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Finite-Time Fuzzy Adaptive Constrained Tracking
Control for Hypersonic Flight Vehicles with

Singularity-Free Switching
Maolong Lv, Yongming Li, Senior Member, IEEE, Wei Pan, and Simone Baldi, Senior Member, IEEE

Abstract—This work proposes a fuzzy adaptive design solving
the finite-time constrained tracking for hypersonic flight vehi-
cles (HFVs). Actuator dynamics and asymmetric time-varying
constraints are considered when solving this problem. The
main features of the proposed design lie in: (a) introducing a
novel piecewise but differentiable switching control law, with an
appropriate design thought to avoid singularity issues typical of
finite-time control; (b) handling actuator magnitude, bandwidth,
and rate constraints, thanks to the introduction of an auxiliary
compensating system counteracting the adverse effects caused by
actuator physical constraints, while guaranteeing the closed-loop
stability; (c) handling asymmetric time-varying state constraints,
thanks to the introduction of tan-type barrier Lyapunov functions
(BLFs) working for both constrained and unconstrained scenar-
ios. Comparative simulation results illustrate the effectiveness of
the proposed strategy over existing methods for HFVs in terms of
convergence, smoothness, actuator performance, and constraints
satisfaction.

Index Terms—Hypersonic flight vehicle, finite-time stability,
switching control, constrained tracking, singularity-free control.

I. INTRODUCTION

S everal studies on hypersonic flight vehicles (HFVs) have
been carried out targeting future near-space transportation

[1]-[6]. The design of guidance and control systems for HFVs
presents a set of challenges, due to the complex interactions
between the propulsion system, aerodynamics, and structural
dynamics [7]-[9]. Research on flight control for HFVs in past
decades can be primarily classified as sliding-mode control
[10], PID control [11], dynamic inversion design [12] and
intelligent control with radial basis function neural networks
[13]-[14], fuzzy wavelet neural networks [7], or fuzzy logic
systems [15]-[16]. Fuzzy logic systems (FLS) are particularly
studied in HFVs, since the experience from expert human
operators can be systematically included into fuzzy IF-THEN
rules to be part of the control [16]. It should be mentioned
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that any practical control design for HFVs should not ne-
glect crucial aspects of HFVs, such as finite-time tracking
and constrained tracking (either state constraints or actuation
constraints).

Recently, some HFVs literature [17]-[19] has highlight-
ed the importance of finite-time tracking as compared to
conventional non-finite-time tracking methods as in [1]-[16],
due to its faster convergence rate. Finite-time tracking can
be obtained via appropriate modifications to standard de-
sign methodologies. Most notably, the recursive backstepping
method can be modified by introducing fractional feedback
terms in virtual and actual control laws: the fractional terms
guarantee convergence in finite time (see [20]-[23] and the ref-
erences therein). However, those controllers cannot be safely
utilized in HFVs due to the fact that singularity issue (non-
differentiability) may occur in the derivatives of the fractional
terms appearing in the control design (see Remark 2 and our
case study in Sect. V.A for more details). Another standard
design methodology, namely dynamic surface control (DSC),
originally proposed in [24] to handle the issue of “explosion
of complexity” in backstepping, is more challenging to be
modified in finite-time tracking sense, due to the presence
of linear filters that cannot ensure finite-time convergence of
tracking errors.

With respect to state constrained tracking, it must be men-
tioned that HFVs utilize air-breathing supersonic combustion
ramjet (scramjet) as the propulsion system to achieve sustained
hypersonic flight [25]. To make the scramjet work perfectly,
the flight path angle (FPA) and the pitch angle during hy-
personic flight should be restricted inside some compact sets
that are typically asymmetric and time-varying for ensuring
efficiency of intake and combustion [26]. Although BLFs
inspired by [27] have been proposed for HFVs to handle
symmetric time-invariant constraints [28]-[30], these barriers
cannot handle time-varying and possibly asymmetry operating
regions of HFVs. Finally, with respect to actuation constraints
(e.g. magnitude, bandwidth, and deflection rate) which arise
naturally in HFVs deflectors and engines, we are not aware
of any control design that can handle these phenomena in a
rigorous (i.e. provably stable) way. To summarize, despite the
progress in the field, several practically relevant problems are
still open for HFVs. Motivated by above discussions, the main
contributions of this paper are four-fold:
• Proposing a novel singularity-free approach to achieve

fine-time tracking. To avoid the singularity issues, a piecewise
but differentiable switching control law is introduced that
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guarantees the continuity and differentiability everywhere.
• Tan-type BLFs are appropriately embedded into the

control design which are shown to handle asymmetric and
time-varying flight state constraints. Interestingly, constrained
trajectories not only ensure the boundedness of closed-loop
signals but can also preserve the validity of fuzzy logic
approximators.
• Actuator dynamics are modelled and tackled in terms

of magnitude, bandwidth, and rate constraints, thanks to an
auxiliary system constructed to generate certain compensating
signals to counteract the adverse effects caused by actuator
physical constraints.
• Finally, it is worth remarking that, in place of backstep-

ping, a lower-complexity design is adopted in the framework
of dynamic surface control [24]. The novelty of our design also
lies in the use of both linear and fractional terms into the first-
order filters, allowing the finite-time convergence properties.

The rest of this paper is structured as follows. Section
II presents the problem formulation and preliminaries. The
controller design for velocity subsystem and the altitude sub-
system are given in Section III. Section IV proves the stability
of the entire HFVs systems. In Section V, simulation results
are given. Finally, Section VI concludes the work.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Hypersonic Flight Vehicle Dynamics

The longitudinal dynamic model of HFVs under consider-
ation was originally developed by Bolender and Doman [8],
[31]-[32].

V̇ =
T cosα−D

m
− g sin γ, (1)

ḣ = V sin γ, (2)

γ̇ =
L+ T sinα

mV
− g cos γ

V
, (3)

α̇ = Q− L+ T sinα

mV
+
g cos γ

V
, (4)

Q̇ =
M

Iyy
, (5)

η̈i = −2ζiωiη̇i − ω2
i ηi +Ni, i = 1, . . . , n (6)

where the lift L, drag D, pitching moment M , thrust T ,
generalized elastic forces Ni are given as

L ≈ q̄SCL (α, δe, δc,η) , (7)
D ≈ q̄SCD (α, δe, δc,η) , (8)
M ≈ zTT + q̄Sc̄CM (α, δe, δc,η) , (9)

T ≈ q̄S
[
CT,Φ (α) Φ + CT (α) +CηTη

]
, (10)

Ni ≈ q̄S
[
Nα2

i α2 +Nα
i α+Nδe

i δe +Nδc
i δc

+N0
i +Nη

i η
]
, i = 1, . . . , n, (11)

The model (1)-(11) contains five rigid-body states, i.e.,
velocity V , altitude h, FPA γ, angle of attack (AOA) α, and
pitch rate Q, and three control inputs, i.e., the fuel equivalence
ratio Φ, deflection of elevator δe, and deflection of canard δc.
η =

[
η1, η̇1, . . . , ηn, η̇n

]T
, n ∈ N+ are the flexible states with

ηi being the amplitude of the ith bending mode. m, Iyy , g,

2

2

n

n




2 n

1

s

1

s

Magnitude Limiter Rate Limiter

,e c


e


Fig. 1: Filter that generates magnitude, bandwidth, and rate
constraints.

