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CHAPTER 1

Introduction

Monolithic scintillators combined with arrays of solid state light detectors can
be used to build novel types of detectors for high-resolution positron emission
tomography (PET). From calculations and measurements these detectors seem
very promising. The most important advantage of these detectors is that PET
systems based on these detectors can have a much higher sensitivity. Further-
more, because they use solid state light detectors, they can be combined with
other imaging modalities such as MRI. The intrinsic spatial resolution of these
detectors seems to be comparable to that of current high-resolution PET detec-
tors that use small scintillator crystals coupled to photo-multiplier tubes (PMTs).
One part of this work aims to further investigate the performance of these detec-
tors and to investigate whether or not these detectors are indeed promising for
high-resolution and high-sensitivity PET. The other more important part aims to
obtain a qualitative and quantitative understanding of the relation between the
properties of the detector such as shape, dimensions, materials used, etc. and the
performance of the detectors. A better understanding of the influence of design
parameters on the performance is useful to obtain a better design. Therefore, a
large part of this thesis is devoted to modelling of the detector.

Although the monolithic scintillator detectors investigated here are developed
for high-resolution PET, this type of detector can also be used for other appli-
cations in which one needs to determine the position of ionizing particles. The
models derived here can easily be adapted for many other types of detector that
determine the position of the ionizing particles from the distribution of scintilla-
tion light on a position-sensitive light detector.

Before discussing the main goals of this thesis, a short introduction to PET
is presented. Finally, the use of Monte Carlo simulations for studying these
detectors is discussed, followed by an outline of this thesis.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: PET image of a rat injected with a tracer that accumulates in tumor
tissue.

1.1 Introduction PET

PET is an imaging technique that measures the distribution of a tracer inside a
subject to be investigated, e.g. a human body or animal. A tracer consists of
molecules of which one or more atoms have been replaced by radioactive atoms.
This tracer is injected into the bloodstream of the patient. Depending on the
kind of tracer used, it accumulates after injection in certain parts of the body.
The PET scanner detects the radiation emitted by the radioactive atoms and the
distribution of the radioactive atoms inside the body can be reconstructed.

For example, a much used tracer is FDG (Fluorodeoxyglucose) which is similar
to glucose. Tissues that need energy take up the FDG and break it down into
smaller molecules. Therefore, the FDG accumulates in tissues that use energy.
This could be active parts of the brain, but also tumors, since tumor tissue often
uses much glucose. Figure 1.1 shows a PET image of a rat with a tumor in its
neck. The blue parts of the image contain a low concentration of tracer, while
the green/red parts contain a higher concentration. The tracer has accumulated
in the tumor, making the tumor clearly visible in the image.

The question then is: ‘How does a PET scanner measure the distribution of
the tracer inside the body?’ The radioactive atoms of the tracer emit positrons
(the ‘E’ and ‘P’ of PET). When the positron has lost its energy, it annihilates
with an electron and two annihilation photons are formed that travel in almost
opposite directions. A PET scanner tries to detect both of these annihilation
photons. We then know that the tracer was located somewhere along the line
between the two detection points. This line is called the line of response (LOR).
A large number of these LORs (typically millions) are collected. From these
LORs the distribution of the tracer can be estimated.

Figure 1.2 illustrates how the distribution of the tracer can be reconstructed
from the LORs. Suppose we only collect LORs that are vertical or horizontal. We
create a histogram of the LORs for each of the two directions. These histograms
are called projections. What we then could do is back-project these histograms
as is shown in the second figure. This results in a very crude approximation of
the source. When the number of angles for which we collect the LORs increases,
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Figure 1.2: Simplified view of 2D image reconstruction of a cylinder (first im-
age; black circle). The second to fourth images show the resulting reconstruction
as the number of projections increase.

as is shown in the other two images, we see that the back-projection starts to
look more and more like the original source. The way the reconstruction is done
in an actual scanner is more complicated, but this example illustrates how the
three dimensional distribution of the tracer can be determined from the LORs.

Comparison to other imaging modalities

As was mentioned in the previous section, PET images the distribution of a
tracer inside the body. This tracer is a chemical substance, and by choosing a
specific tracer a specific chemical process inside the body can be imaged. This is
one of the major differences with other imaging modalities: with PET, chemical
processes can be imaged. Most other imaging modalities, e.g. CT and MRI,
mainly image anatomy.

PET images tissue function, and sometimes anatomical information is needed
to be able to determine precisely where inside the body the process that is imaged
with PET takes place. Therefore, PET images are often combined with anatomi-
cal images, usually CT images. The CT image gives the anatomical information,
while the PET image gives information on the chemical process.

Two other imaging modalities can also image chemical processes: functional-
MRI and SPECT [50]. However, the sensitivity of PET is much higher than
these two modalities. The sensitivity of PET is 102–103 higher than that of
SPECT [14]. Especially functional-MRI has in comparison a very low sensitivity.
Therefore, PET can detect much smaller quantities of tracer and with PET it is
also easier to accurately quantify the amount of tracer inside a (part of a) certain
organ. One of the advantages of the new detectors discussed in this thesis is that
the sensitivity of a scanner based on these detectors can be much higher than in
current PET scanners, while maintaining the spatial resolution of these scanners.
This makes it possible to better create dynamic PET images: chemical process
can be followed in time.

The main disadvantage of PET, when compared to other imaging modalities
is its limited spatial resolution (suppose all tracer is concentrated at one point;
the reconstructed image will not show a point but a volume; the bigger the
volume the worse the spatial resolution; the spatial resolution is usually specified
by giving the full width at half maximum of this volume). As will be discussed
in the next chapter the spatial resolution of a PET scanner can be in the order
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Figure 1.3: Transaxial view of a PET scanner: the dark gray circle represents
the patient, around it a ring of detectors.

of 0.5–1 mm, while the spatial resolution of for example CT can be in the order
of 10 µm.

Parts of a PET scanner

Since the scanner has to detect two photons that travel in approximately opposite
directions, most scanners are cylindrically shaped. The patient is located in the
center of the scanner. Figure 1.3 shows an example. The scanner usually consists
of multiple rings of detectors. A detector can detect one annihilation photon at a
time. Detectors usually consist of one or more scintillation crystals in which the
annihilation photon interacts. The energy lost by the annihilation photon during
the interaction(s) is converted into light in the scintillation crystals. Attached
to the scintillation crystals area light sensors. The signal of the light sensor is
furthermore processed by front-end electronics and finally the detector signals
are digitized and sent to a computer, where the information of all detectors is
combined and preprocessed for the image reconstruction.

1.2 Purpose

In recent years there has been an increase of interest in small animal positron
emission tomography (PET). Small animal PET requires a high spatial resolution
and, especially when dynamic studies are to be performed, a high sensitivity [13]
(the amount of tracer that can be used in these animals is limited). In or-
der to achieve the required resolution, most current designs use arrays of small
scintillation crystals coupled to position-sensitive photomultiplier tubes (PMTs).
Although in principle the resolution can be improved in this design by decreas-
ing the dimensions of the crystals, much sensitivity is lost when decreasing the
crystal size because of the dead space between the crystals occupied by reflective
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(a) (b)

Figure 1.4: Two examples of monolithic scintillation detectors. The arrow
indicates the direction of the annihilation photons. (Left) a 20×10×10 mm3

LYSO crystal read out by a Hamamatsu S8550 APD array that is attached to the
side at which the beam enters the crystal, and (right) a 20×10×20 mm3 LYSO
crystal read out by two APD arrays.

material for optical separation. Additional dead space may exist between the de-
tector modules, which may, for example, be dictated by the relatively large size
of the position-sensitive photomultiplier tubes. Finally, increasing the length of
the crystals in order to increase the sensitivity requires correction for the depth-
of-interaction (DOI), since otherwise the resulting parallax error will decrease the
resolution outside the center of the scanner (see the next chapter for more details
on DOI and ‘parallax error’).

Monolithic scintillation detectors can avoid these problems. These detectors
consist of a continuous scintillation crystal read out by position sensitive photo-
detectors. The Philips CPET system is, for example, based on this type of
detector [4], although the design of the detector is different from that of the
detector investigated in this thesis. The CPET does not have DOI correction.
Designs with DOI correction have also been investigated [19, 16, 6], but these
are either too complicated or have insufficient spatial resolution for small animal
PET.

The detectors investigated in this thesis consist of several cubic centimeters
of scintillating material coupled on one or more sides to avalanche photo-diode
(APD) arrays. Two examples of this detector are shown in figure 1.4. The coor-
dinates of the entry point of an incoming gamma photon are estimated from the
light distribution on the pixels of the APD arrays. Before estimation can take
place, the estimation algorithm has to be trained using measured light distribu-
tions produced by annihilation photons with known entry points.

Compared to detectors using arrays of small crystals, the proposed mono-
lithic scintillation detectors have several advantages. First of all, the detection
efficiency is increased because the dead space between the crystals in a crystal
array is avoided and because the dead space between the detector modules can
be minimized due to the small size of the APD arrays. They are also easier to
manufacture. Furthermore, integration with MRI devices may become possible
because of the use of APD arrays instead of PMTs. Measurements performed on
this type of detector have shown that the intrinsic detector resolution is compa-
rable to that of detectors using arrays of small crystals [42, 10, 11].
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The performance of these detectors is determined by a large number of factors,
such as the type of scintillator used, the type of APD array used, electronic noise,
the position estimation algorithm. A better understanding of the relation between
these factors and the performance will lead to a more efficient optimization of
the design. Therefore, the main research question of this work is:

What processes influence the performance of PET detector modules
based on monolithic scintillation crystals read out by avalanche photo-
diode arrays and in what way do they influence the performance?

The second part of the question will be quantified as much a possible. The
focus will be on the spatial resolution of the detectors. Although other perfor-
mance measures of the detectors are also relevant, as will be shown in the next
chapter, this part of the performance is most difficult to model. The sensitivity of
the detector is discussed in chapter 6. I will focus on the scintillator LSO/LYSO,
since this scintillator at present has the best properties for high resolution PET.
There are some other scintillators that are very promising, especially LaBr, but
this material was not yet available. As for the avalanche photo-diode array, I will
focus on the Hamamatsu S8550 APD array, since this is at the moment one of
the few APD arrays suitable for PET that is commercially available.

1.3 Monte Carlo simulations

Simulations are a very powerful tool to investigate the influence of design pa-
rameters on the performance of detectors. Of course, simulations will always be
a approximation of reality, but in simulations it is possible to vary parameters
that can not be varied in measurements. What would be the performance if we
would have no electronic noise? What would be the performance if radiation did
not scatter? Questions like this cannot be answered by measurements, but can
give valuable information on how the system works. Since the focus of this thesis
is to get a better understanding of the behaviour of the system, simulations will
be the main tool. Of course, the input will be based on measurements and the
output will be compared to measurements.

For simulating these detectors, I used Monte Carlo simulations. Monte Carlo
simulations are basically simulations that use random numbers (hence the name
Monte Carlo). Since transport of radiation is by nature a stochasticprocess1,
Monte Carlo simulations lend themselves very well to this type of problem.

An example: Suppose we have an annihilation photon with an energy of
511 keV traveling through a certain material. There are a number of interactions
this photon can have: it can Compton scatter or it can undergo photo-electric
absorption. Both types of interactions have a constant probability per distance
travelled in a given material. The simulation program determines for each of
the processes the (random) distance at which the interaction would occur. The
interaction with the shortest distance is selected. The photon is transported
the given distance and then undergoes the interaction, where new particles (e.g.

1Or can at least be modelled very accurately as a stochastic process.
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electrons, photons) may be created and the properties of the photon (e.g. energy,
direction) are modified. This is repeated until all particles are stopped.

1.4 Outline

Chapter 2 discusses detector modules for high-resolution PET and the perfor-
mance of these detectors in more depth and gives an overview of the high-
resolution PET detector modules that are currently on the market. This chapter
can be skipped by those who are already familiar with PET detectors. Chapters 3
through 6 are the main part of the thesis.

Chapter 3 shows how monolithic scintillator detectors can be modelled with
the Monte Carlo codes GEANT4 [5] and GATE [30]. For an accurate simulation
of these detectors a large number of parameters need to be specified accurately.
The chapter shows how these parameters can be determined and validates the
simulations against measurements. As part of this work, a module for perform-
ing optical simulations of scintillation detectors has been added to GATE. The
parameters determined in this chapter are used in the subsequent chapters.

In chapter 4 a statistical model of the measured signals is determined. This
model is used to derive the Cramér-Rao lower bound or minimum variance bound
on the spatial resolution. This lower bound gives the relation between the best
possible resolution that can be obtained the design parameters of the detector.
This gives valuable insight in the performance of the detector, which can be used
to optimize the design. It can furthermore be used to check if the position estima-
tion algorithm is performing well by comparing the measured spatial resolution
to the lower bound.

The spatial resolution of PET detectors is usually measured by measuring
the point spread function (PSF), which gives the probability distribution of the
measured position around the true position. The shape of the PSF depends on
the properties of the detector and the estimation algorithm. Chapter 5 gives a
model for the measured PSF.

Until chapter 6, all chapters focus on the performance of a single detector
module. In chapter 6 the measured properties of such a detector module are used
in a simulation of a complete small animal scanner based on monolithic scintillator
detectors. The sensitivity, count rate performance and spatial resolution of such
a scanner is investigated.



8 CHAPTER 1. INTRODUCTION



CHAPTER 2

PET detectors

This chapter first describes the properties that a good PET detector should
have. Subsequently an overview of existing designs is given. Finally, a de-
scription of the proposed detector design is given: the monolithic scintillation
detector.

2.1 Introduction

PET scanners usually consist of one or more rings of detectors. In this section
we will discuss what a good detector module has to do, the limitations of de-
tectors and what designs are being used at the moment with their advantages
and disadvantages. Finally, we will discuss how monolithic scintillation detectors
work.

In order to determine what a detector has to do, we first need to determine
what a PET scanner has to do. With a PET scanner, the distribution of a
radiotracer inside a body is determined. We would like to have this distribution
with a high resolution, so that we may look at the concentration of tracer in very
small volumes, with a high accuracy and a high precision.

2.1.1 Spatial resolution

The spatial resolution of a scanner determines how close the LOR passes the
molecule which emitted the primary positron. A number of factors contribute to
this spatial resolution. A first factor is the positron range. After being emitted
the positron travels through the material until it is almost completely stopped.
At that point the probability of annihilation with an electron increases strongly.
The range the positron travels depends on the primary energy and therefore on
the isotope used (see table 2.1).

9
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Table 2.1: Properties of common isotopes used in PET [66].

Isotope 11C 13N 15O 18F 68Ga 82Rb

Half life (minutes) 20.3 9.97 2.07 109.7 68.3 1.3
Maximum β+ energy (MeV) 0.96 1.19 1.70 0.64 1.90 3.15
Radial range in water (mm)
50% absorption 1.11 1.42 1.49 1.02 1.68 1.69
90% absorption 2.19 2.78 2.57 1.80 3.95 5.80

A second resolution limiting factor is the acollinearity of the two annihilation
photons. The positron will have lost most of its energy when it annihilates;
however, the electron, being bound to an atom, will have momentum. From the
conservation of momentum it then follows that the annihilation photons will not
have exactly opposite directions. Since it is the electron that has the momentum,
this deviation from opposite directions depends on the material. It is usually
around 0.5◦ FWHM. More information on this angle can be found in chapter 3.
The distance of the LOR from the annihilation position depends on the radius of
the scanner and the position of the annihilation according to

εacoll =
r1r2

r1 + r2
sin ϕacoll ϕacoll → 0, (2.1)

where r1 and r2 are the distances of the first and second annihilation photon
to their respective detectors, and ϕacoll is the acollinearity angle. This error is
largest in the center of the scanner. For a typical small-animal scanner diameter
of 12 cm, this results in a acollinearity contribution of approximately 0.25 mm.

The spatial resolution is furthermore limited by the fact that it is not possible
to determine exactly where each of the annihilation photons entered the detectors.
The reasons for this are one of the main topics of the thesis and will be discussed
in more depth later. The spread of the estimated entry point around the true
entry point is called the line spread function (LSF), when we look at only one
coordinate, or the point spread function (PSF), when we look at both coordinates.
Usually the FWHM and FWTM of these functions are used to specify the detector
resolution.

Combining the contributions mentioned above, the spatial resolution in the
center of the scanner can be written as

ε ≈
√

εspat

2
+

(
sin 0.5◦

4
D

)2

+ r2
positron (2.2)

where εspat is the detector resolution in FWHM of the LSF, D the diameter of
the scanner, and rpositron the FWHM of the positron range distribution. Only
the detector resolution term can be improved upon by the detector design. The
other terms are largely fixed and therefore impose a limit on the spatial resolution
achievable with PET.

Another cause of resolution loss is the parallax error. Most current PET
detector designs use small long scintillation crystals to determine the entry point



2.1. INTRODUCTION 11

e e

Figure 2.1: The parallax error. e is the error between the entry point of the
photon in the detector and the centre of the crystal in which the photon is detected.

of the annihilation photons. The entry point is determined by the scintillation
crystal in which the annihilation photon was detected (see figure 2.1). When the
annihilation photon enters the detector under an angle, the difference or error
between the entry point of the photon and the center of the scintillation crystal
becomes larger. The further away from the center of the scanner the annihilation
took place, the larger the incident angles of the annihilation photons become.
Therefore, in most designs the resolution becomes worse further away from the
center of the scanner.

The parallax error can be avoided in two ways. In the first method, also
the depth at which the annihilation photon was absorbed in the detector is de-
termined from the signals that come from the detector. In the second method,
knowledge of the incident angle is used in combination with the signals to deter-
mine the entry point directly. The incident angle can be determined from the
position at which the second annihilation photon was absorbed.

2.1.2 Signal to noise ratio

In principle we want to know the activity of the tracer in each voxel as accurately
as possible. After reconstruction of the image, we have an estimate of the number
of annihilations in each voxel. As the measurement is based on a counting process,
this number will follow approximately a Poisson distribution. Therefore, the
precision is limited by the number of LORs that are measured. The number
of measured LORs can be increased by increasing the activity, by measuring
longer, or by increasing the sensitivity1 of the scanner. An increase of activity
or measurement time is in practice not always possible, therefore, it is desirable
to increase the sensitivity of the scanner. The sensitivity is the probability of
detecting both photons of one annihilation (a true LOR or a ‘true’).

The sensitivity can be increased by increasing the solid angle of the scanner

1The sensitivity is the fraction of annihilation photon pairs emitted by the tracer that is
detected by the scanner.
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Figure 2.2: The left image shows scatter, the right randoms. The solid lines
are the trajectories of the annihilation photons, the dotted line is the resulting
line-of-response.

with respect to the subject and by increasing the detector efficiency, which is the
probability that a photon is detected given that the photon passes through the
detector. Since two annihilation photons have to be detected to have a LOR, the
sensitivity increases with the cube of the detector efficiency. When the activity is
high, it can happen that a photon is detected by a detector, while this detector
is not yet finished with processing the previous event. These events are usually
lost, therefore decreasing the detector efficiency. The time between the detection
of one event till the moment the detector is ready to accept the next event is
called the dead time2.

Another problem is that measured LORs do not always pass through the voxel
in which the annihilation took place. In this case, both the accuracy and the
precision are affected. This can be caused by the limited spatial resolution of the
detector. However, in that case the measured LOR will usually still be close to the
true LOR. Scatter and randoms have a much stronger effect. Scatter occurs when
one or both of the annihilation photons is scattered inside the subject and both
are detected by the scanner. The photons will still be in coincidence, however,
the measured LOR is no longer correct. Through scattering the annihilation
photons loose energy. Therefore, when the energy resolution of the detector
is high enough, scatters can be detected. However, this only works when the
detector absorbs all energy of the annihilation photons.

Randoms occur when two photons are detected at almost the same time that
come from different annihilations3. Events that occur within a certain time win-
dow are considered to be from one annihilation. The width of this window is

2To be more specific: most scanners have multiple dead times on different levels of the
scanner, e.g. detector level, module (containing multiple detectors) level, etc.

3When more than two photons are detected at the same time, it is known that random events
have occurred. Most scanners ignore these events. However, some other method of dealing with
these events might be possible.
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determined largely by the timing resolution (the precision with which the time of
an interaction inside the detector can be determined) of the detector. Decreasing
the width of the timing window will decrease the number of randoms, but at the
expense of sensitivity. Increasing the sensitivity of the scanner and the activity
will also increase the probability of randoms.

Fortunately, it is possible to correct the image for the randoms and the scatter.
Unfortunately, this introduces noise in the image. The total signal-to-noise ratio
inside a voxel can be shown to be proportional to [72]

NEC =
T 2

T + S + 2kR
(2.3)

where NEC is the number of noise equivalent counts, and T is the number of
trues, R the number of randoms, S the number of scatters, and k the ratio of the
diameter of the subject to the diameter of the field-of-view (FOV) of the scanner.
It is more common to use rates (events per second), which the gives the noise
equivalent count rate (NECR).

2.1.3 Summary

Summarizing, we want our detectors to have:

High detector resolution Increases the spatial resolution in the image. In
order to have good spatial resolution away from the center of the scanner
the detector also needs to correct for the DOI.

High efficiency Increases the number of measured LORs and therefore increases
the signal. However, also the noise (randoms and scatters) increases.

Good timing resolution Decreases the noise in the image by reducing the ran-
doms.

Good energy resolution Decreases the noise in the image by reducing the
scatters.

Small dead time Increases the detector efficiency for high activities. Higher
activities can be used.

2.2 Existing Designs

In this section we will discuss a number of existing designs for small-animal PET
scanner. Where possible the following performance parameters of the scanners
are given: the trans-axial resolution of a point or line source in the center of the
scanner determined using filtered back-projection (FPB), the sensitivity (number
of detected LORs per second divided by the activity of the source) of the scanner
measured using a point source in the center of the scanner, and the energy reso-
lution of the detectors. Most current designs have only limited DOI correction.
Therefore, we will also discuss different methods of DOI correction.
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2.2.1 Designs for small animal applications

MicroPET R4

The microPET systems are based on a design from UCLA [15]. The scanner was
commercialized by Concorde Microsystems which has recently been taken over
by Siemens. The microPET R4 is a 4 ring system designed for rodents and has
been evaluated by C. Knoess et al. [35].

Since it is a system for rodents the ring diameter is 148 mm (animal port
120 mm). The axial FOV is 78 mm. The detectors consist of a 19×19×10 mm3

LSO crystal sawed into a 8×8 array with 9 mm deep cuts. The cuts are filled
with reflective material. The size of the pixels is 2.2×2.2 mm with a pitch of
2.45 mm. They are coupled to a position-sensitive PMT using optical fibers to
make close packing of the detectors possible. There are 24 mm detector modules
in a ring.

The measured image resolution in the center is 1.85 mm FWHM in axial
direction and 1.66 mm in trans-axial direction (measured with a 1 mm diameter
22Na point source using FORE+2D-FBP reconstruction and an energy window of
350–750 keV). The maximum sensitivity is 4.37% for a point source in the center
of the FOV (energy window 250–750 keV). The maximum NECR is 174 kcps for
a mouse phantom and 93 kcps for a rat phantom (using a coincidence window of
6 ns). The average energy resolution is 23% and varies between 17 and 36% per
detector.

MicroPET P4

This scanner uses the same detectors as the microPET R4, but since it is designed
for primates is has a ring diameter of 260 mm and used 42 detector modules in a
ring. It has been evaluated by Y.C. Tai at al. [75]. The timing resolution is 3.2 ns,
the average energy resolution 26%. The image resolution (using a ∅0.5 mm 22Na
point source and FORE+2D-FBP reconstruction) drops from 1.8 mm FWHM to
3 mm, 2.4 mm and 2.6 mm at four centimeter from the center in radial, tangential
and axial direction, respectively. The sensitivity at the center is 2.25% and the
NECR peaks at 100 to 290 kcps (using a time window of 10 ns and an energy
window of 250–750 keV).

MicroPET II

The microPET II is designed for a higher resolution than the above two microPET
systems. It has been evaluated by Y.C. Tai at al. [76]. The scanner consists of 90
detector modules in three rings, resulting in a ring diameter of 16 cm and an axial
length of 4.9 cm. The detector is in principle the same, only the crystal consists
of 14×14 LSO crystals measuring 0.975×0.975×12.5 mm3. The crystal pitch is
1.15 mm. The absolute sensitivity at the center of the FOV is 2.26% (using an
energy window of 250–750 keV and a coincidence window of 10 ns). The average
intrinsic spatial resolution of the detectors is 1.21 mm FWHM (measured using a
0.5 mm 22Na source) and varies from 1.01 mm to 1.34 mm. The image resolution
(using a ∅250 µm 18F needle source and FORE+2D-FBP) is 0.83 mm FWHM
in the center and drops to 1.47 mm, 1.17 mm, 1.42 mm (radial, tangential, axial)
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at one centimeter from the center. The mean energy resolution is 42% and varies
from 28% to 75% per detector.

MicroPET Focus

The microPET Focus is one of the most recent scanners [77]. The scanner has
168 detectors in 4 rings. The ring diameter is 25.8 cm and the axial length of
the scanner is 7.6 cm. Each detector consists of 12×12 1.51×1.51×10 mm3 LSO
crystals with a pitch of 1.59 mm. Compared to the previous scanners the dead
space between the pixels is reduced strongly. Therefore it can have a higher
sensitivity as the microPET R4, even though it has approximately the same
ring diameter and length. The absolute sensitivity is 3.4% at the center (250–
750 keV energy window, 10 ns time window). The NECR reaches 645 kcps
for a mouse phantom (250–750 keV energy window, 6 ns time window). The
average energy resolution of the detectors is 18.5%. The image resolution in the
center is 1.3 mm FWHM in radial and tangential direction and 1.45 mm in axial
direction (0.5 mm 22Na source, energy window of 250–750 keV, reconstruction
using FORE+2D-FBP). The image resolution remains below 1.80 mm FWHM
at 1 cm radial offset.

ClearPET

The ClearPET scanner is developed by the Crystal Clear Collaboration and com-
prises actually a number of slightly different scanners. The results presented here
are for the ClearPET-Neuro developed at Forschungszentrum Jülich [87, 34], since
only results for that scanner have been published. Since the ClearPET-Neuro is
meant to be used for both rodents and primates (monkeys), the diameter of the
scanner can be varied from 13 to 30 cm by moving the detectors in the radial
direction.

The axial length of the scanner is 11 cm. The ring consists of 20 detector
modules. Each detector module contains four detector modules. Every other
module is shifted by 7 mm to obtain a more uniform sensitivity. The detectors
are phoswich detectors: the inside layer is LuYAP and the outside layer LSO. The
two layers can be distinguished by the different decay times of the scintillators.
Each layer consists of 8×8 crystals with a pitch of 2.3 mm. The crystals are
coupled to a position-sensitive PMT using a mask that corrects the gain non-
uniformities of the PMT channels.

