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Two-dimensional electron-hole gases in colloidal semiconductors have a wide variety of applications.
Therefore, a proper physical understanding of these materials is of great importance. In this paper we present
a detailed theoretical analysis of the recent experimental results by Tomar et al. [J. Phys. Chem. C 123,
9640 (2019)] that show an unexpected stability of excitons in CdSe nanoplatelets at high photoexcitation
densities. Including the screening effects by free charges on the exciton properties, our analysis shows that
CdSe nanoplatelets behave very differently from bulk CdSe, and in particular do not show a crossover to
an electron-hole plasma in the density range studied experimentally, even though there is substantial overlap
between the excitons at the highest densities achieved. From our results we also conclude that a quantum
degenerate exciton gas is realized in the experiments, which opens the prospect of observing superfluidity in
CdSe nanoplatelets in the near future.

DOI: 10.1103/PhysRevB.100.245302

I. INTRODUCTION

Developing the next generation of optoelectronic de-
vices, such as solar cells, photosensors, light-emitting diodes,
and lasers, involves a wide range of interdisciplinary ap-
proaches: New materials synthesis, experimental charac-
terization of the material properties, and theoretical un-
derstanding [1–10]. In recent years, advancements in this
field have been fueled by improvements of the synthe-
sis processes for several materials, such as transition-metal
dichalcogenide monolayers and layered perovskites [11–18].
Thanks to these improvements, further experimental re-
search on inorganic two-dimensional materials has demon-
strated their usefulness for engineering optoelectronic and
photovoltaic devices due to their strong confinement, direct
band gap, and much more efficient and better industry-
integrated chemical manufacturing processes [19–27]. An
essential requirement for such devices is that they function
at room temperature so that they can be integrated with
traditional silicon-based transistors. Hence the focus is mostly
on room-temperature controlled designs [19,20,28–32].
Moreover, the presence of excitons can be either a blessing
or a curse for a particular application, which makes the under-
standing of the excitonic properties of these semiconducting
materials of the utmost importance. Some of these properties
have been known for quite some time, with theoretical studies
dating back to the 1980s [33–38], but more recent studies have
considerably expanded upon these ideas [39–42].

In this paper we consider in detail the exciton physics in
photoexcited CdSe nanoplatelets. In particular, our main goal
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†l.d.a.siebbeles@tudelft.nl
‡h.t.c.stoof@uu.nl

is to explain the observation of Tomar et al. that excitons in
CdSe nanoplatelets do not break up into electrons and holes
and remain present even at high photoexcitation densities
[43]. We explain this unexpected observation by showing
that in a two-dimensional nanoplatelet the screening of the
Coulomb potential by free charges is never sufficiently strong
to push the exciton bound state into the electron-hole contin-
uum. This should be contrasted with the three-dimensional
bulk material, in which screening alone is enough to make
excitons unbind and to let the exciton gas crossover into an
electron-hole plasma near the so-called Mott density. In this
regime, the excitons have a substantial overlap with each other
and the exciton bound state disappears from the screened
Coulomb potential.

To understand the empirical evidence for this better, we
show in Fig. 1 the measured data for both the real and
the imaginary parts of the complex in-plane terahertz (THz)
conductivity as a function of the photoexcitation density nγ ,
i.e., the total density of electron-hole pairs initially created
by the pump laser and that quickly thermalizes into an
(quasi)equilibrium mixture of excitons and free charges. Since
the real part of the THz conductivity is proportional to the
density of free charges, and the imaginary part is mainly
proportional to the density of excitons, the experimental data
clearly show that at high photoexcitation the density of free
charges in the CdSe nanoplatelets saturates, whereas the
density of excitons increases linearly with photoexcitation
density. The same conclusion was reached more quantitatively
in Ref. [43] by fitting the measured complex conductivities
to the classical equation of state of noninteracting excitons,
electrons, and holes, also known as the Saha model [44,45].
Most significantly for our purposes is that the complex THz
conductivity does not show the expected crossover from a
low-density regime to a high-density regime. Indeed, if the
excitons had become unstable and had unbound into electrons
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FIG. 1. The complex in-plane conductivity σ‖ as a function of
photoexcitation density nγ , where the dots correspond to the data
from Ref. [43] and the lines to our best model fit. Positive values
(empty dots and dashed line) give the real part of the conductiv-
ity, while the negative values (filled dots and solid line) give the
imaginary part. Shown in the legend are the numerical results for
the electron and hole DC mobilities, which are used to fit the model
developed in this paper to the experimental data. Dotted magenta
vertical lines are shown for reference in other figures. The green solid
vertical line marks the density above which quantum statistics for
excitons needs to be considered.

and holes, i.e., if the system had shown a crossover from
an exciton gas into an electron-hole plasma near the Mott
density, this would have resulted in a relatively sharp change
of the complex conductivity. Clearly Fig. 1 does not show
such behavior, thus proving that excitons remain stable even
at high photoexcitation densities where they start to overlap
and nexca2

0 � 1, where nexc is the density of excitons and a0 is
the Bohr radius of the exciton. As the experimentally reached
exciton densities are much higher than the predicted Mott den-
sities in Refs. [39,41,42], a better theoretical understanding is
needed, which we aim to provide in this paper.

Our work presents a twofold approach to understand the
thermodynamical and charge transport behavior of CdSe
nanoplatelets, in which we concentrate on deriving a theoreti-
cal model that can be directly compared with the experiments
of Ref. [43]. However, we anticipate to apply our framework,
and extensions thereof, to other two-dimensional materials
with similar properties. As a result, the layout of the rest
of the paper is as follows. Section II begins by introducing
a more detailed description of the system of interest and
the measurement process. Then Sec. III presents the various
ingredients of our model and analyzes them, by comparing
directly with Ref. [43] and other publications. Concluding
with Sec. IV, we discuss the results obtained in the previous
section and show several directions for future endeavors.

II. EXPERIMENTAL SETUP

This section introduces the physical characteristics of the
CdSe nanoplatelets of interest to us, focusing in Sec. II A on
the properties of the nanoplatelets and in Sec. II B on the

FIG. 2. Schematic representation of a nanoplatelet, showing their
average size in each dimension. Confined to the two-dimensional
structure are electrons, holes, and excitons that in principle all
interact with one another.

measurement methodology. In particular, we show how the
complex conductivity of Fig. 1 is related to the densities of
free charges and excitons in the system.

A. Material properties

We refer to Sec. 2.1 of Ref. [43], and references therein,
for a more detailed description of the synthesis procedure of
the CdSe nanoplatelets with a thickness of 4.5 monolayers and
that in Ref. [46] corresponds to the case of n = 5 layers. Our
sample is composed of rectangularly shaped nanoplatelets,
shown in Fig. 2, with lateral sizes also given in Table I. The
computed band structure of such nanoplatelets has a direct gap
at the � point with the effective masses of electrons and holes,
calculated as given in Table I in units of the fundamental
electron mass [47]. Because of the splitting of the hole bands
the absorption spectrum exhibits heavy-hole (HH) and light-
hole (LH) exciton peaks below the free charges continuum
[43]. In addition, the finite lateral size leads to the presence of
different HH and LH center-of-mass states [48]. In this work
we only consider the lowest HH exciton states as these are
mainly populated in the experiments.

