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1
INTRODUCTION

One important characteristic of human intelligence is that it is able to learn from known
examples and further generalize the learned knowledge to unseen objects. For instance,
a child can distinguish apples and pears by himself after being shown several examples of
apples and pears. This is because he/she can summarize (or extract) the discriminative
features between apples and pears, and then apply this knowledge to unseen examples.

Inspired by the learning manner of humans, artificial intelligence aims to build ma-
chine learning models to enable machines to learn from examples. In machine learning,
the process of learning from known examples (termed as training data) to make predic-
tions on unseen examples is called supervised learning. The training data comprises
pairs of input data (the representative features for describing examples) and target val-
ues. From it, the supervised learning algorithm aims to infer a mapping function (from
the input data to the target values) which can be generalized to predict the target values
for new input data. For instance, in the task of face recognition, the training data con-
sists of a set of face images (input data) labeled with the associated person names (target
values). We can train a supervised learning model to learn the underlying mapping be-
tween faces and labeled names, then the trained model can be used to predict the name
of a newly observed face. In this example, we aim to classify a data sample (a face image)
into one of a finite number of candidate categories (person names) and the target value
is the corresponding category label (person name). Such supervised learning problems
are typically referred to as classification problems. Another classical type of supervised
learning problems is called regression, in which the target value is a continuous value
that indicates the desired property of the object. For instance, we aim to estimate the
age of a person from face images in the task of human age estimation, then the target
value is the age which is a continuous value.

The input data for a supervised learning model is not always a single observation.
Instead, it could be a sequence of observations, in which the order matters. Figure 1.1
presents an example of a sequence x1,...,T and its associated target value y . The sequence
consists of T observations in which xt ∈ RD denotes the representative features for de-
scribing the observation at the t-th position. The observations in the sequence can be

1
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Informative part

Target value

Sequence

Order (time, space, etc.)

Observation
 at step 2  

Figure 1.1: The graphical visualization of a sequence x1,...,T . It consists of T observations in which xt ∈ RD

denotes the observation at the t-th position (xt can be raw redundant features or extracted features). The
informative subsequence which is useful for the task of discrimination is indicated by gray circles. y is its
associated target value which is to be predicted using a trained supervised learning model.

arranged either in temporal order (also referred to as time series) or in any other sequen-
tial order such as spatial order. In real life, extensive forms of information in a vast variety
of human activities can be represented as sequence data. Well-known examples include
audio signals in speech, pen trajectories in handwriting or signature, recorded videos as
a sequence of images and text documents as a sequence of words.

A potential straightforward way to deal with sequence data is to concatenate all the
observations of the sequence into one observation and feed it to traditional supervised
learning models. However, it is cumbersome due to several reasons. First of all, the
length of sequence samples may be variable instead of a fixed value. For example, sig-
natures from the same person (Figure 1.2) can have varying lengths. The concatena-
tion of all observations in a sequence would result in different lengths of feature vectors
for sequences with different lengths, which is hardly handled by traditional supervised
learning models. Secondly, the input sequence data may contain irrelevant segments
(Figure 1.1) which create potential interference in the learning process. In this scenario,
the learner needs to automatically distinguish the informative parts in the sequence.
Generally, this is done by adding a feature selection to the learner but most custom ap-
proaches implement this as an extra independent step from the learning (prediction)
step which introduces redundancies. Consequently, a more optimal approach would
be to integrate the step of distinguishing the informative parts in the sequence into the
learner. The third reason relates to the specific nature of sequence data, i.e. the obser-
vations at different positions are typically not independent. As they generally exhibit
some kind of temporally shift-invariant correlations. For example, suppose a signature
shown in Figure 1.2 is represented by a sequence of three measurements over time: pen
pressure and pen movement in x-direction and y-direction. Obviously, these observa-
tions are temporally related, changing this order will inadmissibly result in a signature
with different appearance. Hence, temporal dependency is essential to label signatures.
While, in principle, these temporal dependencies can be captured by current learners
when the observations are presented in an ordered way, they potentially require a lot
more training examples than when these temporal dependencies are explicitly modeled
in the learner.

This thesis focuses on developing learners that can explicitly deal with sequence
data. We will first give a brief introduction to supervised learning on sequence data.
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genuine forged genuine forged

Subject-1 Subject-2

Figure 1.2: Signature examples from MCYT_Signature corpus [1]. We visualize two groups of signatures from
two subjects, each group includes one genuine and one forged signature. For each signature, the pen moves
from cyan color to magenta color. Wider line indicates higher pressure.

Then, we will elaborate on the research questions investigated in this thesis, finally the
contributions of this thesis will be summarized.

1.1. SUPERVISED LEARNING ON SEQUENCE DATA
Given a sequence as input, the goal of supervised learning on sequence data is to pre-
dict the target value for this sequence by training a model. Formally, suppose we are
given an input sequence x1,...,T = {x1, . . . ,xT } of length T in which xt ∈ RD denotes the
D-dimensional feature vector used to describe the observation at the t-th time step. We
are interested in building a model to predict the target value y for the sequence. To this
end, a mapping function f is learned from the input sequence to the target value using
a training set D = {x(n)

1,...,T , y (n)}n=1,...,N , which contains N pairs of sequences and their
associated target values (the length T of sequences can vary). Typically this is achieved
by estimating the model parameters Θ to maximally fit the mapping function f to the
training set D . Mathematically, the model is trained by minimizing a specific loss func-
tion with respect to the parametersΘ:

min
Θ

N∑
n=1

L(y (n), f (x(n)
1,...,T )). (1.1)

Herein, L is the loss function which quantifies the extent to which the prediction f (x(n)
1,...,T )

deviates from the true target value y (n) for training sample x(n)
1,...,T . For classification tasks,

a commonly used loss function is the negative log-likelihood function, which is designed
to maximize the predicted probability of the true label. In this case, the mapping func-
tion f predicts a probability distribution P ∈RK over all K classes instead of predicting a
single class given the input x(n)

1,...,T :

P (y|x(n)
1,...,T ) = f (x(n)

1,...,T ),
K∑

i=1
P (yi |x(n)

1,...,T ) = 1, (1.2)

where P (yi |x(n)
1,...,T ) denotes the predicted probability (termed as conditional likelihood)

for the i -th class. We seek to maximize the conditional likelihood for the true label
P (y (n)|x(n)

1,...,T ), which is equivalent to minimizing the negative value:

L(y (n), f (x(n)
1,...,T )) =− log(P (y (n)|x(n)

1,...,T )). (1.3)
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Here we work with log likelihood for mathematical convenience. This is also known as
Maximum Likelihood Estimation (MLE).

Key for supervised learning on sequence data is the modeling of the mapping func-
tion f (x(n)

1,...,T ), which should capture the discriminative information in the sequence as
well as exploiting the ordering relationships between the observations in the sequence.

1.1.1. SUPERVISED LEARNING ON SINGLE SEQUENCE
There is substantial amount of prior work on sequence classification, which can be cate-
gorized into two types: generative and discriminative modeling. A generative model fo-
cuses on modeling the joint probability distribution P (x1,...,T , y) of input sequence data
x1,...,T and target values y . It can be applied for classification by obtaining the conditional
probability P (y |x1,...,T ) via Bayes’ rule:

P (y |x1,...,T ) = P (x1,...,T , y)

P (x1,...,T )
(1.4)

A well-known example of a generative model is the hidden Markov model (HMM) [2],
which models sequence data using hidden states. HMM can be employed for sequence
classification by modeling the data distribution for each class P (x1,...,T |y) and then the
class priors P (y) can be integrated via Bayes’ rule to calculate the posterior probability:

P (y |x1,...,T ) = P (x1,...,T , y)

P (x1,...,T )
= P (x1,...,T |y) ·P (y)

P (x1,...,T )
(1.5)

A potential downside of these HMMs-based models is that they first construct features
based on generative models (HMMs) and then perform classification, which is a two-
stage process. The constructed features may not be well suited for the classification task
at hand. In this thesis, we focus on discriminative models, which model the conditional
distribution P (y |x1,...,T ) and perform classification directly.

A example of a discriminative model for sequence labeling is Conditional Random
Fields (CRFs) [3], which model the temporal dependencies by a chain structure (Fig-
ure 1.3). While standard CRFs perform well on high-dimensional data, the linear nature
of most CRF models limits their modeling capability to learn complex non-linear de-
cision boundaries. To address this limitation, several models extended from CRFs are
proposed to deal with non-linear scenarios. A prominent example is the hidden-state
conditional random field (HCRF) [4], which introduces a chain of k-nomial hidden vari-
ables to model the non-linear latent structure (Figure 1.3). The HCRF has been success-
fully applied in many tasks such as gesture recognition [5] and action recognition [6]. A
potential weakness of the HCRF is that the number of latent states the model can rep-
resent (for modeling the decision boundary) grows linearly with the number of hidden
variables. This implies that the training of complex models with a large number of hid-
den variables is very prone to overfitting, while models with smaller numbers of hidden
variables may be too simple to represent a good classification function. This downside
motivated us to pose our first research question:

• Research Question 1: can we propose a sequence classification model which is able
to model complex decision boundaries with a limited number of latent variables?
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y1

x1 x2 xT-1 xT

y2 yT-1 yT

…

…

y

X1 X2 XT-1 XT

...

...

S1S1 S2S2 ST-1ST-1 STST

Linear-chain CRFs HCRF

Figure 1.3: The architectures of linear-chain CRFs and HCRF.

Most existing sequence classification models are designed for well-segmented sequences
which have been pre-processed to remove irrelevant parts. Therefore, these methods
cannot be directly applied to unsegmented sequence data, reducing their applicability.
As a result, there is much attention for sequence classification models that are able to
ignore the irrelevant parts automatically. A popular approach is the gated recurrent net-
work such as Gated Recurrent Units (GRU) [7] or Long Short-Term Memory (LSTM) [8].
They employ gates (e.g., the input gate, forget gate and output gate in LSTM shown in
Figure 1.4) to control the information flow for each time step and filter out the irrele-
vant information. However, these gates are performed on each of the hidden states and
hence cannot interpret the relevance of each observation of the input sequence. This
limitation brings us a new research question:

• Research Question 2: can we propose a sequence classification model which is able
to deal with unsegmented sequences and meanwhile interpret the relevance of each
time step of the input sequence to the classification task?

