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 A B S T R A C T

One of the limitations of ride-sharing is that matched drivers and riders need to have similar 
itineraries and desired arrival times for ride-sharing to be competitive against other transport 
modes. By allowing a single transfer at a designated transfer hub, their itineraries need to 
be only partially similar, and therefore more matching options are created. In this paper, we 
develop an optimal matching approach that matches riders to drivers, taking into account 
multi-modal routing options to model competition and collaboration between multiple modes of 
transport. We allow for transfers between modes and between multiple drivers. We model this 
as a path-based integer programming problem and we develop a simulated annealing algorithm 
to efficiently solve realistic large-scale instances of the problem.

Our analysis indicates that a single transfer hub can reduce significantly the average 
generalized cost of riders and the total vehicle hours traveled by creating efficient matches. As 
opposed to previous studies, our work shows that ride-sharing not only attracts former public 
transport users but also former private car users. By allowing for intermodal transfers and by 
choosing the cost parameters such that transfers are favorable, itineraries where commuters use 
their car first, before sharing a ride on the second part of their journey, becomes an appealing 
alternative. Multi-modal ride-matching with transfers has the potential to increase ride-sharing, 
reduce the number of vehicle hours traveled in private cars, and reduce the number of cars 
that are present in urban areas during peak hours of congestion.

1. Introduction

Transport is one of the main sources of CO2 emissions and possibly the source individual commuters have the most direct 
influence on. Ride-matching, also known as carpooling or ride-sharing, as an alternative to traveling alone by car is known to 
reduce CO2 emissions and traffic congestion in large-scale networks (Alisoltani et al., 2021). Thereby, it is expected to reduce car 
ownership in the long term. Nevertheless, while ride-sharing (not to be confused with ride-hailing which is like a taxi service) is 
considered a feasible solution to fight congestion and car ownership, its market share remains small with average car occupancy in 
the US being only 1.5 in 2019 (U.S. Department of Energy (DOE), 2022).

One of the reasons that current carpooling systems are not successful is the lack of a central operator who can match riders 
in a multi-modal system with different itineraries in a reliable and efficient way for all parties involved. An important operational 
limitation of direct ride-sharing is that a pairing of drivers and riders needs to be found with matchable itineraries. This means 
that a driver needs to be able to pick up and drop off the matched rider without deviating too much from their original route. In 
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addition to this, desired arrival times of the rider and the driver need to be similar. Dissimilar matches increase the costs of drivers 
and riders, such that ride-sharing is no longer competitive with private or public transport.

A potential solution for this is to allow riders to transfer between drivers and between multiple modes of transportation. In this 
work, we consider the possibility of a single transfer, since more than one transfer makes ride-sharing a less appealing alternative. 
By allowing transfers, a larger set of potential matches is available for drivers and riders since the itineraries only need to be 
partially similar, as they spend only a part of their trip together. Transfers may also promote family carpooling at least for part of 
their journey. As families share their origin but do not necessarily share their destination, they can spend the first part of their trip 
together before one of them transfers. According to Li et al. (2007), family carpooling makes up nearly 75% of all carpools.

The framework presented in this paper has the potential to enhance commuter mobility and improve the accessibility of transport 
networks. Consequently, a platform capable of facilitating the matching of riders and drivers in a multi-modal system could prove 
compelling for cities, public transport organizations, or private entities. Cities may find value in investing in such a platform 
as it aligns with their objective of enhancing the mobility of residents. For public transport operators, a multi-modal platform 
could be advantageous for more effectively integrating their services by providing first or last-mile connections to other modes of 
transportation. Private organizations may also find this platform appealing, whether through advertising within the application or 
by charging a nominal fee for their matching services.

1.1. State of the art

In ride-sharing, individual commuters share a ride for a part of their journey, which reduces the time a driver is traveling 
with a partially empty vehicle. Teal (1987) provides an early definition of carpooling and distinguishes between different types 
of carpoolers. Shaheen and Cohen (2019) give an overview of the various shared-ride services that exist in the modern day. The 
two most important ones are ride-sharing (also known as carpooling, where commuters that have a predefined trip purpose share 
a ride) and ride-hailing (also known as ride-sourcing, which is more similar to a taxi service). Whereas studies have shown that 
ride-hailing generally leads to an increase in congestion (Beojone and Geroliminis, 2021; Schaller, 2021), ride-sharing generally 
reduces congestion by increasing vehicle occupancy and thereby reducing the number of vehicles on the road (Caulfield, 2009; 
Gurumurthy et al., 2019; de Palma et al., 2022a). Ride-sharing may lead to environmental and societal benefits but brings forth 
many optimization challenges. For a review of those challenges, the reader is referred to Agatz et al. (2012).

One of the most important challenges is the matching of drivers and riders. The literature has focused on finding optimal 
matchings (Özkan and Ward, 2020; de Palma et al., 2022a,b) as well as stable matchings (Wang et al., 2018; Yan et al., 2021). 
In a stable matching, no rider and driver can improve their current situation by matching with each other. Matching problems can 
be classified as static or dynamic problems. In static problems, all information on possible drivers and riders is known in advance. 
In dynamic problems, information is made available gradually and the matching is made partially based on the available drivers 
and riders. In this work, we consider a static setting, where the complete set of potential drivers and riders is known in advance, 
but uncertainty exists about the travel times.

The matching problem can be extended to include transfers between various vehicles. Herbawi and Weber (2012b) model the 
ride-matching problem with transfers and time windows and use a genetic algorithm to solve this problem. Masoud and Jayakrishnan 
(2017a) consider multi-hop ride-matching where a driver can carry multiple riders and riders can join multiple drivers. Various 
alternatives solution approaches to the multi-hop ride-sharing have been considered, such as a chromosome-based approach (Cheikh 
and Hammadi, 2016), a station-first algorithm (Xu et al., 2020), and a genetic algorithm (Herbawi and Weber, 2012a). Huang et al. 
(2018) include carpooling in the trip planning of commuters next to public transport. Commuters are allowed to transfer between 
drivers or between modes. Lu et al. (2020) consider ride-sharing with transfers in short-notice evacuations such as during natural 
or man-made disasters. Ride-sharing with transfers carries many similarities with multi-stage crowd-shipping. In that case, packages 
are transported by drivers rather than riders, and these may also be transferred from one driver to another (Raviv and Tenzer, 2018; 
Chen et al., 2018, 2019; Li et al., 2024). Despite the similarities, we note that riders and packages are very different due to their 
perceived inconvenience from transfers and waiting time.

In the literature, carpooling has been modeled both as a competitor of public transport (Li et al., 2021) or as a complement to 
public transport (Kong et al., 2020). The former considers public transport as an alternative mode of transport (de Palma et al., 
2022a,b). In this case, carpooling can reduce public transport users and therefore has negative societal effects. The latter considers 
public transport as a feeder to carpooling or carpooling as a feeder to public transport (Masoud et al., 2017; Ma et al., 2019; Kumar 
and Khani, 2021). In that case, the two services may help to improve each other and form a competitive alternative against private 
car usage. In this work, we consider both alternatives simultaneously to properly consider the interaction of the two transport 
modes when riders are allowed to make transfers. Integrated on-demand mobility systems such as ride-sharing and vehicle-sharing 
have previously been considered in an integrated framework with other modes of transportation by Stiglic et al. (2018) and Enzi 
et al. (2024). Whereas (Stiglic et al., 2018) only consider ride-sharing as a feeder to public transit, we allow transfers to and from 
ride-sharing and even between two ride-sharing vehicles. Enzi et al. (2024) consider a vehicle sharing system for business trips, 
rather than a ride-sharing framework which is considered in this work.  Chen et al. (2024) provide a synthesis of collaboration in 
multi-modal shared mobility systems.

Multi-modality is becoming more common for first- and last-mile transportation. Xu et al. (2024) consider a multi-modal 
hub-based system that combines ride-sourcing with public transit. Lee et al. (2024) assess the resilience of such a multi-modal 
system under disruptions. Yan et al. (2024) consider a neural-network-based approach to enhance recommendations in multi-modal 
2 
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Fig. 1. Graphic illustration of transfers. Colors represent individual commuters. The lower-left half of a circle represents the driver and the upper-right half 
represents the rider. If drivers are not matched to a rider, the full circle is colored by the driver or rider.

transport. Liu et al. (2024) integrate ride-sharing into a multi-modal traffic model and Tang et al. (2024) consider the partitioning 
of a multi-modal transportation network using such traffic models, in this case through a 3D macroscopic fundamental diagram. 

In this paper, we consider a multi-modal ride-matching problem. Riders are matched to drivers with the goal of minimizing the 
total costs associated with the commute of riders. For this, we consider their travel time, with mode-dependent cost parameters. 
Additional mode-dependent costs may also be considered, such as parking and fuel costs for private car usage and public transport 
fares. Thereby, we consider penalties for waiting at transfer points and schedule delay penalties for early and late arrivals at the 
final destination. We consider the schedule delay structure for commuters as defined previously by Vickrey (1963) and Small (1982) 
and used in a carpooling framework by de Palma et al. (2022b).

1.2. Contribution and organization of the paper

In this paper, we consider a ride-matching framework with inter and intra-modal transfers. In our framework, riders are able to 
match with multiple drivers sequentially and drivers are able to match with multiple riders both sequentially and simultaneously 
if the capacity of their car allows. Riders can transfer between modes or drivers at designated transfer hubs as depicted in Fig.  1. 
Transfer hubs have connections to public transport services and offer parking opportunities for riders that use their own car to reach 
the transfer hub. We model the multi-modal ride-matching problem with transfers as a path-based integer programming problem. 
We develop a heuristic algorithm based on simulated annealing to solve realistic large-scale instances efficiently. We summarize the 
main contributions of this paper below:

• We develop a framework for multi-modal transport of riders that considers public transport, solo driving, and ride-sharing. The 
uniqueness of this framework lies in the explicit modeling of the matches between riders and drivers, as well as the scheduling 
preferences and the transfers between modes and between drivers.

• We derive theoretical optimality conditions for the matching as well as the departure times. These optimality conditions allow 
for more efficient cost computations and dominance properties, which improve the overall computational performance of the 
developed methodology.

• We formulate the multi-modal ride-matching problems with multiple transfer hubs as a path-based integer programming 
problem  and we develop a Simulated Annealing (SA) algorithm for large-scale instances. The construction of neighborhood 
solutions is tailored to the path-based formulation to enhance computational efficiency.

