandbreedtetoewijzing aan elke entiteit
die het netwerk gebruikt. Voor regeltoepassingen is dit erg belangrijk; zonder dit
kunnen veel systemen tegelijkertijd toegang krijgen tot het netwerk, wat leidt tot een
netwerkoverloop en de stabiliteit van de systemen wordt belemmerd. Voor planning
is een voorspelling van communicatietijden in meerdere of oneindige stappen
nodig, om ervoor te zorgen dat er in de toekomst geen onveilige verschijnselen
optreden door een planningsactie die nu wordt ondernomen.

• Formele toetsing: Gewoonlijk worden de prestaties van een ETC-ontwerp in termen
van bemonstering en regeling gevalideerd door middel van simulaties. Simulaties
geven echter geen definitieve formele resultaten, maar indicaties. Om formele
garanties te verkrijgen over de bemonstering (versus regeling) prestaties van ETC,

xv
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bijvoorbeeld door het berekenen van bijbehorende lange-termijnsmetrieken, is
kennis over de communicatiepatronen nodig. Meerdere-stappen of oneindige-
stappen-voorspellingen van ETC’s bemonstering vormen precies dergelijke kennis.

Dit proefschrift bestudeert het bemonsteringsgedrag van ETC en leidt voorspellingen
daarvan af in alle drie de bovengenoemde contexten.

Onderzoek naar STC voor niet-lineaire systemen is relatief schaars. De meeste be-
staande werken zijn op maat gemaakt om een specifiek ETC-ontwerp na te bootsen
(d.w.z. de bemonstering te voorspellen) en zo een specifieke prestatiespecificatie te ge-
ven (bijvoorbeeld stabiliteit). Bovendien bieden ze geen methode om de afweging te
maken tussen bemonsteringsprestaties en online rekenbelasting. Om deze problemen
aan te pakken, stellen we een nieuw STC-schema voor, region-based STC (regio gebaseerd
STC) genaamd, voor niet-lineaire systemen met begrensde verstoringen of onzekerhe-
den. De toestandsruimte van het systeem is verdeeld in een eindig aantal regio’s en
aan elk gebied wordt een uniforme STC-interbemonstering-tijd toegewezen. Om het
volgende bemonsteringstijdstip te bepalen, controleert de regelaar op elk bemonste-
ringstijdstip eenvoudig tot welk gebied de gemeten toestand behoort. Om de partitie
en bijbehorende interbemonstering-tijden af te leiden, zodat een bepaald ETC-ontwerp
wordt geëmuleerd, gebruiken we benaderingen van isochrone variëteiten (sets van pun-
ten in de toestandsruimte die overeenkomen met dezelfde ETC-interbemonstering-tijd).
Om de benaderingen af te leiden, behandelen we bepaalde theoretische problemen van
eerdere werken en stellen we een computationeel algoritme voor. Ten slotte gebruiken
we differentiële insluitsels om rekening te houden met verstoringen of onzekerheden.

Met betrekking tot verkeersplanning, wordt ons werk geplaatst in de recente richting
van de zogenaamde abstractie-gebaseerde methode. Deze aanpak biedt een veelzijdiger
alternatief voor het gevestigde regelaarplanner co-ontwerp, waarbij, wanneer een nieuw
systeem zich bij het netwerk voegt, het ontwerpproces helemaal opnieuw moet worden
toegepast. Volgens de op abstractie gebaseerde methode wordt het bemonsteringsgedrag
van een bepaald ETC-systeem gemodelleerd door een eindig toestandssysteem (de ab-
stractie), dat een oneindige horizon voorspelling geeft van ETC’s bemonstering, die kan
worden gebruikt voor planning. Tot dusver zijn dergelijke abstracties alleen geconstru-
eerd voor lineaire ETC-systemen. Om de toepasbaarheid van op abstractie gebaseerde
planning uit te breiden, construeren we abstracties van niet-lineaire ETC-systemen met
begrensde storingen of onzekerheden. De toestandsruimte van het systeem is opgedeeld
in eindig veel gebieden, die de toestanden van de abstractie vertegenwoordigen. Voor
elke regio wordt een timing-interval bepaald, dat alle interbemonstering-tijden bevat die
overeenkomen met toestanden in de regio. Deze intervallen dienen als output van de
abstractie. Tenslotte worden de overgangen van de abstractie bepaald via bereikbaarheids-
analyse. Om de timingsintervallen en de overgangen te bepalen, stellen we algoritmen
voor op basis van bereikbaarheidsanalyse. Wat betreft toestandsruimte-partitionering,
stellen we een partitie voor die vergelijkbaar is met die van regio gebaseerde STC, met
als doel om controle over de timing-intervallen te bieden en hun strakheid te verbeteren,
waardoor het niet-determinisme van de abstractie wordt beperkt.

Ten slotte, onderzoek naar formele analyse en beoordeling van het steekproefgedrag
van ETC is verrassend schaars. Een recente onderzoeksrichting maakt gebruik van de
bovengenoemde abstracties om de informatie te gebruiken die ze geven over de be-
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monsteringspatronen van ETC en metrieken te berekenen die verband houden met de
bemonstering van ETC. In het bijzonder, een recent werk toonde aan hoe abstracties van
lineaire PETC-systemen (periodieke ETC; een praktische variant van ETC) kunnen worden
gebruikt om hun gemiddelde interbemonstering-tijd te berekenen. Er ontbreekt echter
nog steeds een generiek raamwerk dat het bestuderen van het bemonsteringsgedrag van
ETC door middel van algemene bijbehorende metrieken mogelijk maakt. Bovendien
blijven stochastische systemen, die nauwkeuriger processen modelleren die worden
beïnvloed door willekeurige ruis, ongeadresseerd. Voor beoordelingsdoeleinden is het
probabilistische raamwerk van stochastische systemen van nature minder strikt dan het
deterministische, omdat het rekening houdt met de kansverdeling van de verstoringen,
in plaats van gebonden te zijn aan het worst-case scenario. In dit werk analyseren we for-
meel het bemonsteringsgedrag van stochastische lineaire PETC-systemen door grenzen
te berekenen voor bijbehorende metrieken. In het bijzonder beschouwen we functies
over reeksen toestandsmetingen en interbemonstering-tijden die kunnen worden uitge-
drukt als gemiddelde, multiplicatieve of cumulatieve beloningen, en introduceren we hun
verwachtingen als metrieken voor het bemonsteringsgedrag van PETC. We berekenen
grenzen aan deze verwachtingen door geschikte Interval Markov Chains (IMCs) (interval
Markovketens) te construeren die zijn uitgerust met geschikte beloningsstructuren, die
het stochastische PETC-bemonsteringsgedrag abstraheren en waarde iteratie over deze
IMCs gebruiken.
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INTRODUCTION

In this chapter, we discuss the motivation surrounding the dissertation, related literature
and gaps therein, we present the dissertation’s main contributions, and give an outline of
the manuscript.
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2 1. INTRODUCTION

1.1. MOTIVATION
Many modern control systems are Networked Control Systems (NCSs). The sensors, the
controller and the actuators communicate with each other through a network, which
is usually shared among many control systems and other processes. For example, the
electrical system of a present-day car includes CAN buses that are used simultaneously by
the transmission control loop, ABS, ESP, etc. [1]. Due to this possibility to be shared among
many applications, NCSs offer reduced deployment costs and simpler maintenance [2],
compared to the old paradigm of dedicated wired point-to-point connections. However,
they also come with new challenges.

The fundamental challenge in NCSs is reducing communications to the least amount
possible. In NCSs, the available bandwidth is limited, and often scarce, when many
processes are using the network. Thus, applications communicating frequently and
consuming a lot of bandwidth, hinder the sharing of the network among a big number of
different processes, thus defeating its purpose to a certain extent. Furthermore, when the
network is wireless, sensors consume a lot of energy to communicate; increased amounts
of communication implies more energy usage and even more maintenance (e.g., when
sensors run on batteries).

Towards reducing communication in NCSs, in the past two decades, the control
systems community has shifted its research focus to Event-Triggered Control (ETC) (see
the surveys [3], [4], as well as some notable work, e.g., [5]–[18]). ETC is a sampling
paradigm where communication between the different components of the control system
takes place only when deemed necessary. The sensors continuously measure the state
of the system ζ(t) and check a so-called triggering condition φ(ζ(t)) ≥ 0. When this
condition is satisfied, they transmit the measurements to the controller, which uses them
to transmit an updated control signal to the actuators; communication takes place only
when the triggering condition is satisfied, or, to use the field’s terminology, when events
happen. These events typically imply that desired control performance is about to be
compromised, and thus communication takes place in order to update the control signal
accordingly. Owing to its event-based nature of sampling, ETC promises to greatly reduce
the amount of communications a control system generates, compared to the conventional
periodic sampling that is typically used nowadays, thus saving bandwidth and energy in
NCSs.

Nonetheless, ETC’s communication times - the times when events happen - are
unknown beforehand, due to event-based sampling, in contrast to periodic control, where
the specified period determines completely the communication times. Since events are
determined by the satisfaction of the state-dependent triggering condition φ(ζ(t)) ≥ 0,
the sequences of communication times that are generated by the control system directly
depend on the trajectory of its state ζ(t), and thus on the system’s dynamics and the
disturbances acting on it. Hence, prediction of ETC’s communication times or events is
far from straightforward and intricate analysis on the (perturbed) dynamics is needed.
However, predicting ETC’s events is of paramount importance, towards its widespread
adoption as the sampling paradigm of the future, as it enables:

• Self-Triggered Control (STC): STC is a more economic and proactive implementation
of ETC. In STC, the controller, at each communication time, decides the next
communication time based solely on the received state-measurement; this removes
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the need for continuous monitoring of the triggering condition and the intelligent
hardware needed to do so, which is necessary for ETC. Typically in STC, to decide
the next communication time, the controller approximately predicts1 when ETC
would communicate, based on the received state-measurement. Thus, STC needs
1-step predictions of ETC’s sampling to operate; given a state measurement it needs
to predict the next communication time of ETC.

• Traffic Scheduling: Traffic scheduling in a network is planning when to allocate
bandwidth to each entity using the network. For many control applications, which
are safety-critical, traffic scheduling is very important; without it, there is a possi-
bility that many components access the network at the same time, thus resulting
into data packet collisions. In such case, control loops are unable to communicate,
which hinders stability of the systems that are controlled. To derive a traffic sched-
ule, in most cases a multi-step or infinite-step prediction of communication times
is needed, in order to ensure that there are no unsafe phenomena in the future by a
scheduling action taken at the present.

• Formal Assessment: Most often, when a new ETC design is proposed, its perfor-
mance in terms of sampling and control is validated through simulations. However,
simulations do not provide definite formal results, but only indications. To obtain
formal results and guarantees on the sampling (or sampling vs. control) perfor-
mance of ETC, e.g. by computing long-term metrics such as the expected average
intersampling time in a certain horizon, knowledge on its communication patterns
is needed. Multi-step or infinite-step predictions of ETC’s sampling constitute
exactly such knowledge.

The present doctoral dissertation studies ETC’s sampling and obtains corresponding
predictions in all three above contexts.

1.2. EXISTING WORK
Let us take a dive into the existing related work and some open gaps lying therein.

1.2.1. SELF-TRIGGERED CONTROL
STC has been studied quite extensively during the last 15 years [18]–[31]. The vast majority
of works on STC adopts the so-called emulation approach: predicting, in a conservative
way, when the triggering condition of an underlying ETC scheme would be satisfied. For
example, in [26], a condition that enforces an exponential decay on the system’s Lyapunov
function is emulated, thus guaranteeing exponential stability. In [30], the condition that
is emulated guarantees finite-gain L2-stability.

Despite the relatively big amount of research, STC for nonlinear systems, which model
more accurately most controlled processes compared to linear systems, has not been
studied thoroughly and the related literature is scarce [18]–[24]. In [18], Liu and Jiang

1These predictions are approximate in a safe manner; they predict well enough ETC’s next communication
time so that certain performance guarantees (e.g. stability), that are enforced by ETC, are retained by an
STC implementation. Typically, to achieve that, STC’s communication times are lower bounds on ETC’s
communication times.
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design ETC and STC schemes for perturbed input-to-state stable (ISS) systems, following
a small-gain theorem approach. In [20], an STC design is proposed that enforces the
system’s state to remain in a safe set, by employing Taylor approximations of the system’s
Lyapunov function. Tiberi and Johansson [19] propose an ETC and a corresponding STC
scheme to enforce uniform ultimate boundedness for perturbed uncertain systems, while
Tolic et al. [21] employ a small-gain approach to design STC that guarantees Lp -stability.
In [22] an STC design is proposed that copes with actuator delays. Finally, in [23], Anta
and Tabuada derive STC formulas for nonlinear systems employing interesting properties
of homogeneous systems, while in [24] their results are improved by incorporating the
notion of isochronous manifolds.

All techniques listed above, except for [23] and [24], suffer from the same limitation:
they are tailored to emulating a specific triggering condition and providing a specific
performance specification (e.g., stability, safety, etc.). On the other hand, [23], in spite
of its interesting results, is conservative w.r.t. other techniques in the literature in terms
of sampling performance (it tends to sample more frequently). Regarding [24], there are
certain theoretical and practical issues that are thoroughly discussed and addressed in the
present dissertation, although it has certainly proven a source of inspiration for a part of
the dissertation. What is more, neither [23] nor [24] addresses systems with disturbances
and uncertainties. Finally, it is worth noting that, with the exception of [20], none of all
aforementioned approaches provides a method to trade off sampling performance and
online computational load (i.e., how heavy are the computations that are performed by
the controller online to determine the communication times).

The first part of the main body of the present dissertation (Chapters 3 and 4) is
occupied with STC and the gaps in the related literature mentioned above.

1.2.2. TRAFFIC SCHEDULING

Traffic scheduling for ETC has not received much attention [32]–[41]. Most proposed
methods approach the problem from a controller-sampler-scheduler co-design perspec-
tive [32]–[38]. According to them, the controller, the sampling scheme and the scheduler
are all designed in a coupled manner, such that network access is performed safely, re-
source utilization is efficient and certain performance specifications are guaranteed. The
co-design nature of these approaches lacks the versatility that is needed in many modern
NCSs; for example, when a new control loop joins the network, the whole design process
has to be applied from scratch, resulting in different controllers, samplers and sched-
ulers. The same happens when a control loop’s performance specification changes: all
components have to be redesigned.

Recently, a new set of approaches on scheduling for ETC has emerged [39]–[41], that
tackles the versatility problem of the co-design approaches. These new approaches are
based on abstractions: the sampling behaviour of a given ETC system is modelled by a
finite-state system (the abstraction). The abstraction’s set of output sequences contains
all possible sequences of intersampling times that can be exhibited by the ETC system.
In this way, an infinite-horizon prediction on the sampling patterns of ETC is obtained,
that can be leveraged for traffic scheduling. For example, in [39], ETC-traffic scheduling
is performed as follows: 1) abstractions of all ETC systems in the network are created,
2) the abstractions are equipped with scheduling actions, and become semantically
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equivalent to timed game automata (TGA, see [42]), 3) the network’s state (idle, occupied,
etc.) is modelled as a TGA, as well, and then all TGA are composed to create a big TGA
modelling the whole interconnection, and finally 4) a safety game is solved over the
resulting TGA, such that there are no packet collisions (or network-access conflicts) on
an infinite horizon. Abstraction-based approaches are more versatile than co-design
approaches, as for example the abstraction of each system in the network is computed
only once offline, and does not change with the presence of a new system.

Nevertheless, so far, such abstractions have been constructed only for linear systems
with a specific type of triggering conditions (with quadratic triggering functions φ(·)).
Specifically, [39] and [40] have considered linear ETC systems, while [41] has considered
linear PETC (periodic ETC; a more practical variant of ETC, see for example [10]) systems.

The second main part of the present dissertation (Chapter 5) is occupied with con-
structing abstractions of the sampling behaviour of nonlinear ETC systems with gen-
eral triggering functions, thus extending the applicability of versatile abstraction-based
scheduling to a significantly wider class of systems.

1.2.3. FORMAL ASSESSMENT

The research efforts to study the sampling behaviour of ETC and characterize its sampling
(or sampling vs. control) performance are very recent [43]–[46]. One branch of this
research is the analytic approaches [44]–[46]. Demirel et al. [44] consider stochastic
linear PETC systems equipped with deadbeat controllers. Thanks to the particularities
of deadbeat control, studying the sampling behaviour simplifies to analyzing a Markov
chain, which can be used to compute quantitative metrics on the system’s sampling
performance. Nevertheless, assuming the presence of a deadbeat controller is admittedly
restrictive. Furthermore, in [45] and [46] the asymptotic properties of intersampling
times of planar linear ETC systems with quadratic triggering conditions are investigated.
Among others, conditions under which the intersampling times converge to a fixed
point or a periodic pattern are derived. Despite their interesting insights, these works
obey certain limitations: a) only 2-D systems are considered, b) the type of triggering
condition considered is key in the whole analysis, and most importantly c) they do not
offer quantitative insights on all possible sampling patterns that an ETC system can
generate; thus, there is no straightforward way of employing them for computing general
metrics on ETC’s sampling performance or for predicting its patterns.

The other branch of research leverages the abstractions of ETC’s sampling behaviour
that were mentioned in the previous section. In particular, [43] employs abstractions for
linear PETC systems to compute their infinite-horizon minimum average intersampling
time. In fact, arguably, other abstractions could be employed as well in a similar manner
for the same purpose, such as the abstractions for nonlinear systems developed here
in Chapter 5, thus extending the applicability of the methods in [43]. In contrast to the
analytic approaches, with abstraction-based approaches there is no restrictive assump-
tion on the type of controller, on the dimensions of the system (modulo computational
complexity) or on the type of triggering condition considered (albeit some minor steps in
the abstraction’s construction might vary). More importantly, as mentioned earlier, these
abstractions offer an infinite-horizon look to all possible sampling patterns of ETC, and
thus enable the computation of general metrics on its sampling performance.
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However, a generic framework that allows the study of ETC’s sampling behaviour
through general associated metrics is still missing: [43] is occupied specifically with the
average intersampling time, while the rest of the abstraction-based approaches have been
written in the context of traffic scheduling. Moreover, stochastic systems, which model
more accurately processes affected by random noise, remain unaddressed. In fact, for
assessment purposes, the probabilistic framework of stochastic systems is naturally less
strict than the deterministic one, as it takes into account the disturbances’ probability
distribution, instead of being bound by the worst case scenario.

The third and final part of the main body of the dissertation derives a generic frame-
work to study the sampling behaviour of stochastic ETC systems through associated
metrics, constructs corresponding abstractions to compute (bounds on) these metrics,
and characterizes stochastic ETC’s sampling performance.

1.3. ORIGINAL CONTRIBUTIONS
Now that the existing related literature has been discussed and the corresponding gaps
have been pointed out, we can proceed to stating the main high-level contributions of
the present dissertation:

• We propose an STC method, termed region-based STC, for nonlinear systems with
bounded disturbances and uncertainties, that provides a unified framework to
emulate general triggering conditions and, thus, incorporate a wide range of perfor-
mance specifications. Moreover, it provides a way to trade off online computational
load with sampling performance.

• We abstract the sampling behaviour of nonlinear ETC systems with disturbances,
uncertainties, and general triggering functions. That way, we significantly extend
the applicability of versatile abstraction-based scheduling of ETC traffic in NCSs.

• We construct a generic framework to study stochastic PETC’s sampling behaviour
through metrics associated to its sampling (vs. control) performance and sampling
patterns. We formally assess the sampling behaviour of linear stochastic PETC
systems by computing bounds on such metrics. To that end, we abstract their
sampling behaviour via Interval Markov Chains, providing probabilistic quantitative
information on all possible sampling patterns.

To attain these high-level contributions, we have made several technical contributions in
the process. The detailed listing of all contributions takes place in the beginning of each
corresponding chapter. Finally, it is worth emphasizing that:

• Most of the theoretical and computational developments of the dissertation have
been automated through our Python toolbox ETCetera [47], which is publicly avail-
able at https://gitlab.tudelft.nl/sync-lab/ETCetera. The experimental
results of the dissertation can be reproduced by using ETCetera. The toolbox is
subject to ongoing extensions and improvements.

1.4. OUTLINE
The dissertation is structured as follows:

https://gitlab.tudelft.nl/sync-lab/ETCetera
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• Chapter 2 introduces notation and nomenclature used throughout the manuscript,
as well as background technical knowledge that is needed to follow its technical
developments.

• Chapter 3 is concerned with developing the region-based STC method for nonlinear
systems.

• Chapter 4 extends the STC method to systems with bounded disturbances and
uncertainties.

• Chapter 5 constructs abstractions of the sampling behaviour of perturbed/uncertain
nonlinear ETC systems with general triggering functions, in the context of ETC traf-
fic scheduling.

• Chapter 6 devises a framework to study the sampling behaviour of stochastic PETC
through associated metrics, and computes bounds on such metrics via abstractions.
The focus is on linear stochastic PETC systems.

• Chapter 7 concludes the dissertation with discussion on the aforementioned devel-
opments and recommendations for future work.

Finally, all Chapters 3-6 contain several numerical examples that demonstrate the corre-
sponding theoretical results. Moreover, notation, terminology and background knowledge
that is employed only in specific chapters, is introduced in the beginning of these chapters,
to enhance readability.





2
PRELIMINARIES

In this chapter, we introduce notation and nomenclature that is used throughout the
dissertation. Moreover, we present some background technical knowledge on deterministic
ETC systems, homogeneous ETC systems and the emulation approach to STC. Notation and
background knowledge that are chapter-specific, i.e. that are employed in a specific chapter
only, are introduced in their corresponding chapter and not here.

9
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2.1. NOTATION AND NOMENCLATURE
R stands for the set of real numbers and R>0 (resp. R≥0) for the positive (resp. non-
negative) reals. N stands for the set of natural numbers including 0, and N>0 for the
naturals without 0. In is the n-dimensional identity matrix. We use the symbol ∃!, to
denote existence and uniqueness. We denote points in Rn as x and their Euclidean norm

as |x|. For vectors, we also use the notation (x1, x2) = [
x>

1 x>
2

]>
. For x, y ∈Rn , we write

x ¹ y if xi ≤ yi (i = 1, . . . ,n), where the subscript i denotes the i -th component of the
corresponding vector. When there is no harm from ambiguity, the subscript i may be,
also, used to denote different points xi ∈Rn .

Consider a system of ordinary differential equations (ODE):

ζ̇(t ) = f (ζ(t )), (2.1)

where ζ :R→Rn . We denote by ζ(t ; t0,ζ0) the solution of (2.1) with initial condition ζ0 at
initial time t0. When t0 (or ζ0) is clear from the context, then it is omitted, i.e. we write
ζ(t ;ζ0) (or ζ(t)). Given a set of initial states I ⊆ Rn , the reachable set of (2.1) from I at

time T is X
f

T (I ) := {ζ(T ;ζ0) : ζ0 ∈I }. Likewise, the reachable flowpipe of (2.1) in the time

interval [τ1,τ2], with initial set I , is X
f

[τ1,τ2](I ) := ⋃
T∈[τ1,τ2]

X
f

T (I ).

2.2. HOMOGENEOUS SYSTEMS
Let us introduce some preliminary concepts on homogeneous systems and their prop-
erties, as they play a pivotal role in Chapters 3, 4, and 5. Here, only the classical notion
of homogeneity is presented. For the general definition of homogeneity, the reader is
referred to [48].

Definition 2.2.1 (Homogeneous Function). Consider a function f :Rn →Rm . We say that
f is homogeneous of degree α ∈R, if for all x ∈Rn and any λ> 0: f (λx) =λα+1 f (x).

Definition 2.2.2 (Homogeneous System). A system (2.1) is called homogeneous of degree
α ∈R, whenever f (·) is a homogeneous function of the same degree.

For homogeneous ODEs, the following scaling property of solutions holds:

Proposition 2.2.1 (Scaling Property of Homogeneous ODEs [48]). Let the system of ODEs
(2.1) be homogeneous of degree α ∈R. Then, for any ζ0 ∈Rn and any λ> 0:

ζ(t ;λζ0) =λζ(λαt ;ζ0). (2.2)

2.3. EVENT-TRIGGERED AND SELF-TRIGGERED CONTROL

2.3.1. DETERMINISTIC EVENT-TRIGGERED CONTROL SYSTEMS
Consider the control system with state-feedback:

ζ̇(t ) = f
(
ζ(t ),υ(ζ(t ))

)
, (2.3)

where ζ :R→Rn is the state, f :Rn ×Rmu →Rn is the vector field, and υ :Rn →Rmu is the
control input. In any sample-and-hold scheme, the control input is updated on sampling
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times (or communication times) ti and held constant between consecutive sampling
times:

ζ̇(t ) = f
(
ζ(t ),υ(ζ(ti ))

)
, t ∈ [ti , ti+1).

If we define the measurement error as the difference between the last measurement and
the present state:

εζ(t ) := ζ(ti )−ζ(t ), t ∈ [ti , ti+1), (2.4)

then the sample-and-hold system can be written as:

ζ̇(t ) = f
(
ζ(t ),υ(ζ(t )+εζ(t ))

)
, t ∈ [ti , ti+1). (2.5)

Notice that the error εζ(t) resets to zero at each sampling time. In ETC, the sampling
times (i.e. the times of events or event times) are determined by:

ti+1 = ti + inf{t > 0 : φ(ζ(t ; xi ),εζ(t )) ≥ 0}, (2.6)

and t0 = 0, where xi ∈Rn is the previously sampled state, φ(·, ·) is the triggering function,
(2.6) is the triggering condition and ti+1 − ti is called intersampling time1. Each point
x ∈Rn corresponds to a specific intersampling time, defined as:

τ(x) := inf{t > 0 : φ(ζ(t ; x),εζ(t )) ≥ 0}. (2.7)

Between two consecutive sampling times ti and ti+1, the triggering function starts from
a negative value φ(ζ(ti ; xi ),0) < 0 (the measurement error is zero at sampling times),
and stays negative until t−i+1, when it becomes zero. Then, at ti+1, the latest state-
measurement is sent to the controller which updates the control action, the triggering
function resets to a negative value, and the whole process is repeated again. Triggering
functions are designed such that the inequality φ(ζ(t ; x),εζ(t )) ≤ 0 implies certain perfor-
mance guarantees (e.g. stability). Thus, sampling times are defined in a way (see (2.6))
such that φ(ζ(t ),εζ(t )) ≤ 0 for all t ≥ 0, which implies that the performance specifications
are met at all time.

Remark 2.3.1. In practice, to remove the possibility of the system operating open-loop
indefinitely, a maximum allowed intersampling time τmax is introduced (often called
“heartbeat"), such that sampling times are defined as ti+1 = ti +min(τ(xi ),τmax), where xi

denotes the state measurement at ti . The presence of a heartbeat is, in fact, assumed for
some parts of the present work. When it is assumed, it will be clearly stated.

Finally, by leveraging that ε̇ζ(t) =−ζ̇(t), we write the dynamics of the extended ETC
system in a compact form:

ξ̇(t ) =
 f

(
ζ(t ),υ(ζ(t )+εζ(t ))

)
− f

(
ζ(t ),υ(ζ(t )+εζ(t ))

)= fe (ξ(t )), t ∈ [ti , ti+1) (2.8a)

ξ(t+i+1) =
[
ζ(t−i+1)

0

]
(2.8b)

1Many times, in the literature, it is also referred to as interevent time.
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where ξ = (ζ,εζ) ∈ R2n . At each sampling time ti , the state of (2.8) becomes ξi = (xi ,0).

Thus, for brevity and convenience, instead of writing ξ
(
t ; (xi ,0)

)
(or φ

(
ξ(t ; (xi ,0))

)
, or

τ
(
(xi ,0)

)
, etc.) for some t ∈ [ti , ti+1), we abusively write ξ(t ; xi ) (or φ(ξ(t ; xi )), or τ(xi ),

etc.).

2.3.2. HOMOGENEOUS ETC SYSTEMS AND SCALING OF INTERSAMPLING

TIMES
From now on, we say that an ETC system (2.8) is homogeneous of some degree α, when-
ever its continuous dynamics (2.8a) define a homogeneous system of the same degree.
The intersampling times of homogeneous ETC systems with homogeneous triggering
functions satisfy certain interesting properties, discovered in [23]. Specifically, along lines
passing through the origin (but excluding the origin) the event-triggered intersampling
times scale according to the following rule:

Theorem 2.3.1 (Scaling Law [23]). Consider an ETC system (2.5)-(2.6), such that (2.8) is
homogeneous of degree α and the triggering function φ(·) homogeneous of degree θ. For all
x ∈Rn , the intersampling times τ :Rn →R+∪ {+∞} defined by (2.7) scale as:

τ(λx) =λ−ατ(x), λ> 0. (2.9)

In the following, we refer to lines going through the origin as homogeneous rays.
Notice that the scaling law for the intersampling times (2.9) does not depend on the
degree of homogeneity of the triggering function considered. The property derives from
the following useful result, which is a direct consequence of the scaling property of
homogeneous flows (Proposition 2.2.1):

Lemma 2.3.1 (Time-Scaling Property of the Triggering Function [23]). Consider an ETC
system (2.5)-(2.6), such that (2.8) is homogeneous of degree α and the triggering function
φ(·) homogeneous of degree θ. The triggering function satisfies:

φ(ξ(t ;λx)) =φ(λξ(λαt ; x)) =λθ+1φ(ξ(λαt ; x)), (2.10)

where the first equality follows from Proposition 2.2.1.

2.3.3. SELF-TRIGGERED CONTROL: EMULATION APPROACH
According to the emulation approach to STC, an STC strategy dictates the next sampling
time according to a function τ↓ :Rn →R+ lower-bounding the ETC intersampling times:

τ↓(x) ≤ τ(x), ∀x ∈Rn (2.11)

Since φ(ξ(t ; x)) < 0 for all t ∈ [0,τ(x)), then it is guaranteed that φ(ξ(t ; x)) < 0 for all
t ∈ [0,τ↓(x)), and the performance specification of the emulated ETC scheme is preserved.
Consequently, the STC intersampling times should be no larger than the corresponding
ETC times, but as large as possible in order to achieve greater reduction of communica-
tions. Finally, τ↓(·) should be designed such that τ↓(x) ≥ ε> 0 for all x in the operating
region of the system, in order to avoid infinitely-fast sampling (Zeno behaviour).



3
ISOCHRONOUS PARTITIONS AND

REGION-BASED SELF-TRIGGERED

CONTROL

In this chapter, we develop a region-based self-triggered control (STC) scheme for nonlinear
systems. Region-based STC provides a unified framework to emulate general triggering
conditions and, thus, incorporate a wide range of performance specifications. Furthermore,
it provides a way to trade off online computational load with sampling performance. The
state space is partitioned into a finite number of regions, each of which is associated to a
uniform STC intersampling time. The controller, at each sampling time, checks to which
region the current state belongs, and correspondingly decides the next sampling time. The
bigger the number of regions, the better the sampling performance and the heavier the
online computational load, as the controller needs to perform more checks. To derive the
regions along with their corresponding intersampling times, we use inner approximations
of isochronous manifolds (IMs), a notion firstly introduced in [24]. Towards deriving
approximations of IMs, we address certain theoretical issues of [24] and propose an effective
computational approach to generate them. The efficiency of both our theoretical results
and the proposed algorithm are demonstrated through simulation examples.

This chapter has been published in [49]. Minor changes have been made, to streamline presentation.

13
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3.1. INTRODUCTION
In this chapter, we derive a region-based STC scheme for nonlinear systems, adopting
an emulation approach. The proposed STC is able to emulate a big class of triggering
conditions and ETC schemes, thus providing the ability to consider a wide range of
performance specifications. The state space is partitioned into a finite number of regions,
and each region is associated to a uniform STC intersampling time, that lower bounds
all intersampling times of the region corresponding to the emulated ETC. Thus, at each
sampling time, to decide the next sampling time, the controller simply has to check which
of the regions contains the received state measurement. The bigger the number of regions
is, the less conservative the STC intersampling times are, which implies better sampling
performance. On the other hand, more regions imply more set-membership checks
performed by the controller, which translates to higher computational load. Thus, by
being able to control the number of regions, we control the trade-off between sampling
performance and online computations.

In contrast to [29], in which the state space is firstly partitioned and afterwards the
corresponding self-triggered intersampling times are computed, we propose to firstly
predefine a set of specific intersampling times and afterwards derive the regions that
correspond to the selected times. Thus, in our approach the number of regions in the
state space is always equal to the number of times. This tames the curse of dimensionality,
as the number of regions is independent of the dimensions of the system.