ζi, ωi, q, S, zT , and c represent the vehicle mass, moment of
inertia, gravitational acceleration, damping ratio, flexible mode
frequency, dynamic press, reference area, thrust moment arm,
and reference length, respectively. The nonlinear functions in
(7)-(11) are obtained from curve fitting as below

CM (·) = Cα
2

M α2+ CαMα+ CδeMδe+ CδcMδc+ C0
M+CηMη,

CL (·) = CαLα+ CδeL δe + CδcL δc + C0
L +CηLη,

CD (·) = Cα
2

D α2 + CαDα+ C
δ2e
D δ

2
e + CδeD δe

+ C
δ2c
D δ

2
c + CδcD δc + C0

D +CηDη,

CT,Φ (·) = Cα
3

T,Φα
3 + Cα

2

T,Φα
2 + CαT,Φα+ C0

T,Φ,

CT (·) = Cα
3

T α3 + Cα
2

T α2 + CαTα+ C0
T ,

Cηj =
[
Cη1j , 0, . . . , C

ηn
j , 0

]
, j = T,M,L,D,

Nη
i =

[
Nη1
i , 0, . . . , Nηn

i , 0
]
, i = 1, . . . , n. (12)

To cancel the lift-elevator coupling, δc is set to be ganged
with δe, i.e., δc = ke,cδe with ke,c = −CδeL /C

δc
L . Thereby,

the control inputs of HFVs become Φ and δe. This approach
was originally proposed in [25] as a way to remove some non-
minimum phase characteristics of the dynamics. The deflection
of the elevator δe is adjusted through an electric actuator
which can be well approximated by the following second-order
dynamics:

δ̈e = −2ζωnδ̇e − ω2
nδe + ω2

nδe,c (13)

where ωn is the undamped natural frequency and ζ is the
damping ratio. Dynamics (13) can capture magnitude, band-
width, and rate constraints, if the input signal δe is eventually
obtained by the command δe,c filtered through a linear, stable,
low-pass command filter as shown in Fig. 1. Similarly, the
input signal Φ can be obtained by the command Φc filtered in
a similar way as Fig. 1.

The control objective of this paper is to design the control
inputs Φc and δe,c for system (1)-(6) and (13) such that the
variables V and h follow the reference commands Vref and
href with finite-time guarantees, while flight state variables are
confined within asymmetric and time-varying compact sets all
the time.

The elevator angular deflection δe primarily affects the AOA
α (hence altitude h), whereas the fuel equivalence ratio Φ
primarily affects the thrust T (hence velocity V ). Based on
these physical considerations, related literature has proposed
a model decomposition amenable for control design [12]-[13].

B. Model Decomposition and State Constraints

The decomposition relies on separating the motion model
of HFVs into the velocity and altitude subsystems. Taking
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aerodynamic parameter uncertainties and external disturbances
into account, the velocity subsystem can be rewritten as

V̇ = ζT
V (fV + gV Φ) + dV , (14)

where ζV = S
m

[
Cα

3

T,Φ, C
α2

T,Φ, C
α
T,Φ, C

0
T,Φ, C

α3

T , Cα
2

T , CαT , C
0
T ,

Cα
2

D , CαD, (C
δ2e
D + k2

e,cC
δ2c
D ), (CδeD + ke,cC

δc
D ), C0

D,
m
S

]
T, gV =

q̄ cosα
[
α3, α2, α, 1,01×10

]
T, fV = q̄

[
01×4, α3cosα, α2cosα,

α cosα, cosα,−α2,−α,−δ2
e ,−δe,−1,− gq̄ sin γ

]
T, and the

lumped disturbance dV = q̄S
mC

η
Tη cosα− q̄S

mC
η
Dη+∆V with

∆V denoting the perturbations resulting from coefficients un-
certainties and external disturbances in the velocity subsystem.

As the FPA γ and AOA α are quite small during the cruise
phase, the literature has proposed to take sin γ ≈ γ in (2) and
neglect T sinα in (3) for simplicity [12]-[13]. Therefore, the
altitude subsystem can be rewritten as

ḣ = V γ,

γ̇ = ζT
γ(fγ + gγα) + dγ ,

α̇ = ζT
α(fα + gαQ) + dα,

Q̇ = ζT
Q(fQ + gQδe) + dQ,

(15)

where ζγ =
[
S
mC

α
L ,

S
mC

0
L, 1

]
T, ζα =

[
1, SmC

α
L ,

S
mC

0
L, 1

]
T,

ζQ= S
Iyy

[
c̄CδeM , c̄ke,cC

δc
M , zTC

α3

T,Φ, zTC
α2

T,Φ, zTC
α
T,Φ, zTC

0
T,Φ,

zTC
α3

T , (zTC
α2

T + c̄Cα
2

M ), (zTC
α
T + c̄CαM ), (zTC

0
T + c̄C0

M )
]

T,
gγ =

[
q̄
V ,0

1×2
]

T, gα =
[
1,01×3

]
T, gQ =

[
q̄, q̄,01×8

]
T,

fγ =
[
0, q̄V ,−

g
V cos γ

]
T, fα= q̄

V

[
0,−α,−1, gq̄ cos γ

]
T, fQ=

q̄
[
01×2, α3Φ, α2Φ, αΦ,Φ, α3, α2, α, 1

]
T, and the lumped dis-

turbances dγ = q̄S
mV C

η
Lη + ∆γ , dα = − q̄S

mV C
η
Lη + ∆α, and

dQ = zT q̄S
Iyy

CηTη + q̄Sc̄
Iyy
CηMη + ∆Q, with ∆γ , ∆α, and ∆Q

representing the perturbations resulting from coefficient uncer-
tainties and external disturbances in the altitude subsystem.

C. Technical Key Lemmas

The following results, which are often adopted in control of
nonlinear systems, will be used for stability analysis.

Assumption 1 [33]: The reference commands Vref , V̇ref ,
V̈ref , href , ḣref , and ḧref are in a bounded region Ωref . In
fact, in flight control it is common for HFVs to track velocities
and altitudes whose first and second derivative are bounded.

Lemma 1 [34]: For any constants m > 0, x ≥ 0, y > 0, the
inequality xm (y − x) ≤ 1

1+m

(
y1+m − x1+m

)
always holds.

Lemma 2 [35]: The inequality (ι− ϑ)
r ≥ ϑr− ιr holds for

ϑ ≤ ι, r > 1, ι > 0.
Lemma 3 [36]: Consider the Lyapunov characterization of

finite-time stability in the form L̇(x) ≤ −ς1L(x) − ς2Ll(x),
where ς1 > 0, ς2 > 0, and 0 < l < 1 are scalars. Then,
L(x) is convergent to a residual set with a finite time T0 ≤
ς−1
1 (1− l)−1 ln

[(
ς1L

1−l(x0) + ς2
)
ς−1
2

]
.

Lemma 4 [37]: The inequality
( n∑
i=1

|xi|
)l
≤

n∑
i=1

|xi|l ≤

n1−l
( n∑
i=1

|xi|
)l

holds for xi ∈ R, i = 1, . . . , n, 0 < l ≤ 1.

Lemma 5 [38]: Let a function κ(t) ∈ R satisfy

κ̇(t) + λ0κ(t)− `(t) + λ1κ
l1
l2 (t) = 0, (16)

where l1 and l2 are positive odd integers satisfying 0 ≤ l1
l2
< 1,

λ0 and λ1 are positive constants, and `(t) is a positive function.
Then, it holds that κ(t) ≥ 0 for ∀t ≥ 0 as long as κ(0) ≥ 0.