The rest of this paper is organized as follows. Section 2 provides a formulation and a description of the multi-modal ride-
matching problem with transfers, which is formulated as an integer linear programming problem. In Section 3 we describe our 
solution approach. We develop a simulated annealing algorithm that exploits the difference between capacitated and uncapacitated 
modes to reduce the search space. The results are discussed in Section 4, where we evaluate the performance of our method and the 
effect of a multi-modal system with transfers on a toy network and a larger realistic case study based on the city of Chicago. The 
paper is concluded in Section 5. A notational glossary (Table  3), proofs of theorems, remarks, and details on the cost definitions are 
relegated to the Appendix.
3 
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2. Problem description and formulation

In this section, we describe the multi-modal ride-matching problem. We provide the modeling assumptions and the mathematical 
formulation in Section 2.1. We describe the way the costs and parameters are computed in Section 2.2 and describe the departure 
time choices of riders and drivers in Section 2.3.

2.1. Assumptions and mathematical formulation

The matching approach is based on a set of predefined rider paths. We consider a static setting in the sense that all drivers and 
riders submit their trip details in advance. Let  be the set of riders,   the set of drivers, and  the set of transfer hubs. The set of 
riders can be split into two subsets 𝑐 and 𝑛𝑐 according to car ownership. Those in 𝑐 own a car which they may use if they are 
not matched to a driver, whereas those in 𝑛𝑐 do not own a car and will therefore take public transport if they are not matched to 
a driver. Although the number of possible matches can get large, it is still polynomial in the number of riders, drivers, and transfer 
hubs. Note that, if the number of transfers is not limited to one, the number of potential matches would increase exponentially in 
the number of transfer hubs. Given that the possible number of matches for riders is polynomial, we generate all possible paths in 
advance. We let the drivers set the departure times, such that the costs of rider paths are independent and such that the cost of a 
path is independent of the total matching which allows us to determine the costs à-priori. The problem then reduces to selecting 
the optimal set of rider paths, taking into account that drivers may carry multiple riders both sequentially and simultaneously, as 
long as their paths are compatible and the capacity of the car is not exceeded.

Relaxing the assumption on a single transfer would lead to an exponential number of paths. This has been considered by Stokkink 
et al. (2024) for a crowd-shipping system where parcels can be transferred between couriers. A similar approach as the one 
by Stokkink et al. (2024), using column and row generation, can be taken for the ride-matching problem with transfers. The results 
of Stokkink et al. (2024) indicate the limited benefits of allowing for more than one transfer. In our case, we deal with people rather 
than parcels. Drivers and riders are less flexible in terms of additional travel and/or waiting time and their inconvenience perceived 
by making transfers. Due to these aspects, we have chosen to restrict the number of transfers to a maximum of one transfer per 
rider. This has also been quantified by Olszewski and Krukowski (2012) and Sil et al. (2022), who study the discomfort of transfers 
in public transport and inter-modal transport systems, respectively.  Masoud and Jayakrishnan (2017b) and Hou et al. (2012) show 
in a multi-hop ride-sharing framework, that even when allowing for more than one transfer, this is not frequently used.

The model is based on the following set of assumptions:
(A1) Travel times are exogenous and time-independent and there is no congestion.
(A2) Drivers determine their departure time that minimizes their own costs. If matched, a rider must agree to the departure time 

of the driver.
(A3) The matching is determined by a central operator but drivers and riders only accept the match if their costs are lower than 

that of their solo-travel alternatives. The objective of the central operator is to minimize the costs of all riders.
(A4) (a) Drivers can only perform a pickup in their departure zone or at a transfer hub and only perform a drop-off at a transfer 

hub or in their arrival zone.
(b) Riders can only be picked up in their departure zone or at a transfer hub and only be dropped off at a transfer hub or 

in their arrival zone.
(A5) Drivers can reach a transfer hub as long as their detour is at most 𝜏 time units (riders have no such constraint, as long as 

their costs are minimized)
Here, Assumption (A1) is required for the formulation to hold, whereas Assumptions (A2)–(A5) can be relaxed without significantly 
influencing the formulation and the solution framework. For Assumptions (A2)–(A5), we consider that they add efficiency to the 
system and make the operational platform more appealing and acceptable to riders and drivers. In Assumption (A4) we use the 
concept of a departure and arrival zone. A departure (arrival) zone is a region within which a driver can pick up (drop off) a 
rider without a significant detour that is within reasonable proximity from their exact origin (destination). In practice, this can be 
interpreted as a block of houses, a census tract, or even a community within a city. According to Assumption (A4), drivers only stop 
outside their departure or arrival zones at transfer hubs.

Every individual has an origin 𝑜𝑖, a destination 𝑑𝑖 and a desired arrival time 𝑡∗𝑖 . Let  be the set of rider paths and let binary 
parameters 𝑒𝑖𝑘 = 1 if rider path 𝑘 corresponds to rider 𝑖, and 0 otherwise. Binary parameters 𝑎𝑗𝑘 = 1 if driver 𝑗 contributes to rider 
path 𝑘, and 0 otherwise. The cost of rider path 𝑘 is denoted by 𝑐𝑘. Our model aims to minimize the total costs of riders and does 
not account for the costs of drivers. Since they determine the departure time, they do not incur any additional scheduling delay 
costs by sharing a ride. Other than that, drivers are assumed to be fully compensated for the inconvenience of sharing their car 
with others and the minor detour that may be involved with picking up and dropping off passengers. The design of compensation 
schemes for drivers is outside the scope of this work. Let decision variable 𝑥𝑘 = 1 if rider path 𝑘 is chosen and 0 otherwise. Let 𝑞𝑗
be the capacity of the car of driver 𝑗, that is, the maximum number of riders driver 𝑗 is able to transport at the same time. We let 
the driver only perform pickups at their own origin or the transfer hub and only perform drop-offs at their own destination or the 
transfer hub. We distinguish between direct trips that take a rider directly from their origin to their destination, and indirect trips 
that pass through a transfer hub. This means we can identify the following three types of trips, for which the binary parameter 𝑎𝑗𝑘
is adapted to denote the trip type and the transfer hub that is used.
4 
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• Direct trip: 𝑎0𝑗𝑘 = 1 if driver 𝑗 contributes to rider path 𝑘 through a direct trip.
• First leg of indirect trip: 𝑎1ℎ𝑗𝑘 = 1 if driver 𝑗 contributes to rider path 𝑘 through a first-leg trip to transfer hub ℎ.
• Second leg of indirect trip: 𝑎2ℎ𝑗𝑘 = 1 if driver 𝑗 contributes to rider path 𝑘 through a second-leg trip from transfer hub ℎ.

We use decision variable 𝑦𝑗ℎ to define through which transfer hub driver 𝑗 is going. Similar to ride-sharing paths, public transport 
paths and paths where riders use their own private car have a corresponding cost 𝑐𝑘. Since no driver is involved in these paths all 
𝑎𝑙𝑗𝑘 parameters are equal to 0. For a multi-modal path where one leg is a ride-sharing leg, only the corresponding 𝑎𝑙𝑗𝑘 is 1, and the 
others all remain zero. We formulate the matching problem as follows:

(𝐏𝟏) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑

𝑘∈
𝑐𝑘𝑥𝑘 (1a)

such that
∑

𝑘∈
𝑒𝑖𝑘𝑥𝑘 = 1 ∀𝑖 ∈  (1b)

∑

𝑘∈
𝑎0𝑗𝑘𝑥𝑘 ≤ 𝑞𝑗

(

1 −
∑

ℎ∈
𝑦𝑗ℎ

)

∀𝑗 ∈  (1c)

∑

𝑘∈
𝑎1ℎ𝑗𝑘𝑥𝑘 ≤ 𝑞𝑗𝑦𝑗ℎ ∀𝑗 ∈  , ℎ ∈  (1d)

∑

𝑘∈
𝑎2ℎ𝑗𝑘𝑥𝑘 ≤ 𝑞𝑗𝑦𝑗ℎ ∀𝑗 ∈  , ℎ ∈  (1e)

∑

ℎ∈
𝑦𝑗ℎ ≤ 1 ∀𝑗 ∈  (1f)

𝑥𝑘 ∈ {0, 1} ∀𝑘 ∈  (1g)

𝑦𝑗ℎ ∈ {0, 1} ∀𝑗 ∈  , ℎ ∈  (1h)

The objective (1a) is to minimize the cost of all matches. Every rider needs to be matched to exactly one driver, which is enforced 
by Constraints (1b). Feasibility of the solution from the perspective of a driver is enforced through Constraints (1c)–(1e). Drivers 
serve as a shared resource among riders, meaning their availability to one rider depends on whether they are already matched with 
another. This dependency is explicitly accounted for in these constraints. The feasibility of the solution from the perspective of a 
rider is enforced directly on the set of paths . That is, the set  only contains paths that are feasible for a rider. On every leg, a 
driver 𝑗 ∈   may have at most 𝑞𝑗 riders in his/her car, which is enforced jointly by Constraints (1c), (1d) and (1e). A driver may 
either serve riders directly from his/her origin to his/her destination or through a transfer hub, but not both. This means that when 
a driver 𝑗 makes an indirect trip, he/she can carry 𝑞𝑗 riders on the first leg and 𝑞𝑗 riders on the second leg. The set of riders on both 
legs may be partially similar, but it is possible that a driver carries 2𝑞𝑗 unique passengers on his/her full trip. Constraints (1f) ensure 
that a driver only makes a stop at one hub. These constraints also ensure that the first and second legs of a driver are compatible. 
That is, the first leg ends at the same transfer hub as the second leg starts.

A feasible solution to this problem always exists as long as every rider has access to public transport. As public transport capacity 
is unlimited, every rider will have a corresponding public transport path. A situation where public transport is unavailable or highly 
undesirable can be modeled by assigning an arbitrarily high cost to the corresponding path. The solution in which every rider uses 
public transport as a direct path between their origin and destination is then always feasible. The optimal solution obtained by 
solving P1 is not necessarily unique, as multiple solutions may lead to the same objective value. 

According to Proposition  1, the set of paths  can be reduced by removing strictly dominated paths. A dominated path is a 
path where, by replacing one or multiple legs with a solo leg (either public transport or solo driving), the cost can be reduced. By 
reducing the number of paths in , the computation time to solve P1 can be reduced.

Proposition 1 (Strictly Dominated Paths). Consider a rider 𝑖 ∈  and a path 𝑘1 ∈ . Let path 𝑘2 ∈  of rider 𝑖 be a copy of path 𝑘1 where 
one or multiple legs are replaced by direct or indirect legs where the rider travels alone (either by car or public transport). If 𝑐𝑘2 < 𝑐𝑘1 , then 
path 𝑘1 is strictly dominated by path 𝑘2 and can therefore be omitted from .