Figure 1.4: Long Short-Term Memory (LSTM) employs three gates to control the information flow for each time
step. The figure is adapted from Graves et al. [9].

Typical supervised learning models on sequence data take as input pre-defined features
describing each observation of the input sequence (either handcrafted or automatically
extracted with some procedure). The benefit is that the sequence model can then focus
on modeling the temporal information contained in the sequence. However, the po-
tential drawback of these approaches is that the feature extraction and the supervised
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learning are performed as a two-state process. Consequently, the extracted features may
not be well suited for the supervised task at hand. Alternatively, one can learn features
simultaneously with the supervised learning. In such a one-stage approach, features
would match the sequence-based model, but the question is whether this is feasible
since two tasks need to be performed at the same time. This prompted us for the fol-
lowing research question:

• Research Question 3: can we propose a one-stage supervised sequence model which
learns features together with the supervised learning task?

1.1.2. MODELING SIMILARITY BETWEEN PAIRED SEQUENCES
Apart from the supervised learning on a single sequence, some supervised learning tasks
involve paired sequences. Take the example of signature verification shown in Figure 1.2,
a typical way to validate the authenticity of a signature is to compare it to a genuine sig-
nature in the database and measure their similarity as a confidence score. In this sce-
nario, we aim to build a supervised learning model that takes a pair of sequences as in-
put and measure the similarity between them as output, which is depicted in Figure 1.5.
Note that both sequences can have different lengths T1 and T2, and the time samples
x(1)

t and x(2)
t may not correspond to the same time or spatial location. Accordingly, the

mapping function f is defined on the paired sequences and corresponding loss function
in Equation 1.1 becomes:

min
Θ

∑
([n,1],[n,2])∈D

L(y ([n,1],[n,2]), f (x[n,1]
1,...,T1

,x[n,2]
1,...,T2

)), (1.6)

Herein ([n,1], [n,2]) is a pair of sequences in the training set D , and y ([n,1],[n,2]) is the tar-
get value indicating the similarity between two sequences. The challenges in supervised
learning on paired sequences lie not only in the modeling of each single sequence, but
in modeling the interdependencies between them.

Figure 1.5: The graphical visualization of a pair of sequences x(1)
1,...,T1

and x(2)
1,...,T2

together with the target value

y (1,2) which indicates the association to be investigated between these two sequences. The supervised learn-
ing on paired sequences aims to build models to learn a mapping function from the input paired sequences

(x(1)
1,...,T1

, x(2)
1,...,T2

) to the target value y (1,2).

Traditional techniques for measuring similarity between sequences are based on hand-
crafted similarity measures like Dynamic Time Warping (DTW) [11]. DTW is good at
aligning two sequences which share a similar shape but may vary in speed (Figure 1.6).
Consequently, DTW is good at identifying, for example, signatures from the same per-
son. However, because DTW exploits the signal shape so explicitely, it is difficult for
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Figure 1.6: Sequence X and sequence Y are aligned by Dynamic Time Warping. The aligned points are indicated
by the arrows. The figure is adapted from Müller [10].

DTW to recognize, for example, whether two speech signals with different content are
uttered from the same person for voice verification. To address this shortcoming, simi-
larity measures were proposed to employ a generative model to model the data distribu-
tion. For instance, Fisher kernels [12] have been widely adopted in Computer Vision [13].
However, these methods model the data distribution in an unsupervised way, which can-
not exploit the class information effectively and may result in irrelevant features for the
underlying similarity structure. Those findings motivate us to investigate the following
research question:

• Research Question 4: can we propose a sequence model that learns a good similar-
ity measure in a supervised way?

1.1.3. MODELING ASSOCIATION BETWEEN TWO SEQUENCES

This thesis also attempts to model some kind of association between two input sequences.
The two sequences contain different types of features (with different dimensionalities)
that describe distinct objects (shown in Figure 1.7). Specifically, we seek to model the
preference of a user over an item in a recommendation system, In this scenario, the user
can be described by a sequence of all the items purchased by this user. Whereas the other
input sequence describes an item by recording the representations of all users who have
purchased this item. On the one hand, the two sequences should be modeled separately

Figure 1.7: Given two sequences x1,...,T1 and z1,...,T2 , we aim to model the association y between these two
sequences. The two sequences contain different types of features that describe distinct objects.

using individual modules since they own different properties, which is in contrast to the
same type of sequences modeled with two same modules in the case of modeling sim-
ilarity. On the other hand, it is crucial to model the dependencies between them since
they affect each other mutually. This specific topic gives rise to an interesting research
question that is worth to explore:

• Research Question 5: Given two input sequences representing a pair of historic user
and item data, how to model the preference of the user over the item, which takes
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into account not only the information contained in each individual sequence, but
also the interdependencies between them?

1.2. CONTRIBUTIONS
The main contributions of this thesis are that we propose models for supervised learning
on sequence data to address the research questions posed in Section 1.1. Each of these
questions is specifically approached in an individual chapter in the remainder of this
thesis.

Our first contribution is a sequence classification model, called the hidden-unit lo-
gistic model (HULM), which uses binary stochastic hidden units to model latent struc-
ture in sequence data. The hidden units are connected in a chain structure that models
temporal dependencies in the input sequence. Notably, compared with the prior mod-
els for sequence classification such as Hidden Conditional Random Fields (HCRFs), our
proposed model is able to model much more complex decision boundaries since our
model can represent an exponential number of hidden states with the same number of
hidden variables as HCRF model. This work answers Research Question 1 and is pre-
sented in Chapter 2.

Chapter 3 investigates Research Question 2. Specifically, it introduces a sequence
classification model, referred to as Temporal Attention-gated Model (TAGM), which in-
tegrates ideas from attention models and gated recurrent networks to better deal with
noisy or unsegmented sequences. We extend the concept of the attention model to mea-
sure the relevance of each time step of a sequence. We then use a novel gated recurrent
network to learn a latent representation for the final classification. An important advan-
tage of this model is that the learned attention weights provide a meaningful interpreta-
tion for the salience of each time step in the input sequence.

The third contribution of this thesis is an end-to-end architecture for age estima-
tion from facial expression videos, which attempts to combine the feature learning and
sequence supervised learning together as an integrated system, discussed in Research
Question 3. Our proposed model is able to simultaneously learn both the appearance
features in each frame of the input video as well as the temporal dynamics. More impor-
tantly, we propose to leverage attention models for salience detection in both the spatial
domain for each single image and the temporal domain for the whole video. We de-
sign a specific spatially-indexed attention mechanism to extract the salient facial regions
in each individual image, and a temporal attention layer to assign attention weights to
frames. This approach not only improves the performance by allowing the model to
focus on informative frames and facial areas, but it also offers an interpretable corre-
spondence between the spatial facial regions as well as temporal frames, and the task of
age estimation. This work is presented in Chapter 4.

Chapter 5 proposes an model named Siamese Recurrent Networks (SRNs) to address
Research Question 4 and learns a similarity measure between two input sequences in a
supervised way. In particular, our model learns a latent vectorial representation for each
input sequence in such a way that similar sequences are modeled by similar representa-
tions, while dissimilar sequences are modeled by a dissimilar representations.

Chapter 6 explores Reserach Question 5 by developing Interacting Attention-gated
Recurrent Networks (IARN) to model the interaction between users and items in rec-
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ommendation systems. In this scenario, two sequences represent a pair of user and item
history data and the goal is to predict the preference of the user over the paired item. Our
approach not only models the dynamics in both user’s and item’s information jointly, but
also measures the relevance of each time step of two sequences in an interacting way by
a novel attention scheme integrated in the recurrent networks. The resulting latent rep-
resentations of both the user and item are used to predict the preference of user over the
item.

Chapter 7 concludes the thesis and presents possible research directions for future
work.
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MULTIVARIATE TIME SERIES

CLASSIFICATION USING THE

HIDDEN-UNIT LOGISTIC MODEL

We present a new model for multivariate time series classification, called the hidden-unit
logistic model, that uses binary stochastic hidden units to model latent structure in the
data. The hidden units are connected in a chain structure that models temporal depen-
dencies in the data. Compared to the prior models for time series classification such as
the hidden conditional random field, our model can model very complex decision bound-
aries because the number of latent states grows exponentially with the number of hidden
units. We demonstrate the strong performance of our model in experiments on a variety
of (computer vision) tasks, including handwritten character recognition, speech recogni-
tion, facial expression, and action recognition. We also present a state-of-the-art system
for facial action unit detection based on the hidden-unit logistic model.

This chapter is published as:
Wenjie Pei, Hamdi Dibeklioǧlu, David M. J. Tax and Laurens van der Maaten. Multivariate Time-Series Classi-
fication Using the Hidden-Unit Logistic Model. IEEE Transactions on Neural Networks and Learning Systems,
2017.
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2. MULTIVARIATE TIME SERIES CLASSIFICATION USING THE HIDDEN-UNIT LOGISTIC

MODEL

2.1. INTRODUCTION

Time series classification is the problem of assigning a single label to a sequence of ob-
servations (i.e., to a time series). Time series classification has a wide range of applica-
tions in computer vision. A state-of-the-art model for time series classification problem
is the hidden-state conditional random field (HCRF) [4], which models latent structure
in the data using a chain of k-nomial latent variables. The HCRF has been successfully
used in, amongst others, gesture recognition [5], object recognition [4], and action recog-
nition [6]. An important limitation of the HCRF is that the number of model parameters
grows linearly with the number of latent states in the model. This implies that the train-
ing of complex models with a large number of latent states is very prone to overfitting,
whilst models with smaller numbers of parameters may be too simple to represent a
good classification function. In this chapter, we propose to circumvent this problem
of the HCRF by replacing each of the k-nomial latent variables by a collection of H bi-
nary stochastic hidden units. To keep inference tractable, the hidden-unit chains are
conditionally independent given the time series and the label. Similar ideas have been
explored before in discriminative RBMs [14] for standard classification problems and in
hidden-unit CRFs [15] for sequence labeling. The binary stochastic hidden units allow
the resulting model, which we call the hidden-unit logistic model (HULM), to represent
2H latent states using only O(H) parameters. This substantially reduces the amount of
data needed to successfully train models without overfitting, whilst maintaining the abil-
ity to learn complex models with exponentially many latent states. Exact inference in our
proposed model is tractable, which makes parameter learning via (stochastic) gradient
descent very efficient. We show the merits of our hidden-unit logistic model in exper-
iments on computer-vision tasks ranging from online character recognition to activity
recognition and facial expression analysis. Moreover, we present a system for facial ac-
tion unit detection that, with the help of the hidden-unit logistic model, achieves state-
of-the-art performance on a commonly used benchmark for facial analysis.

