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Abstract

Recent multiresolution topology optimization (MTO) approaches involve dividing finite elements into several density cells
(voxels), thereby allowing a finer design description compared to a traditional FE-mesh-based design field. However, such
formulations can generate discontinuous intra-element material distributions resembling QR-patterns. The stiffness of these
disconnected features is highly overestimated, depending on the polynomial order of the employed FE shape functions.
Although this phenomenon has been observed before, to be able to use MTO at its full potential, it is important that the
occurrence of QR-patterns is understood. This paper investigates the formation and properties of these QR-patterns, and
provides the groundwork for the definition of effective countermeasures. We study in detail the fact that the continuous shape
functions used in MTO are incapable of modeling the discontinuous displacement fields needed to describe the separation of
disconnected material patches within elements. Stiffness overestimation reduces with p-refinement, but this also increases
the computational cost. We also study the influence of filtering on the formation of QR-patterns and present a low-cost

method to determine a minimum filter radius to avoid these artefacts.

Keywords QR-patterns - Artefacts - Multiresolution topology optimization - Artificial stiffness - p-refinement

1 Introduction

In the traditional density-based topology optimization (TO)
approaches, an element-wise constant density distribution is
assumed. Some authors have explored decoupled design and
analysis discretizations with the aim of reducing the number
of design variables used to describe the material distribution
in the domain (e.g. de Ruiter and van Keulen 2004; Guest
and Genut 2010).

Since the computational cost associated with TO is
mainly controlled by the finite element analysis (FEA),
Nguyen et al. (2010) proposed to use the strategy of
decoupled design and analysis discretizations to obtain
high-resolution designs at low analysis costs. A coarse
analysis mesh is used and each finite element is divided
into several density cells (voxels), which allows a finer
density representation. This approach also allows to have
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material boundaries which are not necessarily aligned with
the finite elements. Since different density resolutions
are permitted for the same analysis mesh, Nguyen et al.
(2010) referred to the approach as multiresolution topology
optimization (MTO). Since then, various variants have been
proposed (e.g. Nguyen et al. 2012, 2017; Parvizian et al.
2012; Wang et al. 2014), and these have been used on
several TO problems, e.g. for 3D TO in interactive hand-
held devices (Nobel-Jgrgensen et al. 2015), and designing
thermoelectric generators (Takezawa and Kitamura 2012),
phononic materials (Vatanabe and Silva 2013), patient-
specific 3D printed craniofacial implants (Sutradhar et al.
2016), etc. In this paper, we use the term MTO to refer to all
those approaches which involve decoupling of the analysis
and design discretizations with the goal of reducing the
modeling related computational costs.

The MTO-based optimized designs are visually appeal-
ing, but it is also important to determine whether the coarse
analysis used in MTO approaches is capable of accurately
modeling the high resolution material distributions. The
methods proposed by Nguyen et al. (2010, 2012) used lin-
ear shape functions (p = 1) to interpolate the displacement
field within the analysis elements. Here and henceforth, p
denotes the polynomial order of the shape functions used
for analysis. Filtering (density projection) is used in these
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methods to impose a restriction on minimum feature size
and avoid checkerboard patterns. With large filter radii rpy;p,
designs which were visually appealing and comprised of
smooth (but gray) boundaries were obtained. However, it is
important to note that the use of large filter radii restricts
the design field from expressing a high order material dis-
tribution. As a downside, fine structural features and crisp
boundaries cannot appear in the solution. Methods such as
Heaviside projection (Guest et al. 2004) can help to improve
the crispness of the design (Groen et al. 2017). However, the
added computational cost associated with such schemes is
not preferable for MTO, and it would be of great interest if
smaller filter sizes can be used.

Wang et al. (2014) adaptively reduced the filter-
size in their MTO approach. However, some of the
optimized structures reported in that study consisted of
artificially stiff regions, resembling the QR-patterns. Based
on numerical experiments, Groen et al. (2017) hypothesized
that these numerical artefacts observed in MTO schemes
are caused due to inappropriate modeling scheme choices.
Our investigation results (presented later in this paper) are
aligned with the observations of Groen et al. (2017), and we
show that these QR-patterns are indeed formed due to the
limitations of the modeling scheme used.

Besides the formation of QR-patterns, MTO approaches
can suffer from nonuniqueness in the solution of the design
field (Gupta et al. 2017). For a high resolution design rep-
resentation, it is important that the difference in optimized
designs is also reflected in the analysis results. If not,
different designs may show similar performance result-
ing in non-unique optima and instability issues (Jog and
Haber 1996; Gupta et al. 2017). In Gupta et al. (2017), a
rigorous study of this issue in the context of MTO is pro-
vided and mathematical bounds are presented to prevent
non-uniqueness.

Parvizian et al. (2012) proposed a finite-cell method
(FCM) based MTO approach. In FCM, higher-order shape
functions and numerical integration schemes are used and
a high-resolution design field is permitted. The design field
is used to describe the material distribution in the domain.
Studies related to FCM-based modeling have shown that
shape functions of low polynomial order are incapable of
accurately modeling material discontinuities (Joulaian and
Diister 2013a, b). A computationally effective solution to
overcome such limitations is the local enrichment strategy
in FCM. Joulaian and Diister (2013b) presented the hp-
d local enrichment strategy, which could very accurately
model the solution field at the material discontinuities with
the addition of only a few degrees of freedom. It has
been shown that the hp-d version of the FCM can model
the material discontinuities for non-matching discretizations
(Kollmannsberger et al. 2015; Zander et al. 2015). Contrary
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to the extended finite element scheme (Moés et al. 1999)
where new degrees of freedom need to be introduced in all
finite elements requiring enrichment, their approach used
an overlay mesh with higher-order enrichments to improve
the solution of the base mesh. Nevertheless, the extended
finite element method as well as enrichment-based FCM
require knowledge of the location of material discontinuities
in the domain. However, this is not generally available in
TO, where the design changes at every iteration, and the
boundary descriptions are not known beforehand.

For TO, the simplest solution is to use shape functions of
higher polynomial order. With the use of high polynomial
degree shape functions (e.g. p = 10) in TO, the QR-
patterns as well as the non-uniqueness related issues can
be avoided to a certain extent and physically reasonable
structures can be obtained (Parvizian et al. 2012; Groen
etal. 2017; Gupta et al. 2017). However, with configurations
using very high p values, the computational advantage
over traditional TO could be lost. Based on numerical
experiments, Groen et al. (2017) inferred that by density
filtering (Bruns and Tortorelli 2001), even relatively low
values of p could be used. However, this solution comes
with the same disadvantages as discussed previously for
low-order MTO. Application of a minimal filter radius is
often preferred, and values have been suggested based on
full-scale numerical tests by previous studies (Groen et al.
2017; Nguyen et al. 2017).