To partition the state space, we employ inner approximations of isochronous manifolds
(IMs), a notion originally introduced in [24]. IMs are hypersurfaces in the state space,
that consist of points associated to the same ETC intersampling time τ, i.e. if the system’s
state belongs to an IM at a sampling time ti , then the next sampling time, under a given
triggering condition, is ti+1 = ti + τ. In [24], Anta and Tabuada propose a method to
approximate these manifolds by upper-bounding the evolution of the triggering function,
and then use the approximations to derive an STC formula. Unfortunately, there are some
unaddressed theoretical and practical issues therein, which render the approximations,
in general, invalid and hinder the application of the corresponding STC scheme. In
particular, the bounding lemma [24, Lemma V.2], based on which the upper-bounds of the
triggering function are derived, is incorrect. Furthermore, we pinpoint that, even if a valid
bound is obtained, the method proposed in [24] approximates the zero-level sets of the
triggering function, and not the actual IMs. Finally, although the authors in [24] propose
the use of SOSTOOLS [50] to derive the approximations, we have found it to be numerically
non-robust regarding solving this particular problem. Here, we tackle all aforementioned
issues, towards deriving a partition of the state space for nonlinear systems that enables
a region-based STC scheme. The biggest part of the chapter focuses on homogeneous
ETC systems, for clarity. Nevertheless, it is clearly shown how the approach generalizes to
nonhomogeneous systems as well, through an extensive discussion in Section 3.7 and a
numerical example.

Overall, the contributions of this chapter are the following:

• We present a valid version of the bounding lemma, based on a higher order com-
parison lemma [51].

• Employing this new lemma, we propose a refined methodology to approximate the
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actual IMs of nonlinear ETC systems.

• We adjust a counter-example guided iterative method (see e.g. [52]) combining
Linear Programming and SMT (Satisfiability Modulo Theory) solvers (e.g. [53]), to
derive an alternative algorithm that effectively computes approximations of IMs.

• We derive a novel region-based STC scheme that provides a generic framework to
emulate a wide range of triggering conditions, and the ability to trade-off online
computational load with communications.

Finally, it is worth noting that IMs are an inherent characteristic of any system with an
output. Thus, as in [24], the study of IMs and the theoretical contribution of deriving
approximations thereof might even exceed the context of ETC and STC.

3.2. NOTATION
If f :Rn →Rm is p-times continuously differentiable, we write f ∈C p . Let X : M → T M
be a vector field and h : M →R a map. LX h(x) denotes the Lie derivative of h at a point
x along the flow of X . Similarly, L k

X h(x) =LX (L k−1
X h(x)) is the k-th Lie derivative with

L 0
X h(x) = h(x).

3.3. PROBLEM STATEMENT
The following is in the context of the emulation approach to STC: we assume a given
ETC system, and we seek to design an STC scheme as the emulation approach dictates.
In a region-based STC scheme, the state-space of the original system (2.5) is divided
into a finite number of regions Ri ⊂ Rn (i = 1,2, . . . ), each of which is associated to a
self-triggered intersampling time τi such that:

∀x ∈Ri : τi ≤ τ(x), (3.1)

where τ(x) denotes the event-triggered intersampling time associated to x (see (2.7)). The
STC scheme operates as follows:

1. Measure the current state xk .

2. Check to which of the regions Ri the point xk belongs.

3. If xk ∈Ri , set the next sampling time to tk+1 = tk +τi .

Thus, to enable region-based STC, we have to find regions Ri and times τi such that
(3.1) holds. In [29], the state-space is partitioned into regions Ri a priori, and afterwards
the times τi are computed such that they satisfy (3.1); this suffers from the curse of
dimensionality. Here, we propose an alternative approach: firstly a finite set of times
{τ1,τ2, . . . τq } is predefined (e.g. by the user), which will serve as STC intersampling times,
with τi < τi+1, and then regions Ri corresponding to times τi are derived a posteriori,
such that (3.1) is satisfied. In this way, the number of regions is equal to the number of
times τi and the curse of dimensionality is tamed, as the number of regions does not
depend on the system’s dimensions. The problem statement is as follows:
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Problem Statement. Given an ETC system (2.5)-(2.6), and a finite set of times {τ1, . . . τq },
with τi < τi+1 and q > 1, find Ri ∈Rn that satisfy (3.1).

Note that Zeno behaviour is ruled out by construction, since the STC intersampling
times are lower bounded: τ↓(x) ≥ mini {τi } = τ1. The choice of times τi and its effect is
discussed later in the document.

Assumption 3.3.1. For the remaining of the chapter, our analysis is based on the following
set of assumptions:

1. The extended ETC system (2.8) is smooth and homogeneous of degree α ≥ 1, with
ri = 1 for all i .

2. The triggering function φ(ξ(t ; x)) is smooth and homogeneous of degree θ ≥ 1, with
ri = 1 for all i .

3. φ
(
(0,0)

)
≤ 0 and φ

(
(x,0)

)
< 0 for all x ∈ Rn \ {0}. For any compact set K ⊂ Rn there

exists εK > 0 such that for all x0 ∈ K \ {0}, φ(ξ(t ; x0)) < 0 for all t ∈ [0,εK ).

4. Compact sets Z ⊂ Rn and Ξ ⊂ R2n , containing a neighbourhood of the origin, are
given, such that for all x ∈ Z: φ(ξ(t ; x)) ≤ 0 =⇒ ξ(t ; x) ∈Ξ.

5. The system (2.3) has the origin as the only equilibrium.

Regarding items 1 and 2, they serve clarity of presentation issues; the main develop-
ments of the present chapter are stated in the context of homogeneous ETC systems and
triggering functions. Nevertheless, our results are applicable to general smooth nonlinear
systems and triggering functions, by employing the homogenization procedure proposed
in [24, Lemma IV.4], which renders any smooth function homogeneous, by embedding it
to a higher-dimensional space. This is thoroughly discussed in Section 3.7 and showcased
in Section 3.8.2 via a numerical example.

Regarding item 4, it only asks that the ETC implementation is known to satisfy a
basic boundedness condition. This is satisfied by most well-known ETC schemes in the
literature. For example, in many ETC schemes (e.g., [7]), a radially unbounded Lyapunov
function V (x) for the system is known, and the triggering function satisfies φ(ξ(t ; x)) ≤
0 =⇒ V̇ (ζ(t ; x)) ≤ 0. Then, the set Ξ can be constructed as Ξ= Z×E, where Z = {x ∈Rn :
V (x) ≤ c}, E = {x0 − x ∈Rn : x, x0 ∈ Z} and c > 0. An alternative and more general way of
constructing Z and Ξ, without assuming that they are given (but requiring a different
assumption) is demonstrated in Section 3.8.2 and is fully adopted in Chapter 4 (see (4.15)),
where we extend the developments of the present chapter to perturbed uncertain systems.
The importance of the sets Z and Ξ is discussed right after Theorem 3.5.2.

Finally, item 3 excludes Zeno behaviour, which is satisfied by any well-designed ETC
scheme (e.g., Tabuada’s triggering function [7], dynamic triggering [8], mixed triggering
[18], Lebesgue sampling [6]), and item 5 is a rather standard assumption in the context of
ETC, but as discussed in Chapter 7, it might not be needed.
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3.4. ISOCHRONOUS MANIFOLDS, TRIGGERING LEVEL SETS AND

PARTITION
Here, we recall results from [24] regarding isochronous manifolds, we introduce the notion
of triggering level sets and describe how isochronous manifolds and triggering level sets
are different. Finally, we point out how, given proper approximations of isochronous
manifolds, a state-space partition is generated, enabling a region-based STC scheme.

3.4.1. ISOCHRONOUS MANIFOLDS AND TRIGGERING LEVEL SETS
Definition 3.4.1 (Isochronous Manifolds). Consider an ETC system (2.5)-(2.6). The set
Mτ? = {x ∈Rn : τ(x) = τ?}, where τ(x) is defined by (2.7), is called an isochronous manifold
(IM) of time τ?.

Alternatively, all points x ∈Rn which correspond to intersampling time τ? constitute
the IM Mτ? . IMs are of dimension n −1 (proven in [24]).

Definition 3.4.2 (Triggering Level Sets). We call the set:

Lτ? := {x ∈Rn :φ(ξ(τ?; x)) = 0} (3.2)

triggering level set of φ(ξ(t ; x)) for time τ?.

Triggering level sets are the zero-level sets of the triggering function, for fixed t . Let us
now make a crucial observation: The equation φ(ξ(t ; x)) = 0 may have multiple solutions
with respect to time t for a given x. In other words, there might exist points x ∈Rn and time
instants τx,1 < τx,2 < ... < τx,k , with k > 1 such that φ(ξ(τx,i ; x)) = 0 for all i = 1,2, ...,k. We
briefly present an example with a triggering function exhibiting multiple zero-crossings
for given initial conditions:

0 10 20 30
-1

-0.5

0

Figure 3.1: The time evolution of φ(x; t ) for initial condition [−0.5,−1]>. It exhibits multiple zero-crossings.

Example: Consider the jet-engine compressor control system from [54]:

ξ̇1(t ) =−ξ2(t )− 3

2
ξ2

1(t )− 1

2
ξ3

1(t ), ξ̇2(t ) = υ(ξ(t )),
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with control law υ(ξ(t )) = ξ1(t )− 1
2 (ξ2

1(t )+1)(y+ξ2
1(t )y+ξ1(t )y2)+2ξ1(t ), where y = 2

ξ2
1+ξ2

ξ2
1+1

.

A triggering function that guarantees asymptotic stability is the following [23]:

φ(ξ(t ; x)) = |εζ|2 −0.82σ2|ζ(t ; x)|2, σ ∈ (0,1).

The evolution of the triggering function φ(ξ(t ; x)) for the initial condition [−0.5−1]> is
simulated and illustrated in Fig. 3.1. It is clear from the figure that it exhibits multiple
zero-crossings, e.g., for t = τx,1 ≈ 1.15s and t = τx,2 ≈ 3.22s. ■

Intersampling times are defined as the first zero-crossing of the triggering function
(see (2.7)), i.e. τ(x) = τx,1. IMs are defined with respect to this first zero-crossing, and any
point x ∈Rn \ {0} belongs only to one IM: Mτx,1 . However, the same point belongs to all
triggering level sets Lτx,i . For instance, in the previous example, the point x = (−0.5,−1)
belongs to both triggering level sets L1.15 and L3.22, whereas it belongs to only one IM,
i.e. M1.15. In [24], IMs and triggering level sets are treated as if they were identical, which
creates problems regarding approximating IMs. This is addressed later in this chapter.

Remark 3.4.1. If the triggering function φ(ξ(t ; x)) has only one zero-crossing for all x ∈
Rn \ {0}, then the triggering level sets do coincide with the IMs, i.e. Mτ? = {x ∈ Rn : τ(x) =
τ?} = {x ∈Rn :φ(ξ(τ?; x)) = 0} = Lτ? .

In the following, we refer to lines going through the origin as homogeneous rays. Owing
to the time scaling property (2.10), IMs possess the following properties:

Proposition 3.4.1. Consider an ETC system (2.5)-(2.6) and let Assumption 3.3.1 hold.
Moreover, assume that the intersampling time τ(x0) ∈ (0,+∞), for all x0 ∈Rn \ {0}. Then:

1. For any time τ? > 0, there exists an isochronous manifold Mτ? .

2. Each homogeneous ray intersects an isochronous manifold Mτ? only at one point:

∀τ? > 0 and ∀x ∈Rn \ {0} : ∃!λx > 0 such that λx x ∈ Mτ? (3.3)

3. Given two isochronous manifolds Mτ1 , Mτ2 with τ1 < τ2, on every homogeneous ray
Mτ1 is further away from the origin compared to Mτ2 , i.e. for all x ∈ Mτ1 :

∃!λx ∈ (0,1) s.t. λx x ∈ Mτ2 and 6 ∃κx ≥ 1 s.t. κx x ∈ Mτ2 . (3.4)

Proof. Proofs for the above statements appear in [24] and [49]. We include them here, to
highlight the importance of the time scaling property (2.10).

• Proof of properties 1 and 2: Under Assumption 3.3.1 and the assumption that τ(x0) ∈
(0,+∞), for all x0 ∈Rn \ {0}, and according to (2.9) and (2.10), on any homogeneous
ray, intersampling times continuously vary from 0 to +∞ as λx varies from +∞
to 0. Thus, for any τ? ∈ R+ there exists a point x on each ray such that τ(x) =
τ?. Hence, for any τ? ∈ R+ there exists an IM Mτ? , which is intersected by any
homogeneous ray at least once. What is more, equation (2.9) implies that there do
not exist two different points on the same homogeneous ray that correspond to
the same intersampling time, hence the IM is intersected only once by the same
homogeneous ray.
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• Proof of property 3: Since each homogeneous ray intersects any IM only at one
point, ∃!λx > 0 such that λx x ∈ Mτ2 , where x ∈ Mτ1 . From the scaling law (2.9) we
get:

τ2 = τ(λx x) =λ−α
x τ1 =⇒ λx = α

√
( τ1
τ2

) < 1,

since τ1 < τ2. There can be no other intersection of the homogeneous ray with Mτ2 ,
i.e. 6 ∃κx ≥ 1 s.t. κx x ∈ Mτ2 .

For an illustration of property 3.3, see Fig. 3.2, and for property 3.4, see Fig. 3.3. For
the above properties to hold, we have assumed that the intersampling time is finite for
all points x0, except for the origin, which guarantees that τ(x) varies from 0 to +∞ on
every homogeneous ray. Examples of cases where this assumption does not hold are cases
of multiple equilibria or cases where the triggering function is designed to not trigger,
when the state lies on a stable manifold. In such cases, properties (3.3) and (3.4) do not
hold on rays where intersampling times are infinite. Nonetheless, as discussed right after
Theorem 3.5.1, the proposed STC scheme does not require such an assumption.

Figure 3.2: The curve on the top is intersected only once by each homogeneous ray, thus it could be an IM of a
homogeneous system. The two bottom curves are intersected by some homogeneous rays more than once, thus
they cannot be IMs of a homogeneous system.

3.4.2. STATE-SPACE PARTITION AND A SELF-TRIGGERED STRATEGY
For the following, we assume that the system operates in an arbitrarily large compact set
B the whole time. Assume that IMs Mτi for τ1 < τ2 < τ3 are given, as illustrated in Fig.
3.3. We define the regions between manifolds as:

Ri = {x ∈Rn :∃κx ≥ 1 s.t. κx x ∈ Mτi ∧∃λx ∈ (0,1) s.t. λx x ∈ Mτi+1 } (3.5)

for τi < τi+1, and the region enclosed by the manifold Mτ3 as R3 = {x ∈ Rn : ∃κx ≥
1 s.t. kx x ∈ Mτ3 }. Since (3.4) holds, a region Ri is the set with its outer boundary be-
ing Mτi and its inner boundary being Mτi+1 . The scaling law (2.9) implies that: τ(x) ≥ τi

for all x ∈ Ri . Thus, IMs could be employed for discretizing the state space in regions Ri

such that (3.1) is satisfied.
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Figure 3.3: IMs Mτ1 , Mτ2 , Mτ3 (red lines) for τ1 < τ2 < τ3, and the operating region B (black line).

3.4.3. INNER-APPROXIMATIONS OF ISOCHRONOUS MANIFOLDS AND PARTI-
TION

Deriving the actual IMs is generally not possible, as nonlinear systems most often do
not admit a closed-form analytic solution. Thus, in order to partition the state space
and generate a region-based STC scheme, we propose a method to construct inner-
approximations of IMs, as shown in Fig. 3.4.

Definition 3.4.3 (Inner-Approximations of Isochronous Manifolds). Consider an ETC
system (2.5)-(2.6) and let Assumption 3.3.1 hold. A set Mτi

is called inner approximation
of an IM Mτi if and only if for all x ∈ Mτi

:

∃κx ≥ 1 s.t. κx x ∈ Mτi and 6 ∃λx ∈ (0,1) s.t. λx x ∈ Mτi . (3.6)

Figure 3.4: IMs Mτi (dashed lines), and their inner-approximations Mτi
(solid lines). The filled region represents

R1.

In other words, an inner-approximation of an IM is contained inside the region
encompassed by the IM. Consider inner-approximations Mτi

of IMs (τ1 < τ2 < ...), that
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satisfy the properties listed in Proposition 3.4.1. We consider the regions between sets
Mτi

:

Ri = {x ∈Rn :∃κx ≥ 1 s.t. κx x ∈ Mτi
∧∃λx ∈ (0,1) s.t. λx x ∈ Mτi+1

}. (3.7)

A region Ri is the set with its outer boundary being Mτi
and its inner boundary being

Mτi+1
(see Fig. 3.4). For such sets, by (2.9) we get the following result:

Corollary 3.4.1. Consider an ETC system (2.5)-(2.6) and let Assumption 3.3.1 hold. Con-
sider two inner-approximations Mτi

and Mτi+1
of isochronous manifolds, with τi ≤ τi+1.

Assume that Mτi
and Mτi+1

satisfy the properties listed in Proposition 3.4.1. For the region
Ri defined in (3.7), the following holds:

∀x ∈Ri : τi ≤ τ(x).

Proof. For all x ∈ Ri , ∃κx ≥ 1 s.t. κx x ∈ Mτi
. Thus, ∃kx ≥ κx ≥ 1 s.t. kx x ∈ Mτi . By (2.9),

we have τ(kx x) = τi =⇒ τ(x) = kαx τi ≥ τi .

Thus, given inner-approximations of IMs, that satisfy the properties listed in Proposi-
tion 3.4.1, the state space can be partitioned into regions Ri , enabling the region-based
STC scheme. Satisfaction of the properties in Proposition 3.4.1 is crucial, as e.g., otherwise,
Ri could potentially intersect with each other and be ill-defined (see Fig. 3.5), or the
approximations might not be intersected at all by some homogeneous rays, which would,
again, constitute the regions Ri ill-defined. Deriving inner-approximations Mτ?

of IMs
such that they satisfy the properties in Proposition 3.4.1 constitutes the main theoretical
challenge of this chapter.

Figure 3.5: If inner-approximations of IMs did not satisfy the properties in Proposition 3.4.1, then the regions
Ri could intersect with each other.

Remark 3.4.2. As already noted, the number of regions Ri equals the number q of prede-
fined times τi . Given that τ1 and τq are fixed, as the number of times q grows, the areas of
regions Ri become smaller, as the same space is partitioned into more regions. Thus, the
STC intersampling times τi become more accurate bounds of the actual ETC times τ(x).
However, during the online implementation, the controller in general needs to perform
more checks to determine the region of a measured state. Hence, the number q of times τi

provides a trade-off between computations and conservativeness.
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Remark 3.4.3. Note that τ1 has to be selected, such that the operating region B lies com-
pletely inside the region delimited by Mτ1

(e.g. see Fig. 3.3). To check this, the approach of
[23] or an SMT (Satisfiability Modulo Theory) solver (e.g. [53]) can be used.

3.5. APPROXIMATIONS OF ISOCHRONOUS MANIFOLDS
Here a refined methodology is presented, which generates inner-approximations of IMs
that satisfy the properties in Proposition 3.4.1. First, we show how the method of [24]
actually approximates triggering level sets, and then we refine its core idea to derive
approximations of IMs.

3.5.1. APPROXIMATIONS OF TRIGGERING LEVEL SETS
The method proposed in [24] is based on bounding the time evolution of the triggering
function by another function with linear dynamics: ψ1(x, t) ≥φ(ξ(t ; x)), with ψ1(x,0) =
φ(ξ(0; x)) < 0 for all x ∈ Rn \ {0}. The bound is obtained by constructing a linear system
according to a bounding lemma [24, Lemma V.2]. Unfortunately, this lemma is invalid
and the function that is obtained does not always bound φ(ξ(t ; x)). Specifically, a coun-
terexample is given in [55, Example 2, pp.2]. However, later in the document we present a
slightly adjusted lemma, that is actually valid. Thus, for this subsection we assume that
ψ1(x, t ) is an upper bound of φ(ξ(t ; x)).

Since ψ1(x, t ) ≥φ(ξ(t ; x)) and ψ1(x,0) < 0, if we define:

τ↓(x) = inf{t > 0 :ψ1(x, t ) = 0},

then it is guaranteed that φ(ξ(x; t )) ≤ 0, ∀t ∈ [0,τ↓(x)]. Hence, the first zero-crossing of
ψ1(x, t ) for a given x happens before the first zero-crossing of φ(ξ(t ; x)), i.e. the intersam-
pling time of x is lower bounded by τ↓(x): τ(x) ≥ τ↓(x).

In [24], under the misconception that IMs and triggering level sets coincide, it is argued
that to approximate an IM, it suffices to approximate the set Lτ? := {x ∈Rn :φ(ξ(τ?; x)) =
0}, i.e. a triggering level set. Thus, the upper bound ψ1(x, t ) of φ(ξ(t ; x)) is used to derive
the following approximation: Lτ? := {x ∈Rn :ψ1(x,τ?) = 0}. However, as we have already
pointed out for the triggering function, ψ1(x, t ) might also have multiple zero-crossings
for a given x ∈Rn . Thus, the equationψ1(x, t ) = 0 does not only capture the intersampling
times of points x, but possibly also more zero-crossings of φ(t ; x). Thus, we can say that
the set Lτ? is an approximation of the triggering level set Lτ? , and not of the IM Mτ? .
Furthermore, observe that ψ1(x, t) does not a priori satisfy the time scaling property
(2.10). Consequently, there is no formal guarantee that the sets Lτ? satisfy Proposition
3.4.1. For example, the sets Lτ? might be intersected by some homogeneous rays more
than once, or they may not be intersected at all.

Remark 3.5.1. In [24], given a fixed time τ?, the equation

ψ1( x0
λ ,τ?) = 0 (3.8)

is solved w.r.t. λ, in order to determine the STC intersampling time of the measured state
x0 as: τ↓(x0) = λ−ατ?. Note that (3.8) finds intersections x0

λ of Lτ? with the ray passing
through x0. Hence, the above observations imply that (3.8) may not have any real solution,
or may admit some solutions λ such that τ↓(x0) =λ−ατ? > τ(x), violating (2.11).
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3.5.2. INNER-APPROXIMATIONS OF ISOCHRONOUS MANIFOLDS
Although, the method of [24] generates approximations of triggering level sets, which
do not necessarily satisfy Proposition 3.4.1, we employ the idea of upper-bounding the
triggering function, and we impose additional properties to the upper bound, such that
the obtained sets approximate IMs and satisfy the properties in Proposition 3.4.1. Remark
3.4.1 and the proofs of Proposition 3.4.1 indicate that: 1) IMs coincide with triggering
level sets, if φ(·) has only one zero-crossing w.r.t. t , and 2) φ(·) satisfying (2.10) and
assuming that intersampling times are finite on all points x0 ∈ Rn \ {0} imply that IMs
satisfy Proposition 3.4.1. Intuitively, we could construct a function µ(x, t ) that satisfies the
same properties and its zero-crossing happens before the one of φ(·), and use the level
sets Mτ?

= {x ∈Rn :µ(x,τ?) = 0} as inner approximations of IMs that satisfy Proposition
3.4.1. The above are summarized in the following theorem:

Theorem 3.5.1. Consider an ETC system (2.5)-(2.6) and let Assumption 3.3.1 hold. Let
µ :Rn ×R+ →R be a function that satisfies:

µ(x,0) < 0, ∀x ∈Rn \ {0}, (3.9a)

µ(x, t ) ≥φ(ξ(t ; x)), ∀t ∈ [0,τ(x)] and ∀x ∈Rn \ {0}, (3.9b)

µ(λx, t ) =λθ+1µ(x,λαt ), ∀t ,λ> 0 and ∀x ∈Rn \ {0}, (3.9c)

∀x ∈Rn \ {0} : ∃!τx ∈ (0,+∞) such that µ(x,τx ) = 0. (3.9d)

The sets Mτ?
= {x ∈Rn :µ(x,τ?) = 0} are inner-approximations of isochronous manifolds

Mτ? and satisfy the properties listed in Proposition 3.4.1.

Proof. See Appendix 3.A.

The sets Mτ?
satisfy Proposition 3.4.1, without assuming that the actual manifolds

satisfy it, i.e., without assuming that τ(x) is finite in Rn \ {0}. That is because, apart from
enforcing the scaling property (3.9c) to µ, we have also enforced (3.9d) on µ(x, t ).

Remark 3.5.2. It is crucial that inequality (3.9b) extends at least until τ(x), in order for
µ(x, t) to capture the actual intersampling time, i.e. for the minimum time satisfying
µ(x, t ) = 0 to lower bound the minimum time satisfying φ(ξ(t ; x)) = 0.

3.5.3. CONSTRUCTING THE UPPER BOUND OF THE TRIGGERING FUNCTION
In this subsection, we construct a valid bounding lemma and we employ it in order to
derive an upper bound µ(x, t ) of the triggering function φ(ξ(t ; x)), that satisfies (3.9).

Lemma 3.5.1. Consider a system of differential equations ξ̇(t) = f (ξ(t)), where f :Rn →
Rn , a function φ : Rn → R and a set Ωd = {x ∈ Rn : |x| < d}. For every set of coefficients
δ0,δ1, ...,δp ≥ 0 satisfying:

L
p
f φ(z) ≤

p−1∑
i=0

δi L
i
f φ(z)+δp , ∀z ∈Ωd , (3.10)

the following inequality holds for all ξ0 ∈Ωd :

φ(ξ(t ;ξ0)) ≤ψ1(y(ξ0), t ) ∀t ∈ [0, te (ξ0)),
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where te (ξ0) is defined as:

te (ξ0) = sup{τ> 0 : ξ(t ;ξ0) ∈Ωd , ∀t ∈ [0,τ)} (3.11)

and ψ1(y(ξ0), t) is the first component of the solution of the following linear dynamical
system:

ψ̇=



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

0 0 0 . . . 1 0
δ0 δ1 δ2 . . . δp−1 1
0 0 0 . . . 0 0


ψ= Aψ, (3.12)

with initial condition:

y(ξ0) =
[
φ(ξ0) L f φ(ξ0) . . . L

p−1
f φ(ξ0) δp

]>
.

Proof. See Appendix 3.A.

Remark 3.5.3. The main difference between Lemma 3.5.1 and the bounding lemma in
[24] is that in Lemma 3.5.1 the coefficients δi are forced to be non-negative. We also
include a proof, employing a higher-order comparison lemma, since the comparison lemma
arguments used in the proof of [24] are invalid.

Let us demonstrate how to employ Lemma 3.5.1, to derive upper bounds of the
triggering function. Define the open ball:

Ωd := {x ∈R2n : |x| < d}. (3.13)

Consider the following feasibility problem:

Problem 1. Consider an ETC system (2.5)-(2.6) and let Assumption 3.3.1 hold. Find
δ0, . . . ,δp ∈R such that:

L
p
fe
φ(z) ≤

p−1∑
i=0

δi L
i
fe
φ(z)+δp , ∀z ∈Ωd , (3.14a)

δ0φ
(
(x,0)

)
+δp ≥ ε> 0, ∀x ∈ Z, (3.14b)

δi ≥ 0, i = 0,1, . . . , p, (3.14c)

where ε is an arbitrary predefined positive constant, d is such that Ξ⊂Ωd , and Z, Ξ and
Ωd are given by Assumption 3.3.1 and (3.13) respectively.

The feasible solutions of (3.14) belong in a subset of the feasible solutions of Lemma
3.5.1, i.e. the solutions of (3.14) determine upper bounds of the triggering function. More-
over, suchδi always exist, since to satisfy (3.14) it suffices to pickδp ≥ max{ε, sup

z∈Ωd

L
p
fe
φ(z)}

and δi = 0 for i = 0, . . . , p −1. The following theorem shows how to employ solutions of
Problem 1, in order to construct upper bounds that satisfy (3.9).
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Theorem 3.5.2. Consider an ETC system (2.5)-(2.6) and let Assumption 3.3.1 hold. Con-
sider coefficients δ0, . . . ,δp solving Problem 1. Let r > 0 be such that D ⊂ Z, where D = {x ∈
Rn : |x| = r }. Define the following function for all x ∈Rn \ {0}:

µ(x, t ) :=C ( |x|r )θ+1e A( |x|r )αt



φ
(
(r x

|x| ,0)
)

max
(
L feφ

(
(r x

|x| ,0)
)
,0

)
...

max
(
L

p−1
fe

φ
(
(r x

|x| ,0)
)
,0

)
δp


(3.15)

where A is as in (3.12), C = [
1 0 . . . 0

]
, and α and θ are the degrees of homogeneity of

the system and the triggering function, respectively. The function µ(x, t ) satisfies (3.9).

Proof. See Appendix 3.A.

Thus, according to Theorem 3.5.1, the sets Mτ?
= {x ∈ Rn : µ(x,τ?) = 0} are inner-

approximations of the actual IMs of the system and satisfy Proposition 3.4.1. The fact that
µ(x, t ) satisfies (3.9) directly implies that the region Ri between two approximations Mτi
and Mτi+1

(τi < τi+1) can be defined as:

Ri := {x ∈Rn :µ(x,τi ) ≤ 0∧µ(x,τi+1) > 0}. (3.16)

To determine online to which region does the measured state belong, the controller
checks inequalities like the ones in (3.16).

Remark 3.5.4. The innermost region Rq cannot be defined as in (3.16), as there is no τq+1.
For Rq , it suffices that we write:

Rq := {x ∈Rn : µ(x,τq ) ≤ 0}

Let us explain the importance of Z, Ξ from Assumption 3.3.1. By solving Problem 1,
an upper bound ψ(ξ0, t ) is determined according to Lemma V.2 that bounds φ(ξ(t ;ξ0)) as
follows:

ψ(ξ0, t ) ≥φ(ξ(t ;ξ0)), ∀ξ0 ∈Ωd and ∀t ∈ [0, te (ξ0)),

where te (ξ0) is the time when the trajectory ξ(t ;ξ0) leaves Ωd (see (3.11)). What is needed
is to bound φ(ξ(t ;ξ0)) at least until the intersampling time τ(ξ0) (see Remark 9), i.e.
τ(ξ0) < te (ξ0). This is exactly what Assumption 3.3.1 offers: trajectories starting from
points ξ0 ∈ Z× {0} stay in Ξ⊂Ωd at least until τ(ξ0) (see Figure 3.6). In other words, for all
points ξ0 ∈ Z× {0}, we have that τ(ξ0) < te (ξ0) (since Ξ⊂Ωd ) and therefore:

ψ(ξ0, t ) ≥φ(ξ(t ;ξ0)), ∀ξ0 ∈ Z× {0} and ∀t ∈ [0,τ(ξ0)]. (3.17)

Regarding the {0}-part of Z× {0}, note that we only consider initial conditions ξ0 = (x,0),
as aforementioned. Finally, transforming ψ(x, t ) into µ(x, t ) by incorporating properties
(3.9c) and (3.9d), equation (3.17) becomes (3.9b). All these statements are formally proven
in Appendix 3.A.
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Figure 3.6: The sets Z× {0} ⊂Ξ⊂Ωd .

3.6. AN ALGORITHM THAT COMPUTES THE δi -COEFFICIENTS
Although in [24] SOSTOOLS [50] is proposed for deriving the δi coefficients that solve
Problem 1, our experience indicates that it is numerically non-robust regarding solving
this particular problem. We present an alternative approach based on a Counter-Example
Guided Iterative Algorithm (see e.g. [52]), which combines Linear Programming and SMT
solvers (e.g. dReal [53]), i.e. tools that verify or disprove first-order logic formulas, like
(3.14).

Consider the following problem formulation:

Problem. Find a vector of parameters ∆ such that:

G(x) ·∆≤ b(x), ∀x ∈Ω, (3.18)

where ∆ ∈Rp , G :Rn →Rm×p , b :Rn →Rm andΩ is a compact subset of Rn .

For the initialization of the algorithm, a finite subset Ω̂ consisting of samples xi from
the setΩ is obtained. Notice that the relation: G(xi ) ·∆≤ b(xi ),∀xi ∈ Ω̂ can be formulated

as a linear inequality constraint: Â·∆≤ b̂, where Â = [
G>(x1) G>(x2) . . . G>(xi ) . . .

]>
and b̂ = [

b(x1) b(x2) . . . b(xi ) . . .
]>

, ∀xi ∈ Ω̂. Each iteration of the algorithm con-
sists of the following steps:

1. Obtain a candidate solution ∆̂ by solving the following linear program (LP):

minimize c>∆, subject to Â ·∆≤ b̂,

where c can be freely chosen by the user (we discuss meaningful choices later).

2. Employing an SMT solver, check if the candidate solution ∆̂ satisfies the inequality
on the original domain, i.e. if G(x) · ∆̂≤ b(x), ∀x ∈Ω:

(a) If ∆̂ satisfies (3.18), then the algorithm terminates and returns ∆̂ as the solu-
tion.

(b) If ∆̂ does not satisfy (3.18), the SMT solver returns a point xc ∈Ω where this
inequality is violated, i.e. a counter-example. Add xc to Ω̂ and update accord-
ingly the matrices Â and b̂. Go to step 1.
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Note that in step 2b) a single constraint is added to the LP of the previous step, i.e.
G(xc ) ·∆≤ b(xc ), by concatenating G(xc ) and b(xc ) to the Â and b̂ matrices, respectively.