The remainder of this chapter is organized as follows. Section 2 reviews prior work
on time series classification. Section 3 introduces our hidden-unit logistic model and
describes how inference and learning can be performed in the model. In section 4, we
present the results of experiments comparing the performance of our model with that
of state-of-the-art time series classification models on a range of classification tasks. In
section 5, we present a new state-of-the-art system for facial action unit detection based
on the hidden-unit logistic model. Section 6 concludes the chapter.

2.2. RELATED WORK

There is a substantial amount of prior work on multivariate time series classification.
Much of this work is based on the use of (kernels based on) dynamic time warping (e.g.,
[16]) or on hidden Markov models (HMMs) [2]. The HMM is a generative model that
models the time series data in a chain of latent k-nomial features. Class-conditional
HMMs are commonly combined with class priors via Bayes’ rule to obtain a time series
classification models. Alternatively, HMMs are also frequently used as the base model
for Fisher kernel [17], which constructs a time series representation that consists of the
gradient a particular time series induces in the parameters of the HMM; the resulting
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Figure 2.1: Graphical model of the hidden-unit logistic model.

representations can be used on standard classifiers such as SVMs. Some recent work
has also tried to learn the parameters of the HMM in such a way as to learn Fisher ker-
nel representations that are well-suited for nearest-neighbor classification [18]. HMMs
have also been used as the base model for probability product kernels [19], which fit a
single HMM on each time series and define the similarity between two time series as
the inner product between the corresponding HMM distributions. A potential drawback
of these approaches is that they perform classification based on (rather simple) genera-
tive models of the data that may not be well suited for the discriminative task at hand.
By contrast, we opt for a discriminative model that does not waste model capacity on
features that are irrelevant for classification. In contrast to HMMs, conditional random
fields (CRFs [3]) are discriminative models that are commonly used for sequence label-
ing of time series using so-called linear-chain CRFs. Whilst standard linear-chain CRFs
achieve strong performance on very high-dimensional data (e.g., in natural language
processing), the linear nature of most CRF models limits their ability to learn complex
decision boundaries. Several sequence labeling models have been proposed to address
this limitation, amongst which are latent-dynamic CRFs [20], conditional neural fields
[21], neural conditional random fields [22], and hidden-unit CRFs [15]. These models in-
troduce stochastic or deterministic hidden units that model latent structure in the data,
allowing these models to represent nonlinear decision boundaries. As these prior mod-
els were designed for sequence labeling (assigning a label to each frame in the time se-
ries), they cannot readily be used for time series classification (assigning a single label to
the entire time series). Our hidden-unit logistic model may be viewed as an adaptation
of sequence labeling models with hidden units to the time series classification problem.
As such, it is closely related to the hidden CRF model [4]. The key difference between
our hidden-unit logistic model and the hidden CRF is that our model uses a collection
of binary stochastic hidden units instead of a single k-nomial hidden unit, which allows
our model to represent exponentially more states with the same number of parameters.
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An alternative approach to expanding the number of hidden states of the HCRF is
the infinite HCRF (iHCRF), which employs a Dirichlet process to determine the number
of hidden states. Inference in the iHCRF can be performed via collapsed Gibbs sam-
pling [23] or variational inference [24]. Whilst theoretically facilitating infinitely many
states, the modeling power of the iHCRF is, however, limited to the number of “repre-
sented” hidden states. Unlike our model, the number of parameters in the iHCRF thus
still grows linearly with the number of hidden states.

2.3. HIDDEN-UNIT LOGISTIC MODEL
The hidden-unit logistic model is a probabilistic graphical model that receives a time se-
ries as input, and is trained to produce a single output label for this time series. Like the
hidden-state CRF, the model contains a chain of hidden units that aim to model latent
temporal features in the data, and that form the basis for the final classification deci-
sion. The key difference with the HCRF is that the latent features are model in H binary
stochastic hidden units, much like in a (discriminative) RBM. These hidden units zt can
model very rich latent structure in the data: one may think about them as carving up the
data space into 2H small clusters, all of which may be associated with particular clusters.
The parameters of the temporal chains that connect the hidden units may be used to
differentiate between features that are “constant” (i.e., that are likely to be presented for
prolonged lengths of time) or that are “volatile” (i.e., that tend to rapidly appear and dis-
appear). Because the hidden-unit chains are conditionally independent given the time
series and the label, they can be integrated out analytically when performing inference
or learning.

Suppose we are given a time series x1,...,T = {x1, . . . ,xT } of length T in which the ob-
servation at the t-th time step is denoted by xt ∈RD . Conditioned on this time series, the
hidden-unit logistic model outputs a distribution over vectors y that represent the pre-
dicted label using a 1-of-K encoding scheme (i.e., a one-hot encoding): ∀k : yk ∈ {0,1}
and

∑
k yk = 1.

Denoting the stochastic hidden units at time step t by zt ∈ {0,1}H , the hidden-unit
logistic model defines the conditional distribution over label vectors using a Gibbs dis-
tribution in which all hidden units are integrated out:

p(y|x1,...,T ) =
∑

z1,...,T exp{E(x1,...,T ,z1,...,T ,y)}

Z (x1,...,T )
. (2.1)

Herein, Z (x1,...,T ) denotes a partition function that normalizes the distribution, and is
given by:

Z (x1,...,T ) =∑
y′

∑
z′1,...,T

exp{E(x1,...,T ,z′1,...,T ,y′)}. (2.2)

The energy function of the hidden-unit logistic model is defined as:

E(x1,...,T ,z1,...,T ,y) = z>1 π+z>Tτ+c>y+
T∑

t=2
z>t−1diag(A)zt +

T∑
t=1

[
z>t Wxt +z>t Vy+z>t b

]
. (2.3)

The graphical model of the hidden-unit logistic model is shown in Fig. 2.1.
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Next to a number of bias terms, the energy function in (2.3) consists of three main
components: (1) a term with parameters W that measures to what extent particular la-
tent features are present in the data; (2) a term parametrized by A that measures the
compatibility between corresponding hidden units at time step t − 1 and t ; and (3) a
prediction term with parameters V that measures the compatibility between the latent
features z1,...,T and the label vector y. Please note that hidden units in consecutive time
steps are connected using a chain structure rather than fully connected; we opt for this
structure because exact inference is intractable when consecutive hidden units are fully
connected. Intuitively, the hidden-unit logistic model thus assigns a high probability to
a label (for a particular input) when there are hidden unit states that are both “compat-
ible" with the observed data and with a particular label. As the hidden units can take
2H different states, this leads to a model that can represent highly nonlinear decision
boundaries. The following subsections describe the details of inference and learning in
the hidden-unit logistic model. The whole process is summarized in Algorithm 1.

Algorithm 1 The inference and learning of HULM.

Input: A time series x1,...,T = {x1, . . . ,xT } and the associated labels y.
Output:

• The conditional distribution over predicted labels p(y|x1,...,T ) (inference);
• The conditional log-likelihood of the training data: L (Θ) (inference);
• The gradient of L (Θ) with respect to each parameter θ ∈Θ: ∂L

∂θ (learning).

1: Compute the potential functions Ψt ,h(xt , zt−1,h , zt ,h ,y) for each hidden unit h (1 ≤
h ≤ H) at each time step t (1 ≤ t ≤ T ) as indicated in Equation 2.5.

2: for t = 1 → T do
3: Calculate the forward message αt ,h,k with k ∈ {0,1} by Equation 2.9.
4: end for
5: for t = T → 1 do
6: Compute the backward message βt ,h,k by Equation 2.10.
7: end for
8: Compute the intermediate term M(x1,...,T ,y) = ∑

z1,...,T exp{E(x1,...,T ,z1,...,T ,y) either
with αT,h,k or with β1,h,k by Equation 2.11.

9: Compute the partition function Z (x1,...,T ) =∑
y′ M(x1,...,T ,y′).

10: The conditional distribution over predicted labels is calculated by p(y|x1,...,T ) =
M(x1,...,T ,y)

Z (x1,...,T ) .

11: The conditional log-likelihood of the training data L (Θ) is calculated by Equa-
tion 3.7.

12: Compute the marginal distribution over a chain edge ξt ,h,k,l = P (zt ,h = k, zt+1,h =
l |x1,...,T ,y) by Equation 2.13 using forward and backward messages.

13: The gradient of L (Θ) with respect to each parameter θ ∈Θ: ∂L∂θ is calculated by Equa-
tion 2.15 and 2.16 using marginal distribution ξt ,h,k,l .
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2.3.1. INFERENCE
The main inferential problem given an observation x1,...,T is the evaluation of predictive
distribution p(y|x1,...,T ). The key difficulty in computing this predictive distribution is
the sum over all 2H×T hidden unit states:

M(x1,...,T ,y) = ∑
z1,...,T

exp{E(x1,...,T ,z1,...,T ,y)}. (2.4)

The chain structure of the hidden-unit logistic model allows us to employ a standard
forward-backward algorithm that can compute M(·) in computational time linear in T .

Specifically, defining potential functions that contain all terms that involve time t
and hidden unit h:

Ψt ,h(xt , zt−1,h , zt ,h ,y) = exp{zt−1,hAh zt ,h + zt ,hWh xt + zt ,h Vhy+ zt ,hbh} (2.5)

ignoring bias terms, and introducing virtual hidden units z0 = 0 at time t = 0, we can
rewrite M(·) as:

M(·) = ∑
z1,...,T

T∏
t=1

H∏
h=1

Ψt ,h(xt, zt−1,h , zt ,h ,y)

=
H∏

h=1

[ ∑
z1,h ,...,zT,h

T∏
t=1
Ψt ,h(xt , zt−1,h , zt ,h ,y)

]

=
H∏

h=1

[ ∑
zT−1,h

ΨT,h(xT , zT−1,h , zT,h ,y)
∑

zT−2,h

ΨT−1,h(xT−1, zT−2,h , zT−1,h ,y) . . .