As per our investigations, the filter radii choices for
various MTO configurations, as described in Nguyen et al.
(2017), seem to result in reasonably correct designs.
However, it is of considerable interest to explore the full
potential of MTO, which motivates us to investigate whether
filter radii smaller than those proposed in Nguyen et al.
(2017) can also be used. As mentioned earlier, a limiting
factor is the occurrence of QR-patterns (Fig. 1), which leads
us to study the QR-patterns in a more detailed manner. The
minimum cost MTO configuration that can achieve a certain
desired design resolution and is capable of avoiding these
artefacts would be the one where the full capability of MTO
is efficiently utilized. In general, the QR-patterns have been
observed in several previous studies, however, a systematic
study focused on the formation of QR-patterns as well as
measures to suppress them is still missing.

The aim of this paper is to study the QR-patterns,
and explain their formation in an MTO context. This
can subsequently help to define suitable countermeasures.
For this, we investigate whether for a given design
resolution, there exists a certain minimum value of p for
which the formation of QR-patterns can be avoided. The
capability of the continuous shape functions in modeling
the discontinuous displacement fields, that should arise at
disconnected material patches within elements, is assessed.
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Fig. 1 Design obtained in MTO compliance minimization of a
cantilever beam subjected to a distributed load. The domain is
discretized using 20 x 10 finite elements with shape functions of
polynomial degree 3 and 4 x 4 design voxels per element. A composite
integration scheme with 4th order Gauss quadrature rule is used in each
voxel

Also, an understanding of the applicability and limitations
of filtering in MTO is presented.

The structure of the remainder of this paper is as
follows. First, the MTO concept is explained and a
numerical MTO example is presented for which the QR-
patterns are prominent (Section 2). Next, through several
elementary test cases, an understanding of these artefacts
is presented (Section 3). Parameter studies on the influence
of both polynomial degree and filter radius, on various test
geometries and loadcases, are performed and an explanation
on the formation of QR-patterns is presented in Sections 3
and 4. Discussions related to MTO and conclusions are
presented in Sections 5 and 6, respectively.

2 Artificially stiff features in MTO
2.1 MTO concept

In MTO approaches, the design and analysis discretizations
are decoupled, such that a finer density field can be
expressed on a coarse analysis mesh (Nguyen et al. 2010
2017; Parvizian et al. 2012). Figure 2 shows an MTO
element that uses 4 analysis nodes and 9 design voxels.
In this example, bilinear shape functions are used for the
interpolation of the displacement field within the element.
Unlike traditional TO, where only one design voxel would
be used, here the finite element is divided into 9 voxels.
A density variable is associated with every design voxel
and the density is assumed to be constant inside the voxel.
Similar to traditional TO, this density represents the volume
fraction of the voxel filled with certain material and can vary
from O to 1.

B analysis node
o voxel center
X integration point

Fig.2 MTO element with 4 analysis nodes and 9 design voxels using
a composite numerical integration scheme of 2 x 2 Gauss quadrature
rule for every design voxel

Based on the density distribution inside the element, the
corresponding element stiffness matrix K, is constructed as

ny

ng
K=Y | ol Kijuwg |, (1)

i=1 j=1

where K;; and w;; are the stiffness matrix contribution
evaluated at the jth integration point and the associated
Gaussian weight, respectively of the ith design voxel and
pi 1is its density value. The parameters n, and n, refer
to the number of voxels and Gauss integration points,
respectively and ¢ is the penalization power used for
material interpolation (Bendsge 1989). The order of the
integration rule is chosen in a way that the voxel stiffness
matrix can be accurately integrated. For the example shown
in Fig. 2, n, is set to 9, and a 2 x 2 Gaussian quadrature
rule (n, = 4) is used for numerical integration inside every
design voxel.

2.2 Occurrence of QR-patterns

QR-patterns are artificially stiff regions in the design
which can lead to erroneous compliance values for the
structure. For example, the compliance accuracy [J/J*
for the design shown in Fig. 1 is 3.6 x 107/, Here J is
the calculated compliance value and J* is the compliance
obtained on a finer reference mesh. Such a low value of
J /J* implies that the compliance of the structure has been
tremendously underestimated by the employed modeling
scheme. During the optimization process, this modeling
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flaw has been exploited by the formation of the QR-pattern,
with characteristic disconnected material patches.

The design shown in Fig. 1 has been optimized for
minimum compliance subjected to a distributed load and the
domain is discretized using 20 x 10 finite elements with 4 x4
design voxels per element. Shape functions of polynomial
degree 3 are used and 4th order Gaussian quadrature rule
is used for numerical integration in each voxel. The order
of the design field is chosen to satisfy the element- as well
as system-level bounds stated in Gupta et al. (2017). No
filtering is employed here, a value of 3 is used for the
penalization power g and a volume constraint of 30% is
used. The reference mesh consists of 80 x 40 elements with
elementwise constant density field and polynomial degree
p=3.

Figure 3 shows magnified versions of 3 elements from
the optimized design shown in Fig. 1. All the 3 elements
consist of disconnected or almost disconnected material
parts along the horizontal as well as vertical directions. Such
disconnected features can be seen in various regions of the
design (Fig. 1). Note that unlike the infamous checkerboard
patterns observed in traditional TO, these artefacts occur
within the elements. In the presence of such disconnected
features, the design appears far from optimal. However,
since the QR-patterns obtained using MTO approaches are
artificially stiff, erroneous compliance is reported by the
used model and a low value of the error indicator 7/ J* is
obtained.

From the example presented above, it is clear that there
are certain limitations of MTO, and to be able to fully
harness the capabilities of this method, the limitations need
to be known. The erroneous patterns may not always be
so apparent as in this example. This can lead to deceptive
results, where erroneous objective values are obtained and
the structure may incorrectly be interpreted as a well
performing one. As has been shown in Groen et al. (2017)
and Nguyen et al. (2017), filtering may help to reduce this
error. In both these studies, minimum filter sizes have been
recommended for various shape function orders and design
resolutions, and the authors have shown that acceptable
designs are obtained. It is observed that the filter sizes

L

Fig. 3 Magnified view of 3 finite elements from the optimized
cantilever design shown in Fig. 1. These elements have been chosen
arbitrarily from among finite elements with disconnected material
features in the non-void regions of the domain
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proposed by Nguyen et al. (2017) are more conservative
than those mentioned in Groen et al. (2017).

As stated earlier, it is of interest to see whether even
smaller filter sizes can be used which can produce well
performing artefact-free-designs. The first step in this
direction would be to gain a better understanding of the
QR-patterns, and identify the possible reason for their
formation. Thus, through several small-scale studies, first
we investigate the origin of QR-patterns more closely in the
next section.