2.2. Computation of costs and parameter values

In this subsection, we describe the costs and parameters of all rider paths. We distinguish between direct paths and indirect paths 
that go through a transfer hub. We consider three potential modes for riders: solo driving (SD) for those riders that own a private 
car, public transport (PT), and ride-sharing (RS). Each mode can be used as a direct path, or a combination of two modes can form 
an indirect path. Given that solo driving is not possible as a second-leg mode after public transport or ride-sharing (because they 
left their car at home) we have 7 potential mode choice combinations for indirect paths.

We consider the following cost components and the corresponding parameters. The value of time spent in transport may differ 
depending on the mode of transport. Therefore, we consider 𝛼𝑆𝐷, 𝛼𝑃𝑇 , and 𝛼𝑅𝑆 , representing the value of time for solo driving, 
public transport and ride-sharing, respectively. Every mode also has an associated fixed (access) cost (𝜓𝑆𝐷, 𝜓𝑃𝑇 , and 𝜓𝑅𝑆 ) and a 
5 



P. Stokkink et al. Transportation Research Part C 179 (2025) 105274 
Fig. 2. Example of cost for direct modes (PT = Public transport, SD = Solo Driving) and travel times. Costs of ride-sharing (RS) are given for multiple values 
of the schedule delay costs, changing the intercept of the function.

variable cost per unit of time spent in that mode (𝜙𝑆𝐷, 𝜙𝑃𝑇 , and 𝜙𝑅𝑆 ). In the case of indirect modes, the fixed costs are scaled by a 
factor 𝑓 < 1, reflecting the general reduction in access costs when coordinating transfers. To incorporate schedule delay preferences, 
we consider 𝛽 the penalty for every unit of time an individual is early, and 𝛾 the penalty for every unit of time an individual is late. 
Waiting time is penalized by 𝛼wait. Travel time between 𝑜 and 𝑑 is defined as 𝑡𝑡(𝑜, 𝑑). We highlight that for the sake of notation, these 
parameters are all homogeneous. However, the formulation allows for fully heterogeneous parameter values among all individuals. 
In the latter, we use linear functions of earliness, lateness, and waiting time with respect to time. The computation of the cost 
provided in Appendix  B can be generalized to non-linear cost functions without changing the problem formulation in P1. Schedule 
delay penalties for commuters are incorporated in a way that is consistent with Small (1982) and Arnott et al. (1993) and has been 
previously used in a ride-sharing framework by de Palma et al. (2022b).

The generalized costs consist of in-vehicle costs depending on the mode, possible physical costs such as fuel or a public transport 
ticket, waiting penalties, and schedule delay penalties. The exact cost formulation depends on the specific type of path and the 
departure time choice. When driving themselves, riders can leave at any time 𝑡. For the sake of tractability, we consider a set of 
discrete time intervals 𝑡 ∈   at which a rider can leave. The optimal departure times of carpooling drivers are also mapped to the 
closest discrete time interval 𝑡 ∈  . Drivers as well as riders that are using their own cars determine their departure time in advance. 
A detailed description of departure time choices is provided in Section 2.3. For completeness, the exact cost definitions for each 
type of path are given in Appendix  B.

The generalized costs depend heavily on the chosen mode and the total time spent in that mode. Clearly, the fixed (entry) costs 
and the variable costs per unit of travel time may differ for each mode. An example of the cost for different direct modes and travel 
times is given in Fig.  2. The access costs of public transport are relatively low (i.e., the cost associated with reaching the closest bus 
stop or train station), and costs go up relatively fast given the high value of time of users in public transport and the relatively high 
fares. In contrast, the utilization of a private car stands in opposition to this. The fixed costs of this are relatively high (i.e., costs for 
parking) but the costs go up slower because the value of time in a private car is generally lower and fuel costs are typically lower 
than public transport fares. Based on this, we observe that for shorter trips it is typically favorable to use public transport, whereas 
for longer trips it is typically favorable to take the car.

In Fig.  2 the fixed costs associated with ride-sharing are those associated with scheduling delay penalties. This may move the 
yellow curve up and down (indicated by the dotted lines), based on the difference between the desired arrival time of the driver 
and the rider. The value of time spent ride-sharing is typically somewhat between that of public transport and solo driving. Whether 
ride-sharing is the cheapest alternative therefore depends on the travel time, as well as how good the match is that can be found 
in terms of desired arrival time. A sensitivity analysis on the fixed and variable cost components of these modes is performed in 
Section 4.2.3. Clearly, specific parameter settings may eliminate certain modes completely. For example, if the fixed and variable 
costs of public transport are both higher than those of solo driving, public transport will not be used. This explains why users with 
specific features or living in specific areas are unlikely to use certain modes. Given the absence of spatial and socio-demographic 
data of user preferences in these specific modes, including segmented user groups, is outside the scope of this work, but is marked 
as an interesting direction of future research. The path-based structure of the mathematical model allows for efficient incorporation 
of user-specific parameters, without changing the general structure of the model.

For the indirect modes that are considered in this paper, the costs are a linear combination of the direct costs displayed in Fig. 
2 depending on the times spent in each mode. For this, we also note that as parking costs can be reduced (or completely free) at 
park-and-ride spots, this may reduce the fixed part of solo driving when it is combined with another mode.

We note that in the computation of the costs, we only considered the costs of the riders. The reason for this is that due to 
the inflexibility of the drivers concerning departure time, drivers do not incur any extra scheduling delay costs with a rider. We 
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can neglect the payment of riders to drivers since these are direct money transfers and therefore do not change the solution of 
the optimization problem. For example, riders that save a percentage of their (expected) costs can share it with the driver. The 
compensation schemes are outside the scope of this paper but deserve future research attention.

2.3. Departure time choice

In this work, we assume that drivers choose their departure time such that they minimize their own generalized cost. The reason 
for this is that coordination of departure times in a complex system where riders match with multiple drivers and drivers match with 
multiple riders is difficult both theoretically and in practice. However, there are some special cases for which the departure times 
can be determined optimally. In this section, we discuss those special cases and the jointly optimal departure times of matches.

Without transfers, the optimal departure time has a closed form solution. Consider a direct match where a single driver takes a 
group of riders directly from their origin to their destination. In case lateness is penalized heavier than earliness, the jointly optimal 
departure time is the minimal departure time of all matched individuals, as formally given in Theorem  1 (the proof is relegated to 
Appendix  C). In this case, everyone is either on-time or early and no one is late. Every rider is matched to at most one driver and 
therefore the problem can be decomposed over the groups of riders and driver that share a ride altogether. The optimal departure 
time can be determined independently for every group.

Theorem 1 (Optimal Departure Time for a Single Leg).  Let all riders and the driver have identical origins and destinations. Let a driver with 
desired arrival time 𝑡∗0 be matched to 𝑁 riders with desired arrival times 𝑡∗1 … 𝑡∗𝑁 . With max(𝛽0, 𝛽1,… 𝛽𝑁 ) < min(𝛾0, 𝛾1,… 𝛾𝑁 ), the jointly 
optimal departure time is equal to 𝑡𝑜 = min(𝑡∗0 ,… , 𝑡∗𝑁 ).

With a transfer, the problem complexifies as more coordination is required. Consider a set of riders with identical destinations 𝑑
that make a transfer at the transfer hub ℎ ∈ . Also, consider a driver with an identical destination as the riders that only performs 
a ride-sharing trip between the same hub ℎ and destination 𝑑. According to Theorem  2, the jointly optimal departure time on the 
second leg is a function of the arrival time of riders at the second leg, as well as the minimal desired arrival time. According to 
Theorem  3, the optimal departure on the first leg for a driver that takes one rider on the first leg and another rider on the second 
leg depends on the desired arrival time of all three individuals. The optimal departure time on the first leg also depends on the 
rider on the second leg, although they are not directly involved.

Theorem 2 (Optimal Departure Time for a Second Leg Trip).  Consider 𝑁 riders 𝑘1,… 𝑘𝑁  from origins 𝑜𝑘1 ,… , 𝑜𝑘𝑁  who transfer at hub ℎ
to their identical destination 𝑑, and a driver 𝑖 from hub ℎ to the same destination 𝑑, with their desired arrival times 𝑡∗𝑘1 ,… 𝑡∗𝑘𝑁  and 𝑡∗𝑖 . Let 
all individuals have identical cost parameters 𝛼, 𝛼wait, 𝛽, 𝛾, with 𝛽 < 𝛾 and 𝛼wait < 𝛾. We let 𝑡1 be the last departure time for the first leg 
among all riders and the driver. The joint optimal departure time for the second leg 𝑡𝑜2 is a function of the departure time for the first leg 𝑡1
which is defined as follows: 

𝑡𝑜2(𝑡1) =

{

max(𝑡1,min(𝑡∗𝑖 , 𝑡
∗
𝑘1
,… , 𝑡∗𝑘𝑁 )) if 𝛼wait ≤ 𝛽

𝑡1 if 𝛼wait > 𝛽
(2)

Theorem 3 (Optimal Departure Time on First Leg).  Consider a driver 𝑖 from 𝑜 to 𝑑 passing through hub ℎ, one rider 𝑗 from 𝑜 to hub ℎ and 
one rider 𝑘 from hub ℎ to 𝑑, with their desired arrival times 𝑡∗𝑖 , 𝑡∗𝑗 , 𝑡∗𝑘. Let all individuals have identical cost parameters 𝛼, 𝛼wait, 𝛽, 𝛾, with 
𝛽 < 𝛼wait < 𝛾. The joint optimal departure time for the first leg 𝑡1◦ = min(𝑡∗𝑖 , 𝑡

∗
𝑗 , 𝑡

∗
𝑘). The joint optimal departure time of the second leg can 

then be determined according to Theorem  2.
The results of Theorems  2 and 3 also emphasize the difficulty of coordination in more complex matching systems. If the driver 

takes another group of riders on his first leg, coordination of departure times with this group influences the departure time of 
the second group. Similarly, these riders may be matched to a second driver after making a transfer, therefore also influencing 
his departure time and vice versa. For a large system where many drivers and riders are (indirectly) connected to each other, 
determining the jointly optimal departure time is a complex problem to solve and difficult to implement both theoretically and in 
practice. Therefore, in this work, we consider that the driver is in charge of determining the departure times. In current ride-sharing 
systems such as BlaBlaCar, the driver is also in charge of determining the departure time, and the rider is forced to adapt if they 
are matched.