In order to solve Problem 1 in particular, we define ∆ = [
δ0 δ1 . . . δp

]>
, b(·) =[

−L
p
fe
φ(z) −ε . . . 0

]>
and:

G(·) =



−φ(z) . . . −L
p−1
fe

φ(z) −1

−φ(ξ(0; x0)) 0 . . . −1
−1 0 . . . 0
0 −1 . . . 0

0 0
. . . 0

0 0 . . . −1


,

where z ∈Ωd and x0 ∈ Z, with Ωd and Z as in (3.13) and Assumption 3.3.1 respectively.
Hence, the set Ω̂ consists of points Xi = (zi , x0i ) ∈ Ωd ×Z, and after solving the corre-
sponding LP, the SMT solver checks if G(X ) · ∆̂≤ b(X ), ∀X ∈Ωd ×Z. Finally, intuitively,
tighter estimates of L

p
fe
φ(z) could be obtained by minimizing δp , and using the other

L i
fe
φ(z) terms in the right hand side of (3.10). Hence, c = [

0 . . . 0 1
]

constitutes a

wise choice for the LP. In the following section, numerical examples demonstrate the
algorithm’s efficiency, alongside the validity of our theoretical results.

Remark 3.6.1. It is recommended that the parameter d, which determines the size ofΩd ,
is chosen relatively small, in order to help the algorithm terminate faster. Moreover, our
experiments indicate that just 2 initial samples xi ∈ Ω̂ are sufficient for the algorithm to
terminate relatively quickly. Intuitively, this is because letting the algorithm determine most
of the samples itself (by finding the counter-example points) is more efficient than dictating
samples a priori. Finally, p should be chosen large enough so that the obtained bound µ(·, ·)
is tight, but also small enough so that the dimensionality of the feasibility problem remains
small. According to our experience, a choice of 2 ≤ p ≤ 4 leads to satisfactory results and
quick termination of the algorithm, in most cases.

Remark 3.6.2. To guarantee that the algorithm terminates in a finite number of iterations,
every newly added counter-example inequality can be made stricter by subtracting a positive
constant s from the right-hand side: G(xc ) ·∆≤ b(xc )− s. Under certain boundedness and
continuity assumptions, this guarantees that, in the next iteration, the solution ∆̂ will
satisfy the inequality G(x) ·∆≤ b(x) not only on xc but for every point in a neighbourhood
containing xc . Thus, with a finite number of iterations, the union of these neighbourhoods
will contain the whole compact set Ω and the algorithm will terminate.

3.7. NONHOMOGENEOUS SYSTEMS AND REGION-BASED STC
As mentioned earlier, in [24] a homogenization procedure is proposed that renders homo-
geneous of degree α> 0 any ETC system (2.8), by embedding it into R2n+1 and adding a
dummy variable w : [

ξ̇

ẇ

]
=

[
wα+1 fe (w−1ξ)

0

]
= f̃e (ξ, w) (3.19)
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An example of the use of the homogenization procedure is demonstrated in Section 3.8.
The same can be done for nonhomogeneous triggering functions φ̃(ξ, w) = wθ+1φ(w−1ξ).
Notice that the trajectories of the original ETC system (2.8) with initial condition (x0,e0) ∈
R2n coincide with the trajectories of the homogenized one (3.19) with initial condition
(x0,e0,1) ∈R2n+1, projected to the ξ-variables. The same holds for a homogenized trigger-
ing function. Thus, the intersampling times τ(x0) of system (2.8) with triggering function

φ(·) coincide with the intersampling times τ
(
(x0,1)

)
of (3.19) with triggering function φ̃(·).

Consequently, if the original system (or the triggering function) is nonhomogeneous,
then first it is rendered homogeneous via the homogenization procedure (3.19). After-
wards, inner-approximations of isochronous manifolds for the homogenized system
(3.19) are derived. Since trajectories of the original system are mapped to trajectories on
the w = 1-plane of the homogenized one (i.e. the state-space of the original system is
mapped to the w = 1-plane), to determine the intersampling time τi of a state x0 ∈ Rn ,
one has to check to which region Ri ⊂ Rn+1 the point (x0,1) belongs. For an illustra-
tion, see Figure 3.7: e.g. given a state x0 ∈ Rn , if (x0,1) ∈ Rn+1 lies on the cyan segment
(i.e. it is contained in R1), then the STC intersampling time that is assigned to x0 is
τ↓(x0) = τ1. Note that, here, it suffices to inner-approximate the isochronous manifolds
of (3.19) only in the subspace w > 0, since we only care about determining regions Ri

for points (x0,1) ∈R2n . Thus, the conditions of Theorem 3.5.1 can be relaxed so that they
hold only in the subspace w > 0, i.e. for all (x, w) ∈ (Rn \ {0})×R>0. A thorough treatment
of nonhomogeneous systems takes place in Chapter 4, where any given perturbed system
(even if the nominal system is homogeneous) is homogenized. In this chapter, we demon-
strate our results’ applicability to nonhomogeneous systems in Section 3.8.2, through a
numerical example.

Figure 3.7: Inner-approximations of isochronous manifolds (coloured curves) for a homogenized system (3.19)
and the regions Ri between them. The coloured segments on the w = 1-plane represent the subsets of the
hyperplane w = 1 (i.e. the subsets of the original state space) that are contained in the regions Ri and are
associated to the corresponding intersampling times τi .
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3.7.1. NONHOMOGENEOUS SYSTEMS AND TABUADA’S TRIGGERING FUNC-
TION

In the case of nonhomogeneous systems in combination with Tabuada’s triggering func-
tion [7], a technical detail arises that needs to be discussed. The triggering function of
[7] is of the form φ(ξ(t)) = |εζ(t)|2 −σ|ζ(t)|2 (it is already homogeneous), where σ > 0.

Deriving the function µ
(
(x, w), t

)
as in Theorem 3.5.2 for the homogenized system (3.19),

for all points (0, w) ∈Rn+1 \ {0} on the w-axis:

µ
(
(0, w), t

)
=C ( |w |

r )θ+1e A( |w |
r )αt



0

max
(
L feφ(0),0

)
...

max
(
L

p−1
fe

φ(0),0
)

δp


Since φ(0) = 0, then for all these points: µ

(
(0, w), t

)
> 0 for all t > 0. Hence, the w-axis

does not belong to any inner-approximation Mτ?
= {(x, w) ∈ Rn+1 : µ

(
(x, w),τ?

)
= 0} of

IMs. In other words, all inner-approximations Mτ?
are punctured by the w-axis and

obtain a singularity at the origin, as shown in Fig. 3.8. Consequently, given a finite set

-5
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Figure 3.8: Inner-approximation Mτ?
of IMs of a homogenized ETC system with Tabuada’s triggering function.

of times {τ1, . . . ,τq }, discretizing the state-space of the extended system into regions Ri

delimited by inner-approximations Mτi
, will always result in a neighbourhood around

the w-axis not belonging to any region Ri , as depicted in Fig. 3.9. This implies that
a neighbourhood around the origin of the original system (2.5), which is mapped to a
subset of the hyperplane w = 1 around the w-axis in the augmented space Rn+1, is not
contained to any region Ri . Thus, no STC intersampling time can be assigned to the
points of this neighbourhood. Nonetheless, this neighbourhood can be made arbitrarily
small, by selecting a sufficiently small time τ1 for the outermost inner-approximation
Mτ1

. Thus, in order to apply the region-based STC scheme in practice, first we make this
neighbourhood arbitrarily small, and then we treat it differently by associating it to an
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Figure 3.9: Partition of the state space of a homogenized system into regions Ri delimited by inner-
approximations Mτi

(coloured lines) of IMs.

intersampling time that can be designed e.g. according to periodic sampling techniques
that guarantee stability (e.g. [56]). Finally, in the numerical example of Section 3.8.2,
we completely neglect this region, as it is so small that it is not even reached during the
simulation.

Remark 3.7.1. Note that, as the w-axis acts as a singularity for both the IMs Mτ? (the
actual intersampling times there are technically 0, and in practice they could be anything)
and their inner-approximations Mτ?

, the inner-approximations might look very different
than the actual manifolds near the w-axis.

Remark 3.7.2. These singularities do not arise in cases where φ(0) 6= 0. Such an example is
the well-known mixed-triggering function φ(ξ(t )) = |εζ(t )|2 −σ|ζ(t )|2 −ε2 (e.g. [18]), where
σ> 0 is appropriately chosen and ε> 0. In fact, triggering functions such that φ(0) < 0 are
preferred in practice, since when φ(0) = 0 the ETC system exhibits Zeno behaviour around
the origin under disturbances. This is briefly discussed right after Assumption 4.3.1 in
Chapter 4.

3.8. NUMERICAL EXAMPLES
In the following numerical examples, SOSTOOLS failed to derive upper bounds, as it
mistakenly reasoned that Problem 1 is infeasible. The upper bounds were derived by the
algorithm proposed above.

3.8.1. HOMOGENEOUS SYSTEM
In this example, we compare the region-based STC with the STC technique of [23] (which is
also computationally light) and with ETC (which constitutes the ideal scenario). Consider
the following homogeneous control system:

ζ̇1 =−ζ3
1 +ζ1ζ

2
2, ζ̇2 = ζ1ζ

2
2 −ζ2

1ζ2 +υ, (3.20)

with υ(ζ) =−ζ3
2 −ζ1ζ

2
2. A homogeneous triggering function for an asymptotically stable

ETC implementation is:

φ(ξ(t ; x)) = |εζ(t ; x)|2 −0.01272σ2|ζ(t ; x)|2, σ ∈ (0,1),
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where ξ(·) denotes the trajectories of the corresponding extended system (2.8), εζ(·) is
the measurement error (2.4), and x is the previously sampled state. As in [24], we select
σ= 0.3.

-0.8 0 0.8

-0.8

0.8

Figure 3.10: Approximations of IMs of the ETC implementation of (3.20).

In order to test the proposed region-based STC scheme, Problem 1 is solved by em-
ploying the algorithm presented in the previous section. In particular, we set p = 3, Ωd =
{x ∈R4 : |x| < 0.9} and Ξ= Z×E, where Z = {x ∈R2 : V (x) ≤ 0.1}, E = {x0 −x ∈R2 : x, x0 ∈ Z}
and V (x) = 1

2 x2
1 + 1

2 x2
2 is a Lyapunov function for the system. Observe that Ξ⊂Ωd . The

coefficients found are δ0 = 0, δ1 = 0.1272, δ2 = 0 and δ3 = 0.0191. In order to construct
µ(x, t) according to (3.15), we fix r = 0.29 and the set D = {x ∈ R2 : |x| = r } indeed lies in
the interior of Z. The state space is partitioned into 348 regions Ri with corresponding
self-triggered intersampling times τ348 = 0.1s and τi = 1.01−2τi+1. Indicatively, 4 derived
approximations of IMs are shown in Fig. 3.10. Observe that the approximations satisfy
the properties listed in Proposition 3.4.1.

The system is initiated at x = [1,1]> and the simulation lasts for 5s. Fig. 3.11 compares
the time evolution of the intersampling times of the region-based STC, the STC proposed
in [23] and ETC. In total, ETC triggered 383 times, the region-based STC triggered 554
times, whereas the STC of [23] triggered 2082 times. Given Fig. 3.11 and the number of
total updates for each technique we can conclude that: 1) the region-based STC scheme
highly outperforms the STC of [23] and 2) the performance of the region-based STC
scheme follows closely the ideal performance of ETC, while reducing the computational
load in the controller.

3.8.2. NONHOMOGENEOUS SYSTEM

Consider the forced Van der Pol oscillator:

ζ̇1(t ) = ζ2(t ), ζ̇2(t ) = (1−ζ2
1(t ))ζ2(t )−ζ1(t )+υ(t ), (3.21)

with υ(t ) =−ζ2(t )−(1−ζ2
1(t ))ζ2(t ). Assuming an ETC implementation, and homogenizing

the system with an auxiliary variable w , according to the homogenization procedure



3

32 3. ISOCHRONOUS PARTITIONS AND REGION-BASED SELF-TRIGGERED CONTROL

0 1 2 3 4 5
Time

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

In
te
rs
am

pl
in
g 
Ti
m
e

ETC update 
Region-Ba ed STC update 
[Anta and Tabuada, 2010] STC update 

Figure 3.11: The time evolution of region-based STC, STC of [23] and ETC intersampling times along a simulated
trajectory of (3.20).

(3.19), the extended system (2.8) becomes:

[
ξ̇

ẇ

]
=


ξ2w2

(w2 −ξ2
1)ξ2 −ξ1w2 −ε2w2 − (w2 −ε2

1)ε2

−ξ2w2

−(w2 −ξ2
1)ξ2 +ξ1w2 +ε2w2 + (w2 −ε2

1)ε2

0

 (3.22)

where ξ = [ζ1,ζ2,εζ1 ,εζ2 ]>, εi = ξi +εζi and εζ is the measurement error (2.4). The ho-
mogeneity degree of the extended system is α = 2. A triggering function based on the
approach of [7] has been obtained in [12]:

φ(ζ,εζ) =W (εζ)−V (ζ),

where W (εζ) = 2.222(ε2
ζ1
+ε2

ζ2
) and V (ζ) = 0.0058679ζ2

1 +0.0040791ζ1ζ2 +0.0063682ζ2
2 is a

Lyapunov function for the original system. Note, that φ(ζ,εζ) is already homogeneous of
degree 1. We fix Z = [−0.01,0.01]3 and define the following sets:

Φ= ⋃
x0∈[−0.01,0.01]2

{x ∈R2 : W (x0 −x)−V (x) ≤ 0},

E = {x0 −x ∈R2 : x0 ∈ [−0.01,0.01]2, x ∈Φ},

Ξ=Φ× [−0.01,0.01]×E× {0}.

Notice thatΦ is exactly such that for all x0 ∈ [−0.01,0.01]2: φ(ξ(t ; x0, w0)) ≤ 0 =⇒ ζ(t ; x0) ∈
Φ. Then, from the definition of E and the observation that w remains constant at all time,
it is easily verified that Z andΞ are compact, contain the origin and satisfy the requirement
of Assumption 3.3.1.
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Figure 3.12: The evolution of region-based STC intersampling times along the trajectory of the forced Van der
Pol oscillator.

Let us compare the region-based STC to the ideal performance of ETC. Solving Prob-
lem 1 for p = 3, we obtain δ0 ≈ 4.3 ·10−4, δ1 = 0 and δ2 ≈ 2.1 ·10−2 and δ3 ≈ 4 ·10−6. To

obtain µ
(
(x, w), t

)
as in (3.15), we fix r = 0.009 and D = {x ∈ R3 : |x| = r } indeed lies in

the interior of Z. The state space is partitioned into 267 regions Ri , with τ126 = 0.1s and
τi = 1.01−2 ·τi+1. The system is initiated at x = [−0.3,1.7]>, and the simulation duration
is 5s. In total, the ETC implementation triggered 114 times, whereas the region-based
STC implementation triggered 320 times. This is a much better result than the one pre-
sented in the published version [49], where region-based STC triggered 1448 times. In
[49], it was conjectured that the conservatism of region-based STC in this case was due to
homogenization and lifting in higher dimensions, but it appears that it was more a matter
of finding a better set of parameters δ.

Figures 3.12 and 3.13 demonstrate the evolution of the intersampling times of region-
based STC and ETC, respectively, along the trajectory. In particular, the curve on the
ζ1 −ζ2 plane is the trajectory of the system, while the 3D curve above is the evolution
of intersampling times along the trajectory. The direction of the trajectory is from the
blue-coloured points to the red-coloured points. In Fig. 3.12 the intervals for which the
intersampling time remains constant correspond to segments of the trajectory in which
the state vector lies inside one particular region Ri . First, note that in contrast to the
previous example, the intersampling times do not increase as the system approaches the
origin, since the system is not homogeneous and the time-scaling property (2.10) does
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Figure 3.13: The evolution of ETC intersampling times along the trajectory of the forced Van der Pol oscillator.

not apply here. In fact, as stated in [24], the scaling law that applies is :

φ(ξ(t ;λx,λw)) =λθ+1φ(ξ(λαt ; x, w)). (3.23)

Moreover, the similarity of the two figures indicates that the intersampling times of the
region-based STC approximately follow the trend of the ETC intersampling times. This

indicates that the approximations of IMs determined by µ
(
(x, w), t

)
preserve the spa-

tial characteristics of the actual IMs of (3.21). Intuitively, the preservation of the spatial

characteristics could be attributed to the fact that µ
(
(x, w), t

)
also satisfies (3.23), which

determines the scaling of the IMs of the homogenized system (3.22) along its homoge-
neous rays. Besides, note that the IMs of the original system (3.21) are the intersections of
the IMs of (3.22) with the w = 1-plane.

Remark 3.8.1. This simulation demonstrates that the results presented in this work are
transferable to nonhomogeneous systems, as well.

3.9. CONCLUSION
We have developed a region-based STC policy that is able to provide different perfor-
mance guarantees, by introducing a generic framework to emulate a wide range of ETC
triggering functions. Moreover, it enables a trade-off between online computations and
updates. The scheme employs a state-space partition dictated by inner-approximations
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of isochronous manifolds of nonlinear ETC systems. To derive such approximations,
theoretical issues of [24] have been addressed and a computational algorithm has been
proposed. Finally, simulation results have demonstrated the effectiveness of region-based
STC. In the next chapter, the scheme is extended to systems with bounded disturbances
or uncertainties.

3.A. TECHNICAL PROOFS AND ASSOCIATED PRELIMINARIES
To conduct the proofs of the previously presented lemmata and theorems, we first intro-
duce some preliminary concepts.

3.A.1. HIGHER ORDER DIFFERENTIAL INEQUALITIES
Definition 3.A.1 (Type W ∗ functions [51]). The function g : Rn → R is said to be of type
W ∗ on a set S ⊆Rn if g (x) ≤ g (y) for all x, y ∈ S such that xn = yn , xi ≤ yi (i = 1,2, ...,n−1),
where xi , yi denote the i -th component of the x and y vector respectively.

Definition 3.A.2 (Right maximal solution [51]). Consider the p-th order differential equa-
tion:

u(p)(t ) = g (t ,u(t ), u̇(t ), . . . ,u(p−1)(t )), (3.24)

where u :R+ →R and g (·) is continuous on [0,T ]×Rp . A solution um(t ; t0,Um), where t0

is the initial time instant and Um ∈Rp is the vector of initial conditions, is called a right
maximal solution of (3.24) on an interval [t0,α) ⊂ [0,T ] if

u(i )(t ; t0,U0) ≤ u(i )
m (t ; t0,Um), t ∈ [t0,α)∩ [t0,α∗),

for any other solution u(t ; t0,U0) with initial condition U0 ¹Um defined on [t0,α∗), for all
i = 0,1,2, . . . ,m −1.

Lemma 3.A.1 (Higher Order Comparison Lemma [51]). Consider a system of first order
differential equations:

ζ̇(t ) = f (t ,ζ(t )). (3.25)

Let υ : Dr →R and let υ ∈C p , f ∈C p−1 on Dr , where Dr = {(t , x)|0 ≤ t ≤ T <+∞, |x| < r }.
Let g (·) of (3.24) be of type W ∗ on S ⊆Rp+1 for each t , where

S =
{(

t ,υ(t ,ζ(t )), υ̇(t ,ζ(t )), . . . ,υ(p−1)(t ,ζ(t ))
)

: (t ,ζ(t )) ∈ Dr

}
and

υ(i )(t ,ζ(t )) = ∂υ(i−1)(t ,ζ(t ))

∂t
+ ∂υ(i−1)(t ,ζ(t ))

∂ζ(t )
· f (t ,ζ(t )).

Assume that:
υ(p)(t ,ζ(t )) ≤ g (t ,υ(t ,ζ(t )), υ̇(t ,ζ(t )), . . . ,υ(p−1)(t ,ζ(t ))),

for all (t ,ζ(t)) ∈ Dr . Let J denote the maximal interval of existence of the right maximal
solution um(t ;0,Um) of (3.24). If υ(i )(0,ζ0) = u(i )

m (0;0,Um) (i = 0,1,2, . . . , p − 1), where
u(i )

m (0;0,Um) are the components of the initial condition Um of um(t ;0,Um), then:

υ(i )(t ,ζ(t ;0,ζ0)) ≤ u(i )
m (t ;0,Um), t ∈ J ∩ [0,T ],

for all i = 0,1,2, . . . , p −1.
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3.A.2. MONOTONE SYSTEMS

Definition 3.A.3 (Monotone System[57]). Consider a system:

ζ̇(t ) = f (ζ(t )). (3.26)

The system (3.26) is called monotone if:
ζ0 ¹ ζ1 =⇒ ζ(t ; t0,ζ0) ¹ ζ(t ; t0,ζ1).

Proposition 3.A.1 ([57]). Consider the system (3.26). If the off-diagonal entries of the

Jacobian ∂ f
∂ζ are non-negative, then the system (3.26) is monotone.

3.A.3. TECHNICAL PROOFS

Proof of Theorem 3.5.1. Define τ↓(x) = inf{t > 0 :µ(x, t ) = 0}. (3.9d) implies thatµ(x,τ↓(x)) =
0 is the only zero-crossing of µ(x, t ) w.r.t. t for any given x. Hence:

Mτ?
= {x ∈Rn :µ(x,τ?) = 0} = {x ∈Rn : τ↓(x) = τ?},

By employing equations (3.9c) and (3.9d) and invoking similar arguments to the ones of
the proof of Proposition 3.4.1, we have that Mτ?

satisfies the properties in Proposition
3.4.1.

It is left to prove that Mτ?
is an inner approximation of Mτ? . Notice thatφ(ξ(τ(x); x)) =

0 together with (3.9b) and (3.9a), imply that the first zero-crossing of µ(x, t) happens
before the one of the triggering function:

τ↓(x) ≤ τ(x). (3.27)

Furthermore, (3.9c) implies that τ↓(x) also satisfies the scaling law (2.9) (the proof for this
argument is the exact same to the one derived in [23] for the scaling laws of intersampling
times.) The fact that both τ↓(x) and τ(x) satisfy (2.9), i.e. they are strictly decreasing
functions along homogeneous rays, alongside (3.27) implies that: τ(x1) = τ↓(x2) = τ? =⇒
|x1| ≥ |x2|, for all x1,x2 on a homogeneous ray. Thus, since Mτ?

satisfies (3.3), we get that
for all x ∈ Mτ?

:

∃!κx ≥ 1 s.t. κx x ∈ Mτi and 6 ∃λx ∈ (0,1) s.t. λx x ∈ Mτi .

The proof is now complete.

Proof of Lemma 3.5.1. Introduce the following linear system:

χ̇=



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1
δ0 δ1 δ2 . . . δp−2 δp−1


χ+


0
...
0
δp

 . (3.28)
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Notice that (3.28) represents the p-th order differential equation χ(p) =∑p−1
i=0 δiχ

(i ) +δp .
The proof makes use of Lemma 3.A.1. Using the notation of Lemma 3.A.1, we identify:

v(t ,ξ(t )) ≡φ(ξ(t )), ∀ξ(t ) ∈Ωd ,

f (t ,ξ(t )) ≡ f (ξ(t )), ∀ξ(t ) ∈Ωd ,

g (t , v, v ′, ..., v (p−1)) ≡
p−1∑
i=0

δi v (i ) +δp .

For t > te (ξ0), ξ(t ;ξ0) may not belong to Ωd . Thus, υ(·) is well-defined only in the
interval [0, te (ξ0)). Since δi ≥ 0 for all i , g is of type W ∗ in R+×Rp . Moreover, it is clear
that v ∈ C p and f ∈ C p−1 on [0, te (ξ0))×Ωd . Inequality (3.10) translates to v (p)(t , z) ≤
g (t , v, v ′, ..., v (p−1)) for (t , z) ∈ [0, te (ξ0))×Ωd .

Furthermore, according to Proposition 3.A.1, the linear system (3.28) is monotone,
since all off-diagonal entries of its jacobian are non-negative (δi ≥ 0 for all i ). This implies
that any solution of (3.28) is a right maximal solution, and its maximal interval of existence
is J = [0,+∞). Consider the solution χ(t ; X (ξ0)), where

X (ξ0) =
[
φ(ξ0) L f φ(ξ0) . . . L

p−1
f φ(ξ0)

]>
Observe that the components of the initial condition X (ξ0) and L i

f φ(z) (i = 0,1,2, . . . , p −
1) are equal. All conditions of Lemma (3.A.1) are satisfied. Thus, we can conclude that for
all ξ0 ∈Ωd :

φ(ξ(t ;ξ0)) ≤χ1(t ; X (ξ0)), ∀t ∈ [0, te (ξ0)).

Notice that ψ1(y(ξ0), t) = χ1(t ; X (ξ0)) for all t . Hence φ(ξ(t ;ξ0)) ≤ ψ1(y(ξ0), t), ∀t ∈
[0, te (ξ0)).

To prove Theorem 3.5.2, we first derive the following results.

Proposition 3.A.2. Consider coefficients δi (i = 0,1, ..., p) solving Problem 1, and define an
upper-bound ψ1(x, t ) of the triggering function φ(ξ(t ; x)) as dictated in Lemma 3.5.1. Let:

η1(x, t ) :=Ce Atη(x,0), (3.29)

where A is as in (3.12), C = [
1 0 . . . 0

]
and:

η(x,0) :=



φ
(
(x,0)

)
max

(
L f φ

(
(x,0)

)
,0

)
...

max
(
L

p−1
f φ

(
(x,0)

)
,0

)
δp


. (3.30)

The function η1(x, t ) satisfies:

η1(x, t ) ≥φ(ξ(t ; x)), ∀t ∈ [0,τ(x)] and ∀x ∈ Z. (3.31)
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Proof. Notice that η1 is the first component of the solution η(x, t) to the same linear
dynamical system (3.12) as ψ, with initial condition: ψ(x,0) ¹ η(x,0). Since the system
(3.12) is monotone, according to Proposition 3.A.1, the following holds:

η1(x, t ) ≥ψ1(x, t ) ≥φ(ξ(t ; x)), ∀t ∈ [0, te (ξ0)) and ∀x ∈ Z,

since x ∈ Z =⇒ ξ0 = (x,0) ∈Ξ⊂Ωd . By the definition of Ξ in Assumption 3.3.1, ξ(t ; x) ∈Ξ
for all t ∈ [0,τ(x)]. But te (ξ0) is defined in (3.11) as the escape time of ξ(t ; x) fromΩd , and
Ξ⊂Ωd ; i.e. τ(x) < te (ξ0). Thus (3.31) is satisfied.

Proposition 3.A.3. For all x ∈Rn \ {0}, ∃!τx ∈ (0,+∞) such that η1(x,τx ) = 0.

Proof. In the following η(i )
1 (x, t) denotes the i -th derivative of η1(x, t) w.r.t. t . At t = 0,

initial condition (3.30) implies that η(i )
1 (x,0) ≥ 0 for all i = 1, . . . , p −1. For η(p)

1 (x,0):

η
(p)
1 (x,0) =

p−1∑
i=0

δiηi+1(x,0)+δp ≥ δ0φ
(
(x,0)

)
+δp > 0,

since ηi+1(x,0) ≥ 0 for all i = 0, . . . , p −1, and (3.14b) and (3.14c) hold. Differentiating η(p)
1

w.r.t. t , we get:

η
(p+1)
1 (x,0) =

p−1∑
i=0

δiη
(i+1)
1 (x,0) ≥ 0.

Similarly, η(i )
1 (x,0) ≥ 0, for all i . Hence η(i )

1 (x,0) ≥ 0 for all i ∈ N \ {0}, and in particular

η
(p)
1 (x,0) > 0. This implies that η(1)

1 (x,0) ≥ 0 and that η(1)
1 (x, ·) is strictly increasing in

(0,+∞). Moreover, η1(x, ·) is strictly increasing, as well.
Uniqueness of τx is proven by the fact that η1(x, ·) is strictly increasing. We will now

prove existence of τx , similarly to what is done in [58]. If η1(x,1) ≥ 0, then τx ∈ (0,1], from
the intermediate value theorem. Otherwise, then, from strict monotonicity of η(1)

1 (x, ·), we

have that η(1)
1 (x,1) ≥ ε, for some ε> 0. Then, from the mean value theorem, we have that

η1(x,1+ k
ε ) ≥ η1(x,1)+k, for any k ≥ 0. By picking k, such that η1(x,1)+k = 0, we have

that η1(x,1+ k
ε ) ≥ 0, and so, τx ∈ (1,1+ k

ε ].

We are ready to prove Theorem 3.5.2.

Proof of Theorem 3.5.2. First, notice that µ(x, t) satisfies (3.9a) and (3.9c), by construc-
tion. Notice that for x ∈ D : µ(x, t ) = η(x, t ). Thus, according to Proposition 3.A.2 :

µ(x, t ) = η1(x, t ) ≥φ(ξ(t ; x)), ∀t ∈ [0,τ(x)] and ∀x ∈ D. (3.32)

Consider now any x0 ∈ Rn \ {0} and a λ > 0 such that xD = λx0 ∈ D. Employing (3.9c),
(2.10) and (3.32) we get:

µ(xD , t ) ≥φ(ξ(t ; xD )), ∀t ∈ [0,τ(xD )] ⇐⇒ µ(x0,λαt ) ≥φ(ξ(λαt ; x0)), ∀t ∈ [0,τ(xD )] ⇐⇒
µ(x0, t ) ≥φ(ξ(t ; x0)), ∀x0 ∈Rn \ {0} and t ∈ [0,τ(x0)],

since λατ(xD ) = τ(x0). Thus, µ(x, t ) satisfies (3.9b).
It remains to be shown that µ(x, t ) satisfies (3.9d). Since µ(x, t ) = η(x, t ) for x ∈ D , then,

according to Proposition 3.A.3, µ(x, t ) satisfies (3.9d) for all x ∈ D . Finally, incorporating
(3.9c), we get that µ(x, t ) satisfies (3.9d) everywhere in Rn \ {0}.



4
REGION-BASED SELF-TRIGGERED

CONTROL FOR PERTURBED

UNCERTAIN NONLINEAR SYSTEMS

In this chapter, we extend the region-based STC scheme to systems with bounded dis-
turbances and uncertainties. To deal with disturbances and uncertainties, we employ
differential inclusions (DIs). Specifically, we extend certain notions and results on ETC/STC
to perturbed uncertain systems, through the DI-framework. Given these results, and adapt-
ing the methodology developed earlier, we derive inner-approximations of IMs of perturbed
uncertain ETC systems, thus enabling region-based STC. A numerical example is provided,
that showcases our theoretical results and compares region-based STC to a state-of-the-art
STC method, indicating competitive performance of region-based STC.

This chapter has been published in [59]. Some changes have been made to streamline presentation.
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SYSTEMS

4.1. INTRODUCTION
Here, we extend the region-based STC developed in Chapter 3 to systems with distur-
bances and uncertainties, which greatly facilitates the applicability of region-based STC
in practice. To deal with disturbances and uncertainties in a unified way, we abstract per-
turbed uncertain systems by differential inclusions (DIs). We introduce ETC notions, such
as the intersampling time, to the DI-framework. Within the DI-framework, by employing
the notion of homogeneous DIs (see [60]), we extend the scaling law of intersampling
times [23] and the homogenization procedure [24] to perturbed uncertain systems. Based
on these renewed results, and adapting the tools developed in Chapter 3, we construct
approximations of IMs of perturbed uncertain ETC systems, thus extending region-based
STC to perturbed uncertain systems. We showcase our theoretical results via simulations
and comparisons with other approaches, which indicate that the proposed STC scheme
shows competitive performance, while simultaneously achieving greater generality.

4.2. NOTATION AND PRELIMINARIES

4.2.1. NOTATION
Given a set S ⊆Rn , cl(S) denotes its closure, int(S) its interior, conv(S) its convex hull, and
for any λ ∈Rwe denote λS = {λx ∈Rn : x ∈ S}.

4.2.2. HOMOGENEOUS DIFFERENTIAL INCLUSIONS
Consider the differential inclusion (DI):

ζ̇(t ) ∈ F (ζ(t )), (4.1)

where ζ :R→Rn and F :Rn → 2R
n

is a set-valued map. In contrast to ODEs, which under
mild assumptions obtain unique solutions given an initial condition, DIs generally obtain
multiple solutions for each initial condition. We denote by ζ(t ;ζ0) any solution of (4.1)
with initial condition ζ0. Moreover, SF ([0,T ];I ) denotes the set of all solutions of (4.1)
with initial conditions in I ⊆Rn , which are defined on [0,T ]. Thus, the reachable set from
I ⊆Rn of (4.1) at time T ≥ 0 is defined as:

X F
T (I ) = {ξ(T ;ξ0) : ξ(·;ξ0) ∈ SF ([0,T ];I )}.

Likewise, the reachable flowpipe from I ⊆Rn of (4.1) in the interval [τ1,τ2] is X F
[τ1,τ2](I ) =⋃

t∈[τ1,τ2]
X F

t (I )

Again, we focus on the classical notion of homogeneity. For more information on
homogeneous DIs the reader is referred to [60].