The modules have an effective deadtime of 36 ns and a timing resolution of
2 ns. The average energy resolution of the LuYAP layer is 24.3% and that of the
LSO layer is 23.2%. The intrinsic spatial resolution of the detectors is 1.48 mm.
The reconstructed image resolution in the center is 1.64 mm FWHM, which drops
to 1.7 mm at 4 cm from the center (measured using a ∅0.5 mm 18F line source,
an energy window of 350–650 keV and 3D-OSEM reconstruction). The simulated
sensitivity is 4.2% [65] for the smallest diameter.
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a

b

a

b1 b2

a1 a2

d1

d2
(a) (b) (c) (d)

Figure 2.3: Some detector designs with depth-of-interaction determination: (a)
Phoswich, (b) double-sided readout, (c) and (d) light sharing.

MADPET-II

The MADPET-II is developed at the Technische Universität München [49]. The
unique elements in this scanner are the detector modules that consist of two
layers of LSO pixels each read out by a Hamamatsu S8550 APD array. The
layers consist of 8×4 2×2×6 mm3 and 2×2×8 mm3 crystals for the front and
back layer, respectively. Because of the two layers, this detector has depth-of-
interaction correction. Each individual crystal is read out by a pixel of the APD
array. The pitch between the pixels is 2.3 mm.

The scanner consists of a ring of 18 detector modules and has an inner diame-
ter of 71 mm and an axial FOV of 18 mm. The energy resolution of the modules
is between 20.2% and 23.9%; the overall timing resolution is 10.2 ns. The system
resolution is determined from Monte Carlo simulations and is 1.1 mm FWHM in
the center of the scanner.

HIDAC

While all previous designs use small scintillator crystals coupled to light detec-
tors [32], the HIDAC uses gas filled chambers. Because of this design a very
high resolution is possible and the detector also has DOI correction. A disadvan-
tage is the low sensitivity. A reconstructed image resolution is 1.21 mm FWHM
trans-axial and 1.31 mm FWHM axial for a ∅0.5 mm 22Na point source (using
3D-OSEM reconstruction). The sensitivity is 0.9% using a 22Na point source in
the center of the scanner.
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2.2.2 Designs with depth-of-interaction determination

Phoswich

The scintillator pixels in phoswich detectors are divided into multiple layers of
different scintillator materials (see figure 2.3(a)). The materials need to be chosen
in such a way, that the light of the top layers can pass through the bottom
layers, and that the properties of the light pulses coming from the materials are
sufficiently different, so that the layer in which the interaction took place can be
determined from the shape of the light pulse. Usually the decay time of the light
pulse is used to determine the layer. For example, the ClearPET (see 2.2.1) uses
a layer LSO on top of a layer LuYAP [58]. Other options that were investigated
are LSO and LYSO [63], LSO, GSO and BGO [69], and three layers of GSO with
different cerium concentrations [84].

Using phoswich the DOI resolution can be improved by only a factor two or
three. However, this can already give a substantial improvement of the uniformity
of the spatial resolution. Since (1) the amount of light coming from the different
layers will usually differ, and (2) the pulse shapes will also differ (phoswich would
not work otherwise), the electronic processing of the pulses is more difficult.

Variation of light yield

This method is somewhat similar to the phoswich method. In this case, the
amount of light reaching the light detector depends on the distance of the inter-
action from the light detector. For example, R. MacDonald et al. [46, 45] use 4
layers of the same crystal. Because of the optical coupling between the layers the
fraction of light reaching the detector depends on the layer. It is also possible to
treat the surface of the crystal pixels [52, 56]. A big disadvantage of this method
is that it depends on light loss, while one would like to collect all of the light in
order to get a good timing and energy resolution.

Double-sided readout

By using two light detectors to read out the scintillator pixels on both ends, the
scintillation light is divided over the two light detectors (see figure 2.3(b)). When
the surfaces of the pixels are correctly treated [71], the amount of light reaching
each side depends on the depth of the interaction inside the crystal. The ratio

R =
N1 −N2

N1 + N2
,

where N1 and N2 are the amount of light detected by the front and back detector,
can be used to determine the depth (large values are close to the top, small values
close to the bottom).

This type of detector can give continuous information on the DOI and several
groups are investigating this type of design [21, 26, 28, 27, 29]. It is also possible
to put the pixels in axial direction instead of the radial direction [9]. The depth
inside the crystal then gives the radial coordinate and the pixel determines the
tangential coordinate.
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Light sharing

By sharing the light between pixels in the top part of the detector and not in the
bottom part of the detector, there will be multiple pixels giving a signal when
the event occurred in the top part of the detector and only one pixel giving a
signal when the event occurred in the bottom part of the detector. One way of
doing this is to have two layers of crystals, where the top layer is shifted half a
layer with respect to the bottom layer [23] (see figure 2.3(c)). The same effect
can also be achieved by sawing the top part of a monolithic block into pixels and
doing the same for the bottom part with half a pixel shift [85]. An other method
is by partially leaving away the reflectors that are usually around the pixels [53]
(see figure 2.3(d)). By doing this in two directions, it is possible to separate four
layers [60, 62, 78, 86].

Other designs

T. A. DeVol et al. [20] investigated a design similar to double sided readout.
However, the second detector was not attached to the front of the detector but to
the side of the detector. S. McCallum [48] et al. use multiple layers of LSO slices
with position sensitive photo-diodes sandwiched in between. This DOI method
looks like the method that is used in the MADPET (see 2.2.1), where two layers
of detectors are used.

2.3 Monolithic scintillation detectors

2.3.1 Introduction

All scintillation detectors discussed above use small scintillation crystals. In these
designs, the interaction position of a gamma photon is determined by funding
the crystal in which the interaction took place. The spatial resolution of these
detectors is therefore determined largely by the size of the crystals and can in
principle be improved by decreasing the size of the crystals. However, this is
limited: when the crystal size is decreased the probability of having interactions
in multiple crystals from one gamma photon increases, and the amount of dead
space between the crystals needed to optically separate the crystals increases.
For eample, in the ClearPET and MADPET-II detectors approximately 15% of
the detector volume does not consist of scintillating material; for the MicroPET
Focus this still is approximately 9%.

An alternative to designs based on arrays of small crystals, are monolithic
scintillation detectors. These detectors consist of a relatively large scintillation
crystal coupled to one or more position sensitive light detectors. The interaction
position of a gamma photon is determined from the distribution of the scintilla-
tion light over the light detectors. Since the dead space is minimized in this design
the sensitivity can be much higher. The shape of the light distribution can also
give information about the depth at which the interaction occured. Therefore,
this design can correct for the DOI.

In the design investigated in this work the light detector is a position sensitive
APD array. This has the advantage over position sensitive PMTs (PS-PMTs) that
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(a) (b)

Figure 2.4: Two examples of monolithic scintillation detectors. The photons
enter the detector from the top. Left a 20×10×10 mm3 LYSO crystal read out
by a Hamamatsu S8550 APD array that is attached to the side at which the beam
enters the crystal, and right a 20×10×20 mm3 LYSO crystal read out by two
APD arrays.

the space between the detector modules in the detector ring can be very small
since the detectors can be much more compact, thereby increasing the sensitivity
of the scanner. Furthermore, the gain uniformity of the APD arrays is much
better than that of PS-PMTs, where there can be gain differences in the order
of a factor two or more. The APD array that will be focussed upon is the S8550
array from Hamamatsu.

The scintillators investigated in this work are LSO and LYSO. The properties
of the two are practically equal. These scintillators have good light yield, with a
high density allowing for high sensitivity, and they are not hygroscopic.

Figure 2.4 shows the two main designs investigated in this work.

2.3.2 Position estimation

A disadvantage of this type of detector is that the position estimation is much
more complex than in designs based on small scintillator crystals. In designs
based on an array of small crystals the position is determined simply by the
identification (id) of the crystal in which the interaction occurs. In monolithic
scintillation detectors the position needs to be estimated from the light distribu-
tion. In theory it might be possible to derive a function that describes the light
distribution as a function of the interaction position. However, in practice there
will always be differences between detectors, e.g. the light yield of scintillators
vary from crystal to crystal, the gains of the amplifiers are not uniform. Further-
more, because of Compton scatter, fluorescence, etc., the annihilation photon
does not interact in one point inside the crystal but interacts in multiple points.
The energy of the photon is therefore not deposited in one point of which we
might estimate the position but in multiple areas (see chapter 5 for the influence
this has on the spatial resolution). Therefore, in practice is will be very difficult
to build a model that can predict the interaction position(s) from the measured
light distribution.

As an alternative, we use an estimation algorithm that is trained with mea-
sured light distributions. During training the algorithm is fed with a large number
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Figure 2.5: The DOI correction: the entry point of an annihilation photon
absorbed at a, is estimated either at a1 or a2 depending on the incident angle
θ1 = 0 or θ2. Likewise for b.

of light distributions of which the entry point is known. When the algorithm is
trained, it can estimate the entry point of a light distribution of which the entry
point is unknown. Since each detector is trained, this algorithm is robust to
differences between different detectors. It does not depend on possible incorrect
a priori assumptions.

The training is performed by scanning a beam of 511 keV photons in small
steps over the detector and collecting a large number of light distributions at every
beam position. Since only the x and y-coordinate (see figure 2.4) of the entry
point of the beam is known, the estimation algorithm can only estimate the entry
point. However, by using a separately trained algorithm for different incident
angles, the algorithm can still correct for the DOI. When an event is detected,
the incident angle of the annihilation photon is estimated from the position of the
detector that has detected the second annihilation photon. This angle is then
used to select the trained algorithm. The entry point is then estimated using
this algorithm. If necessary, this entry point can then be used to obtain a better
estimate of the incident angle after which the entry point is re-estimated.

Figure 2.5 illustrates how the DOI correction works. Suppose we have an
annihilation photon that is absorbed at a and one that is absorbed at b. Since
point a has a different distance to the APD array than b the light distribution
belonging to a is different to that belonging to b. The estimation algorithm
can therefore distinguish between the two. When the incident angle is 0, the
estimation algorithm will estimate a1 and b1 as entry points. When the incident
angle is θ2, the algorithm will also use training data with this incident angle.
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Therefore, the algorithm will estimate entry points a2 and b2.
Different possibilities exist for the algorithm to use. An early design using

monolithic scintillator detectors for PET used neural networks (NN) [19]. This
is a very practical solution, since NN are fast. However, for the research we are
performing, NN have disadvantages. First, since there are a lot of design param-
eters, the performance of NN tends to depend somewhat on the experience of
the person implementing the NN. Second, it is not easy to determine in individ-
ual cases why NN made a certain decision. We wanted a method of which the
decision making process is easier to follow.

The algorithm that is used in this work is the L nearest neighbour algorithm.
The training data (light distributions with their entry points) is stored in memory.
A light distribution of which the entry point needs to be estimated is compared in
a least squares sense to all distributions in the training set. The L distributions in
the training set that have the smallest least squares value are selected. The entry
point coordinate occurs most frequently among these L distributions is used as
an estimator for the entry point of the light distribution of which the entry point
needed to be estimated. In case there are multiple entry points that are most
frequent, the one with the smallest least squares value is chosen [83].

In case the number of light distributions in the training set (N) goes to infinity
and L also goes to infinity with L/N → 0 it can be shown that this algorithm
gives optimal results [83].



CHAPTER 3

Optical simulation of monolithic scintillator detectors using
GATE/GEANT41

Much research is being conducted on position-sensitive scintillation detec-
tors for medical imaging, particularly for emission tomography. Monte Carlo
simulations play an essential role in many of these research activities. As
the scintillation process, the transport of scintillation photons through the
crystal(s), as well as the conversion of these photons into electronic signals
have a major influence on the detector performance, all of these processes
generally need to be incorporated in the model to obtain accurate results.
In this work the optical and scintillation models of the GEANT4 simulation
toolkit are validated by comparing simulations and measurements on mono-
lithic scintillator detectors for high resolution positron emission tomography
(PET). We have furthermore made the GEANT4 optical models available
within the user-friendly GATE simulation platform. This work demonstrates
the use of these models and shows how the necessary optical input param-
eters can be determined with sufficient accuracy. The results show that the
optical physics models of GATE/GEANT4 enable accurate prediction of the
spatial and energy resolution of monolithic scintillator PET detectors.

3.1 Introduction

Much research is being conducted on position-sensitive scintillation detectors for
medical imaging, particularly for emission tomography [38]. Typical research ob-
jectives include improving the performance of existing imaging modalities such
as single-photon emission computed tomography (SPECT) and positron emis-
sion tomography (PET), developing novel devices for specific applications (e.g.

1This chapter has been submitted to Physics in Medicine and Biology as: D. J. van der Laan,
D. R. Schaart, M. C. Maas, F. J. Beekman, P. Bruyndonckx, and C. W. E. van Eijk, ‘Optical
simulation of monolithic scintillator detectors using GATE/GEANT4’.
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small-animal tomographs) [77, 49, 88, 68, 14], and/or developing hybrid imaging
modalities such as PET/MRI [12, 33, 70].

Monte Carlo simulations play an essential role in many of these research ac-
tivities. In such simulations many design parameters can be varied much more
easily than in measurements. Moreover, simulations can allow one to perform
‘experiments’ that would be impossible in reality. Thus, Monte Carlo simula-
tions are very helpful to better understand the factors that determine detector
performance, making optimization of the detector design more efficient.

Optical photons can be seen as the primary information carriers in any posi-
tion sensitive scintillation detector: the scintillation process, the transport of the
scintillation photons through the crystal(s) towards the light sensor(s), and the
conversion of these photons into electronic signals all have a major influence on
the detector performance. Thus, all of these physical processes generally need to
be taken into account in a Monte Carlo model in order to obtain accurate results.

Recently the GATE Monte-Carlo simulation platform [30], which makes a
wide range of GEANT4 [5] physics models available through a user-friendly,
scripted interface, has come into widespread use in the field of nuclear medicine for
simulating PET and SPECT devices. GEANT4 includes models for scintillation
and optical transport processes that have been derived from DETECT2000 [37].
Up to now, these models were not available in GATE.

The objectives of the present work are threefold. A first aim is to validate
the use of GEANT4 optical models for simulating position-sensitive scintillation
detectors, through comparison of simulation and measurement. As a second
objective, we have made the GEANT4 optical and scintillation models available
within GATE. The third goal is to demonstrate the use of these optical models
and to show how the corresponding input parameters can be determined with
sufficient accuracy. As the present work was conducted within the scope of a
research program on monolithic scintillator detectors for high resolution PET [11,
43], we develop a detailed Monte Carlo model of these detectors and compare the
predicted spatial and energy resolutions to experimental results.

3.2 Methods and materials

3.2.1 Description of the PET detector

The design and operating principle of the monolithic PET detectors investigated
in this work have been described in detail elsewhere [44, 40]. Here, we briefly
summarize the features relevant for the present study.

Two detector geometries have been investigated. Figure 3.1a shows one of the
detectors, consisting of a 20 mm × 10 mm × 10 mm LYSO:Ce crystal (Crystal
Photonics) read out by a position-sensitive Hamamatsu S8550SPL APD array
optically coupled to the crystal front surface, i.e., the surface at which annihilation
photons enter the crystal, by means of Meltmount (Cargille Laboratories, Cedar
Grove, NJ, USA). We have shown earlier that this type of detector performs
better with the light sensor placed in such front-side readout (FSR) geometry
than with conventional back-side readout (BSR), as the majority of the detected
annihilation photons interact in the front half of the crystal [43]. The second
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Figure 3.1: Schematic representation of the detectors investigated in this work:
(a) a 20 mm × 10 mm × 10 mm LYSO:Ce crystal read out by a Hamamatsu
S8550SPL APD array on the front surface (FSR geometry), and (b) a 20 mm ×
10 mm × 20 mm crystal read out on the front and back surfaces (DSR geometry).
In both drawings the arrow indicates the path of an annihilation photon incident
on the detector front surface. The coordinate system used to specify the entry
point and the angle of incidence is also indicated.

detector is a 20 mm × 10 mm × 20 mm LYSO:Ce crystal read out by two APD
arrays in double-sided readout (DSR) geometry, see figure 3.1b. Both crystals
have optically polished surfaces and are wrapped in highly reflective Teflon tape.
The Hamamatsu S8550SPL APD array consists of 4 × 8 pixels, measuring 1.6 mm
× 1.6 mm each and spaced 2.3 mm (center-to-center) apart. The total surface of
the APD array measures 19.5 mm × 11.2 mm.

The entry points of detected annihilation photons (‘events’) on the front sur-
face of the crystal are estimated from the measured scintillation light distribu-
tion incident on the APD arrays [40]. The position estimation algorithm uses
a reference set of light distributions from a large number of events with known
entry points. The light distribution of an unknown event is compared using least
squares to each of the distributions in the reference set. The L best fitting distri-
butions (‘nearest neighbours’) are selected and the entry point most frequently
occurring among these distribution is assigned to the unknown event.

3.2.2 Simulation parameters

Accurate Monte Carlo simulation of a PET scintillation detector requires that all
relevant physical processes, such as the interaction of annihilation photons within
the crystal, the scintillation process, the transport of scintillation photons to the
light sensor, the conversion of the light signals into electronic signals, and the in-
fluence of the readout electronics, are properly modelled. In general this requires
knowledge of a large number of detector properties that are used as input pa-
rameters for the simulation. Some of the parameters needed for the present work
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could be obtained from previous studies or from literature, see section 3.1. The
remaining optical input parameters were determined experimentally as described
in the following.

Properties of the scintillator

Measurements were performed on LYSO:Ce crystals from Crystal Photonics. The
absolute light yield, i.e., the expectation value of the number of photons emitted
per unit energy deposited in the crystal, of a 20 mm × 10 mm × 10 mm crystal
was determined on a calibrated photo-multiplier tube (PMT) setup, using the
method described by J.T.M. de Haas et al. [41]. The crystal was irradiated
with a 137Cs source, emitting gamma photons with energy Eγ = 662 keV. The
intrinsic energy resolution was determined using the same measurement setup
by correcting the measured energy resolution ∆Em/Em for the influences of the
excess noise factor and the photon detection efficiency (PDE) of the PMT [22].

The intrinsic emission spectrum of a 20 mm × 10 mm × 10 mm crystal was
measured in reflection (i.e. the light emission is measured at the irradiated side)
using an X-ray tube with a Cu anode operated at 60 kV and 25 mA. The setup
used for these measurements has been described by M. D. Birowosuto et al. [8].

The optical absorption length λa and the optical scattering length λs were
determined from transmission measurements on a 20 mm thick LYSO:Ce crystal.
The measured attenuation length was corrected for reflections at the two crystal-
air interfaces. The resulting total bulk attenuation length λtot can be assumed
to be due to (elastic) scattering λs and absorption λa:

1
λtot

=
1
λs

+
1
λa

. (3.1)

According to C. Moisan et al. [57], it can be assumed that λtot = λs at the peak
emission wavelength of LYSO:Ce (i.e., at 420 nm). This is equivalent to stating
that there are no absorption centres other than Ce3+ ions within the crystal, as
Ce3+ absorption in LYSO:Ce occurs at wavelengths below about ∼400 nm only.
The measured transmission spectrum indeed appeared to exhibit a horizontal
‘plateau’ at wavelengths > 400 nm. Assuming that λtot = λs at each of these
wavelengths, a straight line was fitted through this plateau, from which λs was
derived for all wavelengths between 190 nm and 600 nm (i.e., covering the entire
LYSO:Ce emission spectrum). The remaining attenuation at wavelengths < 400
nm was assumed to be entirely due to absorption.

Other optical parameters

The relevant optical properties of the active area (pixels) of the S8550SPL APD
array could be obtained from literature, see section 3.3.1. However, the re-
flectance rd of the dead area of the APD array could not readily be obtained.
Furthermore, different values (ranging from 0.90 to 0.99) are found for the re-
flectance rPTFE of the Teflon tape around the crystal [64, 54]. Therefore, rd and
rPTFE were determined as follows.

Pulse-height measurements were performed on a polished, trapezoidal LYSO:Ce
crystal. The parallel, rectangular top and bottom surfaces of this crystal measure
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11.5 mm × 19.5 mm and 15.4 mm × 19.5 mm, respectively. The crystal height
(distance between top and bottom surfaces) equals 20 mm. A single APD array
was optically coupled to the 19.5 mm × 11.5 mm top surface. The crystal was
irradiated with a broad 511 keV photon beam perpendicularly incident on the
15.4 mm × 19.5 mm bottom surface, and pulse-height spectra were acquired by
electronically adding up the signals of the 32 APD pixels. The number of pri-
mary electron-hole pairs generated by scintillation photons per event was derived
from the position of the photo-peak, using the known gains of the spectroscopic
amplifier, the preamplifiers, and the APD array.

The pulse-height measurements, with and without Teflon tape wrapped around
the crystal, were replicated in simulations of the same detector geometry in which
the values of rd and rPTFE were varied until the same electron-hole pair yield
was obtained.

In order to reduce the dependencies between the validation measurements and
the determination of the optical parameters, a different crystal shape and read
out scheme was used during the determination of the optical parameters.

3.2.3 Spatial resolution measurements

The spatial resolution of the detectors was measured as described below in order
to compare the results with those obtained from simulation.

Setup

The setup used for the position resolution measurements has been described in
detail elsewhere [44]. Here, we only summarize the essential features.

The detectors are contained in a light-tight, temperature-controlled box, placed
on a computer-controlled XZΩ-stage for translating and rotating the detector. A
thin (<1 mm diameter) test beam of 511 keV photons is defined by placing the
detector under study in coincidence with a second detector, consisting of a ∅
19 mm × 35 mm BGO crystal mounted on a PMT, placed behind a 60 mm thick
lead collimator with a ∅ 5 mm opening. A ∅ 0.5 mm 22Na point source is placed
in between the two detectors. The distance lLY SO between the source and the
LYSO:Ce crystal and the distance lBGO between the source and the BGO crystal
together determine the beam diameter.

The 32 signals of each APD array are pre-amplified by Cremat CR-110 charge-
sensitive preamplifiers. Further amplification and shaping is provided by CAEN
N568BB 16-channel spectroscopy amplifiers, which are read out by 32-channel
peak-sensing ADCs (CAEN V785).

Test beam profile

Spatial resolution measurements performed in the above setup are affected by
the finite diameter of the 511 keV photon beam[40, 39]2. To accurately simulate
the experiments, the beam intensity profile must therefore be incorporated in

2[39] corresponds to chapter 5 in this thesis.
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the model. This is not trivial as the beam profile is determined by many fac-
tors and, since the beam diverges, the FWHM of the beam profile increases by
approximately 20% over 20 mm.

The beam intensity profile has been determined via detailed Monte Carlo
simulations of the measurement setup, taking into account the geometry of the
detectors, collimator and 22Na source, the positron range, and the acollinearity
of the annihilation photons emitted. The simulation was performed using both
GEANT4 [5] and GATE [30]. Further information on these simulations and the
experimental validation of the results are given elsewhere [39]3. As in that work,
we will characterize the beam diameter dbeam as the full width at half maximum
(FWHM) of the cross-sectional beam intensity profile at the crystal front surface.

Measurements

Spatial resolution measurements were performed by first recording a number of
nref = 1500 reference events at each of a linear array of beam positions spaced
0.25 mm apart along the x-axis of the detector (see figure 1 for the definition of the
coordinates). To determine the (one-dimensional) detector spatial response, the
entry point of each light distribution in the resulting data set was determined with
the position estimation algorithm described in section 2.1, using the remainder
of the events as reference data (leave-one-out approach) and taking only the
x-coordinate into consideration. The normalized histogram of the differences
between the estimated entry point and the beam position was then determined.
It is to be noted that this histogram still includes the influence of the test beam
diameter dbeam (see section 3.2.3).

3.2.4 Monte Carlo simulations

As stated in the introduction, this work aimed to validate the GEANT4 optical
and scintillation models and to make these models available in GATE. To this
end, simulations have been performed using version 4.8.2 of GEANT4. The
required functionality to perform these simulations via the user-friendly, scripted
user interface of GATE has been added to version 3.0 of the latter code. The
relevant GEANT4 settings are described below.

The following physics processes were used [2, 1]: G4LowEnergyCompton, G4-
LowEnergyRayleigh, G4LowEnergyPhoto-Electric, G4MultipleScattering, G4e-
Ionisation, G4eBremsstrahlung, G4OpScintillation, G4OpAbsorption, and G4-
OpBoundaryProcess, G4OpRayleigh. Here, processes starting with ‘G4Op’ in-
volve optical photons, those starting with ‘G4e’ and G4MultipleScattering involve
electrons, while the remaining three processes involve photons with ionizing en-
ergies.

The following data libraries were used: G4EMLOW 4.2 (i.e. the low-energy
electromagnetic (EM) package, containing data files for EM processes down to
about ∼250 eV), and G4RadioactiveDecay 3.1 (i.e. decay of unstable isotopes).
For the transport of electrons we used a range cut of 0.1 mm. This range cut is

3See chapter 5 of this thesis.
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Figure 3.2: Schematic representation of the simulated geometry of the 20 mm
× 10 mm × 10 mm LYSO:Ce crystal read out by one Hamamatsu S8550SPL
APD array on the front surface. Dimensions are not to scale.

translated into an energy cut for each material based on the density, the effective
atomic number, etc.

Figure 3.2 shows a schematic cross-section of one of the simulated detectors.
From top to bottom, we have the APD array, the epoxy coating of the APD array,
the Meltmount used to optically couple the APD to the crystal, and the LYSO
crystal. In the detector with two APD arrays in DSR geometry, this is followed by
another layer of Meltmount, epoxy, etc. The entire detector is contained within
an air volume. Some elementary properties of the different materials are given in
table 3.1. It is noted that the density and chemical composition of the thin Epoxy
and Meltmount layers are approximate, as they do not significantly influence the
present simulations.

We use the UNIFIED model in GEANT4 for modelling the reflection of pho-
tons at surfaces between two dielectric materials [61, 37, 1]. Different types of
surfaces are available, but we only use ground and ground-back-painted in this
work. Other types, such as polished surfaces, can be seen as special cases of these.
A ground surface is assumed to consist of small micro facets, whose normals have
small angles relative to the average surface normal. The distribution of these
angles is assumed to be Gaussian with mean 0 and standard deviation σα. This
is illustrated in figure 3.3. For example, a ground surface with σα equal to 0
is equivalent to a perfectly polished surface. The probability of reflection and
the angles of reflection and refraction follow from the direction of the photon,
the angle of the micro facet surface normal, and the refractive indices of the two
materials involved. The photon is therefore either reflected back into the original
volume or refracted into the next volume.