]
. (2.6)

In the above derivation, it should be noted that the product over hidden units h can
be pulled outside the sum over all states z1,...,T because the hidden-unit chains are con-
ditionally independent given the data x1,...,T and the label y. Subsequently, the product
over time t can be pulled outside the sum because of the (first-order) Markovian chain
structure of the temporal connections between hidden units.

In particular, the required quantities can be evaluated using the forward-backward
algorithm, in which we define the forward messages αt ,h,k with k ∈ {0,1} as:

αt ,h,k = ∑
z1,h ,...,zt−1,h

t∏
t ′=1

Ψt ′,h(xt ′ , zt ′−1,h , zt ′,h = k,y) (2.7)

and the backward messages βt ,h,k as:

βt ,h,k = ∑
zt+1,h ,...,zT,h

T∏
t ′=t+1

Ψt ′,h(xt ′+1, zt ′,h = k, zt ′+1,h ,y). (2.8)

These messages can be calculated recursively as follows:

αt ,h,k = ∑
i∈{0,1}

Ψt ,h(xt , zt−1,h = i , zt ,h = k,y)αt−1,h,i (2.9)

βt ,h,k = ∑
i∈{0,1}

Ψt+1,h(xt+1, zt ,h = k, zt+1,h = i ,y)βt+1,h,i . (2.10)
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The value of M(x1,...,T ,y) can readily be computed from the resulting forward messages
or backward messages:

M(x1,...,T ,y) =
H∏

h=1

( ∑
k∈{0,1}

αT,h,k

)
=

H∏
h=1

( ∑
k∈{0,1}

β1,h,k

)
. (2.11)

To complete the evaluation of the predictive distribution, we compute the partition func-
tion of the predictive distribution by summing M(x1,...,T ,y) over all K possible labels:
Z (x1,...,T ) =∑

y′ M(x1,...,T ,y′). Indeed, inference in the hidden-unit logistic model is linear
in both the length of the time series T and in the number of hidden units H .

Another inferential problem that needs to be solved during parameter learning is the
evaluation of the marginal distribution over a chain edge:

ξt ,h,k,l = P (zt ,h = k, zt+1,h = l |x1,...,T ,y). (2.12)

Using a similar derivation, it can be shown that this quantity can also be computed from
the forward and backward messages:

ξt ,h,k,l =
αt ,h,k ·Ψt+1,h(xt+1, zt ,h = k, zt+1,h = l , y) ·βt+1,h,l∑

k∈{0,1}αT,h,k
. (2.13)

2.3.2. PARAMETER LEARNING

Given a training set D = {(x(n)1,...,T ,y(n))}n=1,...,N containing N pairs of time series and
their associated label. We learn the parameters Θ= {π,τ,A,W,V,b,c} of the hidden-unit
logistic model by maximizing the conditional log-likelihood of the training data with
respect to the parameters:

L (Θ) =
N∑

n=1
log p

(
y(n)|x(n)

1,...,T

)
=

N∑
n=1

[
log M

(
x(n)

1,...,T ,y(n)
)
− log

∑
y′

M
(
x(n)

1,...,T ,y′
)]

. (2.14)

We augment the conditional log-likelihood with L2-regularization terms on the parame-
ters A, W, and V. As the objective function is not amenable to closed-form optimization
(in fact, it is not even a convex function), we perform optimization using stochastic gra-
dient descent on the negative conditional log-likelihood. The gradient of the conditional
log-likelihood with respect to a parameter θ ∈Θ is given by:

∂L

∂θ
= E

[
∂E(x1,...,T ,z1,...,T ,y)

∂θ

]
P (z1,...,T |x1,...,T ,y)

− E

[
∂E(x1,...,T ,z1,...,T ,y)

∂θ

]
P (z1,...,T ,y|x1,...,T )

.

(2.15)

where we omitted the sum over training examples for brevity. The required expectations
can readily be computed using the inference algorithm described in the previous sub-
section.
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Figure 2.2: Graphical model of the HCRF.

For example, defining r (Θ) = zt−1,h Ah zt ,h +zt ,h Wh xt +zt ,hVh y+zt ,hbh for notational
simplicity, the first expectation can be computed as follows:

E

[
∂E(x1,...,T ,z1,...,T ,y)

∂θ

]
P (z1,...,T |x1,...,T ,y)

= ∑
z1,...,T

P (z1,...,T |x1,...,T ,y)

(
T∑

t=1

H∑
h=1

∂r (Θ)

∂θ

)

=
T∑

t=1

∑
k∈{0,1}

∑
l∈{0,1}

(
ξt−1,h,k,l ·

∂r (Θ)

∂θ

)
. (2.16)

The second expectation is simply an average of these expectations over all K possible
labels y.

2.3.3. COMPARISON WITH HCRF
The hidden-state CRF’s graphical model, shown in Figure 2.2, is similar to that of the
hidden-unit logistic model (HULM). They are both discriminative models which em-
ploy hidden variables to model the latent structures. The key difference between the
two models is in the way the hidden units are defined: whereas the hidden-unit logis-
tic model uses a large number of (conditionally independent) binary stochastic hidden
units to represent the latent state, the HCRF uses a single multinomial unit (much like a
hidden Markov model). As a result, there are substantial differences in the distributions
that the HCRF and HULM can model. In particular, the HULM is a product of experts
model1, whereas the HCRF is a mixture of experts model [25, 26]. A potential advantage
of product distributions over mixture distributions is in the “sharpness” of the distribu-
tions [25]. Consider, for instance, two univariate Gaussian distributions with equal vari-
ance but different means: whereas a mixture those distributions will have higher vari-
ance than each of the individual Gaussians, a product of the distribution will have lower
variance and, therefore, model a much sharper distribution. This can be a substantial

1The expression of M(·) presented earlier clearly shows that HULM models a distribution that is a product over
H experts.
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Figure 2.3: Comparison of HCRF and HULM for binary classification on the banana dataset (ignoring the time
series aspect of the models) with the same number of hidden unitsH . The black lines show the decision bound-
aries learned by both models.

advantage when modeling high-dimensional distributions in which much of the prob-
ability mass tends to be lost in the tails. There also appear to be differences in the total
number of modes that can be modeled by product and mixture distributions in high-
dimensional spaces (although it is hitherto unknown how many modes a mixture of uni-
modal distributions maximally contains [27]). Indeed, theoretical results suggest that
product distributions have more modeling power with the same number of parameters
than mixture distributions; for certain distributions, mixture distributions even require
exponentially more parameters than their product counterparts [28].

To empirically explore these differences, we performed a simple experiment in which
we ignore the temporal component of the HULM and HCRF models (to facilitate visu-
alizations), and train the models on a binary two-dimensional classification problem.
Fig. 2.3 shows the decision boundaries learned by HULM and HCRF models with the
same number of hidden parameters on our test dataset. Indeed, the results suggest that
the HULM can model more complex decision boundaries than HCRFs with the same
number of parameters.

In our experiments, we also observed that HULM models can be trained faster than
HCRF models. We illustrate this in Fig. 2.4, which shows the training time of both models
(with the same experimental configuration) on a facial expression dataset. Whilst these
differences in training speed may be partly due to implementation differences, they are
also the result of the constraint we introduce that the transition matrix between hidden
units in consecutive time steps is diagonal. As a result, the computation of the forward
message α in Eqn. 2.7 and backward message β in Eqn. 2.8 is linear in the number of
hidden units H . Consequently, the quantities M(x1,...,T ,y) in Eqn. 2.11 and marginal dis-
tribution ξt ,h,k,l in Eqn. 2.12 can be calculated in O(T HD). Taking into account the num-
ber of label classes Y , the overall computational complexity of HULM is O(T H(D +Y )).
By contrast, the complexity of HCRF is O(T H 2(D +Y )) [4]. This difference facilitates the
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Figure 2.4: Running time of a single training epoch of the HULM and HCRF model on the facial expression
data (CK+) described in Sec. 2.4.1 as a function of the number of hidden units. We used stochastic gradient
descent with the same configuration to train both the HULM and the HCRF.

use or larger numbers of hidden units H in the HULM model than in the HCRF model.
(Admittedly, it is straightforward to develop a diagonal version of the HCRF model, also.)

2.4. EXPERIMENTS
To evaluate the performance of the hidden-unit logistic model, we conducted classifica-
tion experiments on eight different problems involving seven time series data sets. Since
univariate times series can be considered as a special case of multivariate time series, we
first performed experiments on two univariate time series data sets introduced by UCR
Archive [29]: (1) Synthetic Control and (2) Swedish Leaf, subsequently we evaluated our
models on five multivariate time series data sets : (1) an online handwritten character
data set (OHC) [30]; (2) a data set of Arabic spoken digits (ASD) [31]; (3) the Cohn-Kanade
extended facial expression data set (CK+) [32]; (4) the MSR Action 3D data set (Action)
[33]; and (5) the MSR Daily Activity 3D data set (Activity) [34]. The seven data sets are
introduced in 2.4.1, the experimental setup is presented in 2.4.2, and the results of the
experiments are in 2.4.3.

2.4.1. DATA SETS

UNIVARIATE TIME SERIES DATA SETS

We performed experiments on two univariate UCR data sets: Synthetic Control and Swedish
Leaf. Synthetic Control is a relatively easy data set containing 300 training samples and
300 test samples grouped into 6 classes. All samples in it have the identical length of
time series equaling to 60. We enrich the univariate feature by windowing 10 frames into
1 frame resulting in the 10 dimensions for each frame. Swedish Leaf is a challenging
data set which consists of 500 training samples and 625 test samples with the length of
128 frames spreading in 15 classes. Similarly, we pre-process the data by windowing the
features of 30 frames into 1 frame with 30-dimension feature.
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MULTIVARIATE TIME SERIES DATA SETS

The online handwritten character dataset [30] is a pen-trajectory time series data set
that consists of three dimensions at each time step, viz., the pen movement in the x-
direction and y-direction, and the pen pressure. The data set contains 2858 time series
with an average length of 120 frames. Each time series corresponds to a single hand-
written character that has one of 20 labels. We pre-process the data by windowing the
features of 10 frames into a single feature vector with 30 dimensions.