Definition 4.2.1 (Homogeneous set-valued maps). Consider a set-valued map F :Rn →
2R

m
. We say that F is homogeneous of degree α ∈ R, if for all x ∈ Rn and any λ > 0:

F (λx) =λα+1F (x).

Correspondingly, a DI (4.1) is called homogeneous of degreeα ∈R if the corresponding
set-valued map is homogeneous of the same degree. For homogeneous DIs, similarly to
homogeneous ODEs, the following scaling property of solutions holds:
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Proposition 4.2.1 (Scaling Property [60]). Let DI (4.1) be homogeneous of degree α ∈ R.
Then, for any I ⊆Rn and any λ> 0:

X F
t (λI ) =λX F

λαt (I ). (4.2)

4.3. PROBLEM STATEMENT
We aim at extending the region-based STC technique, developed in Chapter 3, to systems
with disturbances and uncertainties. Thus, we consider perturbed uncertain ETC systems,
written in the compact form:

ξ̇(t ) =
 f

(
ζ(t ),υ(ζ(t )+εζ(t )),d(t )

)
− f

(
ζ(t ),υ(ζ(t )+εζ(t )),d(t )

)= fe (ξ(t ),d(t )), (4.3)

where d :R→Rmd is an unknown signal (e.g. disturbance, model uncertainty, etc.), and
assume that a triggering function φ(ξ(t )) is given. System 4.3 is the perturbed version of
extended ETC system (2.8). Then, the problem statement is similar to the one of Chapter
3:

Problem Statement. Given an ETC system (4.3), a triggering functionφ(·) and a predefined
finite set of times {τ1 . . . ,τq } (with τi < τi+1), derive regions Ri ⊂Rn that satisfy (3.1).

Assumption 4.3.1. For the remainder of the chapter we assume the following:

1. The nominal (when d(t ) = 0) continuous-time system (2.3), i.e. ζ̇(t ) = f
(
ζ(t ),υ(ζ(t ))

)
,

has the origin as the only equilibrium.

2. The function fe (·, ·) is locally bounded and continuous w.r.t. all of its arguments.

3. The function φ(·) is continuously differentiable.

4. For all t ≥ 0: d(t ) ∈∆, where ∆⊂Rmd is convex, compact and non-empty.

5. For all ξ0 = (x0,0) ∈ R2n : φ(ξ0) < 0. For any compact set K ⊂ Rn there exists εK > 0
such that for all x0 ∈ K and any d(t ) ∈∆, φ(ξ(t ;ξ0)) < 0 for all t ∈ [0,εK ).

Item 1 is a rather standard assumption. Items 2 and 4 of Assumption 4.3.1 impose
the standard assumptions of differential inclusions on the DIs that we construct later
(see (4.4)). These assumptions ensure existence of solutions for all initial conditions (see
[60] and [61] for more details). Note that assuming convexity of ∆ is not restrictive, since
in the case of a non-convex ∆ we can consider the closure of its convex hull and write
d(t) ∈ cl

(
conv(∆)

)
for all t ≥ 0. Finally, item 3 is employed in the proof of Lemma 4.5.1,

while item 5 ensures that the emulated ETC does not exhibit Zeno behaviour.

Remark 4.3.1. The triggering function should be chosen to be robust to disturbances and
uncertainties, such that the emulated ETC does not exhibit Zeno behaviour. Examples of
such robust triggering functions are the well-known:

• Lebesgue sampling (e.g. [5], [62]): φ(ξ(t )) = |εζ(t )|2 −ε2, where ε> 0.
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• Mixed-Triggering (e.g. [18]): φ(ξ(t)) = |εζ(t)|2 −σ|ζ(t)|2 −ε2, where σ> 0 is appro-
priately chosen and ε> 0.

Remark 4.3.2. In contrast to Chapter 3, here we only assume continuity of fe (·, ·) and
differentiability of φ(·) (instead of smoothness), since we only make use of the first-order Lie
derivative of φ(·) (see Lemma 4.5.1), due to the presence of the unknown (and possibly non-
differentiable) signal d(t ). Moreover, as discussed right after Assumption 3.3.1 in Chapter 3,
here we adopt a constructive approach to the sets Z,Ξ (which was already demonstrated in
Section 3.8.2), and thus we do not assume they are given.

4.4. PERTURBED UNCERTAIN ETC SYSTEMS AS DIFFERENTIAL

INCLUSIONS
In this section, we show how a general perturbed uncertain nonlinear system (4.3), satis-
fying Assumption 4.3.1, can be abstracted by a homogeneous DI. Moreover, we extend
the notion of intersampling times in the context of DIs and show that scaling law (2.9)
holds for intersampling times of homogeneous DIs. These results are used afterwards in
Section 4.5, to derive inner-approximations of IMs of perturbed uncertain systems (4.3),
and thus enable the region-based STC scheme.

4.4.1. ABSTRACTIONS BY DIFFERENTIAL INCLUSIONS
Notice that, since system (4.3) is a time-varying system, many notions that we introduced
before for time-invariant systems are now ill-defined. For example, depending on the
realization of the unknown signal d(t ), a sampled state x ∈Rn can correspond to different
intersampling times, i.e. definition (2.7) is ill-posed. However, employing item 4 of
Assumption 4.3.1 and the notion of differential inclusions, we can abstract the behaviour
of the family of systems (4.3) and remove such dependencies. In particular, system (4.3)
can be abstracted by the following differential inclusion:

ξ̇(t ) ∈ F (ξ(t )) := { fe (ξ(t ),d(t )) : d(t ) ∈∆}. (4.4)

For DI (4.4) (i.e. for the family of systems (4.3)), the intersampling time τ(x) of a point
x ∈Rn can now be defined as the worst-case possible intersampling time of x, under any
possible signal d(t ) satisfying Assumption 4.3.1:

Definition 4.4.1 (Intersampling Times of DI). Consider the family of systems (4.3), the DI
(4.4) abstracting them, and a triggering function φ :R2n →R. Let Assumption 4.3.1 hold.
For any point x ∈Rn , we define its intersampling time as:

τ(x) := inf
{

t > 0 : sup
{
φ

(
X F

t ((x,0))
)}

≥ 0
}

, (4.5)

Note that we have already emphasized that we consider initial conditions (x,0) ∈R2n ,
since at any sampling time the measurement error εζ = 0. Finally, now that intersampling
times of systems (4.3) abstracted by DIs are well-defined, we can accordingly re-define
IMs for families of such systems as: Mτ? = {x ∈ Rn : τ(x) = τ?}, where τ(x) is defined in
(4.5).
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4.4.2. HOMOGENIZATION OF DIFFERENTIAL INCLUSIONS AND SCALING OF

INTERSAMPLING TIMES
The scaling law of intersampling times (2.9) for homogeneous ETC systems has been
employed in developing region-based STC in Chapter 3. Here, we show that a similar
result can be derived for intersampling times (4.5) of DIs. First, observe that DI (4.4)
can be rendered homogeneous of degree α> 0, by slightly adapting the homogenization
procedure (3.19) as follows:[

ξ̇

ẇ

]
∈ F̃ (ξ, w) :=

[
{wα+1 fe (w−1ξ,d(t )) : d(t ) ∈∆}

{0}

]
(4.6)

Indeed, F̃ (·, ·) is homogeneous of degree α. Recall that the same can be done for a non-
homogeneous triggering function, to render it homogeneous of degree θ > 0:

φ̃(ξ, w) = wθ+1φ(w−1ξ). (4.7)

Again, trajectories and flowpipes of (4.4) with initial condition (x0,e0) ∈R2n coincide with
the projection to the ξ-variables of trajectories of (4.6) with initial condition (x0,e0,1) ∈
R2n+1. This implies that the intersampling time τ(x0) for DI (4.4) with triggering function

φ(·), defined as in (4.5), is the same as the intersampling time τ
(
(x0,1)

)
for DI (4.6) with

triggering function φ̃(·).
Given the above, by employing the scaling property (4.2) of flowpipes of homogeneous

DIs, we can prove that the scaling law (2.9) holds for intersampling times of DIs (4.6):

Theorem 4.4.1. Consider DI (4.6), the triggering function φ̃(·) from (4.7), and let Assump-

tion 4.3.1 hold. The intersampling time τ
(
(x, w)

)
, where (x, w) ∈Rn+1, scales for any λ> 0

as:
τ
(
λ(x, w)

)
=λ−ατ

(
(x, w)

)
, (4.8)

where τ(·) is defined in (4.5).

Proof. See Appendix 4.A.

For an example of how DIs and triggering functions are homogenized, the reader is
referred to Section 4.6.

4.5. REGION-BASED STC FOR PERTURBED UNCERTAIN SYSTEMS
In this section, we use the previous derivations about differential inclusions and adapt
the method developed in Chapter 3, to inner-approximate IMs of perturbed uncertain
systems. Using the derived inner-approximations, the state-space partitioning into re-
gions Ri is generated. Finally, we show that the applicability of region-based STC for
perturbed uncertain systems is semiglobal.

4.5.1. APPROXIMATIONS OF IMS OF PERTURBED UNCERTAIN ETC SYSTEMS
Similarly to Chapter 3, we upper-bound the time evolution of the (homogenized) trigger-

ing function φ̃(ξ(t ; x), w(t )) along the trajectories of DI (4.6) with a function µ
(
(x, w), t

)
in
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analytic form that satisfies (3.9). For this purpose, first we adapt Lemma 3.5.1, to derive
upper-bounds with linear dynamics of functions evolving along flowpipes of differential
inclusions:

Lemma 4.5.1. Consider a system of ODEs:

ξ̇(t ) = f (ξ(t ),d(t )), (4.9)

where ξ(t ) ∈Rn , d(t ) ∈Rmd , f :Rn ×Rmd →Rn and the function φ :Rn →R. Let f , d and φ
satisfy Assumption 4.3.1. Consider the DI abstracting the family of ODEs (4.9):

ξ̇(t ) ∈ F (ξ(t )) := { f (ξ(t ),d(t )) : d(t ) ∈∆}. (4.10)

Consider a compact set Ξ⊆Rn . For coefficients δ0,δ1 ∈R satisfying:

∂φ

∂z
(z) f (z,u) ≤ δ0φ(z)+δ1, ∀z ∈Ξ and ∀u ∈∆, (4.11)

the following inequality holds for all ξ0 ∈Ξ:

sup
{
φ

(
X F

t (ξ0)
)}

≤ψ(y(ξ0), t ) ∀t ∈ [0, te (ξ0)],

where te (ξ0) is defined as the escape time:

te (ξ0) = inf{t > 0 : X F
t (ξ0) 6⊆Ξ}, (4.12)

and ψ(y(ξ0), t ) is:
ψ(y(ξ0), t ) = [

1 0
]

e At y(ξ0), (4.13)

where:

A =
[
δ0 1
0 0

]
, y(ξ0) =

[
φ(ξ0)
δ1

]
. (4.14)

Proof. See Appendix 4.A.

Observe that, in contrast to Lemma 3.5.1 where the coefficients δi are required to be
positive, here δi ∈R. This is because here, due to lack of knowledge on the derivative (or
even on the differentiability) of the unknown signal d(t ), we consider only the first-order
time-derivative of φ (first-order comparison), in contrast to Chapter 3 where higher-order
derivatives of φ are considered (higher-order comparison).

Now, we employ Lemma 4.5.1, in order to construct an upper-bound µ
(
(x, w), t

)
of the

triggering function φ̃(ξ(t ; x), w(t)) that satisfies conditions (3.9) (in the subspace w > 0,

as mentioned in Section 3.7), which in turn implies that the zero-level sets of µ
(
(x, w), t

)
are inner-approximations of IMs of DI (4.6) and satisfy the properties in Proposition 3.4.1.
First, consider a compact connected set Z ⊂ Rn with 0 ∈ int(Z), and the set W = [w , w],
where w > w > 0. Define the following sets:

Φ := ⋃
x0∈Z

{x ∈Rn : e = x0 −x, w ∈ W, φ̃
(
(x,e, w)

)
≤ 0},

E := {x0 −x ∈Rn : x0 ∈ Z, x ∈Φ},

Ξ :=Φ×E×W.

(4.15)

We assume the following:
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Assumption 4.5.1. The setΦ⊂Rn is compact.

Assumption 4.5.1 is satisfied by most triggering functions φ(·) in the literature (e.g.
Lebesgue sampling [6], and most cases of Mixed Triggering from Remark 4.3.1, the trig-
gering function of [8], etc.). Moreover, since Φ is assumed compact, then E is compact
as well, which implies that Ξ is compact. The following theorem shows how the bound

µ
(
(x, w), t

)
is constructed:

Theorem 4.5.1. Consider the family of ETC systems (4.3), the DI (4.6) abstracting them, a
homogenized triggering function φ̃(ξ(t ; x), w(t )), the sets Z,W,Φ,E,Ξ defined in (4.15) and
let Assumptions 4.3.1 and 4.5.1 hold. Let δ0 ≥ 0 and δ1 > 0 be such that:

∀(z, w,u) ∈Ξ×∆ :
∂φ̃

∂z
(z, w)wα+1 fe (w−1z,u) ≤ δ0φ̃(z, w)+δ1, (4.16a)

∀(z, w) ∈
(
Z× {0}

)
×W : δ0φ̃(z, w)+δ1 ≥ εδ > 0, (4.16b)

where εδ an arbitrary positive constant. Let r > w be such that Dr := {(x, w) ∈ Rn+1 :
|(x, w)| = r, w ∈ W} ⊂ Z×W. For all (x, w) ∈Rn+1 \ {0} define the function:

µ
(
(x, w), t

)
:=

( |(x,w)|
r

)θ+1 [
1 0

]
e

A

( |(x,w)|
r

)α
t
y(x, w), (4.17)

where A is as in (4.14) and:

y(x, w) =
[
φ̃

(
(r x

|(x,w)| ,0,r w
|(x,w)| )

)
δ1

]
.

The function µ
(
(x, w), t

)
satisfies (3.9a), (3.9c), (3.9d) for all (x, w) ∈ (Rn ×R>0) \ {0}, but

condition (3.9b) is satisfied only in the cone

C = {(x, w) ∈Rn ×R>0 : |x|2 +w2 ≤ w2

w2 r 2} \ {0} (4.18)

and ∀t ∈ [0,τ
(
(x, w)

)
].

Proof. See Appendix 4.A.

Remark 4.5.1. Observe that, under Assumptions 4.3.1 and 4.5.1, the term ∂φ̃
∂z (z, w)wα+1 ·

· fe (w−1z,u) is bounded for all (z, w,u) ∈Ξ×∆, since fe is locally bounded,φ is continuously
differentiable (implying that φ̃ is also continuously differentiable for w 6= 0), φ̃(z, w) is
bounded for all (z, w) ∈ (Z× {0})×W and Ξ×∆ is compact and does not contain any point
(z,0,u). Thus, coefficients δ0 ≥ 0 and δ1 > 0 satisfying (4.16) always exist; e.g. δ0 = 0

and δ1 > max
{
εδ, sup

(z,w,u)∈Ξ×∆
∂φ̃
∂z (z, w)wα+1 fe (w−1z,u)

}
. To compute the coefficients δi ,

we could employ the algorithm described in Section 3.6.
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The intuition behind Theorem 4.5.1 is the same as in Theorem 3.5.2. Equation (3.9b)
is satisfied only in the cone C , due to the fact that 0 ∉ int(W). Note that W is chosen such
that it is guaranteed that (4.16) is well-defined everywhere in Ξ×∆. The fact that (3.9b) is
satisfied only in the cone C has the following implication:

Corollary 4.5.1 (to Theorem 3.5.1). Consider the family of ETC systems (4.3), the DI (4.6)
abstracting them, a (homogenized) triggering function φ̃(ξ(t ; x), w(t )) and let Assumptions

4.3.1 and 4.5.1 hold. Consider the function µ
(
(x, w), t

)
from (4.17). The sets Mτ?

= {(x, w) ∈
Rn+1 :µ

(
(x, w),τ?

)
= 0} inner-approximate IMs Mτ? of DI (4.6) inside the cone C , i.e. for

all (x, w) ∈ Mτ?
∩C :

•∃!κ(x,w) ≥ 1 s.t. κ(x,w)(x, w) ∈ Mτ?

• 6 ∃λ(x,w) ∈ (0,1) s.t. λ(x,w)(x, w) ∈ Mτ? .

Moreover, the sets Mτ?
satisfy the properties listed in Proposition 3.4.1.

Proof. It follows identical arguments to the proof of Theorem 3.5.1 in Chapter 3. The
only difference is that the arguments are now made for all (x, w) ∈ C and not for all
(x, w) ∈Rn+1.

The implications of the above corollary are depicted in Figure 4.1. Since the zero-

level sets Mτi
of µ

(
(x, w), t

)
inner-approximate IMs inside C , for the regions Ri that are

delimited by consecutive approximations Mτi
and the cone C (see Figure 4.1) it holds

that: τi ≤ τ
(
(x, w)

)
for all (x, w) ∈ Mτi

∩C . Thus, given the set of times {τ1, . . . ,τq }, the

Figure 4.1: IM Mτ1 (dashed line) and approximations of IMs Mτ1
, Mτ2

(solid lines). The set Mτ1
inner-

approximates Mτ1 only inside the cone C . The red region R1 contained between Mτ1
, Mτ2

and the cone C

satisfies (3.1).

regions Ri are defined as the regions between consecutive approximations Mτi
and the

cone C :

Ri :=
{

(x, w) ∈C : µ
(
(x, w),τi

)
≤ 0, µ

(
(x, w),τi+1

)
≥ 0

}
. (4.19)

With regions Ri defined, region-based STC is enabled.
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Remark 4.5.2. As mentioned in Remark 3.5.4, the innermost region Rq cannot be defined
as in (4.19), as there is no τq+1. For Rq , it suffices that we write:

Rq :=
{

(x, w) ∈C : µ
(
(x, w),τq

)
≤ 0

}
Remark 4.5.3. Only the first-order derivative of the triggering function has been used, as
there is no assumption on differentiability of the unknown disturbance d(t ), which might
result into conservatism for the proposed STC scheme. Nonetheless, in certain cases, the
disturbance may be known to be differentiable and its derivatives to be bounded in some
set. Such a knowledge may be leveraged to use higher-order derivatives of the triggering
function, like in Chapter 3, so that conservatism is relaxed.

4.5.2. SEMIGLOBAL NATURE OF REGION-BASED STC
It is obvious that the regions Ri do not cover the whole w = 1-hyperplane (which is where
the state space of the original system is mapped), i.e. there exist states x ∈Rn such that the
point (x,1) ∈Rn+1 does not belong to any region Ri , and thus no STC intersampling time
can be assigned to x. Let us demonstrate which set B ⊆ Rn is covered by the partition
created and show that it can be made arbitrarily large.

The set B is composed of all points x ∈Rn such that (x,1) belongs to some region Ri ,
i.e.:

B := {x ∈Rn : (x,1) ∈⋃
i

Ri }.

From the definition (4.19) of regions Ri and the scaling property (3.9c) of µ(·), it follows

that
⋃
i
Ri = C ∩ {(x, w) ∈ Rn ×R>0 : µ

(
(x, w),τ1

)
≤ 0}. By fixing w = 1 in the expression

(4.18) of C and in {(x, w) ∈Rn ×R>0 :µ
(
(x, w),τ1

)
≤ 0}, we get:

• (x,1) ∈C ⇐⇒ x ∈ {x ∈Rn : |x|2 ≤ r 2 −w2

w2 } =: B1, (4.20)

• (x,1) ∈ {(x, w) ∈Rn ×R>0 :µ
(
(x, w),τ1

)
≤ 0} ⇐⇒ x ∈ {x ∈Rn :µ

(
(x,1),τ1

)
≤ 0} =: B2

(4.21)

Thus, we can write the set B as:

B := {x ∈Rn : x ∈ B1, x ∈ B2} = B1 ∩B2. (4.22)

The set B1 is depicted in Figure 4.5 in Appendix 4.A. Since r > w , B1 is non-empty. More-
over, we can choose w > 0 to be arbitrarily small without changing r , therefore we can
make the set B1 arbitrarily large. Finally, B2 is non-empty (as it is the set delimited by
Mτ1

and C ) and, owing to the scaling property (3.9c) of µ(·), it can be made arbitrarily
large by selecting a sufficiently small τ1. Consequently, B is non-empty, and can be made
arbitrarily large. Hence, region-based STC is applicable semiglobally in Rn .
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4.6. NUMERICAL EXAMPLE
Let us demonstrate how the proposed STC is applied to a perturbed uncertain system,
and compare its performance to the STC of [18]. Consider the ETC system from [18]:

ζ̇1 = ζ2 + g1(ζ1,d1), ζ̇2 = u(ζ,εζ)+ g2(ζ2), (4.23)

where g1, g2 are uncertain and such that |g1(ζ1,d1)| ≤ 0.1|ζ1| + 0.1|d1| and |g2(ζ2)| ≤
0.2|ζ2|2, and d1(t ) is an unknown bounded disturbance with |d1(t )| ≤ 4. The ETC feedback
u is u(ζ,εζ) =−(7.02|ζ2 +εζ2 −p1|−25.515)(ζ2 +εζ2 −p1), where p1 =−2.1(ζ1 +εζ1 ). The
triggering function from [18], that is to be emulated, is:

φ(ζ,εζ) = |εζ(t )|2 −0.0049|ζ(t )|2 −16, (4.24)

which guarantees convergence to a ball (practical stability). First, we bring (4.23) to the
form of (4.3), by writing:

ξ̇(t ) =


ζ̇1

ζ̇2

ε̇ζ1

ε̇ζ2

=


ζ2 +0.1d2ζ1 +0.1d1

u(ζ,εζ)+0.2d3ζ
2
2

−ζ2 −0.1d2ζ1 −0.1d1

−u(ζ,εζ)−0.2d3ζ
2
2

= fe (ξ(t ),d(t )) (4.25)

where d(t ) = (d1(t ),d2(t ),d3(t )) ∈ [−4,4]× [−1,1]2, i.e. ∆= [−4,4]× [−1,1]2. Observe that
Assumption 4.3.1 is satisfied. Then, we construct the homogeneous DI abstracting (4.25)
according to (4.6): (

ξ̇(t )
ẇ(t )

)
=

[
{w2 fe (w−1ξ,d(t )) : d(t ) ∈∆}

0

]
, (4.26)

and homogenize the triggering function as follows:

φ̃(ξ(t ), w(t )) = |εζ(t )|2 −0.0049|ζ(t )|2 −16w2(t ). (4.27)

The degree of homogeneity for both (4.26) and (4.27) is 1.
Next, we derive the δi coefficients according to Theorem 4.5.1, to determine the

regions Ri . We fix Z = [−0.1,0.1]2, W = [10−6,0.1] and define the sets Φ,E,Ξ as in (4.15),
where Φ is indeed compact. By employing the computational algorithm of Chapter 3,
δ0 ≈ 0.0353 and δ1 ≈ 0.3440 are obtained. We choose r = 0.099 such that Dr ⊂ Z×W, and

define µ
(
(x, w), t

)
as in (4.17). Finally, the state space of DI (4.26) is partitioned into 434

regions Ri with τ1 ≈ 63 ·10−5 and τi+1 = 1.01τi .
We ran a number of simulations to compare our approach to the approach of [18]

and to the ideal performance of the emulated ETC (4.24). More specifically, we simulated
the system for 100 different initial conditions uniformly distributed in a ball of radius
2. The simulations’ duration is 5s. As in [18], we fix: g1(ζ1,d1) = 0.1ζ1 sin(ζ1)+ 0.1d1,
d1 = 4sin(2πt) and g2(ζ2) = 0.2ζ2

2 sin(ζ2). The self-triggered sampler of [18] determines
sampling times as follows: ti+1 = ti + 1.54

28(|xi |+4)+29 , where xi is the state measured at ti .
The total number of samplings for each simulation of all three schemes is depicted in Fig.
4.2. The average number of samplings per simulation was: 200.71 for region-based STC,
482.32 for STC [18] and 38.81 for ETC. We observe that region-based STC is in general less
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Figure 4.2: Number of samplings for each simulation of region-based STC (orange), STC of [18] (blue) and ETC
(4.24) (green).

conservative than the STC of [18], while being more versatile as well. Recall that the main
advantage of our approach is its versatility compared to the rest of the approaches, in
terms of its ability to handle different performance specifications and different types of
system’s dynamics, provided that an appropriate triggering function is given. For example,
[18] is constrained to ISS systems, while our approach does not obey such a restriction.
Finally, as expected, ETC leads to a smaller amount of samplings compared to both STC
schemes.

We, also, present illustrative results for one particular simulation with initial condition
(−1,−1). Figure 4.3 shows the trajectories of the system when controlled via region-based
STC and the STC from [18], while Figure 4.4 shows the time-evolution of intersampling
times for the two schemes. Region-based STC led to 166 samplings, whereas the STC
of [18] led to 483. We observe that, while the performance of both schemes is the same
(the trajectories are almost identical in Figure 4.3), region-based STC leads to a smaller
amount of samplings, i.e. less communication. Moreover, from Figure 4.4 we observe that,
especially during the steady-state response, region-based STC performs considerably
better, in terms of sampling. However, there is a small period of time in the beginning of
the simulation, when the trajectories overshoot far away from the origin and region-based
STC gives faster sampling.

4.7. CONCLUSION

Building on Chapter 3, we have extended region-based STC to nonlinear systems with
disturbances and uncertainties. By employing a framework based on DIs and introducing
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Figure 4.3: Trajectories of system (4.23) with initial condition (−1,−1), under region-based STC (orange lines)
and the STC of [18] (dashed blue lines).
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Figure 4.4: Evolution of intersampling times during a simulation with initial condition (−1,−1), for region-based
STC (orange line) and the STC of [18] (blue line).

ETC notions therein, we have extended significant results on ETC/STC to perturbed un-
certain systems. Employing the renewed results, we have constructed approximations of
IMs of perturbed uncertain systems, enabling region-based STC. The provided numerical
simulations indicate that our approach, while being more versatile, is competitive with
respect to other state-of-the-art approaches as well, in terms of intersampling times.

4.A. TECHNICAL PROOFS

Proof of Theorem 4.4.1. According to the definition of intersampling times (4.5), for τ
(
λ(x, w)

)
we have:

τ
(
λ(x, w)

)
= inf

{
t > 0 : sup

{
φ̃

(
X F̃

t (λ(x,0, w))
)}

≥ 0
}
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Employing the scaling property (4.2) and the fact that φ̃ is homogeneous of degree θ, we

can write τ
(
λ(x, w)

)
as:

inf
{

t > 0 : sup
{
φ̃

(
λX F̃

λαt ((x,0, w))
)}

≥ 0
}
=

inf
{

t > 0 : sup
{
λθ+1φ̃

(
X F̃
λαt ((x,0, w))

)}
≥ 0

}
=

inf
{
λ−αt > 0 : sup

{
φ̃

(
X F̃

t ((x,0, w))
)}

≥ 0
}
=

λ−ατ
(
(x, w)

)

Proof of Lemma 4.5.1. Consider the restriction of ODE (4.9) to the set Ξ:

ξ̇(t ) = f (ξ(t ),d(t )), ξ(t ) ∈Ξ. (4.28)

Any solution of (4.28) is also a solution of (4.9) (possibly not a maximal one). Note that
(4.11) is equivalent to:

φ̇(ξ(t ;ξ0)) ≤ δ0φ(ξ(t ;ξ0))+δ1, (4.29)

where ξ(t ;ξ0) is any solution of (4.28), with ξ0 ∈Ξ. Observe that ψ(y(ξ0), t ) is the solution
to the scalar differential equation ψ̇= δ0ψ+δ1 with initial condition ψ0 =φ(ξ0):

ψ(y(ξ0), t ) = [
1 0

]
e At y(ξ0) = eδ0tφ(ξ0)+ eδ0t −1

δ0
δ1.

Thus, by employing the comparison lemma (see [63], pp. 102-103), from (4.29) we get
that for any d?(t ) satisfying Assumption 4.3.1 and all ξ0 ∈Ξ:

φ(ξ(t ;ξ0)) ≤ψ(y(ξ0), t ), ∀t ∈ [0, te,d? (ξ0)), (4.30)

where [0, te,d? (ξ0)) is the maximal interval of existence of solution ξ(t ;ξ0) to ODE (4.28)
under the realization d(t ) = d?(t ). The time te,d? (ξ0) is defined as the time when ξ(t ;ξ0),
under the realization d(t ) = d?(t ), leaves the set Ξ:

te,d? (ξ0) = sup{τ> 0 : d(t ) = d?(t ),ξ(t ;ξ0) ∈Ξ∀t ∈ [0,τ)}

Since (4.30) holds for all d?(t ) satisfying Assumption 4.3.1, we can conclude thatψ(y(ξ0), t )
bounds all solutions of DI (4.10) starting from ξ0 ∈Ξ as follows:

sup
{
φ

(
X F

t (ξ0)
)}

≤ψ(y(ξ0), t ), ∀t ∈ [0, inf
d?

te,d? (ξ0)).

Finally, note that inf
d?

te,d? (ξ0) represents the smallest possible Ξ-escape time among all

trajectories generated by DI (4.10), i.e. inf
d?

te,d? (ξ0) = inf{t > 0 : X F
t (ξ0) 6⊆ Ξ} = te (ξ0).

Hence, we can conclude that:

sup
{
φ

(
X F

t (ξ0)
)}

≤ψ(y(ξ0), t ), ∀t ∈ [0, te (ξ0)).
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Proof of Theorem 4.5.1. First notice that, under item 5 of Assumption 4.3.1, (3.9a) holds:

µ
(
(x, w),0

)
=

( |(x,w)|
r

)θ+1
φ̃

(
(r x

|(x,w)| ,0,r w
|(x,w)| )

)
< 0 for all (x, w) ∈ Rn+1 \ {0}. Moreover,

observe that µ(·, ·) satisfies the time-scaling property (3.9c) by construction. It remains to
prove that µ(·, ·) satisfies (3.9b) and (3.9d).

In order to prove that µ(·, ·) satisfies (3.9b), as already explained in Section 4.5.1,
we follow the following steps: 1) we show that the coefficients δ0,δ1 satisfying (4.16a)
determine a function ψ(y((x,0, w?)), t ) satisfying (4.31), 2) using the sets Z,W,E,Φ,Ξwe
show that ψ(y((x,0, w?)), t ) satisfies (4.32), and finally 3) observing that µ is obtained by
a projection of ψ to Dr , we show that µ satisfies (3.9b) (see (4.36)).

Let us formally prove it. Assumption 4.3.1 implies that F̃ (ξ, w) ⊆R2n+1 is non-empty,
compact and convex for any (ξ, w) ∈ R2n+1 \ {0} and outer-semicontinuous. These con-
ditions ensure existence and extendability of solutions for each initial condition [61].
According to Lemma 4.5.1 and sinceΞ is compact, the coefficients δ0,δ1 satisfying (4.16a),
determine a function ψ(y((x,e, w?)), t) such that for all (x,e, w) ∈Ξ: ψ(y((x,e, w)), t) ≥
sup

{
φ

(
X F̃

t ((x,e, w))
)}

, ∀t ∈ [0, te

(
(x,e, w)

)
], where te

(
(x,e, w)

)
is defined in (4.12) as the

time when X F̃
t ((x,e, w)) leaves the setΞ. Since we are only interested in initial conditions

with the measurement error component being 0, we write:

ψ(y((x,0, w)), t ) ≥ sup
{
φ

(
X F̃

t ((x,0, w))
)}

, ∀(x,0, w) ∈Ξ and ∀t ∈ [0, te

(
(x,0, w)

)
].

(4.31)
Observe that for all initial conditions (x,0, w) ∈ Z×E×W, the sets Φ and E are exactly
such that ξ(t ; (x,0)) ∉Φ×E =⇒ φ(ξ(t ; (x,0))) > 0, where ξ(·) represents the ξ-component
of solutions of DI (4.6) (since w(t) remains constant along solutions of DI (4.6), we
neglect it). Thus, all trajectories that start from any initial condition (x,0, w) ∈ Z×E×W

reach the boundary of Ξ = Φ×E×W after (or at) the intersampling time τ
(
(x, w)

)
, i.e.

τ
(
(x, w)

)
≤ te

(
(x,e, w)

)
for all (x, w) ∈ Z×W. Thus, employing (4.31) we write:

ψ(y((x,0, w)), t ) ≥ sup
{
φ

(
X F̃

t ((x,0, w))
)}

, ∀(x, w) ∈ Z×W and ∀t ∈ [0,τ
(
(x, w)

)
].

(4.32)
Now, consider any point (x0, w0) ∈ Dr ⊆ Z×W. Observe thatµ

(
(x0, w0), t

)
=ψ(y((x0,0, w0)), t ).