FLSs are used to approximate system continuous unknown
dynamics thanks to the following result.

Lemma 6 [39]-[41]: Define a set of fuzzy IF-THEN rules,
where the lth IF-THEN rule is written as

Rl : If x1 is F l1, and . . . and xn is F ln, then y is Bl.

where x = [x1, . . . , xn]T ∈ Rn, and y ∈ R are the input
and output of the fuzzy logic systems, F l1, . . . , F

l
n and Bl are

fuzzy sets in R. Let F (x) be a continuous function defined on
a compact set Ωx. Then, for a given desired level of accuracy
ε′ > 0, there exists a fuzzy logic system W Tϕ(x) such that

sup
x∈Ωx

|F (x)−W Tϕ(x)| ≤ ε′, (17)

where W = [w1, . . . , wp]
T is the adaptive fuzzy parameter

vector in a compact set ΩW , p is the number of the fuzzy rules,
ϕ(x) = [φ1(x), . . . , φp(x)]T is the fuzzy basis function vec-
tor, and φl(x) =

∏p
j=1µF lj (xj)

/∑p
l=1(

∏m
j=1 µF lj (xj)) with

µF lj (xj) being a fuzzy membership function of the variable xj
in IF-THEN rule. Let W ∗ be the optimal parameter vector,
which is defined as

W ∗ = arg min
W∈ΩW

{
sup
x∈Ωx

|F (x)−W Tϕ(x)|
}
. (18)

Then, we can obtain

F (x) = W ∗Tϕ(x) + ε, (19)

where ε is the minimum fuzzy approximation error.

III. FINITE-TIME FUZZY ADAPTIVE CONTROL DESIGN

In view of the decomposition of Sect. II.B, the control
design is also decomposed in a velocity control design and
an altitude control design (also refer to Fig. 2). It is worth
mentioning that, due to asymmetric constraints, both designs
rely on skillfully constructing asymmetric time-varying BLFs,
in which the upper and lower thresholds kb? (t) and ka? (t)
can be set independently.

A. Velocity Control Design

Define the tracking error zV = Ṽ −eV , where Ṽ = V −Vref
and eV is an auxiliary variable which will be defined later.
On this basis, construct the asymmetric time-varying BLF as
follows

LV =
k2
V (zV (t))

π
tan

(
πz2

V (t)

2k2
V (zV (t))

)
, (20)

where k? (z? (t)) is a short notation for the asymmetric time-
varying threshold, i.e.

k? (z? (t)) ,

{
kb? (t) , if z? (t) > 0,

ka? (t) , if z? (t) ≤ 0.
(21)

Throughout this paper, we abbreviate k? (z? (t)) by k? (t)
for notation simplicity. To highlight the time-varying mature
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of the state constraints, the time variable t is not omitted in
k?(t), whereas it can be omitted for other variables.

Remark 1: The tan-type BLF (20) is asymmetric,
time-varying, and positive definite. Besides, according to
L’Hopital’s rule, we have lim

kV (t)→∞
LV = 1

2z
2
V , implying

that both constrained and unconstrained cases can be encom-
passed by (20). Note that conventional BLFs (e.g. log-type
BLFs) cannot deal with the unconstrained condition since

lim
kV (t)→∞

1
2 log

(
k2V (t)

k2V (t)−z2V

)
= 0.

It follows from (14) and (20) that the time derivative of LV
is

L̇V =~V

(
ζT
V gV Φ + FV (xV )− k̇V (t)

kV (t)
zV

)

+
2kV (t) k̇V (t)

π
tan

(
πz2

V

2k2
V (t)

)
, (22)

where ~V = zV

cos2
(

πz2
V

2k2
V

(t)

) . FV (xV ) = ζT
V fV + dV − V̇ref

collects the unknown dynamics with xV = V . According
to Lemma 6, FV (xV ) can be approximated by an FLS as
FV (xV ) = W ∗T

V ϕV (xV )+εV over a compact set ΩV , where
εV is such that |εV | ≤ ε∗V with ε∗V > 0 a constant.

The control law Φc is constructed as

Φc = − 1

ζT
V gV

[
cV
~V

tan

(
πz2

V

2k2
V (t)

)
+
µV
~V

SV 1+
1

2
(p+2)

SV 2

~V

+
1

2
~V Ξ̂V +MV Ṽ +

2kV (t) k̇V (t)

π~V
tan

(
πz2

V

2k2
V (t)

)]
, (23)

where 0 < l < 1, p is the number of the fuzzy rules, µV > 0
and cV > 0 are design parameters, Ξ̂V is the estimate of
ΞV = ||W ∗

V ||2, and the switching terms SV 1 and SV 2 are
designed as follows

SV 1 =

 tanl
(

πz2V
2k2V (t)

)
, if |zV |≥τV ,

tanl−1
(

πτ2
V

2k2V (t)

)
tan
(

πz2V
2k2V (t)

)
, otherwise,

(24)

SV 2 =

{
1, if |zV |≥τV ,
tan−1

(
πτ2
V

2k2V (t)

)
tan
(

πz2V
2k2V (t)

)
, otherwise.

(25)

The time-varying gain term MV in (23) is given by

MV =

√√√√( k̇aV
kaV

)2

+

(
k̇bV
kbV

)2

+ oV , (26)

where oV > 0 is a parameter to be designed.
As a next step, we design the following auxiliary system to

handle the constraints imposed on control signal Φc

ėV = −MV eV + ζT
V gV (Φ− Φc), (27)

The adaptation law ˙̂
ΞV is designed as

˙̂
ΞV =

1

2
~2
V ρV − ρV Ξ̂V − ρV Ξ̂lV , (28)

where ρV is a positive design constant. By applying Lemma 5,
we know that Ξ̂V (t) ≥ 0 for ∀t > 0 after choosing Ξ̂V (0) ≥

    Step 2: Implement       in (45),        similar to (39),    

   similar to (40),        similar to (41), and       in (46). 

Altitude Subsystem

 HFV AltitudeAltitude Reference

Equations (1)-(6)

 HFV VelocityVelocity Reference

    Step 1: Implement       in (23),        in (24),        in (25),

        in (26),      in (27), and       in (28). 

Velocity Subsystem
ˆ

V

ˆ
V

1

s

1

s

1

s

1

s

ˆ


ˆ


ˆ
Q

ˆ
Q

hz



ˆ
V

c 1VS 2VS

Ve
VM

V

command 

filter

d 1S 2S

M 
ˆ


    Step 3: Implement       in (50),        similar to (39),    

   similar to (40),        similar to (41), and       in (51). 
dQ 1S 2S

M
ˆ


    Step 4: Implement        in (55),        similar to (39),    

   similar to (40),        similar to (41),       in (56),       in (57). 
,e c 1QS

2QS

QM ˆ
Q Qe

ˆ


ˆ


command 

filter

,e c
e

    Step 1: Implement       in (38),        in (39),        in (40),     

 and       in (41). 
d 1hS 2hS

hM

c

Fig. 2: The framework of the proposed control structure.