In case of the ground-back-painted surface, this next volume is considered to
be a paint layer of which the refractive index can be specified in the definition
of the surface. The paint layer reflects a specified proportion of the photons,
assuming Lambertian reflection. All other photons are absorbed. The reflected
photons reach a micro facet where they can again be reflected or refracted. This
process is repeated until the photon is either absorbed in the paint layer or
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Figure 3.3: The UNIFIED model using micro-facets to model the surface rough-
ness. In case of a ground-back-painted surface the outside of the volume is as-
sumed to be covered by a paint layer.

Table 3.1: Elementary properties of the materials used in the simulations.

Material Chemical composition Density (g/cm3) Refractive index Ref.

Air N0.76O0.23Ar0.01C0.00 1.29·10−3 1.00 a

Silicon Si1 2.33 - a

Epoxy C1H1O1 1.00 1.52 b

Meltmount C1H1O1 1.00 1.70 b

LYSO Lu2Si1O5 7.40 1.82 [51]

a From GATE data-file
b Refractive index provided by manufacturer. For chemical composition and density

see text.

reflected back into the original volume.

The interface between a dielectric material and a metal is treated somewhat
differently [1] from the dielectric-dielectric interface discussed above. As the
refractive index is not defined for metals, the probability of reflection has to be
specified. This is considered to be specular reflection at the micro-facet. Non-
reflected photons are absorbed in the metal.

The type, finish, and value of σα of each of the optical interfaces in figure 3.2
are given in table 3.2. Previous simulations have shown that the crystal surface
roughness has relatively little influence on the performance of our detectors [79].
It follows that this parameter is not very critical, so we have simply adopted
the value of the surface roughness parameter for polished crystal surfaces from
Moisan et al. [55], viz. σα = 0.1◦. The same value was used for the epoxy and
Meltmount surfaces, while the silicon surfaces of the APD array were assumed to
be perfectly flat (i.e., σα = 0◦). Other optical properties of the various materials
and surfaces are discussed in section 3.3.1.
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Table 3.2: Type and surface finish of each of the optical interfaces defined in
the simulations.

Optical interface Type Finish σα

Air-LYSO dielectric-dielectic ground backpainted 0.1
Air-Meltmount/epoxy dielectric-dielectic ground backpainted 0.1
Epoxy-APD dielectric-metal ground 0
Epoxy-APD pixels dielectric-metal ground 0
LYSO-Meltmount dielectric-dielectic ground 0.1
Meltmount-epoxy dielectric-dielectic ground 0.1

3.3 Results and discussion

3.3.1 Simulation parameters

We first discuss the various detector properties needed as input parameters for
our simulations. Details of the measurements performed to obtain some of these
parameters have been discussed in section 3.2.2.

Properties of the scintillator

The parameters needed to accurately model the LYSO:Ce scintillator in GEANT4 [1]
are the absolute light yield Ȳ , the FWHM intrinsic energy resolution ∆E/E, the
emission spectrum, the optical absorption length λa, the optical scattering length
λs, the refractive index RLY SO, and the surface roughness parameter σα that has
been explained in section 3.2.4. The values of RLY SO and σα have been given in
tables 3.1 and 3.2, respectively.

In GEANT4 the number of scintillation photons nph emitted upon absorption
of a gamma photon with energy Eγ is sampled from a normal distribution with
expectation value n̄ph = Eγ Ȳ . Furthermore, the variance in the number of
emitted scintillation photons is assumed to be proportional to the amount of
energy deposited:

var{nph} = α2n̄ph (3.2)

with the parameter α given by

α =
√

n̄ph

2.35
∆E

E
. (3.3)

Using the methods discussed in section 3.2.2, we found Ȳ = 26000 photons/MeV
and α = 4.4 corresponding to an intrinsic energy resolution ∆E/E = 9.0%
FWHM at 511 keV.

The solid curve in figure 3.4 shows the LYSO:Ce emission spectrum mea-
sured as described in section 3.2.2. The same figure also shows the absorption
length (dashed curve) and the scattering length (dashed-dotted curve) that were
determined via the method described in the same section.
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Figure 3.4: The LYSO:Ce normalized emission spectrum (solid curve, right y-
axis), optical absorption length λa (dashed curve, left y-axis), scattering length
λs (dashed-dotted curve, left y-axis), and the reflectance ra of the APD pixels of
the Hamamatsu S8550SPL APD array (dotted curve, right y-axis).

Properties of the APD array

To model the APD array, we need the refractive index of the epoxy coating Repoxy,
the reflectance ra of the active regions of the APD array (i.e., the APD pixels),
the reflectance rd of the dead area between the pixels, the internal quantum
efficiency ηi of the APD pixels (i.e., the probability that absorption of an optical
photon results in an electron-hole pair that is amplified), the APD excess noise
factor J , the APD gain M , and the total equivalent noise charge (ENC) of the
detector-amplifier system σ2

e .
The external quantum efficiency ηe of the pixels of the Hamamatsu S8550SPL

APD array has been reported by Mosset et al. [59]. As their experiments were
performed in air, three factors determine the measured value of ηe, viz. ηi, ra,
and the reflection repoxy at the epoxy-air interface. Taking first-, second-, and
higher-order reflections into consideration, it can be shown that, at perpendicular
incidence:

ηe =
(1− rd)(1− repoxy)

1− rarepoxy
ηi. (3.4)

The value of repoxy is easily calculated from the refractive index of the epoxy
Repoxy = 1.52 (see table 3.1). Reflectance measurements on a variety of photo-
diodes, which have a similar surface as APDs, showed that the internal quantum
efficiency is practically equal to one for wavelengths between 400 nm and 800
nm [24]. Thus, we assume that ηi = 1 for the emission wavelengths of LYSO:Ce.
The resulting values of ra are indicated by the dotted curve in figure 3.4. The
parameter rd is discussed in the next section.

The APD gain, excess noise factor, and ENC (referred to the input of the
preamplifier) were measured to be approximately M = 60, J = 2, and σe = 600
electrons, respectively [44]. It is noted that the ENC includes contributions of the
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APD leakage current and (pre-) amplifier noise. These numbers were used to add
noise to the number of electron-hole pairs following from the optical simulations
for each APD-pixel, such that the number of electrons ne at the output of a pixel
is given by

ne =
∑

i=1

nehN
(
M, M2(J − 1)

)
+ N

(
0, σ2

e

)
, (3.5)

where N(µ, σ2) is randomly drawn from a normal distribution with mean µ and
variance σ2, while neh is the number of electron hole pairs generated in the pixel
by the event.

Other optical parameters

The reflectance rd of the APD array dead area and the reflectance rPTFE of
the Teflon tape around the crystal were determined by matching optical sim-
ulations to pulse-height measurements on a trapezoidal crystal as described in
section 3.2.2.

First, rd was determined by performing the measurement and the simulations
without any Teflon wrapping around the crystal. In the simulations, rd was
varied from 0.5 to 0.9 in steps of 0.1. Figure 3.5a shows the calculated photo-
peak position as a function of rd. The measured photo-peak was positioned at
1900 electron-hole pairs, corresponding to rd = 0.8.

This value of rd was subsequently used to determine rPTFE by repeating the
measurement with Teflon tape wrapped around the crystal. In these simulations,
the Teflon layer was modelled as a perfectly diffuse reflector [37, 61] with a thin
air region between the crystal and the Teflon tape (i.e. we used a back-painted
surface with a refractive index of the ‘paint’ of 1, see 3.2.4), and the position of the
photo-peak was calculated for different values of rPTFE . The results are shown
in figure 3.5b. The measured photo-peak was positioned at 5300 electron-hole
pairs, corresponding to rPTFE = 0.95.

3.3.2 Comparison between simulation and experiment

Detector spatial resolution

Using the input parameters found in section 3.3.1, the spatial resolution measure-
ments discussed in section 3.2.3 were simulated as described in section 3.2.4. It is
emphasized that all results presented here include the influence of the finite test
beam diameter dbeam ≈ 0.9 mm FWHM. Furthermore, all results were obtained
using nref = 1500 events per beam position and L = 200 nearest neighbours.

Figure 3.6a shows the measured detector spatial response of the 20 mm ×
10 mm × 10 mm crystal, averaged over the entire length of the crystal, in com-
parison to the simulated one. The FWHM and FWTM are equal to 1.66 mm
and 4.5 mm, respectively. The corresponding simulated values are 1.67 mm and
4.2 mm, respectively. Taking into account a relative uncertainty of 10% (1σ) in
M , J , and σe, the uncertainties in the simulated FWHM and FWTM are esti-
mated to be 0.05 mm (1σ) and 0.2 mm (1σ), respectively. Here, the uncertainties
due to other parameters were neglected as these are difficult to compute, so these
estimates are to be seen as a lower limit on the true uncertainty. Nevertheless,
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Figure 3.5: Simulated position of the photo-peak, (a) as a function of the re-
flectance rd of the dead area between the pixels of the APD array in the absence
of any Teflon wrapping, and (b) as a function of the reflectance of the Teflon
wrapping rPTFE, given rd = 0.8.
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the measured and simulated values agree within the 2σ confidence interval of the
simulations.

Figure 3.6b shows the measured and simulated spatial responses of the 20 mm
× 10 mm × 20 mm crystal, both averaged over the entire length of the crystal.
The FWHM and FWTM are equal to 1.79 mm and 5.1 mm, respectively. The
corresponding simulated values are 1.71 mm and 4.5 mm, respectively. Again the
values are in good agreement, although for this crystal the difference between the
FWTM values may be significant.

For both crystals, the tails of the measured histograms are slightly higher
than those of the simulated ones, which is also apparent from the slightly higher
measured FWTM values. This is attributed to scattering of the annihilation pho-
tons in materials between the source and the crystal (such as the box containing
the detector). In [39]4 we observed a similar effect.

In previous works it was observed that the spatial resolution of monolithic
scintillator detectors is affected near the edges of the crystal [40, 67] aan recent
geaccepteerd SiPM artikel (zie bijlage). To investigate if the present simulations
correctly reproduce these edge effects, figure 3.7 compares the FWHM of the
measured and simulated spatial responses as a function of the x-position in the
crystal, for each of the two detector geometries investigated. These values were
obtained from error histograms acquired at 1 mm intervals. The fluctuations in
the results are attributed to the relatively small number of events per histogram
(approx. 6000 as the step size was 0.25 mm and the number of events per position
was 1500). The corresponding uncertainty in the results is in the order of a few
tenths of a millimetre. Taking this uncertainty into account, the simulated and
measured resolutions are in good agreement.

Energy resolution

Figure 3.8 shows the pulse-height spectra of the two detectors, determined by
adding up the signals of all APD pixels for each event in the reference set. All
spectra are normalized such that Gaussians fitted through the photo-peaks are
at the same position and have equal heights. For both crystals investigated, the
measured and simulated FWHM energy resolutions determined from the Gaus-
sian fits are equal to 10.8% and 10.2%, respectively.

An uncertainty of 10% (1σ) in the light yield causes an uncertainty of ap-
proximately 0.5% (1σ) in the energy resolution, while an uncertainty of 10% (1σ)
in each of M , J , and σe gives rise to an additional uncertainty of approximately
0.15%. Therefore, the measured energy resolutions are well within the confidence
intervals of the simulated ones.

The Compton ridges of the measured energy spectra are slightly higher than
those of the simulated energy spectra. This may at least partially be caused by
scattering of radiation in materials between the detector and the source. This
was also observed in the comparison of the simulated and measured spatial res-
olutions, see section 3.3.2.

4See chapter 5 of this thesis.



36 CHAPTER 3. OPTICAL SIMULATIONS

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

positioning error (mm)

n
o

rm
al

iz
ed

 c
o

u
n

ts

 

 

measurement

simulation

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

positioning error (mm)

n
o

rm
al

iz
ed

 c
o

u
n

ts

 

 

measurement

simulation

(b)

Figure 3.6: Measured and simulated detector spatial response of (a) the 20 mm
× 10 mm × 10 mm and (b) the 20 mm × 10 mm × 20 mm LYSO:Ce crystal,
averaged over the entire length of the crystal. Both results were obtained with
nref = 1500 and L = 200 and include the influence of the test beam diameter
dbeam ≈ 0.9 mm FWHM.
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Figure 3.7: The FWHM of the detector spatial response, averaged over 1 mm
intervals, as a function of the x-position in the crystal for (a) the 20 mm × 10 mm
× 10 mm and (b) the 20 mm × 10 mm × 20 mm LYSO:Ce crystal.
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Figure 3.8: Measured and simulated pulse-height spectra at 511 keV of (a) the
20 mm × 10 mm × 10 mm and (b) the 20 mm × 10 mm × 20 mm LYSO:Ce
crystal. The measured spectra are electronically cut off below approximately 100–
150 keV.
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3.4 Conclusions

Comparison of simulations and measurements on monolithic scintillator PET
detectors shows that the optical physics models of GEANT4 enable accurate pre-
diction of the spatial and energy resolution of such position-sensitive scintillation
detectors, provided that all necessary input parameters are known with sufficient
accuracy.

As a part of this work, the GEANT4 optical models have been made available
within GATE (from version 3.0), so that these routines can now be used for
the simulation of e.g. PET and SPECT detectors via GATE’s user-friendly,
scripted user interface. As optical photons are the primary information carriers
in any scintillation detector, this new functionality of GATE may be helpful
to many researchers aiming at Monte Carlo aided optimization of existing, and
development of new detectors and/or imaging systems.

As illustrated in this work, optical Monte Carlo simulations require accurate
knowledge of a relatively large number of input parameters. Not all of these
parameters may be readily available. The present work demonstrates how the
required optical parameters can be determined such that accurate simulations
become possible.
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CHAPTER 4

Spatial resolution in position-sensitive scintillation
detectors: influence of statistics and noise1

We derive the lower bound on the spatial resolution achievable with position-
sensitive scintillation detectors. This lower bound depends on the geometry of
the detector, the light collection, the light sensor properties, and the readout
electronics. The factors that limit the spatial resolution are investigated.
The resulting insight in the performance of the detector is useful to optimize
its design. Furthermore, the performance of the algorithm used to derive
position information from the detector signals can be tested by comparing
the measured spatial resolution with the lower bound.

Here, we apply the method to monolithic scintillator detectors with depth-of-
interaction (DOI) correction for high-resolution positron emission tomography
(PET). In these detectors the entry points of annihilation photons on the
front surface of the crystal are derived from the scintillation light distributions
measured with position-sensitive light sensors.

For these detectors, the excess noise factor of the APD array and the light
yield of the scintillator contribute most to the measured spatial resolution,
while the energy resolution of the scintillator has not influence on the spatial
resolution. The position estimation algorithm used in this detector performs
very well, since the spatial resolution we obtain using this detector is close to
the lower bound.

Our method can also be used for other scintillation detectors in which position
information is derived from the scintillation light distribution. It can also be
adapted to other performance parameters such as timing resolution.

1This chapter will be submitted to Physics in Medicine and Biology as: D. J. van der Laan,
D. R. Schaart, M. C. Maas, P. Bruyndonckx, F. J. Beekman and C. W. E. van Eijk, ‘Spatial
resolution in position-sensitive scintillation detectors: influence of statistics and noise’. The
model derived in this chapter is based on a much simpler model derived in [79], which is
included in appendix A for reference.

41
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4.1 Introduction

Imaging modalities such as computed tomography (CT), planar scintigraphy
(PS), single-photon computed tomography (SPECT), and positron emission to-
mography (PET) utilize X-rays or gamma photons transmitted through or emit-
ted from the subject under study. In most devices, scintillators convert the
energy of these ionizing quanta into tiny flashes of light. The data needed for
image reconstruction (e.g., position, energy, and time information) are then de-
rived from the electronic signals generated by light sensors optically coupled to
the scintillators.

It follows that the detector performance imposes a fundamental limit on the
image quality achievable. Therefore, much research is aimed at better scintillation
detectors. While in most applications multiple performance parameters are of
importance (e.g. energy resolution, time resolution, detection efficiency), one of
the most important is the detector intrinsic spatial resolution.

The detector spatial resolution is determined by many factors, such as the de-
tector geometry, information carrier statistics, electronic noise, and the method
used to estimate the gamma photon position from the detector signals. To com-
plicate things further, these influences can be interdependent. This makes it
difficult to quantify the influences of individual design parameters.

In this work we derive the Cramér-Rao lower bound on the spatial resolu-
tion achievable with position-sensitive scintillation detectors. Given a statistical
model of the observations (i.e., the detector signals), the Cramér-Rao lower bound
equals the smallest value of the standard deviation on the parameter of interest
(i.e., the position of the gamma photon) that any unbiased estimator of that
parameter can achieve. Here we show how this lower bound can be derived as a
function of the relevant detector design parameters.

We can therefore use our model to determine where we can improve our
detector design, which, at the same time, leads to a better understanding of
the detector. Furthermore, the performance of the position estimation algorithm
can be checked, i.e., when the measured spatial resolution is much worse than
the lower bound, it can in principle be improved by improving the estimation
algorithm. All of this is of value to the development of imaging systems with
improved image quality.

This research was performed within the context of the development of mono-
lithic scintillator detectors for PET with intrinsic depth-of-interaction (DOI) cor-
rection [40]. The good spatial, energy and time resolutions of these detectors,
together with accurate DOI correction and high detection efficiency, facilitate ex-
cellent and uniform image quality. In this paper, we will demonstrate our method
for such detectors.

Some of the first steps in the development of our method have been reported
on earlier [79]. The preliminary, simplified detector model used in that work,
in which the detector signals were approximated as mutually independent Pois-
son distributions, prohibited validation of the results through comparison with
measured data. In contrast, we now model the detector signals as a multivari-
ate normal distribution, taking into account the covariance between the signals.
The present work is based on a more refined model of the detector geometry and
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(a) (b)

Figure 4.1: Schematic representations of two monolithic scintillation detectors
investigated: (a) a 20 × 10 × 10 mm3 and (b) a 20 × 10 × 20 mm3 LYSO:Ce3+

crystal with polished surfaces, clad in Teflon and read out by one or two Hama-
matsu S8550SPL APD arrays having 8 × 4 APD pixels each.

includes a much more detailed, wavelength-dependent model of the generation,
transport and detection of the scintillation light that takes into account all rel-
evant optical properties of the crystal and light sensors, as well as the fact that
the generation of scintillation photons is not a Poisson process. Furthermore, the
quantum efficiency, electron multiplication, and excess noise factor of the APDs,
as well as electronic noise, are now taken into account.

In the remainder of this work, we first derive the lower bound on the spatial
resolution as a function of the relevant detector properties. Subsequently, the
model is used to investigate the relative influence of different design parameters
on the detector performance. Finally, we compare the calculated lower bound to
the spatial resolution measured with prototype monolithic scintillation detectors.

4.2 Theory

We demonstrate our method by analyzing detectors consisting of monolithic
LYSO:Ce3+ crystals read out by position-sensitive avalanche photodiode (APD)
arrays, see Figure 4.1. In these detectors, the entry point of an annihilation pho-
ton on the front surface of a monolithic crystal is estimated from the scintillation
light distribution measured by the APD arrays.

To derive the lower bound on the spatial resolution, we need the probability
distribution of the observations (i.e. the APD array signals) as a function of
the parameters to be estimated. We will assume that we have a point source of
light at position x = (x, y, z)T inside the crystal and that we want to estimate
the position of that point source. The situation where we have more than one
point source for one detected annihilation photon (as e.g. in case of a photo-
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effect following Compton scatter), can be approximated by one single average
interaction [39]2. When we know the probability distribution of the Napd APD
array signals given the position of the point source, the Cramér-Rao lower bound
on the variance of the estimated position of the point source can be determined.
Hence, in section 4.2.1 we first derive the statistical properties of these signals.
In section 4.2.2 we then derive the lower bound.

4.2.1 Model of the observations

After absorption of a gamma photon by a scintillator, nph optical photons are
emitted. The expectation value of nph is equal to the product of the light yield
of the scintillator and the amount of energy deposited; the variance in nph is
determined by the intrinsic energy resolution of the scintillator. We express the
intrinsic energy resolution as a factor α times the energy resolution in case the
amount of photons emitted would follow a Poisson distribution. Therefore,

var{nph} = α2nph. (4.1)

Here, α > 1 accounts for the deviation from Poisson statistics of the intrinsic
energy resolution and nph = E[nph] is the expectation value of the number of
emitted photons nph.

Depending on the position x of the light source inside the crystal, a fraction
fi(x) of the light emitted will be absorbed by a given APD pixel i. The remainder
of the optical photons is either absorbed by the other Napd−1 APD pixels or lost
due to some other process (e.g. escape, absorption). The fi(x) can be determined
by means of Monte Carlo optical simulations, as is explained in more detail in
section 4.3.3.

Each photon absorbed in an APD pixel has a chance equal to the internal
quantum efficiency ε ≤ 1 to generate an electron-hole pair. Both processes (ab-
sorption in a pixel and electron-hole pair generation) are a form of binomial
selection. Therefore, the expectation value and the variance in the number of
electron-hole pairs created in pixel i are given by, respectively [7, pp. 642–643],

neh,i = εfi(x)nph, and (4.2)

var{neh,i} = εfi(x) (1− εfi(x)) nph + ε2fi(x)2var{nph}. (4.3)

Each of these primary signals is amplified within the APD in which it is
created. One electron-hole pair in pixel i thus generates M electrons at the
output of the same pixel. However, the amplification M is not the same for every
electron-hole pair. This introduces additional fluctuations. The expectation value
and the variance in the total number of electrons at output i of the APD array
are given by, respectively [7, pp. 670–672],

ne,i = Mneh,i, and (4.4)

var{ne,i} = M
2
(Jneh,i + var{neh,i} − neh,i) (4.5)

2See chapter 5 of this thesis.
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Here, M is the expectation value of M , while J is the excess noise factor defined
as

J = 1 +
var{M }

M
2 (4.6)

In addition to the statistical fluctuations in the number of information carriers,
electronic noise also contributes to the variance of the signals. Electronic noise is
added both in the APD array itself (dark current) and in the preamplifiers and
other electronics used to read out the APD arrays [44]. The sum of the noise
contributions can be modelled as additive noise with zero mean and variance σ2

e .
Combining all previous equations, the mean and variance in the observed signals
expressed in terms of the number of electrons ni at output i of the APD array,
are then given by, respectively,

µi ≡ ni = Mεfi(x)nph, and (4.7)

σ2
i ≡ var{ni} = Mεfi(x)nph

(
J + ε(α2 − 1)fi(x)

)
+ σ2

e , (4.8)

where σ2
e is the equivalent noise charge (ENC) of the detector-amplifier system

referred to the preamplifier input.

4.2.2 Lower bound for independent detector signals

If x̂ = (x̂ + ŷ + ẑ)T are the estimated coordinates of the light source at true
position x, the Cramér-Rao inequality for our problem is given by [74]

cov(x̂, x̂) ≥ M−1, (4.9)

where M is the Fischer information matrix. This equation shows that the covari-
ance in x̂ is always larger than the inverse of the information matrix. Loosely
speaking, the more information there is in the observations, the larger the ele-
ments of M become, and therefore, the more accurately the coordinates of the
light source can be estimated. More specifically, the lower bounds on the vari-
ances of the estimated coordinates x̂, ŷ, and ẑ are given by the diagonal elements
of M−1.

To derive the information matrix we need a statistical model of the observa-
tions (i.e., the number of electrons ni at each output of the APD array). In the
previous section we already derived expressions for the expectation value µi and
the variance σ2

i of these observations. Since each ni is the sum of a large number
of approximately normally distributed variables, it is safe to assume that each ni

follows a normal distribution. This is confirmed by the fact that the full-energy
peak in the measured energy spectra of each of the APD pixels (measured with a
LYSO:Ce3+ crystal on the array, irradiated by a 22Na source) can be fitted by a
Gaussian distribution. The probability density function of each ni is then given
by

p(ni) =
1√

2πσi
e
− (ni−µi)

2

2σ2
i (4.10)

In first instance, we will simplify the derivation of the lower bound by as-
suming that the Napd APD signals are independent of one another. (In the next
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section the lower bound will be derived without making this assumption). The
information matrix M needed to calculate the lower bound can then be writ-
ten [74]:

M = −
Napd∑

i=1

E
[
∂2 ln (p(ni))

∂2x2

]
(4.11)

Substituting equation (4.10) in equation (4.11), the elements of the informa-
tion matrix become

Mv,w =
Napd∑

i=1

1
2σ2

i

(
1
σ2

i

∂σ2
i

∂v

∂σ2
i

∂w
+ 2

∂µi

∂v

∂µi

∂w

)
, (4.12)

where v and w are equal to x, y, or z. The partial derivatives in this equation
follow from equations (4.7) and (4.8):

∂µi

∂v
= Mεnph

∂fi(x)
∂v

, and (4.13)

∂σ2
i

∂v
= M

2
εnph

(
J + 2ε(α2 − 1)fi(x)

) ∂fi(x)
∂v

, (4.14)

with v equal to x, y, or z.
By substituting equations (4.13) and (4.14) in equation (4.12), it can be shown

that the first term between brackets in equation (4.12) is much smaller than the
second if the number of electron-hole pairs in each of the pixels is large enough,
i.e., if neh,i À J+2ε(α2−1)fi(x). Given equation (4.2), this condition can also be
written nph À 2(α2− 1) + J/εfi(x). In our detector, the number of APD signals
Napd either equals 32 or 64. If we assume that, in first order approximation,
fi(x) ≈ 1/Napd ≥ 1/64 and if we use the measured values of nph, J , ε, and α
given in table 4.1, we see that this condition is easily satisfied in our detectors.

Substituting equations (4.13) and (4.14) in equation (4.12) and neglecting the
first term yields

Mv,w =
Napd∑

i=1

µ2
i

σ2
i

1
fi(x)2

∂fi(x)
∂v

∂fi(x)
∂w

, for nph À 2(α2 − 1) + J/εfi(x).

(4.15)
The first factor in the sum, µ2

i /σ2
i is the square of the signal-to-noise ratio of

signal i. The inverse of this factor, the relative variance of signal i, is given by

σ2
i

µ2
i

=
J

εfi(x)nph
+

α2 − 1
nph

+
σ2

e(
Mεfi(x)nph

) . (4.16)

Equation (4.15) shows that an increase in the relative variances of the APD signals
will increase the lower bound if the light transport inside the detector does not
change (i.e., if the fi(x) and their derivatives remain the same). Therefore, the
relative signal variances as calculated in equation (4.16) are convenient quantities
to use in the analysis of the relative influences of the detector properties nph, J ,
ε, M , and σe on the spatial resolution. For a correct investigation of the influence
of α the covariance between the detector signals should be taken into account, as
will be done in the next section.
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4.2.3 Covariance between detector signals

In the previous derivation we assumed that the APD signals are independent of
each other. However, since all APD pixels are observing the same light source,
any fluctuations in the number of photons emitted by the light source are seen by
all of the pixels. This might introduce a positive covariance between the channels.
On the other hand, the fact that a photon detected by one APD pixel cannot be
detected by any other pixel may introduce a negative covariance.