3 Origin of QR-patterns
3.1 Study of elementary cases

For a better insight in QR-patterns, we examine elementary
cases where the material distribution inside a single element
is optimized for minimum compliance. Figure 4 shows
three plane stress test cases consisting of one square finite
element of unit size subjected to axial, biaxial and shear
loading. A volume constraint of 30% is chosen for all the
cases. Each finite element is divided into 8 x 8 voxels,
Lagrange polynomials based shape functions of p = 6
are used and no filtering is applied. A 5th order Gaussian
quadrature rule is used for numerical integration of the
voxel stiffness matrices. Here and throughout this paper,
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Case III, Shear Load

Fig. 4 Numerical test cases with different loading conditions (F =
1 Nm~!). For modeling, the design domain for each case is discretized
using a single finite element with shape functions of polynomial order
6, and 8 x 8 design voxels are used
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unless otherwise mentioned, the Young’s moduli of the
material and the void are chosen to be 1 and 10~ Nm_z,
respectively, and the Poisson ratio is set to 0.3. A modified
SIMP formulation (Bendsge 1989) with penalization power
g = 3 is used for material interpolation for intermediate
density values. As an initial design for optimization
purposes, we used a uniform density distribution with slight
perturbation in the density of the voxel at the top-rightmost
corner. The perturbation was needed because a uniform
density distribution leads to equal sensitivities for all the
design variables which was not suited for optimization.

The optimized designs as well as the deformed shapes for
the three cases are shown in Fig. 5. For all the three cases,
the compliance accuracy J/J* values are extremely low,
which means that the chosen model strongly underestimates
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Fig.5 Optimized designs (left) and respective deformed shapes (right,
scaled for visualization) under various loading conditions obtained for
a single finite element obtained using an MTO scheme with p = 6 and
8 x 8 voxels

the compliance of the optimized designs. Here, the reference
compliance J* is calculated on an elementwise constant
density based mesh with 8 x 8 finite elements with shape
functions of polynomial order 3. Similar to Fig. 3, it can
be seen that all the optimized designs consist of QR-
patterns and possess material parts which are completely
disconnected. There are structural features subjected to the
distributed load that can freely float along the vertical
or horizontal directions, which implies that with accurate
modeling, large displacements should be anticipated. This
in turn should lead to high compliance objective values for
all the cases.

However, the low values of J/J* imply that these
designs are erroneously interpreted as stiff ones. In fact,
their stiffness is overestimated by a factor of 108. The
artificial stiffness is evident from the deformed shapes of
these structures for the corresponding exerted loads (Fig. 5).
We see that the freely floating solid features also get
deformed, which means that considerable load is transferred
through the voids. Also, contrary to the fact that the voids
should be significantly deformed due to their negligible
stiffness, we see that the deformations in the void areas are
quite comparable to those of the solid parts. This means that
as per the employed modeling scheme, the voids possess
certain artificial stiffness, making them less compliant.

From these test cases, it is evident that the reason for the
formation of these QR-patterns is linked to the limitations
of the finite element model used here. From our numerical
experiments with various shape functions, we observed that
by using higher values of p, these artificially stiff regions
could be reduced. These observations are aligned with the
previous studies related to FCM-based modeling, where it
has been shown that the material discontinuities cannot be
accurately mapped using low-order elements in an FCM
setting (Joulaian and Diister 2013a, b). One approach to
reduce the modeling error is to use higher-order elements,
however, such an approach is not advantageous in terms of
the added computational cost. Joulaian and Diister (2013b)
and Kollmannsberger et al. (2015) used an hp-d variant
of FCM, where local enrichments are introduced through
an overlay mesh to improve the modeling accuracy in
heterogeneous parts of the domain.

In the context of TO, artefacts arising due to the
limitations of low order shape functions in an MTO setting
have been reported by Parvizian et al. (2012), Groen
et al. (2017) and Nguyen et al. (2017). In line with
these studies, the link between the polynomial functions
and the QR-patterns are studied in the following sections.
Shape functions of higher polynomial degree can better
represent the displacement solution. Thus, in Section 3.3,
we investigate whether the QR-patterns arise due to
misrepresentation of the displacement field. Also, we
explore whether there exist certain polynomial orders of
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the shape functions for which these QR-patterns can be
eliminated at a reasonable computational cost.

3.2 Gap modeling with polynomial shape functions

To investigate the role of polynomial order of the shape
functions in the formation of QR-patterns, we employ
a simple elementary test where thin strips of void are
modeled. The choice of this test is motivated from the
patterns seen in Fig. 5, where the void appears to bear load.
For problems only related to modeling, the loads are applied
on the solid parts of the domain, thus the void does not
need to be modeled correctly. However, in the context of
TO, it is possible that during the course of optimization,
thin strips of void arise in the domain. For such scenarios,
either the applied load needs to become zero, or the
chosen shape function should be able to correctly model the
gap.

For the test problem chosen here (Fig. 6), the load is
fixed, and the modeling accuracy is investigated. A single
square finite element of unit dimensions is constrained from
three sides and loaded in tension by a uniform distributed
load. The element is filled with two material phases, i.e.
solid and void. The domain is divided into 10 x 10 design
voxels and a composite integration scheme (as stated in (1)
is used to integrate the element stiffness matrix. The order
of the integration scheme is chosen based on the polynomial
order of the shape functions used to model the displacement
solution.

Several values of p are used and the compliance J of
the structure is calculated. Since we seek the values of p
for which the QR-patterns can be eliminated in general, it
is important that the chosen p works for various feature
resolutions. To take this into account, the height of the void
layer (h,) is varied. To assess the correctness of 7, the

FFTTTTTT

Fig. 6 An axially loaded finite element (F = 1 Nm™!) filled with
solid and void parts

@ Springer

analytical solution [Jy is also calculated. The ratio J/Jo
indicates the compliance accuracy, with an ideal value of 1.

Figure 7 shows [J/Jy for different values of p and
hy. A general observation is that the for low p values,
e.g. 2 or 3, accuracy is poor for all feature sizes. This
means that the shape functions of lower polynomial order
are not able to represent the displacement solution arising
from such discontinuous material fields. With increasing p,
the accuracy of the model improves, however, the feature
resolution A, plays a significant role here. For a large gap
of h, = 0.9, a shape function order of 4 proves sufficient
to model the large compliance of the structure. However,
for smaller gaps, increasingly high values of p are needed
to properly represent the displacement field and prevent
artificial stiffness. The case with #, = 0.1 is still not
adequately modeled with p = 12. This observation is
investigated further in the next section.

In general, it is observed that the feature-size plays an
important role in choosing the correct value of p. Thus, for
full-scale multiresolution topology optimization problems,
very high-order polynomials are needed to ensure that even
the finest features are modeled correctly. However, the
use of very high order polynomials comes at significantly
increased computational costs, which limits the efficiency
of such an MTO setting.