3. Solution approach

Although small and medium-scale instances of the problem can be solved with a commercial solver, as the size of the problem 
increases the number of paths increases and with that, the construction and solving time also increase. To efficiently obtain high-
quality solutions we develop a heuristic algorithm based on Simulated Annealing (SA). SA is a probabilistic optimization method 
that aims to find a global optimum when multiple local optima exists. It uses the concept of temperature, where worse solutions are 
more likely to be accepted if the temparture is high. At each iteration, a random neighboring solution is selected. After evaluating 
its quality, the move is accepted according to a probability depending on the solution quality and current temperature. Accepting 
worse solutions allows for a more extensive search of the solution space. The temperature slowly decreases to zero as to only accept 
improvements in the final iterations. The techniques used in this algorithm were independently introduced by various authors, among 
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Fig. 3. Example of path deconstruction.

which Pincus (1970) and Kirkpatrick et al. (1983), and was first named Simulated Annealing in Kirkpatrick et al. (1983)1. This 
optimization algorithm has been shown to perform well for matching problems (Sasaki and Hajek, 1988; Bertsimas and Tsitsiklis, 
1993) and in ride-sharing frameworks (Jung et al., 2016; Yu et al., 2018).

Our algorithm builds on the difference between capacitated (i.e., ride-sharing) and uncapacitated modes (i.e., public and private 
transport) in our multi-modal framework. When ride-sharing is involved in a rider path, one rider path can influence the feasibility 
of another due to the capacity constraints in (1c)–(1f). On the other hand, the use of uncapacitated modes is always allowed and 
does not influence the feasibility of the solution through the capacity constraints. This allows us to construct a partial solution based 
only on the ride-sharing legs with the SA algorithm and extend this partial solution by locally optimizing the uncapacitated modes 
on the empty legs. That is, the empty legs of a partial solution are filled in by either public or private transport. As a consequence, 
during the execution of the SA algorithm, we only keep track of the transfer hub and driver(s) that every rider uses and we do not 
need to keep track of the uncapacitated modes explicitly.

The SA algorithm is initialized by a simple construction heuristic where every rider is assigned to their first-best direct path. 
That is, a rider is matched to the best available driver, takes public transport, or drives solo, depending on which option leads to 
the lowest cost. The initial solution is referred to as 𝑋0. We keep track of the best solution obtained, which we denote as 𝑋best. 
After initialization, 𝑋best ← 𝑋0. The objective of a solution 𝑋 is defined as 𝑜𝑏𝑗(𝑋) which is equivalent to the sum of the costs of 
all rider paths in 𝑋 as denoted in Eq.  (1a). In every iteration of the algorithm 𝑡, a neighborhood solution 𝑌𝑡 is obtained through a 
set of neighborhood moves. If 𝑜𝑏𝑗(𝑌𝑡) < 𝑜𝑏𝑗(𝑋𝑡), the neighborhood solution is an improvement to the current solution and therefore 
𝑋𝑡+1 ← 𝑌𝑡. If 𝑜𝑏𝑗(𝑌𝑡) > 𝑜𝑏𝑗(𝑋𝑡), the neighborhood solution is accepted with a probability 𝑒𝑥𝑝

(

𝑜𝑏𝑗(𝑋𝑡)−𝑜𝑏𝑗(𝑌𝑡)
𝑇

)

, such that 𝑋𝑡+1 ← 𝑌𝑡. If 
the solution is not accepted 𝑋𝑡+1 ← 𝑋𝑡. Here, 𝑇  denotes the temperature. The temperature 𝑇  is initialized at 𝑇0 and is decreased by 
a cooling rate 𝜌 in every iteration until the minimum temperature 𝑇𝑓  is reached. If the accepted solution 𝑋𝑡+1 is the best solution 
that has been obtained so far, we set 𝑋best ← 𝑋𝑡+1.

A neighboring solution is obtained by selecting a random rider and finding the best corresponding rider path. Possibly, the 
addition of this rider path will make other rider paths infeasible. We prioritize the new rider path and deconstruct other rider paths 
until the solution is feasible. Deconstruction is the removal of a ride-sharing leg that causes the violation of a constraint, which is 
then filled up by an uncapacitated (i.e., public or private transport) leg to ensure feasibility of the rider path. An example of such a 
deconstruction is given in Fig.  3. If the new rider path is added that uses the same driver that is already used but does not violate 
capacity or transfer hub constraints, no deconstruction is needed. If the new rider path is added that violates the capacity constraint 
of a driver, this driver is removed from the existing rider path. Similarly, if the addition of the new rider path leads to the violation 
of a transfer hub constraint (i.e., the involved driver has to perform a pickup at 𝐻1 and 𝐻2 simultaneously), the involved driver is 
removed from the existing rider path. In the existing rider path, the former driver is replaced by a solo leg (either public or private 
transport). Due to the absence of capacity constraints on solo legs, this replacement always leads to a feasible solution.

For every potential rider path, we obtain the new total cost after adding this path and possibly deconstructing other paths. The 
best potential rider path is selected as the next neighbor. The objective of the selected neighbor is compared to the previous objective 
and accepted according to the SA approach.

Identifying violations and deconstructing paths can be computationally costly. To improve the computational efficiency of the 
algorithm we make two observations: (1) We look for the single best potential rider path as a new neighbor, (2) As the best driver 
path is added for a specific rider, removing a driver from this path always increases the cost of the solution. That is, deconstruction 
mostly leads to an increase of the total cost of the solution. Using these observations, if a potential path without considering 
deconstruction is already outperformed by another potential path, the deconstruction is omitted and the potential path is ignored.

In practice, the algorithm shows to speed up in later iterations. As a better solution is obtained, more drivers are occupied and 
therefore less feasible alternatives are to be checked for every rider. Due to this, the first iterations are more time-consuming than 
the last. The algorithm is executed for a fixed number of iterations after which the best solution 𝑋best is returned.

1 The name is derived from annealing in metallurgy and material science. The technique involves controlled heating and cooling of a material to alter its 
physical properties.
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Fig. 4. Circular city with the distribution of origins (left) and destinations (right) and in red the index of the transfer hub. The size of the node shows the 
density of trips starting (left) and ending (right) in each node.

4. Results

4.1. Case study of toy network

We evaluate our model on a circular city consisting of 33 nodes, as depicted in Fig.  4. Every rider and driver has an origin and 
destination at one of the 33 nodes. Origins are more likely to be in the suburbs (the outer rings) whereas destinations are more likely 
to be in the city center. Transfer hubs can be at any of the nodes in the network. In our analysis, we use at most 9 hubs that are 
always added in the same order. The index of the hub is given in red in Fig.  4. Finding the optimal hubs is an interesting direction 
of future research, but is outside the scope of this work. Drivers can perform a pick-up or a drop-off at one of the transfer hubs, but 
only if their shortest path between origin and destination already passes through this hub. Drivers do not make any detours. We 
consider 500 drivers and 500 riders. Out of those riders, 75% own a car which they may use to drive themselves. Desired arrival 
times are drawn from a truncated normal distribution with a mean at 8:00 and a standard deviation of 1 h. The distribution is 
truncated such that we only allow desired arrival times between 7:00 and 9:00. Throughout this section, an indirect path with a 
transfer from mode 𝑚1 to mode 𝑚2 is denoted as 𝑚1 → 𝑚2, for ease of notation.

The parameter settings are homogeneous among the entire population and are defined as follows. The value of time spent in 
a car 𝛼car is equal to 6.4 [$∕h]. The value of time in public transport 𝛼pt is higher and is set equal to 12.0 [$∕h]. In addition to 
this, public transport has a fixed cost 𝜙pt of 2.0 per trip. Earliness and lateness are penalized with 𝛽 and 𝛾 equal to 3.9 [$∕h] and 
15.21 [$∕h] respectively, independently of the mode of transport. Waiting time is penalized by 𝛼wait which is equal to 13.5 [$∕h] such 
that 𝛽 < 𝛼car < 𝛼pt < 𝛼wait < 𝛾, consistent with the literature (Small, 1982). Fuel costs 𝜙fuel are equal to 4 [$∕h] and parking costs 
𝜙park are equal to 1.5$. The percentage of riders owning a car is set to 75%. In this case study, drivers only pass through transfer 
hubs if it does not increase their travel time (i.e., 𝜏 = 0).

A lower bound on the average cost per rider in the discrete formulation is found when all riders find their perfect match (i.e., when 
origins, destinations, and desired arrival times of drivers and riders are identical). In this case, they only incur travel costs 𝛼car. Given 
an average commuting time of 1 h and 15 min in the synthetic data, the lower bound is 7560𝛼car = 8$. On the other hand, an upper 
bound is found when all riders use public transport. In this case, they all incur travel costs 𝛼pt and the fixed cost 𝜙pt. Given an 
average commuting time of 1 h and 15 min in the synthetic data, the upper bound is 7560𝛼pt + 𝜙pt = 17$. We note that stronger 
bounds can be found by incorporating the portion of riders owning a car, by incorporating their private transport alternative.

All integer programming problems are implemented in Java with CPLEX version 12.6.3.0. All problems are solved to optimality 
and can be solved within a matter of seconds or minutes, depending on the exact problem configurations.

4.1.1. Influence of transfers on modal split, costs, and VHT
We consider the influence transfers make on the modal split, the average cost per individual, and the total Vehicle Hours Traveled 

(VHT). We vary the number of transfer hubs in the system between 0 and 9. The results are an average of 10 randomly simulated 
instances. The results are displayed in Fig.  5 where 5a displays the modal split of riders, 5b displays the average cost of riders, 
and 5c displays the VHT as a percentage of the VHT when ride-sharing is not available. Clearly, when there are no transfer hubs, 
the only possible mode choices are direct ride-sharing, solo driving, and public transport. By opening transfer hubs, a modal shift 
to the other modes is observed. Especially the number of riders ride-sharing on two separate legs and the number of riders using 
their own car on the first leg and ride-sharing on the second leg increases drastically. The reason for this is that by using a transfer, 
more options exist for matching to a driver with the same destination and a similar desired arrival time, at the cost of waiting at 
the transfer hub. The number of direct matches may be limited as the origin and destination of the rider and driver need to be 
identical and the desired arrival time needs to be relatively similar. Fig.  5c displays that the total VHT by riders in their private car 
significantly decreases by 30% when allowing transfers, which has a direct influence on emissions.

Fig.  5b displays how the costs change by opening transfer hubs. By using a single transfer hub in the center of the network, the 
average cost decreases from 12.80$ to 12.10$. Increasing the number of transfer hubs allows for a further decrease in the average 
cost, but not nearly as substantial as for the first hub in the center. When all 9 hubs are opened, the average cost decreases to 
11.70$. To put these numbers into the right perspective, we compare them to the lower and upper bounds defined in Section 4.1. 
The upper bound is strengthened by using the portion of riders that own a car. The upper bound is 14.00$ and the lower bound is 
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Fig. 5. Statistics for a varying number of hubs. VHT is given as a percentage of the VHT when ride-sharing is not available as a mode. SD = Solo Drive, PT = 
Public Transport, RS = Ride-Share.