Since the nanoplatelets are in solution, the solvent has an
effect on the electric field lines outside of the nanoplatelet by
substantially decreasing the relative permittivity εr , compared
to its value in bulk CdSe, and thus increasing the strength of
the Coulomb interactions between the charges inside the CdSe
material. For simplicity we do not determine the relative per-
mittivity from first principles, instead we compute it from the
experimental exciton energy level as described in Sec. III A 2.

TABLE I. Table aggregating the system parameters that are used
throughout the paper.

Name Symbol Value Source

Nanoplatelet x size Lx 34 ± 1.2 nm [43]
Nanoplatelet y size Ly 9.6 ± 0.6 nm [43]
Nanoplatelet z size Lz 1.37 nm [43]
Nanoplatelet surface SNPL 326 nm2 [43]
Effective electron mass me 0.22m0 [46]
Effective hole mass mh 0.41m0 [46]
Exciton energy level ECou

B −193 ± 5 meV [43]
Relative permittivity εr 6.36 Eq. (12)
Temperature T 294 K [43]
Peak probe frequency ωpeak/2π 0.9 THz [43]
Exciton Bohr radius a0 2.35 nm Eq. (31)
Sat. screening length λSat

s 1.68 nm Eq. (21)
Saturated energy level ESat

B −44.6 meV Eq. (10)
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The whole system is always kept at room temperature, that
is T = 294 K, and most of our discussion will focus on this
value. In subsequent experiments, however, the temperature
may be lowered so that new regimes may be explored.

B. THz conductivity of nanoplatelets

Quantitatively understanding the behavior of free charges
and excitons involves comparing our theoretical predictions
with measurements. Experimentally, the sample is optically
excited using a pump laser after which a transmitted THz
probe pulse is detected to determine the in-plane complex con-
ductivity. In particular, free charges contribute to the real part
of the conductivity σR(ω) by absorbing part of the THz probe
field, thus reducing its amplitude. On the other hand, elastic
scattering of free charges and the polarizability of the excitons
contribute to the imaginary part σI (ω) as dephasing of the
THz probe field. Figure 3 shows a schematic representation of
these two effects.

Both effects can be computed in linear response and then
depend on the real and imaginary parts of the sum of the
electron and holes mobilities, μR(ω) and μI (ω), respectively,
and on the exciton polarizability α, i.e., the field-induced
dipole moment per unit of field strength. For convenience
we define the complex mobility as μ(ω) ≡ μR(ω) + iμI (ω).
Note that the mobilities and polarizability in our case involve
only the in-plane response of the nanoplatelets. As a result,
σR(ω) and σI (ω) are given by [43,49–51]

σR(ω) = 2

3

eNγ

V
μR(ω)

nq

nγ

, (1)

σI (ω) = 2

3

eNγ

V

(
μI (ω)

nq

nγ

+ α
ω

e

nexc

nγ

)
, (2)

where nq is half the density of free charges, i.e., the density of
the electrons or of the holes, nexc is the density of excitons,
nγ ≡ nq + nexc is the density of photoexcitations, and Nγ

is the total number of photons absorbed in a solution of
nanoplatelets with volume V . The ratio nq/nγ is denoted in
Ref. [43] as the quantum yield φ(nγ ). The complex con-

FIG. 3. When a probe field is applied on a nanoplatelet, free
charges and excitons contribute in different ways to the complex
conductivity. The measured amplitude and phase changes of the THz
field due to photoexcitation are determined by the densities of free
charges and excitons.

ductivity is, similarly as for the mobility, defined as σ (ω) ≡
σR(ω) + iσI (ω) ≡ 2

3σ‖(ω). Notice that there is a factor of
2/3 that accounts for the random distribution of nanoplatelet
orientations in the solution, meaning that μ(ω) and α are
the values of the mobility and polarizability for the case in
which the THz electric field is parallel to the plane of the
nanoplatelets.

III. THEORETICAL ANALYSIS

Having introduced the details of the system relevant to
the experiments, we move on to its theoretical description.
Our goal is to present the simplest possible thermodynamical
description that correctly reproduces the conductivity results
of Ref. [43]. Fundamentally, we are interested in deriving an
equation of state involving the three species in the system, i.e.,
electrons, holes, and their bound exciton state. Section III A
discusses each of the three components involved, which are
put together to solve the equation of state in Sec. III B. We
then present in Sec. III C two secondary models to compute
the parameters involved in the conductivity calculation of
Sec. II B other than the densities of free charges and excitons,
that is, the exciton polarizability and the mobility of free
charges. Finally, using all of the elements introduced, we
fit the conductivity measurements, the result of which has
already been shown in Fig. 1, and compare the fitted DC
mobilities of electrons and holes with known values in the
literature.

Before starting our discussion, let us consider some aspects
that broadly influence this section. First, the dimensionality
of the system. Even though the platelets used have a nonzero
thickness, in our model free charges and excitons behave as
if they were contained in a purely two-dimensional plane.
Physically we can interpret this assumption as saying that any
excitation in the perpendicular direction has an energy that is
too high to affect the dynamics, or equivalently the THz con-
ductivity in that direction. Second, we focus on the electron-
hole dynamics around the � point of the Brillouin zone, and
the dispersion relations are described by the usual parabolic
expressions. Third, free charges can influence each other
via a screened Coulomb potential, presented in Sec. III A 2.
Consequently, the Coulomb attraction between electrons and
holes can lead to the formation of excitons, whose properties
change depending on how strongly the potential is screened.
In principle all charges interact with one another, but be-
cause of simplicity only attractive electron-hole interactions
are considered. The effects of electron-electron and hole-hole
repulsion have been studied in the literature [52], giving rise
to a band-gap renormalization effect. Since we only consider
an equal density of electrons and holes, however, this effect
does not occur within the random phase approximation (RPA)
on which our model is based, which for consistency considers
only the Hartree contribution to the self-energy.