0. Consider the Lyapunov function candidate L̄V = LV +
1

2ρV
Ξ̃2
V with Ξ̃V = ΞV − Ξ̂V , the time derivative of L̄V can

be expressed as

˙̄LV = L̇V −
1

ρV
Ξ̃V

˙̂
ΞV . (29)

Substituting (23) and (28) into (29) yields

˙̄LV ≤− cV tan

(
πz2

V

2k2
V (t)

)
− µV SV 1 −

1

2
(p+ 2)SV 2

+ ~V FV (xV )−MV ~V zV −
k̇V (t)

kV (t)
~V zV

− 1

2
~2
V ΞV + Ξ̃V Ξ̂V + Ξ̃V Ξ̂lV , (30)

where

−MV ~V zV −
k̇V (t)

kV (t)
~V zV

=

(
−MV −

k̇V (t)

kV (t)

)
z2
V

cos2
(

πz2V
2k2V (t)

) < 0. (31)

Let W̄ V = [W ∗
V , εV , SV 1]

T
, ϕ̄V = [ϕV (xV ) , 1, 1]

T, one
has

~V FV (xV )≤~V
∥∥W̄ V

∥∥ ‖ϕ̄V ‖≤ 1

2

(
p+ 2 + ~2

V ΞV
)
. (32)
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Substituting (31) and (32) into (30) leads to

˙̄LV ≤− cV tan

(
πz2

V

2k2
V (t)

)
− µV SV 1 −

1

2
(p+ 2) (SV 2 − 1)

+ Ξ̃V Ξ̂V + Ξ̃V Ξ̂lV , (33)

which will be later used for stability analysis.

B. Altitude Control Design

Step 1: Define the tracking error as zh = h − href , and
construct the asymmetric time-varying BLF as

Lh =
k2
h (zh (t))

π
tan

(
πz2

h (t)

2k2
h (zh (t))

)
. (34)

Taking the derivative of Lh yields

L̇h = ~h

(
V γ − ḣref −

k̇h (t)

kh (t)
zh

)

+
2kh (t) k̇h (t)

π
tan

(
πz2

h

2k2
h (t)

)
, (35)

where ~h = zh

cos2
(

πz2
h

2k2
h
(t)

) .

To proceed with the finite-time control design, we propose
a dynamic surface control method appropriately modified to
the purpose of differentiability. Firstly, let us consider the
coordinate transformation [42]{

zγ = γ − γc, zα = α− αc, zQ = Q̃− eQ,
yγ = γc − γd, yα = αc − αd, yQ = Qc −Qd,

(36)

where zγ , zα, zQ are the tracking errors, Q̃ = Q − Qd, eQ
is an auxiliary variable defined later, γd, αd and Qd are the
virtual control laws, yγ , yα, yQ are the boundary layer errors,
γc, αc and Qc are the outputs of first-order filters defined by

γ̇c =− τγ1yγ − τγ2y
l
γ ,

α̇c =− τα1yα − τα2y
l
α,

Q̇c =− τQ1yQ − τQ2y
l
Q,

(37)

where τγ1, τγ2, τα1, τα2, τQ1, and τQ2 are the positive design
constants, and 0 < l = l1/l2 < 1 with l1, l2 being positive
odd integers.

Construct the virtual control law γd as

γd =− 1

V

[
ch
~h

tan

(
πz2

h

2k2
h (t)

)
+
µh
~h
Sh1+

1

2
(p+2)

Sh2

~h

− ḣref+Mhzh+
2kh (t) k̇h (t)

π~h
tan

(
πz2

h

2k2
h (t)

)]
, (38)

where µh and ch are the positive design parameters, the
switching term Sγ1 and Sγ2 are designed as follows

Sh1 =

 tanl
(

πz2h
2k2h(t)

)
, if |zh|≥τh,

tanl−1
(

πτ2
h

2k2h(t)

)
tan
(

πz2h
2k2h(t)

)
, otherwise,

(39)

Sh2 =

{
1, if |zh|≥τh,
tan−1

(
πτ2
h

2k2h(t)

)
tan
(

πz2h
2k2h(t)

)
, otherwise.

(40)

Remark 2: One novelty in (39) and (40) is represented by the
switching functions Sh1 and Sh2. In fact, in order to achieve
finite-time tracking, conventional designs use the fractional
powers of tracking error zlh with 0 < l < 1 for ∀zh ∈ R
(cf. [20, eq.(7)], [21, eq.(22)], [22, eq.(29)], [23, eq.(42)], etc).
However, because żlh = lzl−1

h → ∞ as zh → 0, a singularity
problem (cf. our case study in Sect. V.A) will arise in the
virtual control law. A similar problem arises also in designs
that are alternative to backstepping, such as terminal sliding
mode (cf. the fractional powers in [17, eq. (46) and eq. (51)]
whose derivative must be calculated for control design). On the
contrary, the switching functions (39) and (40) are skillfully
designed to remove this singularity. Continuity of Sh1, Ṡh1,
Sh2 and Ṡh2 holds due to the following facts:

lim
zh→τ−

h

Sh1 = lim
zh→τ+

h

Sh1 = tanl
(

πτ2
h

2k2
h (t)

)
,

lim
zh→τ−

h

Ṡh1 = lim
zh→τ+

h

Ṡh1

= − k̇h (t)

k3
h (t)

· πlτ2
h

cos2
(

πτ2
h

2k2h(t)

) tanl
(

πτ2
h

2k2
h (t)

)
,

lim
zh→0−

Sh1 = lim
zh→0+

Sh1 = 0, lim
zh→0−

Ṡh1 = lim
zh→0+

Ṡh1 = 0,

lim
zh→τ−

h

Sh2 = lim
zh→τ+

h

Sh2 = 1, lim
zh→τ−

h

Ṡh2 = lim
zh→τ+

h

Ṡh2 = 0,

lim
zh→0−

Sh2 = lim
zh→0+

Sh2 = 0, lim
zh→0−

Ṡh2 = lim
zh→0+

Ṡh2 = 0.

The time-varying gain term Mh in (38) is designed as
follows

Mh =

√√√√( k̇ah
kah

)2

+

(
k̇bh
kbh

)2

+ oh, (41)

in which oh > 0 is the parameter to be designed. Substituting
(38)-(41) into (35) and using γ = zγ + yγ + γd, the time
derivative of Lh can be rewritten as

L̇h ≤ V (zγ + yγ)− ch tan

(
πz2

h

2k2
h (t)

)
− µhSh1

− 1

2
(p+ 2) (Sh2 − 1) . (42)

From (38) it can be deduced that γd and γ̇d are functions
of zh, żh, kh (t), k̇h (t), k̈h (t), ḣref and ḧref , respectively.
Thanks to the continuity and differentiability of Sh1 and
Sh2, both functions γd and γ̇d are continuous. Therefore, in
accordance with (36) and (37), we get ẏγ = −τγ1yγ−τγ2y

l
γ+

ιγ(zh, żh, kh (t), k̇h (t), k̈h (t), ḣref , ḧref ) with ιγ(·) being a
continuous function.