Thus, since Dr ⊆ Z×W, from (4.32) we get:

µ
(
(x0, w0), t

)
≥ sup

{
φ

(
X F̃

t ((x0,0, w0))
)}

,∀(x0, w0) ∈ Dr and ∀t ∈ [0,τ
(
(x0, w0)

)
]. (4.33)

To prove that µ(·) satisfies (3.9b) in the cone C from (4.18), we have to show that (4.33)
holds for all (x, w) ∈C . First, observe that C is defined as the cone stemming from the
origin with its extreme vertices being all points in the intersection Dr ∩Z×W (see Figure
4.5). Thus, since Dr is a spherical segment, for any point (x, w) ∈C there always exists
a λ> 0 and a point (x0, w0) ∈ Dr such that (x, w) = λ(x0, w0). If we interchange (x0, w0)
with λ−1(x, w) in (4.33), we get:

µ
(
λ−1(x, w), t

)
≥ sup

{
φ

(
X F̃

t (λ−1(x,0, w))
)}

,∀(x, w) ∈C and ∀t ∈ [0,τ
(
λ−1(x, w)

)
].

(4.34)
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Figure 4.5: The sets Z×W (region contained in blue box), Dr (red spherical segment) and the cone C (green)
from (4.18). The subset of the hyperplane w = 1 painted in purple represents the set B1 from (4.20).

But, from (4.2), (3.9c) and Theorem (4.4.1) we get:

• sup
{
φ

(
X F̃

t (λ−1(x,0, w))
)}

=λ−θ−1 sup
{
φ

(
X F̃
λ−αt ((x,0, w))

)}
•µ

(
λ−1(x, w), t

)
=λ−θ−1µ

(
(x, w),λ−αt

)
•τ

(
λ−1(x, w)

)
=λατ

(
(x, w)

) (4.35)

Incorporating (4.35) into (4.34), we finally get:

µ
(
(x, w), t

)
≥ sup

{
φ

(
X F̃

t ((x,0, w))
)}

,∀(x, w) ∈C and ∀t ∈ [0,τ
(
(x, w)

)
], (4.36)

i.e. µ(·) satisfies (3.9b) in C .
Finally, let us prove that µ(·) satisfies (3.9d). Observe that, since δ0 ≥ 0, δ1 > 0 and

(4.16b) holds, then µ
(
(x, w), t

)
and µ̇

(
(x, w), t

)
are strictly increasing w.r.t. t (for a more

detailed proof, see the proofs in Chapter 3). Thus, since µ
(
(x, w),0

)
< 0, then, for any

(x, w) ∈ Rn+1 \ {0}, ∃!τ↓(x, w) > 0 such that µ
(
(x, w),τ↓

(
(x, w)

))
= 0. The proof is now

complete.





5
ABSTRACTING THE SAMPLING

BEHAVIOUR OF NONLINEAR

EVENT-TRIGGERED CONTROL

SYSTEMS

In previous works [39]–[41], finite-state abstractions were created, capturing the sampling
behaviour of LTI ETC systems with quadratic triggering functions. Offering an infinite-
horizon look to ETC systems’ sampling patterns, such abstractions have been used for
versatile scheduling of ETC traffic. Here we significantly extend this framework, by ab-
stracting perturbed uncertain nonlinear ETC systems with general triggering functions. To
construct an ETC system’s abstraction: a) the state space is partitioned into regions, b) for
each region an interval is determined, containing all intersampling times of points in the
region, and c) the abstraction’s transitions are determined through reachability analysis.
To determine intervals and transitions, we devise algorithms based on reachability analy-
sis. For partitioning, we propose an approach based on isochronous manifolds, resulting
into tighter intervals and providing control over them, thus containing the abstraction’s
non-determinism. Simulations showcase our developments.

This chapter has been published in [64]. Some changes have been made to streamline presentation. A prelimi-
nary version, focusing solely on homogeneous systems, and including the developments in Appendix 5.A, has
been published in [65].
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5.1. INTRODUCTION
According to abstraction-based approaches to ETC traffic scheduling [39]–[41], ETC
systems are abstracted by finite-state quotient systems (abstractions), capturing the ETC
systems’ sampling behaviour. The abstraction’s set of output sequences contains all
possible sequences of intersampling times that the given ETC system may exhibit, thus
providing an infinite-horizon look into its sampling patterns. Employing this property,
[39]–[41] showed that such abstractions can be employed for scheduling of ETC traffic.

To construct the abstraction, the system’s state-space is partitioned into finitely many
regions R̃i , j (the i , j -index becomes clear later), representing the abstraction’s states. For
each region R̃i , j , an interval [τR̃i , j

,τR̃i , j
] is determined, containing all intersampling

times corresponding to states in the region. These intervals serve as the abstraction’s
output. Finally, the abstraction’s transitions, given a starting region, indicate where the
system’s trajectories end up after an elapsed intersampling time. The abstraction’s non-
determinism, encoding how coarsely it captures the actual system’s behaviours, depends
on the intervals’ tightness and the transition set’s size. Previous works [39]–[41] abstracted
LTI systems with quadratic triggering functions.

Here, we significantly extend the above framework by abstracting the traffic of non-
linear ETC systems with bounded disturbances or uncertainties and general triggering
functions1. To determine the timing intervals and the transitions, we propose algorithms
based on reachability analysis (e.g., see [66], [67]). Regarding state-space partitioning,
we propose an approach that is based on approximations of IMs, derived in the previous
chapters. By partially inheriting the merits of partitioning with actual IMs, this approach
aims at providing control over the timing intervals and improving their tightness, thus
containing one source of the abstraction’s non-determinism. Simulation comparisons
between the proposed partition and a naive partition support our arguments, as the
proposed partition achieves tighter intervals (for metrics capturing tightness refer to
Section 5.6).

5.2. NOTATION AND PRELIMINARIES

5.2.1. NOTATION
Given two sets Xa , Xb ⊆ X , dH (Xa , Xb) denotes their Hausdorff distance. Given an equiva-
lence relation Q ⊆ X ×X , the set of all equivalence classes is denoted by X /Q.

5.2.2. SYSTEMS AND SIMULATION RELATIONS
Here we recall notions of systems and simulation relations from [68], which are employed
later.

Definition 5.2.1 (System [68, Definition 1.1]). A system S is a tuple (X , X0, −→,Y , H),
where X is the set of states, X0 the set of initial states, −→⊆ X ×X a transition relation, Y
the set of outputs and H : X → Y the output map.

1Throughout the chapter, we mainly focus on systems without disturbances or uncertainties, for the sake
of clarity. Nonetheless, Remarks 5.4.4 and 5.5.3 describe how our approach directly extends to perturbed
uncertain systems. Moreover, applicability of our approach to perturbed systems is demonstrated by a
numerical example in Section 5.6.1.
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We have omitted the action set U in Definition 5.2.1, since we focus on autonomous
systems. If X is a finite (or infinite) set, then S is called finite-state (respectively infinite-
state). A system S is called a metric system if Y is equipped with a metric d : Y ×Y →
R+

0 ∪ {+∞}.

Definition 5.2.2 (ε-Approximate Simulation Relation [68, Definition 9.2]). Consider two
metric systems Sa ,Sb with Ya = Yb and a constant ε ≥ 0. A relation Q ⊆ Xa × Xb is an
ε-approximate simulation relation from Sa to Sb if it satisfies:

• ∀x0a ∈ X0a : ∃x0b ∈ X0b such that (x0a , x0b ) ∈Q,

• ∀(xa , xb) ∈Q : d(Ha(xa), Hb(xb)) ≤ ε,

• ∀xa , x ′
a ∈ Xa with (xa , x ′

a) ∈−→
a

: if (xa , xb) ∈Q then ∃(xb , x ′
b) ∈−→

b
such that (x ′

a , x ′
b) ∈

Q.

If there exists an ε-approximate simulation relation from Sa to Sb , we say that Sb

ε-approximately simulates Sa and write Sa
ε¹ Sb . Moreover, let us introduce an alternative

definition of power quotient systems. For the original definition, see [68].

Definition 5.2.3 (Power Quotient System [40, Definition 6]). Consider a system S =
(X , X0,−→,Y , H) and an equivalence relation Q ⊆ X × X . The power quotient system
of S is the tuple S/Q = (X/Q , X0/Q ,−→

/Q
,Y/Q , H/Q ), where:

• X/Q = X /Q and X0/Q = {x/Q ∈ X/Q : x/Q ∩X0 6= ;},

• (x/Q , x ′
/Q ) ∈−→

/Q
if ∃(x, x ′) ∈−→ such that x ∈ x/Q and x ′ ∈ x ′

/Q ,

• Y/Q ⊆ 2Y and H/Q (x/Q ) = ⋃
x∈x/Q

H(x).

Lemma 5.2.1 ([40, Lemma 1]). Consider a metric system S, a relation Q ⊆ X ×X and the
power quotient system S/Q . For any ε such that ε≥ sup

x∈x/Q , x/Q∈X /Q
dH (H(x), H/Q (x/Q )), S/Q

ε-approximately simulates S, i.e. S
ε¹ S/Q .

5.3. PROBLEM STATEMENT
In this chapter, we abstract the sampling behaviour of nonlinear ETC systems; we con-
struct finite-state systems, whose set of output sequences contains all possible intersam-
pling time sequences of the given ETC system. For clarity, we mainly consider the case
without disturbances or uncertainties, but we also point out through remarks (Remarks
5.4.4 and 5.5.3) and a numerical example (Section 5.6.1) how the proposed approach
directly applies to systems with bounded disturbances or uncertainties.

We adopt a problem formulation similar to [40]. Recall the ETC system (2.5)-(2.6):

ζ̇(t ) = f
(
ζ(t ),υ(ζ(t )+εζ(t ))

)
, t ∈ [ti , ti+1)

ti+1 = ti + inf{t > 0 : φ(ζ(t ; xi ),εζ(t )) ≥ 0}
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and its extended form (2.8):

ξ̇(t ) =
 f

(
ζ(t ),υ(ζ(t )+εζ(t ))

)
− f

(
ζ(t ),υ(ζ(t )+εζ(t ))

)= fe (ξ(t )), t ∈ [ti , ti+1)

ξ(t+i+1) =
[
ζ(t−i+1)

0

]
Let us introduce the system:

S = (X , X0,−→,Y , H), (5.1)

where X = X0 ⊆Rn , Y ⊆R>0, H(x) = τ(x) and the transition relation −→⊆ X ×X is such
that (x, x ′) ∈−→ ⇐⇒ ζ(τ(x); x) = x ′. Observe that the set of output sequences of system
(5.1) contains all possible intersampling time sequences of the ETC system (2.5)-(2.6),
that correspond to trajectories confined in X . However, it is infinite-state and cannot
serve as a computationally handleable abstraction.

We, also, introduce the following set of assumptions:

Assumption 5.3.1.

1. The origin is the only equilibrium of (2.3).

2. The vector field fe (·) from (2.8) is locally bounded.

3. φ
(
(0,0)

)
≤ 0 andφ

(
(x,0)

)
< 0 for all x ∈Rn \{0}. Moreover, for any compact set K ⊂Rn

there exists εK > 0 such that for all x0 ∈ K \ {0}, φ(ξ(t ; x0)) < 0 for all t ∈ [0,εK ).

4. The set X is compact and connected.

5. A heartbeat (maximum allowed intersampling time, see Remark 2.3.1) τmax is im-
posed on the system.

Item 1 serves for clarity of presentation. Item 3 imposes that φ
(
(·,0)

)
is negative-

definite and that the given ETC system cannot exhibit infinitely fast sampling; this is
satisfied by most functions in the ETC literature (e.g. Tabuada’s [7], dynamic triggering
[8], mixed triggering [18], Lebesgue sampling [6]). Item 4 suggests that we are interested
in trajectories of the system that stay in the compact connected set X . Finally, item 5
guarantees that there can be no infinite intersampling time, which is essential for the
algorithms developed in Section 5.4.1. Recall, from Remark 2.3.1, that this is a reasonable
assumption.

Since (5.1) captures exactly the sampling behaviour of the ETC system (2.5)-(2.6), ab-
stracting the ETC system is equivalent to abstracting (5.1). This gives rise to the following:

Problem Statement. Consider the system S (5.1). Let Assumption 5.3.1 hold. Construct a
power-quotient system S/Q = (X/Q , X0/Q ,−→

/Q
,Y/Q , H/Q ) with:

• X/Q = X /Q := {R̃1,1, . . . ,R̃i , j , . . . ,R̃q,m} and X0/Q = X/Q , where R̃i , j ⊆ X and
⋃

R̃i , j =
X .
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• (x/Q , x ′
/Q ) ∈−→

/Q
if ∃x ∈ x/Q and ∃x ′ ∈ x ′

/Q such that ζ(H(x); x) = x ′,

• Y/Q ⊆ 2Y = 2R>0 and H/Q (R̃i , j ) := [τR̃i , j
,τR̃i , j

], with:

τR̃i , j
≤ inf

x∈R̃i , j

H(x), τR̃i , j
≥ sup

x∈R̃i , j

H(x). (5.2)

The states R̃i , j of the abstraction are regions in the ETC system’s state-space, i.e.
R̃i , j ⊆ X ⊂ Rn (the i , j -subscript becomes clear later). A transition from R̃i , j to R̃k,l is
defined if there exists a trajectory starting from x ∈ R̃i , j , which ends up in R̃k,l after an
elapsed intersampling time τ(x). Hence, a transition is taken every time the triggering
condition (2.6) is satisfied. Finally, (5.2) indicates that the abstraction’s output of a state
R̃i , j is an interval containing all intersampling times corresponding to states x ∈ R̃i , j .
Thus, given a run of the ETC system, there is a corresponding run of the abstraction, whose
output sequence is a sequence of intervals each of which containing the intersampling
time that the ETC system exhibited at that particular step of the run. In fact, by Lemma

5.2.1, we conclude that S
ε¹ S/Q for all ε≥ max

i
{τR̃i , j

−τR̃i , j
}.

As discussed in [40], the abstraction S/Q is semantically equivalent to a timed au-
tomaton. The automaton’s guards are determined by the intervals [τR̃i , j

,τR̃i , j
], and its

transitions are the ones of S/Q . The tighter the intervals and the smaller the transition set,
the less non-deterministic becomes the automaton; hence it simulates more accurately
the original system, and the scheduling algorithms provide less conservative results.

To address the problem, we have to partition X into regions R̃i , j (which automatically
generates the relation Q), derive the intervals, and determine the transitions. In what
follows, partitioning the state-space is decoupled from determining the intervals and
transitions. Specifically, in Section 5.4, we propose reachability-analysis-based algorithms
to determine the timing intervals and transitions, given any partition. Later, in Section
5.5, we propose a specific partition, providing better control over the intervals and their
tightness, thus containing one source of the abstraction’s non-determinism.

5.4. TIMING INTERVALS AND TRANSITIONS

In this section, we assume that the partition is given and show how reachability analysis
can be employed to determine timing intervals and transitions.

5.4.1. REACHABILITY ANALYSIS FOR TIMING INTERVALS

The following proposition, employing reachable sets and flowpipes, provides conditions
that determine lower and upper bounds on intersampling times of points in a given region
R̃i , j :

Proposition 5.4.1. Consider the ETC system (2.5)-(2.6) and its extended form (2.8). Let
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Assumption 5.3.1 hold. Let R̃i , j ⊆ X . Define the sets:

Ii , j := {(x,0) ∈R2n : x ∈ R̃i , j }

U≥0 := {(x,e) ∈R2n :φ
(
(x,e)

)
≥ 0}

U≤0 := {(x,e) ∈R2n :φ
(
(x,e)

)
≤ 0}

If:

X
fe

[0,τlow](Ii , j )∩U≥0 =;, (5.3)

then for all x ∈ R̃i , j : τ(x) ≥ τlow, where τ(·) is as in (2.7). Similarly, if:

X
fe
τhigh

(Ii , j )∩U≤0 =;, (5.4)

then for all x ∈ R̃i , j : τ(x) ≤ τhigh.

Proof. Equation (5.3) implies that ∀x ∈ R̃i , j we have that: φ(ξ(t ; x)) < 0, for all t ∈ [0,τlow].
Thus, τ(x) ≥ τlow, i.e. τlow is a lower bound on intersampling times of region R̃i , j .

Similarly, if X
fe
τhigh

(Ii , j )∩U≤0 =;, then for all x ∈ R̃i , j we have that φ(ξ(τhigh; x)) > 0.
Thus, τ(x) ≤ τhigh.

To obtain the timing intervals [τR̃i , j
,τR̃i , j

] for regions R̃i , j , we employ one line search

for each one of the variables τlow and τhigh and iterate until we find that (5.3) or (5.4),
respectively, are satisfied. To check (5.3) and (5.4), we employ reachability-analysis com-
putational tools (e.g. [66], [67]). Such tools, given a system (2.1), a set of initial conditions

I ⊂ Rn and a set U ⊆ Rn , overapproximate the reachable flowpipes X
f

[τ1,τ2](I ) and

the set U by overapproximations X̂
f

[τ1,τ2](I ) ⊇ X
f

[τ1,τ2](I ) and Û ⊇ U , and check if

X̂
f

[τ1,τ2](I )∩ Û =;. Moreover, by the implication:

X̂
f

[τ1,τ2](I )∩ Û =; =⇒ X
f

[τ1,τ2](I )∩U =;, (5.5)

they can determine if X
f

[τ1,τ2](I )∩U = ;. Hence, by employing line searches on τlow

and τhigh, via a reachability analysis tool we check iteratively if X̂
fe

[0,τlow](Ii , j )∩Û≥0 =;
or X̂

fe
τhigh

(Ii , j )∩ Û≤0 =;, respectively, until these conditions are satisfied. Satisfaction of
these conditions implies (5.3) and (5.4) (due to (5.5)), which imply that τ(x) ≥ τlow = τR̃i , j

and τ(x) ≤ τhigh = τR̃i , j
for all x ∈ R̃i , j , respectively, by Proposition 5.4.1. Finally, if no

τhigh ≤ τmax is found via the line-search, which satisfies (5.4), then the region’s timing
upper bound is fixed equal to the heartbeat: τR̃i , j

= τmax.

Remark 5.4.1. If a heartbeat τmax is not imposed, then certain regions (e.g. the ones
containing equilibria) might not admit upper bounds on their intersampling times. For
these regions, the proposed line-search algorithm would not terminate.
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5.4.2. REACHABILITY ANALYSIS FOR TRANSITIONS
Let us show how the abstraction’s transitions can be derived via reachability analysis.
Recall the transitions’ definition, from the Problem Statement:

(R̃i , j ,R̃k,l ) ∈−→
/Q

, if :

∃x ∈ R̃i , j and ∃x ′ ∈ R̃k,l such that ζ(H(x); x) = x ′.

This definition can be relaxed as follows:

(R̃i , j ,R̃k,l ) ∈−→
/Q

, if : X
f

[τR̃i , j
,τR̃i , j

]
(R̃i , j )∩R̃k,l 6= ;. (5.6)

Thus, inspired by (5.5), via a reachability analysis tool we check if X̂
f

[τR̃i , j
,τR̃i , j

]
(R̃i , j )∩

R̃k,l 6= ;, which approximates condition (5.6), and if satisfied we define a transition
(R̃i , j ,R̃k,l ) ∈−→

/Q
.

In this way, the constructed abstraction contains all possible transitions (R̃i , j ,R̃k,l )
defined as in (5.6). Notice that, since (5.6) is a relaxation of the original transitions’ defini-

tion, and X̂
f

[τR̃i , j
,τR̃i , j

]
(R̃i , j )∩R̃k,l 6= ;does not necessarily imply that X

f
[τR̃i , j

,τR̃i , j
]
(R̃i , j )∩

R̃k,l 6= ;, the abstraction may contain additional transitions (R̃i , j ,R̃k,l ) for which 6 ∃x ∈
R̃i , j and 6 ∃x ′ ∈ R̃k,l such that ζ(H(x); x) = x ′. Nonetheless, the existence of spurious
transitions does not affect the fact that S/Q ε-approximately simulates S.

Remark 5.4.2. Since reachability analysis uses overapproximations, the computed inter-
vals and transitions are not exact. Nonetheless, higher accuracy settings for reachability
analysis imply more accurate intervals and transitions, establishing a trade-off between
accuracy and offline computations.

Remark 5.4.3. Overapproximations X̂
f

[τR̃i , j
,τR̃i , j

]
(R̃i , j ) of the flowpipes of the ETC sys-

tem (2.5) can be readily obtained by the -already computed from the previous step- flow-

pipes X̂
fe

[τR̃i , j
,τR̃i , j

]
(Ii , j ) of the extended system (2.8), by projecting to the ζ-variables:

X̂
f

[τR̃i , j
,τR̃i , j

]
(R̃i , j ) = πζX̂ fe

[τR̃i , j
,τR̃i , j

]
(Ii , j ). Thus, the only computation needed to deter-

mine transitions is calculating the intersections πζX̂
fe

[τR̃i , j
,τR̃i , j

]
(Ii , j )∩ R̃k,l . This is in

contrast to [40], where computing timing intervals and determining transitions are two
distinct computational steps.

Remark 5.4.4. The above method directly extends to systems with bounded disturbances
and uncertainties, since many reachability analysis tools, such as Flow* [67], can handle
bounded unknown signals.

5.5. PARTITIONING THE STATE SPACE
Here, we propose a way of partitioning the state space into regions R̃i , j , based on approx-
imations of IMs, derived in Chapters 3 and 4, providing control over the timing intervals
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and improving their tightness, compared to naively partitioning X into polytopes. First,
we present the ideal (albeit non-achievable) partitioning in these terms, which employs
IMs. Afterwards, we show how to approximate it via inner approximations of IMs: we start
with homogeneous ETC systems, and then we generalize employing a homogenization
procedure. Finally, we provide a thorough discussion on the advantages of the proposed
approach. For this section, we add the following mild assumptions:

Assumption 5.5.1. The functionφ(·) is p-times continuously differentiable, the vector field
fe (·) of (2.8) is p −1-times continuously differentiable, and p ≥ 1.

Assumption 5.5.1 is necessary in order to be able to derive inner-approximations of
IMs, as described in Chapters 3 and 4.

5.5.1. ISOCHRONOUS MANIFOLDS AND IDEAL PARTITIONING
Here, we demonstrate how IMs, if obtained exactly, enable a partition (hereby termed
IM-partition) which is ideal w.r.t. the timing intervals: it a) provides complete control over
the intervals, and b) is optimal in terms of correspondence between timing intervals and
state-space regions. Let us, first, focus on homogeneous systems and triggering functions,
for clarity.

From their very definition (Definition 3.4.1), it becomes clear how IMs constitute a
notion relating regions in a system’s state-space and intersampling times. In fact, due
to Proposition 3.4.1, the sets Ri consisting of the points lying between two manifolds of
times τi ,τ j with τi ≤ τ j (see Fig. 5.1) satisfy:

Ri = {x ∈Rn : τ(x) ∈ [τi ,τ j ]}, (5.7)

i.e. Ri is the set of all points with intersampling times in [τi ,τ j ]. Thus, if IMs were obtained
exactly, one could: choose a set of times {τ1,τ2, ...,τq }, generate the IMs Mτi , and use the
regions Ri between successive IMs to partition the state-space.

Figure 5.1: IMs (dashed lines) of a homogeneous ETC system for times τ1 < τ2. The region R1 (filled region)
satisfies (5.7).

The advantages of IM-partitioning are the following. First, complete control over the
timing intervals is obtained, as the regions Ri are generated such that the corresponding
timing intervals are equal to the chosen ones [τi ,τi+1] (due to (5.7)). Moreover, the IM-
partition is optimal w.r.t. correspondence between regions and intervals: due to (5.7),
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there is no set with bigger volume (Lebesgue measure) than Ri that corresponds to the
same timing interval. This implies that IM-partitioning achieves the tightest intervals
possible than any other partition, given a certain volume (or number) of regions.

The above advantages of IM-partitioning motivate us to employ the inner approxima-
tions of IMs derived earlier, in order to approximate this ideal way of partitioning.

5.5.2. STATE SPACE PARTITIONING FOR HOMOGENEOUS SYSTEMS VIA IN-
NER APPROXIMATIONS OF IMS

For clarity, we first present how to partition with inner-approximations of IMs, in the con-
text of homogeneous systems and triggering functions. To approximate IM-partitioning,
one could divide the set X into regions Ri defined in (3.16), exactly as done in Chapter 3.
However, the sets (3.16) are large for the reachability-analysis algorithms of Section 5.4 to
be applied (e.g. see Fig. 5.1). Thus, we further partition them via cones C j pointed at the
origin and spanning Rn . Hence, we obtain new sets Ri , j as intersections of approxima-
tions Mτi

and cones C j (see Fig. 5.2):

Ri , j =Ri ∩C j (5.8)

Finally, the regions R̃i , j representing the states of the abstraction are obtained as inter-
sections of sets Ri , j and the set of interest X (the compact state space):

R̃i , j =Ri , j ∩X (5.9)

Figure 5.2: Regions Ri , j obtained as intersections of inner-approximations of IMs Mτi
(dashed lines) and cones

C j .

To summarize the partitioning method:

1. Define a finite set of times {τ1, . . . ,τq } with τi < τi+1 and obtain the sets Ri accord-
ing to (3.16).

2. Define a conic covering into cones C j and obtain the sets Ri , j by (5.8).
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3. Obtain the regions R̃i , j by (5.9), which constitute the partition.

Note that some regions R̃i , j might be empty sets, due to the intersection Ri , j ∩X being
empty; such regions are discarded from the abstraction.

Remark 5.5.1. Although the selected times τi provide a priori lower bounds on inter-
sampling times for regions R̃i , j (according to Corollary 3.4.1), simulations indicate that
sometimes the algorithm of Section 5.4.1 provides less conservative bounds. Thus, the
two ways of inferring timing lower bounds could be employed in a complementary way.
Nonetheless, with the proposed partitioning method, reachability analysis for timing lower-
bounds could be skipped, to reduce the offline computation time needed to compute the
abstraction.

5.5.3. STATE SPACE PARTITIONING FOR GENERAL NONLINEAR SYSTEMS
To extend the above partitioning method to general nonlinear systems and triggering
functions, we employ the homogenization procedure (3.19). The state space of the ETC
system is embedded in Rn+1 and the sets Ri , j (5.8) are subsets of Rn+1. Since X is now
mapped to the set {(x,1) ∈Rn+1 : x ∈ X } (as commented in Section 3.7), which becomes
our set of interest, the regions R̃i , j are now obtained as:

R̃i , j =Ri , j ∩ {(x, w) ∈Rn+1 : x ∈ X , w = 1},

Remark 5.5.2. As discussed in Section 3.7.1, in cases where the origin is the equilibrium

of the system and φ
(
(0,0)

)
= 0 (e.g. the φ from [7]), there is always a small region R̃?

on the (w = 1)-hyperplane containing (0,0, . . . ,0,1) which is not covered by partitioning
with approximations Mτi

. This region can be defined as R̃? = {(x, w) ∈Rn+1 : x ∈ X , w =
1} \

⋃
i , j

R̃i , j and treated as an extra state of the abstraction.

Remark 5.5.3. The proposed partitioning method trivially extends to systems with bounded
disturbances/uncertainties, by employing the approximations of IMs of perturbed uncertain
systems derived in Chapter 4.

5.5.4. DISCUSSION
Let us discuss the advantages of the proposed partition, compared to naively partitioning
X into polytopes. The proposed method is certainly not ideal, as we only have inner
approximations of IMs to work with. Nonetheless, our aim was to approximate the ideal
IM-partition that was presented in Section 5.5.1, in order to partially gain some of the
IM-partition’s advantages.

First, the regions R̃i , j generated by the proposed partition are expected to result into
tighter intervals, compared to random polytopes of approximately the same volume. That
is because they approximate the ideal shape of the regions Ri of Section 5.5.1, which are
optimal in terms of correspondence between intersampling interval and volume. This
claim is supported by simulation results in Section 5.6, which show that we can partition
X with fewer regions (5.9) than polytopes and still obtain tighter intervals. Hence, with
the proposed partition we contain one source of the abstraction’s non-determinism.
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In addition, due to Corollary 3.4.1, a region R̃i , j is generated such that τi , which is
chosen freely, is a lower bound on intersampling times. This provides some partial control
over the intervals, in contrast to partitioning into random polytopes, where there is no
obvious way of relating regions and timing bounds beforehand. Moreover, as a future
direction, if outer approximations of IMs were obtained2, they could be used to partition
and gain control over the intervals’ upper bounds as well (due to the scaling law 2.9).
Finally, the proposed partitioning approach has the potential of approximating arbitrarily
well IM-partitioning, by improving the method of approximating IMs.

5.6. NUMERICAL EXAMPLES
Here, we present simulation results supporting our theoretical developments. First,
we apply the techniques of Section 5.4 combined with a naive partition, to abstract a
perturbed nonlinear ETC system. Afterwards, we compare the partition proposed in
Section 5.5 with naive partitioning, on an unperturbed system.

In the first example we use Flow*, whereas in the second we use dReach. Moreover,
the sets Ri , j (5.8) are overapproximated by ball segments as described in Appendix 5.A,
as they originally admit a transcendental representation which is currently not effectively
handled by either Flow* or dReach. Ball segments can indeed be handled by dReach, but
not by Flow*. On the other hand, dReach cannot handle disturbances, but Flow* can.
That is why we employ naive partitioning in the perturbed system case. To abstract a
perturbed system using the partition of Section 5.5, other options have to be explored,
such as approximating the sets (5.8) by taylor models, which are handled by Flow*.

To measure the tightness of intervals of a given abstraction, we devise the two following
metrics:

AvgRatio =
∑

i , j

τR̃i , j

τR̃i , j

#Regions
, AvgDiff =

∑
i , j τR̃i , j

−τR̃i , j

#Regions
(5.10)

The smaller these metrics the tighter the intervals. The difference between them is: in
AvgDiff regions with larger intersampling times contribute more to the metric’s value,
while in AvgRatio all regions contribute the same, regardless of the time scales in which
they operate. For our purposes, AvgRatio is more representative; we have also included
AvgDiff, because it is closely connected to the definition of an abstraction’s precision (the
ε constant from Definition 5.2.2).

5.6.1. ABSTRACTING A PERTURBED NONLINEAR ETC SYSTEM
Consider the following nonlinear ETC system:

ζ̇1 =−ζ1, ζ̇2 = ζ2
1ζ2 +ζ3

2 +u +d , ε̇ζ1 =−ζ̇1, ε̇ζ2 =−ζ̇2

with a Lebesgue-sampling triggering function φ
(
(ζ(t),εζ(t))

)
= ε2

ζ
− 0.012, where u =

−(ζ2 +εζ2 )− (ζ1 +εζ1 )2(ζ2 +εζ2 )− (ζ2 +εζ2 )3 is the control input, and d ∈ [−0.1,0.1] is a
bounded unknown parameter (e.g. a disturbance or a model uncertainty).

2Deriving outer approximations of IMs is a difficult problem; e.g. there is no guarantee that a lower bound of
the triggering function, derived as in Lemma 3.5.1, exhibits a zero-crossing w.r.t. time for any initial condition.
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Let X = [−2,2]2, and we partition it via 56 equal rectangles. The heartbeat is τmax =
0.022. To compute the intervals [τR̃i , j

,τR̃i , j
] and the transitions, we employ the algorithms

of Section 5.4 and Flow*. Figure 5.3 depicts the computed timing lower and upper bounds
for each region. The tightness metrics are AvgRatio ≈ 3.14 and AvgDiff ≈ 0.011. Figure 5.4
depicts the abstraction’s transitions (418 in total).

(1, 1) (2, 6) (4, 4) (6, 3) (7, 8)

0.005

0.010

0.015

0.020 τ R̃i,j

τ R̃i,j

Figure 5.3: Perturbed ETC System: Timing lower and upper bounds for each region. The horizontal axis shows
the regions’ indices.

(1, 1) (2, 6) (4, 4) (6, 3) (7, 8)

(1, 1)

(2, 6)

(4, 4)

(6, 3)

(7, 8)

Figure 5.4: Perturbed ETC System: Transitions of the abstraction. Each dot [(i , j ), (k, l )] represents a transition
R̃i , j → R̃k,l .

Finally, we simulate a run of the ETC system to showcase our results’ validity. Specifi-
cally, the system is initialized at (1.3,1.3), and the disturbance is d(t ) = 0.1sin(10t ). The du-
ration is 2s. Figure 5.5 depicts the results. The red line is the evolution of the actual ETC in-
tersampling times during the run, while the blue lines represent the intervals [τR̃i , j

,τR̃i , j
]

generated by the abstraction (by checking at which region R̃i , j the state belonged at
each time, and plotting its associated interval). As expected, the intersampling time is
always confined in [τR̃i , j

,τR̃i , j
]. Moreover, it caps at τmax = 0.022. The system’s trajectory

followed the spatial path: R̃6,7 →···→ R̃6,6 →···→ R̃5,6 →···→ R̃5,5 →···→ R̃4,5 → . . . ,
where the dots indicate that the trajectory stayed in the previous region for multiple
intersampling intervals. Note that all transitions taken during the run are contained in
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the transition set of the abstraction (Fig. 5.4).

0.0 0.5 1.0 1.5 2.0
0.000

0.005

0.010

0.015

0.020

Figure 5.5: Time evolution of the ETC system’s intersampling times (red line) and the intervals [τR̃i , j
,τR̃i , j

]

(blue lines) generated by the abstraction, during a run.