A. Chemical equilibrium

The densities of free charges nq and excitons nexc is deter-
mined by the thermal equilibrium between the species, which
we can represent as

e− + h+ � exc. (3)
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Expressed in terms of their chemical potentials this implies
that μe + μh = μexc. Furthermore, these species are treated
thermodynamically as ideal gases, meaning that each density
is related to the corresponding chemical potential by

nq = gs
mekBT

2π h̄2 ln(1 + eμe/kBT )

= gs
mhkBT

2π h̄2 ln(1 + eμh/kBT ), (4)

nexc = −g2
s

(me + mh)kBT

2π h̄2 ln(1 − e[μexc−EB (nq )]/kBT ), (5)

where gs = 2 is the number of spin degrees of freedom of
electrons (↑ and ↓) and holes (⇑ and ⇓), me and mh are the
effective masses of the electron and hole, kB is the Boltzmann
constant, and T is the temperature. Note that excitons carry a
degeneracy factor of g2

s = 4 due to the four spin combinations
of the constituent electron-hole pair: ↑⇑, ↑⇓, ↓⇑, and ↓⇓.
We compare our model with measured data by setting nγ ≡
nq + nexc equal to the experimental values, and then finding
the densities nq and nexc that satisfy the chemical equilibrium
condition.

Notice the energy of the exciton in the exponent of Eq. (5),
which needs to be included because the exciton dispersion
relation is

εexc
K = h̄2K2

2(me + mh)
− EB(nq), (6)

whereas the electron and hole dispersions are εe
k = h̄2k2/2me

and εh
k = h̄2k2/2mh, respectively. Moreover, because ne =

nh ≡ nq, we can derive from Eq. (4) a relation between μe

and μh as

μh(μe) = kBT ln
(
(1 + eμe/kBT )

me
mh − 1

)
, (7)

where we have used

μα (nq) = kBT ln
(
e

π h̄2

mα kBT nq − 1
)

(8)

for α = e, h.

1. Bound exciton states

As Sec. III A shows, calculating the density of excitons
requires knowing their energy EB(nq). Determining this value
involves solving the quantum mechanical problem of an
electron and a hole mutually attracting each other. Thus we
introduce the exciton wave function ψexc(r), where r is the
relative position and r ≡ |r| is its magnitude. It satisfies the
Schrödinger equation(

− h̄2∇2

2mr
+ Vsc(r; nq)

)
ψexc(r) = EB(nq)ψexc(r), (9)

where mr = memh/(me + mh) is the reduced mass of the
exciton and Vsc(r; nq) is the interaction potential. The energy
eigenvalue EB(nq) is the negative energy of the exciton, so
−EB(nq) equals its binding energy. This equation is derived
from the T-matrix formalism for free charges by neglecting
the effect of Pauli blocking and only considering the Hartree
contribution to the self-energy [53,54].

Due to screening the interaction potential is not a Coulomb
potential, but a screened version of it that depends on the den-

sity of free charges nq. Furthermore, it is clear that changes in
the potential due to nq impact the energy of the exciton EB(nq).
To solve this equation, we use that the two-dimensional po-
tential in a nanoplatelet is rotationally symmetric to separate
the wave function in radial and angular parts as ψexc(r, φ) =
um(r)r− 1

2 eimφ . The angular part is given analytically, while
the radial part um(r) is a solution of the radial Schrödinger
equation

− h̄2

2mr

d2

dr2
um(r) +

(
Vsc(r; nq) + h̄2

2mr

m2 − 1/4

r2

)
um(r)

= EB(nq)um(r), (10)

which is analogous to a one-dimensional Schrödinger equa-
tion, with an additional contribution to the effective potential
next to Vsc(r; nq) due to the orbital angular momentum of the
exciton. Note that in the following we only treat the s-wave
case, i.e., m = 0.

Let us first consider the limit nq → 0, in which the interac-
tion reduces to the three-dimensional Coulomb potential

lim
nq→0

Vsc(r; nq) = V (r) = − e2

4πε0εr

1

r
(11)

that depends on the relative permittivity εr of the solution
around the nanoplatelets. Note that the polarizability of the
excitons thus does not affect the relative permittivity, be-
cause physically all the electric field lines are outside the
nanoplatelet in this case. Finding a physical solution to
Eq. (10) with the Coulomb potential from Eq. (11) fixes the
ground-state energy to

lim
nq→0

EB(nq) = − 2mre4

(4πε0εr h̄)2
≡ ECou

B , (12)

which we associate with the lowest bound exciton state. Note
again that EB(nq) is related to the exciton binding energy
by taking its absolute value |EB(nq)|. In our model we only
consider an effective relative permittivity εr that captures the
effect of the solution around the nanoplatelets, that is, the
oleate ligands and the hexane solvent. Instead of determining
a value for εr based on the physical characteristics of the
sample, we simply use the energy of the exciton derived from
experiment, given in Table I, and the theoretical expression in
Eq. (12) to compute εr as

εr = e2

4πε0 h̄

√
2mr

−ECou
B

. (13)

This value of εr we then use in Eq. (11) and in all subse-
quent developments.

2. Screening of the Coulomb potential

Expanding on the situation explained above, we introduce
now the effect of a background of free charges on the electron-
hole pair. Note that, as mentioned previously, the electric field
due to charges is not confined to the plane of the nanoplatelet,
rather the field lines penetrate the solution around it. However,
since free charges are contained inside the nanoplatelets,
screening effects are much less significant compared to those
in three-dimensional systems as we show shortly.
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Another effect on the potential that may be considered is
the finite thickness of the nanoplatelets, which has been ex-
tensively studied in the literature [55]. The resulting Keldysh
potential turns out to have a logarithmic behavior at short dis-
tances and the 1/r Coulomb tail at large distances. However,
it should be noted that the Keldysh potential used theoretically
must reproduce the experimentally obtained energy of the
exciton. As a result, corrections due to the use of a Keldysh
potential lead only to a small change in the value of the
exciton polarizability that is unimportant for our purposes.
This further justifies our use of the Coulomb potential given
in Eq. (11).

Returning to the screening effects due to the free electrons
and holes, we base our derivation on the random phase ap-
proximation (RPA), which for consistency reasons incorpo-
rates the self-energy of the electrons and holes in the Hartree
approximation [56]. If we would like to perform instead the
Hartree-Fock approximation for the self-energies, then we
need to make use of the generalized RPA, otherwise Ward
identities are violated and the theory is no longer conserving
in the language of Kadanoff and Baym. Most of the results
in Ref. [56] can be transferred directly to our situation,
only with slight modifications due to the dimensionality, two
dimensions as opposed to three dimensions, and having both
electrons and holes, as opposed to one type of free carriers,
contributing to the screening. As for the dimensionality of the
system, the derivation is general enough that there are no sig-
nificant changes except for the density of states. Introducing a
new species to the screening is also straightforward, because
the effects of the electrons and the holes can just be added
together. Therefore, we can write the screened potential in
momentum space as

V −1
sc (k; nq) = V −1(k) − 2ε0εr

e2

[
λ−1

s,e (k; nq) + λ−1
s,h (k; nq )

]
.