If the number of photons emitted by the light source follows a Poisson dis-
tribution and/or if the fraction of photons detected by each of the pixels is very
small, the number of electron-hole pairs in each APD pixel will follow a Poisson
distribution and the numbers of electron-hole pairs in the APD pixels become
independent of each other [7]. The first condition is not satisfied in scintillation
crystals, since the variance in the number of photons emitted is a factor of α2 > 1
times larger than the value it would have had when it followed a Poisson distri-
bution. For example, for LYSO:Ce3+, α ≈ 20 (see table 4.1). Therefore, we need
to investigate if the detection probability is small enough to make the covariance
between the APD signals negligible.

The covariance in the number of electron-hole pairs between any arbitrary
pair of APD pixels (i, j) is given by [7, pp. 646–649]

cov (neh,i, neh,j) = εfi(x)nph

(
δi,j + ε(α2 − 1)fj(x)

)
. (4.17)

This equation shows that when the source follows a Poisson distribution (α =
1), or when the detection probability fi(x) is small, the off-diagonal elements
of the matrix disappear, or become small compared to the diagonal elements,
respectively. Interestingly, if α > 1, the fluctuations in the number of photons
emitted by the light source dominate, causing a positive covariance between the
pixels. On the other hand, if α < 1, the fact that photons absorbed by one pixel
cannot be absorbed by any other pixel dominates, causing a negative covariance
between the pixels. Since α > 1 for all known inorganic scintillators, a positive
covariance is always to be expected in this type of detector unless fi(x) is small
enough for the covariance to be negligible. It can be shown (see appendix B) that
the covariance matrix Σ of the APD output signals is given by

Σi,j ≡ cov (ni, nj) = M
2
εfi(x)nph

(
Jδi,j + ε(α2 − 1)fj(x)

)
+ σ2

eδi,j , (4.18)

where we used the facts that the amplification process in each APD pixel is
independent of those in the other pixels, and that the electronic noise in each
read-out channel is independent of those in the other read-out channels.

We assume that the numbers of electrons n = (n1, n2, . . . , np)T at the APD
array outputs follow a multivariate normal distribution with expectation values
µ = (µ1, µ2, . . . , µp)T and covariance matrix Σ, which we have just derived. The
information matrix M of a multivariate normal distribution is given by [47]

Mv,w =
∂µT

∂v
Σ−1

∂µ

∂w
+

1
2
tr

(
Σ−1 ∂Σ

∂v
Σ−1 ∂Σ

∂w

)
, (4.19)

where tr(A) ≡ ∑
i Ai,i is the trace of matrix A and the partial derivatives are
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given by
∂µ

∂v
= Mεnph

∂f

∂v
(4.20)

and(
∂Σ
∂v

)

i,j

= M
2
εnph

{
J

∂fi(x)
∂v

δi,j + ε(α2 − 1)
(

∂fi(x)
∂v

fj(x) + fi(x)
∂fj(x)

∂v

)}
,

(4.21)
where f = (f1(x)f2(x) . . . fp(x)T .

In order to calculate the information matrix using equation (4.19), the inverse
of the covariance matrix, Σ−1, is needed. From equation (4.18) it follows that
the covariance matrix can be written

Σ = Ψ + M
2
ε2(α2 − 1)nphf fT , (4.22)

where Ψ is a diagonal matrix, whose elements are given by

Ψi,j =
(
JM

2
εfi(x)nph + σ2

e

)
δi,j . (4.23)

The inverse of equation (4.22) can be calculated using the Woodbury iden-
tity [25]:

Σ−1 = Ψ−1 −Ψ−1f

(
1

M
2
ε2(α2 − 1)nph

+ fT Ψ−1f

)−1

fT Ψ−1. (4.24)

The inverse of Ψ is easily calculated, since Ψ is a diagonal matrix. Thus, equa-
tion (4.24) provides a computationally convenient method for calculating Σ−1,
and, therefore, the information matrix M.

In section 4.4.3 the influence of the covariance between the channels will be
investigated. It will be shown that this influence is small in our detectors.

4.3 Materials and methods

4.3.1 Detectors

Figure 4.1 schematically shows the two monolithic scintillation detectors studied.
The first detector consists of a 20 × 10 × 10 mm3 LYSO:Ce3+ crystal with
polished surfaces (Crystal Photonics), clad in a Teflon reflector and read out by
a Hamamatsu S8550SPL APD array. The Hamamatsu S8550SPL array consists
of a 4 × 8 array of 1.6 × 1.6 mm pixels at a pitch of 2.3 mm. The array is
optically coupled to the crystal front surface (i.e., the surface that would face
the inside of the scanner) using Meltmount (Cargille Laboratories). Front-side
readout is made possible by the fact that APD arrays are essentially transparent
to 511 keV photons and has been shown in a previous study to provide better
results than conventional back-side readout [43].

The second detector, a 20 × 10 × 20 mm3 LYSO:Ce3+ crystal read out by
two APD arrays, was shown to combine similarly good spatial resolution with
increased detection efficiency. Further details on these detectors can be found
elsewhere [40, 43].
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Table 4.1: Experimentally determined detector properties: nph is the light yield
of the scintillator at 511 keV, α models the energy resolution of the scintillator,
ε is the quantum efficiency of the APD pixels, M is the gain of the APD pixels,
and σe is the standard deviation of the electronic noise in electrons at each APD
array output.

Parameter nph α ε M J σe

(ph / 511 keV) (e-)

Value 13286 4.4 1 69 2 600

4.3.2 Cramér-Rao model input parameters

The models derived in sections 4.2.2 and 4.2.3 require six detector properties as
input parameters: nph, α, ε,M , J , and σe. The light yields and energy resolutions
of the LYSO:Ce3+ crystals were measured on a calibrated PMT setup [18]. The
internal quantum efficiency ε of the APDs is taken as one [24]. The measured
external quantum efficiency (approximately 75% at a wavelength of 420 nm [59])
is assumed to be due to reflection of light on the APD pixel, which is included
in the simulation. The gain M and excess noise factor J of the APD array are
taken from literature [58, 59]. The ENC has been measured earlier [43]. Table 4.1
provides a summary of these detector properties.

4.3.3 Optical simulations

In addition to the above detector properties, the models derived in sections 4.2.2
and 4.2.3 require the fractions of light fi(x) detected by the APD pixels for
a light source at x, as well as their partial derivatives. These were obtained
from optical Monte Carlo simulations performed with Geant4 [5]. The optical
input parameters for these simulations were determined as described in another
paper [80]3. In that work we also present a validation of our optical simulations
against experiment.

In summary, the LYSO:Ce3+ emission spectrum was measured using the
setup described by Birowosuto [8]. The absorption and scattering lengths of
LYSO:Ce3+ were determined as a function of wavelength from the measured
transmittance of a 10 mm thick sample. The polished crystal surfaces are mod-
elled as if they consist of micro-facets whose surface normals follow a normal
distribution of 0.1◦ around the average surface normal [55]. The reflectivity of
Teflon was taken to be 0.95 [55], that of the APD pixels has been addressed above.
The reflectivity of the sensor area between the APD pixels was taken to be 0.8,
which yielded best agreement in separate studies in which simulated pulse-height
spectra were matched to measured ones for several different geometries [80].

To calculate the fractions fi(x) and their derivatives, a large number of optical
photons (2·106) were emitted isotropically from x and tracked until they were ab-
sorbed within an APD pixel or elsewhere. This was done for a three-dimensional
grid of equidistant point sources within the crystal.

3[80] corresponds to chapter 3 of this thesis.
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For each point source the fractions fi(x) were determined by dividing the
number of photons absorbed in pixel i by the number of primary photons gener-
ated. The partial derivatives were determined by numerical derivation [79]. For
example, the partial derivative to x can be calculated using

∂fi(x)
∂x

∥∥∥∥
x=(x′,y′,z′)

=
fi(x′ + h, y′, z′)− fi(x′ − h, y′z′)

2h
+ O(h2), (4.25)

where h is the distance between the point sources of light.
The lower bound was subsequently calculated for each point source of light.

In all cases, we used the model that includes the influence of the covariance (see
section 4.2.3). The spacing h between the point sources was 0.5 mm in the x-, y-,
and z-directions. Given the total number of optical photons in the simulation,
this value of h is a compromise between precision (large h) and accuracy (small
h). The optimum value of h was determined in preliminary simulations. Since
the detectors are symmetric in the x-, y-, and, for the 20 mm thick crystal, also
the z-direction, the lower bound only has to be calculated for one quadrant or
octant of the crystal.

4.3.4 Comparison with experiment

Measurements

To confront our model with experiment, we wish to compare the calculated lower
bound to spatial resolution measurements described in detail elsewhere [40]. In
these measurements the front surface of a detector is irradiated by a collimated
beam of annihilation photons at a rectangular grid of beam positions spaced
250 µm apart. A number of nref light distributions are collected at each position.

To determine the spatial resolution of the detector, the entry point of the
annihilation photon corresponding to each of the measured light distributions
is estimated using the remainder of the distributions as reference data for the
position estimation algorithm. The light distribution for which the entry point
has to be estimated is compared to each of the distributions in the reference set
using least squares. The L best fitting distributions (nearest neighbours) are
selected and the entry point occurring most frequently among these distributions
is used as the estimate of the entry point. The point spread function (PSF) of
the detector is then calculated as the two-dimensional (2D) histogram of the true
minus the estimated entry points. This histogram still contains the influence of
the finite beam diameter dbeam, and is therefore referred to as the uncorrected
point spread function PSFu.

We studied the influence of various parameters such as electronic noise on the
spatial resolution, by varying the parameter of interest in a series of measure-
ments. For efficiency, this was done using a one-dimensional (1D) form of the
above experiment, in which reference data were collected along one of the crystal
axes and only the coordinate corresponding to that axis was estimated. The 1D
histogram of the errors, uncorrected for dbeam and referred to as 1D-PSFu, was
then derived as a measure of the spatial resolution. All results presented use nref

equal to 1500.
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PSF model

In section 4.3 we derived the lower bound on the position estimation of a point
source of optical photons within the crystal. In contrast, the spatial resolution
determined in our measurements includes the influence of the finite diameter
of the measurement beam and the influence of Compton scattering and X-ray
fluorescence within the crystal. Thus we cannot directly compare the lower bound
to the measured resolution. However, in another paper [39]4 we derived and
validated a simple model for the measured PSF that takes into account the effects
of the beam diameter, Compton scattering, etc.

The model assumes that, if an annihilation photon undergoes multiple interac-
tions within the crystal, the shape of the resulting scintillation light distribution
is the same as if the same total amount of energy is deposited at the energy
deposition centroid

xc =
∑

i Eixi∑
i Ei

(4.26)

where Ei and xi are the energy deposited by, and the position of, the ith inter-
action, respectively.

The spatial probability distribution γb of the centroids within the detector
is derived from a Monte Carlo simulation of the experimental setup. Then, if
the number of distributions in the training set nref approaches infinity and the
number of nearest neighbours approaches infinity in such a way that L/nref

approaches zero, the PSF measured with that detector can be described to good
approximation by [39]:

PSF (x̂e − xe) = (γb ∗Nσ)(x̂e − xe) (4.27)

where xe is the true entry point, x̂e is the estimated one, and the operator ‘∗’ de-
notes a convolution. The function Nσ accounts for the uncertainty in estimation
of the position of the centroid due to statistical fluctuations and noise. It is as-
sumed to be a 2D Gaussian distribution with standard deviations σ = (σx, σy)T .

Under the above assumptions, Nσ models the uncertainty in estimation of the
position of a point source of light at the centroid position. Therefore, the lower
bound on σ is given by σlb =

√
diag(M−1), and substituting σlb in equation

(4.27) gives the best possible PSF that can be obtained with the detector. We
will denote this result by PSFlb.

Equation (4.27) is only valid in the centre of the detector [39]. As the PSF
of our detectors appears essentially constant over the central region of the detec-
tor [40] we have measured the average PSF for entry points with -3 mm < x < 3
mm and y = 0 (see figure 4.1). Upon substituting the average values of σlb over
-3 mm < x < 3 mm and -1 mm < y < 1 mm and over z for σ in equation (4.27),
the resulting PSFlb can be compared to the measured PSFu.

4See chapter 5 of this thesis.
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4.4 Results and discussion

4.4.1 Comparison with experiment

PSF at detector centre

Figure 4.2 shows the 1D-PSFu(x) (see section 4.3.4), obtained from measurements
on the 20 × 10 × 10 mm3 and 20 × 10 × 20 mm3 LYSO:Ce3+ crystals (see
figure 4.1). The figure also shows the 1D-PSFlb(x) calculated on the basis of
the lower bound as described in section 4.3.4. As expected, the 1D-PSFlb(x)
is narrower than the 1D-PSFu(x). It is interesting to note that the differences
are not very large, and that the shapes agree quite well. The 1D-PSFu(x) has
a FWHM of 1.5 and 1.6 mm for the 10 mm thick and 20 mm thick crystals
respectively, while that of the 1D-PSFlb(x) equals 1.2 mm for both crystals.
Thus, the measured resolution is quite close to the lower bound, suggesting that
the estimation algorithm performs quite well.

The PSFs exhibit significant tails. These are due to Compton scattering.
Since this part is described mainly by γb (see 4.3.4) which is determined from
Monte Carlo simulations, and less by Nσ the agreement between the PSFu(x)
and PSFlb(x) is better in this region.

Influence of the size of the reference dataset

In order to verify our estimation algorithm and to further validate the calculated
lower bound, we increased the number of reference events per beam position
nref . In figure 4.3, the FWHM of measured 1D-PSFu(x) (circles) is plotted as a
function of the number of reference events per beam position nref . As explained
in section 4.3.4, 1D measurements were performed for efficiency. Each measured
PSF was calculated using the value of L that minimised its standard deviation,
so as to minimise the influence of the positioning algorithm.

The FWHM of the corresponding 1D-PSFlb(x), calculated according to sec-
tion 4.3.4, is indicated by the dashed line. With increasing nref , the measured
FWHM approaches the calculated lower bound more and more closely, to approx-
imately ∼0.05 mm at nref = 15000. This confirms theory [17], which states that
the L-nearest neighbour algorithm should approach the Cramér-Rao lower bound
as L → ∞ and L/nref → 0. Therefore, our estimation algorithm performs well
and any deviations from the Cramér-Rao lower bound are caused by the limited
size of the reference data set.

Influence of noise

As a further test of our model, various amounts of normally distributed noise
were added to the measured light distributions and the spatial resolution was
determined for each case. Again, 1D experiments were done for efficiency. The
symbols in figure 4.4 show the results for the two detectors investigated. The
curves in figure 4.4 show the FWHM of 1D-PSFlb(x) calculated as described in
section 4.3.4 on the basis of the lower bound, as a function of the electronic noise
σe. The measured values are always somewhat larger than the lower bound, as
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Figure 4.2: Comparison between the measured 1D-PSFu(x) and 1D-PSFlb(x)
based on the Cramér-Rao lower bound, for the 20 × 10 × 10 mm3 (a) and the 20
× 10 × 20 mm3 (b) LYSO:Ce3+ crystal. Measurements were made at the centre
of the detector using L = 500.
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Figure 4.3: FWHM of measured 1D-PSFu(x) as a function of nref (circles) for
the 20 × 10 × 20 mm3 LYSO:Ce3+ crystal. The FWHM of 1D-PSFlb(x) based
on the Cramér-Rao lower bound is indicated by the dashed line.

expected. Also, the lower bound correctly predicts that the spatial resolution
increases more rapidly with σe for the crystal read out by 2 APD arrays than for
the crystal read out by 1 APD array. As we will discuss in the next section, this
is caused by the large number of pixels in case of readout using 2 APD arrays.

4.4.2 Influence of the detector properties

Sensitivity analysis

As was explained in section 4.2.2, one can infer the relative importance of the
different detector properties from the relative variances of the detector signals
using equation (4.16), provided that the properties determining the transport of
light within the detector remain constant. This can e.g. be useful to optimize the
design of a scintillation detector, to determine which design parameters are the
most important, and to quantify the influence of the various design parameters
on the performance.

Lets call the three terms on the right-hand side of equation (4.16) I, II, and III
respectively. Term I gives the increase in the relative variance due to the excess
noise factor. The excess noise factor J is always greater than or equal to one.
Term II gives the increase of the relative variance due to the fact that the variance
in the number of photons emitted by the scintillator per event is larger than that
of a Poisson distribution. If the number of optical photons emitted would follow
a Poisson distribution (i.e., α = 1), this term would disappear. Term III gives
the contribution of electronic noise to the relative variance.

The 10 mm thick and the 20 mm thick crystals are read out by 32 and 64
APD pixels, respectively. Therefore, when the majority of the light is detected,
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Figure 4.4: The FWHM of the 1D-PSFu(x) at the detector centre determined
by measurements (symbols) and the 1D-PSFlb(x) calculated on the basis of the
lower bound (curves), as a function of the electronic noise σe, for the 20 × 10
× 10 mm3 and the 20 × 10 × 20 mm3 LYSO:Ce3+ crystals, using L = 500.
L →∞ was assumed in the model calculation (equation (4.27)).

Table 4.2: The average lower bound σlb and the sensitivity of σlb to changes in
the parameters. The sensitivity is calculated by changing each parameter ±20%
from its nominal value (the nominal values are given in table 4.1).

Sensitivity of σlb (µm/%)

Napd σlb (mm) nph α M J σe

20×10×10 mm3 32 0.41 -2.4 0.0 -0.6 1.7 0.6
20×10×20 mm3 64 0.34 -2.2 0.0 -0.9 1.3 0.8

fi(x) ≈ 1/32 or fi(x) ≈ 1/64, respectively. Using these values and the parameter
values from table 4.1, the terms I, II, and III can be estimated to be about
5 · 10−3, 1 · 10−3, and 4 · 10−4, respectively, for the 10 mm thick crystal, and
1 · 10−1, 1 · 10−3, and 2 · 10−3, respectively, for the 20 mm thick crystal. It thus
appears that term I, which accounts for the excess noise factor, is most important
for both detectors. As was already observed in section 4.4.1, the 20 mm thick
detector is more sensitive to electronic noise than the 10 mm thick detector since
it has twice as many APD pixels (64 instead of 32). Finally, the scintillator light
yield has a strong influence on the spatial resolution, since it is included in the
denominator of all three terms.

Table 4.2 shows the lower bound on the uncertainty in the estimated x-
coordinate averaged over the entire crystal σlb and the sensitivity thereof to
changes in the detector properties, for both of the detector geometries investi-
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Figure 4.5: The FWHM of 1D-PSFlb(x) as function of light yield (here spec-
ified in photons per MeV) for the 20 × 10 × 20 mm3 and 20 × 10 × 20 mm3

LYSO:Ce3+ crystal.

gated. The sensitivity was calculated by decreasing and changing the parameter
values by ±20% and dividing the resulting difference in the average lower bound
by 40%. Clearly, changes in the light yield and the excess noise factor both have
a strong influence on the spatial resolution. In contrast, a change in the energy
resolution of the scintillator hardly has any influence.

Trend studies

Besides studying the sensitivity of the lower bound to changes of a given detector
parameter around its nominal value, we can also use our model to study the
variation of the lower bound over a larger range of values of that parameter.
Figure 4.4 in the previous section already showed an example of such a study. As
further examples, we study here the influence of the two parameters, nph and J ,
that were shown to be most important in the previous section.

Figure 4.5 shows the FWHM of 1D-PSFlb(x) as a function of the light yield.
In the graph we can see the effect of a hypothetical scintillator, which only dif-
fers in light yield from LYSO:Ce3+. We see that the spatial resolution quickly
deteriorates as the light yield decreases from its nominal value of 26,000 pho-
tons/MeV. As the light yield increases, the spatial resolution slowly approaches
1 mm FWHM. It should be noted however, that a change in scintillator almost
always also means a change in optical transport and thus fi(x) (absorption and
emission wavelengths change), energy resolution, and the quantum efficiency of
the APD array (caused by the changed emission wavelengths).

Measurements of the light yields of various LYSO:Ce3+ crystals have shown
that the light yield can vary by approximately 20% between different crystals of
the same manufacturer [44]. This will lead to differences in resolution between
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Figure 4.6: The FWHM of 1D-PSFlb(x) as function of excess noise factor J
for the 20 × 10 × 20 mm3 and 20 × 10 × 20 mm3 LYSO:Ce3+ crystal.

different detectors in the order of 0.1 mm.
Figure 4.6 shows the FWHM of 1D-PSFlb(x) as a function of the excess noise

factor. Although the excess noise factor is a relatively important contributor
to the spatial resolution, the excess noise factor of APDs can not be improved
upon much [82]. An improvement of approximately 10% in J will lead to an
improvement of less than 0.05 mm FWHM.

4.4.3 Influence of covariance between detector signals

In section 4.2.3 it was argued that a positive covariance between the detector
signals is introduced by the fact that the energy resolution of the scintillator
is worse than would be expected on the basis of Poisson statistics. When this
covariance between the channels is neglected, we overestimate the influence of
the scintillator energy resolution on the spatial resolution of the detector. From
equation (4.16) it was argued in section 4.4.2 that the energy resolution has
little influence on the spatial resolution. Therefore, we expect the previously
calculated lower bounds, that include the covariance, to increase only slightly,
when the influence of the covariance is neglected.

To investigate this further, we calculated 1D-PSFlb(x) (using L →∞) for the
two detector geometries as a function of α using the nominal values for the other
detector properties (see table 4.1) with and without taking the covariance into
account. The results are shown in figure 4.7. At the nominal value of α = 4.4, we
see that the FWHM of 1D-PSFlb(x) increases from 1.29 mm to 1.32 mm for the
10 mm thick crystal, and from 1.30 mm to 1.31 mm for the 20 mm thick crystal,
when neglecting the covariance.

Thus, neglecting the covariance has only a modest influence on the lower
bound. Nevertheless, the error in the calculation increases with increasing α.
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Figure 4.7: FWHM of 1D-PSFlb(x) as a function of α for L →∞.

Interestingly, when the covariance is taken into account the value of the intrinsic
energy resolution appears to have no effect on the spatial resolution.

4.5 Conclusion

In this work we introduce a method to model influences of scintillator properties,
scintillation light transport, light sensor properties, photon and charge carrier
statistics, and electronic noise on the lower bound on the spatial resolution of
position-sensitive scintillation detectors. This model can be used to obtain a bet-
ter understanding of the performance of a position-sensitive scintillation detector.
This makes optimization of the detector design more efficient. Furthermore, the
model can be used to predict the best possible performance of the detector. Thus
it can be used to determine if a given performance requirement can be met with
a given detector. Finally, our model can be used to verify if the algorithm used
to estimate the position from the detector signals is performing well.

A comparison of the model to measurements on monolithic scintillation PET
detectors shows that our model is capable of explaining the dependence of the
spatial resolution on parameters such as light yield end energy resolution of the
scintillator, quantum efficiency, gain and excess noise factor of the APD array and
electronic noise. As expected, the 1D-PSF as predicted by the model is slightly
narrower than the measured one (1.2 mm FWHM versus 1.6 mm FWHM for the
20 ×10 × 20 mm3 crystal, and 1.2 mm FWHM versus 1.5 mm FWHM for the 20
×10 × 10 mm3 crystal). Its shape is consistent with the measured 1D-PSF. The
measured spatial resolution appears to be close to the lower bound, which means
that the position estimation algorithm used in our detectors is performing well.

The simple expression for the relative variance in the detector signals (equa-
tion (4.16)) can be used to investigate the relative influence of the detector prop-
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erties on the lower bound. In principle, this equation overestimates the influence
of the intrinsic energy resolution of the scintillator, because it does not account
for the covariance between the detector signals. However, it was shown that this
effect is very small in our detectors. The light yield and the excess noise factor
appear to be the most important parameters determining the lower bound in our
detectors, followed by the electronic noise and APD gain, whose influences are
interdependent.

Perhaps the most important advantage of our method is that it can be used
to optimise the spatial resolution of a position-sensitive scintillation detector
through a better understanding of its performance. Although we applied it here
to a monolithic scintillation detector for PET, our method can also be used, with
little to no extra work, for other scintillation detectors that estimate the position
of an interaction from the scintillation light distribution. Moreover, our method
can also be adapted to other performance parameters. For example, if a model of
the pulse shape can be derived, the lower bound on the timing resolution could
be derived.
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CHAPTER 5

Model analysis of the point spread function of monolithic
scintillator PET detectors1

We demonstrated previously that monolithic scintillator positron emission to-
mography (PET) detectors offer the advantages of high spatial resolution, ex-
cellent depth-of-interaction (DOI) correction, high detection efficiency, good
energy resolution, and simplicity of design. Here we present an analysis of
the detector point spread function (PSF) measured with a detector consisting
of a monolithic LYSO:Ce3+ crystal read out by position-sensitive avalanche
photodiode (APD) arrays. A simple model of the detector PSF of monolithic
scintillator detectors is derived, which accounts for the spatial distribution of
the energy deposited by annihilation photons within the crystal and for the
influences of statistical signal fluctuations and electronic noise. A detailed
validation of the model is performed through comparison with spatial resolu-
tion measurements. The model is shown to describe the measured detector
spatial response well at the noise levels found in our experiments. It is fur-
thermore demonstrated how the model can be used to quantify the influence
of a finite-diameter test beam of annihilation photons on the measured spa-
tial response, and how a correction for this influence can be made in order to
estimate the intrinsic detector PSF.

5.1 Introduction

We demonstrated previously that monolithic scintillator detectors have favourable
characteristics for application in positron emission tomography (PET) [40]. They
offer the advantages of high spatial resolution, excellent depth-of-interaction
(DOI) correction, high detection efficiency, good energy resolution, and simplic-

1This chapter has been submitted to Medical Physics as: M. C. Maas, D. J. van der Laan,
D. R. Schaart, F. J. Beekman, P. Bruijndonckx, Cedric Lamâıtre and C. W. E. van Eijk, ‘Model
Analysis of the Point Spread Function of Monolithic Scintillator PET Detectors’.
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ity of design. The detectors consist of a monolithic scintillation crystal coupled
to one or more position-sensitive photosensor(s). The entry point of a detected
annihilation photon on the front surface of the crystal is derived from the spa-
tial distribution of the scintillation light measured with the photosensor(s). By
determining the entry point, the depth-of-interaction is intrinsically corrected
for. If solid-state photosensors such as arrays of avalanche photodiodes (APDs)
or silicon photomultipliers (SiPMs) [67] are used to read out the crystal, this
has the additional advantages that the detector can be made compact and MRI-
compatible.

In this work, an analysis of the point spread function (PSF) of monolithic
scintillator detectors is presented. To gain an understanding of the factors which
determine the PSF, a simple model is derived that accounts for the spatial dis-
tribution of the energy depositions following the interaction of an annihilation
photon within the scintillator, as well as for the influence of signal fluctuations
arising from photon and charge carrier statistics and from electronic noise.