5.6.2. PERFORMANCE OF THE PARTITIONING APPROACH OF SECTION 5.5
To compare our proposed partition with naive partitioning, consider the unperturbed
version of the ETC system presented in the previous numerical example, let X = [−2,2]2

and τmax = 0.021. For naive partitioning, we divide again X into 56 equal rectangles
and calculate the intervals [τR̃i , j

,τR̃i , j
]. The results appear in Fig. 5.6. The tightness

metrics are AvgRatio ≈ 1.74 and AvgDiff ≈ 0.0045. The total transitions of the abstraction
are 367. We observe that the timing intervals are considerably tighter and the number
of transitions is smaller, when the disturbance is absent. That is because unknown
parameters in the dynamics give rise to infinite possible behaviours, implying larger non-
determinism. Moreover, reachability-analysis tools behave more conservatively, when
unknown parameters are present.

(1, 1) (2, 6) (4, 4) (6, 3) (7, 8)
0.000

0.005

0.010

0.015

0.020 τ R̃i,j

τ R̃i,j

Figure 5.6: Naive Partition: Lower and upper bounds of intersampling times for each region.

For the partitioning approach of Section 5.5, after homogenizing the system and
the triggering function as in (3.19) with α = 2 and θ = 1, we define the set of times
{.002, .0028, .0038, .005, .0065, .0075} and derive inner-approximations of the correspond-
ing IMs and the sets Ri , as per (3.16). To further divide Ri into Ri , j , we use 9 polyhedral
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cones C j pointed at the origin of Rn+1, that cover the set of interest {(x, w) ∈ Rn+1 : x ∈
X , w = 1}; i.e.

⋃
j (C j ∩{(x, w) ∈Rn+1 : w = 1}) = {(x, w) ∈Rn+1 : x ∈ X , w = 1}3. Finally, after

obtaining the regions R̃i , j (5.9), the total number of abstraction states is 49 (recall that the
number of regions R̃i , j can be smaller than |{Ri }|·|{C j }|, where |·| denotes set cardinality,
since empty intersections (5.9) are discarded). The computed intervals [τR̃i , j

,τR̃i , j
] are

depicted in Fig. 5.7. The tightness metrics are AvgRatio ≈ 1.54 and AvgDiff ≈ 0.0032. The
total number of transitions is 471.

(2,2) (3,3) (4,4) (4,6) (5,7) (6,8)
0.000

0.005

0.010

0.015

0.020 τ R̃i,j
τ R̃i,j

Figure 5.7: Proposed Partition: Lower and upper bounds of intersampling times for each region.

The partition of Section 5.5 achieves considerably tighter intervals even with a smaller
amount of regions, compared to the naive one. This supports the claims of Section 5.5.4:
it leads to tighter intervals, thus containing one of the sources of non-determinism. On
the other hand, we observe that it has led to an abstraction with larger transition set. That
may be because the sets (5.8) have been overapproximated by ball segments, which in
some cases might be a crude approximation, while the naive partition’s rectangles are fed
directly to the reachability-analysis algorithm. In other words, while tighter intervals are
an inherent characteristic of the partition of Section 5.5, the large number of transitions
is probably due to coarse overapproximations.

5.7. CONCLUSION
We abstracted the sampling behaviour of perturbed uncertain nonlinear ETC systems
with general triggering functions. Thus, we have significantly extended the applicability
of abstraction-based scheduling of traffic in networks of ETC loops. To capture the sets of
intersampling times that the given ETC system may generate, we formulated and solved
reachability-analysis problems. In addition, we proposed a state-space partitioning
method based on IMs, which provides partial control over the abstraction’s accuracy
and leads to tighter timing intervals, compared to naive partitioning. However, in the
performed simulations it has led to larger transition sets, probably because of the crude
overapproximations used to facilitate reachability analysis. This effect could be alleviated
by employing more accurate approximations of the sets (5.8) (e.g. polynomial zonotopes
or Taylor models), to reduce the size of the transition set, while keeping the timing

3A way to create this conic covering is to divide {(x, w) : x ∈ X , w = 1} into 9 squares, and obtain C j as the conic
hull of the j -th square’s vertices.
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intervals tight, thus overall containing the abstraction’s non-determinism. Finally, it has to
be emphasized that the constructed abstractions suffer from the curse of dimensionality,
like many abstraction-based approaches.

5.A. APPROXIMATING THE REGIONS Ri , j BY BALL SEGMENTS
To obtain the timing bounds [τR̃i , j

,τR̃i , j
] and the state transitions, reachability analysis

on the regions R̃i , j is conducted. However, it is obvious from (3.15) and (3.16) that the
sets Ri , j (which make up R̃i , j through (5.9)) are transcendental, which renders their
computational handling very difficult. To the authors’ knowledge, there are no reachability
analysis tools that can handle effectively such sets. Hence, we have provided an algorithm
to overapproximate them.

In general, the overapproximation of transcendental sets is very challenging. However,
leveraging special characteristics of the specific representation, we devised an algorithm
that overapproximates the sets Ri , j by ball segments (Fig. 5.8):

R̂i , j := {x ∈C j : r i+1, j ≤ |x| ≤ r i , j }. (5.11)

To obtain the ball segments (5.11), r i+1, j and r i , j must be determined; i.e. spherical

Figure 5.8: Ball segment R̂i , j (blue region) overapproximating Ri , j (region delimited by the red lines and the
cone).

segments (intersections of spheres with cones) that inner- and outer- approximate the
conic sections Mτi+1

∩C j and Mτi
∩C j , respectively, have to be found (see Fig. 5.8), where

Mτi
represents the inner-approximation of IM Mτi

that has been used to define Ri , j .

A whole sphere Sr := {x ∈ Rn : |x| = r } inner-approximates the whole Mτ?
if it lies

entirely in the region enclosed by Mτ?
, that is if µ(x,τ?) ≤ 0 for all x ∈ Sr . Likewise, a

spherical segment Sr?, j
∩C j inner-approximates Mτ?

∩C j if the following holds:

∀x ∈ Sr?, j
∩C j : µ(x,τ?) ≤ 0. (5.12)

Formulas like (5.12) can be verified or disproved by SMT solvers, like dReal [53].
Thus, a line search on r?, j could be employed, by iteratively checking (5.12). In our case
though, µ(x,τ?) ≤ 0 implies the numerically non-robust symbolic computation of the
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matrix exponential e A( |x|ρ )ατ? over the symbolic variable x. Luckily, since we want to verify
µ(x,τ?) ≤ 0 on a spherical segment Sr?, j

∩C j , we can fix |x| ← r?, j , which renders the
symbolic matrix exponential a regular numerical one and severely relaxes computations,

i.e. e A( |x|ρ )ατ? = e A(
r?, j
ρ )ατ? for all x ∈ Sr?, j

∩C j . This is done by fixing the first argument of

µ(·,τ?) as: µ( x
|x| r?, j ,τ?). Consequently, in order to find a spherical inner-approximation

Sr?, j
∩C j of the conic section Mτ?

∩C j , we employ a line search on the radius r?, j and

check iteratively by an SMT solver the following condition:

∀x ∈ Sr?, j
∩C j : µ(

x

|x| r?, j ,τ?) ≤ 0. (5.13)

By reversing inequality (5.13) we determine an outer-approximation Sr?, j
∩C j of Mτ?

∩C j .

Fig. 5.9 shows spherical inner/outer-approximations of Mτ?
for each conic section.

Figure 5.9: Spherical inner- and outer-approximations for each conic section of Mτ?
.

Finally, as soon as all radii r i , j , r i , j are obtained, the regions Ri , j are overapproxi-

mated by ball segments R̂i , j (5.11). Then, reachability analysis can be conducted on the
sets R̂i , j ∩X , which are overapproximations of R̃i , j .

Remark 5.A.1. The scaling property (3.9c) of µ, i.e. µ(λx, t) = λθ+1µ(x,λαt), can be em-
ployed to alleviate computations when computing the overapproximations. Specifically, as
soon as the radii r?, j ,r?, j have been obtained for one approximation Mτ?

, we can use them

and (3.9c) to derive all r i , j ,r i , j . Observe that (3.9c) implies that x ∈ Mτ?
=⇒ λx ∈ Mλ−ατ?

.

Thus, if Sr?, j
∩C j is an inner-approximation of Mτ?

∩C j , then Sλr?, j
∩C j is an inner-

approximation of Mλ−ατ?
∩C j . Consequently, to obtain inner- and outer-approximations

of all conic sections Mτi
∩C j (i = 1, . . . , q), we scale the obtained radii accordingly by

corresponding factors λi =
(
τ?
τi

) 1
α

, so that we get: r i , j =λi r?, j and r i , j =λi r?, j .



6
FORMAL ANALYSIS OF THE

SAMPLING BEHAVIOUR OF

STOCHASTIC EVENT-TRIGGERED

CONTROL

In this chapter, we formally analyze the sampling behaviour of stochastic linear periodic
ETC (PETC) systems by computing bounds on associated metrics. Specifically, we consider
functions over sequences of state measurements and intersampling times that can be ex-
pressed as average, multiplicative or cumulative rewards, and introduce their expectations
as metrics on PETC’s sampling behaviour. We compute bounds on these expectations, by
constructing appropriate Interval Markov Chains equipped with suitable reward structures,
that abstract stochastic PETC’s sampling behaviour, and employing value iteration over
these IMCs. Our results are illustrated on a numerical example, for which we compute
bounds on the expected average intersampling time and on the probability of triggering
with the maximum possible intersampling time in a finite horizon.

This chapter has been published in [69]. Some changes have been made to streamline presentation. A prelimi-
nary version has been published in [70]. The results of Appendix 6.C appear here for the first time.
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6.1. INTRODUCTION
In this chapter, we formally analyze the sampling (vs. control) behaviour of stochastic ETC
systems by computing bounds on associated metrics. In particular, we consider stochastic
narrow-sense linear PETC systems with a Lebesgue-sampling triggering function. We de-
fine their sampling behaviour as the set Y of all possible sequences of state-measurements
and intersampling times along with its associated probability measure. We introduce
expectations of functions g : Y → R as metrics on ETC’s sampling behaviour. Here, we
focus on functions g described as cumulative, average or multiplicative rewards, i.e.
g? with ? ∈ {cum,avg,mul}. This class of functions is rather standard in the context of
quantitative analysis of stochastic systems, and it extends to including specifications
of PCTL (Probabilistic Computation Tree Logic, see [71]). Besides, it is able to describe
various metrics on ETC’s sampling performance, as demonstrated through examples. The
problem statement of this work is to obtain bounds on expectations of functions g?.

To address the problem, we construct IMCs (interval Markov chains; Markov chains
with interval transition probabilities) that capture PETC’s sampling behaviour. Then, we
equip the IMCs with appropriate state-dependent rewards and prove that the {cum,avg,
mul} reward over the paths of the IMC indeed bounds the expectation of g? (Theorem
6.4.1). The IMC rewards can easily be computed via well-known value-iteration algorithms
(see, e.g., [72]).

The main challenge in constructing the IMC is computing the IMC’s probability
intervals. For that, we study the joint probabilities of transitioning from one region
of the state-space to another one with the intersampling time taking a specific value.
Computation of these probabilities is more complicated than the traditional transition
probabilities that appear in the literature of IMC-abstractions (e.g., [73]–[76]), due to the
presence of intersampling time as an event. To cope with that, we employ a series of
convex relaxations and the fact that the system’s state is a Gaussian process. That way,
we reformulate computing these probabilities as optimization problems of log-concave
objective functions and hyperrectangle constraint sets, which are easy to solve. Our
results are demonstrated through a numerical example, where we compute bounds on
the expected average intersampling time and on the probability of triggering with the
maximum possible intersampling time in a finite horizon.

Finally, it is worth noting that, as a side contribution, in Appendix 6.C, we provide
a proof that Lebesgue sampling guarantees practical mean-square stability for linear
stochastic PETC systems, under mild assumptions, as, to our knowledge, it is missing
from the related literature [14]–[17].

6.2. NOTATION AND PRELIMINARIES

6.2.1. NOTATION

Given a set X ⊆R, X[a,b] = X∩[a,b]. Given a set S in some space X , we denote: its indicator
function by1S (·), its Borelσ-algebra by B(S), its complement by S = X \S, and the k-times
Cartesian product S = S ×·· ·×S by Sk . Given x ∈ Rn , denote by {x}k : both the k-times

Cartesian product {x}×·· ·×{x} and the kn-dimensional vector
[
x> . . . x>]>

. Given sets
Q1,Q2 and Q = Q1 ×Q2, for any q = (q1, q2) ∈ Q denote projQ1

(q) = q1 and projQ2
(q) =

q2. Given two sets Q1,Q2 in some space, denote Q1 +Q2 = {q1 + q2 : q1 ∈ Q1, q2 ∈ Q2}
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(Minkowski sum) and Q1−Q2 = {q1−q2 : q1 ∈Q1, q2 ∈Q2} (Minkowski difference). Finally,
consider a set S(x) ⊆Rn that varies with a parameter x ∈Rm (equivalent to a set-valued
function S :Rm → 2R

n
). We say that S(x) is linear on x, if S(x) = S′+ {Ax}, where A ∈Rn×m

and S′ ⊆Rn .
Given a random variable x and an associated probability measure P, we denote its

expectation w.r.t. P by EP[x] (when P is clear from the context, it might be omitted). We
use the term ‘path’ or ‘sequence’ interchangeably. Given a finite path ω= q0, q1 . . . , qN ,
denote ω(i ) = qi and ω(end) =ω(N ) = qN . Given a function g (ω) of paths ω, we denote
Eq0 [g (ω)] ≡ E[g (ω)|ω(0) = q0]. Finally, N (µ,Σ) denotes the Gaussian distribution with
mean µ and covariance matrix Σ.

6.2.2. REWARDS OVER PATHS
Consider a set Q and a set Y of paths of length N +1, such that: ω(i ) ∈ Q, for all ω ∈ Y
and 0 ≤ i ≤ N . Assume a probability measure P over B(Y) (for how to define B(Y) in
our context, see Section 6.3.2). Define a reward function R : Q → [0,Rmax]. We define the
following expectations:

• Cumulative (discounted) reward: EP[gcum,N (ω)] ≡ EP[
∑N

i=0γ
i R(ω(i ))], where γ ∈

[0,1].

• Average reward: EP[gavg,N (ω)] ≡ EP[ 1
N+1

∑N
i=0 R(ω(i ))].

• Multiplicative reward: EP[gmul,N (ω)] ≡ EP[
∏N

i=0 R(ω(i ))].

These expectations can describe a wide range of quantitative/qualitative properties of
paths in Y, and they have been employed for verification in numerous settings, such as
(interval) Markov chains (e.g. [73]–[76]), stochastic hybrid systems (e.g., [77]), etc. Later,
we showcase their descriptive power within our framework (see Section 6.3.2).

6.2.3. INTERVAL MARKOV CHAINS (IMCS)
Interval Markov Chains are Markov models with interval transition probabilities, and they
are defined as:

Definition 6.2.1 (Interval Markov Chain (IMC)). An IMC is a tuple Simc = {Q, P̌ , P̂ }, where:
Q is a finite set of states, and P̌ , P̂ : Q ×Q → [0,1] are functions, with P̌ (q, q ′) and P̂ (q, q ′)
representing lower and upper bounds on the probability of transitioning from state q to q ′,
respectively.

For all q ∈ Q, we have that P̌ (q, q ′) ≤ P̂ (q, q ′) and
∑

q ′∈Q
P̌ (q, q ′) ≤ 1 ≤ ∑

q ′∈Q
P̂ (q, q ′). A

path of an IMC is a sequence of states ω= q0, q1, q2, . . . , with qi ∈Q. Denote the set of the
IMC’s finite paths by Paths(Simc). Given a state q ∈Q, a transition probability distribution
pq : Q → [0,1] is called feasible if P̌ (q, q ′) ≤ pq (q ′) ≤ P̂ (q, q ′) for all q ′ ∈Q. Given q ∈Q, its
set of feasible distributions is denoted by Γq . We denote by ΓQ = {pq : pq ∈ Γq , q ∈Q} the
set of all feasible distributions for all states.

Definition 6.2.2 (Adversary). Given an IMC Simc, an adversary is a functionπ : Paths(Simc)
→ ΓQ , such that π(ω) ∈ Γω(end), i.e. given a finite path it returns a feasible distribution
w.r.t. the path’s last element.
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The set of all adversaries is denoted byΠ. Given aπ ∈Π and ω(0) = q0, an IMC path
evolves as follows: at any time-step i > 0,π chooses a distribution p ∈ Γω(i−1) from which
ω(i ) is sampled.

IMCs may be equipped with a reward function R : Q → [0,Rmax]. Given aπ ∈Π and
an initial condition q0 ∈Q, all expectations listed in Section 6.2.2 are well-defined and
single-valued: e.g., Eq0

π [gcum,N (ω)] (see [72]). However, due to the existence of infinite
adversaries, the IMC produces whole ranges of such expectations. The bounds of these
ranges, e.g. (supπ∈Π and) infπ∈ΠEq0

π [gcum,N (ω)], can be computed via well-known value
iteration algorithms (e.g., see [72], [78]).

6.3. THE SAMPLING BEHAVIOUR OF STOCHASTIC PETC: FRAME-
WORK AND PROBLEM STATEMENT

6.3.1. LINEAR STOCHASTIC PETC SYSTEMS
Consider a state-feedback stochastic linear control system:

dζ(t ) = Aζ(t )d t +BK ζ(t )d t +Bw dW (t ),

where: A,B ,K ,Bw are matrices of appropriate dimensions, ζ(t ) ∈Rn is the state, and W (t )
is an nw -dimensional Wiener process on a complete probability space (Ω,F , {Ft }t≥0,P).
Ω denotes the sample space, F the σ-algebra generated by W , {Ft }t≥0 the natural fil-
tration and P the probability measure. We denote the solution of the above stochastic
differential equation with initial condition ζ0 by ζ(t ;ζ0).

In PETC, as in conventional ETC, the control input is held constant between consecu-
tive sampling times ti , ti+1 and is only updated on such times:

dζ(t ) = Aζ(t )d t +BK ζ(ti )d t +Bw dW (t ), t ∈ [ti , ti+1), (6.1)

The sampling times are determined by the triggering condition:

ti+1 = ti +min
{

kmaxh,min
{

kh : k ∈N,φ
(
ζ(kh;ζ(ti )),ζ(ti )

)
> 0

}}
(6.2)

where t0 = 0, h > 0 is a checking period, kmax ∈N>0,φ is the triggering function and ti+1−ti

is the intersampling time. Notice the presence of a maximum allowed intersampling
time kmaxh. PETC works as follows during an intersampling interval [ti , ti+1): at time
ti the triggering function φ(ζ(ti ),ζ(ti )) is negative; the sensors check periodically, with
period h, if the triggering function is positive; if it is found positive, or if kmaxh time has
elapsed since ti , a new event ti+1 is triggered, the latest state-measurement is sent to the
controller which updates the control action, and the whole process is repeated again. We
call the combination (6.1)-(6.2) (stochastic) PETC system.

In stochastic PETC, intersampling time is a random variable that depends on the
previously measured state and we denote it as follows:

τ(x) = min
{

kmaxh,min
{

kh : k ∈N,φ
(
ζ(kh; x), x

)
> 0

}}
where x ∈ Rn is the previously measured state. Note that, because the system is time-
homogeneous, reasoning w.r.t. the interval [ti , ti+1) is equivalent to reasoning w.r.t.
[0, ti+1 − ti ).
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Assumption 6.3.1. We assume the following:

1. The matrix pair (A,Bw ) is controllable.

2. The checking period h = 1.

3. φ(ζ(t ; x), x) = |ζ(t ; x)−x|∞−ε, where ε> 0 is a predefined constant.

Item 1 guarantees that ζ(t ) is a non-degenerate Gaussian random variable (see [75])
and item 2 is for ease of presentation and without loss of generality. Regarding item 3, φ is
the well-studied Lebesgue-sampling triggering function [6] with an ∞-norm instead of a
2-norm. In Appendix 6.C, we provide a proof that Lebesgue sampling guarantees practical
mean-square stability for linear stochastic PETC systems, under mild assumptions, as, to
our knowledge, it is missing from the related literature [14]–[17]. Finally, in Remark 6.5.2,
we discuss briefly how our results can be extended to more general triggering functions.

6.3.2. SAMPLING BEHAVIOUR AND ASSOCIATED METRICS
A stochastic PETC system may exhibit different sequences of state-measurements and
intersampling times (ζ0, t0), (ζ(t1), t1 − t0), (ζ(t2), t2 − t1), . . . , where ti are sampling times.
We call sampling behaviour, the set of all possible such sequences:

Definition 6.3.1 (Sampling Behaviour). We call N -sampling behaviour of stochastic PETC
system (6.1)-(6.2) the set:

YN = {(x0, s0), (x1, s1), (x2, s2), . . . , (xN , sN ) : xi ∈Rn , si ∈N[0,kmax]} (6.3)

where N ∈N. When N is clear from the context, it is omitted.

We denote Q :=Rn ×N[0,kmax]. Given an initial condition y0 = (x0, s0) ∈Q, the set YN is
associated to a probability measure Py0

YN
(conditioned on y0) which is inductively defined

over B(YN ) as follows1:

P
y0
YN

(ω(0) ∈ (X0, s0)) =1(X0,s0)(y0) (6.4)

P
y0
YN

(ω(i +1) ∈ (Xi+1, si+1) | ω(i ) = (xi , si )) =P(ζ(si+1; xi ) ∈ Xi+1,τ(xi ) = si+1) (6.5)

where ω ∈ YN , s0, si , si+1 ∈ N[0,kmax], xi ∈ Rn , X0, Xi+1 ⊆ Rn and we use (X , s) to denote
the set {(x, s) : x ∈ X }. This measure is well-defined, even when the horizon N = +∞,
according to the Ionescu-Tulcea theorem [79].

Remark 6.3.1. As noted in Section 6.3.1, typically it is assumed that the first sampling
time t0 = 0, which implies that the first intersampling time s0 = t0 −0 = 0 and the initial
condition is y0 = (x0,0).

Remark 6.3.2. Under item 3 of Assumption 6.3.1, and in every Zeno-free ETC scheme,
P(τ(x) = 0) = 0 for any x ∈Rn , because the triggering function is strictly negative for k = 0.
Thus, for any i ≥ 1 and ω ∈ YN : PYN (projN[0,kmax]

(ω(i )) = 0) = 0. Note that this is not in
contrast with Remark 6.3.1 that only reasons about initial conditions (x0, s0) and not (xi , si )
with i ≥ 1.
1Consider QN+1 endowed with its product topology. Then B(YN ) is the σ-algebra generated by cylinder sets of

QN+1.
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Studying PETC’s sampling behaviour may be formalized by defining functions g :
YN →R and computing their expectations E

P
y0
YN

[g (ω)]. Here, we focus on functions that

can be described as cumulative gcum,N , average gavg,N or multiplicative gmul,N rewards
(see Section 6.2.2). By appropriately choosing the reward R , these classes of functions can
describe many interesting properties of PETC’s sampling behaviour:

• Example 1: Consider R(x, s) = s. Then E
P

y0
YN

[gavg,N (ω)] is the expected average

intersampling time: the larger it is, the less frequently the system is expected to
sample, saving more bandwidth and energy.

• Example 2: Consider R(x, s) = min(α 1
|x|+ε +βs,Rmax), with α,β,ε > 0, penalizing

paths that overshoot far from the origin or exhibit a high sampling frequency. A
bigger E

P
y0
YN

[gcum,N (ω)] implies better performance in terms of stabilization speed

and sampling frequency. Observe how incorporating state-measurements x in our
definition of sampling behaviour, allows to include control-performance related
metrics, apart from sampling-performance metrics.

• Example 3: Consider the reward:

R(x, s) =
{

0, if s = kmax

1, otherwise

Then, we have that:

E
P

y0
YN

[gmul,N (ω)] =Py0
YN

(
projN[0,kmax]

(ω(i )) 6= kmax, ∀i
)

E
P

y0
YN

[gmul,N (ω)] is the probability that there is no intersampling time s = kmax in the

next N events. The smaller it is, the more probable it is that the system samples, at
least once in the first N triggers, with intersampling time s = kmax, implying that a
bigger maximum intersampling time could be used, allowing the system to sample
even less frequently and saving more bandwidth.

Observe that, if the initial condition (x0, s0) is only known to obey some distribution
p0 : Q → [0,1], the expected reward can be described as:

E
P

p0
YN

[g?,N (ω)] = ∑
s0∈N[0,kmax]

∫
Rn

E
P

(x0,s0)
YN

[g?,N (ω)]p0(x0, s0)d x0

Thus, reasoning about individual initial conditions y0 is sufficient and immediately ex-
tends to the general case of random initial conditions.

Overall, defining PETC’s sampling behaviour YN , associating it to its induced proba-
bility measure Py0

YN
given in (6.4)-(6.5), and studying expectations E

P
y0
YN

[g (ω)] constitutes

a formal framework for the study of PETC’s sampling behaviour.
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Figure 6.1: A flowchart showing the steps followed to compute bounds on the expected rewards E
P

y0
YN

[g?,N (ω)].

6.3.3. PROBLEM STATEMENT
Unfortunately, exact computation of E

P
y0
YN

[g?,N (ω)] is generally infeasible. Among others,

how to obtain the measure Py0
YN

over the uncountable set of paths YN and then integrate
over it? Hence, we aim at computing bounds over such expectations:

Problem Statement. Consider the PETC system (6.1)-(6.2) and its sampling behaviour YN ,
for some N ∈N. Let Assumption 6.3.1 hold. Consider a reward function R : Q → [0,Rmax].
For all initial conditions y0 ∈ X ×N[0,kmax], where X ⊂Rn is compact, compute (non-trivial)
lower and upper bounds on E

P
y0
YN

[g?,N (ω)], where ? ∈ {cum,avg,mul}.

In the rest of this article, we address the problem by constructing an IMC that abstracts
the sampling behaviour YN along with Py0

YN
, equipping it with suitable reward functions

R,R , and computing (supπ∈Π and) infπ∈ΠEq0
π [g?,N (ω̃)], with? ∈ {cum,avg,mul}, to obtain

the bounds we are looking for. Specifically, in the next section we show how to construct
such an IMC, by partitioning the state space and providing conditions (eq. (6.7)-(6.8)) that
have to be satisfied by the IMC’s transition probability intervals. We prove in Theorem
6.4.1 that this IMC equipped with suitable rewards gives rise to bounds on E

P
y0
YN

[g?,N (ω)].

Later, in Section 6.5, we show how to compute P̌ and P̂ such that they satisfy (6.7)-(6.8), by
solving optimization problems with log-concave objective functions. Finally, the desired
bounds (supπ∈Π and) infπ∈ΠEq0

π [g?,N (ω̃)] are obtained via well-known value iteration
algorithms, as demonstrated through a numerical example in Section 6.6. A flowchart of
the steps followed to compute the desired bounds is shown in Figure 6.1.

Remark 6.3.3. By assuming that y0 = (x0, s0) ∈ X ×N[0,kmax], we essentially assume that
the initial state of the system x0 ∈ X . Compactness of X is vital, to partition it into a
finite number of subsets Ri and end up with a finite-state IMC. Nonetheless, this is not an
unrealistic assumption, as in practice the initial conditions of the system are usually known
to be bounded in some set. Furthermore, s0 ∈N[0,kmax] for generality, but, as mentioned in
Remark 6.3.1, typically in ETC s0 = 0.

Remark 6.3.4. We constrain ourselves to {cum,avg,mul} rewards for clarity, but our ap-
proach extends to a more general framework. As commented in Section 6.4.2, our IMCs can
be employed for computing bounds on bounded-until probabilities:

P
y0
YN

(∃i ∈N[0,N ] s.t. ω(i ) ∈G and ∀k ≤ i , ω(k) ∈ S)

where S,G ⊆Q. Bounded-until constitutes the backbone of PCTL [73], as all PCTL formulas
can be written with bounded-until operations. In short, our approach directly extends to
PCTL. Moreover, by extending our proofs according to [74] and [76], we could incorporate
probabilistic ω−regular or LTL (Linear Temporal Logic) properties.
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6.4. IMCS ABSTRACTING PETC’S SAMPLING BEHAVIOUR

6.4.1. CONSTRUCTING THE IMC
Typically, to abstract a stochastic behaviour Y and its probability measure PY through
an IMC: i) the state space is partitioned into a finite number of regions, each of which
corresponds to an IMC-state, ii) if the state space is unbounded, then one of these regions
is unbounded, and its IMC-state is made absorbing2, and iii) the bounds on transition
probabilities P̌ (q, q ′), P̂ (q, q ′) are derived such that P̌ (q, q ′) ≤PY(ω(i +1) ∈ q ′|ω(i ) = x) ≤
P̂ (q, q ′) for all x ∈ q , where ω ∈ Y.

In this work, we adopt the above methodology. Observe that the state space from
which the sampling behaviour emerges is the set Q = Rn ×N[0,kmax]. Since N[0,kmax] is
by-construction partitioned into the singletons {0}, {1}, . . . , {kmax}, it suffices to partition
Rn . Consider m non-overlapping compact regions Ri such that

⋃
i∈N[1,m] Ri = X . Then,

Rn is partitioned into:

QR ∪ {X }

where QR = {R1, . . . ,Rm}. According to the aforementioned methodology, the states of

the IMC would be of the form (q, s) ∈
(
QR ∪{X }

)
×N[0,kmax]. Nonetheless, for compactness

of the IMC, we group all states (X , s) (for s ∈N[0,kmax]) that correspond to X into a single
absorbing state qabs:

qabs = X ×N[0,kmax]

From now on, we abusively use (Ri , s) (resp. qabs) to denote both the corresponding
IMC-state and the set Ri × {s} (resp. X ×N[0,kmax]). Finally, the set of the IMC-states is:

Qimc =
(
QR ×N[0,kmax]

)
∪ {qabs} (6.6)

Regarding the transition probability bounds P̌ (q, q ′) and P̂ (q, q ′), since we need to
bound P(ω(i + 1) ∈ q ′|ω(i ) = x) for all x ∈ q , by employing (6.5), we have that for all
(R,k), (S , s) ∈QR ×N[0,kmax]:

P̌
(
(R,k), (S , s)

)
≤ min

x∈R
P(ζ(s; x) ∈S ,τ(x) = s)

P̂
(
(R,k), (S , s)

)
≥ max

x∈R
P(ζ(s; x) ∈S ,τ(x) = s)

P̌
(
(R,k), qabs

)
≤ ∑

s∈N[0,kmax]

min
x∈R

P(ζ(s; x) ∈ X ,τ(x) = s)

P̂
(
(R,k), qabs

)
≥ ∑

s∈N[0,kmax]

max
x∈R

P(ζ(s; x) ∈ X ,τ(x) = s)

(6.7)

and for all q ′ ∈Qimc:

P̌ (qabs, q ′) = P̂ (qabs, q ′) =
{

1, if q ′ = qabs

0, otherwise
(6.8)

2An IMC-state q ∈Qimc is absorbing ⇐⇒ P̌ (q, q) = 1.
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The computation of P̌ and P̂ such that they satisfy (6.7)-(6.8) is addressed in Section
6.5 and it involves bounding the solutions to the optimization problems of (6.7). The
summation in the last two inequalities of (6.7) results from the fact that qabs is a grouping
of all states (X , s) with s ∈ N[0,kmax], while (6.8) indicates that qabs is indeed absorbing.
In view of Remark 6.3.2, since we know that P(τ(x) = 0) = 0, then for any q ∈ Qimc and
S ∈QR , it suffices to write P̌ (q, (S ,0)) = P̂ (q, (S ,0)) = 0; that is, states (S ,0) only have
outgoing transitions and no incoming ones. Finally, we define the IMC that abstracts the
sampling behaviour as follows:

Simc = (Qimc, P̌ , P̂ ), (6.9)

where Qimc is given by (6.6) and P̌ , P̂ are given by (6.7)-(6.8).
To demonstrate how the constructed IMC abstracts the PETC system’s sampling

behaviour, let us relate paths ω ∈ YN to paths ω̃ ∈ Paths(Simc). First, consider a path ω

such thatω(i ) 6∈ qabs for all i ≤ N . Then, this path is related to a path ω̃ ∈ Paths(Simc) of the
same length, for which ω(i ) ∈ ω̃(i ) for all i ≤ N . Next, consider a path such thatω(i ) ∈ qabs

for some i ≤ N and ω( j ) 6∈ qabs for all j < i . Then, ω is related to ω̃ ∈ Paths(Simc) of the
same length, for which ω( j ) ∈ ω̃( j ) for all j ≤ i and ω̃(k) = qabs for all k ≥ i . This latter
relation indicates that all paths in YN that enter X (even those that eventually return to X )
are mapped to IMC-paths that enter qabs at the same time and stay there.