(14)

Here we have introduced the two-dimensional Fourier trans-
form of Eq. (11) as V (k). Defining k ≡ |k| and r ≡ |r|, it is
calculated as

V (k) =
∫

d2rV (r)eik·r = − e2

2ε0εr

1

k
, (15)

where k corresponds to the transferred relative momentum
between the electron and hole due to the attractive interaction.
In addition, λ−1

s,α (k; nq ) is the momentum-dependent screening
length, given by

λ−1
s,α (k; nq)

= gs

∫
d2k′

(2π )2

NFD
[
εα

k+k′−μα (nq)
]−NFD

[
εα

k′−μα (nq)
]

εα
k+k′−εα

k′
,

(16)

where α = e, h, NFD(ε) is the Fermi-Dirac distribution func-
tion 1/(1 + eε/kBT ), and εα

k is the kinetic energy of the elec-
tron and hole with effective mass mα , i.e., εα

k = h̄2k2/2mα .
Because the free charges are fermions, their screening effects
are in principle determined using the Fermi-Dirac distribution.
Fortunately, for the comparison with the experiments we
can use the classical limit of Eq. (16), that is, using the

Maxwell-Boltzmann distribution NMB(ε) = e−ε/kBT . Approx-
imating NFD(ε) by NMB(ε) is only appropriate when nq is low
enough, which is indeed the case in the experiments. This
leads to the analytical result given in Eq. (A3).

Independent of the classical limit, Eq. (16) can be
computed quite accurately by applying the so-called long-
wavelength approximation. If the Fermi-Dirac distribution is
used this allows us to study quite accurately the behavior
of the system at a very high density of free charges, that
is, outside of the regime described by the classical limit.
Physically, this approximation assumes that screening effects
affect the interaction potential mostly at large distances and
at small momenta. Hence λ−1

s,α (k; nq ) can be set to its zero-
momentum value λ−1

s,α (nq), i.e., the momentum-independent
screening length as given by

λ−1
s,α (nq) ≡ λ−1

s,α (k = 0; nq ). (17)

Substituting then λ−1
s,α (k; nq) 	 λ−1

s,α (nq) into Eq. (14) gives

Vsc(k; nq ) = − e2

2ε0εr

1

k + λ−1
s (nq)

, (18)

where λ−1
s (nq) ≡ λ−1

s,e (nq) + λ−1
s,h (nq). Equation (18) can be

Fourier transformed back to coordinate space analytically, to
obtain an expression for Vsc(r; nq) given in Eq. (B2).

3. Exciton energy level

Let us consider now the accuracy of the long-wavelength
approximation. In the most general case, the potential contains
the momentum-dependent screening length λ−1

s,α (k; nq) given
in Eq. (16) using NMB instead of NFD if the classical limit
applies. For the long-wavelength approximation, the poten-
tial is computed using the momentum-independent screening
length λ−1

s,α (nq) given in Eq. (17).
First, Fig. 4 shows the coordinate-space dependence of

both potentials, obtained by Fourier transforming Eq. (14).
In the case of the classical limit, the momentum-dependent
screening length λ−1

s,α (k; nq) is given in Eq. (A3), while in the
long-wavelength approximation it is set to its zero-momentum
value λ−1

s,α (nq). As already mentioned, only in the latter case
the Fourier transform to coordinate space can be performed
analytically, resulting in Eq. (B2). In the former case it is
computed numerically. In both Figs. 4 and 5, solid lines
and dotted lines correspond to the classical limit and long-
wavelength approximation, respectively. Also, the unscreened
Coulomb limit (nq → 0, red thin dashed line) and the satu-
rated limit (nq → ∞, black thin dashed line) are included for
reference. Figure 4 shows the coordinate-space dependence of
the screened potential at room temperature, as given in Table I,
for different values of the average number of free charges
per nanoplatelet 〈Nq〉 ≡ nqSNPL. The value of SNPL is given
in Table I as well. Even though both potentials seem to be
very close, notice that at short distances the long-wavelength
approximation underestimates compared to the full classical
result, while at long distances it overestimates. This behavior
changes around a distance of r 	 a0/4 and a corresponding
energy of −150 meV. As a consequence, the exciton energy
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FIG. 4. Coordinate-space dependence of the screened Coulomb
potential for several values of the average number of charges per
nanoplatelet 〈Nq〉 ≡ nqSNPL, with SNPL as given in Table I, and
computed for T = 294 K. Lines from bottom to top correspond to
low to high value of 〈Nq〉. Here a0 is the Bohr radius of the exciton, as
given in Table I. The solid lines are computed using the momentum-
dependent screening length, by Fourier transforming Eq. (14), while
dotted lines are computed using the screening length for k → 0, by
Fourier transforming Eq. (18), together with Eq. (20). Included as
well are the results for the unscreened Coulomb potential, 〈Nq〉 = 0
(red dashed line), and the saturated limit, 〈Nq〉 → ∞ (black dashed
line). As the number of free charges increases, the potential shifts
from the Coulomb potential to the saturated potential. The finite
values of 〈Nq〉 used correspond to chemical potentials in the classical
limit, that is, satisfying μe(nq )/kBT � −1.

level depends somewhat on the potential used, since ECou
B 	

−200 meV, as given in Table I.
Second, using these two potentials to solve the Schrödinger

equation given in Eq. (10) results in two different exciton
binding energies. Figure 5 shows the dependence of the ex-
citon energy as a function of 〈Nq〉, for several temperatures.
As expected, for both cases and every temperature, we recover
ECou

B for 〈Nq〉 → 0. However, as 〈Nq〉 increases, differences of
up to 5 meV rapidly become apparent. Since the momentum-
independent case underestimates the potential at short dis-
tances, the resulting value of EB(nq) is less negative than the
corresponding one computed with the momentum-dependent
screening length. Notice that in the limit 〈Nq〉 → ∞ the
exciton energy saturates to the constant value ESat

B . The value
of ESat

B is given in Table I. Compared to the thermal energy,
we find that |ESat

B |/kBT 	 3/2, which means that the bound
exciton state does not break up due to thermal fluctuations.

Summarizing, it is clear from these room-temperature re-
sults that there is a well-defined bound exciton state even
at high densities. Since the exciton also does not break up
due to thermal fluctuations, the system does not show a Mott
crossover to an electron-hole plasma regime solely due to
screening. Hence, thermal effects are not significant enough
at room temperature to affect the exciton state, and only
at temperatures around 500 K the ratio |ESat

B |/kBT becomes
equal to one.
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FIG. 5. Exciton energy as a function of the average number of
charges per nanoplatelet 〈Nq〉 ≡ nqSNPL, for different temperatures.
Lines from left to right correspond to low to high temperatures.
The value of SNPL is given in Table I. The solid lines are computed
using the momentum-dependent screening length, shown in Eq. (14),
while dotted lines are computed using the momentum-independent
screening length, shown in Eq. (18), together with Eq. (20). Solid
lines are computed only for the range of nq that satisfy the classical
limit, that is μe(nq )/kBT � −1. The point at which the classical limit
can no longer considered to be valid, μe(nq )/kBT = −1, is marked
with a dot. Dotted lines, corresponding to the long-wavelength
approximation, are computed for higher values of 〈Nq〉, and the limit
〈Nq〉 → ∞ saturates to ESat

B . Included as well are the results for the
unscreened Coulomb potential 〈Nq〉 = 0 (red dashed line), and the
saturated limit 〈Nq〉 → ∞ (black dashed line).