The use of the model is demonstrated by fitting it to the measured spatial
response of a prototype monolithic scintillator detector consisting of a LYSO:Ce3+

crystal and two APD arrays in double-sided readout (DSR) geometry [40]. The
model is then used to quantify the effect of the finite diameter of the test beam
of annihilation photons on the measured spatial response, and it is shown how a
correction for this influence can be made in order to estimate the intrinsic detector
PSF. Using the fitting and correction methods thus demonstrated, a detailed
validation of the different components of the model is subsequently performed.

5.2 Model

5.2.1 Detector operating principle

The operating principle of monolithic scintillator detectors has been described in
detail elsewhere [40]. In summary, these detectors consist of a monolithic crystal
read out by one or more position-sensitive light sensors, see figure 5.1 for an ex-
ample. Additional details on the detector studied are given in section 5.3.1. The
interaction of a 511 keV photon within the detector gives rise to a distribution
of scintillation light on the photosensors. The entry point of each detected anni-
hilation photon (‘event’) on the front surface of the crystal is estimated from the
measured distribution of the scintillation light. It has been shown before that
DOI errors are almost entirely eliminated using this approach [40].

To determine the entry points of unknown events, reference data are first
collected by irradiating the detector with 511 keV photons at a grid of known
entry points xi = (xi, yi), and storing the normalized light distributions of nref

reference events at each xi. The entry point of an unknown annihilation photon
is subsequently estimated by comparing its normalized light distribution with
those of all events in the reference set. A subset of the reference data consisting
of the L closest matches (‘nearest neighbours’) is selected, and the most frequently
occurring entry point within this subset is assigned to the unknown event.
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5.2.2 Model of the detector PSF

Upon estimating the entry points of a series of test events using the procedure
described in the previous section, a normalized, two-dimensional (2D) histogram
of the errors ∆xi = x̂j − xt can be created, where x̂j = (x̂j , ŷj) is the estimated
entry point of the j-th test event recorded at xt = (xt, yt). This histogram
approaches the point-spread function PSF (x, y) at xt if the number of test events
is sufficiently large.

Detector PSF

A model of PSF (x, y) is derived for annihilation photons perpendicularly incident
on the detector front surface, see figure 5.1. Three main factors are presumed to
contribute to the detector PSF: (1) the spatial distribution of energy depositions
within the crystal, (2) photon and electron-hole (e-h) pair statistics and electronic
noise in the measured data, and (3) the position estimation algorithm. Each of
these contributions is accounted for as described in the following.

An annihilation photon entering the crystal at some entry point xe = (xe, ye)
may give rise to multiple energy depositions, e.g. due to X-rays and Auger
electrons following photoelectric absorption, and/or secondary photons and elec-
trons following Compton scattering. For each detected annihilation photon, we
define the corresponding energy deposition centroid as the weighted average of
these energy depositions. For the present purpose, only the x- and y-coordinates
xc = (xc, yc) of this energy deposition centroid are of interest. These are given
by:

xc =
∑

n Enxn∑
n En

, (5.1)

where En is the energy deposited in the nth energy deposition, and xn = (xn, yn)
are its x- and y-coordinates, respectively. We now define the function γ0 as the
probability distribution of xc for a given xe:

γ0(xc − xe) ≡ Pr(xc|xe). (5.2)

In this work, this distribution is obtained by Monte Carlo simulation.
The following two assumptions are now made. First, it is assumed that the

distribution of scintillation light on the photosensor due to an event consisting of
multiple energy depositions can be approximated by the light distribution due to a
single deposition of the same total energy at the corresponding energy deposition
centroid. Second, it is assumed that each centroid position corresponds to a
unique expected normalized scintillation light distribution, and, in reverse, that
each light distribution corresponds with a unique expected position of the energy
deposition centroid.

The light distribution actually measured for a given event may differ from the
expected distribution due to statistical signal fluctuations and electronic noise.
We will denote the expectation values of the x and y coordinates of the energy
centroid corresponding with a given, measured light distribution as xc

′ ≡ (x′c, y
′
c).

We now describe the probability distribution of xc
′ corresponding to a given xc
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by a bivariate normal distribution NΣ with zero mean and covariance matrix Σ:

Pr(xc
′|xc) = NΣ(xc − xc

′) =
1

2π|Σ|1/2
e−

1
2 ((xc−xc

′)Σ−1(xc−xc
′)T), (5.3)

where the off-diagonal elements of Σ are assumed to be equal to zero. This
distribution is to be seen as a first-order approximation to an unknown underlying
distribution, the theoretical determination of which is considered beyond the
scope of this work.

The probability that the light distribution actually measured for a given pho-
ton entering at xe corresponds to xc

′ can now be written as:

Pr(xc
′|xe) =

∑
xc

∑
yc

Pr(xc
′|xc) Pr(xc|xe)

=
∑
xc

∑
yc

NΣ(xc
′ − xc)γ0(xc − xe) = {NΣ ∗ γ0}(xc

′ − xe),
(5.4)

where the notation f ∗ g(x) denotes the convolution of two functions f(x) and
g(x), and it is assumed that both xc and yc have an infinite range.

Based on the measured light distribution with corresponding xc
′, the position

estimation algorithm assigns an estimated entry point x̂e from the discrete set
of reference entry points

{
xi

}
, see section 5.2.1. In the following derivation, it is

assumed that an equal number of reference events nref is recorded at each entry
point, so that the total number of events in the reference set equals:

Nref = knref , (5.5)

with k the total number of reference entry points.
Following the same arguments as above, a reference event recorded at xr has

a probability of generating a light distribution corresponding to xc
′ of:

Pr(xc
′|xr) = {NΣ ∗ γ0}(xc

′ − xr). (5.6)

The probability of misclassification (mispositioning) achieved by the nearest
neighbour algorithm generally reaches a minimum at some L > 1, which de-
pends on Nref . For the limiting case of Nref → ∞, the optimum is reached for
L → ∞ with L/Nref → 0 [83]. In this case, the algorithm chooses the refer-
ence entry point for which the probability density function Pr(xr|xc

′) evaluated
at xr is greatest, since the algorithm selects the most frequently occurring co-
ordinate within the nearest neighbour subset. Assuming that these functions
are symmetrical and that the reference entry points lie on a regular, rectangular
grid, Pr(x̂e|xc

′) follows a uniform distribution covering a rectangular area centred
around x̂e:

Pr(x̂e|xc
′) = U

(
x′c −

∆xr

2
, x′c +

∆xr

2

)
U

(
y′c −

∆yr

2
, y′c +

∆yr

2

)

=

{
1

∆xr∆yr
if − ∆xr

2 ≤ x̂e − x′c ≤ ∆xr

2 ∧ −∆yr

2 ≤ ŷe − y′c ≤ ∆yr

2

0 elsewhere

≡ Υ(x̂e − xc
′)

(5.7)
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where ∆xr and ∆yr represent the distances between adjacent reference entry
points in the x- and y-directions, respectively. For this case the probability
distribution of x̂e, given xe, can be written:

PSF ≡ Pr(x̂e|xe) =
∑
xc

∑
yc

Pr(x̂e|xc
′) Pr(xc

′|xe)

= {γ0 ∗NΣ ∗Υ}(x̂e − xe) for L →∞∧ L/Nref → 0.

(5.8)

This equation shows that the influence of γ0 and NΣ on the PSF only occurs
through the test data. According to the arguments that led to equation (5.7),
the influence of these factors on the reference data do not affect the PSF, provided
that L →∞ and L/Nref → 0. According to equation (5.8), only the pitch of the
reference grid may affect the PSF.

Influence of test beam diameter

The model presented thus far describes the distribution of estimated entry points
x̂e given a known entry point xe. In experiments however, the true entry points
are known exactly neither in the reference nor in the test data, as the beam
of annihilation photons used to record these data sets has a finite diameter.
A measured PSF thus actually represents Pr(x̂b|xb), where xb represents the
true beam position and x̂b the estimated one, defining the beam position as the
location where the beam axis intersects the crystal front surface. The probability
distribution of the x- and y-coordinates of the energy centroids due to a realistic
experimental beam, having a finite diameter and possibly exhibiting divergence,
can again be determined by Monte Carlo simulation and will be written as:

γb(xc − xb) ≡ Pr(xc|xb), (5.9)

where the subscript ‘b’ is used to indicate the use of a realistic beam. The
probability distribution of x̂b, given xb, is then found by substituting γb for γ0 in
the derivation given in the previous section, yielding:

PSFb ≡ Pr(x̂b|xb)
= {γb ∗NΣ ∗Υ}(x̂b − xb) for L →∞∧ L/Nref → 0.

(5.10)

Similar to equation (5.8), the influence of γb only occurs through the test data
and not through the reference data, provided that L →∞ and L/Nref → 0.

Background

To account for experimental artefacts, such as scattering of the annihilation pho-
tons in materials in between the source and the crystal (e.g. the entrance window
of the detector box or the front side APD array, see section 5.3.1), a small back-
ground contribution is included in the model. For each true beam position xb, the
background is assumed to be uniformly distributed over the available reference
coordinates:

b(x̂b − xb) = c · U (
xmin

r − xb, x
max
r − xb

) · U (
ymin

r − yb, y
max
r − yb

)
(5.11)
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Table 5.1: Summary of the PSF models with and without a finite beam diameter
in the test data. In all models, it is assumed that Nref →∞.

PSF Test beam Model

PSF0 No γ0 ∗NΣ + B
PSFb Yes γb ∗NΣ + B

where c is a constant, and xmin
r , xmax

r , ymin
r , and ymax

r are the minimum and
maximum x- and y-coordinates in the reference data, respectively.

In our experiments, the PSF is often determined by summing the PSFs at
multiple beam positions in order to improve statistics on the histogram. The
model background contribution for this case is found by summing the individual
contributions b(x̂b − xb) over all xb in the test data:

B(x̂b − xb) = c ·
∑
xb

∑
yb

U
(
xmin

r − xb, x
max
r − xb

) · U (
ymin

r − yb, y
max
r − yb

)
,

(5.12)
where it is assumed that c is equal for all beam positions, and that equal numbers
of test events are used at each beam position. This expression is equivalent to
a scaled convolution of two uniform distributions: one spanning the area con-
taining the test coordinates, and one spanning the area containing the reference
coordinates. In general, it therefore has a trapezoidal shape.

PSF model summary

Table 5.1 summarizes the model expressions for the different cases described
above. The PSFs carry a subscript ‘0’ or ‘b’, corresponding to the case of a
zero-width beam, and a beam with finite diameter and divergence, respectively.

As explained in sections 5.2.2, the influences of the beam diameter (as ac-
counted for by γb) and of statistics and electronic noise (as accounted for by
NΣ) only occur through the test data, provided that Nref → ∞, L → ∞ and
L/Nref → 0 We will verify how well our experiments approximate these condi-
tions in section 5.4.3.

In the remainder of this work, the uniform distribution Υ describing the in-
fluence of the finite distances between adjacent reference entry points is approxi-
mated by a delta function, in view of its narrow width compared to the width of
the measured PSFs. It thus disappears from the convolution.

5.3 Materials and methods

5.3.1 Detector

The detector module investigated in this work has been discussed in detail else-
where [40]. Briefly, it consists of a monolithic LYSO:Ce3+ crystal read out by two
Hamamatsu S8550SPL APD arrays in double-sided readout (DSR) geometry, see
figure 5.1. This S8550SPL APD array, based on the commonly available S8550
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Figure 5.1: Schematic representation of the detector investigated: a 20 mm
thick LYSO:Ce3+ crystal read out by 2 position-sensitive, Hamamatsu S8550SPL
APD arrays in double-sided readout (DSR) geometry. The thick arrow indicates
a test beam of annihilation photons incident at some arbitrary position (x,y) on
the front surface of the detector. Dimensions are indicated in mm.

Table 5.2: Properties of the crystal investigated

Material LYSO:Ce3+

Surface polished
Dimensions 20 mm × 10 mm × 20 mm
Light yielda 2.02 · 104 ph/MeV
Energy resolutiona 10.5% FWHM at 511 keV
a data from [40]

array, is a customized product optimized specifically for placement on the crystal
front surface [3], as is done in DSR geometry. It consists of a 4 × 8 array of 1.6
× 1.6 mm APD pixels at a pitch of 2.3 mm. The properties of the crystal are
summarized in table 5.2. The side surfaces of the crystal are wrapped in highly
reflective Teflon tape.

5.3.2 Measurement setup

Reference and test data are recorded using a setup described elsewhere [40]. The
detectors are contained in a light-tight, temperature controlled box. A test beam
of 511 keV photons is defined by placing the detector close to a ∅ 0.5 mm 22Na
source and operating it in coincidence with a second detector placed at a larger
distance on the opposite side of the source. This second detector consists of
a ∅ 19 × 35 mm3 BGO crystal coupled to an XP2020 PMT equipped with a
60 mm thick Pb collimator with ∅ 5 mm aperture, see figure 5.2. The diameter
of the photon beam can be controlled by varying the distances between the APD
detector, the source, and the BGO detector. Throughout this work, the FWHM
diameter d of the fluence profile on the front surface of the LYSO crystal is used
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Figure 5.2: Schematic representation of the geometry of the test beam of anni-
hilation photons used to measure detector PSFs (not to scale).

as a measure of the beam diameter.

5.3.3 Spatial resolution measurements

The detector PSF was evaluated for one half of the symmetric crystal only, in
order to reduce measurement times. Reference data were recorded at a rectan-
gular grid of beam positions in the region (−10 ≤ x ≤ 10 mm, −2 ≤ y ≤ 5 mm),
in steps of 0.25 mm, see figure 5.1. Test data were recorded on a similar grid in
the region (−3 ≤ x ≤ 3 mm, 0 ≤ y ≤ 1.5 mm). The margin between the two sets
at -2 mm < y < 0 mm was applied to avoid truncation of the PSFs at y = 0. At
each beam position, nref = 500 reference events were recorded.

The entry point of each event in the test data set was estimated using the
nearest neighbour procedure described in section 5.2.1. Calculation of the PSF
was optimized by finding the value of L that minimized < σ∗PSF >≡ (σ∗PSF,x +
σ∗PSF,y)/2, i.e., the average of the standard deviations of the histogram in the x-
and y- directions. The asterisks are used to indicate that PSF values below 1%
of the peak amplitude were disregarded in order to reduce the sensitivity of the
results to outliers.

The influences of some parameters (such as the beam diameter) were studied
by varying the parameter of interest in a series of measurements performed in 1
dimension (1D) only, so as to reduce measurement times. In these studies, nref =
1500 reference events were recorded per beam position between−10 ≤ x ≤ 10 mm
along the x-axis (y = 0), in steps of 0.25 mm. Test data were recorded between
−3 ≤ x ≤ 3 mm (y = 0). For optimization of L in 1D, the standard deviation
σ∗PSF of the measured 1D-PSF was minimized, again excluding bins lower than
1% of the peak amplitude.

5.3.4 Simulation of scattering and beam

To determine the energy centroid distribution γb, the experimental setup shown
in figure 5.2 was modelled in a Monte Carlo simulation.

The simulated detector consisted of a 20 × 10 × 20 mm3 block of LSO coupled
to two APD arrays, which were modelled as 11.2× 19.5× 1.5 mm3 slabs of silicon.
The Teflon layer around the crystal was modelled as a 1 mm thick plastic layer
(density 0.9 g/cm2).

The 22Na-source was simulated using the Monte Carlo simulation toolkit
GATE [30]. The activity was assumed to be uniformly distributed within the
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ion exchange bead. Positrons were generated and tracked until annihilation, and
the coordinates of the annihilation positions were stored.

A simulation of pairs of 511 keV photons was then performed in GEANT4 [5].
For each photon pair, a point on the front surface of the BGO crystal lying within
the collimator opening was randomly picked from a uniform distribution. The
vector connecting this point to a randomly picked annihilation position from the
set determined previously was then calculated. It was thus implicitly assumed
that no 511 keV photons could reach the BGO-PMT detector through the lead
of the collimator. Photon acollinearity was accounted for by adding a randomly
picked angle to this vector at the annihilation position, according to a distri-
bution determined experimentally for PMMA [31]. Annihilation photons were
propagated along the resulting vector towards the APD detector, and upon in-
teraction with the crystal, the coordinates of the energy deposition centroid were
stored, taking a threshold of 100 keV for the total energy deposition into account.

The energy centroid distribution γ0 was simulated similarly, except that the
test beam was replaced by a pencil beam of zero diameter perpendicularly incident
on the detector.

The distributions γ0 and γb were obtained by creating histograms of the x-
and y-coordinates of the energy deposition centroids within the crystal. The
coordinates at which the 511 keV photons crossed the front surface of the crystal
were also histogrammed, providing an estimate of the beam diameter d.

5.3.5 Model fitting procedure

Fitting the model to measured PSFs was done by minimizing the sum-of-squares
(SSQ) difference between the appropriate model from table 5.1 and the experi-
mental result. The simulated distributions γ0 and/or γb were used as fixed inputs,
while the amplitude and covariance matrix of NΣ and the amplitude of B were
used as fit parameters.

5.4 Results and discussion

In the following, we first fit the model derived in section 5.2.2 to the measured
detector spatial response. In section 5.4.2, the model is then used to quantify the
influence of the test beam diameter on the measured spatial response and it is
shown how a correction for this influence can be made to estimate the intrinsic
detector PSF. Using the fitting and correction methods thus demonstrated, a de-
tailed validation of the different model components is performed in section 5.4.3.

5.4.1 Detector PSF

All spatial resolution measurements were performed with a test beam having a
finite diameter d, see section 5.3.2. Hence, the results are of type ‘PSFb’ as
defined in table 5.1.

The cross-section of PSFb(x) for the measured 2D detector spatial response
in the x-direction at zero y-error is shown in figure 5.3 (circles). The result
of a least-squares fit to the measured data of the model of PSFb(x, y) for the
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Figure 5.3: Cross-sections PSFb(x) for the measured (solid circles) and fitted
(solid curve) PSFb(x, y), and cross-section PSF0(x) of the corrected PSF0(x, y)
(dotted curve). PSFb(x, y) was obtained using L = 500.

case L → ∞ ∧ L/Nref → 0 is indicated by the solid curve in the same graph.
Excellent correspondence between the model and the experiment is observed.
Similarly good correspondence was observed in the y-direction, i.e. for PSFb(y).

5.4.2 Correction for test beam diameter

Assuming that the model accurately describes the various contributions to the
measured PSFb, it can be used to quantify the influence of the test beam diameter
and, therefore, to make a correction for this influence. This is done as follows.
First, the distributions NΣ and B are determined by fitting PSFb(x, y) to the
measured data, using a Monte Carlo simulation of the test beam for determining
γb as in section 5.4.1. Subsequently, PSF0(x, y) is estimated by convolving the
resulting NΣ with γ0, and adding B (see table 5.1). Here, γ0 is determined
from a Monte Carlo simulation of a beam with zero diameter. The result of this
procedure is denoted by PSF0(x, y).

The dotted curve in figure 5.3 shows the cross-section PSF0(x, y) estimated
from the measured curve shown in the same figure. Figure 5.4 shows the corre-
sponding cross-sections through γb (solid black curve), γ0 (solid grey curve), NΣ

(dashed curve), and B (dotted curve), where the amplitude of B has been scaled
according to the amplitude of {γb ∗NΣ}.

The FWHM and FWTM of the measured and corrected PSFs are listed in
table 5.3. A very good intrinsic detector spatial resolution of 1.05 mm FWHM is
found in the x-direction.
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Figure 5.4: Cross-sections along the x-axis for the distributions γb (solid black
curve), γ0 (solid grey curve), NΣ (dashed curve) and B (dotted curve) for L =
500.

Table 5.3: FWHM and FWTM of cross-section PSFb(x) of the measured
PSFb(x, y) and cross-section PSF0(x) of the corrected PSF0(x, y), obtained with
L = 500.

PSF PSF(x) (mm) PSF(y) (mm)

FWHM FWTM FWHM FWTM

PSFb(x) 1.54 3.33 1.61 3.80
PSF0(x) 1.05 2.09 1.25 2.42
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5.4.3 Validation of the model

We demonstrated in section 5.4.1 that the PSF model can accurately be fitted
to measured PSFs. In section 5.4.2 it was shown how the model can be used
to quantify the influence of the test beam diameter and to correct the measured
PSF for this influence. In this section, we will further investigate the validity
of the model. Section 5.4.3 presents a validation of the model parameter γb,
section 5.4.3 investigates to which extent the conditions Nref → ∞, L → ∞,
and L/Nref → 0 are met in the present experiments, and section 5.4.3 discusses
how well the influence of noise and statistics is accounted for by the Gaussian
distribution NΣ.

For efficiency, all experiments presented here were done in the form of 1D
resolution measurements. This implies that each of the distributions γ0, γb, NΣ

and B in table 5.1 reduce to 1D functions, i.e., only the x-coordinate is being
taken into account. Instead of NΣ we therefore use a 1D Gaussian distribution
Nσ with standard deviation σ. The resulting point spread functions are denoted
by ‘1D-PSFb’ etc.

Validation of γb

One of the principle assumptions in the derivation of the model is that the influ-
ence on the measured PSFb of the spatial distribution of the energy deposited
within the crystal by the test beam can be accounted for by γb, the distribution
of the energy deposition centroids of the recorded events. This assumption was
tested by creating 1D-PSFs with various test data sets, each acquired with a
different beam diameter dt ranging from 0.84 mm FWHM to 1.46 mm FWHM.
Each PSF was created using the value of L that minimized its standard deviation
σ∗PSF (see section 5.3.3), thus minimizing residual effects due to the finite number
of reference events (which will be discussed in section 5.4.3). The same reference
data set acquired with beam diameter dr = 0.84 mm FWHM was used for each
PSF, in order to keep any remaining influence of the limited number of reference
data constant. According to the model, it should then be possible to accurately
describe all 1D-PSFb using different γb but the same Nσ.

Figure 5.5 shows the FWHM (filled circles) and the FWTM (open circles) of
1D-PSFb as a function of dt. The FWHM (black squares) and FWTM (open
squares) of the corrected 1D-PSF0 are shown in the same figure. Each 1D-PSF0

was created by first fitting the model to the data using the appropriate γb and then
convolving the resulting Nσ with γ0. The FWHM and FWTM of the resulting
1D-PSF0 indeed appear to be virtually independent of dt. It appears that γb

indeed describes the influence of intra-crystal scattering and of the finite beam
diameter on the measured spatial response accurately, and that the proposed
procedure to correct for this influence is adequate.

It is acknowledged that no theoretical justification is given for using the Gaus-
sian distribution Nσ to describe the influence of statistical fluctuations and noise
in the test data. However, the accuracy of the model fit presented in figure 5.3
indicates that this assumption is valid under the present experimental conditions.
This will be discussed further in section 5.4.3.
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Figure 5.5: FWHM and FWTM of measured 1D-PSFb and corrected 1D-PSF0

as a function of the beam diameter dt in the test data. All 1D-PSFs were obtained
using the same reference data recorded with a beam diameter dr = 0.84 mm
FWHM, using nref = 1500 and the value of L that minimized σ∗PSF .

Influence of the finite reference data set

In the derivation of the model, it was shown that the influences of the beam
diameter and intra-crystal scattering on the reference data should not affect the
measured spatial response, provided that Nref →∞, L →∞, and L/Nref → 0,
see section 5.2.2. These conditions can however never be met experimentally, so
that a small influence of the beam diameter in the reference data may still be
expected.

This was investigated by calculating 1D-PSFb as a function of the beam
diameter in the reference data dr (0.84 mm ≤ dr ≤ 1.46 mm FWHM), at various
values of L. Here, each PSF was obtained using the same test data set recorded
at dt= 0.84 mm FWHM.

Figure 5.6 shows the FWHM of 1D-PSFb as a function of dr for various
values of L. At L = 1 the FWHM increases from 2.31 mm at dr= 0.84 mm to
2.78 mm at dr= 1.46 mm. At L = 500 this dependence is reduced, resulting in
an increase of the FWHM from 1.75 mm at dr= 0.84 mm to 1.86 mm at dr=
1.46 mm. Thus, a slight dependence on dr remains, even at high values of L.
This is attributed to the finite number of reference events nref per beam position
(∼1500 in these experiments). If the number of reference events recorded at
the reference position xr closest to the xc

′ corresponding to the measured light
distribution is not large compared to L, some of the nearest neighbours may be
selected from other reference positions. In that case the probability Pr(x̂e|xc

′)
that the positioning algorithm assigns a coordinate x̂e, given the measured xc

′,
may no longer be given by the uniform distribution Υ (see equation (5.7)). It
is therefore expected that increasing the number of reference events may allow
some further improvement of the detector resolution by eliminating the slight
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Figure 5.6: FWHM of measured 1D-PSFb as a function of the beam diameter
dr in the reference data, for various values of L. Each 1D-PSFb was created
using the same set of test data recorded at dt = 0.84 mm.

influence of dr still observed in the present experiments.

Influence of statistical fluctuations and noise

The influence of the statistical fluctuations and noise in the measured light distri-
butions on 1D-PSFb, which is accounted for by NΣ in the model, was investigated
by adding Gaussian noise to the data by software. This was done on top of the
∼750 e− per channel equivalent noise charge (ENC) already present at the APD
array outputs [40].

The squares in figure 5.7 show the standard deviation σ∗PSF of 1D-PSFb as
a function of the noise added to the reference data. Here, the same test data set
without added noise was used in each case. For comparison, the opposite case
(noise added to the test data, but not to the reference data) is indicated by the
circles in the same figure.

While σ∗PSF increases immediately when noise is added to the test data, it
remains approximately constant when noise is added to the reference data, up
to an added ENC of ∼1250 e−. This indicates that under the present experi-
mental conditions, the finite signal-to-noise ratio (SNR) of the reference data has
a negligible influence on the PSF. However, if the SNR of the reference data is
decreased too much, a broadening of the PSF may be expected. The minimum
SNR required for the reference data depends on the number of reference events
Nref .

To investigate up to which noise level the influence of statistical fluctuations
and noise is accurately accounted for by the Gaussian distribution NΣ in the
model, the residual sum of squares Sr =

∑
i (PSFb,fit(xi)− PSFb,exp(x− i))2

was calculated as a function of the amount of noise added to the test data. Here,
PSFb,fit and PSFb,exp represent the fitted and measured 1D-PSFb, respectively.
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Figure 5.7: (a) standard deviation σ∗PSF of measured 1D-PSFb and (b) residual
sum of squares Sr resulting from fitting the model to the same 1D-PSFb, as a
function of the equivalent noise charge in the test data (circles) and in the refer-
ence data (squares). The values on the horizontal axis represent the noise added
to the ∼750 e− of electronic noise per channel already present in the experimental
data. At each data point, the value of L that minimized σ∗PSF for that particular
noise level was used.
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The results of this analysis are shown in figure 5.7b. Below ∼500 e− ENC added
per channel, Sr does not increase strongly with increasing noise. At higher noise
levels, however, Sr starts to increase more rapidly. This suggests that NΣ can
indeed be approximated by a Gaussian distribution at the relatively low noise
levels found in our measurements, but that this simple approximation loses its
applicability if the noise level is increased too much.