Fig. 6. Change in mode choice for 1, 2, and 9 transfer hubs. The vertical axis displays the modes, horizontal axis displays the number of hubs. The size of a 
bubble (and the number inside that bubble) depicts the number of riders using that mode and the thickness of the lines depicts how many riders change from 
one mode to another when the number of hubs changes. SD = Solo Drive, PT = Public Transport, RS = Ride-Share.

8.00$. We see that when using 9 hubs, the improvement from the no ride-sharing upper bound is doubled compared to when zero 
hubs are used. Thereby, the objective is almost 20% closer to the lower bound of the cost compared to when zero hubs are used. 
We emphasize that this lower bound is only attained if every rider can find a perfect match. Therefore, attaining this lower bound 
is highly unlikely in realistic scenarios where the number of drivers is not infinitely large. For example, when the number of drivers 
is 2500 (5 drivers for every rider) the costs only decrease to 10.60$ (the purple line in Fig.  5b).

Note that as the number of private vehicles used decreases, it is expected to have a further decrease in travel times due to a 
decrease in congestion. We do not include this effect in our analysis as travel times are exogenous, but in reality, the system could 
create even higher social benefits.

Fig.  6 displays how the mode choice changes when the number of hubs changes. Although the majority of the mode choices 
remain the same, some significant movements can be observed. For example, riders that drove their own car without transfer hubs 
mostly change to ride-share on both legs or to use their own car on the first leg and ride-share on the second leg. Riders that used to 
take public transport without transfer hubs, change either to ride-share on both legs or on a single leg while using public transport 
on the other. Former ride-sharers may change to any of the modes, abandoning their direct ride. As an effect of these changes, we 
also observe some riders that used their own car or public transport move towards a direct ride-share and vice-versa.
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Fig. 7. Distribution of riders by desired arrival time and mode. SD = Solo Drive, PT = Public Transport, RS = Ride-Share.

4.1.2. Spatio-temporal distribution of riders
In this section, we evaluate the spatial–temporal distribution of riders. First, we classify riders by their desired arrival time and 

the mode they use to commute. The results are displayed in Fig.  7 where the left-hand panel displays the number of riders using 
every mode and the right-hand panel displays the proportion of riders using every mode (i.e., scaled by the number of riders with 
that desired arrival time). To obtain these results, 100 simulated instances have been used with 1 hub in the center and 4 on the 
second ring road (identified by 1–5 in Fig.  4).

It is clear that the proportion of riders traveling solo is the highest in the tails. The reason for this is that the number of potential 
matches with identical origins and destinations and similar desired arrival times is low since the number of individuals here is rather 
low. This effect is more apparent for riders with an early desired arrival time. When these riders match to a driver, it is highly likely 
that the desired arrival time of the driver is later than that of the rider, and therefore the rider will suffer from lateness. As lateness 
is penalized heavier than earliness, the effect is more apparent at the start of the morning commute than it is at the end. As the 
value of 𝛽 approaches the value of 𝛾 the distribution gets more symmetric. At the peak of the rush hour (i.e., around 8:00 when 
most commuters have their desired arrival time), the number of ride-sharers is the highest. We see a skewness towards later desired 
arrival times, which follows the same reasoning as stated before. By changing the number of hubs, the modal share of each mode 
changes as described in Section 4.2.1. The shape of the distribution on the other hand stays roughly the same while being shifted 
either up or down depending on the mode.

For a more detailed analysis of ride-sharing with transfers, we look at the portion of riders that share a ride with a transfer 
distributed by origin and destination. We consider a network with a single hub in the center of the network. The results are analyzed 
in more detail by disaggregating over both origin and destination. Given that the network is symmetric in all interior roads, we 
only distinguish between the four rings, but not the nodes on the ring. That is, the network can be rotated without changing the 
distribution. The results are shown in Fig.  8. Riders that share a ride at a transfer generally have an origin at one side of the transfer 
hub and a destination on the opposite side, approximately. The reason for this is that the detour imposed by the transfer hub is 
relatively small for those origin–destination combinations. Furthermore, we observe there is a higher concentration of origins and 
destinations closer to the center.

4.1.3. Heuristic versus exact approach
We evaluate the performance of the SA heuristic on the circular city case study, for which the exact solution can be obtained by 

CPLEX within a reasonable amount of time. We evaluate the performance based on the optimality gap (i.e., the difference between 
the objective value obtained by the heuristic and that obtained by the exact MILP solver), the computation time of both methods, 
and the number of variables in the MILP formulation. For the SA heuristic, the parameters are tuned to 𝑇0 = 3, 𝑇𝑓 = 0.001, 𝜌 = 0.999
and 50,000 iterations are used. The results are displayed in Table  1 for various numbers of drivers and riders, capacity of drivers, 
and number of hubs.

When the number of hubs is equal to zero (|𝐻| = 0) the problem reduces to a simple matching algorithm of matching riders to 
drivers, with public and private transport alternatives. In this case, we see that the heuristic obtains an optimality gap below 0.2% 
and even obtains the optimal solution in some cases. The optimality gap increases with the number of hubs, as more optimization 
and coordination between drivers and riders is required to obtain the optimal solution. However, for 5 hubs the maximum optimality 
gap is still 3.6% and on average 2.7%.

In return for a small optimality gap, the computation time is reduced significantly. The solution time of CPLEX is between 5 and 
30 times higher than that of the SA heuristic, even on small instances. We note that for larger instances, such as those discussed in 
the next subsections, CPLEX cannot find a feasible solution or is not even able to construct the formulation due to the size of the 
instance. In general, we do not observe an effect of the number of riders and drivers on the computation time of the heuristic (as 
opposed to the computation time of the CPLEX solver, which increases substantially). We also observe an increase in the number of 
variables (paths) that are needed for the mathematical formulation. The number of variables increases with the number of hubs and 
the number of drivers. This implies that for larger instances, such as those considered in the next sections, the exact formulation 
runs into memory issues which forbid CPLEX to construct the problem.
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Fig. 8. Proportion of riders sharing a ride with a transfer for a network with a single transfer hub in the center. The destination and origin, for the top and 
bottom respectively, are marked by a black square.

Table 1
Comparison of optimality gap and computation time of heuristic versus exact solver.
 |𝐼| = |𝐽 | max 𝑞 |𝐻| Optimality gap (%) Time CPLEX (s) Time SA (s) Variables CPLEX 
 500 1 0 0.00 2.6 0.4 1 052  
 500 1 1 1.23 3.1 0.5 7 238  
 500 1 5 1.70 2.9 0.6 10 016  
 500 2 0 0.00 2.5 0.2 1 052  
 500 2 1 1.76 2.2 0.4 7 238  
 500 2 5 2.26 2.7 0.4 10 016  
 500 3 0 0.00 2.2 0.3 1 052  
 500 3 1 1.70 2.4 0.3 7 238  
 500 3 5 2.67 2.7 0.2 10 016  
 1000 1 0 0.08 9.7 1.0 2 647  
 1000 1 1 2.53 11.6 2.0 37 317  
 1000 1 5 3.27 13.7 2.2 51 710  
 1000 2 0 0.21 8.9 0.3 2 647  
 1000 2 1 3.04 10.8 0.8 37 317  
 1000 2 5 3.61 13.6 1.0 51 710  
 1000 3 0 0.09 9.3 0.3 2 647  
 1000 3 1 2.49 11.1 0.6 37 317  
 1000 3 5 3.12 13.0 0.8 51 710  
Note: The first three columns denote the instance settings: the number of riders and drivers, the maximum capacity, and the 
number of transfer hubs, respectively. The fourth column denotes the optimality gap between the CPLEX solver and the SA 
heuristic. The fifth and sixth column denote the solution time of both approaches and the seventh column denotes the number 
of variables created for the CPLEX model.

4.2. Case study of Chicago, USA

To obtain results on a more realistic network, we use a case study of the city of Chicago, USA. Chicago is one of the biggest 
cities in the USA, with an area of more than 600 km2 (230 sq mi) and a population of more than 2.7 million. We use data provided 
by the City of Chicago (2010) to establish 77 nodes based on the communities in the cities. We consider a fully connected graph, 
where the distances between nodes are obtained as Euclidian distances between the geographical centers of the communities. The 
origin–destination data of commuters is based on the use of ride-hailing vehicles, provided by City of Chicago (2022). The historical 
dataset has been used to construct demand rates of origin–destination pairs. In turn, this has been used to randomly generate 
instances of commuters. Commuters are generated according to a Poisson process with the obtained demand rate. The distribution 
of origins and destinations is displayed in Fig.  9.
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Fig. 9. Distribution of origins and destinations in Chicago (color depicts the number of commuters in log scale).

We use a maximum of five transfer hubs. Nodes that are selected as transfer hubs are identified by the Chicago public transport 
system as ‘‘Park-and-Ride’’ options. As these locations naturally have parking spaces and a connection to public transport, they meet 
the physical requirements for a transfer hub.

The parameter values used in this case study are similar to those described in Section 4.1, but tuned to fit this specific case 
study. The value of time spent in a car 𝛼SD is equal to 6.4 [$∕h]. The value of time spent ride-sharing, 𝛼RS, is slightly higher and is 
set at 8.9 [$∕h]. The value of time in public transport 𝛼PT is higher and is set equal to 10.0 [$∕h]. In addition to this, public transport 
has a fixed cost 𝜙pt of 2.0 per trip. Earliness and lateness are penalized with 𝛽 and 𝛾 equal to 4.9 [$∕h] and 15.21 [$∕h] respectively, 
independently of the mode of transport. Waiting time is penalized by 𝛼wait which is equal to 13.5 [$∕h]. The percentage of riders 
owning a car is set to 75%. In this case study, drivers detour at most 10 min (𝜏 = 10 min) to pass through transfer hubs. The fixed 
and variable costs of each mode are defined as follows. For public transport, the fixed cost 𝜓𝑃𝑇  is 2.0$ and the variable cost 𝜙𝑃𝑇  is 
2.0 [$∕h]. For solo driving in a private car, the fixed cost 𝜓𝑆𝐷 is 3.5$ and the variable cost 𝜙𝑆𝐷 is 0.5 [$∕h]. For carpooling, the fixed 
cost 𝜓𝑅𝑆 is 2.5, while the variable cost 𝜙𝑅𝑆 is negligible and the multiplication factor 𝑓 = 0.75. Although all these parameters are 
chosen to give a reasonable representation of a real city, we note that many of these parameters depend on the exact case study. 
Therefore, a sensitivity analysis on some of the most influential parameters is performed in Section 4.2.3.

The SA heuristic is used to solve the instances. For this, the parameters are tuned to 𝑇0 = 3, 𝑇𝑓 = 0.001, 𝜌 = 0.9999 and 100,000 
iterations are used.