4. Saturated energy level

Let us now focus on understanding better the results that
Figs. 4 and 5 show. These are driven by changes in the
screening length, therefore we need to study the dependence
of λ−1

s (nq) on the density of free charges nq. Since the classical
limit does not cover the full range of densities, that is, from
nq → 0 to nq → ∞, we instead use only the long-wavelength
approximation, that nicely illustrates the essential physics. In
this case, Eq. (17) can in general be rewritten as

λ−1
s,α (nq) = e2

2ε0εr

∂nα (μ)

∂μ

∣∣∣∣
μ=μα (nq )

. (19)

The derivation of this result is briefly shown in Sec. 8.7.3
of Ref. [56]. Here nα (μ), with α = e, h, is the density of free
charges as a function of the chemical potential μ, as given in
Eq. (4). The chemical potential μ = μα (nq) is computed using
Eq. (8). Using this result we can discuss in more detail how
the inverse screening length λ−1

s (nq) ≡ λ−1
s,e (nq) + λ−1

s,h (nq)
behaves as a function of nq. For this purpose, we substitute
Eq. (4) into Eq. (19) to find analytically

λ−1
s,α (nq) = e2

2ε0εr

mα

π h̄2

(
1 − e− π h̄2

mα kBT nq
)
. (20)

Figure 6 shows the behavior of λs(nq) as a function
of the average number of free charges per nanoplatelet
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FIG. 6. Screening length as a function of the average number of
free charges per nanoplatelet 〈Nq〉 ≡ nqSNPL, for different tempera-
tures. Lines from left to right correspond to low to high temperatures.
The screening length λs(nq ) is computed using Eq. (20). The value
of SNPL is given in Table I. Notice how in the limit 〈Nq〉 → ∞,
λs → λSat

s , as Eq. (20) describes. The value of λSat
s is given in Table I.

〈Nq〉 ≡ nqSNPL. The value of SNPL is given in Table I. It is
clear that λs(nq) always tends toward the same value at high
density regardless of the temperature. The saturation can be
immediately seen from Eq. (20), since it describes a quantity
that converges to a constant value in the limit nq → ∞. Thus,
we define the saturated screening length λSat

s as

lim
nq→∞ λs(nq) = 2ε0εr

e2

π h̄2

me + mh
≡ λSat

s , (21)

which can be written in terms of the unscreened exciton
energy as

λSat
s =

√
mr

−2ECou
B

h̄

me + mh
. (22)

This expression does not depend on nq, but only on param-
eters of the system: The relative permittivity εr (or exciton
energy EB) and the effective masses of electrons and holes,
me and mh, respectively. The main consequence of this result
is that, in two dimensions, the screening length does not go
to zero as the system becomes dominated by free charges,
but instead it tends to a constant. This is an unexpected
result, since it differs greatly from the behavior of three-
dimensional materials [57]. Consider for a moment the more
general context of d dimensions and high densities. In this
case, we have that the density of free charges is given by
the zero-temperature result nα ∝ μd/2

α , since it is equal to the
volume of the d-dimensional Fermi sphere. Substituting this
behavior into Eq. (19) we find that λs,α (nq) ∝ n2/d−1

q , which
goes to zero as n−1/3

q for d = 3 but to a constant for d = 2, in
agreement with Eqs. (21) and (22).

Because the screened two-dimensional Coulomb potential
thus saturates at a high density of free charges, solving the
Schrödinger equation given in Eq. (10) also shows saturation
of the exciton energy. For convenience, we define the saturated
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FIG. 7. Number of free charges nqa2
0 and excitons nexca2

0 in a
Bohr area as a function of the number of photoexcitations in a Bohr
area nγ a2

0, computed for T = 294 K. The vertical dotted magenta
lines mark the range in which we have experimental data. Notice
that the number of electrons saturates, and at high densities there
are mainly only excitons in the system. The vertical solid green line
represents the density at which quantum effects become significant,
further explained in Sec. III B 2. Notice that measurements are taken
at higher densities, and thus excitons cannot be considered as classi-
cal particles.

exciton energy ESat
B as

lim
nq→∞ EB(nq) ≡ ESat

B . (23)

Most importantly, if |ESat
B | is large compared to kBT , then

the bound exciton state cannot be broken up by thermal
effects. Consequently, as long as there are no significant other
contributions to the exciton energy, two-dimensional systems
do not show a crossover to an electron-hole plasma regime
due to screening effects alone.

B. Equation of state

Now that we have obtained the dependence of the exciton
energy level on the density of free charges, we can return
to the equation of state and focus on the dependence of the
system on the photoexcitation density nγ . Figure 7 shows the
result of solving Eqs. (4) and (5) using the parameters given in
Table I. Here, instead of scaling densities with the nanoplatelet
surface SNPL, we have used the Bohr area a2

0. Physically,
nexca2

0 	 1 marks the limit at which excitons start to overlap,
and therefore interactions ought to become more significant.
Notice that the density of excitons is much larger than that
of free charges, making the former the dominant species.
Furthermore, as nγ → ∞, the density of free charges clearly
tends toward the saturation value n∞

q . As a consequence, it
is clear that our model does not predict a Mott crossover
for the range of densities explored in experiments. At even
higher densities, we expect exciton-exciton interactions to in-
troduce significant corrections that render our model no longer
valid. Moreover, these interactions could ultimately produce
a crossover to an electron-hole plasma regime, although not
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via the same mechanism based on screening alone as known
from three-dimensional systems. In Sec. IV we revisit this
important topic.

1. Saturation of charges

Let us study in more detail the limit of very high pho-
toexcitation density, i.e., nγ → ∞. Because our model treats
excitons as an ideal gas, nexc becomes arbitrarily large as
μexc → EB(nq). Notice that in two dimensions the chemical
potential cannot become equal to the exciton energy, as op-
posed to three-dimensional bosons that Bose condense when
μexc = EB(nq). Since in this limit nexc → ∞, while nq is still
a finite quantity given by solving

n∞
q = gs

mekBT

2π h̄2 ln
(
1 + e

[
EB (n∞

q )−μh(n∞
q )

]
/kBT

)
, (24)

it is clear that in the high-density regime the physics is
dominated by excitons. Here we have used Eq. (4) and

EB
(
n∞

q

) − μe
(
n∞

q

) − μh
(
n∞

q

) = 0. (25)

Having determined the maximum density of free charges in
the system, we can revisit the condition for using the classical
limit. Recall that in order for the classical limit to be valid,
the density of free charges has to be low enough. Specifically,
Fig. 7 shows that

n∞
q 	 9.37 × 10−4 nm−2, (26)

which corresponds to the chemical potentials

μe
(
n∞

q

)
kBT

	 −3.19, (27)

μh
(
n∞

q

)
kBT

	 −3.82. (28)

These values are negative enough that we can safely as-
sume in the description of the experiments that the classical
limit is valid for the free charges.