The Arabic spoken digit dataset contains 8800 utterances [31], which were collected
by asking 88 Arabic native speakers to utter all 10 digits ten times. Each time series con-
sists of 13-dimensional MFCCs which were sampled at 11,025Hz, 16-bits using a Ham-
ming window. We enrich the features by windowing 3 frames into 1 frames resulting in
the 13× 3 dimensions for each frame of the features while keeping the same length of
time series. We use two different versions of the spoken digit dataset: (1) a digit version
in which the uttered digit is the class label and (2) a voice version in which the speaker of
a digit is the class label.

The Cohn-Kanade extended facial expression data set [32] contains 593 image se-
quences (videos) from 123 subjects. Each video shows a single facial expression. The
videos have an average length of 18 frames. A subset of 327 of the videos, which have
validated label corresponding to one of seven emotions (anger, contempt, disgust, fear,
happiness, sadness, and surprise), are used in our experiments. We adopt the publicly
available shape features used in [35] as the feature representation for our experiments.
These features represent each frame by the variation of 68 feature point locations (x, y)
with respect to the first frame [32], which leads to 136-dimensional feature representa-
tion for each frame in the video.

The MSR Action 3D data set [33] consists of RGB-D videos of people performing cer-
tain actions. The data set contains 567 videos with an average length of 41 frames. Each
video should be classified into one of 20 actions such as “high arm wave”, “horizontal
arm wave”, and “hammer”. We use the real-time skeleton tracking algorithm of [36] to
extract the 3D joint positions from the depth sequences. We use the 3D joint position
features (pairwise relative positions) proposed in [34] as the feature representation for
the frames in the videos. Since we track a total of 20 joints, the dimensionality of the
resulting feature representation is 3× (20

2

) = 570, where
(20

2

)
is the number of pairwise

distances between joints and 3 is dimensionality of the (x, y, z) coordinate vectors. It
should be noted that we only extract the joints features to evaluate performances of dif-
ferent time series classification models mentioned in this chapter rather than pursue
state-of-the-art action-recognition performance, hence it is not fair to compare the re-
ported results in Table 1 directly to the performance of the ad-hoc action-recognition
methods which employ 2D/3D appearance features.

The MSR Daily Activity 3D data set [34] contains RGB-D videos of people performing
daily activities. The data set also contains 3D skeletal joint positions, which are extracted
using the Kinect SDK. The videos need to be classified into one of 16 activity types, which
include “drinking”, “eating”, “reading book”, etc. Each activity is performed by 10 subjects
in two different poses (namely, while sitting on a sofa and while standing), which leads
to a total of 320 videos. The videos have an average length of 193 frames. To represent
each frame, we extract 570-dimensional 3D joint position features.
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Figure 2.5: Graphical model of the naive logistic model.

2.4.2. EXPERIMENTAL SETUP
In our experiments, the model parameters A,W,V of the hidden-unit logistic model were
initialized by sampling them from a Gaussian distribution with a variance of 10−3. The
initial-state parameter π, final-state parameter τ and the bias parameters b,c were ini-
tialized to 0. Training of our model is performed using a standard stochastic gradient
descent procedure; the learning rate is decayed during training. We set the number of
hidden units H to 100. The L2-regularization parameter λ was tuned by minimizing the
error on a small validation set. Code reproducing the results of our experiments is avail-
able on https://github.com/wenjiepei/HULM.

We compare the performance of our hidden-unit logistic model with that of three
other time series classification models: (1) the naive logistic model shown in Fig. 2.5, (2)
the popular HCRF model [4], and (3) Fisher kernel learning model [18]. Details of these
models are given below.

Naive logistic model The naive logistic model is a linear logistic model that shares pa-
rameters between all time steps, and makes a prediction by summing (or equivalently,
averaging) the inner products between the model weights and feature vectors over time
before applying the softmax function. Specifically, the naive logistic model defined the
following conditional distribution over the label y given the time series data x1,...,T :

p(y|x1,...,T ) = exp{E(x1,...,T ,y)}

Z (x1,...,T )
,

where the energy function is defined as

E(x1,...,T ,y) =
T∑

t=1
(yT Wxt )+cT y.

The corresponding graphical model is shown in Fig. 2.5. We include the naive logistic
model in our experiments to investigate the effect of adding hidden units to models that
average energy contributions over time.

Hidden CRF The Hidden-state CRF model is similar to HULM and thereby an impor-
tant baseline. We performed experiments using the hidden CRF implementation of [37].
Following [4], we trained HCRFs with 10 latent states on all data sets. (We found it was
computationally infeasible to train HCRFs with more than 10 latent states.) We tune the
L2-regularization parameter of the HCRF on a small validation set.
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Fisher kernel learning In addition to comparing with HCRFs, we compare the per-
formance of our model with that of the recently proposed Fisher kernel learning (FKL)
model [18]. We selected the FKL model for our experiments because [18] reports strong
performance on a range of time series classification problems. We trained FKL mod-
els based on hidden Markov models with 10 hidden states (the number of hidden states
was set identical to that of the hidden CRF). Subsequently, we computed the Fisher ker-
nel representation and trained a linear SVM on the resulting features to obtain the final
classifier. The slack parameter C of the SVM is tuned on a small validation set.

2.4.3. RESULTS
We perform two sets of experiments with the hidden-unit logistic model: (1) a set of
experiments in which we evaluate the performance of the model (and of the hidden CRF)
as a function of the number of hidden units and (2) a set of experiments in which we
compare the performance of all models on all data sets. The two sets of experiments are
described separately below.

EFFECT OF VARYING THE NUMBER OF HIDDEN UNITS.
We first conduct experiments on the ASD data set to investigate the performance of the
hidden-unit logistic model as a function of the number of hidden units. The results of
these experiments are shown in Fig. 2.6. The results presented in the figure show that
the error initially decreases when the number of hidden unit increases, because adding
hidden units adds complexity to the model that allows it to better fit the data. However,
as the hidden unit number increases further, the model starts to overfit on the training
data despite the use of L2-regularization.

0 50 100 150 200

Number of hidden units

0

5

10

15

20

E
rr

o
rs

 (
in

 %
)

Arabic Digit

HULM

Figure 2.6: Generalization error (in %) of the hidden-unit logistic model on the Arabic speech data set as a
function of the number of hidden units.

We performed a similar experiment on the CK+ facial expression data set, in which
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we also performed comparisons with the hidden CRF for a range of values for the num-
ber of hidden states. Fig. 2.7 presents the results of these experiments. On the CK+ data
set, there are no large fluctuations in the errors of the HULM as the hidden parame-
ter number increases. The figure also shows that the hidden-unit logistic model out-
performs the hidden CRF irrespective of the number of hidden units. For instance, a
hidden-unit logistic model with 10 hidden units outperforms even a hidden CRF with
100 hidden parameters. This result illustrates the potential merits of using models in
which the number of latent states grows exponentially with the number of parameters.
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Figure 2.7: Generalization error (in %) of the hidden-unit logistic model and the hidden CRF on the CK+ data
set as a function of the number of hidden units.

COMPARISON WITH MODERN TIME SERIES CLASSIFIERS.
In a second set of experiments, we compare the performance of the hidden-unit logistic
model with that of the naive logistic model, Fisher kernel learning, and the hidden CRF
on all eight problems. In our experiments, the number of hidden units in the hidden-
unit logistic model was set to 100; following [4], the hidden CRF used 10 latent states.
The results of our experiments are presented in Table 2.1, and are discussed for each
data set separately below.

Synthetic Control Synthetic Control is a simple univariate time-series classification
problem from the UCR time series classification archive [29]. Table 2.1 shows the gener-
alization errors by four time series classification models mentioned above. HULM model
achieves the best performance with 1.33%, which is close to the state-of-the-art perfor-
mance on this dataset (0.7%) reported in [29]. This is an encouraging result, in particu-
lar, because the HULM method is not at all tuned towards solving univariate time-series
classification problems.
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Table 2.1: Generalization errors (%) on all eight problems by four time series classification models: the naive
logistic model (NL), Fisher kernel learning (FKL), the hidden CRF (HCRF), and the hidden-unit logistic model
(HULM). The best performance on each data set is boldfaced. See text for details.

Dataset Dim. Classes
Model

NL FKL HCRF HULM

Synthetic Control 1×10 6 20.00 2.33 1.67 1.33

Swedish Leaf 1×30 15 52.64 10.24 12.80 10.08

OHC 3×10 20 23.67 0.97 1.58 1.30

ASD-digit 13×3 10 25.50 6.91 3.68 4.68

ASD-voice 13×3 88 36.91 6.36 20.40 5.45

CK+ 136 7 9.20 10.81 11.04 6.44

Action 570 20 40.40 40.74 34.68 35.69

Activity 570 16 59.38 43.13 62.50 45.63

Avg. rank – – 3.50 2.38 2.63 1.50

Swedish Leaf Swedish Leaf is a much more challenging univariate time-series classi-
fication problem. Whereas the naive logistic model performs very poorly on this data
set, all other three models achieves good performance, with the HULM slightly out-
performing the other methods. It is worth mentioning that all three methods outper-
form the dynamic time warping approach that achieves 15.4% on this dataset reported
in [29]. We surmise the strong performance of our models is due to the non-linear fea-
tures transformations these models perform. The state-of-the-art performance (6.24%)
on this dataset is obtained by the recursive edit distance kernels (REDK) [38] which aims
to embed (univariate) time series in time-warped Hilbert spaces while preserving the
properties of elastic measure.

Online handwritten character dataset (OHC) Following the experimental setup in [18],
we measure the generalization error of all four models on the online handwritten char-
acter dataset using 10-fold cross validation. The average generalization error of each
model is shown in Table 2.1. Whilst the naive logistic model performs very poorly on this
data set, all three other methods achieve very low error rates. The best performance is
obtained by FKL, but the differences between the models are very small on this data set,
presumably, due to a ceiling effect.

Arabic spoken digits dataset (ASD-digit) Following [31], the error rates for the Arabic
spoken digits data set with digit as the class label in Table 2.1 were measured using a
fixed training/test division: 75% of samples are used for training and left 25% of samples
compose test set. The best performance on this data set is obtained by the hidden CRF
model (3.68%), whilst our model has a slightly higher error of 4.68%, which in turn is bet-
ter than the performance of FKL. It should be noted that the performance of the hidden
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CRF and the hidden-unit logistic model are better than the error rate of 6.88% reported
in [31] (on the same training/test division).