4.2.1. Influence of transfers on modal split, costs, and VHT
Similar to the analysis we performed for the circular city network, we vary the number of transfer hubs and analyze the influence 

of transfers on the modal split, the average cost of travelers, and the total vehicle hours traveled by private car in the network. The 
results are displayed in Fig.  10 where transfer hubs are added in an arbitrary order. In these experiments, approximately 5500 
riders and 5500 drivers are used. In our framework, riders may change modes and departure times, whereas the behavior of drivers 
remains almost unchanged. The only change in driver behavior is that they may make a small detour of 𝜏 = 10 min to reach a 
transfer hub. Our experiments show that, on average, the detour per driver is not substantial. Given the small number of drivers 
carrying passengers that transfer, and the low maximum tour value of 10 min, average trip durations of drivers do not increase 
significantly across the tested configurations. 

When no transfers are allowed, the majority of the commuters use public transport for their commute. This is caused by the 
share of users that do not own a car and by the relatively high portion of short-distance trips for which public transport is generally 
cheaper, as shown in Fig.  2. Less than 10% of all riders share a ride with a driver during their commute. The average cost for 
commuters is 5.80$ and the total VHT in a private car is equal to 1100 h.

When the number of transfer hubs increases, we see a significant modal shift to the 𝑆𝐷 → 𝑅𝑆 mode. This means that a large 
share of the commuters use their car to reach a transfer hub and travel with another commuter from there. Another smaller share 
of commuters uses ride-sharing on both legs but use a different driver on each of these legs. By using transfers, the average costs 
of riders are reduced from 5.80$ to 5.30%. The total VHT in a private car is also reduced significantly from 1100 to approximately 
800 h. However, as the number of transfer hubs is increased further the total VHT increases again to 900 h. This shows that because 
the majority of commuters who use the transfer hub take their private car to reach the hub, an increase in ride-sharing is not 
guaranteed to reduce the total VHT. It is important to note here that because riders only use their car during the first leg of the trip, 
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Fig. 10. Modal split, average cost, and VHT in private car for a varying number of transfer hubs in the Chicago network.

which is typically in a suburban area, the number of vehicles in the city center is also reduced substantially. Since the city center 
is usually the most problematic in terms of congestion, this forms a substantial advantage.

The results suggest that a good pricing/subsidy scheme for ride-sharing needs to be developed. Ride-sharing needs to be targeted 
at those commuters that would abandon their car. In our current analysis, we see that this is successful, but only up to a certain 
extent. We also see that public transport usage is reduced by 10%, which is generally undesirable. Designing a compensation scheme 
for ride-sharing with and without transfers is outside the scope of this work, but is marked as an important direction of further 
research. Similar schemes for ride-hailing systems to fight these negative effects have been studied by Hryhoryeva and Leclercq 
(2024).

4.2.2. Network analysis
To better understand the influence of geographical properties on mode choices, we perform a network analysis of the results. 

Fig.  11 displays the portion of commuters who use a transfer on their commute according to their origins and destinations (left and 
middle panel) and the number of commuters that pass through the five transfer hubs (right panel). The results indicate that the 
transfer hub closest to the city center (Lat 41.84, Lon −87.65) is the most used. The reason for this is that driving alone is generally 
cheaper, but ride-sharing excludes the use of expensive parking costs. Therefore, the closer to the CBD a commuter can transfer, 
the better off they usually are. This result may have implications for parking options. Parking in the city center is usually more 
restricted. Therefore, the price of parking at a transfer hub in the city center may be more expensive in reality than the price of 
parking outside the city center.

We observe that commuters who live and/or work in the city center are typically less inclined to use a transfer. The reason for 
this is that for their short trips, public transport is usually a cheap alternative and there are abundant direct ride-sharing options 
available. For origins and destinations further from the city center, more commuters tend to use a transfer during their commute. 
An exception to this can be found for commuters who have a destination in the far south of the network. The reason for this is that, 
because of the distribution of riders and drivers in the network, finding a match with a destination in that area is rather difficult. 
In this case, commuters are better off traveling the complete trip alone.

To support these results, we evaluate the correlation between trip distance and mode choice in Figs.  12 and 13. Fig.  12 considers 
the original distribution of trips, whereas 13 considers a distribution that is biased towards medium and long-distance trips. For the 
biased distribution, the frequency of trips shorter than 6 min is reduced by 35% and the frequency of trips longer than 60 min is 
increased by 100%. The first panel displays the distribution of the trip length, measured as the minimum number of hours required 
to get from origin to destination. The second panel displays a boxplot of the mode choice in the absence of transfers and the third 
panel displays the distribution when all five transfer hubs are used.

The results of the second panel in Fig.  12 confirm the theory described in Section 2.2. Long-distance trips are mainly performed 
by car (except for those commuters who do not own a car and who have to resort to ride-sharing or public transport), whereas 
short-distance trips are mostly performed by public transport. Ride-sharing is mostly used for medium-distance trips. This is even 
more apparent when more medium and long-distance trips are generated in Fig.  13.

When five transfer hubs are used, we observe that commuters with a large trip length shift to modes that use a transfer. The 
longest trips are those that connect ride-sharing and public transport, whereas the shortest trips are still direct solo driving trips. 
For the shortest trip, however, the sample size is too small to draw solid conclusions. The biased distribution mainly reduces PT 
usage and increases ride-sharing with and without a transfer.

4.2.3. Sensitivity analysis
To evaluate the effect of different system configurations and parameter settings, we perform a detailed sensitivity analysis with 

respect to the cost of solo driving (𝜓𝑆𝐷) and public transport usage (𝜓𝑃𝑇  and 𝜙𝑃𝑇 ). For every scenario we evaluate two important 
system performance indicators: the average vehicle hours traveled per rider in every mode and the percentage of riders that make a 
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Fig. 11. Network analysis.

Fig. 12. Box plot of trip length versus mode choice with original distribution.

Fig. 13. Box plot of trip length versus mode choice with biased distribution.

transfer on their trip. We evaluate the effect of varying fixed costs of car usage in Fig.  14. This can be influenced by varying parking 
fees, for example. In Fig.  15 we evaluate the effect of the fixed and variable costs of public transport. By considering these different 
configurations, we aim to indicate how the results may change across cities with varying road and public transport networks and 
the associated costs.

The sensitivity analysis in Fig.  14 shows that for 𝜓𝑆𝐷 between $1.5 and $3.0 the VHT and percentage of riders making a transfer 
remains unchanged, while it significantly increases for higher values of 𝜓𝑆𝐷. The reason for this is that for riders owning a car, 
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Fig. 14. Sensitivity analysis of VHT and transfers to 𝜓𝑆𝐷 .

Fig. 15. Sensitivity analysis of VHT and transfers to 𝜓𝑃𝑇  and 𝜙𝑃𝑇 .

Table 2
Sensitivity analysis on vehicle capacity.
 Capacity (# riders) Average cost VHT in PT VHT in SD VHT in RS % of riders transfer 
 1 5.33 0.11 0.17 0.10 37.09  
 2 5.28 0.10 0.17 0.11 42.35  
 3 5.27 0.09 0.17 0.12 43.39  

using their car is always the dominant option when fixed costs are that low. When the fixed costs increase even further, the use of 
the private car decreases substantially and is replaced by ride-sharing first and also by public transport after. It also constitutes to 
a significant increase in the number of transfers. Similar conclusions can be drawn from the heat maps in Fig.  15. An increase in 
the costs of public transport (both fixed and variable) decreases public transport ridership. At the same time, we see higher VHTs 
for solo driving and ride-sharing and an increase in the percentage of riders that make a transfer.

Finally, we perform a sensitivity analysis on the capacity of vehicles. We test capacities of 1, 2 and 3 riders per vehicle, for which 
the results are displayed in Table  2. As the capacity of vehicles increases, ride-sharing becomes more attractive and the percentage 
of riders making a transfer on their way also increases. However, the increase in VHT for ride-sharing is countered by a decrease 
in VHT for public transport, while the VHT in private vehicles remains constant. This highlights the adverse effects of promoting 
ride-sharing, as the new users are former public transport users, rather than former car users.

5. Conclusion

In this paper, we introduced the multi-modal ride-matching problem with transfers. Ride-sharing, public transport, and private 
cars were modeled as complementary first- or last-mile modes, as well as competitive modes. Riders can change between two 
modes as well as between two drivers at designated transfer hubs. These transfer hubs have connections to public transport and 
have sufficient parking spaces for those reaching the transfer hub with their private car.

The problem is modeled as a path-based integer programming problem. All feasible paths for each rider and their corresponding 
costs are determined in advance. The selection of paths is optimized to minimize costs while ensuring feasible matches for drivers. 
The size of the problem can be drastically reduced by removing strictly dominated paths. Thereby, the computation of costs can be 
enhanced by considering optimality conditions on departure times of drivers and riders, which can then also help to reduce the size 
of the problem.
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We developed an SA heuristic to solve realistic large-scale instances to near-optimality. The heuristic constructs new paths to 
improve upon the current solution and deconstructs existing paths to obtain feasible solutions. The computational speed of the 
heuristic is significantly improved by observing suboptimalities in an early stage to avoid costly computations. The heuristic reduces 
the computation time by 80 to 95% and attains an optimality gap of less than 3.3% and on average 2.3% on small-scale instances. 
Furthermore, it allows us to solve realistic instances within a reasonable amount of time.

The performance of the designed system and algorithm are evaluated in two case studies. The first is a small-scale case study 
of a toy circular city network, for which the problem can be solved to optimality within a reasonable amount of time. The second 
case study is more realistic and is based on the city of Chicago. The results show that with a limited number of transfer hubs, both 
the average cost per rider and the vehicle hours traveled can be reduced by more than 20%. When desired arrival times are drawn 
from a truncated normal distribution, ride-sharing is mostly observed around the center of the considered time window whereas 
private transportation is more popular in the tails of the time window, when fewer potential matches are available. The modal split 
is highly dependent on the difference between the fixed and variable costs of modes, as indicated by our sensitivity analysis. In 
addition to this, trip length and the location of the origin and destination of riders plays a big part in the mode choice.

Contrary to previous studies, our results show that ride-sharing does not only attract riders who were previously using public 
transport, but it also reduces private car usage by 20%. Without transfers, public transport is mostly used for short-distance trips 
whereas long-distance trips are performed using a personal vehicle. When allowing for transfers, we observe that a large portion of 
these long-distance trips are replaced by inter-modal trips that combine ride-sharing with public or private transport. Nevertheless, 
an increase in vehicle capacity shows that new ride-sharing users are drawn from public transport, rather than private transport. 
Due to the various simplifying assumptions on the decision-making of drivers and riders, further research is necessary to accurately 
quantify the true modal shift. 