Step 2: Construct the asymmetric time-varying BLF as

Lγ = Lh+
k2
γ (zγ (t))

π
tan

(
πz2

γ (t)

2k2
γ (zγ (t))

)
+

1

2ργ
Ξ̃2
γ . (43)
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Taking the time derivative of Lγ leads to

L̇γ =L̇h + ~γ

(
ζT
γgγγ + Fγ(xγ)− k̇γ (t)

kγ (t)
zγ

)
− 1

ργ
Ξ̃γ

˙̂
Ξγ

+
2kγ (t) k̇γ (t)

π
tan

(
πz2

γ

2k2
γ (t)

)
, (44)

where ~γ =
zγ

cos2
(

πz2γ

2k2γ (t)

) . Fγ(xγ) = ζT
γfγ + dγ − γ̇d collects

the unknown dynamics with xγ = [h, γ]T .
Construct the virtual control law Qd and the adaptation law

˙̂
Ξα as

αd =− 1

ζT
γgγ

[
cγ
~γ

tan

(
πz2

γ

2k2
γ (t)

)
+
µγ
~γ
Sγ1+

1

2
(p+2)

Sγ2

~γ

+
1

2
~γΞ̂γ +Mγzγ +

2kγ (t) k̇γ (t)

π~γ
tan

(
πz2

γ

2k2
γ (t)

)

+
~h
~γ
V (zγ + yγ)

]
, (45)

˙̂
Ξγ =

1

2
~2
γργ − ργΞ̂γ − ργΞ̂lγ , (46)

where µγ , cγ and ργ are the positive design parameters, Ξ̂γ
is the estimate of Ξγ = ||W ∗

γ ||2 with Ξ̃γ = Ξγ − Ξ̂γ , the
time-varying gain term Mγ is designed similar to (41), and
the switching term Sγ1 and Sγ2 are designed similar to (39)
and (40).

Then, by following similar derivation as step 1, one reaches

L̇γ ≤−ch tan

(
πz2

h

2k2
h (t)

)
−cγ tan

(
πz2

γ

2k2
γ (t)

)
−µhSh1−µγSγ1

− 1

2
(p+ 2) (Sh2 − 1)− 1

2
(p+ 2) (Sγ2 − 1)

+ Ξ̃γΞ̂γ + Ξ̃γΞ̂lγ + ~γζT
γgγ (zα+yα) . (47)

Step 3: Similarly, let us construct the asymmetric time-
varying BLF as

Lα = Lγ+
k2
α (zα (t))

π
tan

(
πz2

α (t)

2k2
α (zα (t))

)
+

1

2ρα
Ξ̃2
α. (48)

Taking the time derivative of Lα leads to

L̇α =L̇γ + ~α

(
ζT
αgαα+ Fα(xα)− k̇α (t)

kα (t)
zα

)
− 1

ρα
Ξ̃α

˙̂
Ξα

+
2kα (t) k̇α (t)

π
tan

(
πz2

α

2k2
α (t)

)
, (49)

where ~α = zα

cos2
(

πz2α
2k2α(t)

) . Fα(xα) = ζT
αfα+dα−α̇d collects

the unknown dynamics with xα = [h, γ, α]T .

Construct the virtual control law Qd and the adaptation law
˙̂
Ξα as

Qd =− 1

ζT
αgα

[
cα
~α

tan

(
πz2

α

2k2
α (t)

)
+
µα
~α
Sα1+

1

2
(p+2)

Sα2

~α

+
1

2
~αΞ̂α +

2kα (t) k̇α (t)

π~α
tan

(
πz2

α

2k2
α (t)

)
+Mαzα

+
~γ
~α
ζT
γgγ (zα + yα)

]
, (50)

˙̂
Ξα =

1

2
~2
αρα − ραΞ̂α − ραΞ̂lα, (51)

where µα, cα and ρα are the positive design parameters, Ξ̂α
is the estimate of Ξα = ||W ∗

α||2 with Ξ̃α = Ξα − Ξ̂α, the
time-varying gain term Mα is designed similar to (41), and
the switching term Sα1 and Sα2 are designed similar to (39)
and (40). Then, the time derivative of Lα reaches

L̇α≤−chtan

(
πz2

h

2k2
h (t)

)
−chtan

(
πz2

γ

2k2
γ (t)

)
−cαtan

(
πz2

α

2k2
α (t)

)
−µhSh1−µγSγ1−µαSα1 −

1

2
(p+ 2) (Sh2 − 1)

− 1

2
(p+ 2) (Sγ2 − 1)− 1

2
(p+ 2) (Sα2 − 1)

+ Ξ̃γΞ̂γ + Ξ̃αΞ̂α + Ξ̃γΞ̂lγ + Ξ̃αΞ̂lα

+ ~αζT
αgα (zQ+yQ) . (52)

Step 4: Similar to step 1, let us construct the asymmetric
time-varying BLF as

LQ = Lα+
k2
Q (zQ (t))

π
tan

(
πz2

Q (t)

2k2
Q (zQ (t))

)
+

1

2ρQ
Ξ̃2
Q. (53)

Taking the time derivative of LQ results in

L̇Q =L̇α+~Q

(
ζT
QgQδe+FQ(xQ)− ėQ −

k̇Q (t)

kQ (t)
zQ

)

− 1

ρQ
Ξ̃Q

˙̂
ΞQ +

2kQ (t) k̇Q (t)

π
tan

(
πz2

Q

2k2
Q (t)

)
, (54)

where ~Q =
zQ

cos2
(

πz2
Q

2k2
Q

(t)

) . FQ(xQ) = ζT
QfQ+dQ− Q̇d− ẏQ

collects the unknown dynamics with xQ = [h, γ, α,Q]T .
Similar to Steps 1-3, let us construct the actual control law

δe,c, adaptation law ˙̂
ΞQ, and auxiliary variable ėQ as

δe,c =− 1

ζT
QgQ

[
cQ
~Q

tan

(
πz2

Q

2k2
Q (t)

)
+
µQ
~Q

SQ1+
1

2
(p+2)

SQ2

~Q

+
1

2
~QΞ̂Q +MQQ̃+

2kQ (t) k̇Q (t)

π~Q
tan

(
πz2

Q

2k2
Q (t)

)

+
~α
~Q
ζT
αgα (zQ + yQ)

]
, (55)

˙̂
ΞQ =− ρQΞ̂Q − ρQΞ̂lQ +

1

2
~2
QρQ, (56)

ėQ =−MQeQ + ζT
QgQ(δe − δe,c), (57)
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where µQ > 0, cQ > 0 and ρQ > 0 are design parameters, Ξ̂Q
is the estimate of ΞQ = ||W ∗

Q||2 with Ξ̃Q = ΞQ − Ξ̂Q, the
time-varying gain term MQ is designed similar to (41), and
the switching term SQ1 and SQ2 are designed similar to (39)
and (40). Then, the time derivative of LQ can be bounded by

L̇Q≤−ch tan

(
πz2

h

2k2
h (t)

)
−cγ tan

(
πz2

γ

2k2
γ (t)

)
−cα tan

(
πz2

α

2k2
α (t)

)

−cQ tan

(
πz2

Q

2k2
Q (t)

)
−µhSh1−µγSγ1−µαSα1−µQSQ1

− 1

2
(p+ 2) (Sh2 − 1)− 1

2
(p+ 2) (Sγ2 − 1) + Ξ̃γΞ̂γ

− 1

2
(p+ 2) (Sα2 − 1)− 1

2
(p+ 2) (SQ2 − 1) + Ξ̃αΞ̂α

+ Ξ̃QΞ̂Q + Ξ̃γΞ̂lγ + Ξ̃αΞ̂lα + Ξ̃QΞ̂lQ. (58)

IV. STABILITY ANALYSIS

Theorem 1: Consider the closed-loop system composed by
(1)-(12), by the control laws (23), (38), (45), (50) and (55), by
the filters (37), and by the parameter adaptation laws (28), (46),
(51) and (56). Let Assumption 1 hold. Consider any initial
conditions satisfying L(0) ≤ ∆1, z?(0) ∈ (ka? , kb?) where
∆1 > max

{
ka? , kb?