Arabic spoken digits dataset (ASD-voice) In the experiment setup in which the speaker
of a digit is the class label for the ASD data set, the classification problem becomes much
harder than the digit version due to much more classes involved (88 subjects). Table 2.1
shows that HULM achieves the best performance and FKL also performs very well. While
the naive logistic model unsurprisingly performs very poorly, it should be noted that
HULM significantly outperforms HCRF which reveals the advantage of HULM in the
case of challenging classification problem.

Facial expression dataset (CK+) Table 2.1 presents generalization errors measured us-
ing 10-fold cross-validation. Folds are constructed in such a way that all videos by the
same subject are in the same fold (the subjects appearing in test videos were not present
in the training set). On the CK+ data set, the hidden-unit logistic model substantially
outperforms the hidden CRF model, obtaining an error of 6.44%. Somewhat surpris-
ingly, the naive logistic model also outperforms the hidden CRF model with an error of
9.20%. A possible explanation for this result is that the classifying these data success-
fully does not require exploitation of temporal structure: many of the expressions can
also be recognized well from a single frame. As a result, the naive logistic model may
perform well even though it simply averages over time. This result also suggests that the
hidden CRF model may perform poorly on high-dimensional data (the CK+ data is 136-
dimensional) despite performing well on low-dimensional data such as the handwritten
character data set (3-dimensional) and the Arabic spoken data set (13-dimensional).

MSR Action 3D data set (Action) To measure the generalization error of the time series
classification models on the MSR Action 3D dataset, we followed the experimental setup
of [34]: we used all videos of the five subjects for training, and used the videos of the re-
maining five subjects for testing. Table 2.1 presents the average generalization error on
the videos of the five test subjects. The four models perform quite similarly, although the
hidden CRF and the hidden-unit logistic model do appear to outperform the other two
models somewhat. The state-of-the-art performance on this dataset is achieved by [39],
which performs temporal down-sampling associated to elastic kernel machine learn-
ing. Nevertheless, it performs cross-validation on the all possible (252) combinations
of training/test subject divisions. Hence the direct comparison with our model is not
straightforward.

MSR Daily Activity 3D data set (Activity) On the MSR Daily Activity data set, we use
the same experimental setup as on the action data set: five subjects are used for training
and five for testing. The results in Table 2.1 show that the hidden-unit logistic model
substantially outperforms the hidden CRF on this challenging data set (but FKL performs
slightly better).

In terms of the average rank over all data sets, the hidden-unit logistic model per-
forms very strongly. Indeed, it substantially outperforms the hidden CRF model, which
illustrates that using a collection of (conditionally independent) hidden units may be a
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more effective way to represent latent states than a single multinomial unit. FKL also
performs quite well in our experiments, although its performance is slightly worse than
that of the hidden-unit logistic model. However, it should be noted here that FKL scales
poorly to large data sets: its computational complexity is quadratic in the number of
time series, which limits its applicability to relatively small data sets (with fewer than,
say, 10,000 time series). By contrast, the training of hidden-unit logistic models scales
linearly in the number of time series and, moreover, can be performed using stochastic
gradient descent.

2.5. APPLICATION TO FACIAL AU DETECTION
In this section, we present a system for facial action unit (AU) detection that is based on
the hidden-unit logistic model. We evaluate our system on the Cohn-Kanade extended
facial expression database (CK+) [32], evaluating its ability to detect 10 prominent facial
action units: namely, AU1, AU2, AU4, AU5, AU6, AU7, AU12, AU15, AU17, and AU25. We
compare the performance of our facial action unit detection system with that of state-
of-the-art systems for this problem. Before describing the results of these experiments,
we first describe the feature extraction of our AU detection system and the setup of our
experiments.

2.5.1. FACIAL FEATURES

We extract two types of features from the video frames in the CK+ data set: (1) shape fea-
tures and (2) appearance features. Our features are identical to the features used by the
system described in [35]; the features are publicly available online. For completeness,
we briefly describe both types of features below.

The shape features represent each frame by the vertical/horizontal displacements of
facial landmarks with respect to the first frame. To this end, automatically detected/tracked
68 landmarks are used to form 136-dimensional time series. All landmark displacements
are normalized by removing rigid transformations (translation, rotation, and scale).

The appearance features are based on grayscale intensity values. To capture the change
in facial appearance, face images are warped onto a base shape, where feature points
are in the same location for each face. After this shape normalization procedure, the
grayscale intensity values of the warped faces can be readily compared. The final appear-
ance features are extracted by subtracting the warped textures from the warped texture
in the first frame. The dimensionality of the appearance feature vectors is reduced using
principal components analysis as to retain 90% of the variance in the data. This leads to
439-dimensional appearance feature vectors, which are combined with the shape fea-
tures to form the final feature representation for the video frames. For further details on
the feature extraction, we refer to [35].

2.5.2. EXPERIMENTAL SETUP

To gauge the effectiveness of the hidden-unit logistic model in facial AU detection, we
performed experiments on the CK+ database [32]. The database consists of 593 image
sequences (videos) from 123 subjects with an average length of 18.1 frames. The videos
show expressions from neutral face to peak formation, and include annotations for 30
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(a) (b)

Figure 2.8: Visualization of |W| for (a) AU4 and (b) AU25. Brighter colors correspond to image regions with
higher weights.

action units. In our experiments, we only consider the 10 most frequent action units.
Our AU detection system employs 10 separate binary classifiers for detecting action

units in the videos. In other words, we train a separate HULM for each facial action unit.
An individual model thus distinguishes between the presence and non-presence of the
corresponding action unit. We use a 10-fold cross-validation scheme to measure the
performance of the resulting AU detection system: we randomly select one test fold con-
taining 10% of the videos, and use remaining nine folds are used to train the system. The
folds are constructed such that there is no subject overlap between folds: i.e., subjects
appearing in the test data were not present in the training data.

2.5.3. RESULTS
We ran experiments using the HULM on three feature sets: (1) shape features, (2) appear-
ance features, and (3) a concatenation of both feature vectors. We measure the perfor-
mance of our system using the area under ROC curve (AUC). Table 2.2 shows the results
for HULM, and for the baseline in [35]. The results show that the HULM outperforms the
CRF baseline of [35], with our best model achieving an AUC that is approximately 0.03
higher than the best result of [35].

Table 2.2: AUC of the HULM and the CRF baseline in [35] for three feature sets. *In [35], the combined feature
set also includes SIFT features.

Method
Feature Set

Shape Appearance Combination

HULM 0.9101 0.9197 0.9253

[35] 0.8902 0.8971 0.8647*

To obtain insight in what features are modeled by the HULM hidden units, we visu-
alized a single column of |W| in Fig. 2.8 for the AU4 and AU25 models that were trained
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on appearance features. Specifically, we selected the hidden unit with the highest cor-
responding V-value for visualization, as this hidden unit apparently models the most
discriminative features. The figure shows that the appearance of the eyebrows is most
important in the AU4 model (brow lowerer), whereas the mouth region is most impor-
tant in the AU25 model (lips part).

Table 2.3: Average F1-scores of our system and seven state-of-the-art systems on the CK+ data set. The F1
scores for all methods were obtained from the literature. Note that the averages are not over the same AUs, and
cannot readily be compared. The best performance for each condition is boldfaced.

AU HULM [40] [41] [42] [43] [44] [45]

1 0.91 0.87 0.83 0.66 0.78 0.76 0.88

2 0.85 0.90 0.83 0.57 0.80 0.76 0.92
4 0.76 0.73 0.63 0.71 0.77 0.79 0.89
5 0.63 0.80 0.60 – 0.64 – –

6 0.69 0.80 0.80 0.94 0.77 0.70 0.93

7 0.57 0.47 0.29 0.87 0.62 0.63 –

12 0.88 0.84 0.84 0.88 0.90 0.87 0.90
15 0.72 0.70 0.36 0.84 0.70 0.71 0.73

17 0.89 0.76 – 0.79 0.81 0.86 0.76

25 0.96 0.96 0.75 – 0.88 – 0.73

Avg. 0.79 0.78 0.66 0.78 0.77 0.76 0.84

In Table 2.3, we compare the performance of our AU detection system with that
of seven other state-of-the-art systems in terms of the more commonly used F1-score.
(Please note that the averages are not over the same AUs, and cannot readily be com-
pared.) The results in the table show that our system achieves the best F1 scores for AU1,
AU17, and AU25. It performs very strongly on most of the other AUs, illustrating the po-
tential of the hidden-unit logistic model. Note that the state-of-the-art methods used in
this comparison have specifically designed and optimized for AU detection task, while
our approach is a direct application of the proposed hidden-unit logistic model.

Detailed performance analysis of the proposed hidden-unit logistic model (HULM),
using combined features, is given in Table 2.4, where accuracy (ACC), recall (RC), preci-
sion (PR), F1, AUC measures, and number of positive samples are given for each AU.

2.6. CONCLUSIONS
In this chapter, we presented the hidden-unit logistic model (HULM), a new model for
the single-label classification of time series. The model is similar in structure to the pop-
ular hidden CRF model, but it employs binary stochastic hidden units instead of multi-
nomial hidden units between the data and label. As a result, the HULM can model ex-
ponentially more latent states than a hidden CRF with the same number of parameters.
The results of our experiments with HULM on several real-world datasets show that this
may result in improved performance on challenging time-series classification tasks. In



2

30
2. MULTIVARIATE TIME SERIES CLASSIFICATION USING THE HIDDEN-UNIT LOGISTIC

MODEL

Table 2.4: Performance of HULM for different AUs using combined features. P shows the number of positive
samples. ACC, RC, and denote detection accuracy, recall, and precision, respectively.

AU P ACC RC PR F1 AUC

1 175 0.95 0.88 0.93 0.91 0.96

2 117 0.94 0.84 0.86 0.85 0.96

4 194 0.86 0.71 0.83 0.76 0.90

5 102 0.88 0.62 0.64 0.63 0.88

6 123 0.88 0.63 0.77 0.69 0.92

7 121 0.82 0.58 0.56 0.57 0.81

12 131 0.95 0.88 0.89 0.88 0.95

15 95 0.91 0.75 0.70 0.72 0.92

17 203 0.92 0.91 0.87 0.89 0.97

25 324 0.95 0.95 0.97 0.96 0.97

Avg. - 0.91 0.77 0.80 0.79 0.93

particular, the HULM performs very competitively on complex computer-vision prob-
lems such as facial expression recognition.