5.5 Conclusions

We derived a simple model of the point spread function of monolithic scintillator
detectors, which accounts for the spatial distribution of the energy depositions
following the interaction of annihilation photons within the scintillator, as well
as for the influence of signal fluctuations arising from photon and charge carrier
statistics and from electronic noise. The model was used to analyze the measured
spatial response of a prototype monolithic scintillator detector consisting of a
LYSO:Ce3+ crystal and two APD arrays in double-sided readout (DSR) geometry.
The effect of the finite diameter of the test beam of annihilation photons used in
our experiments on the measured detector spatial response was quantified, and
it was demonstrated how a correction for this influence can be made to estimate
the intrinsic detector PSF.

The results show that the proposed model describes the measured spatial
response well within certain boundary conditions. Specifically, the model is based
on the assumption that Nref → ∞. For this case, the model predicts that the
best possible spatial resolution is achieved if L → ∞ with L/Nref → 0. The
extent to which these conditions are approximated by the finite values of L and
Nref used in practice depends not only on the values of L and Nref themselves,
but also on the beam diameter db and on the signal-to-noise ratio of the measured
light distributions. Furthermore, the extent to which the influence of the signal-
to noise ratio on the measured point spread function is accurately represented by
a simple Gaussian distribution NΣ was found to depend on the signal-to-noise
ratio. It was shown that this approximation is valid at the signal-to-noise ratios
found in our experiments.

We thus conclude that the proposed model is an accurate and useful tool for
analyzing the detector PSF of monolithic scintillator detectors and for correct-
ing measured spatial resolution of such detectors for the influence of the finite
diameter of the test beam of annihilation photons used in spatial resolution mea-
surements.



CHAPTER 6

Simulated performance of small-animal PET scanners
based on monolithic scintillator detectors1

This chapter presents a pilot study of the performance of small-animal PET
systems based on monolithic scintillator detectors. The study is based on
Monte Carlo simulations which use measurements of the PSFs and other
detector properties as input. Simulations are performed of scanners consisting
of 1 or 4 rings with an inner diameter of 123.8 mm and an axial extent of
19.5 mm, each containing 32 detectors of 20 mm thick LSO.

The system resolution of the 1-ring scanner is estimated in 2D, both for ideal
mathematical point sources without positron range or photon acollinearity,
and for realistic ∅0.5 mm 18F sources. Very little degradation of the system
resolution towards the edge of the field of view of the scanner is observed
in either case. A 2D image of a simulated 18F-filled micro-Derenzo hot rod
phantom reconstructed with an OSEM algorithm shows that rods with a
diameter of 2.4 mm are well resolved.

The sensitivity for coincident detection at low count rates is estimated at 21%
at the centre of the FOV of a 4-ring scanner with trapezoidally shaped de-
tectors. This is substantially higher than the 3–4% reported for current state
of the art systems. The NECR calculated for this system reaches 2000 kcps
in a ∅36× 67 mm3 water phantom uniformly filled with 18F at an activity of
70 MBq.

Further improvement of the image quality is expected with an optimisation
of the reconstruction algorithm and the detector geometry.

1Part of this chapter has been published as: D. J. van der Laan, M. C. Maas, H. W. A. M. de
Jong, D. R. Schaart, P. Bruyndonckxc, C. Lemâıtre and C. W. E. van Eijk, ‘Simulated per-
formance of a small-animal PET scanner based on monolithic scintillation detectors, Nuclear
Instruments and Methods in Physics Research A 571 (2007), 227–330.
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6.1 Introduction

The performance of monolithic scintillator detectors has been summarised in [40].
The results were promising: a corrected detector spatial resolution of ∼1.05 mm
FWHM was found (see section 5.4.2, comparable to current state-of-the-art small
animal PET systems, and the correction for the depth-of-interaction of incident
511 keV photons was found to be excellent. The energy and timing resolutions
measured with these detectors are suitable for application in PET. In addition,
the detectors have a high detection efficiency and compact design, suggesting
that a PET scanner based on these detectors could have excellent performance
characteristics.

This chapter presents a pilot study into the performance potential of small-
animal PET scanners based on monolithic scintillator detectors, in terms of the
image spatial resolution, the scanner sensitivity and the count rate performance.
This is done by Monte Carlo simulations using experimental point spread func-
tions (PSFs) and other performance parameters measured on a prototype detector
module as input.

The image spatial resolution obtainable with these scanners is investigated
in 2D acquisition mode. This is done by simulating a PET system consisting of
1 ring with an inner diameter of 123.8 mm containing 32 trapezoidally shaped
detectors. The intrinsic system resolution of this system is analysed by simulating
mathematical point sources emitting back-to-back annihilation photons at a range
of radial distances from the scanner axis, neglecting positron range and photon
acollinearity. The system resolution in response to realistic point sources is also
investigated, by simulating eight ∅0.5 × 1 mm3 18F-sources at various radial
distances from the scanner axis, taking positron range and photon acollinearity
into account. Finally, the image resolution obtained with a Micro-Derenzo hot
rod phantom filled with 18F is analysed.

The scanner sensitivity and noise equivalent count rate (NECR) are analysed
for scanners consisting of four rings of detectors. A comparison is made between
trapezoidal monolithic detector modules, rectangular monolithic detector mod-
ules, and detector modules consisting of 8× 4 matrices of 2×2×20 mm3 crystals.
The scanner sensitivity is investigated as a function of the axial and the radial
distance from the scanner centre using a 1 MBq mathematical point source emit-
ting back-to-back 511 keV photons. The NECR is determined using simulations
of a mouse phantom and a rat phantom, modelled respectively as a ∅36×67 mm3

and a ∅60× 150 mm3 water cylinder filled with uniform 18F activity.

6.2 Methods

6.2.1 Monte Carlo simulations

Simulations were performed using the Monte Carlo simulation toolkit GATE [30].
The simulated scanners consisted of one or four rings of 32 detector modules each.
Each ring had an inner diameter of 123.8 mm and an axial length of 19.5 mm.
In the 4-ring scanners, the rings were positioned at an axial pitch of 21 mm.
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Figure 6.1: Four-ring scanner with trapezoidal detectors.
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Figure 6.2: Detector types investigated: (a) trapezoidal, (b) rectangular, (c)
pixel matrix.

Three different detector geometries were investigated: trapezoidal monolithic
crystal detectors, rectangular monolithic crystal detectors, and detectors with
8 × 4 crystal matrices. An illustration of the 4-ring scanner with trapezoidal
detectors is presented in figure 6.1. The detector types are depicted in figure 6.2,
which also shows the coordinate system used to specify positions and angles of
incidence on the detector front surface. The trapezoidal crystals had a front
surface of 11.5 × 19.5 mm2, a back surface of 15.4 × 19.5 mm2 and a depth of
20 mm. The rectangular crystals had dimensions of 19.5×11.5×20 mm3, and the
matrix detectors had 8 × 4 crystals of 2×2×20 mm3 at a pitch of 2.2 mm. The
crystal material in each detector was LSO:Ce, and each module was coupled to
2 Hamamatsu S8550-SPL APD arrays, modelled as 11.2×19.5×1.5 mm3 slabs of
silicon.

In each simulation, the locations and energy depositions of the interactions
within the crystal of each 511 keV photon entering a detector were stored. The
total energy deposited was blurred with a Gaussian distribution with a FWHM
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of 10% of the energy value as an approximation of the energy resolution mea-
sured with these detectors, see [40]. Events with blurred total energy depositions
outside an energy window of 250–750 keV were rejected. For each single event
within the energy window, a detector dead time of 0.5 µs was applied. All single
events were stored in list mode for offline coincidence sorting.

The time stamp of each detected single was blurred with a Gaussian distri-
bution with a FWHM of 2 ns, based on measurements of the timing resolution
of a prototype detector module [40]. A coincidence time window of 5 ns was
used, approximately twice the coincidence timing resolution of 2.8 ns obtained
experimentally [44]. Coincident events in which more than two detector modules
were involved were rejected.

After sorting the coincidences, the entry point and incidence angle of each
511 keV photon was determined. Each entry point was then projected onto the
detector y-axis (see figure 6.2), since the image resolution was determined in 2D
only in this study. The projected entry points were then blurred by adding a
positioning error randomly selected from the corrected 1D-PSF of the detector
corresponding to the nearest test beam position and incidence angle (see sec-
tion 6.2.2). The lines-of-response (LORs) corresponding to these blurred entry
points were then calculated and sorted into 2D sinograms.

6.2.2 Intrinsic detector PSF

The 1D-PSF of the trapezoidal detectors was measured according to the proce-
dure outlined in [40]. A prototype detector (LYSO20T-P) was stepped through
a beam of 511 keV photons of db = 0.96 mm FWHM along the detector y-axis
in steps of 0.25 mm, i.e. in the plane of the detector ring. At each beam posi-
tion, nref = 1500 reference light distributions were recorded. This was done for
incidence angles between θ = 0◦ and θ = 40◦, in steps of 5◦, at ϕ = 90◦ (see
figure 6.2), yielding a total of 9 data sets. The oblique sides of the crystals were
included in the data sets at all angles of incidence. The entry point coordinate of
each event in each of the data sets was estimated with the L-nearest neighbour
method, using the leave-one-out approach (see chapter 5).

The positioning error of each test event was calculated by subtracting the
estimated coordinate from the true, known coordinate. This way, histograms of
positioning errors were created for each beam position and each angle of incidence.
Each of these histograms corresponds to the detector 1D-PSF at a certain position
and angle of incidence on the front surface of the detector. In the present analysis,
the 1D-PSFs were averaged over 1 mm data segments.

The intrinsic 1D-PSF exhibited by the detectors in a PET system corre-
sponds to their response to an infinitely narrow beam. The measured 1D-PSFs
were therefore corrected for the finite width of the test beam. The beam pro-
file was determined using Monte Carlo simulations of an accurate model of the
measurement setup in Geant4 [5], see chapter 5. The procedure to correct the
PSFs for the finite diameter of the test beam presented in chapter 5 could not
be used in this study, because the model on which it is based was only derived
for normally incident 511 keV photons at the centre of the detector front surface.
The intrinsic detector 1D-PSFs were therefore estimated by deconvolution of the
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measured 1D-PSFs with the simulated beam profile.

6.2.3 Scanner performance

Image spatial resolution

The system resolution obtainable with the proposed scanner type was investigated
in 2D, by simulating a 1-ring system of trapezoidal detectors. To investigate
the intrinsic resolution of this scanner, a 0.5 kBq mathematical point source
emitting back-to-back annihilation photons was simulated, neglecting positron
range and acollinearity. The source was placed at radial positions r in the field
of view (FOV) ranging from r = 0 mm (center FOV) to r = 29 mm, in steps of
1 mm. A simulation of 106 events was performed at each source position, and
no attenuation correction, normalisation or subtraction of random coincidences
was performed. The LORs were binned into 2D sinograms with a bin size of
r × φ = 0.5 mm × 0.9◦. Reconstruction of the sinograms was performed by
filtered backprojection with a ramp filter with a cutoff at the Nyquist frequency,
resulting in an image with pixels with a size of 0.5× 0.5 mm.

The system resolution obtainable with realistic point sources was investigated
by simulating eight 0.5 kBq ∅0.5 × 1 mm3 18F-sources each embedded in a
∅4.6 × 5 mm3 PMMA cylinder, at radial positions ranging from r = 0 mm to
r = 35 mm in steps of 5 mm. A total number of 37·106 positron emission events
were simulated, taking positron range and photon acollinearity into account. The
LORs were binned into 2D sinograms with a bin size of r × φ = 0.5 mm × 0.9◦.
Reconstruction of the sinograms was performed by filtered backprojection with
a ramp filter with a cutoff at the Nyquist frequency, resulting in an image with
pixels with a size of 0.5× 0.5 mm.

Finally, simulations were performed of a micro-Derenzo phantom, consisting
of a ∅77 × 35 mm3 PMMA cylinder with 6 segments of radioactive rods with
diameters of 1.2, 1.6, 2.4, 3.2, 4.0 and 4.8 mm containing 2 MBq of 18F. The dis-
tance between the rods in each segment was twice the diameter, and the activity
was contained in the central 1 cm of the axial field of view. A total number of
3.3 ·108 events were simulated. No correction for scattered events, attenuation
or random coincidences was performed, and the sinograms were not normalised.
The sinograms were reconstructed using a 2D-OSEM algorithm with 10 subsets
and 30 iterations, resulting in an image with pixels with a size of 0.5× 0.5 mm.

Scanner sensitivity

To assess the scanner sensitivity, simulations of three 4-ring systems with trape-
zoidal monolithic detectors, rectangular monolithic detectors and crystal matrix
detectors were performed, see section 6.2.1. The sensitivity of each of these sys-
tems was investigated by stepping a 1 MBq point source of back-to-back 511 keV
photons from the centre to the edge of the FOV, both axially and radially, in
steps of 1 mm. At each source position, ∼ 106 events were simulated. An energy
window of 250–750 keV was used for each detector. The sensitivity was calculated
by dividing the true coincidence count rate by the activity of the point source.
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Count rate performance

The count rate performance of a scanner represents its ability to reject random
and scattered coincidences at a given source activity. It can be quantified us-
ing the noise equivalent count rate (NECR), which can be calculated using the
relationship [72]:

NECR =
T 2

T + S + 2kR
, (6.1)

where T is the rate of true coincidences, S is the rate of scattered coincidences, R
is the rate of random coincidences and k is the ratio of the phantom diameter and
the scanner diameter. The factor 2 in the denominator accounts for the method
of randoms correction, which is assumed to be a delayed coincidence technique
for the present study.

The NECR of the 4-ring system with trapezoidal detectors was determined
using simulations of a mouse phantom and a rat phantom. The phantoms were
modelled respectively as a ∅36× 67 mm3 and a ∅60× 150 mm3 water cylinder
filled with uniform 18F activity.

6.3 Results

6.3.1 Spatial resolution

Figure 6.3 shows the radial (squares) and tangential (triangles) FWHM intrinsic
system resolution in response to mathematical point sources emitting back-to-
back 511 keV photons at a range of radial distances from the central field of view
(CFOV). These numbers were obtained by linear interpolation of the intensity
profile through the pixel with maximum intensity for each source position. The
spatial resolution is essentially uniform and isotropic over a range up to 3 cm off-
centre, in agreement with the excellent correction for the DOI previously reported
for these detectors [40].

Figure 6.4 shows an filtered back-projection (FBP) reconstructed image of the
eight ∅0.5 mm 18F point sources. Linear interpolation of the profiles through
the pixel with maximum intensity yields a system resolution at the CFOV of
∼1.4 mm FWHM and ∼3.3 mm FWTM. At 35 mm from the CFOV, this degrades
to 2.1 mm FWHM and 4.1 mm FWTM radially, and 2.3 mm FWHM and 5.7 mm
FWTM tangentially.

Figure 6.5 shows 2D-OSEM reconstructed images of the micro-Derenzo phan-
tom. In figure 6.5a, the source emitted back-to-back 511 keV photons, neglecting
positron range and photon acollinearity. Attenuation and scatter within the
phantom were set to zero. In figure 6.5b, a realistic positron source with an en-
ergy distribution corresponding to 18F was simulated, and photon acollinearity,
attenuation and scatter within the phantom were taken into account. No at-
tenuation correction, scatter correction or normalisation was applied to the data
to create either image. No randoms correction was applied in view of the low
activity (0.5 kBq) of the simulated sources.

In figure 6.5a, the 2.4 mm rods are clearly separated while the 1.6 mm rods are
not, in agreement with the results presented for the mathematical point sources
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Figure 6.3: Radial (squares) and tangential (triangles) FWHM spatial resolu-
tion of a mathematical point source as a function of the radial position. Positron
range and photon acollinearity were set to zero in these simulations.

Figure 6.4: Reconstructed image of eight ∅0.5 18F point sources at radial dis-
tances of 0, 5, . . . , 35 mm from the scanner CFOV.
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(figure 6.3). In figure 6.5b, the 2.4 mm rods can still be identified, but the
separation is less distinct due to the blurring effect of positron range an photon
acollinearity. Radial distortion of the rods on the outside of the FOV is observed
in neither image, owing to the good DOI correction of the detectors.

Ring-shaped artefacts can be observed around each row of rods in figure 6.5a.
Although less clearly discernible, these artefacts are also observed in figure 6.5b.

6.3.2 Sensitivity

The point source sensitivity is plotted in figure 6.6 as a function of the radial and
axial distance from the CFOV for the three 4-ring systems with trapezoidal mono-
lithic detectors (solid lines), rectangular monolithic detectors (dotted lines), and
crystal matrix detectors (dashed lines). The sensitivities at the CFOV are 21%
for the trapezoidal detectors, 17.5% for the rectangular detectors and 8% for the
crystal matrix detectors. The rectangular monolithic detectors have a sensitive
volume that is ∼ 56% larger than that of the crystal matrix detectors, resulting
in an increase of the scanner sensitivity of approximately a factor 2. The more
favourable geometry of the trapezoidal detectors compared to the rectangular
ones results in a further increase of the scanner sensitivity of 20%. In addition,
the radial sensitivity profile is smoother for the trapezoidal detectors than for the
other geometries, due to the reduced dead space between the detector modules.

6.3.3 Count rate performance

The noise equivalent count rate of the 4-ring scanner with trapezoidal detectors
is plotted in figure 6.7 as a function of the total activity for the ∅36× 67 mm3

mouse phantom (solid line) and the ∅60× 150 mm3 rat phantom (dotted line).
The NECR reaches a maximum of 2000 kcps with the mouse phantom at an
activity of 70 MBq. The NECR obtained with the rat phantom is considerably
lower, reaching a maximum of 550 kcps at an activity of 70 MBq. This is due
to the larger dimensions of the rat phantom, of which approximately 48% of
the volume lies outside the scanner FOV. This activity outside the FOV leads
to an increased number of random coincidences, but does not contribute to the
number of true coincidences. In addition, the number of scattered events coming
from within the FOV is larger in the rat phantom due to its larger diameter. For
both NECR curves, only a minor deviation from linearity is observed at activities
commonly used in small-animal PET (< 40 MBq).

6.4 Discussion

The unconventional shape of the detector point spread function complicates es-
timating the system resolution that should be achievable intuitively. In order to
obtain such an estimate, an image of a mathematical point source at the CFOV
was re-created using idealised detector PSFs. This was done by creating a model
1D-PSF, convolving an energy centroid distribution in response to a zero-width
pencil beam with a Gaussian distribution. The standard deviation of the Gaus-
sian was set at σ = 0.46 mm, which is a common value for our detectors (see
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(a)

(b)

Figure 6.5: Reconstructed images of a micro-Derenzo hot rod phantom with
rods with diameters of 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm, uniformly filled with
activity. In (a), the source emits back-to-back photons, and positron range and
photon acollinearity are neglected. Attenuation and scatter within the phantom
are set to zero. In (b), a positron emitting source with an energy distribution
corresponding to 18F is used, and photon acollinearity is taken into account, as
well as attenuation and scatter within the phantom. Correction for attenuation
and scattered events and normalisation were not applied to obtain these images.



86 CHAPTER 6. SIMULATED SCANNER PERFORMANCE

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

distance from centre (mm)

s
c
a

n
n

e
r 

s
e

n
s
it
iv

it
y
 (

c
p

s
/B

q
)

 

trapezoidal, axial (z)

trapezoidal, radial (y)

rectangular, axial (z)

rectangular, radial (y)

pixels, axial (z)

pixels, radial (y)

Figure 6.6: Axial and radial point-source sensitivity curves of the three 4-ring
systems with trapezoidal monolithic detectors (solid lines), rectangular monolithic
detectors (dotted lines), and crystal matrix detectors (dashed lines).
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chapter 5). This resulted in a 1D-PSF with a FWHM of 1.24 mm. This model
PSF was applied to all entry points in the data, regardless of position or inci-
dence angle, eliminating any statistical variances or deteriorations at the edges of
the detectors observed in the measured PSFs. These new entry points were used
to calculate a sinogram, which was subsequently reconstructed in the same way
as the original study. The image spatial resolution resulting from this idealised
situation was 1.10 mm FWHM at the CFOV, an improvement of ∼0.25 mm
compared to the result in figure 6.3.

A number of possible causes for this difference can be identified. Firstly, the
degradation of the detector spatial resolution at the crystal edges is likely to have
an adverse effect on the image resolution. This would suggest that reducing the
number of events taking place close to a detector edge, i.e. using detectors with
a larger surface area and more light sensors per crystal surface, may result in a
relative reduction of these effects. However, this approach would also result in a
lower average number of detected scintillation photons per light sensor, reducing
the signal-to-noise ratio per pixel, which could result in an overall deterioration
of the detector PSF.

A second cause could be the limited statistics in the measured PSFs used in
this study. Increasing the number of test events per local PSF may make the
deconvolution of the test beam more accurate, possibly leading to an improved
image resolution. The present number of events per local PSF was a compromise
between statistics and measurement and computation times.

A further improvement of the image quality could be achieved by reducing the
ring-shaped artefacts observed in figure 6.5. It was found that a significant frac-
tion of the measured 1D-PSFs, mainly at oblique incidence angles, had artifacts
at the edges of the histograms, which may give rise to the observed effects. Exam-
ples of such artefacts are shown in figure 6.8, which shows measured (solid lines)
and deconvolved (dotted lines) 1D-PSFs obtained at y = 0.5 mm and θ = 0◦ (a),
and at y = 5.5 mm and θ = 30◦ (b). The artefacts in the 1D-PSF in (b) at the
edges of the histogram are clearly visible.

A cause for these artefacts has thus far not been established. They were
also observed in 1D-PSFs obtained by Monte Carlo simulations in GEANT4 [5],
making it unlikely that they are the result of a flaw in the experimental procedure.
Furthermore, energy thresholding was not found to lead to a reduction of the
artefacts. It may be that internal reflections in the crystal cause similarities
in the scintillation light distributions at different entry points. In that case, a
reduction of the artefacts could be achieved by using crystals with a rough or
an absorbing surface. Finally, it may also be that using an alternative event
positioning scheme, for example one using neural networks, would result in a
reduction of the artefacts.

Further improvements of the image quality obtained with the Micro-Derenzo
phantom could be obtained by further optimising the image reconstruction algo-
rithm. For instance, scatter correction, attenuation correction and normalisation
of the sinograms have not been performed in this pilot study. Furthermore, using
more sophisticated reconstruction techniques such as resolution recovery could
lead to an improved image resolution.
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Figure 6.8: Measured (solid lines) and corrected (dotted lines) 1D-PSFs ob-
tained at y = 0.5 mm and θ = 0◦ (a), and at y = 5.5 mm and θ = 30◦ (b).
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6.5 Conclusions

A pilot study assessing the performance of small-animal PET scanners based on
monolithic scintillator detectors was presented in this chapter. The study was
based on Monte Carlo simulations using measured detector line spread functions
and other detector characteristics as input. The image resolution of a 1-ring
system with trapezoidal monolithic detectors was investigated in 2D. A system
resolution of ∼1.4 mm FWHM was found at the centre of the FOV using a
∅0.5 mm point source of 18F. Very little degradation of the system resolution
with increasing radial distance from the CFOV was found, and no anisotropy
in the system resolution was observed. This is in agreement with the excellent
correction for depth-of-interaction reported previously for these detectors.

Further improvements to the image resolution are likely to be achievable by
an adjustment of the detector geometry. This could reduce the relative number
of events entering the detectors close to a crystal edge, which exhibit a larger
position uncertainty than events entering at the centre of the crystals. An ad-
ditional improvement of the image resolution is expected with the reduction of
artefacts on the measured PSFs, which may be achieved using alternative event
positioning algorithms or crystals with a different surface finish.

The favourable geometry of the trapezoidal detectors results in a very high
peak sensitivity of 21% at low activity in a 4-ring system, a great improvement
compared to the peak sensitivity of 3–4% currently reported for small-animal
PET systems. Furthermore, a high peak noise equivalent count rate of 2000 kcps
was calculated for a mouse phantom in this system, using an energy window of
250–750 keV, a coincidence time window of 5 ns and a detector dead time of
1000 ns. These very high values can lead to a significant improvement of the
signal-to-noise ratio of reconstructed images compared to the current standards,
improving image quality, and permitting more accurate quantification of tracer
concentrations in dynamic small-animal PET studies.
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CHAPTER 7

Conclusion

In this chapter I will use the results of the previous chapters to give an answer
to the main research question of this thesis. I will repeat the research question
here:

What processes influence the performance of PET detector modules
based on monolithic scintillation crystals read out by avalanche photo-
diode arrays; and in what way do they influence the performance?

Two methods were used to get to the answer. First, Monte Carlo simulations
that model measurements of the spatial resolution, were used to determine the
spatial resolution for different sets of parameters (chapter 3). Second, a mathe-
matical model was derived that gives the lower bound on the spatial resolution
achievable with the detector (chapters 4 and 5). The two methods complement
each other, since each method can overcome some of the limitation of the other.

For the Monte Carlo simulations a simulation programme was written and all
relevant parameters were determined either from literature from measurement.
The simulations were validated by comparing simulation results to measurement
results. The results agreed very well, which suggests that the models and param-
eters used in the simulations are accurate.

With the simulation programme the influence of the parameters on the spa-
tial resolution can be investigated in the same way as is done in measurements.
However, the possibilities for varying parameters (including physics parameters)
are much higher in simulations than in measurements. These simulations allow
us to investigate the spatial resolution and the results can generally be assumed
to give accurate predictions of the actual performance of the detector. However,
these simulations also have a disadvantage, since like in measurements the spa-
tial resolution is always a combination of a large number of factors (e.g. there
is always the contribution of the position estimation algorithm), which makes is
difficult to separate the contributions of each of these factors.

91
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The mathematical model of the lower bound consists of two parts. The first
part describes the lower bound of the spatial resolution for a point source of light.
The second part describes the influence of the width of the measurement beam,
Compton scatter and fluorescence, and the estimation algorithm on the spatial
resolution.

When the two are combined, the influence of each of the parameters on the
spatial resolution is known. Therefore, the influence of each of the parameters
on the spatial resolution can be investigated separately. This leads to a better
understanding of the factors determining the spatial resolution. Of course, since
some approximations have been made in deriving the model and since the model
gives the lower bound on the spatial resolution, it is not to be expected that the
model gives an exact prediction of the spatial resolution of the detector obtained
in reality.

Furthermore, since the model gives the lower bound on the spatial resolution,
it can be used to investigate how well the estimation algorithm is working. Results
show that the spatial resolution obtained with the current algorithm is close to
the lower bound. Therefore, the estimation algorithm is performing well and
the spatial resolution can not be much improved by changing the estimation
algorithm.