Further research is needed to incorporate travel-time uncertainty in the problem. Uncertainties may influence the cost associated 
to a match, but also the feasibility of a match. Through this, exogenous or endogenous congestion can be incorporated into the 
framework. Thereby, future research may focus on jointly modeling the morning and evening commute and the influence this has 
on ride-matching solutions. Other interesting research directions are the design of optimal transfer hub locations and the optimal 
design of incentives for drivers and riders.
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Appendix A. Notational glossary

See Table  3.

Appendix B. Computation of costs

In this appendix, we describe the costs for every type of path. We consider separately all 10 types of paths (3 direct and 7 
indirect). For the sake of notation, we define 𝑡∗𝑗 (ℎ) as the desired arrival time of driver 𝑗 at transfer hub ℎ if he travels through that 
hub. This is simply computed as 𝑡∗𝑗 (ℎ) = 𝑡∗𝑗 − 𝑡𝑡(ℎ, 𝑑𝑗 ). The three direct paths are described below:

Direct PT
Every rider 𝑖 ∈  has the option to take public transport. Public transport has a fixed cost plus a variable term per unit of time 

traveled. A rider 𝑖 ∈  that takes public transport incurs a cost: 
𝑐𝑘 = (𝛼𝑃𝑇 + 𝜙𝑃𝑇 )𝑡𝑡(𝑜𝑖, 𝑑𝑖) + 𝜓𝑃𝑇 (3)

Direct SD
Every rider that owns a car 𝑖 ∈ 𝑐 also has the option to drive from origin to destination directly. In that case, on top of his 

value of time, drivers pay for fuel consumption and parking at the destination. Departure time choices are made to minimize the 
costs. In the case of deterministic travel times, this means that they arrive exactly at their desired arrival time, and as such schedule 
delay penalties are zero. The costs for such a path are defined as: 

𝑐𝑘 = (𝛼𝑆𝐷 + 𝜙𝑆𝐷)𝑡𝑡(𝑜𝑖, 𝑑𝑖) + 𝜓𝑆𝐷 (4)
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Table 3
Notational glossary.
 Sets
  Set of transfer hubs (indexed ℎ)  
  Set of riders (indexed 𝑖)  
 𝑐 Set of riders owning a car  
 𝑛𝑐 Set of riders not owning a car  
  Set of drivers (indexed 𝑗)  
  Set of rider paths (indexed 𝑘)  
  Set of discrete time intervals (indexed 𝑡)  
 Parameters
 𝑎0𝑗𝑘 Binary parameter indicating if driver 𝑗 ∈   contributes to rider path 𝑘 ∈   
 through a direct trip  
 𝑎1ℎ𝑗𝑘 Binary parameter indicating if driver 𝑗 ∈   contributes to rider path 𝑘 ∈   
 through a first-leg trip to transfer hub ℎ ∈   
 𝑎2ℎ𝑗𝑘 Binary parameter indicating if driver 𝑗 ∈   contributes to rider path 𝑘 ∈   
 through a second-leg trip from transfer hub ℎ ∈   
 𝑐𝑘 Generalized cost of rider path 𝑘 ∈   
 𝑑𝑖 Destination of individual 𝑖 ∈  ∪   
 𝑒𝑖𝑘 Binary parameter indicating if rider path 𝑘 ∈  corresponds to rider 𝑖 ∈   
 𝑓 Factor to multiply the fixed cost of a mode when it is used during an indirect trip. Typically, 𝑓 < 1 
 𝑞𝑗 Capacity of the car of driver 𝑗 ∈   
 𝑜𝑖 Origin of individual 𝑖 ∈  ∪   
 𝑡𝑡(⋅, ⋅) travel time between two nodes in the network  
 𝛼𝑆𝐷 Cost per time unit spent driving alone  
 𝛼𝑃𝑇 Cost per time unit spent in public transport  
 𝛼𝑅𝑆 Cost per time unit spent sharing a ride  
 𝛼wait Cost per time unit spent waiting at a transfer hub  
 𝛽 Cost per time unit arriving early at the destination  
 𝛾 Cost per time unit arriving late at the destination  
 𝜏 Maximum detour a driver is willing to make  
 𝜙𝑆𝐷 Variable cost per time unit for driving alone  
 𝜙𝑃𝑇 Variable cost per time unit for public transport  
 𝜙𝑅𝑆 Variable cost per time unit for sharing a ride  
 𝜓𝑆𝐷 Fixed (access) cost for driving alone  
 𝜓𝑃𝑇 Fixed (access) cost for public transport  
 𝜓𝑅𝑆 Fixed (access) cost for sharing a ride  
 Decision variables
 𝑥𝑘 Binary decision variable indicating if rider path 𝑘 ∈  is selected  
 𝑦𝑗ℎ Binary decision variable indicating if driver 𝑗 travels through transfer hub 𝑗  

Direct RS
For every rider 𝑖 ∈ , a direct match can be found with a driver 𝑗 ∈   if 𝑜𝑖 = 𝑜𝑗 and 𝑑𝑖 = 𝑑𝑗 . As the driver selects the departure 

time to minimize his/her own cost, the arrival time at the final destination is equal to his/her desired arrival time of the driver, 
possibly imposing schedule delay costs on the rider. A rider is penalized for earliness by 𝛽 and for lateness by 𝛾. The notation 
(⋅)+ = max(0, ⋅), which means that either earliness or lateness is positive, but not both at the same time. Only if 𝑡∗𝑖 = 𝑡∗𝑗 , the rider 
arrives exactly on time, and therefore both earliness and lateness will be zero. For a match between 𝑖 ∈  and 𝑗 ∈  , 𝑒𝑖𝑘 = 1, 𝑎0𝑗𝑘 = 1
and all other parameters are equal to 0. The cost of this direct match is as follows: 

𝑐𝑘 = (𝛼𝑅𝑆 + 𝜙𝑅𝑆 )𝑡𝑡(𝑜𝑖, 𝑑𝑖) + 𝛽(𝑡∗𝑖 − 𝑡
∗
𝑗 )

+ + 𝛾(𝑡∗𝑗 − 𝑡
∗
𝑖 )

+ + 𝜓𝑅𝑆 (5)

The seven indirect paths are described below:

Indirect RS → RS
We consider a rider 𝑖 ∈  and two drivers 𝑗1, 𝑗2 ∈   where 𝑗1 takes 𝑖 on the first leg and 𝑗2 takes 𝑖 on the second leg with a 

transfer at transfer hub ℎ. Similar to before, this is only feasible if 𝑜𝑖 = 𝑜𝑗1 , 𝑑𝑖 = 𝑑𝑗2 . Thereby, 𝑡∗𝑗1 (ℎ) ≤ 𝑡∗𝑗2 (ℎ) to ensure that the rider 
is dropped off at the transfer hub before the scheduled pickup. The hub ℎ needs to deviate at most 𝜏 min from the shortest path of 
both drivers 𝑗1 and 𝑗2. In this case, 𝑎1ℎ𝑗1𝑘 = 1 and 𝑎2ℎ𝑗2𝑘 = 1. The cost for the rider 𝑖 is then defined as follows:

𝑐𝑘 = (𝛼𝑅𝑆 + 𝜙𝑅𝑆 )[𝑡𝑡(𝑜𝑖, ℎ) + 𝑡𝑡(ℎ, 𝑑𝑖)] + 𝛼wait[𝑡∗𝑗2 (ℎ) − 𝑡
∗
𝑗1
(ℎ)]

+ 𝛽[𝑡∗𝑖 − 𝑡
∗
𝑗2
(ℎ) − 𝑡𝑡(ℎ, 𝑑𝑖)]+ + 𝛾[𝑡∗𝑗2 (ℎ) + 𝑡𝑡(ℎ, 𝑑𝑖) − 𝑡

∗
𝑖 ]

+ + 2𝑓𝜓𝑅𝑆 (6)

Indirect RS → PT
For a path where only the first leg is a ride-sharing leg, a rider knows in advance when he will be picked up at the transfer hub 

and can therefore adjust his departure time on the first leg to the departure on the second leg. If rider 𝑖 ∈  and driver 𝑗 ∈   are 
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matched with a transfer at hub ℎ ∈ , they must share their origin 𝑜𝑖 = 𝑜𝑗 and driver 𝑗 may deviate at most 𝜏 min from his/her 
shortest path to reach hub ℎ. In this case, 𝑎1ℎ𝑗1𝑘 = 1. The cost of this match is:

𝑐𝑘 = (𝛼𝑅𝑆 + 𝜙𝑅𝑆 )𝑡𝑡(𝑜𝑖, ℎ) + (𝛼𝑃𝑇 + 𝜙𝑃𝑇 )𝑡𝑡(ℎ, 𝑑𝑖)

+ 𝛽[𝑡∗𝑖 − 𝑡
∗
𝑗 (ℎ) − 𝑡𝑡(ℎ, 𝑑𝑖)]

+ + 𝛾[𝑡∗𝑗 (ℎ) + 𝑡𝑡(ℎ, 𝑑𝑖) − 𝑡
∗
𝑖 ]

+ + 𝑓 (𝜓𝑅𝑆 + 𝜓𝑃𝑇 ) (7)

Indirect PT → RS
We consider the path where the rider shares a ride on the second leg and takes public transport on the first leg. If rider 𝑖 ∈ 

and driver 𝑗 ∈   are matched with a transfer at hub ℎ ∈ , they must share their destination 𝑑𝑖 = 𝑑𝑗 and driver 𝑗 may deviate at 
most 𝜏 min from his/her shortest path to reach hub ℎ. In this case, 𝑎2ℎ𝑗2𝑘 = 1. The cost of this match is:

𝑐𝑘 = (𝛼𝑃𝑇 + 𝜙𝑃𝑇 )𝑡𝑡(𝑜𝑖, ℎ) + (𝛼𝑅𝑆 + 𝜙𝑅𝑆 )𝑡𝑡(ℎ, 𝑑𝑖)

+ 𝛽[𝑡∗𝑖 − 𝑡
∗
𝑗 (ℎ) − 𝑡𝑡(ℎ, 𝑑𝑖)]

+ + 𝛾[𝑡∗𝑗 (ℎ) + 𝑡𝑡(ℎ, 𝑑𝑖) − 𝑡
∗
𝑖 ]

+ + 𝑓 (𝜓𝑃𝑇 + 𝜓𝑅𝑆 ) (8)