In future work, we aim to explore more complex variants of our hidden-unit logistic
model. In particular, we intend to study variants of the model in which the simple first-
order Markov chains on the hidden units are replaced by more powerful, higher-order
temporal connections. Specifically, we intend to implement the higher-order chains via
a similar factorization as used in neural autoregressive distribution estimators [46]. The
resulting models will likely have longer temporal memory than our current model, which
will likely lead to stronger performance on complex time series classification tasks. A
second direction for future work we intend to explore is an extension of our model to
multi-task learning. Specifically, we will explore multi-task learning scenarios in which
sequence labeling and time series classification is performed simultaneously (for in-
stance, simultaneous recognition of short-term actions and long-term activities, or si-
multaneous optical character recognition and word classification). By performing se-
quence labeling and time series classification based on the same latent features, the per-
formance on both tasks may be improved because information is shared in the latent
features.
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CLASSIFICATION

Typical techniques for sequence classification are designed for well-segmented sequences
which have been edited to remove noisy or irrelevant parts. Therefore, such methods can-
not be easily applied on noisy sequences expected in real-world applications. In this chap-
ter, we present the Temporal Attention-Gated Model (TAGM) which integrates ideas from
attention models and gated recurrent networks to better deal with noisy or unsegmented
sequences. Specifically, we extend the concept of attention model to measure the relevance
of each observation (time step) of a sequence. We then use a novel gated recurrent network
to learn the hidden representation for the final prediction. An important advantage of our
approach is interpretability since the temporal attention weights provide a meaningful
value for the salience of each time step in the sequence. We demonstrate the merits of our
TAGM approach, both for prediction accuracy and interpretability, on three different tasks:
spoken digit recognition, text-based sentiment analysis and visual event recognition.

This chapter is published as:
Wenjie Pei, Tadas Baltrusaitis, David M.J. Tax and Louis-Philippe Morency. Temporal Attention-Gated Model
for Robust Sequencce Classification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

31



3

32 3. TEMPORAL ATTENTION-GATED MODEL FOR ROBUST SEQUENCE CLASSIFICATION
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Figure 3.1: Our proposed model first employs an attention module to extract the salient frames from the noisy
raw input sequences, and then learns an effective hidden representation for the top classifier. The wider the
arrow is, the more the information is incorporated into the hidden representation. The dashed line represents
no transfer of information.

3.1. INTRODUCTION

Sequence classification is posed as a problem of assigning a label to a sequence of obser-
vations. Sequence classification models have extensive applications ranging from com-
puter vision [47] to natural language processing [48]. Most existing sequence classifica-
tion models are designed for well segmented sequences and do not explicitly model the
fact that irrelevant (noisy) parts may be present in the sequence. To reduce the interfer-
ence of these irrelevant parts, researchers will often manually pre-process the dataset to
remove irrelevant subsequences. This manual pre-processing can be very time consum-
ing and reduce applicability in real-world scenarios.

A popular approach for sequence classification is gated recurrent networks like Gated
Recurrent Units (GRU) [7] and Long Short-Term Memory (LSTM) [8]. They employ gates
(e.g., the input gate in the LSTM model) to balance between current and previous time
steps when memorizing the temporal information flow. However, these vectorial gates
are applied individually to each dimension of the information flow, thus it is hard to in-
terpret the relative importance of the input time observations (i.e., time steps). What
subset of sequential observations is the most salient for the classification task? Another
way to balance the information flow, as we do in this work, is the adoption of attention-
based mechanism, which applies individual attention scores to each observation (time
step), allowing for better interpretability.

In this section, we introduce the Temporal Attention-Gated Model (TAGM) which
extends the idea of attention-based mechanism to sequence classification tasks (see
overview in Figure 3.1). TAGM’s attention module automatically localizes the salient ob-
servations which are relevant to the final decision and ignore the irrelavant (noisy) parts
of the input sequence. We created a new recurrent neural unit that can learn a better
sequence hidden representation based on the attention scores. Consequently, TAGM’s
classification decision is made based on the selected relevant segments, improving ac-
curacy over the conventional models that take into account the whole input sequence.
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Notably, compared to conventional sequence classification models, TAGM benefits
from the following advantages:

• It is able to automatically capture salient parts of the input sequences thereby
leading to better performance.

• The inferred attention (scalar) scores provide a meaningful interpretation for the
informativeness of each observation in the sequence.

• Compared to conventional gated recurrent models such as LSTM, our model re-
duces the number of parameters which leads to faster training and inference and
better generalizability with less training data.

• The proposed model is able to generalize to tasks in computer vision, speech recog-
nition, and natural language processing.

3.2. RELATED WORK
While a full review of previous sequence classification models is beyond the scope of
this chapter, in this section we summarize approaches most relevant to our proposed
approach, grouping them in three areas: sequence classification, attention models and
recurrent networks.
Sequence Classification. The conventional sequence classification models can be di-
vided roughly into two categories: generative and discriminative models.

The first category focuses on learning an effective intermediate representation based
on generative models. These methods are typically based on the Hidden Markov Models
(HMMs) [2]. The HMM is a generative model which can be extended to class-conditional
HMMs for sequence classification by combining class priors via Bayes’ rule. HMM can
also be used as the base model for Fisher Kernel [17] to learn a sequence representation.

The second category is the discriminative graphical models which model the distri-
bution over all class labels conditioned on the input data. Conditional random fields
(CRF) [3] are discriminative models for sequence labeling which aims to assign one label
for each sequence observation. A potential drawback of common CRFs is that the linear
mapping between observations and labels cannot model complex decision boundaries,
which gives rise to many non-linear CRF-variants (e.g., latent-dynamic CRFs [20], con-
ditional neural fields [21], neural conditional random fields [22] and hidden-unit CRF
model [15]). Hidden-state CRF (HCRF) [4] employs a chain of k-nomial latent variables
to model the latent structure and has been successfully used in the sequence labeling.
Similarly, hidden unit logistic model (HULM) [49] utilizes binary stochastic hidden units
to represent the exponential hidden states so as to model more complex latent decision
boundaries.

Aforementioned works are specifically designed for well segmented sequences and
hence cannot cope well with noisy or unsegmented sequences.
Attention Models. Inspired by the attention scheme of human foveal vision, attention
model was proposed to focus selectively on certain relevant parts of the input by mea-
suring the sensitivity of output to variances of the input. Doing so can not only improve
the performance of the model but can also result in better interpretability [50]. Atten-
tion models have been applied to image and video captioning [50–53], machine transla-
tion [48, 54, 55], depth-based person identification [56] and speech recognition [57]. To
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the best of our knowledge, our TAGM is the first end-to-end recurrent neural network to
employ the attention mechanism in the temporal domain of sequences, with the added
advantage of interpretability of its temporal salience indicators (i.e., temporal attention)
at each time step (sequence observation). Our work is different from prior work focused
on spatial domain (e.g., images) such as the model proposed by Sharma et al. [58].
Recurrent Networks. Recurrent Neural Networks (RNN) learn a representation for each
time step by taking into account both the observation at current time step and the rep-
resentation in the previous one [59]. The biggest advantage of recurrent neural networks
lies in their capability of preserving information over time by the recurrent mechanism.
Recurrent networks have been successfully applied to various tasks including language
modeling [60], image generation [61] and online handwriting generation [62]. To ad-
dress the gradient vanishing problem of plain-RNN when dealing with long sequences,
LSTM [8] and GRU [7] were proposed. They are equipped with the gates to balance the
information flow from the previous time step and current time step dynamically. In-
spired by this setup, our TAGM model also employs a gate to filter out the noisy time
steps and preserve the salient ones. The difference from the LSTM and GRU is that the
gate value in our model is fed from the attention module which focuses on learning the
salience at each time step.

3.3. TEMPORAL ATTENTION-GATED MODEL
Given as input an unsegmented sequence of possibly noisy observations, our goal is to:
(1) calculate a salience score for each time step observation in our input sequence, and
(2) construct a hidden representation based on the salience scores, best suited for the
sequence classification task. To achieve these goals, we propose the Temporal Attention-
Gated Model (TAGM) which consists of two modules: temporal attention module, and
recurrent attention-gated units. Our TAGM model can be trained in an end-to-end man-
ner efficiently. The graphical structure of the model is illustrated in Figure 4.1.

3.3.1. RECURRENT ATTENTION-GATED UNITS
The goal of the recurrent attention-gated units is to learn a hidden sequence representa-
tion which integrates the attention scores (inferred from the temporal attention module
that will be discussed in the next section). In order to integrate the attention scores in
the recurrent network units, we define an attention gate to control how much informa-
tion is incorporated from the input of the current time step based on the salience and
relevance to the final task.

Formally, given an input sequence x1,...,T = {x1, . . . ,xT } of length T in which xt ∈ RD

denotes the observation at the t-th time step, the attention score at time step t is denoted
as at , which is a scalar value that indicates the salience of current time step to the final
decision. For this purpose, we define our core recurring process where the hidden state
ht at time step t is modeled as a convex summation:

ht = (1−at ) ·ht−1 +at ·h′
t (3.1)

Wherein, ht−1 is the previous hidden state and h′
t is the candidate hidden state value

which fully incorporates the input information xt in the current time step:

h′
t = g (W ·ht−1 +U ·xt +b) (3.2)
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Figure 3.2: The graphical representation of our Temporal Attention-Gated Model (TAGM). The top part of the
figure is the Recurrent Attention-Gated Units and the bottom is the Temporal Attention Module. Note that at is
the saliency score represented as a scalar value instead of a vector, hence ¯ in the figure means multiplication
between a scalar and a vector.

Herein, W and U are respectively the linear transformation parameters for previous and
current time steps while b is the bias term. We use the rectified linear unit (ReLU)[63]
as the activation function g . Equation 3.1 uses attention score at to balance the infor-
mation flow between current candidate hidden state h′

t and previous hidden state ht−1.
High attention value will push the model to focus more on the current hidden state h′

t

and input feature xt , while low attention value would make the model ignore the current
input feature and inherit more information from previous time steps.