2. Quantum statistics of excitons

Since the density of excitons is very high, describing
them involves quantum statistics, that is, using the Bose-
Einstein distribution instead of the Maxwell-Boltzmann one.
As a reminder, a good estimate of the density above which
the Maxwell-Boltzmann approximation is no longer valid is
given by

nexcλ
2
th 	 g2

s, (29)

where λth ≡ h̄
√

2π/mrkBT is the thermal de Broglie wave-
length. This density is marked in Figs. 1 and 7 with a vertical
solid green line. For higher densities, excitons are actually de-
scribed by Eq. (5), and cannot be approximated by assuming
that [μexc − EB(nq)]/kBT � 0. In other words, they can no
longer be considered as classical particles, and thus quantum
effects become significant.

On a related note, interacting bosons show a transition
to a superfluid phase when their density is high and the
temperature is low enough. However, our model does not
include these interactions and this regime is never reached.
Instead, in the ideal case the density of excitons increases
arbitrarily high as μexc → EB(nq).

C. Supporting models

To be able to confront our equation of state with the THz
experiment, we introduce in Secs. III C 1 and III C 2 two
secondary models for calculating the exciton polarizability
and the changes in the mobility of free charges due to finite-
size effects, respectively. In the end we can give a complete
picture of the conductivity shown in Fig. 1 in the Introduction.
With the help of these two supporting models we are left with
two theoretically unknown parameters, μDC,e and μDC,h, i.e.,
the DC mobilities of electrons and holes. These parameters
are fitted to reproduce the THz conductivity data and then
compared to values in literature for further checks on our
results.

1. Polarizability

One variable that can be determined ab initio is the exciton
polarizability. Using standard results for the polarizability of
hydrogen atoms confined to a two-dimensional plane [58,59],
we can obtain analytical results valid for our situation. Note
that the attractive Coulomb potential that binds the atom is
three dimensional. The results of Refs. [58,59] can be applied
to our situation by introducing a relative permittivity εr , and
setting the reduced mass mr to that of the exciton. This leads
to a polarizability α given by

α = 21

27
4πε0εr a3

0, (30)

where a0 is the three-dimensional Bohr radius of the exciton
that is defined as

a0 ≡ 4πε0εr
h̄2

mre2
. (31)

Combining Eqs. (13) and (31) results in an expression
for the Bohr radius as a function of the exciton energy,
i.e., a0(EB) =

√
2h̄2/−EBmr . Further substituting a0(EB) into

Eq. (30) relates the polarizability to the exciton energy EB as

α(EB) = 21

27
4πε0εr

(
2h̄2

−EBmr

)3/2

. (32)

As presented in Sec. III A 1, the exciton energy level de-
pends on the density of free charges nq. Thus, using Eq. (32)
we can compute the polarizability even when the Coulomb po-
tential is screened. Implicitly, this procedure assumes that the
exciton wave function that solves Eq. (10), using the Coulomb
potential as given in Eq. (11), does not significantly differ
compared to solving it using a screened potential Vsc(r; nq).
Regarding the use of the Keldysh potential instead of the
Coulomb potential, we have computed that the Keldysh po-
tential leads to a change in the polarizability given by Eq. (30)
that is only about 10%. Thus using the Coulomb potential is
a reasonable approximation for the regime explored in the
experiment. After solving the equation of state, we can thus
compute the exciton energy and polarizability for each value
of nγ . Figure 8 shows α(nγ ) in the main plot, and EB(nγ ) in
the inset plot. Notice that the variation in EB(nγ ) is not very
large, |E∞

B − ECou
B | 	 16 meV, where E∞

B ≡ EB(nγ →∞),
meaning that the screening is indeed only moderate due
to the saturation of the density of free charges. When nγ

is small EB(nγ ) behaves similarly to the results shown in
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0. As explained before, in the limit nγ → ∞, the
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Fig. 5. As the photoexcitation density increases the screening
effects become more significant, until nq saturates to n∞

q
and consequently EB(nγ ) saturates to E∞

B . As mentioned, the
polarizability as a function of density α(nγ ) is computed using
Eq. (32), and setting EB = EB(nγ ). Thus, this relation allows
us to determine the exciton contribution to the imaginary part
of the conductivity, given in Eqs. (1) and (2), in a more precise
way. Considering the numerical values of α(nγ ), the change
from nγ → 0 to saturation is not very large, especially in the
range where we have experimental data.

2. Finite–size diffusion

Because of the finite lateral size of the nanoplatelets, free
charges cannot move as freely as in an infinitely extended
plane. Thus, their mobility is negatively affected due to the
boundaries of the nanoplatelets. To account for these effects,
we present a diffusion model for the mobility μ(ω) of Eqs. (1)
and (2). Our approach is based on Ref. [60] and Chap. 9 of
Ref. [61], and generalizes those results to two-dimensional
systems with lateral sizes Lx and Ly. To do so we assume that
free charges moving in the nanoplatelet can be described by
the two-dimensional diffusion equation. Thus, the frequency-
dependent mobility can be computed from the correspond-
ing frequency-dependent diffusion constant D(ω), which is
given by

D(ω) = DDC

⎡
⎣1 +

√
DDC

−iωL2
x

tan

⎛
⎝−1

2

√
−iωL2

x

DDC

⎞
⎠

+
√

DDC

−iωL2
y

tan

⎛
⎝−1

2

√
−iωL2

y

DDC

⎞
⎠

⎤
⎦. (33)

This expression is found by performing the sum in
Eq. (9.10) of Ref. [61], generalized to two dimensions. Notice

that, because of the frequency dependence in D(ω), it is not
correct to assume that the total diffusion of free charges is
given by setting DDC = DDC,e + DDC,h in Eq. (33). Instead, it
is given by D(ω) = De(ω) + Dh(ω), where each contribution
is computed using a different DC value for the diffusion
constant, i.e., DDC,e and DDC,h, respectively.

Last, the frequency-dependent mobility μ(ω) is obtained
using the Einstein relation

μ(ω) = e

kBT
D(ω) = μR(ω) + iμI (ω). (34)

Since the conductivity measured in the experiments is
averaged over frequencies around the peak frequency ωpeak,
we use 〈μ(ω)〉 = μ(ωpeak) in the following. The value of ωpeak

is given in Table I.