3.3 Displacement solution accuracy

In Section 3.2, it has been shown that higher p values can
help to eliminate the QR-patterns. As stated earlier, the rea-
son is that with higher-order polynomials, the displacement
solution for a discontinuous material distribution can be
more accurately represented. To study this in more detail,
we use a simple 1D example where a bar is axially loaded

10°

10—2

10-6

Fig. 7 Compliance accuracy (7 /Jo) versus the shape function order
(p) for different void-feature resolutions obtained using a single finite
element (as shown in Fig. 6) comprising 10 x 10 density voxels. Here,
J is the compliance obtained using the MTO setting, and 7y denotes
the analytical solution
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Fig. 8 Displacement fields obtained for shape functions of various polynomial orders and the analytical solution for a 1D bar example. The
Young’s moduli of the solid and the void are denoted by E| and E», respectively, and 4, denotes the width of the void

at one end and fixed at the other (Fig. 8a). The bar con-
sists of solid and void material phases in equal proportions
(hy = 0.5). Figure 8b shows the calculated displacement
solutions along the length of the bar for the two phases cal-
culated for several values of p. As a reference to measure
the correctness of the solution, the exact piecewise linear
displacement solution has been calculated analytically and
is shown in Fig. 8b (on log scale).

The first observation is that even shape functions of poly-
nomial order 10 are incapable of accurately representing
the displacement field. The continuous polynomials can-
not represent a nonsmooth displacement field arising for
the chosen material distribution. For lower values of p, the
displacements in the void part of the domain are severely
underestimated. Similar to the results shown in Fig. 7, the
design tends to be artificially stiff. With increasing p val-
ues, a better representation of the displacement field can
be obtained in the void part, however, large oscillations are
generated in the solid part. Although this is incorrect, the
deviation from the exact solution in the solid phase is neg-
ligible compared to that in the void part. Thus, although the
displacement solution in the solid part does not match well
with the exact solution, the nodal displacement predicted by
higher order polynomials matches well.

Another important thing to note is that although the error
in the displacement solution at the top end of the bar reduces
significantly with high-order polynomials, the mismatch
in the rest of the domain is quite high. The displacement
field can become negative in the solid region, and resulting
stresses and strains will be highly incorrect. For certain
problems, e.g. compliance minimization with nodal loads,
using high-order polynomials would be fine in an MTO
setting. However, for other objective functionals, involving
also response quantities within the elements, e.g. stress
minimization, even the solution obtained with high values
of p could lead to incorrect results.

In Section 3.2, it was found that the required shape
function order depends on the feature resolution. Larger
voids allow lower polynomial order of the shape functions
for accurate analysis. Figure 9 provides a better insight into
this aspect. In this figure, the displacement fields calculated
in the void areas are provided for void widths (4,) equal
to 0.1 and 0.9 and shape functions of polynomial orders 4
and 12 are used. These parameters are chosen based on the
observations in Fig. 7 that for h, = 0.9, p = 4 is sufficient,
while for 7, = 0.1, even p = 12 may not be accurate.
We see that for i, = 0.9, the displacement curve with even
p = 4 reaches close to the analytical solution and with p =
12, it improves further. However, for i, = 0.1, even with
p = 12, the displacements are poorly predicted compared
to the analytical solution. This is due to the limitation
of polynomial shape functions in representing the drastic
change in displacement close to the material discontinuity.
The polynomial shape functions increase gradually over an
interval of y to represent such a jump. This behavior is more
prominent for lower order shape functions. Thus, for h, =
0.9, the displacement at the end of the bar is significantly

-~ h,=01,p=4
#-h,=01,p=12
—e— h, = 0.1, exact
hy, =09,p=4

108

106

—— h, = 0.9, exact

2 10t

102

10°

Y

Fig.9 Displacement field u(y) (on a log scale) in the void region for
the 1D bar example shown in Fig. 8a. The log scale has been used due
to large differences in the displacements for different values of p

@ Springer



D.K. Gupta et al.

higher than that for 4, = 0.1. Consequently, for larger gaps,
even lower order polynomials are acceptable. Based on this,
controlling feature sizes presents a mechanism to prevent
configurations that yield analysis inaccuracy. This aspect is
explored further in Section 4.

3.4 Role of penalization and design-uniqueness

The numerical tests presented in this paper thus far
demonstrated the role of shape functions in the formation of
QR-patterns. Due to the weakness of the analysis model, the
optimizer prefers to exploit designs consisting of artificially
stiff-regions. However, it has been observed that shape
function order is not the only factor driving the formation
of QR-patterns. Penalization of intermediate density values,
as introduced conventionally by, e.g., the SIMP approach,
turns out to promote the formation of QR-patterns. In
addition to the artificial stiffness caused by the continuous
shape functions, penalization gives the black-white QR-
patterns an additional advantage over more continuous
intermediate density material distributions.

This hypothesis has been numerically validated on
the cantilever beam design problem presented in Fig. 1.
Figure 10b, ¢ and d show 3 optimized designs obtained
using penalization powers ¢ = 1, 1.1 and 2.0, respectively
in the modified SIMP formulation and the corresponding
compliance accuracies are reported. A finite element
domain of 20 x 10 elements is used with 8 x 8 voxels in each
element and shape functions of polynomial degree 6 are
used. For g = 1, the intermediate densities are not penalized
due to which the optimized design consists of gray areas
throughout the domain and is free from QR-patterns. From
the value of J/J%, it can be inferred that the model is
very accurate. However, for ¢ = 1.1 or 2.0, the smooth
design is unfavorable and the optimizer creates more solid-
void design. Designs largely consisting of QR-patterns are
obtained, with even void voxels on the upper edge where
the distributed load is applied. Clearly these parts would
be very compliant in reality. However, the chosen MTO
scheme cannot model the response properly and extremely
low compliance accuracy is obtained.

An interesting result is obtained with shape functions
of polynomial degree 1. For this case, even with no

(a) p=6,q=1.0
J/T* = 0.9996

(b) p=16,¢=1.1,
J/)T* =17.36x10"7

(c) p=16, ¢ =2.0, (d)p=1,q=1.0,
J/T* =518 x 10~7

penalization, the design consists of QR-patterns and low
compliance accuracy is obtained (Fig. 10d). Similar to the
checkerboard patterns, it is possible that these patterns
always perform better than the ones with intermediate
densities (Diaz and Sigmund 1995), due to which they
appear in the final design. A remedy to remove them would
be to employ filtering that bans these patterns from the
design space. Alternatively, it is possible that the optimizer
converges to this solution due to the non-uniqueness of
the design field (Gupta et al. 2017). Thus, it is important
that the shape function orders are chosen in a way that
the uniqueness bounds proposed in Gupta et al. (2017) are
satisfied.

4 Filtering in MTO
4.1 Role of filtering

Existing MTO approaches use filtering of voxel densities,
which prevents the formation of QR-patterns. Filtering was
originally employed in traditional TO to avoid the formation
of checkerboard patterns and impose a minimum feature
size. Some of the frequently used filtering methods are
sensitivity filtering (Sigmund 1997), density filtering (Bruns
and Tortorelli 2001), density filtering with projection (Guest
et al. 2004), etc.