7.1 The parameters and their importance

This section reviews all parameters that influence the spatial resolution and de-
scribes how they influence the spatial resolution. The parameters are ordered
approximately in order of decreasing importance. As was mentioned in the in-
troduction, I will focus on LSO/LYSO crystals read out by Hamamatsu S8550
APD arrays. Although, the models can also be used for other types of detectors
(different crystals, different light detectors, different geometries), the relative im-
portance of the different parameters will probably be different for these detectors.
For example, presently the influence of the excess noise factor of the APD array
on the spatial resolution is much larger than that of the electronic noise, but
should we use a different APD with a much higher dark current and thus much
more electronic noise, the electronic noise could become dominant.

Optical photon transport It is very difficult to quantify this process, since it
depends on the shape and dimensions of the crystal, the type of crystal, the
surface treatment of the crystal, the material used to clad the surface of the
crystal, the type of optical coupling used between the crystal and the APD arrays,
the type of APD arrays, etc. In the model for the lower bound, this process is
described by the four dimensional function fi(x) in chapter 4.

Since it is difficult to quantify this parameter, it is also difficult to quantify
the influence of this parameter on the spatial resolution. One could say that
this is the most important parameter, since monolithic scintillation detectors
work by the fact that the light distributions of annihilation photons absorbed
at different points inside the crystal differ. When they would not differ, the
estimation algorithm could not distinguish between the two points.



7.1. THE PARAMETERS AND THEIR IMPORTANCE 93

For the position estimation, we want the light distribution to change strongly
when the absorption point changes. This is reflected in the fact that the infor-
mation matrix is proportional to the partial derivative of the light distribution
(fi(x)) to the position of the source. As for the parameters that influence the
photon transport, measurements and simulations show that the surface treatment
has little influence on the spatial resolution.

The 10 mm thick crystal with single sided readout and the 20 mm thick
crystal with double sided readout have approximately the same spatial resolution.
Switching from one APD to two APDs hase two effect. First, the amount of detail
with which the light distribution is measured increases improving the spatial
resolution. Second, the scintillation light is distributed of more pixels causing the
signal to noise ratio to decrease and the spatial resolution to decrease. Switching
from a 10 mm thick crystal to a 20 mm thick crystal decreases the resolution
since the resolution decreases farther away from the APD array. When switching
from the 10 mm thick crystal with single sided readout to the 20 mm thick crystal
with double sided readout these three contributions cancel each other out.

Beam width The measured spatial resolution is affected by the width of the test
beam. The measured spatial resolution can never be better than the width of
the measurement beam. At the moment the measured spatial resolution is ap-
proximately 1.7 mm FWHM with a measurement beam of 1.1 mm FWHM (see
chapter 3). The influence of the measurement beam should be removed if one
wants to know the spatial resolution of the detector when used in a scanner. But
even in a scanner the detector needs to be trained, and during training a beam
with finite width is used. When an infinitely large number of training distri-
butions are used, this training beam should not influence the spatial resolution
when a very large number of nearest neighbours are used in the estimation al-
gorithm(see chapter 5). However, because of the finite size of the training set,
the training beam will also influence the spatial resolution. Simulations predict
a spatial resolution of 0.85 mm when a perfect pencil beam is used during train-
ing (1000 events per position, see chapter 3). When a training beam of 1.1 mm
FWHM is used, simulations predict a spatial resolution of 1.2 mm. This reso-
lution can be improved by either increasing the number of distributions in the
reference set or by decreasing the width of the training beam.

Compton scattering and fluorescence inside the crystal These influence the spatial
resolution in approximately the same way as the beam width does. This can be
seen in the fact that in the model for the point spread function, the influence of
the beam width and the influence of the Compton scatter and fluorescence are
combined in one contribution (see chapter 5). Therefore, the same conclusions
that were drawn for the influence of beam width also hold for the contribution of
Compton scatter and fluorescence. However, since the distribution of this contri-
bution is sharply peaked with strong tails, this contribution mainly influences the
tails of the measured LSF. Therefore, the FWHM is not that strongly influenced
by this contributions, but the FWTM is.

This contribution can be influenced by changing the scintillator that is em-
ployed in the detector. Ideally one would like to have a scintillator in which only
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photo-electric effect occurs. Therefore, one would like to have a scintillator with
high Z and high density. However, the scintillator material will also need to have
a high light yield and good energy resolution (see below).

Light yield of the scintillator As was shown in chapter 4, the light yield is one of
the most important terms in the lower bound of the spatial resolution. However,
the light yield can only be influenced by changing the scintillator. There are some
differences in light yield of LSO/LYSO between different manufacturers, but these
differences are relatively small and could also be caused by increased absorption
which influences photon transport. Scintillators that are very interesting in this
respect are lanthanum bromide (LaBr3) and lanthanum chloride (LaCl3), which
have a much higher light yield than LSO/LYSO ( 70,000 photons per MeV).
However, the density and Z-value of these scintillators are much lower, which will
decrease the efficiency of the detectors (for a given thickness) and increases the
contribution of Compton scatter and fluorescence.

Quantum efficiency, gain and excess noise factor of the APD array The external
quantum efficiency of the APD array is made up of two contributions: reflectivity
and the internal quantum efficiency. Since the reflectivity influences the photon
transport, it is difficult to quantify this contribution. However, an increase in the
reflectivity, will increase the number of interactions the optical photons undergo
and will therefore decrease the amount of information in the optical photons. The
internal quantum efficiency is approximately one for the wavelengths emitted by
LSO/LYSO and therefore does not deteriorate the spatial resolution. For scin-
tillators that emit at lower wavelengths (such as LaBr3 and LaCl3), the internal
quantum efficiency will play an important role.

The influence of the gain is directly coupled to that of the electronic noise:
the only reason to have amplification in the APD array is to reduce the influence
of noise. This is reflected in the lower bound (see equation 4.16), where the
spatial resolution increases as σ2

e/M increases. Of all the noise contributions,
excess noise is one of the most important (see chapter 4). Unfortunately, it is
very difficult to improve on the excess noise factor without switching to a light
detector that uses a completely different gain mechanism.

Electronic noise In the detector investigated in this thesis electronic noise is not
the main noise contribution. Contributions from excess noise and light yield are
much larger. However, when the electronic noise increases the spatial resolution
quickly deteriorates. Therefore, the electronic noise should not exceed the current
level.

Incident angle Since this type of detector can implicitly determine the depth of
the interaction, it does not suffer from the parallax error. This has been shown
in measurements and simulations (see chapter 3).

Intrinsic energy resolution Since the signals in each of the APD channels are
correlated (a higher number of scintillation photons causes a higher signal in each
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of the channels), the energy resolution has hardly any influence on the spatial
resolution. However, the energy resolution and timing resolution do depend on
the intrinsic energy resolution.

7.2 Conclusion

The models derived in this thesis provide a much better understanding of the op-
eration principle and the performance of monolithic scintillation detectors than
there was previously. All contributions to the spatial resolution have been iden-
tified and their influence on the spatial resolution can be quantified. Of course,
the model has some limitations. For example, the model for the line spread func-
tion is only valid in the center of the detector. However, for understanding the
influence of the parameters on the spatial resolution, it is adequate enough.

In this thesis, the modelling was done for the spatial resolution of a novel
type of PET detector, but the methods used can easily be adapted to model
radiation detectors used for other applications and also for other performance
characteristics than the spatial resolution. Especially for detectors that estimate
the position of an ionizing particle from the light distribution of a scintillat-
ing/fluorescing material, the amount of modifications needed are probably very
small. I hope this work will motivate and help others to model their detectors.
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APPENDIX A

The lower bound on the spatial resolution: geometry1

We are investigating the possibility of using monolithic scintillator blocks as
detectors for small animal positron emission tomography (PET). These detec-
tors consist of several cm3 of scintillating material, read out by one or more
avalanche photo-diode (APD) arrays. The entry point of an incoming gamma
photon is estimated from the distribution of the scintillation light over the
APD pixels. To optimize the detector design, the influence of different design
parameters is investigated using Geant4 simulations. To make it possible to
study the influence of individual design parameters on the intrinsic spatial
resolution of the detector, the use of a performance measure is proposed that
is independent of the algorithm used to estimate the entry point, namely
the Cramér-Rao lower bound on the estimation of the coordinates of a point
source of light inside the crystal. To illustrate the use of this method, the
influence of optical transport inside the detector is investigated for different
detector designs, surface finishes and APD pixel sizes. A comparison with res-
olutions obtained from simulations involving beams of 511 keV annihilation
photons indicates that this approach gives valid results.

A.1 Introduction

In recent years there has been an increase of interest in small animal positron
emission tomography (PET). Small animal PET requires a high spatial resolu-
tion and, especially when dynamic studies are to be performed, a high sensitiv-

1The model derived in this appendix has been superseded by the model derived in chapter 4.
Also the optical simulation model that is used, is much simpler than that derived in chapter 3
and used in chapter 4. However, some of the results in this appendix are not presented in the
other chapters. Therefore, this article has been included in the appendix. This chapter has
been published as: D. J. van der Laan and M. C. Maas and D. R. Schaart, P. Bruyndonckx,
S. Léonard and C. W. E. van Eijk, ‘Using Cramér-Rao theory combined with Monte Carlo
simulations for the optimization of monolithic scintillator PET detectors’, IEEE Transactions
on Nuclear Science 53 (2006), no. 3, 1063–1070.

97



98 APPENDIX A. THE INFLUENCE OF GEOMETRY

ity [13]. In order to achieve the required resolution, most current designs use
arrays of small scintillation crystals coupled to position-sensitive photomultiplier
tubes (PMTs). Although in principle the resolution can be increased in this de-
sign by decreasing the dimensions of the crystals, much sensitivity is lost because
of the dead space between the crystals occupied by reflective material for opti-
cal separation. Additional dead space may exist between the detector modules,
which may, for example, be dictated by the relatively large size of the position-
sensitive photomultiplier tubes. Finally, increasing the length of the crystals in
order to increase the sensitivity requires correction for the depth-of-interaction
(DOI), since otherwise the resulting parallax error will decrease the resolution
outside the center of the scanner.

Monolithic scintillation detectors can avoid these problems. These detectors
consist of a continuous scintillation crystal read out by position sensitive photo-
detectors. The Philips CPET system is, for example, based on this type of
detector, although without DOI correction [4]. Designs with DOI correction
have also been investigated [19, 16, 6], but these are either too complicated or
have insufficient spatial resolution for small animal PET.

The detectors we are investigating consist of several cubic centimeters of scin-
tillating material coupled on one or more sides to avalanche photo-diode (APD)
arrays. Three examples of this detector are shown in Fig. A.1. The coordinates
of the entry point of an incoming gamma photon are estimated from the light dis-
tribution on the pixels of the APD arrays. This can be done by either a statistical
method or neural networks. Before estimation can take place, the algorithm is
first trained using measured light distributions produced by annihilation photons
with known entry points.

Compared to detectors using arrays of small crystals, the proposed mono-
lithic scintillation detectors have several advantages. First of all, the detection
efficiency is increased because the dead space between the crystals in a crystal
array is avoided and because the dead space between the detector modules can
be minimized due to the small size of the APD arrays. They are also easier to
manufacture. Furthermore, integration with MRI devices may become possible
because of the use of APD arrays instead of PMTs.

Measurements on this type of detector show that the intrinsic detector resolu-
tion is comparable to that of detectors using arrays of small crystals [42, 10, 11].
However, the resolution obtained in measurements is always determined by a
large number of factors, such as the shape of the monolithic scintillator, the crys-
tal surface finish, the width of the beam used in the measurements, electronic
noise and the algorithm used to estimate the coordinates of the entry point. This
makes it difficult to determine the individual effect of each of these factors on the
resolution. Understanding these influences can make optimization of the design
more efficient. Monte Carlo simulations mimicking the measurements can help,
since certain parameters can be varied more easily in a simulation than in an
experiment. Furthermore, influences that are unavoidable in experiments, such
as electronic noise, can even be left out completely if one wishes to study solely
the effect of other parameters. However, even in such simulations the resolu-
tion still depends on the estimation algorithm used. When for example a better
spatial resolution is found for a crystal whose surfaces are polished than for an
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(a) 20×10×10 mm3

(b) 20×14(10)×20 mm3

(c) 20×20×20 mm3

Figure A.1: Three examples of detector design. A 20×10×10 mm3 LSO crystal
read out on one side by an APD array, a 20 mm thick tapered LSO crystal read
out by two APD arrays, and a 20×20×20 mm3 LSO crystal read out on six sides
by single APDs.
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unpolished crystal, it is not known if this is because this specific estimation algo-
rithm works better for crystals with polished surfaces or that the polished crystal
is inherently better. Perhaps the detector would perform even better with an
unpolished crystal with a different estimation algorithm.

In this paper we propose the use of a performance measure, that is indepen-
dent of the estimation algorithm, namely the Cramér-Rao lower bound on the
estimation of the coordinates of a point source of light inside the crystal. Since
this measure gives the lower bound on the variance in the estimated coordinates
for any unbiased estimation algorithm, it does not depend on the estimation
algorithm used. This makes it possible to better understand the influence of dif-
ferent design parameters on the resolution. After introducing the Cramér-Rao
lower bound, we will illustrate it with results obtained from simulations in which
the geometry, surface finish and pixel size is varied. Finally, we will compare
these results to actual resolutions obtained using a simple estimation algorithm
on simulated data.

A.2 Cramér-Rao lower bound

In the monolithic scintillator detectors the entry point of an impinging annihila-
tion photon is estimated from the distribution of the scintillation light over the
pixels of the APD arrays using a learning algorithm (for an example see section
A.3.2) that has been trained using light distributions produced by annihilation
photons with known entry points. By estimating the entry point of the annihila-
tion photon the DOI is intrinsically corrected for.

When the annihilation photon deposits its energy in one point inside the
crystal, the light distribution is determined by the x, y and z-coordinate of this
interaction point. In that case, the estimation algorithm can be considered to
estimate the x, y and z-coordinate of the interaction point, from which the entry
point is calculated using the angle of incidence. In a PET scanner this angle
may be derived from the positions of the two detectors firing in coincidence,
as is explained in more detail in [11]. In reality, the energy of an annihilation
photon will not always be deposited in a single point, due to the occurrence
of Compton scattering, X-ray fluorescence, etc. The estimation algorithm will
still estimate one entry point, which can be considered to be based on a kind
of average interaction point. Even though there may be some blurring in this
case, the estimation of entry point can again be considered to be based on the
estimation of an interaction point. Therefore, it seems reasonable to assume that
the ability to estimate the x, y and z-coordinates of single point sources of light
is a good indicator of the ability to estimate the entry points of realistic events.

For the case of a single point source of light, it is possible to derive the
Cramér-Rao lower bound on the estimate of its coordinates. This lower bound
equals the smallest value of the standard deviation that any unbiased estimator
of the parameters of interest (in this case the coordinates of the point source) can
achieve, given a statistical model of the observations (in this case the simulated
light distributions). In the following derivation of the statistical model, it is
assumed that the annihilation photon deposits all of its energy at position x =
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(x, y, z)T inside the crystal. The number of optical photons emitted is assumed to
follow a Poisson distribution with mean N . N is the light yield of the scintillator
at 511 keV.

Assume that P APD pixels detect the optical photons emitted by the point
source, and that pixel i detects a fraction fi(x) of the optical photons. Then, the
number of detected optical photons on a pixel will follow a Poisson distribution
and be independent of the number detected on the other pixels. The probability
of detecting ni photons on pixel i is therefore given by

pi(ni|x,N, η) =
(N · η · fi(x))ni

ni!
· e−N ·η·fi(x), (A.1)

where η is the quantum efficiency of the APD array. The likelihood of the pixels
detecting n = (n1, n2, . . . , nP )T photons is given by

L(n|x,N, η) =
P∏

i=1

pi(ni|x,N, η). (A.2)

Using this likelihood function the information matrix is defined as [73]

M = −E
[
∂2 ln L(n|x,N, η)/∂x2

]
. (A.3)

The Cramér-Rao inequality, which gives the lower bound on the covariance matrix
of an unbiased estimator, then states that

cov (x̂, x̂) ≥ M−1, (A.4)

where x̂ is the estimator of the coordinate x [73]. The lower bound on the
variances on x̂, ŷ and ẑ are given by the three diagonal elements of this matrix.

Using the likelihood function as defined in (A.2) and (A.1), the elements of
the information matrix become

Mvw = N · η ·
P∑

i=1

1
fi(x)

∂fi(x)
∂v

∂fi(x)
∂w

, (A.5)

with v and w equal to x, y, or z. From this equation follows that

M−1 ∝ 1
N · η , (A.6)

which shows that the variance is inversely proportional to the number of photons
emitted and the quantum efficiency.

To evaluate these expressions for a given point x in the crystal, the expecta-
tion value of the fraction of photons that reaches each pixel, fi(x) and the first
derivative of this fraction to each of the coordinates must be known. Both can
be estimated using optical Monte Carlo simulations. When a large number of
optical photons are tracked through the detector after emission from the point
source, the expectation value of the detected fraction can be calculated for each
pixel by dividing the number of detected photons by the total number of emitted
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photons. The partial derivatives of this fraction can be determined by doing the
same simulation for points located ±h in the x, y, and z direction from (x,y,z).
The derivative is then found by numerical derivation. For example, the partial
derivative to x is estimated by

∂fi(x, y, z)
∂x

∣∣∣∣
x,y,z

=
fi(x + h, y, z)− fi(x− h, y, z)

2h
+ O(h2). (A.7)

The partial derivatives to y and z can be calculated in a similar way.
Although it is in theory possible to derive the lower bound on the estimation

of the entry point of an annihilation photon, thus taking Compton scatter and
X-ray fluorescence into account, this is not practical. The likelihood has to be
derived directly from simulations, since the number of photons detected by the
APD pixels will no longer be Poisson distributed and independent. This would
take a huge amount of simulation time and would make it necessary to do all
calculations numerically thereby loosing the clarity of the method.

The Cramér-Rao theory gives the lower bound on the standard deviation in
each of the coordinates. In case of perpendicular incidence of the annihilation
photon, only the lower bound on the x and y-coordinate are of importance.
However, when the photon has an incident angle, the lower bound on the z-
coordinate determines how well the parallax error can be avoided. It appears
that the results for the lower bound on the standard deviation of the x-coordinate
are often representative for the other coordinates as well, and therefore we will
primarily focus on this coordinate. However, when the lower bound on any of the
other two coordinates shows interesting behavior, this will of course be discussed.

A.3 Methods

A.3.1 Cramér-Rao simulations

The Cramér-Rao lower bound has been calculated for a three-dimensional grid
of points in a number of different geometries and for several different surface
finishes. The simulations needed to calculate the functions fi(x, y, z) have been
performed using the Monte Carlo code Geant4 [5]. With this code it it possible to
simulate the transport and interactions of the gamma photons, the scintillation
process, and the transport of the optical photons, but for the calculation of the
Cramér-Rao lower bound only the transport of optical photons is needed.

In order to reduce computation times, use has been made of symmetry in the
detector where possible. For example, all geometries investigated are symmetrical
in the x and y-direction. The lower bound therefore needs to be calculated for
only one quadrant of the crystal. By mirroring these results the lower bound for
the remainder of the crystal is found. For every point source position 1.7 million
photons were tracked, and a value of 0.5 mm was chosen for h to calculate the
derivative using (A.7). This value is a compromise between the bias (for large
h) and the standard deviation (for small h) in the estimate of the derivative and
was determined from preliminary simulations.
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Five different geometries have been used in the simulations. In the description
of these geometries, the crystal surface facing the center of the scanner is called
the front surface.

1. A 20×10×10 mm3 LSO:Ce3+ crystal with a front and back surface of 20 mm
× 10 mm read out on the back side by an APD array. This design is shown
in Fig. A.1(a).

2. A 20×10×20 mm3 LSO:Ce3+ crystal with a front and back surface of 20 mm
× 10 mm read out on the back and front side by an APD array. The
increased thickness of the crystal in this geometry increases the probability
of an interaction of an 511 keV annihilation photon from 58% to 83% [81].

3. A 20 mm thick tapered LSO:Ce3+ crystal, with a 20 mm × 10 mm front
surface and a 20 mm × 14 mm back surface, see Fig. A.1b. Both surfaces
are read out by an APD array. Because of the taper, this shape eliminates
almost all dead space between the crystals if they are placed in a ring. The
dimensions of this geometry will be written as 20×14(10)×20 mm3.

4. A 20×10×20 mm3 LaBr3:Ce3+ crystal read out on the back and front side
by an APD array. An advantage of LaBr3 is the high light yield (61,000 pho-
tons/MeV) compared to LSO (26,000 photons/MeV) [81], since, as follows
from (A.6), the lower bound on the standard deviations is inversely propor-
tional to the square root of the number of emitted photons per event. How-
ever, the density is smaller than that of LSO (5.3 g·cm−3 versus 7.4 g·cm−3

for LSO) causing the interaction probability of an annihilation photon to
be only 61% [81].

5. A 20×20×20 mm3 LSO:Ce3+ crystal read out on all sides by single-pixel
APDs. This design is shown in Fig. A.1c. LeBlanc and Thompson [36]
have already reported on simulations of a similar design. The APDs have
a surface of 20 mm × 20 mm. The active area is 16 mm × 16 mm, which
leaves a gap of 2 mm around the edge. The timing and energy resolution
could benefit from the fact that almost all light is collected in this design.
Since there are no reflections inside the crystal for this design (see the
discussion of the optical model below), the Cramér-Rao lower bound can
be calculated from the solid angle of the APDs seen from the point source
position. The solid angles and the lower bound are therefore calculated
numerically for this design.

The model that has been used to simulate the optical interactions at surfaces is
the UNIFIED model, which has been described by Levin and Moisan [37]. This
model is implemented in Geant4 [1]. In this model a surface consists of small
micro-facets, whose normals have a random angle, α, with the overall surface
normal. The angles follow a normal distribution with an expectation value of
zero and a standard deviation of σα, which is therefore a measure of surface
roughness. In our case, the surface is covered on the outside by a reflective
cladding with a refractive index that is equal to that of air. If the cladding is
reflective, it reflects the optical photons diffusely.
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A number of different surface finishes were investigated. We simulated two
types of polished surfaces. One was clad in Teflon (reflectivity 95%) and one in
an absorbing material (reflectivity 0%). The same types of cladding were also
used for a rough surface. The polished surface was modelled with a σα of 0.1◦

and the rough surface with a σα of 6.0◦. These values were taken from Moisan et
al. [54]. As an extreme case we also studied a specularly reflecting surface. The
specularly reflecting surface reflects 100% of the optical photons with the angle
of reflection equal to the angle of incidence.

In the Cramér-Rao simulations only the refractive indices and the light yield
of the scintillating materials are needed. For LSO these are 1.82 and 26,000
photons/MeV respectively and for LaBr3 1.88 and 61,000 photons/MeV [81, 9].
The optical coupling between the APD arrays and the crystal has been assumed to
be perfect. This means that all optical photons reaching the crystal-APD surface
are absorbed by the APD array. Furthermore, the quantum efficiency of the APD
array has been assumed to be equal to one, since at the moment we are only
interested in the effect of the light transport on the resolution. Furthermore, the
quantum efficiency has no influence when comparing results from one scintillator
to each other, since it is then only a constant factor according to (A.6).

In our measurements we have been using the Hamamatsu S8550 APD ar-
ray [42]. The size of the pixels on this array is 1.6 mm × 1.6 mm and the center
to center distance between the pixels is 2.3 mm in both directions. All of the re-
sults presented in this paper for the different surface finishes and for the different
detector geometries are based on this APD array, except for the 20×20×20 mm3

crystal that is read out by six single APDs. In order to investigate the influ-
ence of the APD pixel size on the detector performance, the lower bound for the
20×10×20 mm3 LSO crystal was additionally calculated for four different pixel
sizes. Besides the aforementioned pixel size the following sizes were investigated:
1.1 mm × 1.1 mm with a pitch of 1.8 mm, 3.9 mm × 1.6 mm with a pitch of
4.6 mm in the x-direction and 2.3 mm in the y-direction, and 3.9 mm × 3.9 mm
with a pitch of 4.6 mm. The numbers of pixels on these arrays are 10×5, 4×4,
and 4×2 respectively. In all cases, the pixels are separated by a 0.7 mm dead
region.

A.3.2 Simulations using beams

The results obtained for the Cramér-Rao lower bound were compared to results
from simulations that resemble the measurements done in our group [42] and in
Brussels [10, 11]. In these simulations a beam of 511 keV gamma photons having
a diameter of zero is stepped in steps of 250 µm over the center of the crystal
in the x and y-direction. The number of photons detected by each APD pixel
was recorded for 400 events for every beam position. Electronic noise was not
modeled.

In order to calculate the spatial resolution the entry point of each of the
simulated distributions is estimated using the remainder of the distributions as
training data for our estimation algorithm. The distribution for which the entry
point has to be estimated is compared using least squares to each of the distri-
butions in the training set. The entry point of the distribution in the training
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Figure A.2: Cumulative distribution of the Cramér-Rao lower bound on the x-
coordinate inside the 20×10×20 mm3 LSO crystal for different surface finishes.
The y-axis shows the fraction of the crystal volume for which the lower bound is
smaller than the value given on the x-axis.

set giving the smallest least squares value is used as the estimate of the entry
point. The full width at half maximum (FWHM) and the full width at tenth
maximum (FWTM) of the histogram of all the errors, defined as the distances
between the true and estimated entry points, of the scan are used as a spatial
resolution measure. More information on the estimation algorithm and beam
measurements has been presented elsewhere [42].

A.4 Results and Discussion

A.4.1 Cramér-Rao results

Surface finish

Fig. A.2 shows the cumulative distribution of the Cramér-Rao lower bound on
the x-coordinate inside the 20×10×20 mm3 LSO crystal for the different surface
finishes described in the previous section. For example, more than 80% of the
crystal volume has a lower bound smaller than 0.4 mm for all surface finishes.
The five surface finishes show little performance difference for the lower bound
on the x-coordinate. Similar results were obtained for the y-coordinate. The
lower bound on the z-coordinate is slightly higher for the specularly reflecting
surface than for the other four, more realistic, surface finishes. The surface
finish, therefore, seems to have little to no influence on the spatial resolution
of the detectors. The polished Teflon clad surface finish is, therefore, used in
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Figure A.3: The lower bound on the x-coordinate as a function of position in
the x-z plane in the center of the crystal for the 20×10×10 mm3 LSO crystal
with polished surfaces and wrapped in Teflon.

the comparison of the different detector geometries. This is motivated by the
fact that the use of a Teflon wrapped crystal will yield larger and more constant
signal amplitudes, which may improve the timing characteristics and the energy
resolution of the detector.