}
is a positive constant. Then, it holds

that:
• all closed-loop signals including z?, Ξ̃V , Ξ̃γ , Ξ̃α,

Ξ̃Q, yγ , yα, and yQ are semi-globally-uniformly-
ultimately-bounded, and converge to some residu-
al sets (as shown in (72)) in finite-time T ≤

1
κ1(1−l) ln

(
(2κ1L

1−l(0) + κ2)/κ2

)
.

• the state errors z? will stay in the asymmetric time-
varying compact sets Ω? =

{
z?: ka?(t) ≤ z? ≤ kb?(t)

}
all the time.

Proof. See Appendix. �
Remark 3: Note that only four scalar parameter adaptation

laws (28), (46), (51) and (56) and two scalar first-order filters
(37) are involved in our design, which makes it simpler
than vector-based adaptation laws in backstepping approach
proposed for HFVs [14]. In addition, the proposed switching
mechanism can be simply implemented as a static nonlinearity
as in (39) and (40), which is comparable to the complexity of
state-of-the-art approaches proposed for HFVs, such as sliding
mode control design [17].

Remark 4: The role of the auxiliary dynamic systems
(27) and (57) is to compensate for the command errors
ζT
V gV (Φ − Φc) and ζT

QgQ(δe − δe,c) which arise due to the
presence of magnitude, bandwidth, and rate constraints, as
in Fig. 2. It is worth remarking that we are not aware of
control method for HFVs that can handle actuator constraints
and asymmetric time-varying constraints in the framework of
finite-time stability in a provably stable way.

V. SIMULATION RESULTS

In this section, a simple case study is first given to show that
singularity issue occurs in conventional finite-time schemes,
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Fig. 3: Curves of closed-loop signals of two control methods.

whereas our proposed switching mechanism avoids such issue.
Then, we compare our method with the HFV designs [17] and
[29] to illustrate the effectiveness of the proposed strategy over
existing methods in terms of convergence, smoothness and
constraints satisfaction.

A. Case Study

Consider a second-order nonlinear system

ẋ1 = x2 + x1 + x3
2, ẋ2 = u+ x2

1x
2
2, y = x1, (59)

where x1, x2 ∈ R represent the state variables, u ∈ R is the
control input, y ∈ R is the system output, and the desired
trajectory is yd = sin t+ 0.5 sin(0.5t).

Define the tracking errors z1 = x1 − yd and z2 = x2 − α1,
where α1 is the virtual control law. In what follows, we do
not take into account state constraints in control design for
the purpose of highlighting the singularity issue. Therefore,
our proposed finite-time switching control laws (PFC) and
conventional finite-time control laws (CFC) [21]-[24] can be
given in (60) and (61), respectively.

PFC :

{
α1 =− c1z1 − µ1S1,1(z1) + ẏd,

u =− c2z2 − µ2S2,1(z2) + α̇1,
(60)

CFC :

{
α1 =− c1z1 − µ1z

l
1 + ẏd,

u =− c2z2 − µ2z
l
2 + α̇1,

(61)
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TABLE I: The control structures of CFC, and CIC.

Control laws of CFC

Φ =
1

ζT
V gV

(
− lV sigl(zV )− ζT

V fV + V̇r − λV sgn(SV )
)
,

δe =
1

ζT
QgQ

(
− lQsigl(zQ)− ζT

QfQ + Q̇d − λQsgn(SQ)
)
,

where sigl(zi) = sgn(zi)·|zi|l, Si = zi+
∫ t
0 lisigl(zi)dτ , i ∈ {V,Q}.

Control laws of CIC

Φ =− cV zV − 0.5

∫
zV (t)dt−

dzV (t)

dt
,

δe =
1

ĝ3

[
− ω̂T3 θ3(x̄3)− cQeQ −

eθ

ψ
+ κ̇3c − τ̂3m tanh

( eθ

0.75

)]
,

where ˙̂ω3 = (eQ + x̃3)θ3(x̄3)− 0.5ω̂3.

TABLE II: Performance indices of control inputs.

Control inputs PFC CFC CIC

Φ 0.2452 0.3971 0.3824
δe 6.9437 9.3950 9.9032

Φ̇ 0.0102 0.0119 0.0121

δ̇e 0.0032 0.0055 0.0049

where c1, c2, µ1, and µ2 are positive design parameters, and

Si,1 =

{
zli, if |zi|≥τi,
vizi + oiz

3
i , else,

with vi = (3−l)
2 τ l−1

i , oi = (l−1)
2 τ l−3

i , i = 1, 2.
In simulation, the design parameters are chosen as c1 =

c2 = 5, µ1 = µ2 = 15, l = 0.6, and τ1 = τ2 = 0.1. Simulation
results are given in Fig. 3. Due to the presence of α̇1 in u,
it can be seen from Fig. 3 that, under conventional finite-time
control laws, singularity issues occur at 2.57s, 5.71s, 8.65s,
11.53s, and 15.31s, while our proposed finite-time switching
control law circumvents such issues.

B. Application to the HFVs Dynamics

Comparative simulations are carried out among the pro-
posed PFC, the conventional finite-time nonsingular terminal
sliding mode unconstrained control (CFC [17]), and the con-
ventional infinite-time constrained control (CIC [29]), whose
controllers are listed in Table I. In this simulation, the vehicle
climbs a maneuver from initial values h = 88, 000 ft and
V = 7700 ft/s to final values h = 91, 000 ft and V = 8700 ft/s,
respectively. The HFVs model parameter values are borrowed
from [7], and the upper and lower thresholds are set as kaV =
−1.15 exp(−0.2t) − 0.05, kbV = 0.15 exp(−0.2t) + 0.05,
kah = −2.4 exp(−0.2t) − 0.1, kbh = 0.1 exp(−0.2t) + 0.1,
kaγ = kaα = kaQ = −0.0048 exp(−0.2t)−0.0002, kbγ = kbQ
= 0.0008 exp(−0.2t)+0.0002, and kbα = 0.0018 exp(−0.2t)
+0.0002. The control parameters are chosen as cV = 5,
µV = 1, p = 5, oV = oγ = oα = oQ = 0.1, ah1 = 10,

ah2 = 1, cγ = 5, µγ = 1, cα = 10, µα = 2, cQ = 40, µQ = 5,
l = 0.6, τV = 0.01, and τγ = τα = τQ = 0.001. Parameters
for adaptive laws are set as ρV = 0.5, ργ = ρα = ρQ = 0.75.
The positive filter parameters are selected as τα1 = τQ1 = 5
and τα2 = τQ2 = 2.5. The initial state variables are set
as V (0) = 7699 ft/s, h(0) = 87998 ft, γ(0) = 0 deg,
α(0) = 1.6325 deg, and Q(0) = 0 deg/s, and the initial
values of Ξ̂V , Ξ̂γ , Ξ̂α, and Ξ̂Q are selected as zero. Specif-
ically, the uncertain aerodynamic coefficients are modelled
as Ci = C∗i (1 + ∆i), where C∗i represents the nominal
coefficient and ∆i represents the uncertain factor ranging from
−30% to 30%. Parameters for actuator dynamics are set as
ωn = 5 rad/s and ζ = 0.95. Based on practical engineering
characteristics, the limitations of the actuators of HFVs are set
as Φ ∈ [0.05, 1.5], Φ̇ ∈ [−1, 1], δe ∈ [−20 deg, 20 deg], and
δ̇e ∈ [−20 deg/s, 20 deg/s].