D. Fitting the electron and hole mobilities

Now we are ready to gather together both the theory and the
experimental data to fit the DC mobility of electrons and holes
and compare them with values from the literature. Hence, the
predictions of our model are not only used to explain the
measurements of interest, but can also be validated against
other experiments. In contrast to Ref. [43], we do not fit the
parameters 〈μR(ω)〉, 〈μI (ω)〉, and α to the measured complex
conductivity, but instead use the two supporting models from
Sec. III C to determine them.

Having computed the density of free charges and excitons
as a function of nγ , we can proceed to use Eqs. (1), (2), and
(34) and calculate the complex conductivity. Because there
are both electrons and holes diffusing in the nanoplatelet, we
consider the contribution of electron and holes to the mobility
in Eqs. (1) and (2) as

μ(ω) = μe(ω) + μh(ω), (35)

where μα (ω) is computed using Eq. (34). Figure 9 shows the
result of applying Eq. (35) to our system, using the fitted
DC mobilities shown in Fig. 1. Notice that the mobilities at
the peak frequency ωpeak, marked by a vertical dotted line,
are significantly smaller than the DC values due to the finite
lateral sizes of the nanoplatelets. Each contribution introduces
one DC mobility, i.e., μDC,e and μDC,h, which we can then
fit to reproduce the experimental data and compare the ob-
tained value with literature. Figure 1 shows the result of this
procedure, with μ(ωpeak) = 63 + 106i cm2 V−1 s−1. Compar-
ing with the results of Ref. [43], that is, using a classical
equation of state and also fitting the polarizability, they find
μ(ωpeak) = (54 ± 12) + (7 ± 5)i cm2 V−1 s−1 and α = 3.1 ±
0.2 × 10−36 cm2 V−1. Notice that because the exciton polariz-
ability we computed is significantly lower, the imaginary part
of the mobility has to be higher to compensate. Physically, the
direct fit of these three variables in Ref. [43] overestimates
the dephasing of the THz probe field by the polarizability of
excitons, while underestimating the scattering of free charges.

Ultimately, we find in this manner the fitted DC mobilities

μDC,e = 527 cm2 V−1 s−1, (36)

μDC,h = 40 cm2 V−1 s−1, (37)
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frequency of the probe field used in the experiments, also given in
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and μI (ω), respectively, that we use in Eqs. (1) and (2) to obtain the
curves in Fig. 1.

which we can compare with Refs. [62,63] at T = 300 K as

μbulk
DC,e 	 600 cm2 V−1 s−1, (38)

μbulk
DC,h 	 40 cm2 V−1 s−1. (39)

Notice that in Refs. [62,63] the system is a CdSe crystal,
and therefore it is representing the bulk behavior of electrons
and holes. Since our system consists of 4.5 layers, we expect
the mobility to be affected by the finite layer thickness, but
instead we actually find that our mobilities remain very close
to the bulk ones.

IV. DISCUSSION AND OUTLOOK

In conclusion, we have introduced a complete description
of the CdSe nanoplatelets involving free charges and bound
exciton states in chemical (quasi)equilibrium, as introduced in
Sec. III A. The system is described by the equation of state that
Sec. III B presents, together with derivations for the exciton
polarizability and mobility of free charges, given in Sec. III C.
Thanks to these, the conductivity model shown in Sec. II B
only has two unknown parameters, that is, the DC mobilities
of electrons and holes. Further verification of the fitted values
with the literature indicates that the insight of our model into
the physics describing this system appears to be consistent. In
the following we revisit the approximations made in deriving
our model, and consider the possible future directions they can
lead us toward.

First, we begin by considering the differences between the
Saha model, used in Ref. [43], and our model, specially with
respect to Eq. (5), which is repeated below. In addition, we
have explained how the high density of excitons requires using

quantum statistics, that is, the Bose-Einstein distribution NBE.
Now we compare the density calculated using NBE with the
result of using the Maxwell-Boltzmann distribution, as

nexc = −g2
s

(me + mh)kBT

2π h̄2 × ln
(
1 − e[μexc−EB (nq )]/kBT

)
, (5)

n(S)
exc = g2

s

(me + mh)kBT

2π h̄2 e[μexc−EB (nq )]/kBT . (40)

Hence, Eq. (5) reduces to Eq. (40) when the exponent
[μexc − EB(nq)]/kBT is very negative. However, for a correct
description of the system at a high density of excitons, that is,
nexcλ

2
th � g2

s , quantum effects have to be considered. In this
regime the exciton’s chemical potential is very close to its
energy, and thus the mentioned approximation is no longer
valid. Notice that in Ref. [43] also the screening effects are
neglected by setting EB(nq) = EB(nq = 0) = ECou

B .
Second, we study in more detail how excited exciton states

are populated. As we have mentioned in Sec. II A, our model
only treats the lowest exciton state, since contributions from
the others are assumed not to be significant. To quantify this
statement we take the first excited state of the exciton, analog
to the hydrogen 2s state, by solving Eq. (10). The next most
negative value of EB(nq) that corresponds to a physical wave
function for the exciton is the energy of this level, that we
denote as EB,2s(nq). Using Eq. (5) to determine the density
of this state, defined as nexc,2s, by setting EB(nq) to EB,2s(nq),
results in

EB,2s
(
n∞

q

) 	 −12 meV, (41)

nexc,2s
(
n∞

q

) 	 1.92 × 10−4 nm−2. (42)

However, Eq. (5) tells us that as nq → n∞
q , nexc → ∞, and

any excitation will saturate to the value shown in Eq. (42).
Thus, at higher densities the amount of excited states is
negligible. At lower densities the 2s state energy is ECou

B,2s 	
−21 meV, and since μexc is much more negative than this the
population of excited excitons is again negligible.

Finally, let us look at a different aspect of Fig. 1, namely the
values of nexca2

0. Since a0 is the exciton Bohr radius, a density
satisfying nexca2

0 	 1 means that there is approximately one
exciton per Bohr area, and therefore at densities nexca2

0 � 1
excitons can have a substantial overlap in the nanoplatelet.
As it stands, our model neglects any possible effects coming
from these overlaps. However, we can safely assume that
exciton-exciton interactions may become more relevant as the
density increases and thus it is important to estimate their
significance. For this purpose, we focus on the formation of
exciton complexes, analog to molecular hydrogen H2, that are
known as biexcitons. We expect that at high enough densities
larger complexes, such as triexcitons, may possibly also form,
but for this discussion we only consider biexcitons. Specifi-
cally we are interested in the effect we expect them to have on
the conductivity measurements that Fig. 1 shows. As we have
mentioned in Sec. III C, excitons contribute to the imaginary
part of the conductivity because of their polarizability, as
given in Eq. (2). Thus, our goal is to estimate how the presence
of biexcitons would affect the polarizability of the system.
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Consider the polarizability of hydrogen molecules in three
dimensions αH2 , denoted as α00 in Table VI of Ref. [64].
Compared with the polarizability of hydrogen αH it obeys

αH2 	 1.21 αH. (43)

When two hydrogen atoms with polarizability 2αH bind
together into a molecule, the polarizability of the system
decreases to αH2 . Therefore, the total polarizability of the sys-
tem is reduced by αH2/2αH 	 60%. Now, assuming that the
polarizability of biexcitons behaves in a similar way to that of
hydrogen molecules, binding two excitons into one biexciton
decreases the total polarizability of the complex by a factor
close to 1/2. Thus, when excitons bind into biexcitons in large
quantities, the imaginary part of the conductivity decreases,
since the total polarizability of the system is reduced. Figure 1
does not show, within the margin of error, such behavior.
Hence it is safe to assume that, in the regime described by
our model, there is not a significant population of biexcitons.