Crystal geometry

Fig. A.3 and Fig. A.4a show the lower bound on the x-coordinate as a function
of position in a plane in the center of the crystal for the 20×10×10 mm3 and
the 20×10×20 mm3 LSO crystal respectively. From these figures it can be seen
that the lower bound increases further away from the APD array and near the
edges of the crystal. Therefore, the thickness of the 20×10×10 mm3 can not be
increased in order to increase the sensitivity without degrading the resolution.
This is enhanced by the fact that most interactions occur in the front part of
the crystal. For example, in a 20 mm thick LSO crystal approximately 70%
of the annihilation photons that interact inside the crystal interact in the first
10 mm. Placing the APD array on the front side of the crystal could help in this
respect. Another solution might be the use of double-sided readout, as can be
seen in Fig. A.4a, which allows one to increase the crystal size to 20×10×20 mm3

without sacrificing position resolution.
The distributions of the Cramér-Rao lower bound on the x, y and z-coordinate

in the five detector geometries with polished surfaces clad in Teflon are shown
in Fig. A.5 and Fig. A.6. When comparing figures A.5a and A.5b, it can be
seen that the lower bound is higher in y-direction for all geometries except the
20×20×20 mm3 crystal. This is caused by the fact that in these geometries the
crystals are twice as long in the x-direction than in the y-direction, while the lower
bound is higher near the edges. As can be seen from Fig. A.6, for the designs that
are read out by two APD arrays the lower bound in the z-direction is slightly
lower than in the other two directions. Compared to the other designs, the design
read out by only one APD array on the back performs worst in the z-direction.
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(a) 1.6 mm × 1.6 mm

(b) 3.9 mm × 3.9 mm

Figure A.4: The lower bound on the x-coordinate as a function of position in
the x-z plane in the center of the 20×10×20 mm3 LSO crystal clad in Teflon for
two pixel sizes.
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(a) x

(b) y

Figure A.5: Cumulative distribution of the Cramér-Rao lower bound on the x
and y-coordinate for the five detector geometries. The y-axis shows the fraction
of the crystal volume for which the lower bound is smaller than the value given
on the x-axis.
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Figure A.6: Cumulative distribution of the Cramér-Rao lower bound on the
z-coordinate for the five detector geometries. The y-axis shows the fraction of the
crystal volume for which the lower bound is smaller than the value given on the
x-axis.

This is probably because the other designs have two APD arrays opposite each
other in the z-direction making a better estimation of the z-coordinate possible.

The 20×10×10 mm3 and the 20×10×20 mm3 crystal perform approximately
equally well when looking at the x-coordinate. The same is true for the y-
coordinate, but the 20×10×20 mm3 crystal performs significantly better when
estimating the z-coordinate for the reason mentioned in the preceding paragraph.

Furthermore, the 20×10×20 mm3 and the 20×14(10)×20 mm3 crystal show
similar performance. While the tapered crystal has a slightly higher larger bound
on the x-coordinate, it has a slightly smaller lower bound on the y-coordinate.
Therefore, adding a taper to the crystal hardly influences the resolution, in spite
of the fact that the back surface of the tapered crystal is significantly larger than
the APD array. This is probably caused by the fact that the part of the crystal
that sticks out is very close to the APD array, while the resolution improves closer
to the APD array as is shown in Fig. A.3 and Fig. A.4. Another factor could be
that there is less internal trapping of light, since the taper reflects light towards
the back side of the crystal.

Concerning the LaBr3 crystal, one would expect the lower bound to be ap-
proximately a factor

√
61, 000/26, 000 lower (see (A.6)) than that of the corre-

sponding LSO crystal, because all relevant parameters except the light yield are
approximately the same. This is indeed the case. The 20×10×20 mm3 LaBr3
crystal and the 20×20×20 mm3 LSO crystal read out on all six sides perform
approximately equally well for the x-coordinate, but for the y-coordinate the
performance of the LaBr3 crystal is less good. Both designs, however, perform
better than the other designs based on LSO. Close to the APD arrays, the LaBr3
crystal performs somewhat better than the 20×20×20 mm3 crystal, because the
small APD pixel size of the 32 pixel array in the LaBr3 design results in a better
estimation close to the APD array.
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APD pixel size

Fig. A.7 shows the distribution of the lower bound on the x and z-coordinate in
the 20×10×20 mm3 polished Teflon clad LSO crystal for various APD pixel sizes.
When estimating the x-coordinate the smaller pixel sizes perform better, while
the larger pixel sizes perform better when estimating the z-coordinate. This can
probably be explained by assuming that the performance for different pixel sizes
is a balance between capturing the shape of the light distribution (small pixel
sizes) and good statistics (large pixel sizes, resulting in less dead space). When
estimating the x-coordinate the shape of the light distribution is important, so
smaller pixel sizes perform better. The z-coordinate can largely be determined
by the ratio of the amount light detected on the front surface and that detected
on the back surface. This ratio is determined more accurately using larger pixel
sizes, because large pixels have less dead space between them. For example, the
1.6 mm × 1.6 mm pixels have 60% dead space, while the 3.9 mm × 3.9 mm pixels
have only 40% dead space.

Since Fig. A.7 does not show in which part of the crystal the resolution changes
as a result of changing the pixel size, Fig. A.4 shows the lower bounds on the
x-coordinate in the x-z plane in the center of the crystal for a pixel size of 1.6 mm
× 1.6 mm and for a pixel size of 3.9 mm × 3.9 mm. In the center of the crystal
and near the APD arrays the lower bounds are approximately equal in both cases.
The lower bound increases especially near the edges of the crystal if the pixel size
is increased. A possible explanation might be that for a point source of optical
photons near the edge of the crystal most of the light will be detected by a small
number of pixels near the edge. For larger pixels this number will be smaller,
making the determination of the position more difficult.

A.4.2 Comparison with beam simulations

In order to check whether the results for the lower bounds can indeed be used as
a meaningful measure of the performance of a detector, a comparison has been
made with resolutions obtained from simulations using perfect beams. These
simulations mimic the measurements that are currently being performed within
our group [42] and Brussels [10, 11], with the difference that in the simulations a
beam width of zero is assumed and electronic noise is not modeled. Simulations
with a finite beam width show that the differences between the results presented
here and the measurements, are mainly due to the difference in beam width.

Because the Cramér-Rao results describe the detector’s ability to estimate the
coordinates of a point source of light at a given location inside the crystal, and
the beam results describe the detector’s ability to estimate the entry point of an
impinging gamma photon, the absolute values of both types of results cannot be
compared directly. Both types of results must, however, show similar trends if
the Cramér-Rao results are to be used as a performance measure for optimizing
the detector geometry.

Table A.1 shows the resolutions obtained from the beam simulations for the
surface finishes investigated. The standard deviations on the FWHM and the
FWTM are estimated to be approximately 0.04 mm and 0.06 mm respectively.
The results show no significant differences between the different surface finishes.
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(a) x

(b) z

Figure A.7: Cumulative distribution of the Cramér-Rao lower bound on the
x-coordinate for various APD pixel sizes. The y-axis shows the fraction of the
crystal volume for which the lower bound is smaller than the value given on the
x-axis.
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Table A.1: Simulation results for the spatial resolution of the 20×10×20 mm3

LSO crystal read out on two sides by an APD array using photon beams scanned
in the x-direction over the center of the crystal .

Surface Finish FWHM (mm) FWTM (mm)

Polished, Teflon clad 0.64 2.76
Rough, Teflon clad 0.55 2.73
Polished, absorbing clad 0.57 2.76
Rough, absorbing clad 0.56 2.71
Specular reflecting 0.62 2.81

Table A.2: Simulation results for the spatial resolution of the five different
detector geometries using beams scanned in the x and y-direction over the crystal.

Detector geometry x-direction y-direction

FWHM FWTM FWHM FWTM
(mm) (mm) (mm) (mm)

20×10×10 mm3 LSO 0.84 3.24 0.90 3.60
20×10×20 mm3 LSO 0.64 2.76 0.62 2.98
20×14(10)×20 mm3 LSO 0.66 2.82 0.68 2.99
20×10×20 mm3 LaBr3 0.48 2.28 0.54 2.66
20×20×20 mm3 LSO 0.60 1.90 – –

This agrees with the results from Fig. A.2, where the differences between the
surface finishes were also very small.

The resolutions obtained from the beam simulations for the different crystal
geometries are shown in table A.2. The results agree quite well with the results
obtained for the lower bounds in these crystals: the 20×10×10 mm3 LSO crystal
performs worst, probably caused by the fact that most interactions occur furthest
away from the APD array, the two 20 mm thick LSO crystals with double sided
read out perform equally well, and the LaBr3 crystal performs best. According
to the results for the Cramér-Rao lower bound presented in the previous section,
the 20×20×20 mm3 LSO crystal and the 20×10×20 mm3 LaBr3 should perform
approximately equally well. The FWHM for the 20×20×20 mm3 LSO crystal is
larger than the FWHM for the 20×10×20 mm3 LaBr3 crystal, but the FWTM
is smaller.

A.5 Conclusion

In this paper the use of the Cramér-Rao lower bound has been proposed for in-
vestigating the intrinsic spatial resolution performance of PET detector modules.
This performance measure makes a better understanding of the influence of dif-
ferent design parameters on the spatial resolution possible. Firstly, because the
measure does not depend on the specific algorithm used to estimate the entry
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points, secondly because the performance of a detector can be investigated as a
function of all three coordinates, and finally because the influence of individual
parameters can be made explicit. For example, the effect of the number of pri-
mary photons and the quantum efficiency of the APD array on the lower bound
can be directly seen from (A.6).

In the derivation of the Cramér-Rao lower bound it is assumed that the ability
to estimate the entry point of an impinging annihilation photon is related to the
ability to estimate the the position of a point source of optical photons within
the block. If the lower bound is to be used as a meaningful performance measure,
it should give the same relative ordering of the performance of different designs
as obtained from beam simulations. From the results presented in the previous
section this does indeed appear to be the case.

In order to illustrate the method, the influence of surface finish, crystal ge-
ometry, and pixel size on the performance were investigated. For the sake of
simplicity, only the influence of light transport and detection were investigated.
From these simulations a few interesting observations can be made. First of all,
it appears that the surface finish of the monolithic scintillator crystals has little
influence on the intrinsic resolution of the detector. The polished or rough Teflon
clad surfaces therefore appear to be a good choice, because the reflective cladding
may improve the energy resolution and the timing properties of the detector.

Several observations can be made concerning the crystal geometries. First, it
can be concluded that LaBr3 is an interesting material for further study. Its high
light yield improves the lower bound by approximately a factor of 1.5, but the
quantum efficiency of the APD has not yet been taken into account. This will
have an influence, because the quantum efficiency of the Hamamatsu S8550 for
the peak wavelength of LaBr3 is smaller than for the peak wavelength of LSO, viz.
50% compared to 70%. Taking these numbers into account, the improvement is
reduced to approximately

√
0.5/0.7·1.5 = 1.3, see (A.6), which is still substantial.

Secondly, increasing the thickness of the 20×10×10 mm3 crystal in order to
increase the sensitivity, without adding more APD arrays, is not possible without
severely degrading the spatial resolution. Thirdly, tapered crystals, which could
improve the sensitivity when placed in a ring, perform as well as rectangular
blocks. Finally, the 20×20×20 mm3 crystal read out on all sides by single APDs
seems promising, since it gives a uniform resolution throughout the detector,
but the large area of the APDs in this design will probably lead to a significant
increase in the electronic noise, because of a larger dark current and increased
detector capacitance. Electronic noise will therefore have to be taken into account
in the model, before any definite conclusions can be drawn with respect to this
design.

From the comparison of the lower bound for the 20×10×20 mm3 crystal for
the different APD pixel sizes it appears that the smallest pixel sizes perform best
regarding the resolution in the x-coordinate, even though the statistics in the
number of optical photons detected per pixel will be worse, and the total number
of detected optical photons is also smaller because of the increased amount of
dead space between the pixels. This result may change when we add electronic
noise to our model, because the electronic noise will have more influence if the
number of detected photons per channel is less.
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The method derived in this paper has one important limitation, which is the
fact that the influence of Compton scattering is ignored. This will especially have
an influence when different scintillators are compared to each other. However,
when geometries with approximately the same dimensions and using the same
scintillator material are compared, the influence of Compton scattering will be the
same for all geometries. The model used to illustrate the method is still relatively
simple and ignores the influence of quantum efficiency and electronic noise. The
quantum efficiency is approximately constant for a given combination of APD
array and scintillator and is furthermore a constant factor in the lower bound
(see (A.6)). Therefore, when only the quantum efficiency is added to the model,
the conclusions concerning the surface finish, single or double sided read out and
pixel size will not change for the Hamamatsu S8550 APD array combined with
the LSO crystal. However, as the previous discussion showed, adding electronic
noise to the model might influence some of the conclusions. We are therefore
working on including electronic noise in our models in order to investigate its
influence on the performance.
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Derivation of the covariance matrix

In this appendix equation (4.18) is derived. The covariance matrix for the bino-
mial selection has already been given in equation (4.17).

We will first derive the covariance matrix for the APD amplification process.
The diagonal elements were already given in equations (4.4) and (4.5):

cov (ni, ni) = var{M }E[neh,i] + var{neh,i}M2
. (B.1)

In order to derive the off-diagonal elements, we use the following relation

cov (x, x) = E
[
xxT

]− E[x] E[x]T. (B.2)

The second order moment of the number of output electrons is defined as

E[ninj ] =
∞∑

neh,i=0

∞∑
neh,j=0

E[ninj |neh,i, neh,j ] Pr(neh,i, neh,j). (B.3)

Since the amplification process in each APD pixel is independent of that in all
the others, the number of output electrons in each APD pixel, given the numbers
of primary electron-hole pairs, is independent of the others. Therefore,

E[ninj ] =
∞∑

neh,i=0

∞∑
neh,j=0

E[ni|neh,i] E[nj |neh,j ] Pr(neh,i, neh,j). (B.4)

The expectation value of the number of output electrons for a given number
of electron-hole pairs is the expectation value of the gain times the number of
electron-hole pairs. Therefore,

E[ninj ] = M
2

∞∑
neh,i=0

∞∑
neh,j=0

neh,ineh,j Pr(neh,i, neh,j) = M
2
E[neh,ineh,j ] . (B.5)
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Using equation (B.2) for both E[ninj ] and E[neh,ineh,j ], the off-diagonal elements
of the covariance matrix of the number of output electrons are given by

cov (ni, nj) = M
2
E[neh,ineh,j ]− E[neh,i]ME[neh,j ]M

= M
2
(E[neh,ineh,j ]− E[neh,i] E[neh,j ]) = M

2
cov (neh,i, neh,j) . (B.6)

Combining equations (4.17), (B.1) and (B.6) gives

cov (ni, nj) = var{M }neh,iδij + M
2
cov (neh,i, neh,j)

= var{M }εfi(x)nphδij + M
2
εfi(x)nph

(
δij + ε(α2 − 1)fj(x)

)

= M
2
εfi(x)nph

{(
var{M }

M
2 + 1

)
δij + ε(α2 − 1)fj(x)

}

= M
2
εfi(x)nph

(
Jδij + ε(α2 − 1)fj(x)

)

(B.7)

Since the contribution of the electronic noise is completely independent of the
other contributions, the covariance matrix of the output signals Σ is given by

Σij = M
2
εfi(x)nph

(
Jδij + ε(α2 − 1)fj(x)

)
+ σ2

eδij (B.8)
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Summary

Many detectors for high resolution positron emission tomography (PET) are
based on matrices of small scintillating crystals coupled to position-sensitive
photo-multiplier tubes. However, much sensitivity is lost because of the dead
space between the crystals needed to optically separate the crystals, and these
detectors do not correct for depth-of-interaction. A promising alternative that
avoids these two problems are monolithic scintillation detectors. These detectors
consist of several cubic centimeters of scintillating material coupled on one or
more sides to position-sensitive avalanche photo-diode (APD) arrays. The coor-
dinates of the entry point of an incoming gamma photon are estimated from the
light distribution on the APD arrays. This is done using a learning algorithm,
that uses measured light distributions with known entry points as training data.

Measurements on these detectors have shown that these detectors are very
promising for high resolution PET. The sensitivity of a scanner based on these
detectors can be much higher than that of a detector based on small scintillation
crystals — making dynamic imaging possible — while the spatial resolution ap-
pears to be close to that of detectors of current high resolution PET scanners.
However, improvements in the spatial resolution are possible by optimizing the
design.

Optimization of many detectors (not just monolithic scintillation detectors) is
often done on a somewhat ad hoc basis: different modifications to the design are
tried based on a vague notion of how the detector works until an improved design
is found. However, as the design becomes more complex there are more param-
eters that can be varied and often it is not completely clear what changes lead
to an improvement of the design. Furthermore, building a prototype of a design
can be time consuming and expensive. Modelling the detector leads to a better
understanding of the behaviour of the detector, which makes optimization more
efficient. Also, different detector designs can be compared to each other using
the model thereby reducing the need to perform measurements on prototypes.

In this thesis, two different approaches to model monolithic scintillation de-
tectors are used. The first approach uses Monte Carlo simulations, where a model
of the physics of the transport of radiation particles is used. A radiation parti-
cle can undergo different interactions with the material it is traveling through.
The probability of occurrence of each of these interactions depends on the prop-
erties of the particle and those of the material. Using these probabilities and
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(pseudo) random numbers, a possible trajectory is generated for each particle
in the simulation. Results obtained from these simulation mimic those obtained
in measurements (although it is possible to obtain information in simulations
that is not possible to obtain in measurements). The main advantage of Monte
Carlo simulations compared to the other models, lies in the fact that the results
of Monte Carlo simulations can be compared more directly to those obtained in
measurements.

The most complicated part in Monte Carlo simulations is determining accu-
rate enough values of all the relevant parameters. In chapter 3 it is described how
all the relevant parameters can be determined for monolithic scintillation detec-
tors. A comparison of simulations to measurements shows that the simulation
results agree very well with those of the measurements. The results obtained
from simulations can therefore be used to predict the measurement results for
different detector designs thereby reducing the need to perform measurements.
Furthermore, it is more easy to vary some parameters in simulations than in
measurements, and it is possible to let some parameters take values that are
not possible in real measurements; e.g. in measurements there will always be
electronic noise, in simulations it is possible to investigate the performance of an
detector without electronic noise. This can lead to a better understanding of the
behaviour of the detector.

For the second method, the lower bound on the spatial resolution achievable
with position-sensitive scintillation detectors is derived. This lower bound de-
pends on the geometry, the light collection statistics and noise parameters of the
detector. Assuming that we can find a good position estimation algorithm, a
smaller lower bound implies a better spatial resolution. Therefore, this method
of calculating the lower bound can be used to optimize the performance of the
detector. Furthermore, since the influence of the statistics and noise parameters
on the lower bound can be investigated in detail, a better understanding of the
behavior of these detectors is obtained. Since it is possible to predict the best
possible performance of a detector with this model, it can be used to determine
if a given performance requirement can be met with a given detector. Finally,
the performance of the position estimation algorithm can be checked, i.e., when
the spatial resolution obtained in practice is much higher than the lower bound,
the spatial resolution can in principle be improved by improving the estimation
algorithm.

In chapter 4 the lower bound is compared to measurements. The spatial
resolution found in the measurements is reasonably close to the lower bound.
Therefore, the estimation algorithm appears to be performing well and the spa-
tial resolution can not be much improved upon by an improvement of the esti-
mation algorithm. The lower bound is also able to explain the behaviour of the
measurements with increasing electronic noise.

In chapter 4 the lower bound is derived on the position estimation of a point
source of light in the detector. However, in practice many annihilation photons
will undergo multiple interactions before being absorbed. Therefore, the scintil-
lation will no longer be a single point source, but will consist of multiple point
sources. In chapter 5 a model is derived that predicts among other things what
is the effect of the multiple interactions. The model also predicts the effect of
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the finite width of the measurement beam, and that of the estimation algorithm
on the spatial resolution. Furthermore, the model is able to explain the observed
spatial resolution (as measured by the point spread function).
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Samenvatting

Detectoren voor hoge resolutie positronen-emissie-tomografie (PET) zijn gewoon-
lijk gebaseerd op matrices van kleine scintillatiekristallen gekoppeld aan plaats-
gevoelige photo-multiplier-buizen. Van de gevoeligheid gaat echter veel verloren
door de dode ruimte tussen de kristallen. Deze dode ruimte is nodig om de
kristalllen optisch van elkaar te scheiden. Verder is het bij deze detectoren ook
niet mogelijk om te corrigeren voor de vertekening die ontstaat als de gammapho-
tonen schuin invallen. Monolitische scintillatiedetectoren kunnen beide nadelen
vermijden. Deze detectoren bestaan uit een scintillatiekristal van enkele kubieke
centimeters gekoppeld aan één of meerdere plaatsgevoelige avalanche-photodiode-
arrays (APD-array). De coördinaat waar de gammaphoton binnen komt, wordt
geschat uit de verdeling van het scintillatielicht op de APD-arrays. Hiervoor
wordt een lerend algoritme gebruikt, dat getraind wordt met lichtverdelingen
waarvan de coördinaten bekend zijn.

Metingen hebben reeds laten zien dat monolitische scintillatiedetectoren veel-
belovend zijn voor hoge resolutie PET. De gevoeligheid van een scanner gebaseerd
op deze detectoren kan veel hoger zijn dan die van een scanner gebaseerd op kleine
kristallen. Tegelijkertijd is de plaatsresolutie vergelijkbaar met die van detectoren
van huidige hoge resolutie PET-scanners. Verbeteringen in de plaatsresolutie zijn
waarschijnlijk echter nog mogelijk door een optimalisatie van het ontwerp.

Bij optimalisatie van PET-detectoren in het algemeen worden vaak verschil-
lende varianten op een detector uitgeprobeerd totdat een detector gevonden wordt
die beter werkt dan de vorige. De keuze van welke detectoren uitgeprobeerd wor-
den is vaak gebaseerd op een vaag begrip van de werking van de detector. Echter,
naarmate het ontwerp complexer wordt, zijn er meer parameters die gevarieerd
kunnen worden en is het vaak niet geheel duidelijk welke aanpassingen tot een
verbetering leiden. Verder kan het bouwen en testen van een prototype duur en
tijdrovend zijn. Het modelleren van de detector leidt tot een beter begrip van de
detector waardoor optimalisatie efficiënter kan plaatsvinden. Verschillende de-
tectorontwerpen kunnen modelmatig met elkaar vergeleken worden waardoor het
bouwen van prototypes en het uitvoeren van metingen verminderd kan worden.

In het proefschrift wordt het modelleren van de detectoren op ruwweg twee
manieren aangepakt. In het geval Monte-Carlosimulaties wordt het transport van
straling door materie gemodelleerd. Een stralingsdeeltje kan meerdere interacties
ondergaan in een materiaal. De kans op optreden van ieder van deze interacties
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hangt af van de eigenschappen van het deeltje en van het materiaal. Gebruik
makend van deze kansen wordt een mogelijke pad gegenereerd voor ieder van
de deeltjes in de simulatie. Doordat hiermee nauwgezet de werkelijkheid wordt
gesimuleerd, kunnen metingen hiermee nagebootst worden. In de simulaties is
het echter mogelijk om zaken waar te nemen die in metingen niet waargenomen
kunnen worden. Het voordeel van de Monte-Carlosimulaties is dat de resultaten
direct vergelijkbaar zijn met die van metingen.

Ingewikkeld bij Monte-Carlosimulaties is echter het met voldoende nauwkeu-
righeid bepalen van alle relevante parameters. In hoofstuk 3 wordt beschreven
hoe alle relevante parameters bepaald kunnen worden voor monolitische scin-
tillatiedetectoren. Een vergelijking tussen meting en simulatie laat zien dat de
simulatieresultaten goed overeenkomen met de metingen. De simulatieresultaten
kunnen daarom gebruikt worden in plaats van metingen, waardoor minder metin-
gen nodig zijn. Verder zijn sommige parameters een stuk makkelijker te variëren
in een simulatie dan in de werkelijkheid; het is mogelijk om parameters waar-
den aan te laten nemen die in de werkelijkheid niet mogelijk zijn. Zo zal er in
metingen altijd electronische ruis zijn. In simulaties is het echter mogelijk om de
detector te bestuderen in een situatie waarin er geen ruis is.

Een andere methode om het gedrag van PET-detectoren te bestuderen is door
de ondergrens op de plaatsresolutie te bepalen. In hoofdstuk 4 wordt de onder-
grens op de plaatsresolutie van monolitische scintillatiedetectoren bepaald. Deze
ondergrens hangt af van de geometrie, de statistiek van de lichtdetectie en ruis die
de detector toevoegt. Als we aannemen dat we een schattingsalgoritme kunnen
vinden die deze ondergrens bereikt of in ieder geval benadert, dan impliceert een
lagere ondergrens een betere resolutie. De ondergrens kan daarom gebruikt wor-
den om de detector te optimaliseren. Verder kan, omdat de ondergrens afhangt
van de statistiek en ruis van de detector, een beter begrip verkregen worden
van de invloed van deze parameters op het gedrag van de detector. Omdat het
best mogelijke gedrag van een detector bepaald kan worden met dit model, kan
worden nagegegaan of een gegeven detector aan gegeven kwaliteitseisen kan vol-
doen. Als laatste toepassingsmogelijkheid kan de ondergrens gebruikt worden
om te bepalen hoe goed een gegeven schattingsalgoritme werkt. Als de resolu-
tie verkregen met het schattingsalgoritme ver van de ondergrens af ligt, kan de
plaatsresolutie verbeterd worden door het schattingsalgoritme aan te passen.

In hoofdstuk 4 wordt de ondergrens ook vergeleken met metingen. Hieruit
blijkt dat de in de metingen gevonden plaatsresolutie redelijk dicht bij de onder-
grens ligt. Het gebruikte schatingsalgoritme blijkt dus goed te werken en er valt
dus niet veel winst te halen in een verdere verbetering van het schattingsalgo-
ritme. Verder blijkt de ondergrens ook het waargenomen gedrag van de metingen
bij toenemende ruis goed te verklaren.

In hoofdstuk 4 wordt de ondergrens op de plaatsresolutie afgeleid voor een
puntbron van licht in de detector. In de praktijk zullen echter veel annihilatiepho-
tonen meerdere interacties ondergaan voordat ze volledig zijn geabsorbeerd. Het
scintillatielicht zal in dat geval niet uit één enkele puntbron bestaan, maar uit
meerdere puntbronnen. In hoofdstuk 5 wordt een model afgeleid dat onder an-
dere voorspelt wat het effect is van de meerdere interacties op de plaatsresolutie.
Het model voorspelt verder ook de invloed van de meet- en testbundel en die van
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het schattingsalgoritme. Dit model blijkt de gemeten plaatsresolutie (uitgedrukt
in de point-spread-function) goed te kunnen verklaren.
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