Density filters can be understood as regularization
functions that smoothen the density field by taking weighted
contributions from the neighboring density values located
within a certain radius. Thus, in a filtered density field, the
density gradients are reduced. In traditional TO, where the
density is constant inside every element, the use of filters
prohibits large contrasts in densities between two adjacent
elements. Since checkerboard patterns feature large density
contrasts between adjacent elements, they are eliminated by
the use of filters.

Unlike checkerboard patterns, QR-patterns obtained in
MTO are intra-element artefacts. In traditional TO, a filter
radius slightly larger than the minimal element size is
sufficient to eliminate the checkerboard patterns. In line
with this observation, in MTO approaches, the smallest
effective filter size should be slightly larger than the

J/T* =0.019

Fig. 10 Optimized designs for a cantilever beam subjected to a distributed load obtained using various penalization powers ¢ in the modified
SIMP formulation. The domain consists of 20 x 10 finite elements with 8 x 8 voxels per element
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Fig. 11 Compliance accuracy 7 /J* versus the shape function order
p for various filter radii rpy, (in terms of voxel-length) obtained using
a single finite element comprising 8 x 8 design voxels. The unfiltered
density field consists of solid and void parts in equal proportions

size of a density voxel. However, QR-patterns in MTO
require stronger regularization of the density field, hence
the smallest filter size to eliminate QR-patterns needs to
be considerably larger than the voxel width. Although QR
patterns differ on these aspects from checkerboard patterns,
Groen et al. (2017) and Nguyen et al. (2017) have shown
that with the use of filters, acceptable designs could be
obtained.

4.2 Effect of filtering and limitations

Here, we investigate using an elementary example the extent
to which the use of filters can help to suppress the QR-
patterns in MTO. As stated earlier, filters reduce the density
contrast between the adjacent elements, which consequently
reduces the extent of non-smoothness of the displacement
solution. In this section, we study the role of density filters
by varying the filter radius rpj, and observing the effect
on the accuracy of the calculated compliance solution. The
tensile test problem shown in Fig. 6 is used and the domain
is assumed to consist of solid and void parts in equal
proportions prior to filtering. The original density field
is smoothened using density filters to obtain the filtered
design. The domain is discretized using one finite element
consisting of 8 x 8 design voxels.

Figure 11 shows compliance accuracy J/J* for various
filter radii, as a function of polynomial degree p. The
filter radius rpyj, is expressed in terms of voxel length.
The reference compliance J* is calculated on a domain of
8 x 8 finite elements of elementwise constant density and
shape functions of polynomial order 3 are used. For the case
without filter, the design is free from intermediate density
values, and a solid-void boundary is modeled. From Fig. 11,
it is seen that for such a configuration, polynomial degree of
8 or higher will be needed to model the displacement field.
For shape functions of low polynomial degree p, the non-
smooth displacement field at the solid-void boundary cannot
be accurately modeled and poor compliance accuracy is
obtained.

For high values of p, the displacement field can be better
approximated and the compliance accuracy improves. At the
same time, increasing the filter radius smoothens the density
field, due to which the displacement solution becomes
smoother and it should be possible to approximate it with
shape functions of lower polynomial order (p). However,
from Fig. 11 we observe that under the influence of density
filtering, contrary to expectation, higher values of p are
needed. For rpj, equal to 2.4 voxels, a value of 10 or higher
is required for p. Moreover, it is seen that even p = 12 is
not sufficient if the design is filtered using ryi, equal to 3.6
voxels. This happens because although under the influence
of filtering, the displacement solution becomes smoother,
the size of the gap reduces as well (Fig. 12b). As seen in
Section 3.2, smaller void regions cannot be modeled with
low values of p. Thus, for the case presented here, filtering
does not have the desired effect, rather it raises the need for
higher-order polynomials and is counterproductive in terms
of required computational costs.

However, for riyi, values of 5.0 and 7.0 voxels, low values
of p are already sufficient and the error is significantly
reduced. This is because with such filter sizes, there is no
void part left in the filtered design and the element becomes
stiffer. For a better understanding, consider Fig. 12 where
the unfiltered design and its two filtered versions are shown
which are obtained using density filtering with ryi, equal
to 3.6 and 7.0 voxels. Since the density is constant in the
horizontal direction, each row of voxels can be considered

Fig. 12 Unfiltered density field

and its filtered versions obtained
using density filters with 7y,
equal to 3.6 and 7.0 voxels. The

domain consists of 1 finite
element with 8 x 8 voxels

(a) unfiltered

(b) Tmin — 3.6 (C) Tmin — 7.0
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Fig. 13 Optimized designs
obtained for Case I, as shown in
Fig. 4, obtained by optimizing
the density distributions from

Fig. 12

(a) No filter

as an elastic layer of certain stiffness. The design, along
the vertical direction, can be interpreted as multiple elastic
layers connected in series, with different Young’s moduli
reflected by the respective density values. The equivalent
stiffness of the whole structure along the vertical direction
is controlled mainly by the weakest layer.

For rpin equal to 3.6 voxels, there exists a void of size
1.0 voxel in the filtered design (Fig. 12b) due to which
the design is highly compliant. For such a scenario, a
nonsmooth displacement solution arises which cannot be
correctly modeled by low values of p. However, with rpiy
set to 7.0 voxels (Fig. 12c¢) or even 5.0 voxels, no void region
exists. This means the equivalent stiffness of the element is
higher and the extent of nonsmoothness in the displacement
solution is significantly lower.

This example shows that for cases where void features
exist in the filtered design and play an important role in an
element’s response, increasing the filter radius can increase
the analysis error. Once the filter radius is large enough
to remove such void regions from the filtered field, the
opposite is observed and the required value of p decreases
significantly. Thus, even in the presence of filters, it is
possible that the displacement field cannot be modeled
correctly in an MTO setting.

To understand the influence of this modeling inaccuracy
on the optimization process, we study the axial load case
presented in Fig. 4. The design domain for this case is
modeled using the initial density fields and filter radii shown
in Fig. 12, and the corresponding optimized designs are
shown in Fig. 13. It is observed that when no filter is
used, a disconnected final design is obtained (Fig. 13a).
Clearly, the strips of void that exist in the optimized design
were inaccurately modeled as connected parts, due to which
the design was falsely interpreted as a well-performing
one. When filtering is used, it is observed that the final
design is well connected and numerically correct (Fig. 13b
and c). Thus, for the compliance minimization problem
chosen here, although the models are inaccurate during the
intermediate stages of optimization, an accurate final design
is obtained when filtering is used.