Moreover, we can estimate the density of biexcitons in
the system using their measured binding energy from optical
gain measurements. In first approximation biexcitons can
be described similarly to excitons, and thus their density is
given by

nexc2 = −2(me + mh)kBT

2π h̄2

× ln
(
1 − e[2μexc−2EB (nq )−EB,exc2 (nq )]/kBT

)
, (44)

where EB,exc2 (nq = 0) is the unscreened negative biexciton
energy, that is approximately −45 meV [43]. To arrive at
this expression we have used that the biexciton ground state
is not degenerate. Applying Eq. (44) to our system, and
neglecting screening effects for simplicity, shows that at the
lowest experimental densities nexc2 is five to ten times smaller
than nexc and can thus be neglected, whereas at the highest
experimentally achieved densities the presence of biexcitons
may become noticeable. However, changes in temperature
substantially affect the density of biexcitons, for instance an
increase of 200 K reduces it by a factor of 5. Even though the
conductivity measurements do not show the presence of biex-
citons, we do expect that they should ultimately become more
prevalent at higher densities. Solving Eq. (44) in this high-
density regime does yield that the biexciton states become
significantly populated, in agreement with our expectations.

A consequence of introducing exciton-exciton interactions
is that it provides a possible mechanism for breaking up exci-
tons. Since these interactions are only significant at high den-
sities, above those that our model describes and that have been
considered in Ref. [43], we expect that for two-dimensional
systems the Mott crossover takes place in a very different
regime when compared with three-dimensional systems. For
these reasons, a clear next step is to study exciton-exciton
interactions in more detail, focusing on understanding the
much more involved four-body problem. In future experi-
ments, this high-density regime may indeed be probed and our
model can be updated to account for these interaction effects.
Moreover, we expect that lowering the temperature should
significantly improve the exciton physics, since excitons are
considerably easier to form, thus making studying their inter-
actions much more straightforward. Considering that in the

current experiments excitons are already quantum degenerate,
substantially increasing their population gives us hope for
achieving superfluidity. In conclusion, our model does not
only represent an important step into a better understanding
of colloidal nanoplatelets, but is hopefully also a good starting
point for future theoretical and experimental efforts on exciton
dynamics at high densities.
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APPENDIX A: SCREENED COULOMB POTENTIAL
IN THE CLASSICAL LIMIT

To derive the screening of the Coulomb potential, we
need to compute the electron-hole polarizations α (ω, k).
This derivation can be found in Secs. 8.7.1 and 8.7.2 of
Ref. [56]. Performing the integral shown in Eq. (8.137) using
the Maxwell-Boltzmann distribution instead of the Fermi-
Dirac distribution we find

α (k, ω; nq )

= mα

π h̄2

1√
βεk

[
i
√

π exp

(
−β

(h̄ω)2 + ε2
k

4εk

)
sinh

(
1

2
β h̄ω

)

+ F

(√
β

4εk
(−h̄ω + εk )

)

− F

(√
β

4εk
(−h̄ω − εk )

)]
eβμα (nq ), (A1)

where β ≡ 1/kBT and F (x) is Dawson’s integral (pp. 295 and
319 of Ref. [65]), defined as

F (x) ≡
√

π

2
e−x2

erf(x), (A2)

with erf(x) the error function. In the static limit ω → 0,
Eq. (A1) leads to the momentum-dependent screening length

λ−1
s,α (k; nq ) = e2

2ε0εr

mα

π h̄2

2√
βεk

F

(
1

2

√
βεk

)
eβμα (nq ). (A3)

Notice that we have used the property F (−x) = −F (x)
and introduced the correct prefactor. In the limit k → ∞ the
screening length λ−1

s,α (k; nq) tends toward zero, and thus the
screened potential reduces to the Coulomb potential. Further-
more, taking the limit k → 0 results in

lim
k→0

λ−1
s,α (k; nq) = λ−1

s,α (nq) = e2

2ε0εr

mα

π h̄2 eβμα (nq ), (A4)

which is the same result as if we had used Eq. (19), with
nα (μ) being the density of a classical ideal gas described by
the Maxwell-Boltzmann distribution.
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APPENDIX B: SCREENED COULOMB POTENTIAL
IN THE LONG-WAVELENGTH APPROXIMATION

In Sec. III A 4 we introduced the screened potential in
momentum space as

Vsc(k; nq ) = − e2

2ε0εr

1

k + λ−1
s (nq)

, (18)

which we can Fourier transform back to coordinate space
analytically, as

Vsc(r; nq) =
∫

d2k
(2π )2

Vsc(k; nq )e−ik·r

=
∫ ∞

0

dk

2π
kVsc(k; nq )J0(kr), (B1)

where J0(x) is the Bessel function of the first kind. Performing
this integral, we find

Vsc(r; nq) = e2

4πε0εr

1

λs(nq)

{
λs(nq)

r

+ π

2

[
Y0

(
r

λs(nq)

)
− H0

(
r

λs(nq)

)]}
, (B2)

where H0(x) is Struve’s function, defined in Eq. (1) from
Sec. 10.4 of Ref. [66], and Y0(x) is the Bessel function of

the second kind. These special functions do not clearly show
the behavior of the potential, but we can use their asymptotic
expansions to derive simpler expressions. The limits r �
λs(nq) and r � λs(nq) can be found by using Eq. (2) from
Sec. 10.42 of Ref. [66], resulting in

Vsc(r; nq) 	 − e2

4πε0εr

1

λs(nq)

(
λs(nq)

r

)3

, r � λs(nq),

(B3)

Vsc(r; nq) 	 − e2

4πε0εr

1

λs(nq)

[
λs(nq)

r
+ ln

(
λs(nq)

r

)]
,

r � λs(nq). (B4)

Notice that the screened potential indeed decays faster than
the Coulomb potential, but only algebraically as 1/r3. We
can attribute this behavior to the fact that the only screening
in our system comes from the two-dimensional nanoplatelet.
Therefore the fall-off is not as fast as in the Yukawa potential
in three dimensions, behaving as

V (3D)
sc (r; nq) = − e2

4πε0εr

1

r
e−r/λs (nq ), (B5)

and having exponential screening.
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