6.4.2. BOUNDS ON SAMPLING-BEHAVIOUR REWARDS VIA IMCS

The IMC described above, if equipped with suitable rewards R,R, can be employed for
the computation of lower and upper bounds on E

P
y0
YN

[g?,N (ω)]:

Theorem 6.4.1. Consider the IMC Simc given by (6.9). Define reward functions R,R :
Qimc → [0,Rmax] such that:

R(q) =


min

(x,s)∈q
R(x, s), if q 6= qabs

min
(x,s)∈Rn×N[1,kmax]

R(x, s), if q = qabs
, R(q) =


max

(x,s)∈q
R(x, s), if q 6= qabs

max
(x,s)∈Rn×N[1,kmax]

R(x, s), if q = qabs
(6.10)

and the associated rewards over paths ω̃ ∈ Paths(Simc) denoted by g
?,N

, g?,N , where ? ∈
{cum,avg,mul}. Then, for any initial condition y0 = (x0, s0) ∈ X ×N[0,kmax] and N ∈N:

inf
π∈Π

Eq0
π [g

?,N
(ω̃)] ≤ E

P
y0
YN

[g?,N (ω)] ≤ sup
π∈Π

Eq0
π [g?,N (ω̃)]

where q0 is such that y0 ∈ q0.

Proof Sketch. The above expectations are written as value functions defined via value
iteration (see Lemma 6.A.1), and mathematical induction over the iteration is employed.
For the full proof, see Appendix 6.A.

Hence, to compute bounds on expectations E
P

y0
YN

[g?,N (ω)], we equip the IMC (6.9)

with the reward functions R,R from (6.10) and compute the expectations infπ∈ΠEq0
π [g

?,N
(ω̃)]
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and supπ∈ΠEq0
π [g?,N (ω̃)]. As mentioned in Section 6.2.3, these expectations can be com-

puted via value-iteration algorithms (e.g. see [72]), with polynomial complexity in the
number of IMC-states. In fact, the value iteration used for {cum,mul} rewards is given here
by equations (6.26) and (6.37) respectively in Appendix 6.A (the avg reward is the same as
cum with γ= 1, and in the last step we just divide by N+1). Moreover, since bounded-until
probabilities on IMCs, and thus PCTL properties, may be computed through a similar
value iteration [73], our proofs can be adapted to show that we can bound bounded-until
probabilities defined over YN by using the constructed IMC.

Finally, Theorem 6.4.1 indicates that the same IMC can be used to derive bounds
for any chosen {cum,avg,mul} reward, for any horizon N , and any initial condition y0 ∈
X ×N[0,kmax]. It is also worth noting that a proof like that of Theorem 6.4.1 was missing
from the literature on IMC-abstractions [73]–[76], where it was (correctly) taken for
granted that the quantitative metric (e.g., a reward) evaluated over the IMC bounds the
metric evaluated over the original stochastic behaviour, due to the way that the transition
probabilities are constructed.

Remark 6.4.1. For any q ∈Qimc, the rewards R and R serve as conservative estimates of
the real reward obtained if the system operates in q. In fact, specifically for qabs, R and
R are global lower and upper bounds, respectively, on the actual reward R(x, s) (except
for the case s = 0, which happens with zero probability, except for initial conditions).
Due to this, for states (R, s) ∈Qimc with R being “near" X (i.e., near the boundary of X ),
which tend to obtain larger transition probabilities to qabs, the lower and upper bounds
infπ∈ΠEq0

π [g
?,N

(ω̃)] and supπ∈ΠEq0
π [g?,N (ω̃)] are more conservative, compared to when R

is further inside X . This is showcased by Figure 6.4. For that reason, in practice, to construct
the IMC, it is better to partition a superset Y ⊇ X into regions Ri , so that the regions that
comprise X are further inside Y , and the corresponding bounds are not that conservative.

Remark 6.4.2. Our results extend to infinite horizons (i.e. N = +∞), when the rewards
are well-defined, as it has already been proven in [70, Theorem IV.1]; in fact, the proof for
N =+∞ is simpler, as it suffices to consider time-invariant adversaries.

The only thing that remains is to describe how to compute the transition probability
bounds given by (6.7). This is carried out in the coming section.

6.5. COMPUTING THE TRANSITION PROBABILITY BOUNDS
Here, we compute lower bounds on the minima and upper bounds on the maxima in
(6.7), thus completing the IMC’s construction. Through a series of convex relaxations,
and employing Proposition 6.5.1 and Lemma 6.5.1, the min/max expressions in (6.7)
are formulated as optimization problems of log-concave functions (in fact, Gaussian
integrals) over hyperrectangles, which are straightforward to solve. To facilitate this
analysis, we introduce the following assumption:

Assumption 6.5.1. The set X and all sets Ri ∈QR are hyperrectangles.

This assumption is without loss of generality, as in the case where X is not a hyperrect-
angle, our approach could be applied by under/overapproximating X by a hyperrectangle
Y and partitioning Y into a finite set of hyperrectangles Ri .
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For the rest of the document, for any s ∈ N[1,N ], we denote ζs,x = ζ(s; x) and ζ̃s,x =[
ζ>1,x ζ>2,x . . . ζ>s,x

]>
. The following statements are instrumental in our derivations:

Proposition 6.5.1. For any s ∈N[1,N ], we have that ζ̃s,x ∼N (µζ̃s,x
,Σζ̃s,x

) with:

µζ̃s,x
= [

E(ζ>1,x ) E(ζ>2,x ) . . . E(ζ>s,x )
]>

Σζ̃s,x
=

Cov(1,1) Cov(1,2) . . . Cov(1, s)
...

... . . .
...

Cov(s,1) Cov(s,2) . . . Cov(s, s)


where E(ζ(t ; x)) = [e At (I + A−1BK )− A−1BK ]x and:

Cov(t1, t2) =
∫ min(t1,t2)

0
e A(t1−s)Bw B>

w e A>(t2−s)d s

Thus, given some set S ⊆Rsn , the following holds:

P(ζ̃(s; x) ∈ S) =
∫

S
N (d z|µζ̃s,x

,Σζ̃s,x
) (6.11)

Proof. Application of the expectation and covariance operators to the solution of linear
SDE (6.1) (see [80, pp. 96]).

Lemma 6.5.1. Consider a function h :Rn → [0,1] with n ∈N>0 defined by:

h(x) =
∫

S(x)
N (d z| f (x),Σ)

where Σ is a covariance matrix, S(x) ⊆Rm with m ∈N>0 is linear on x and convex for all
x ∈Rn , and f :Rn →Rm is an affine function. The function h(x) is log-concave on x.

Proof. See Appendix 6.B.

In what follows we transform the probabilities involved in (6.7) to set-membership
ones P(ζ̃s,x ∈ S(x)), where S(x) is a polytope, but neither necessarily convex nor linear on
x. Afterwards, we break them down to simpler ones and employ some convex relaxations,
such that the set of integration of the resulting Gaussian integrals is convex and linear
on x and Lemma 6.5.1 is enabled. Finally, we end up with optimization problems of
log-concave functions over the hyperrectangle R, and solve them to obtain lower and
upper bounds on the expressions in (6.7).

6.5.1. TRANSITION PROBABILITIES AS SET-MEMBERSHIP PROBABILITIES
For now, let us focus on transitions from any state (R,k) ∈Qimc \ qabs to any state (S , s) ∈
QR ×N[1,kmax] :

(max
x∈R

or) min
x∈R

P(ζ(s; x) ∈S ,τ(x) = s)

Later, in Section 6.5.4, we show how transitions to qabs can be treated similarly to the case
above. Moreover, remember that for s = 0 the above probability is trivially 0 (see Remark
6.3.2).
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Define the following hyperrectangle:

Φ(x) := {y ∈Rn :φ(y, x) ≤ 0} = {y ∈Rn : |y −x|∞ ≤ ε},

Note that Φ(x) is convex and linear on x: Φ(x) = Φ(0)+ {x}. Moreover, it is such that
ζ(t ; x) ∈Φ(x) ⇐⇒ φ(ζ(t ; x), x) ≤ 0. Thus, the following equivalences hold:

if s ∈N[1,kmax−1] : τ(x) = s ⇐⇒ ζ̃s,x ∈Φs−1(x)×Φ(x)

if s = kmax : τ(x) = s = kmax ⇐⇒ ζ̃kmax−1,x ∈Φkmax−1(x)

where, for brevity, in the case where s = 1 we have abusively denotedΦ0(x)×Φ(x) =Φ(x).
In words, when s 6= kmax, the intersampling time is s if and only if the state belongs to
Φ(x) at all checking times 1,2, . . . , s −1 and at time s it lies outside Φ(x). When s = kmax,
it suffices that the state belongs to Φ(x) at all checking times 1,2, . . . ,kmax −1. Thus, for
s ∈N[1,kmax−1]:

P(ζ(s; x) ∈S ,τ(x) = s) =P
(
ζ̃s,x ∈Φs−1(x)× (Φ(x)∩S )

)
=

∫
Φs−1(x)×(Φ(x)∩S )

N (d z|µζ̃s,x
,Σζ̃s,x

)
(6.12)

and for s = kmax:

P(ζ(kmax; x) ∈S ,τ(x) = kmax) =P
(
ζ̃kmax,x ∈Φkmax−1(x)×S

)
=

∫
Φkmax−1(x)×S

N (d z|µζ̃kmax,x
,Σζ̃kmax,x

)
(6.13)

In the following we combine (6.12) and (6.13) with some convex relaxations, to enable
Lemma 6.5.1 and obtain bounds on (maxx∈R and) minx∈R P(ζ(s; x) ∈S ,τ(x) = s) through
solving optimization problems with log-concave functions. In particular, observe that
µζ̃s,x

is already an affine function of x (see Proposition 6.5.1), thus satisfying one of the
two conditions of Lemma 6.5.1. Hence, our efforts focus on transforming the integration
sets in (6.12)-(6.13) such that they become linear on x and convex.

6.5.2. LOWER BOUNDS ON TRANSITION PROBABILITIES
Let us start by determining lower bounds on:

min
x∈R

P(ζ(s; x) ∈S ,τ(x) = s) (6.14)

The special case when s = kmax, which is given by (6.13), is simple. Observe that the
setΦkmax−1(x)×S is convex (sinceΦ(x) and S ∈QR are hyperrectangles) and linear on
x, as it can be written as:

Φkmax−1(x)×S =Φkmax−1(0)×S + [
In In . . . In 0n

]>
{x}

Thus, when s = kmax, the objective function P(ζ(s; x) ∈ S ,τ(x) = s) of minimization
problem (6.14) is log-concave (due to (6.13) and Lemma 6.5.1). The constraint set R is a
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(a) The set R is the dashed square on the left, S is the one on
the right, and Φ(x) is the one centered at x. For the given x on
the figure, Φ(x)∩S is non-convex. For different x ∈R the set
Φ(x)∩S has a different shape; thus, Φ(x)∩S is not linear on
x.

(b) The set
⋃

x∈R Φ(x), and consequently S \
⋃

x∈R Φ(x), does
not depend on x. The set S \

⋃
x∈R Φ(x) can be partitioned

into a finite number (minimum one, here) of hyperrectangles.

(c) The set S \
⋃

x∈R Φ(x) can be partitioned into a finite number (minimum two, here) of hyperrectangles.

Figure 6.2: The interplay between sets R, S ,Φ(x)∩S and S \
⋃

x∈RΦ(x).

hyperrectangle. Thus, the minimization problem attains its solution at one of the vertices
of R [81, pp. 343, Theorem 32.2]; we simply have to evaluate the objective function for
each of the vertices, to find the minimum.

When s 6= kmax, the set of integration in (6.12) is neither convex nor linear on x due to
Φ(x)∩S (see Figure 6.2a); thus, we cannot invoke Lemma 6.5.1 and there is no indication
that it is straightforward to compute (6.14). In this case, we resort to convex relaxations,
each of which yield a lower bound on (6.14) that can be computed easily. These are the
following:

Relaxation 1: Notice that Φ(x)∩S =S \Φ(x), for any x ∈R. Since Φ(x) ⊆⋃
x∈RΦ(x)

for all x, it follows that:

Φ(x)∩S =S \Φ(x) ⊇S \
⋃

x∈R

Φ(x)

For examples of S \
⋃

x∈RΦ(x) see Figures 6.2b and 6.2c. Observe that, since
⋃

x∈RΦ(x)
does not depend on x, the set S \

⋃
x∈RΦ(x) does not depend on x; it is a fixed set,
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in contrast to Φ(x)∩S . Moreover, since both S and
⋃

x∈RΦ(x) are hyperrectangles,
then S \

⋃
x∈RΦ(x) can always be partitioned into a finite number of hyperrectangles

S1, . . . ,Sr , where r ≤ n and r = 0 in the case where S \
⋃

x∈RΦ(x) is empty. Thus:

min
x∈R

∫
Φs−1(x)×(Φ(x)∩S )

N (d z|µζ̃s,x
,Σζ̃s,x

) ≥

min
x∈R

∫
Φs−1(x)×(S \

⋃
x∈RΦ(x))

N (d z|µζ̃s,x
,Σζ̃s,x

) ≥
r∑

i=1
min
x∈R

∫
Φs−1(x)×Si

N (d z|µζ̃s,x
,Σζ̃s,x

)

(6.15)

The integration setsΦs−1(x)×Si are convex and linear on x. Thus, in the last expression
of (6.15) we are dealing with log-concave objective functions, and the r minimization
problems attain their minimum at vertices of R. Hence, we easily solve the r minimization
problems to obtain a lower bound on (6.14).

Relaxation 2: Here, we employ the law of total probability to write:

P
(
ζ̃s,x ∈Φs−1(x)× (Φ(x)∩S )

)
=P

(
ζ̃s,x ∈Φs−1(x)×S

)
−P

(
ζ̃s,x ∈Φs−1(x)× (Φ(x)∩S )

)
which gives the following relationship:

min
x∈R

P
(
ζ̃s,x ∈Φs−1(x)× (Φ(x)∩S )

)
≥

min
x∈R

P
(
ζ̃s,x ∈Φs−1(x)×S

)
−max

x∈R
P
(
ζ̃s,x ∈Φs−1(x)× (Φ(x)∩S )

) (6.16)

The minimization problem in the right-hand side of (6.16) is similar to the ones discussed
before (log-concave objective function and hyperrectangle constraint set), and the mini-
mum can be computed easily. However, the setΦ(x)∩S not being linear on x makes the
maximization problem hard to solve. By employing thatΦ(x)∩S ⊆S ∩⋃

x∈RΦ(x), we
relax it by writing:

max
x∈R

P
(
ζ̃s,x ∈Φs−1(x)× (Φ(x)∩S )

)
≤ max

x∈R
P
(
ζ̃s,x ∈Φs−1(x)×

(
S ∩ ⋃

x∈R

Φ(x)
))

The set S ∩⋃
x∈RΦ(x) is a (possibly empty) hyperrectangle and does not depend on

x; thus, Φs−1(x)×
(
S ∩⋃

x∈RΦ(x)
)

is convex and linear on x. Hence, the maximization

problem in the right-hand side of the above equation is a convex program (log-concave
objective function over the convex constraint set R), and can be easily solved via regular
convex optimization techniques. By computing the exact minimum in the right-hand
side of (6.16) and an upper bound on the maximum-term as discussed here, we obtain a
lower bound on (6.14).

Relaxation 3: Continuing from (6.16), we propose a different relaxation for the max-
imization problem in the right-hand side of (6.16). Specifically, by employing Bayes’s
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rule:

max
x∈R

P
(
ζ̃s,x ∈Φs−1(x)× (Φ(x)∩S )

)
≤ max

x∈R
P
(
ζ̃s,x ∈Φs (x)|ζs,x ∈S

)
·max

x∈R
P(ζs,x ∈S )

(6.17)
The term max

x∈R
P(ζs,x ∈S ) can be computed exactly easily, as P(ζs,x ∈S ) is log-concave

on x. For the term max
x∈R

P
(
ζ̃s,x ∈Φs (x)|ζs,x ∈S

)
, we make use of the following bound:

Proposition 6.5.2. The following holds:

max
x∈R

P
(
ζ̃s,x ∈Φs (x)|ζs,x ∈S

)
≤ max

(x,v)∈R×S
P
(
ζ̃s,x ∈Φs (x)|ζs,x = v

)
(6.18)

Proof. The proof is the same as in [82, Lemma 2].

To compute the right-hand side of (6.18), we use the fact that the random variable
ξ= (ζ̃s,x |ζl ,x = v) is normally distributed:

Corollary 6.5.1 (to Proposition 6.5.1). Consider the random variable ξ = (ζ̃s,x |ζl ,x = v),
where l ∈N[0,s], and v ∈Rn . Then ξ∼N (µξ(x, v),Σξ), where:

µξ(x, v) = E(ζ̃s,x )−Σζ̃s,x ,ζl ,x
Σ−1
ζl ,x

(v −E(ζl ,x ))

Σξ =Σζ̃s,x
−Σζ̃s,x ,ζl ,x

Σ−1
ζl ,x
Σζl ,x ,ζ̃s,x

,

where Σζl ,x
= Cov(l , l ), Σζ̃s,x

, E(ζ̃s,x ) and E(ζl ,x ) are obtained from Proposition 6.5.1, and

Σζl ,x ,ζ̃s,x
=Σ>

ζ̃s,x ,ζl ,x
= [

Cov(l ,1) Cov(l ,2) . . . Cov(l , s)
]
.

Proof. Straightforward application of the well-known formula for conditional normal
distributions [83].

Thus, we have that:

max
(x,v)∈R×S

P
(
ζ̃s,x ∈Φs (x)|ζs,x = v

)
= max

(x,v)∈R×S

∫
Φs (x)

N (d z|µξ(x, v),Σξ)

Observe that µξ(x, v) is affine on the optimization variables (x, v), and Φs (x) is obviously
convex and linear on x. Thus, the objective function of the above maximization problem
is log-concave. Finally, since the set of constraints R ×S is convex, we deduce that
computing the right-hand side of (6.18) is a convex program. Combining (6.18) with
(6.17) and (6.16) yields an easily computable bound on (6.14).

Remark 6.5.1. Gaussian integrals over hyperrectangles are often encountered in fields such
as statistics and learning, and many algorithms exist for their numerical computation (e.g.,
Genz’s algorithm [84] or python’s scipy.stats.multivariate_normal [85]).
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6.5.3. UPPER BOUNDS ON TRANSITION PROBABILITIES
We proceed to computing upper bounds on:

max
x∈R

P(ζ(s; x) ∈S ,τ(x) = s) (6.19)

Again, the case where s = kmax is easy: it corresponds to a convex program, and (6.19)
is computed exactly. For the case where s 6= kmax, we employ a relaxation similar to
Relaxation 3 described in the previous. In particular, as in (6.16), we write:

max
x∈R

P
(
ζ̃s,x ∈Φs−1(x)× (Φ(x)∩S )

)
≤

max
x∈R

P
(
ζ̃s,x ∈Φs−1(x)×S

)
−min

x∈R
P
(
ζ̃s,x ∈Φs−1(x)× (Φ(x)∩S )

) (6.20)

The term max
x∈R

P
(
ζ̃s,x ∈Φs−1(x)×S

)
is computed easily, through convex optimization. For

the other term in the right-hand side of (6.20), we write as in (6.17):

min
x∈R

P
(
ζ̃s,x ∈Φs−1(x)× (Φ(x)∩S )

)
≥ min

x∈R
P
(
ζ̃s,x ∈Φs (x)|ζs,x ∈S

)
·min

x∈R
P(ζs,x ∈S )

(6.21)
Given the discussion of the previous section, it is clear that: a) min

x∈R
P(ζs,x ∈S ) is computed

exactly (by traversing the vertices of R), and b) a lower bound on min
x∈R

P
(
ζ̃s,x ∈Φs (x)|ζs,x ∈

S
)

is computed by employing Proposition 6.5.2 and Corollary 6.5.1, which yield log-

concave minimization over the polytope R×S .

6.5.4. TRANSITIONS TO qabs
According to the last two inequalities in (6.7), for transitions to qabs we are interested in:

(min
x∈R

or) max
x∈R

P(ζ(s; x) ∈ X ,τ(x) = s)

We focus on the maximization, as minimization follows identical steps. By the law of total
probability, we have:

max
x∈R

P(ζ(s; x) ∈ X ,τ(x) = s) ≤ max
x∈R

P(τ(x) = s)−min
x∈R

P(ζ(s; x) ∈ X ,τ(x) = s) (6.22)

Note that, since X is a hyperrectangle, the term minx∈R P(ζ(s; x) ∈ X ,τ(x) = s) can be
treated exactly as discussed in the previous sections (where X takes the place of S ).
Regarding P(τ(x) = s), we have the following two cases:

• s = kmax. In this case:
P(τ(x) = s) =P(ζ̃s,x ∈Φs−1(x))

Thus, maxx∈R P(τ(x) = s) = maxx∈R P(ζ̃s−1,x ∈ Φs−1(x)), which can be computed
easily (log-concave objective function and hyperrectangular constraint set).

• s 6= kmax. In this case, by the law of total probability:

P(τ(x) = s) =P(ζ̃s,x ∈Φs−1(x)×Φ(x)) =P(ζ̃s−1,x ∈Φs−1(x))−P(ζ̃s,x ∈Φs (x))
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where when s = 1 we have abusively denoted ζ̃0,x = x and Φ0(x) = x. Thus, we have:

max
x∈R

P(τ(x) = s) ≤ max
x∈R

P(ζ̃s−1,x ∈Φs−1(x))−min
x∈R

P(ζ̃s,x ∈Φs (x))

and both terms in the right-hand side can be computed easily as discussed in the
previous sections (log-concave objective functions and hyperrectangular constraint
sets).

Remark 6.5.2. To compute the transition probabilities, in several parts of the derivations,
we have exploited the fact that Φ(x) := {y ∈ Rn : φ(y, x) ≤ 0} is convex and linear on x,
as well as that it is a hyperrectangle, which are consequences of the particular form of
the triggering function φ(ζ(t ; x), x) = |ζ(t ; x)−x|∞−ε. To address more general triggering
functions, where Φ(x) is neither convex nor linear on x, one could derive hyperrectangular
approximations Φ̌(x) and Φ̂(x) of the setΦ(x), such that both of them are convex and linear
on x and Φ̌(x) ⊆Φ(x) ⊆ Φ̂(x) for all x ∈R. Nonetheless, this would introduce additional
conservativeness.

6.6. NUMERICAL EXAMPLES
We, now, demonstrate our theoretical results with a numerical example. Consider a
stochastic PETC system (6.1)-(6.2) with:

A =
[−4 3
−2 1

]
,B =

[
1
0

]
,K = [−2 3

]
,Bw =

[
2.5 0
0 2.5

]
and ε= 0.25, h = 0.006, kmax = 3. We are interested in analyzing the sampling behaviour
of the system for initial conditions in X = [−1.2,1.2]2. Following Remark 6.4.1, we parti-
tion Y = [−2,2]2 into 2500 equal rectangles, and construct the IMC as described in the
previous.

First, consider the multiplicative reward from Example 3 in Section 6.3.2 and a horizon
N = 5. Recall that, in this case, the expected reward expresses the probability that there is
no intersampling time s = kmax in the first 5 triggers. As dictated by Theorem 6.4.1, we
equip the IMC with rewards R,R, which are as follows for any q ∈Qimc:

R(q) =
{

0, if q = qabs or projN(q) = kmax

1, otherwise
, R(q) =

{
0, if projN(q) = kmax

1, otherwise

For all q0 ∈Qimc \ qabs, we calculate infπ∈ΠEq0
π [g

mul,N
(ω̃)] and supπ∈ΠEq0

π [g mul,N (ω̃)], by

employing the value iteration introduced in (6.37). The adversary that gives rise to each
bound is the so-called o-maximizing MDP and can be found easily (see [72] and [73]).

The obtained bounds for all q0 = (R,0) ∈QR × {0}, with R ⊂ [−1.2,1.2]2, are shown
in Figure 6.3. We only consider the case where the initial intersampling time s0 = 0,
as commented in Remark 6.3.13. From the obtained bounds, one can expect from the
system a high probability of sampling with intersampling time kmax. Thus, based on that
observation, an engineer who is to implement the PETC system, could decide to further
increase the maximum allowed intersampling time, in order to allow the system to sample
even less frequently.

3This is with no loss to generality, as s0 does not affect the evolution of the system: for different s0 and the same
realization of the Wiener process, the sample path evolves exactly the same.
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Figure 6.3: The blue and red lines are the computed lower and upper bounds, respectively, on the expected
multiplicative reward from Example 3 in Section 6.3.2 starting from any initial condition x0 ∈ Ri (initial
intersampling time is assumed s0 = 0), for all regions Ri ⊂ [−1.2,1.2]2 in the partition. The yellow (middle) line
is the statistical estimate of the expected reward for a random initial condition from each region.

Figure 6.4: Surface plot of the obtained lower and upper bounds on the expected multiplicative reward from
Example 3 in Section 6.3.2 for all regions Ri ⊂ [−2,2]2 in the partition (x-axis). The surface on the bottom is the
lower bound, the surface at the top is the upper bound, and the one in the middle is the statistical estimate of
the expected reward for a random initial condition from each region, as obtained from simulations.

Figure 6.3, also, shows the statistical estimate of the expected reward, as derived by
simulations. Specifically, for all q0 ∈ QR × {0} with R ⊂ [−1.2,1.2]2, we pick a random
initial condition y0 ∈ q0 and simulate 1000 sample paths, with a horizon of 5 triggers
(the simulation stops after the 5th trigger). Each sample path that does not generate any
intersampling time s = kmax is counted, and the total count is divided by 1000 to obtain a
statistical estimate of the true probability. Figure 6.3 shows that, as expected by Theorem
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Figure 6.5: The blue and red lines are lower and upper bounds, respectively, on the bounded-until probability
(6.23) starting from any initial condition x0 ∈Ri (initial intersampling time is assumed s0 = 0), for all regions
Ri ⊂ [−1.2,1.2]2. The yellow line (the one in the middle) is the statistical estimate of the probability for a
random initial condition from each region.

6.4.1, the statistical estimate is confined within the computed bounds. Finally, Figure
6.4 is a surface plot illustrating the obtained bounds and the statistical estimate for all
regions Ri ∈ [−2,2]2, supporting what is discussed in Remark 6.4.1: regions closer to the
boundary of the partition correspond to more conservative bounds.

Next, to demonstrate our results’ extension to PCTL, we derive bounds on the following
bounded-until probability:

P
y0
YN

(
∃i ∈N[0,5] s.t. projN(ω(i )) = kmax and ∀k ≤ i , ω(k) ∉ qabs

)
(6.23)

This is the probability that the state stays in Y until there is a trigger s = kmax, in a horizon
N = 5. Figure 6.5 shows the results.

Finally, for completeness, we calculate bounds on the expected average intersampling
time for N = 5, as introduced in Example 1, Section 6.3.2. Since we assume s0 = 0, which
implies that we are only interested in the average of the 5 subsequent triggers, we use
N in the denominator, instead of N +1. The results are illustrated in Figure 6.6. The
obtained bounds could be used to compare the average sampling performance of this
particular PETC design with some other implementation; e.g. it is evident that, on average,
it samples considerably more efficiently than a periodic implementation with period
h. Alternatively, they could be used to forecast the expected average occupation of the
communication channel.

6.7. CONCLUSION
In this chapter, we have computed bounds on metrics associated to the sampling be-
haviour of linear stochastic PETC systems, by constructing IMCs abstracting the sampling
behaviour and equipping them with suitable rewards. The metrics are expectations of
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Figure 6.6: The blue and red lines are lower and upper bounds on the expected average intersampling time
starting from any initial condition x0 ∈ Ri (initial intersampling time is assumed s0 = 0), for regions Ri ⊂
[−1.2,1.2]2. The yellow line (the one in the middle) is the statistical estimate of the expected average for a
random initial condition from each region.

functions of sequences of intersampling times and state measurements, that take the
form of cumulative, average or multiplicative rewards. Numerical examples have been
provided to demonstrate the effectiveness of the proposed framework in practice. Specif-
ically, for a given system, we have computed the expected average intersampling time
and the probability of triggering with the maximum allowed intersampling time, in a
finite horizon. Moreover, we have computed bounds on a bounded-until probability,
demonstrating extensibility of our approach to PCTL properties. Overall, the frame-
work presented here, enables the formal study of PETC’s sampling behaviour and the
assessment of its sampling (vs. control) performance.

6.A. TECHNICAL LEMMATA AND PROOF OF THEOREM 6.4.1
In this subsection, we first provide some technical lemmata, and then prove Theorem 6.4.1.
Let us introduce some notation and terminology. We constrain ourselves to Markovian
adversaries. The value of such adversaries depends only on the time-step i and the given
state q ∈ Qimc, i.e. π(i , q) = pi ,q ∈ Γq . From now on, we abusively write π(i , q, q ′) =
pi ,q (q ′), for any q ′ ∈ Qimc, to denote the transition probability from q to q ′ at time i ,
under adversaryπ. Moreover, for si , si+1 ∈N[0,kmax], xi ∈Rn , Xi+1 ⊆Rn , denote:

T ((Xi+1, si+1)|(xi , si )) :=Py0
YN

(ω(i +1) ∈ (Xi+1, si+1)|ω(i ) = (xi , si )) (6.24)

This notation is common in the literature of stochastic systems and T is often called
transition kernel. Let us abuse notation and write

∫
Q T (d y ′|y), for some y ∈Q, to denote∑

s′∈N[0,kmax]

∫
Rn T ((d x ′, s′)|y).

We proceed to stating the technical lemmata. The first one provides a relationship
indicating that the expected cumulative reward can be written as a value function defined
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via value iteration, which is a trivial extension of the value iteration in [72] to finite
horizons and time-varying adversaries. The second and third lemmata provide some
useful bounds, which are employed in the proof of Theorem 6.4.1.

Lemma 6.A.1. Given IMC Simc from (6.9), equipped with a reward function R : Qimc →
Rmax, any Markovian adversaryπ ∈Π and any q0 ∈Qimc, we have that:

Eπ[
N∑

j=i
γ j−i R(ω̃( j ))|ω̃(i ) = q0] =V π,i (q0) (6.25)

where for all q ∈Qimc and i ∈N[0,N−1]:

V π,N (q) = R(q) (6.26a)

V π,i (q) = R(q)+γ ∑
q ′∈Qimc

V π,i+1(q ′)π(i , q, q ′) (6.26b)

Similarly, for all y0 ∈Q:

E
P

y0
Y

[
N∑

j=i
γ j−i R(ω( j ))|ω(i ) = y0] =Vi (y0) (6.27)

where for all y ∈Q and i ∈N[0,N−1]:

VN (y) = R(y) (6.28a)

Vi (y) = R(y)+γ
∫

Q
Vi+1(y ′)T (d y ′|y) (6.28b)

Consequently, we have:

Eq0
π [g

cum,N
(ω̃)] = Eπ[

N∑
j=0

γ j R(ω̃( j ))|ω̃(0) = q0]

=V π,0(q0)

E
P

y0
Y

[gcum,N (ω)] = E
P

y0
Y

[
N∑

j=0
γ j R(ω( j ))|ω(0) = y0]

=V0(y0)

(6.29)

Proof. We prove (6.25) by induction. The proof of (6.27) is identical, and then (6.29) fol-
lows immediately. It obviously holds that V π,N (q0) = R(q0) = Eπ[

∑N
j=N γ

j−N R(ω̃( j ))|ω̃(N ) =
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q0] for all q0 ∈Qimc. Now, assume that (6.25) holds for some i ∈N[1,N ]. Then:

V π,i−1(q0) =
R(q0)+γ ∑

q ′∈Qimc

V π,i (q ′)π(i −1, q0, q ′) =

R(q0)+γ ∑
q ′∈Qimc

Eπ
[ N∑

j=i
γ j−i R(ω̃( j ))|ω̃(i ) = q ′

]
π(i −1, q0, q ′) =

R(q0)+Eπ
[ N∑

j=i
γ j−i+1R(ω̃( j ))|ω̃(i −1) = q0

]
=

Eπ
[

R(q0)+
N∑

j=i
γ j−i+1R(ω̃( j ))|ω̃(i −1) = q0

]
=

Eπ
[

R(q0)+γR(ω̃(i ))+γ2R(ω̃(i +1))+ . . . |ω̃(i −1) = q0

]
=

Eπ[
N∑

j=i−1
γ j−i+1R(ω̃( j ))|ω̃(i −1) = q0]

where:

• in the second equality we used the induction assumption that we made;

• in the third equality we put γ inside the expectation, and we used the law of total
expectation;

• and in the fourth equality we put R(q0) inside the expectation.

Thus (6.25) is proven by induction, and the proof is completed.