@ Springer

(b) Tmin = 3.6 (¢) Pmin = 7.0

To study the effect of the void strip on the convergence
of the optimization process, we look at the convergence
plots (Fig. 14) obtained by optimizing the designs shown
in Fig. 12. Further, for comparison purpose, we also show
in Fig. 14 the convergence plots obtained when a uniform
initial design is chosen. When a uniform initial design

10° — black-white initial design
----- uniform initial design
10
2 108
T
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Iteration
(a) No filter
10%
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10°
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(b) Tmin = 3.6
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1002

10° -
10 20 30 40 50 60

Iteration
(¢) Tmin = 7.0
Fig. 14 Convergence plots for optimizing the designs shown in

Fig. 12, augmented with three cases where we optimize a uniform
initial design using no filter, and filter sizes of 3.6 and 7.0 voxels
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is used and a filter is employed, well connected designs
are obtained. For the case with no filter, QR-patterns
are formed, similar to those shown in Fig. 5a. From the
plots shown in Fig. 14, it is found that the convergence
of the optimization process is very different when the
design comprises a void strip. For all the cases, the initial
compliance of the layout with a strip of void is clearly
worse than the design with uniform density distribution.
Comparing the final objectives, it is observed that the
disconnected design obtained in Fig. 13a is suboptimal. The
artificially stiff pattern is a local optimum, but one that
the optimization process remains trapped in. Also in the
convergence plot of the optimization process for the design
shown in Fig. 13a, we see repeated stagnation, followed by
evolution to better, but still clearly inferior local optima.
When the design contains a void strip, it takes over 10
iterations before a noticeable decrease of the high initial
objective value is realized. This is remarkable given the
clear superiority in the objective of the connected designs.
It is possible that the artificial stiffness that is caused by the
inadequate modeling of the void strip competes with real
design improvements in the initial stage. Once a connected
design is formed, the convergence is rapid. In general, the
optimization process for the disconnected design required
approximately 50% more iterations than a homogeneous
initial design to reach the same objective value.

Although the results presented above indicate that the
possibility exists for the optimization process to get trapped
in local minima consisting of disconnected patterns, for
this case sufficiently filtering opens a path to superior
designs that are fully connected. However, it is evident
that the presence of the studied thin strips of void has an
influence on the convergence of the optimization process.
For compliance minimization, the impact of void strips is
found to be very limited in the presence of sufficiently
large filters. However, in an optimization process in general,
whether or not an optimizer will exploit these configurations
is hard to predict and problem dependent and the possibility
cannot be ruled out. Additionally, since the filters impose a
minimum feature restriction, the desired high resolution of
the design is also reduced.

From these observations it can be argued whether density
filters are really the solution to eliminate QR-patterns. As
a matter of fact, the choice of correct filter radius depends
on the material distribution in the unfiltered design as well
as the loading condition and chosen shape function order.
As per our present understanding, the optimal filter radius
can only be determined by computationally expensive trial
and error. Fortunately, for various linear structural problems,
use of filters has helped to design reasonably optimal MTO
designs (Groen et al. 2017). In the next section, we study
one of these problems and present a numerical approach
towards efficiently finding a suitable filter radius.

4.3 Choosing the filter radius

From the tests presented in the preceding section, it is
clear that the choice of filter radius ryj, can significantly
affect the accuracy of the optimized solution. However,
a general theory to determine the minimum filter radius
that gives reasonably correct solutions is not yet available.
Here, we examine the possibility of finding an appropriate
value of ryip based on numerical experiments conducted
for the 3 test cases shown in Fig. 4. These 3 cases
represent elementary loading conditions that may occur at
element level in a full-scale topology optimization mesh.
Since the optimization problems for the 3 test cases are
computationally very cheap compared to the actual design
problem, these tests can be run a priori to choose rp;, for a
given set of associated parameters.

The choice of an optimal filter size depends on the fact
that small filter radii lead to inaccurate modeling and QR-
patterns, while large filter size leads to undesirable loss of
resolution and crispness. For several values of ryy, the error
indicator 7/ J* is examined on a domain of 8 x 8 voxels
with shape functions of polynomial degree 6 and the results
are shown in Fig. 15. To calculate the reference solution 7*,
an analysis mesh of 8 x 8 finite elements is used and the
polynomial order of the shape functions is set to 3.

An interesting observation here is that for all values of
Fmin, the compliance accuracy is higher for axial loading
compared to the biaxial and shear loading conditions. One
of the possible reasons is that for the axial load, there is
only one direction along which the material discontinuities
affect the accuracy of the model. For choosing optimal ry;y,
we assume that a compliance accuracy of close to 90% or
even higher is acceptable and from Fig. 15, it is seen that
this holds true for rpi, equal to 2.6 voxels for all the 3
cases. Figure 16 shows the optimized designs for the 3 cases
obtained using rpin = 2.6 voxels. Due to the use of large

____.--..-‘ ;;; =~7 |-=-=- Casel (axial)
," -+-+- Case II (biaxial)
0.8 N ) —— Case III (shear)
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Fig. 15 Compliance accuracy J/J* for various filter radii rpyip
obtained for the three test cases presented in Fig. 4. For all the cases, a
single finite element is used with shape functions of polynomial order
6 and 8 x 8 design voxels
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Fig. 16 Optimized designs for
the three elementary test cases
shown in Fig. 6 obtained using a
filter radius of 2.6 voxels. The
domain consists of 1 finite

l

element with 8 x 8 voxels and

shape functions of polynomial

degree 6

(a) Case I, axial

filters, designs are significantly gray, however, it is clearly
evident that they are free from QR-patterns.

Next, the value of 2.6 is used for ry, during the
optimization of material distribution for the problem shown
in Fig. 1. The domain is discretized using 20 x 10 finite
elements, each comprising 8 x 8 voxels and shape functions
of polynomial order 6. Figure 17a shows the optimized
design obtained for rp;, = 2.6 voxels. With this filter
radius, the compliance accuracy of the design is 0.98, which
means the model meets the chosen accuracy level and the
design is free from artificially stiff regions. Here also, the
reference compliance J* is calculated on an elementwise
constant density mesh of 160 x 80 finite elements with p =
3. For comparison, Fig. 17b shows the optimized cantilever
design obtained with rp;, = 1.4 voxels. QR-patterns are
very prominent in this design and the compliance accuracy
of the design is low. For both the designs, intermediate
density areas are seen in some parts of the domain, which
could not be resolved using the MTO scheme.

Thus, we find that the ry,;, value obtained from Fig. 15
works well for this problem. We observe that the compliance
accuracy for the cantilever problem is higher compared to
the 3 test cases from which the optimal value of ryi, was
derived. In terms of closeness, the compliance accuracy
values for this design are closest to that of Case I, i.e. axial
loading. This is indeed as expected since for a single load
case compliance minimization, the optimized design tends
to form members loaded in tension/compression.