Indirect SD → RS
We consider an indirect path where a rider drives alone on the first leg and shares a ride on the second leg. We note that the 

arrival time at the transfer hub should be coordinated, similar to an indirect ride-sharing match. Let rider 𝑖 ∈  be matched to driver 
𝑗 ∈   on the second leg and let the departure time of rider 𝑖 on the first leg be equal to 𝑡 ∈ 𝑇 . The arrival time of the rider at the 
transfer hub ℎ ∈  is then equal to 𝑡 + 𝑡𝑡(𝑜𝑖, ℎ). In a deterministic setting, the rider can optimize their departure time 𝑡 to arrive 
exactly on time at the transfer point and therefore incur no waiting time. Again, driver 𝑗 may deviate at most 𝜏 min from his/her 
shortest path to reach hub ℎ. In this case, 𝑎2ℎ𝑗2𝑘 = 1. The cost is defined as follows:

𝑐𝑘 = (𝛼𝑆𝐷 + 𝜙𝑆𝐷)𝑡𝑡(𝑜𝑖, ℎ) + (𝛼𝑅𝑆 + 𝜙𝑅𝑆 )𝑡𝑡(ℎ, 𝑑𝑖) + 𝛼wait[𝑡∗𝑗 (ℎ) − 𝑡 − 𝑡𝑡(𝑜𝑖, ℎ)]

+ 𝛽[𝑡∗𝑖 − 𝑡
∗
𝑗 (ℎ) − 𝑡𝑡(ℎ, 𝑑𝑖)]

+ + 𝛾[𝑡∗𝑗 (ℎ) + 𝑡𝑡(ℎ, 𝑑𝑖) − 𝑡
∗
𝑖 ]

+ + 𝑓 (𝜓𝑆𝐷 + 𝜓𝑅𝑆 ) (9)

Indirect SD → PT
In case a rider 𝑖 ∈  drives their own car on the first leg and transfers to public transport at hub ℎ ∈ , the cost is defined as 

follows:

𝑐𝑘 = (𝛼𝑆𝐷 + 𝜙𝑆𝐷)𝑡𝑡(𝑜𝑖, ℎ) + (𝛼𝑃𝑇 + 𝜙𝑃𝑇 )𝑡𝑡(ℎ, 𝑑𝑖) + 𝑓 (𝜓𝑆𝐷 + 𝜓𝑃𝑇 ) (10)

Indirect PT → PT and SD → SD
For completeness, we introduce two indirect alternatives where the same mode is used on both legs. Clearly, in the deterministic 

case, a direct option with that same mode would always perform at least as well and therefore these alternatives will never be used 
in practice. The cost for an indirect public transport path and an indirect solo drive path for individual 𝑖 with a transfer at hub ℎ
are given as follows:

𝑐𝑘 = (𝛼𝑃𝑇 + 𝜙𝑃𝑇 )(𝑡𝑡(𝑜𝑖, ℎ) + 𝑡𝑡(ℎ, 𝑑𝑖)) + 2𝑓𝜓𝑃𝑇 (11)

𝑐𝑘 = (𝛼𝑆𝐷 + 𝜙𝑆𝐷)(𝑡𝑡(𝑜𝑖, ℎ) + 𝑡𝑡(ℎ, 𝑑𝑖)) + 2𝑓𝜓𝑆𝐷 (12)

Appendix C. Theorems and proofs

Theorem 1 (Optimal Departure Time for a Single Leg). Let all riders and the driver have identical origins and destinations. Let a driver with 
desired arrival time 𝑡∗0 be matched to 𝑁 riders with desired arrival times 𝑡∗1 … 𝑡∗𝑁 . With max(𝛽0, 𝛽1,… 𝛽𝑁 ) < min(𝛾0, 𝛾1,… 𝛾𝑁 ), the jointly 
optimal departure time is equal to 𝑡𝑜 = min(𝑡∗0 ,… , 𝑡∗𝑁 ).

Proof.  Without loss of generality, travel time is set equal to 0. Let 𝑡𝑜 be the jointly optimal departure time and let 𝐶(𝑡) be the joint 
total cost for all drivers and passengers. Then, 𝑡𝑜 = argmin𝑡 𝐶(𝑡). Without loss of generality, we sort the desired arrival times such 
that 𝑡∗0 ≤ 𝑡∗1 ≤ ⋯ ≤ 𝑡∗𝑁 . The cost 𝐶(𝑡) is then defined as follows: 

𝐶(𝑡) =
∑

𝑖∈{0,…,𝑁}|𝑡∗𝑖 <𝑡
𝛽𝑖(𝑡 − 𝑡∗𝑖 ) +

∑

𝑖∈{0,…,𝑁}|𝑡∗𝑖 ≥𝑡
𝛾𝑖(𝑡∗𝑖 − 𝑡) (13)

The function 𝐶(𝑡) is piece-wise linear and therefore the optimal departure time 𝑡𝑜 has to be at one of the breakpoints {𝑡∗0 ,… 𝑡∗𝑁}. 
A graphic example is displayed in Fig.  16. Given that max(𝛽0, 𝛽1,… 𝛽𝑁 ) < min(𝛾0, 𝛾1,… 𝛾𝑁 ), it can be shown by contradiction that 
𝑡𝑜 = min(𝑡∗0 ,… , 𝑡∗𝑁 ). □
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Fig. 16. Theorem  1 example with 𝑁 = 4 riders and homogeneous 𝛽 and 𝛾.

Fig. 17. Schedule delay and waiting time.

Theorem 2 (Optimal Departure Time for a Second Leg Trip). Consider 𝑁 riders 𝑘1,… 𝑘𝑁  from origins 𝑜𝑘1 ,… , 𝑜𝑘𝑁  who transfer at hub ℎ
to their identical destination 𝑑, and a driver 𝑖 from hub ℎ to the same destination 𝑑, with their desired arrival times 𝑡∗𝑘1 ,… 𝑡∗𝑘𝑁  and 𝑡∗𝑖 . Let 
all individuals have identical cost parameters 𝛼, 𝛼wait, 𝛽, 𝛾, with 𝛽 < 𝛾 and 𝛼wait < 𝛾. We let 𝑡1 be the last departure time for the first leg 
among all riders and the driver. The joint optimal departure time for the second leg 𝑡𝑜2 is a function of the departure time for the first leg 𝑡1
which is defined as follows: 

𝑡𝑜2(𝑡1) =

{

max(𝑡1,min(𝑡∗𝑖 , 𝑡
∗
𝑘1
,… , 𝑡∗𝑘𝑁 )) if 𝛼wait ≤ 𝛽

𝑡1 if 𝛼wait > 𝛽
(2)

Proof.  Without loss of generality, travel time is equal to 0. Let 𝑡𝑜2(𝑡1) be the jointly optimal departure time on the second leg given 
the latest departure time 𝑡1 on the first leg and let 𝐶2(𝑡1, 𝑡2) be the joint total cost on the second leg for all drivers and passengers 
where 𝑡1 is the latest departure time on the first leg and 𝑡2 is the departure time on the first leg. Then, 𝑡𝑜2(𝑡1) = argmin𝑡2 𝐶(𝑡1, 𝑡2). 
Clearly, leaving before the last passenger has arrived makes the match infeasible and therefore attains a cost of ∞. This implies that 
𝑡𝑜2(𝑡1) ≥ 𝑡1. Therefore, in the remainder of this proof, we disregard the period before 𝑡1 and the costs of waiting during that period.

Without loss of generality, we sort the desired arrival times such that 𝑡∗𝑘1 ≤ ⋯ ≤ 𝑡∗𝑘𝑁 . The cost 𝐶2(𝑡1, 𝑡2) is then defined as follows: 

𝐶2(𝑡1, 𝑡2) = (𝑁 + 1)𝛼wait(𝑡2 − 𝑡1) +
∑

𝑘∈{𝑖,𝑘0 ,…,𝑘𝑁 }|𝑡∗𝑘<𝑡
𝛽(𝑡 − 𝑡∗𝑘) +

∑

𝑘∈{𝑖,𝑘0 ,…,𝑘𝑁 }|𝑡∗𝑘≥𝑡
𝛾𝑖(𝑡∗𝑘 − 𝑡) (14)

Using the same reasoning as in Theorem  1, earliness is jointly preferred over lateness. In this case, we have an additional trade-off 
between earliness and waiting time. If waiting time is penalized more than earliness, it is best to leave immediately after everyone has 
arrived such that 𝑡𝑜2(𝑡1) = 𝑡1. Otherwise, it might be better to wait. We separately consider the cases where (i) 𝑡1 > min(𝑡∗𝑖 , 𝑡

∗
𝑘1
,… , 𝑡∗𝑘𝑁 )

and (ii) 𝑡1 ≤ min(𝑡∗𝑖 , 𝑡
∗
𝑘1
,… , 𝑡∗𝑘𝑁 ). This is graphically depicted in Fig.  17. In case (i), at least one matched individual is already late 

and therefore waiting longer is definitely not desirable as 𝛼wait < 𝛾. In that case, 𝑡𝑜2(𝑡1) = 𝑡1. In case (ii), it is better to wait at the 
transfer hub until 𝑡𝑜2(𝑡1) = min(𝑡∗𝑖 , 𝑡

∗
𝑘1
,… , 𝑡∗𝑘𝑁 ), applying the reasoning from Theorem  1. Combining these individual cases leads to the 

optimal departure time on the second leg as given in Eq. (2). □
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Theorem 3 (Optimal Departure Time on First Leg). Consider a driver 𝑖 from 𝑜 to 𝑑 passing through hub ℎ, one rider 𝑗 from 𝑜 to hub ℎ and 
one rider 𝑘 from hub ℎ to 𝑑, with their desired arrival times 𝑡∗𝑖 , 𝑡∗𝑗 , 𝑡∗𝑘. Let all individuals have identical cost parameters 𝛼, 𝛼wait, 𝛽, 𝛾, with 
𝛽 < 𝛼wait < 𝛾. The joint optimal departure time for the first leg 𝑡1◦ = min(𝑡∗𝑖 , 𝑡

∗
𝑗 , 𝑡

∗
𝑘). The joint optimal departure time of the second leg can 

then be determined according to Theorem  2.

Proof.  Without loss of generality, travel time is set equal to 0. Let 𝑡𝑜2(𝑡1) be the jointly optimal departure time on the second leg given 
the departure time 𝑡1 on the first leg and let 𝐶(𝑡1, 𝑡2) be the joint cost of the driver and the two riders on both legs. Because 𝛽 < 𝛼wait, 
according to Theorem  2, 𝑡𝑜2(𝑡1) = 𝑡1 given the relationship between the parameters. We can therefore determine 𝐶(𝑡1) = 𝐶(𝑡1, 𝑡𝑜2(𝑡1))
which is only composed of schedule-delay costs and not waiting, given the immediate departure from the transfer hub. By applying 
Theorem  1 we obtain 𝑡𝑜1 = min(𝑡∗𝑖 , 𝑡

∗
𝑗 , 𝑡

∗
𝑘). □

Data availability

Open source data was used.
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