Lemma 6.A.2. Given any adversaryπ ∈Π, for all y ∈Rn ×N[1,kmax] and for all i ∈N[1,N ]:

V π,i (qabs) ≤Vi (y) (6.30)

Proof. From Lemma 6.A.1, we know that:

Vi (y) = EPy
Y

[
N∑

j=i
γ j−i R(ω( j ))|ω(i ) = y]

V π,i (qabs) = Eπ[
N∑

j=i
γ j−i R(ω̃( j ))|ω̃(i ) = qabs] =

N∑
j=i

γ j−i R(qabs) =
N∑

j=i
γ j−i min

(x,s)∈Rn×N[1,kmax]

R(x, s)

(6.31)
where in the second equation, the second equality comes from the fact that qabs is
absorbing for anyπ ∈Π and the third equality comes from (6.10).

From Remark 6.3.2, since y ∈ Rn ×N[1,kmax] we can deduce that for all j ∈ N[i ,N ] we
have:

PYN (ω( j ) ∈Rn ×N[1,kmax]|ω(i ) = y) = 1

Thus, we have:
min

(x,s)∈Rn×N[1,kmax]

R(x, s) ≤ R(ω( j )), for all j ∈N[i ,N ] a.s. (6.32)
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where a.s. means “almost surely". By combining the above equation with (6.31), equation
(6.30) follows.

Lemma 6.A.3. Given any adversaryπ ∈Π and any y ∈Q:

V π,i (qabs)
∫

qabs

T (d y ′|y) ≤
∫

qabs

Vi (y ′)T (d y ′|y) (6.33)

Proof. We have that: ∫
qabs

Vi (y ′)T (d y ′|y) =∫
X×N[1,kmax]

Vi (y ′)T (d y ′|y)+
���������∫

X×{0}
Vi (y ′)T (d y ′|y) 0 ≥

V π,i (qabs)
∫

X×N[1,kmax]

T (d y ′|y) =

V π,i (qabs)
∫

X×N[1,kmax]

T (d y ′|y)+V π,i (qabs)
∫

X×{0}
T (d y ′|y)︸ ︷︷ ︸

0

=

V π,i (qabs)
∫

qabs

T (d y ′|y)

where for crossing out the term
∫

X×{0} Vi (y ′)T (d y ′|y) we used the fact that
∫

X×{0} T (d y ′|y) =
0 (due to what is discussed in Remark 6.3.2), and for the inequality we used Lemma
6.A.2.

Now, we are ready to prove Theorem 6.4.1:

Proof of Theorem 6.4.1. First, we prove the statement for cumulative rewards, and then
we show how the proof is adapted for average and multiplicative rewards. We focus on
the lower bound as the proof for the upper bound is similar. It suffices to show that there
exists an adversaryπ∗ ∈Π such that:

Eq0
π∗ [g

cum,N
(ω̃)] ≤ E

P
y0
Y

[gcum,N (ω)] (6.34)

By employing Lemma 6.A.1, specifically equation (6.29), to prove (6.34) it suffices to
prove that there exists aπ∗ ∈Π such that for any q0 ∈Qimc \ {qabs} and any y0 ∈ q0:

V π∗,0(q0) ≤V0(y0) (6.35)

Consider the following adversary for all q ∈Qimc, i ∈N[0,N−1]:

π∗(i , q, q ′) =



∫
q ′

T (d y ′|y∗
i (q)), if q 6= qabs

1, if q = q ′ = qabs,

0, otherwise

(6.36)
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where y∗
i (q) = argminy∈q Vi (y). Indeed π∗ ∈Π, since

∑
q ′∈Qimc

π∗(i , q, q ′) = 1 for all q ∈
Qimc, and from (6.7) and (6.24) it easily follows that P̌ (q, q ′) ≤π∗(i , q, q ′) ≤ P̂ (q, q ′)4.

Now, we are ready to prove (6.35), by induction. First, from (6.10) it is obvious that
V π,N (q0) ≤VN (y0) for any q0 ∈Qimc \ {qabs} and any y0 ∈ q0, since:

V π,N (q0) = R(q0) ≤ R(y0) =VN (y0)

Assume that V π,i (q0) ≤Vi (y0) for any q0 ∈Qimc \{qabs} and any y0 ∈ q0, for some i ∈N[1,N ].
Then:

V π,i−1(q0) =
R(q0)+γ ∑

q ′∈Qimc

V π,i (q ′)π(i −1, q0, q ′) =

R(q0)+γ ∑
q ′∈Qimc\{qabs}

V π,i (q ′)
∫

q ′
T (d y ′|y∗

i−1(q0))+γV π,i (qabs)
∫

qabs

T (d y ′|y∗
i−1(q0)) ≤

min
y∈q0

R(y)+γ ∑
q ′∈Qimc\{qabs}

min
y∈q ′ (Vi (y))

∫
q ′

T (d y ′|y∗
i−1(q0))+γV π,i (qabs)

∫
qabs

T (d y ′|y∗
i−1(q0)) ≤

min
y∈q0

R(y)+γ ∑
q ′∈Qimc\{qabs}

∫
q ′

Vi (y ′)T (d y ′|y∗
i−1(q0))+γ

∫
qabs

Vi (y ′)T (d y ′|y∗
i−1(q0)) ≤

R(y∗
i−1(q0))+γ ∑

q ′∈Qimc

∫
q ′

Vi (y ′)T (d y ′|y∗
i−1(q0)) =

R(y∗
i−1(q0))+γ

∫
Q

Vi (y ′)T (d y ′|y∗
i−1(q0)) =

Vi−1(y∗
i−1(q0)) = min

y∈q0
Vi−1(y)

where:

• in the first step we used (6.26); in the second step we used the definition (6.36) of
π∗;

• in the third step we used that R(q0) = miny∈q0 R(y) (from (6.10)) and that V π,i (q0) ≤
Vi (y0) for any q0 ∈Qimc \ {qabs} and any y0 ∈ q0 (from the induction assumption);

• in the fourth step we used that miny∈q ′ (Vi (y)) ≤ V (y ′) for all y ′ ∈ q ′, and the in-
equality given by Lemma 6.A.3;

• in the sixth step we used that
⋃

q ′∈qimc q ′ = Q, in the seventh step we used (6.28),
and in the last step we used that y∗

i−1(q0) = argminy∈q0
Vi−1(y).

Hence, since V π,i−1(q0) ≤ miny∈0 Vi−1(y), we have that (6.35) is proven by induction, thus
proving (6.34).

Only thing remaining is to explain how this proof generalizes to average and multi-
plicative rewards. The average reward is very simple, as it is just the time-average of a

4Adopting the transition-kernel notation, it can be written that for q ∈ Qimc \ {qabs}, P̌ (q, q ′) ≤
miny∈q

∫
q ′ T (d y ′|y), for any q ′ ∈Qimc. Similarly for P̂ . Indeed it follows that P̌ (q, q ′) ≤π∗(i , q, q ′) ≤ P̂ (q, q ′)
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cumulative reward with γ= 1: E[gavg,N (ω)] = 1
N+1 E[

∑N
0 R(ω(i ))]. Finally, for multiplicative

rewards, only thing that changes w.r.t. cumulative rewards is the value iteration, which
becomes:

V π,N (q) = R(q)

V π,i (q) = R(q) · ∑
q ′∈Qimc

V π,i+1(q ′)π(i , q, q ′) (6.37)

6.B. PROOF OF LEMMA 6.5.1
Proof of Lemma 6.5.1. This proof draws inspiration from the proof of [86, Proposition 2].
Let us first prove log-concavity of the following simpler case:

g (x) =
∫

S
N (d z|x,Σ)

with S ⊆Rn not dependent on x. Observe that:

g (x) =
∫

S−{x}
N (d z|0,Σ),

where S − {x} is still a convex set as a mere translation of S. Then, g (x) can be written as:

g (x) = P (S − {x}),

where P (·) is a probability measure over B(Rn) induced by the distribution N (0,Σ). Since
N (z|0,Σ) is log-concave, from [87, Theorem 2] we know that P is a log-concave measure,
meaning that for every pair of convex sets S1,S2 ⊆Rn and any λ ∈ (0,1):

P (λS1 + (1−λ)S2) ≥ (P (S1))λ(P (S2))1−λ (6.38)

Moreover, for any x1, x2 ∈Rn and any λ ∈ (0,1) we have:

λ(S − {x1})+ (1−λ)(S − {x2}) =
{λ(y −x1) : y ∈ S}+ {(1−λ)(w −x1) : w ∈ S} =

{λ(y −x1)+ (1−λ)(w −x1) : y, w ∈ S} =
{λy + (1−λ)w −λx1 − (1−λ)x2 : y, w ∈ S} =

{λy + (1−λ)w : y, w ∈ S}−λ{x1}− (1−λ){x2} =
S −λ{x1}− (1−λ){x2}

(6.39)

where the last equality is because v =λy + (1−λ)w is a convex combination of any two
points y, w ∈ S and S is convex5.

5Since S is convex, then for any two y, w ∈ S and any λ ∈ (0,1) we have that v = λy + (1−λ)w ∈ S. Thus, for a
given λ, {λy + (1−λ)w : y, w ∈ S} ⊆ S. But, also, S = {λy + (1−λ)y ∈ S : y ∈ S} ⊆ {λy + (1−λ)w : y, w ∈ S}. Thus, it
has to be S = {λy + (1−λ)w : y, w ∈ S}.
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Finally, for any x1, x2 ∈Rn and any λ ∈ (0,1) we have:

g (λx1 + (1−λ)x2) =
P

(
S −λ{x1}+ (1−λ){x2}

)
=

P
(
λ(S − {x1})+ (1−λ)(S − {x2})

)
≥(

P (S − {x1})
)λ(

P (S − {x2})
)(1−λ) =

(g (x1))λ(g (x2))1−λ

where in the second equality we used (6.39) and for the inequality we used (6.38). Thus, it
follows that g (x) is log-concave.

For the general case, since S(x) ⊆Rm is linear on x and convex, then it can be written
as S(x) = S′+ {Gx}, where S′ ⊆Rm is convex and G ∈Rm×n . Thus we have:

h(x) =
∫

S(x)
N (d z| f (x),Σ) =

∫
S′+{Gx}

N (d z| f (x),Σ) =
∫

S′
N (d z| f (x)−Gx,Σ)

= g ( f (x)−Gx)

where g (x) = ∫
S′ N (d z|x,Σ). The function h(x) = g ( f (x)−Gx) is log-concave as the

composition of the log-concave function g (x) with the affine function f (x)−Gx.

6.C. LEBESGUE SAMPLING AND PRACTICAL MEAN-SQUARE STA-
BILITY

In this section, we show that under mild assumptions, with the right choice of the checking
period h, stochastic PETC system (6.1)-(6.2) can be rendered practically mean-square sta-
ble. To the author’s knowledge, the proof that Lebesgue sampling can guarantee practical
mean-square stability for linear stochastic systems with non-vanishing noise is missing
from the related literature [14]–[17]. Apart from anything else, all these works assume
dynamics with vanishing noise. Nonetheless, the proof is inspired by the techniques
introduced in [17, Theorem 1], although there are significant modifications.

6.C.1. PRELIMINARY NOTIONS
First, let us introduce some auxiliary mathematical definitions and results. In the follow-
ing, given a square matrix A, tr(A) denotes its trace.

Definition 6.C.1 (Class-K , Class-K∞ [63, Definition 4.2]). A continuous function α :
[0, a) → [0,+∞) is said to belong to class-K if it is strictly increasing and α(0) = 0. It is said
to belong to class-K∞ if a =+∞ and lim

r→+∞α(r ) =+∞.

Definition 6.C.2 (Class-K L , [63, Definition 4.3]). A continuous function β : [0, a)×
[0,+∞) → [0,+∞) is said to belong to class-K L if, for each fixed s, the mapping β(r, s)
belongs to class-K w.r.t. r , and, for each fixed r , the mapping β(r, s) is decreasing w.r.t. s
and lim

s→+∞β(r, s) = 0.
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Definition 6.C.3 (Mean-Square Practical Stability [88, Definition 2.1]). Consider a stochas-
tic system:

dζ(t ) = f (ζ(t ), t )d t + g (ζ(t ), t )dW (t ) (6.40)

where W is an nw -dimensional Wiener process on an associated complete filtered proba-
bility space (Ω,F , {Ft }t≥0,P), f :Rn ×R≥0 →Rn and g :Rn ×R≥0 →Rn×nw . The system is
called practically mean-square stable if there exist a class-K L function β and a constant
d > 0, such that:

E[|ζ(t )|2] ≤β
(
E[|ζ(0)|2], t

)
+d

Definition 6.C.4 (Infinitesimal Generator L , [89] and [90, Definition 7.3.1 and Theorem
7.3.3]). Consider the Itô diffusion (6.40). Given any function V : Rn ×R≥0 → R, which is
twice differentiable on the first argument and differentiable on the second argument, the
infinitesimal generator L is defined by:

L V (x, t ) = ∂V (x, t )

∂t
+ ∂V >(x, t )

∂x
f (x, t )+ 1

2
tr

(
g>(x, t )

∂2V (x, t )

∂x2 g (x, t )
)

Theorem 6.C.1 ([88, Theorem 1, modified]). Consider the Itô diffusion (6.40). Suppose
that there exist a convex class-K∞ function α : R→ R, a class-K∞ function α : R→ R,
a non-negative function α : R→ R, a constant c ≥ 0, and a non-negative function V :
Rn ×R≥0 →R, which is twice differentiable on the first argument and differentiable on the
second argument, such that:

α(|x|2) ≤V (x, t ) ≤α(|x|2), ∀x ∈Rn (6.41)

E[L V (ζ(t ), t )] ≤−E[α(|ζ(t )|)]+ c, ∀t ≥ 0 (6.42)

where lim
|x|→∞

α(|x|)
α(|x|2)

> 0. Then, the system (6.40) is practically mean-square stable.

6.C.2. PRACTICAL MEAN-SQUARE STABILITY OF STOCHASTIC PETC WITH

LEBESGUE SAMPLING
Let us write the linear stochastic PETC system (6.1)-(6.2) in an alternative form, by incor-
porating the measurement error ε(t ) as an exogenous time-varying input:

dζ(t ) = (A−BK )ζ(t )d t +BK ε(t )d t +Bw dW (t )

ε(t ) = ζ(ti )−ζ(t ), t ∈ [ti , ti+1)

ti+1 = ti +min
{

kmaxh,min
{

kh : k ∈N,φ
(
ζ(kh;ζ(ti )),ε(t )

)
> 0

}} (6.43)

For the remaining, let us denote by si
k := ti +kh, i.e. si

k is the k-th checking time after

sampling instant ti , where k ∈N. Whenever we use the notation si
k , it is always suggested

that ti ≤ si
k ≤ ti+1. That is, si

k is a time instant in the intersampling interval [ti , ti+1].
Moreover, we introduce the following assumptions:

Assumption 6.C.1. We assume the following:

• Lebesgue sampling: φ(ζ(t ; x),ε(t )) = |ε(t )|−ε, where ε> 0 is a predefined constant.
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• The gain K is selected such that there exists a symmetric positive-definite matrix
P ∈Rn×n for which:

P (A−BK )+ (A−BK )>P +PBK K >B>P ¹−In , (6.44)

Such a pair of (K ,P ) always exists, if we assume that (A,B) is stabilizable (a reason-
able and mild assumption), because this would amount to solving an LQR problem
with Q = I and R−1 = K K >.

Before stating and proving the main result of this section, we prove a technical lemma:

Lemma 6.C.1. Consider the stochastic PETC system (6.43) and let Assumption 6.C.1 hold.
For any given i ,k ∈N, the following hold for all t ∈ [si

k , si
k+1):

E[−|ζ(t )|2|Fti ] ≤


0, if: |ζ(ti )| < 2ε

− 1

4
|ζ(ti )|2e−λ1h + |ζ(ti )|2

λ1
(1−e−λ1h), if: |ζ(ti )| ≥ 2ε

(6.45)

E[|ε(t )|2|Fti ] ≤ ε2e(1+λ2)h + |ζ(ti )|2 + tr(B>
w Bw )

1+λ2
(e(1+λ2)h −1) (6.46)

where:

λ1 = max
{
|λmin(−A>− A+BK K >B>)|, |λmax(−A>− A+BK K >B>)|

}
λ2 = max

{
|λmin(

1

2
G>G −BK −K >B>)|, |λmax(

1

2
G>G −BK −K >B>)|

}

and λmin(·),λmax(·) denote minimum and maximum eigenvalues, respectively, and G =
(A−BK )+ (A−BK )>.

Proof. First of all, since si
k , si

k+1 ∈ [ti , ti+1] and si
k < si

k+1, we know that the triggering

condition has not been violated at si
k and thus |ε(si

k )| ≤ ε. Let us start with proving (6.46).

We have that for all t ∈ [si
k , si

k+1):

L |ε(t )|2 =−ε>(t ) [(A−BK )+ (A−BK )>]︸ ︷︷ ︸
G

ζ(t )−ε>(t )(BK +K >B>)ε(t )+ tr(B>
w Bw )

≤ 1

2
|ζ(t )|2 +ε>(t )(

1

2
G>G −BK −K >B>)ε(t )+ tr(B>

w Bw )

≤ |ζ(ti )|2 + (1+λ2)|ε(t )|2 + tr(B>
w Bw ),

where for the equality we used that dε(t) =−dζ(t), for the first inequality we used that
−ε>(t )Gζ(t ) ≤ 1

2 |ζ(t )|2 + 1
2ε

>(t )G>Gε(t ), and for the third inequality we used that |ζ(t )|−
|ζ(ti )| ≤ |ε(t )| =⇒ |ζ(t )|2 ≤ 2|ζ(ti )|2 +2|ε(t )|2.

By Dynkin’s formula [90, Theorem 7.4.1], we have:

d

d t
E[|ε(t )|2|Fsi

k
] = E[L |ε(t )|2|Fsi

k
] ≤ |ζ(ti )|2 + (1+λ2)E[|ε(t )|2|Fsi

k
]+ tr(B>

w Bw ),
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where ζ(ti ) is known since we are working in the time interval t ∈ [si
k , si

k+1) ⊆ [ti , ti+1) (i.e.
ζ(ti ) is not a random variable). By applying the comparison lemma [63, pp. 102-103] to
the inequality above, we obtain:

E[|ε(t )|2|Fsi
k

] ≤ |ε(si
k )|2e(1+λ2)(t−si

k )+ |ζ(ti )|2 + tr(B>
w Bw )

1+λ2
(e(1+λ2)(t−si

k )−1), ∀t ∈ [si
k , si

k+1)

Since the function on the right-hand side is increasing w.r.t t , we can further extend this
inequality by substituting (t − si

k ) ← h. Finally, by using that |ε(si
k )| ≤ ε and applying the

expectation operator E[·|Fti ], we get (6.46).
Let us proceed to proving (6.45). The first inequality of (6.45) (i.e., the one when

|ζ(ti )| < 2ε) is trivial, since E[−|ζ(t)|2|Fti ] is by definition non-positive. Let us focus on
the second inequality of (6.45), i.e., on the case where |ζ(ti )| ≥ 2ε. Similarly to ε(t), we
obtain:

L (−|ζ(t )|2) =−ζ>(t )(A>+ A)ζ(t )−2ζ>(t )BK ζ(ti )− tr(B>
w Bw )

≤ ζ>(t )(−A>− A+BK K >B>)ζ(t )+|ζ(ti )|2 − tr(B>
w Bw )

≤λ1|ζ(t )|2 +|ζ(ti )|2,

where for the first inequality we used the fact that −2ζ>(t )BK ζ(ti ) = 2(−ζ>(t )BK )ζ(ti ) ≤
ζ>(t )BK K >B>ζ(t )+|ζ(ti )|2, and we also used that −tr(B>

w Bw ) is always negative. Again,
by Dynkin’s formula, we obtain:

d

d t
E[−|ζ(t )|2|Fsi

k
] = E[L −|ζ(t )|2|Fsi

k
] ≤−λ1E[−|ζ(t )|2|Fsi

k
]+|ζ(ti )|2

By the comparison lemma (and the same argument regarding substituting (t − si
k ) ← h),

we get:

E[−|ζ(t )|2|Fsi
k

] ≤−|ζ(si
k )|2e−λ1h + |ζ(ti )|2

λ1
(1−e−λ1h)

Since |ζ(ti )| ≥ 2ε, we obtain: |ε(si
k )| ≤ ε =⇒ −|ζ(si

k )| + |ζ(ti )| ≤ ε ≤ 1
2‖ζ(ti )| =⇒

−|ζ(si
k )|2 ≤ − 1

4 |ζ(ti )|2. By incorporating this to the above inequality, we get the second
inequality of (6.45).

We are ready to state and prove this section’s main result, i.e. that with the right choice
of h the stochastic PETC system can be rendered practically mean-square stable under
Lebesgue sampling:

Theorem 6.C.2. Consider the stochastic PETC system (6.43) and let Assumption 6.C.1 hold.
Let γ ∈ (0,1) and choose h > 0 such that:6

γ
(
− 1

4
e−λ1h + 1

λ1
(1−e−λ1h)

)
+ 1

1+λ2
(e(1+λ2)h −1) ≤ 0

The stochastic PETC system (6.43) is practically mean-square stable.

6We can always find such an h, since γ
(
− 1

4 e−λ1h + 1
λ1

(1− e−λ1h )
)
+ 1

1+λ2
(e(1+λ2)h −1) is negative for h = 0

and it is strictly increasing.
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Proof. We make use of Theorem 6.C.1. Consider the non-negative function V :Rn×R≥0 →
R, such that V (x, t ) = x>P x, which is indeed twice-differentiable on its first argument and
differentiable on its second.

First, it is obvious that (6.41) holds with α(|x|) =λmin(P )|x|2 and α(|x|) =λmax(P )|x|2.
Moreover, for L V (ζ(t ), t ) we have:

L V (ζ(t ), t ) = ζ>(t )(P (A−BK )+ (A−BK )>P )ζ(t )+2ζ>(t )PBK ε(t )+ tr(B>
w PBw )

≤ ζ>(t )(P (A−BK )+ (A−BK )>P +PBK K >B>P )ζ(t )+|ε(t )|2 + tr(B>
w PBw )

≤−|ζ(t )|2 +|ε(t )|2 + tr(B>
w PBw ), ∀t ≥ 0

(6.47)
where the first inequality comes from the fact that 2ζ>(t )PBK ε(t ) ≤ ζ>(t )PBK K >B>Pζ(t )+
|ε(t )|2 and the second inequality comes from Assumption 6.C.1. We want to prove that, for
a properly designed period h = si

k+1 − si
k , (6.42) holds for all t ∈ [si

k , si
k+1) and any i ,k ∈N.

For any t ∈ [si
k , si

k+1) and any i ,k ∈N, from (6.47) we obtain:

E[L V (ζ(t ), t )|Fti ] ≤−E[|ζ(t )|2|Fti ]+E[|ε(t )|2|Fti ]+ tr(B>
w PBw )

Case 1, |ζ(ti )| ≥ 2ε: Consider any γ ∈ (0,1). In this case, from (6.45) and (6.46) we have:

E[L V (ζ(t ), t )|Fti ] ≤ (−1+γ)E(|ζ(t )|2|Fti )+γE[−|ζ(t )|2|Fti ]+E[|ε(t )|2|Fti ]+ tr(B>
w PBw )

≤ (−1+γ)E[|ζ(t )|2|Fti ]+
+|ζ(ti )|2

[
γ
(
− 1

4
e−λ1h + 1

λ1
(1−e−λ1h)

)
+ 1

1+λ2
(e(1+λ2)h −1)

]
︸ ︷︷ ︸

≤0

+

+ε2e(1+λ2)h + tr(B>
w Bw )

1+λ2
(e(1+λ2)h −1)+ tr(B>

w PBw )︸ ︷︷ ︸
c1

≤ (−1+γ)E[|ζ(t )|2|Fti ]+ c1

Case 2, |ζ(ti )| < 2ε: Consider any γ ∈ (0,1). In this case, from (6.46) we have:

E[L V (ζ(t ), t )|Fti ] ≤ (−1+γ)E[|ζ(t )|2|Fti ]+γE[−|ζ(t )|2|Fti ]+E[|ε(t )|2|Fti ]+ tr(B>
w PBw )

≤ (−1+γ)E[|ζ(t )|2|Fti ]+

+ε2e(1+λ2)h + 4ε2 + tr(B>
w Bw )

1+λ2
(e(1+λ2)h −1)+ tr(B>

w PBw )︸ ︷︷ ︸
c2

≤ (−1+γ)E[|ζ(t )|2|Fti ]+ c2

where we used that: a) γE[−|ζ(t)|2|Fti ] is always negative and neglected it from the
right-hand side, and b) that |ζ(ti )| < 2ε.

Observe that c2 = c1+ 4ε2

1+λ2
(e(1+λ2)h −1) ≥ c1. Thus, from both cases 1 and 2, we obtain

that for all t ∈ [si
k , si

k+1):

E[L V (ζ(t ), t )|Fti ] ≤ (−1+γ)E[|ζ(t )|2|Fti ]+ c2
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Finally, by noticing that the above inequality holds for any interval [si
k , si

k+1), and by
applying the expectation operator E[·], we obtain:

E[L V (ζ(t ), t )] ≤ (−1+γ)E[|ζ(t )|2]+ c2, ∀t ≥ 0

Thus, (6.42) is satisfied with α(|ζ(t)|) = (1−γ)|ζ(t)|2, which is class-K∞. Finally, it is
obvious that lim

|x|→∞
α(|x|)
α(|x|2)

= 1−γ
λmax(P ) > 0. The proof is complete.





7
CONCLUSIONS AND

RECOMMENDATIONS FOR FUTURE

RESEARCH

This chapter concludes the dissertation, summarizes the main contributions along with
their practical implications, discusses limitations and suggests directions for future re-
search.
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7.1. GENERAL CONCLUSION
This dissertation started with a quote: “An ounce of action is worth a ton of theory". This
quote can be interpreted in two ways, which are certainly intertwined. The first and
obvious way is that a tiny bit of action might be more valuable than a big amount of
theory; this often proves true in sciences, as, sometimes, it takes only an observation or
an experiment to start a whole theory. Arguably, this is how the whole field of ETC started,
with the experimental study in [5]. The second way, in the author’s opinion, suggests that
it often takes a lot of theoretical work to arrive to (even a bit of) action. This is definitely
the case for the field of control in general, but also for the field of ETC, in particular. More
than two decades of predominantly theoretical research, and, still, ETC has not been
adopted widely in practice.

In the introduction, we discussed how there is still critical knowledge missing, specifi-
cally, regarding ETC’s sampling behaviour and predictions thereof. We argued about the
(practical) implications that unravelling ETC’s sampling behaviour can have, by bringing
forth three different contexts: self-triggered control, traffic scheduling, and formal assess-
ment of the sampling behaviour. This dissertation has studied the sampling behaviour
of ETC in all three aforementioned contexts, aiming to contribute some missing pieces
in that theoretical gap, such that widespread adoption of ETC in practice comes (a bit)
closer.

7.2. CONTRIBUTIONS, LIMITATIONS AND FURTHER RESEARCH
In what follows, we discuss practical implications of this work’s contributions, we point
out its limitations and suggest future research directions.

CHAPTERS 3 AND 4: REGION-BASED SELF-TRIGGERED CONTROL
The region-based STC scheme that has been developed in Chapters 3 and 4, by providing
a generic framework to incorporate different performance specifications (by emulating
different triggering conditions) and a way to trade off sampling performance and online
computational load, arguably constitutes a generally practical proposal for implemen-
tation of STC in practice. The engineer, to implement STC, mainly has to decide on the
desired specification and specify a corresponding triggering function (which can be done
by going through the literature of ETC). Moreover, computational load and sampling
performance are tuned easily and intuitively, by simply tuning the number of regions.

Nevertheless, there are certain limitations and a lot of room for further research:

• In both Chapters 3 and 4 only static state-feedback has been studied. Extensions to
dynamic output-feedback have to be made, in order to facilitate practical imple-
mentations of region-based STC. One possible way to do this is to incorporate the
controller’s and observer’s dynamics into the system description (2.8).

• There are even more general types of triggering conditions that have to be ad-
dressed:

– First, dynamic triggering conditions, originally introduced in [8], have been
established as a very efficient proposal for stabilization purposes. In fact, a
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very recent work [91] demonstrated that dynamic STC has the potential of
significantly reducing the sampling frequency of STC. Thus, the extension of
region-based STC to dynamic triggering conditions has to be studied. Let us
recall the dynamic triggering condition proposed in [8]:

ti+1 = ti + inf
{

t > 0 : −η(t )−σ2 ·
(
σ1β1(ζ(t ))−β2(ε(t ))

)
≥ 0

}
,

where σi ∈ (0,1) and βi ∈K∞. Thus, the triggering function to be considered
is:

φ(ζ(t ),ε(t ),η(t )) =−η(t )−σ2 ·
(
σ1β1(ζ(t ))−β2(ε(t ))

)
. (7.1)

To emulate such a triggering function, with the proposed scheme, the dy-
namic variable η can be included as a part of the state of the system, and

the extended state-vector reads as ξ=
(
ζ> η> ε>

ζ
ε>η

)>
, where εη is the

dummy measurement error corresponding to η, with dynamics ε̇η = 0.

– Triggering conditions that address complex specifications, such as signal
temporal logic tasks [92], should also be studied.

• The cases where (approximations of) IMs exhibit singularities have to be thoroughly
studied, to gain further insight on their shapes and properties. Moreover, we
have assumed the origin to be the only equilibrium in Chapters 3 and 4, because
this is typical in many ETC studies. However, we have not (directly) invoked this
assumption in any of our proofs, so it might not be needed. This needs a more
careful study.

• As mentioned in Chapter 3, isochronous manifolds are inherent in any system with
an output. Applications of approximations of isochronous manifolds outside the
context of ETC and STC could, then, be explored.

CHAPTER 5: ABSTRACTIONS OF NONLINEAR ETC SYSTEMS FOR TRAFFIC

SCHEDULING
Having constructed traffic abstractions of general nonlinear ETC systems with distur-
bances or uncertainties, we extended the applicability of versatile abstraction-based
scheduling of ETC traffic to a considerably wider class of systems. However, there are a
few things that have to be addressed:

• The constructed abstractions suffer from the curse of dimensionality: the size
of the abstraction’s state set scales exponentially with the system’s dimensions.
A potential way to introduce scalability is to use IM-based partitioning, without
partitioning via cones, as in Chapters 3 and 4 (and similar to [41] for linear systems).
However, as already argued in Chapter 5, the resulting regions would be too large
for reachability-analysis purposes. Thus, this direction is not straightforward.

• Towards gaining complete control over the abstraction’s timing intervals, by gaining
control over the regions’ timing upper bounds as well, outer approximations of
isochronous manifolds could be explored, as commented in a footnote in Chapter 5.
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However, deriving outer approximations of IMs is not as simple as merely altering
the direction of inequality (3.10). For example, there is no straightforward way to
enforce that the obtained lower bound of the triggering function exhibits a zero-
crossing w.r.t. time (e.g., by enforcing monotonicity like what was done with the
lower bound).

• Experimental results showcasing abstraction-based scheduling in networks of non-
linear ETC systems are the natural next step to the work presented in Chapter
5. These results are expected to demonstrate how conservative (or not) the con-
structed abstractions are for scheduling purposes and if there is a need for further
improvement.

• The constructed abstractions could be employed for assessing the sampling per-
formance of nonlinear ETC systems, similar to what has been done in [43]. Note,
however, that extending certain results from [43], which studies linear PETC sys-
tems, to nonlinear systems is not straightforward.

CHAPTER 6: FORMAL ANALYSIS OF THE SAMPLING BEHAVIOUR OF STOCHAS-
TIC PETC
The developments of Chapter 6 enable the formal assessment of the sampling (vs. control)
performance and behaviour of stochastic PETC systems, through the computation of
bounds on associated metrics. Employing these results, an engineer, who has to imple-
ment an ETC system, obtains knowledge on how frequently the system is expected to
communicate, what sampling time patterns are the most probable to arise, what is the
achieved trade off between sampling frequency and some control performance metric,
etc. Nonetheless, there is still plenty of room for further research:

• Like the abstractions created in Chapter 5, the IMCs constructed in Chapter 6 suffer
from the curse of dimensionality. Thus, more scalable solutions have to be explored.

• Extending the developed method to more general classes of systems, both in terms
of nominal system dynamics and in terms of the way noise affects them, is a natural
next step. For that, comparison theorems such as [93] could be used, to bound
a nonlinear SDE with linear ones (similar to what we did in Chapters 3 and 4, to
bound the evolution of the triggering function), and then apply the methodol-
ogy developed in Chapter 6. An alternative way to approach the problem is by
approximating the nonlinear SDE with Gaussian processes [94].

• The constructed IMCs can be endowed with controllable actions (in the spirit of
what is done for non-stochastic ETC systems in [39] or [41]), becoming interval
Markov decision processes, such that they are employed for traffic scheduling with
probabilistic guarantees (e.g., minimizing the probability of packet collisions).

Finally, it is worth noting that incorporating the developments of Chapter 6 to the
Python toolbox ETCetera [47] has not been finalized yet. The code that automates the
developments of Chapter 6 and reproduces its results will be made publicly available
through the release of the next version of ETCetera.
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