It is important to note that this choice of ryy, = 2.6
voxels cannot be generalized. There are several parameters
that can affect the appropriate choice of filter radius, e.g.,

Fig. 17 Optimized designs for
cantilever beam subjected to
distributed load (as in Fig. 1) for
two different filter radii. The
domain is discretized using

20 x 10 finite elements with
shape functions of polynomial
degree 6 and 8 x 8 design
voxels per element

(b) Case II, biaxial (c) Case III, shear

polynomial degree of shape functions, number of voxels,
material volume fraction, loading conditions, etc. Among
these, we study the effect of various shape functions and
number of voxels on the optimal filter radius obtained using
the 3 element test cases (Fig. 4). For ease of comparison, the
filter radius for the further study will be defined in terms of
element length (). For example, for a square finite element
comprising 5 x 5 voxels, a filter radius of 2 voxels will be
referred as 0.44. In addition, the number of voxels along the
x- or y-direction will be denoted by d.

Table 1 shows the optimal filter radii found for various
choices of p and d when compliance accuracy of around
90% or higher is assumed to be acceptable. The value 90%
is chosen based on the fact that with the resultant filter radii,
compliance accuracies of 98% or higher were obtained for
several full-scale TO problems of compliance minimization.
Clearly with the same method, filter radii limits can be
found for other target accuracies. For this study, filter radii
of 0.054 to 1.0k are tested at an interval of 0.054. The dark
gray region refers to the infeasible combinations of p and
d as per the uniqueness bounds proposed in Gupta et al.
(2017). The symbol x denotes that a discretization using
only one finite element is not sufficient for the respective
combinations of p and d, as far as QR-patterns are
concerned. When the design is optimized without filtering
for single element test cases comprising 2 x 2 voxels and
3 x 3 voxels, very inaccurate solutions are obtained. Clearly,
for a very low design resolution, the single element test
cases do not seem to work. This happens because with
a very low design resolution, the optimization problem is
quite restricted. Starting from a uniform distribution, it is

(a) Fmin = 2.6, 7 /J* = 0.98 (b) rmin = 1.4, 7 /JT* = 0.59
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Table 1 Choice of filter radius (in terms of element size /) for various
choices of polynomial degree of the shape functions p and number of
design voxels along the x- and y-direction (denoted by d), to obtain
compliance accuracies J/J* of around 90% or higher for the three
element test cases shown in Fig. 4

d 2 3 4 5 6 7 8 9 10

4

1 X

2 X

3 X 0.7 0.7

4 X X 0.5 045 045

5 X X 045 045 04 04 0.4

6 X X 04 04 035 035 035 03

7 X X 04 04 035 035 03 0.3 0.3
8 X X 035 035 03 0.3 0.3 0.25 0.25
9 X X 035 035 03 0.3 025 02 02
10 X X 035 035 03 0.3 025 02 02

Here, x denotes that one element discretization is not sufficient, and
the dark empty cells denote combinations of p and d that violate the
uniqueness bounds proposed in Gupta et al. (2017)

observed that designs hardly change during the course of
optimization. The unfiltered design itself is well connected
and no filtering is needed.

Table 2 presents the optimal filter radii for various
choices of p and d obtained on a mesh of 2 x 2 finite ele-
ments. Only values related to the tensile case are reported,
since for the one-element tests, this case was found to be

Table 2 Choice of filter radius (in terms of element size &) for various
choices of polynomial degree of the shape functions p and number of
design voxels along the x- and y-direction (denoted by d), to obtain
compliance accuracies J/J* of around 90% or higher for the tensile
test case shown in Fig. 4

p
1 0.8*

2 0.8*

3 0.75% 0.7 065 0.7

4 0.65% 0.5 045 045 045

5 065 045 045 045 04 04 04

6 065 045 045 04 035 035 035 03

7 065 04 04 035 035 035 03 03 03
8 0.6 04 035 03 03 03 03 025 025
9 0.6 035 035 03 03 03 025 02 02
10 0.6 035 035 03 03 03 025 02 02

controlling the choice of minimum filter radii. With an
increase in the number of elements, the design freedom is
increased, and optimal filter radii values can be obtained for
low values of d as well.

A general observation is that for obtaining very fine
features, the filter radius needs to be very small. From
Table 1, it is observed that for a filter radius of 0.2k, very
high values of p and d are needed. Lowering p leads to the
need for a larger filter radius. Lower values of d restrict the
design resolution and also require a large filter radius. It is
observed that these values of filter radius are slightly higher
compared to the results reported in Groen et al. (2017),
and the reason could be that the element test cases used
in this study are more restrictive. Comparing the values of
Tables 1 and 2, we observe that with a finer discretization,
the optimal filter radii values decrease slightly for low
values of p and d. However, for higher values, the minimum
required filter radii to achieve the desired solution accuracy
are equal.

To investigate how this method of determining an optimal
filter radius extends to 3D, a preliminary study has been
performed using only the tensile test. Similar to Case I
shown in Fig. 4, a 3D cube of unit dimensions is considered
and the top surface is subjected to a distributed load of
1 Nm™2. Apart from vertical displacements, motion is
restricted along the other two spatial dimensions for the
vertical surfaces of the cube, and the bottom surface is
entirely fixed. The optimal filter radii for different values of
p and d for this case are shown in Table 3. The observations
are similar to those obtained from Tables 1 and 2. An
interesting observation is that for 3D cases, the required
filter radii are slightly lower than those obtained for 2D
cases.

Table 3 Choice of filter radius (in terms of element size /) for various
choices of polynomial degree of the shape functions p and number of
design voxels along the x-, y- and z-direction (denoted by d), to obtain
compliance accuracies 7/ J* of around 90% or higher for the tensile
test case shown in Fig. 4

d 2 3 4 5 6 7
p
1 0.75%*
2 0.75% 0.6* 0.6
3 0.75% 0.5 0.5 0.5
4 0.6* 0.4 0.35 04 0.35 0.35
5 0.6* 0.4 0.35 0.35 0.3 0.3
6 0.55 0.4 0.35 0.3 0.3 0.25

The domain has been discretized using a patch of 2 x 2 finite elements.
For the values marked using *, 3 x 3 finite elements have been used.
The dark empty cells denote combinations of p and d that violate the
uniqueness bounds proposed in Gupta et al. (2017)

For the cells marked with *, one element discretization was
insufficient, hence for these cases, a 2 x 2 x 2 patch of finite elements
was used. The dark empty cells denote combinations of p and d that
violate the uniqueness bounds proposed in Gupta et al. (2017)
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A general observation from Tables 1, 2 and 3 is that
the required filter radius to guarantee reasonably accurate
results only decreases slowly with p. For example, from
Table 1, we see that with d = 4 and elements with
cubic shape functions (p = 3), a filter radius of 0.7h is
required, resulting in a feature size of 2rpy, = 1.4h. To
decrease this feature size by a factor 2 (i.e. allow ryjn, =
0.35h), polynomial shape functions of order 6 or higher
are needed with d = 6. It is questionable whether this is
advantageous in terms of computational cost compared to
realizing a similar feature size reduction in conventional
TO, which would give a similar increase in DOFs but a
sparser stiffness matrix contribution. This finding indicates
that in the present MTO scheme, increased level of detail
is associated with a considerable increase in computational
cost, due to which the advantage of MTO could be lost over
the traditional TO approach.