The fuzzy rules in W ∗T
V ϕV (xV ) are listed as

Rl: If V is F iV , then y is Bl, where i = 1, 2, 3; l = 1, 2, 3.
The fuzzy rules in W ∗T

γ ϕγ(xγ) are listed as
Rl: If γ is F jγ , then y is Bl, where j = 1, 2, 3; l =

1, 2, . . . , 9.
The fuzzy rules in W ∗T

α ϕα(xα) are listed as
Rl: If γ is F jγ , and α is F kα , then y is Bl, where j = 1, 2, 3;

k = 1, 2, 3; l = 1, 2, . . . , 27.
The fuzzy rules in W ∗T

Q ϕQ(xQ) are listed as
Rl: If γ is F jγ , and α is F kα , and Q is F pQ, then y is Bl,

where j = 1, 2, 3; k = 1, 2, 3; p = 1, 2, 3; l = 1, 2, . . . , 81.
Simulation results are given in Figs. 4-5. It can be seen

from Fig. 4 and Fig. 5 (h)-(j) that our proposed method
exhibits a faster convergence rate and a smaller steady s-
tate tracking error for both velocity and altitude channels,
while guaranteeing the satisfaction of asymmetric time-varying
constraints. From Fig. 5 (a)-(b), it can be observed that
our proposed method not only satisfies actuator constraints,
but displays a smoother response and a smaller magnitude
than CFC and CIC. Fig. 5 (c)-(g) show the boundedness
of flight state variables γ, α, Q, η1, and η2 of PFC, CFC,
and CIC. In Tables II-III, the tracking performances of PFC,
CFC, and CIC are quantified via several performance indices:
integral absolute error (IAE)

[ ∫ T
0
|e(t)|dt

]
, integral time ab-

solute error (ITAE)
[ ∫ T

0
t|e(t)|dt

]
, root mean square error

(RMSE)
[

1
T

∫ T
0
e2(t)dt

] 1
2 , and mean absolute error (MAE)[

1
T

∫ T
0
|e(t)|dt

]
. In addition, the control indexes are defined

as the mean absolute control actions (MACA)
[

1
T

∫ T
0
|Φ|dt

]
,[

1
T

∫ T
0
|Φ̇|dt

]
,
[

1
T

∫ T
0
|δe|dt

]
, and

[
1
T

∫ T
0
|δ̇e|dt

]
. Tables II-III

show that the control effort of PFC is smaller than the one
of CFC and CIC and that the performance indexes of PFC
are smaller than those of CFC and CIC, which show that the
proposed design scores better than the state of the art in terms
of tracking performance, control effort and smoothness.

VI. CONCLUSION

A novel fuzzy adaptive design is constructed for HFVs
in spite of asymmetric time-varying constraints and actuator
constraints. It is shown that the proposed differentiable smooth
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Fig. 4: (a) Velocity tracking performance; (b) Altitude tracking performance.
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Fig. 5: (a) Fuel equivalence ratio Φ; (b) Elevator angular deflection δe; (c) FPA γ; (d) AOA α; (e) Pitch rate Q; (f) First
generalized flexible coordinate η1; (g) Second generalized flexible coordinate η2; (h) FPA tracking error zγ ; (i) AOA tracking
error zα; (j) Pitch rate tracking error zQ.

adaptive fuzzy controller can ensure finite-time convergence
with the aid of a smooth switch between a fractional and a
linear control. Tan-type BLFs are incorporated into the design
to guarantee the satisfaction of asymmetric time-varying con-
straints imposed on flight state variables. Auxiliary systems
are constructed to counteract the adverse effects caused by
actuator physical constraints. It is worth investigating how
the proposed method can be adopted in a distributed control
setting like in [44]-[45], where the multiple HFVs have to
minimize a consensus error in place of a tracking error.

APPENDIX

PROOF OF THEOREM 1
Construct the entire Lyapunov function

L = L̄V + LQ +
y2
γ

2
+
y2
α

2
+
y2
Q

2
, (62)

where Ly =
y2γ
2 +

y2α
2 +

y2Q
2 .

The time derivative of Ly is

L̇y≤ yQιQ

(
zα, żα, kα (t) , k̇α (t) , k̈α (t) , Ξ̂γ , Ξ̂α, yγ , yα, yQ

)
+ yαια

(
zγ , żγ , kγ (t) , k̇γ (t) , k̈γ (t) , Ξ̂γ , yγ , yα

)
+ yγιγ(zh, żh, kh (t), k̇h (t), k̈h (t), ḣref , ḧref )

− τγ2y
l+1
γ − τγ1y

2
γ −

ḡ2
γτα2y

l+1
α

g
γ

−
ḡ2
γτα1y

2
α

g
γ

− τQ2y
l+1
Q − τQ1y

2
Q. (63)

Define a compact set as Ωn = {(zh, żh, zγ , żγ , zα, żα,
kh(t), k̇h (t), k̈h (t), kγ(t) , k̇γ (t) , k̈γ (t) , kα(t) , k̇α (t) , k̈α (t) ,
Ξ̂γ , Ξ̂α, yγ , yα, yQ)}, with ∆1 being a positive constant. If
L(t) ≤ ∆1, together with Assumption 1, it can be obtained
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TABLE III: Performance indices of velocity and altitude channels for the three designs.

Performance Velocity Channel Altitude Channel

Indices PFC CFC CIC PFC CFC CIC

IAE 0.0602 0.1975 0.1603 10.5238 17.4467 16.9052

ITAE 0.5220 8.3307 6.0020 233.8438 523.4490 602.7337

RMSE 0.0040 0.0055 0.0045 0.1020 0.1270 0.1022

MAE 4.3277∗10−5 2.0448∗10−4 1.9667∗10−4 0.0095 0.0123 0.0119

that there always exists a positive constant Λ? such that
ι?(·) ≤ Λ? on the compact set Ωn×Ωref with ? standing for
γ, α, and Q. By applying Young’s inequality and combining
(33) with (58), the derivative of L is derived as

L̇ ≤−cV tan

(
πz2

V

2k2
V (t)

)
−ch tan

(
πz2

h

2k2
h(t)

)
−cγ tan

(
πz2

γ

2k2
γ(t)

)

−cα tan

(
πz2

α

2k2
α(t)

)
−cQ tan

(
πz2

Q

2k2
Q(t)

)
−µV SV 1−µhSh1

−µγSγ1−µαSα1−µQSQ1−
1

2
(p+2)(SV 2−1)−_

τ γ1y
2
γ

− 1

2
(p+ 2) (Sh2 − 1)− 1

2
(p+ 2) (Sγ2 − 1)− _

τ α1y
2
α

− 1

2
(p+ 2) (Sα2 − 1)− 1

2
(p+ 2) (SQ2 − 1)−_

τQ1y
2
Q

−τγ2y
l+1
γ −τα2y

l+1
α −τQ2y

l+1
Q +Ξ̃V Ξ̂V +Ξ̃γΞ̂γ+Ξ̃αΞ̂α

+Ξ̃QΞ̂Q + Ξ̃V Ξ̂lV + Ξ̃γΞ̂lγ + Ξ̃αΞ̂lα + Ξ̃QΞ̂lQ, (64)

where _
τ γ1 = τγ1 − 1/(2χγ), _τ α1 = τα1 − 1/(2χα), _τQ1 =

τQ1 − 1/(2χQ) and d = χγΛ2
γ/2 + χαΛ2

α/2 + χQΛ2
Q/2 with

χγ , χα, χQ being positive constants. Here we choose τγ1 >

1/(2χγ), τα1 > 1/(2χα) and τQ1 > 1/(2χQ) such that _τ γ1 >

0, _τ α1 > 0 and _
τQ1 > 0. According to Lemmas 1-2, we have

Ξ̃?Ξ̂?≤Ξ2
?−

1

2
Ξ̃2
?, Ξ̃?Ξ̂

l
?≤

1

1+l

(
2Ξ1+l

? −
(
Ξ̃2
?