5 Discussion

In this paper, the disconnected material distributions
observed in MTO formulations, denoted as QR-patterns,
are investigated using several numerical experiments. From
the presented results, it can be inferred that these patterns
cannot be correctly modeled by the employed modeling
scheme. They form as artefacts in compliance minimization
as their stiffness is strongly overestimated. In general,
the use of large numbers of design voxels allows the
representation of high resolution designs which in turn leads
to material features that require shape functions of very high
polynomial degree to be correctly modeled.

Density filtering has been used to eliminate the QR-
patterns and has been successful for various instances,
however, as shown in this work, the use of density filters can
have a negative impact and can raise the polynomial order of
the shape functions desired for accurate modeling, thereby
leading to even higher computational costs. Filtering
imposes a restriction on the minimum feature size. The
native design resolution given by the voxel size is lost, and
without additional measures, blurred design boundaries are
formed. Furthermore, given the aim of reaching an optimal
ratio between design resolution and analysis costs through
MTO, imposing larger minimum feature sizes on the design
through filtering is counterproductive.

The single-element tests presented in Section 4.2 show
that void strips give strongly overestimated stiffness.
However, these do not always appear during optimization,
and seem to be fully suppressed when a sufficiently large
filter radius is used. One of the reasons that these thin
strips of void are not formed could be that the optimization
process converges to different local optima, and these thin
strips are not easily encountered. Moreover, the QR-patterns
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observed in unfiltered designs consist of quickly spatially-
varying material patterns, and filtering removes such design
patterns from the solution space. Although the thin strips of
void can still be formed, the gradual density transition zone
caused by density filtering make them less favorable in term
of absolute stiffness compared to the connected designs. For
example, we observed that for compliance minimization, the
connected designs are preferred over the ones comprising
void strips when filtering is used. Nevertheless, the relative
stiffness overestimation is still observed. When filtering is
combined with Heaviside projection, the artefacts reappear
(Groen et al. 2017). This issue can be overcome for
most of the cases using the modified Heaviside projection
method (Sigmund 2007), however, this approach cannot be
guaranteed to work and should be used with caution (Groen
et al. 2017).

Although with suitable filtering, the thin strips of void
are not observed in the designs optimized for minimal
compliance, it cannot be guaranteed that such issues will
not be encountered for other more complex TO problems.
In this study, as well as most other studies, the application
of MTO has focused on compliance minimization problems.
Groen et al. (2017) also studied the application of MTO
in a compliant mechanism optimization. Currently an
incomplete understanding exists of the applicability of MTO
to different optimization problems, and further research is
required to support the generalization of MTO approaches.
Of interest are for example problems involving eigenfre-
quencies or stress constraints, where it is yet unknown
what interaction the multiresolution modeling will have
with the optimization process. As a protective measure,
such scenarios should be avoided in general. In this paper,
the MTO approach has been studied from a more conser-
vative point of view. The extreme limitations of MTO are
explored, so that the highest permissible design resolu-
tion can be achieved without encountering any artefacts.

There are additional aspects that need to be investigated
further so as to assess the full capability of the MTO
concept. A measure of benefit-versus-cost for increasing the
polynomial order of the shape functions can be defined to
determine whether the use of high p values for certain MTO
configurations is beneficial or not. Groen et al. (2017) have
presented an empirical measure based on several numerical
experiments. It would be of interest to explore further
in this direction on a wider variety of MTO problems,
and also look into theoretical aspects of the problem to
establish more rigorous criteria. Another possible direction
to look into could be to investigate the role of adaptive
p-refinement in MTO. Locally increasing the value of
p can reduce the artefacts while limiting the additional
computational burden. For such methods, well defined
refinement indicators are needed which can easily locate the
regions at risk of developing QR-patterns.
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For a certain MTO configuration in 2D, to determine the
minimum filter radius that avoids the QR-pattern, we used
three load cases (axial, biaxial and shear). For the problems
studied in this paper, axial loading controls the choice of
filter radius and only this case was used to determine filter
choices for 3D problems. It is possible that for 3D problems,
some additional load cases need to be considered. Moreover,
for other problems, which are not covered in this study, these
choices of loading might not be sufficient and a different
case is needed. Thus, it would be of interest to investigate
which load cases would be critical for 3D problems as well
as problems involving other objective functionals.

In this paper, we have studied in detail the fact that
the QR-patterns in MTO originate from the known inca-
pability of the polynomial shape functions in modeling the
displacement field that accompanies a discontinuous mate-
rial distribution. Methods such as XFEM, GFEM, etc. are
well-established techniques that use enrichment functions
to accurately model such nonsmooth or discontinuous dis-
placement fields (Moégs et al. 1999; Strouboulis and Copps
2001). XFEM has successfully been used in the context
of TO (e.g., Kreissl and Maute 2012). However, the sig-
nificantly high complexity of this approach restricts its
attractiveness, and how to combine XFEM with MTO is an
open research question. It may nevertheless present a way
to rigorously prevent QR-patterns without sacrificing design
resolution.

6 Conclusions

In this paper, numerical artefacts arising in multiresolution
topology optimization (MTO), denoted as QR-patterns,
have been thoroughly studied and an explanation on their
formation has been presented. Through several numerical
tests, we observed that elements with discontinuous internal
material distributions can show artificially low compliance
when shape functions of insufficient polynomial degree
are used. This deficiency of the finite element model
has been observed before in higher-order multiresolution
methods. It can be exploited during optimization, leading
to unrealistic QR-patterns. While shape functions of very
high polynomial degree can eliminate these artefacts, it is
observed that the computational advantage of MTO over
traditional TO could be lost due to the additional DOFs
introduced. Further, the role of density filtering in MTO is
investigated. It is shown that although filtering can reduce
the QR-patterns for certain cases, it may not always be the
solution to eliminate these artefacts and can sometimes be
counterproductive.

Based on the investigations presented in this work, we
conclude that while density filtering with a sufficiently
large radius can prevent the occurrence of QR-patterns in

the studied problems, it decreases the design resolution,
and consequently, the efficiency of MTO. Furthermore,
dedicated studies into particular problem types and other
responses are needed to gain a better understanding on
whether the filtering presents a universal remedy. An
alternative research direction is to address the issue from the
analysis side, and find formulations that properly represent
the performance of disconnected designs. It is expected
that our findings will serve as the groundwork to define
effective countermeasures to eliminate QR-patterns and
help to achieve the goal of obtaining high resolution designs
at low computational cost.
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