) 1+l
2

)
. (65)

Then the inequation (64) can be rewritten as

L̇ ≤ − 1

1 + l

[(
Ξ̃2
V

) 1+l
2

+
(

Ξ̃2
γ

) 1+l
2

+
(

Ξ̃2
α

) 1+l
2

+
(

Ξ̃2
Q

) 1+l
2

]
− cV tan

(
πz2

V

2k2
V (t)

)
−ch tan

(
πz2

h

2k2
h(t)

)
−cγ tan

(
πz2

γ

2k2
γ(t)

)

−cα tan

(
πz2

α

2k2
α(t)

)
−cQ tan

(
πz2

Q

2k2
Q(t)

)
−µV SV 1−µhSh1

−µγSγ1−µαSα1−µQSQ1−
1

2
(p+2)(SV 2−1)−_

τ γ1y
2
γ

− 1

2
(p+ 2) (Sh2 − 1)− 1

2
(p+ 2) (Sγ2 − 1)− _

τ α1y
2
α

− 1

2
(p+ 2) (Sα2 − 1)− 1

2
(p+ 2) (SQ2 − 1)−_

τQ1y
2
Q

−τγ2y
l+1
γ −τα2y

l+1
α −τQ2y

l+1
Q − 1

2
Ξ̃2
V −

1

2
Ξ̃2
γ−

1

2
Ξ̃2
α

− 1

2
Ξ̃2
Q + d. (66)

where d = 2
1+l

(
Ξ1+l
V + Ξ1+l

γ + Ξ1+l
α + Ξ1+l

Q

)
+ Ξ2

V + Ξ2
γ +

Ξ2
α + Ξ2

Q. From the definition of switching functions (39) and
(40), the following two cases should be considered.

Case 1: When |z?| < τ?, we have the derivative of L as

L̇ ≤−
[
cV + µV tanl−1

(
πτ2
V

2k2
V (t)

)]
tan

(
πz2

V

2k2
V (t)

)
− 1

2
Ξ̃2
V

−

[
cγ + µγtanl−1

(
πτ2
γ

2k2
γ (t)

)]
tan

(
πz2

γ

2k2
γ (t)

)
− 1

2
Ξ̃2
γ

−
[
cα + µαtanl−1

(
πτ2
α

2k2
α (t)

)]
tan

(
πz2

α

2k2
α (t)

)
− 1

2
Ξ̃2
α

−

[
cQ+µQtanl−1

(
πτ2
Q

2k2
Q (t)

)]
tan

(
πz2

Q

2k2
Q (t)

)
− 1

2
Ξ̃2
Q

−
[
ch + µhtanl−1

(
πτ2
h

2k2
h (t)

)]
tan

(
πz2

h

2k2
h (t)

)
− _
τ γ1y

2
γ

− _
τ α1y

2
α −

_
τQ1y

2
Q + d. (67)

Noting (67), we also have

L̇ ≤ −$L+ d, (68)

in which $=min
{

π
k?(t)

[
c?+µ?tanl−1

(
πτ2
?

2k2?(t)

)]
, ρ?, 2

_
τ ?1

}
.

Integrating (68) over [0, t], we have

L (t) ≤
(
L (0)− d

$

)
e−$t +

d

$
. (69)

This fact implies that all closed-loop signals are bounded.
Case 2: When |z?| ≥ τ?, we have the derivative of L as

L̇ ≤ − 1

1+l

[(
Ξ̃2
V

) 1+l
2

+
(

Ξ̃2
γ

) 1+l
2

+
(

Ξ̃2
α

) 1+l
2

+
(

Ξ̃2
Q

) 1+l
2

]
− µV tan

(
πz2

V

2k2
V (t)

)
−µV tanl

(
πz2

V

2k2
V (t)

)
− 1

2
Ξ̃2
V

− µγtan

(
πz2

γ

2k2
γ (t)

)
− µγtanl

(
πz2

γ

2k2
γ (t)

)
− 1

2
Ξ̃2
γ

− µαtan

(
πz2

α

2k2
α (t)

)
− µαtanl

(
πz2

α

2k2
α (t)

)
− 1

2
Ξ̃2
α

− µQtan

(
πz2

Q

2k2
Q (t)

)
−µQtanl

(
πz2

Q

2k2
Q (t)

)
− 1

2
Ξ̃2
Q

− µhtan

(
πz2

h

2k2
h (t)

)
−µhtanl

(
πz2

h

2k2
h (t)

)
−_
τ γ1y

2
γ

−_
τ α1y

2
α−

_
τQ1y

2
Q−τγ2y

l+1
γ −τα2y

l+1
α −τQ2y

l+1
Q +d. (70)
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It then follows from (70) that

L̇ ≤ −κ1L− κ2L
l + d, (71)

where κ1 = min
{

π
k?(t)c?, ρ?, 2

_
τ ?1

}
, κ2 = min

{(
π

k?(t)

)l
µ?,

2lτ?2,
1

1+l (2ρ?)
l
}

.
By virtue of Theorem 5.2 of [43], there always exists a finite

time t such that L ≥ (2d/κ2)(1/l) for all t ∈ [0, t]. Thus for
all t ∈ [0, t], one has L̇ ≤ −κ1L−κ2L

l/2, and it then comes
from Lemma 3 that the fast finite-time stability of the closed-
loop system can be ensured with a finite settling time T ≤

1
κ1(1−l) ln

(
(2κ1L

1−l(0) + κ2)/κ2

)
. Furthermore, it is readily

seen that t ≤ T . Therefore, for ∀t > T , L ≤ (2d/κ2)(1/l).
Then all internal error signals will converge into the following
compact sets

z? ≤ kb?

√
1− exp

(
−2 (2d/κ2)

1
l

)
,

z? ≥ka?

√
1− exp

(
−2 (2d/κ2)

1
l

)
,

|Ξ̃V | ≤
√

2ρV (2d/κ2)
1
l , |Ξ̃γ | ≤

√
2ργ (2d/κ2)

1
l ,

|Ξ̃Q| ≤
√

2ρQ (2d/κ2)
1
l , |Ξ̃α| ≤

√
2ρα (2d/κ2)

1
l ,

|yγ | ≤
√

2
(

2d/κ2

) 1
2l

, |yα| ≤
√

2
(

2d/κ2

) 1
2l

,

|yQ| ≤
√

2 (2d/κ2)
1
l ,

(72)

in finite time. Next, we prove that the constraints are never
violated. From (62), (68) and (71), we note that all closed-
loop signals are semi-globally-uniformly-ultimately-bounded
and tan

(
πz2?

2k2?(t)

)
∈ L∞, then we conclude that z? ∈ (ka? , kb?)

for ∀t > 0. This completes the proof. �
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