The learned hidden representation at the last time step hT of the sequence is further
fed into the final classifier, often a softmax function, to perform a classification task,
which calculates the probability of a predicted label yk among K classes as:

P (yk |hT ) = exp{W>
k hT +bk }∑K

i=1 exp{W>
i hT +bi }

(3.3)

where W>
i and bi refer to the parameters calculating the linear mapping score for the

i -th class.
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3.3.2. TEMPORAL ATTENTION MODULE
The goal of this module is to estimate the saliency and relevance of each sequence ob-
servation. This saliency score should not only be based on the input observation at the
current time step, but also take into consideration information from neighboring obser-
vations in both directions. To model this neighborhood influence, we infer the attention
score at in Equation 3.1 using a bi-directional RNN:

at =σ(m>(
−→
h t ;

←−
h t )+b) (3.4)

Herein, m is the weight vector of our fusion layer which integrates both directional lay-
ers of our bi-directional RNN and b is the bias term. A sigmoid function is employed
as the activation function σ at the top layer of the attention module in Equation 3.4 to

constraint the attention weight to lie between [0,1].
−→
h t and

←−
h t are the hidden represen-

tations of a bi-directional RNN model:
−→
h t = g (

−→
Wxt +−→

U
−→
h t−1 +

−→
b ) (3.5)

←−
h t = g (

←−
Wxt +←−

U
←−
h t+1 +

←−
b ) (3.6)

The ReLU functions are used as the activation functions g . Our choice of using plain
bi-directional RNN model is motivated by the design goal of reducing the number of
parameters in our model.

The learned attention weights at serve as the attention gate for Recurrent Attention-
Gated Units to control the involved information flow. Furthermore, another important
role the learned attention weights play is to provide an interpretability about the degree
of salience of each time step.

3.3.3. END-TO-END PARAMETER LEARNING

Suppose we are given a training set D = {(x(n)
1,...,T , y (n))}n=1,...,N containing N sequences of

length T and their associated labels y (n). x(n)
t ∈ RD denotes the observation at the t-th

time step of the n-th sample and T can differ from sequence to sequence. We learn
jointly the two TAGM modules (temporal attention module and recurrent attention-
gated units) and the final sequence classifier by minimizing the conditional negative
log-likelihood of the training data with respect to the parameters:

L =−
N∑

n=1
logP

(
y(n)|x(n)

1,...,T

)
(3.7)

Since all three modules (including the final sequence classifier) are analytically differ-
entiable, our TAGM model can be readily trained in an end-to-end manner. The loss
is back-propagated through top recurrent attention-gated units and temporal attention
module successively using back-propagation through time algorithm [64].

3.3.4. COMPARISON WITH LSTM AND GRU
While our model is similar to RNN variants like GRU and LSTM, it is specifically designed
with salience detection in mind and has four key differences when compared to them:

• We only focus on one scalar attention score to measure the relevance of the current
time step instead of generally modeling gate’s multi-dimensional values for each
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hidden unit as done by GRU and LSTM. In this way, we can obtain an interpretable
salience detection (demonstrated on three tasks in Section 6.4).

• We separate the attention modeling and recurrent hidden representation learning
as two independent modules to decrease the degree of coupling. One of the ad-
vantages of this is our ability to customize the specific recurrent structure for each
module with different complexity according to the requirements (eg., different size
of hidden units in two modules of TAGM in Table 3.1).

• We employ a bi-directional RNN to take into account both the preceding and the
following information of the sequence in the temporal attention module. It helps
to model the temporal smoothness of the sequence of salience scores (demon-
strated in Figure 3.4). It should be noted that it is different from the design of
the gates in the bi-directional LSTM model since the latter just concatenates the
hidden representations of two unidirectional LSTMs, which does not remedy the
downside that all vectorial gates are still calculated by considering only one-directional
information.

• Our model only contains one scalar gate, namely the attention gate, rather than 2
vectorial gates in GRU and 3 gates in LSTM. Doing so enforces the attention gate
to take full responsibility of modeling all the salience information. In addition, the
model contains fewer parameters (compared to LSTM) and simpler gate structure
with less redundancy (compared to GRU and LSTM). It eases the training proce-
dure and can alleviate the potential over-fitting and has better generalization given
small amount of training data, which is demonstrated in Section 3.4.1.

3.4. EXPERIMENTS
We performed experiments with TAGM on three publicly available datasets , selected to
show generalization across different tasks and modalities: (1) speech recognition on an
audio dataset, (2) sentiment analysis on a text dataset, and (3) event recognition on a
video dataset.

Experimental setup shared across experiments. For all the recurrent networks men-
tioned in this work (TAGM, GRU, LSTM and plain-RNN), the number of hidden units is
tuned by selecting the best configuration from the option set {64,128,256} using a vali-
dation set. The dropout value is validated from the option set {0.0,0.25,0.5} to avoid po-
tential overfitting. We employ RMSprop as the gradient descent optimization algorithm
with gradient clipping between −5 and 5 [65].

We validate the learning rate for parameters m and b in Equation 3.4 to make the
effective region of the sigmoid function of TAGM model adaptive to the specific data.
Larger learning rate leads to sharper distribution of attention weights. Code reproducing
the results of our experiments is available 1.

3.4.1. SPEECH RECOGNITION EXPERIMENTS
We first conduct preliminary experiments on a modified dataset constructed from the
Arabic spoken digit dataset [31] to (1) evaluate the effectiveness of the two main modules
of TAGM; (2) compare the generalizability of three different gate-setup recurrent models

1https://github.com/wenjiepei/TAGM
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(TAGM, GRU and LSTM) with the varying size of the training data.

DATASET

The Arabic spoken digit dataset contains 8800 utterances, which were collected by ask-
ing 88 Arabic native speakers to utter all 10 digits ten times. Each sequence consists
of 13-dimensional Mel Frequency Cepstral Coefficents (MFCCs) which were sampled
at 11,025Hz, 16-bits using a Hamming window. We append white noise to the begin-
ning and the end of each sample to simulate the problem with unsegmented sequences.
The length of the unrelated sub-sequences before and after the original audio clips is
randomized to ensure that the model does not learn to just focus on the middle of the
sequence.

EXPERIMENTAL SETUP

We use the same data division as Hammami and Bedda [31]: 6600 samples as training
set and 2200 samples as test set. We further set aside 1100 samples from training set as
the validation set. There is no subject overlap in the three sets.

We compare the performance of our TAGM with three types of baseline models:
Attention Module + Neural Network (AM-NN). To study the impact of our recurrent
attention-gated unit, we include a baseline model which employs a feed-forward net-
work directly on top of the temporal attention module. In this AM-NN model, v is de-
fined as the weighted sum of input features:

v =
T∑

t=1
at ·xt , h = g (W ·v+b) (3.8)

Sequence classification is performed by passing h into a softmax layer, as done for our
TAGM (see Equation 3.3).
Discriminative Graphical Models. HCRF and HULM are both extensions of CRF [3] by
inserting hidden layers to model the non-linear latent structure in the data. The differ-
ence lies in the structure of hidden layers: HCRF uses a chain of k-nomial latent variables
while HULM utilizes k binary stochastic hidden units.
Recurrent neural networks. Since our model is a recurrent network equipped with a
gate mechanism, we compare it with other recurrent networks: plain-RNN, GRU, LSTM.
We also investigate the bi-directional variant of our TAGM model (referred as Bi-TAGM),
which employs the bi-directional recurrent configuration in the recurrent attention-gated
units.

In our experiments, we also evaluate the generalizability when varying size of train-
ing data: from 1,100 to 5,500 training samples. During these experiments, the optimal
configuration is selected automatically during validation from the option set {64,128,256}.

RESULTS AND DISCUSSION

Evaluation of Classification Performance Table 3.1 presents the classification perfor-
mance of several sequence classifiers on Arabic dataset. In order to investigate the effect
of the manually added noise information, we perform experiments on both clean and
noisy versions of data.
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Table 3.1: Classification accuracy (%) on Arabic spoken digit dataset by different sequence classification mod-
els. Asterisked models (∗) are trained and evaluated on the clean version of data. Note that we can customize
separately the complexity of TAGM’s two modules. This design advantage is shown when looking at the op-
timal TAGM model (after validation) which has 128 dimensions for the Temporal Attention Module, and 64
dimensions for the Recurrent Attention-Gated Units.

Model #Hidden units #Parameters Accuracy
HULM∗ [49] − − 95.32
HCRF∗ [49] − − 96.32
HULM − − 88.27
HCRF − − 90.41
Plain-RNN∗ 256 75 K 94.95
Plain-RNN 256 75 K 10.95
GRU 128 61 K 97.05
LSTM 128 81 K 95.91
NN 64 2.4 K 65.50
AM-NN 128-64 43 K 85.59
TAGM 128-64 47 K 97.64

Bi-GRU 64 37 K 97.68
Bi-LSTM 256 587 K 97.45
Bi-TAGM 128-128 83 K 97.91

While the Plain-RNN is unable to recognize spoken digits in a noisy setting, other
three recurrent models with gate-setup do not suffer from the noise and obtain compa-
rable performance with the result achieved by HCRF on clean data. Our model achieves
the best results among all classifiers with single-directional recurrent configuration. This
probably results from better generalization of our model on the relatively small dataset
due to the simpler gate setup and also the attention mechanism. We also perform exper-
iments with the bi-directional version of GRU, LSTM and TAGM, in which our Bi-TAGM
performs best. Bi-GRU achieves its best performance with 64 hidden units. It is worth
mentioning that our (single-directional) TAGM using 47 K parameters already achieves
comparable result with the Bi-LSTM and Bi-GRU, which indicates that the bi-directional
mechanism in the attention module of TAGM enables it to capture most bi-directional
information in the attention layer alone.

Comparison of generalizability with the varying size of training data. We first con-
duct experiments to compare the generalizability of TAGM to GRU and LSTM by varying
the size of training data on the noisy Arabic dataset. Figure 3.3 presents the experimental
results. It can be seen that TAGM exhibits better generalizability than GRU and LSTM on
smaller training data sizes, which we believe is caused by the need to learn fewer model
parameters, avoiding overfitting.

Sequence Salience Detection. In order to evaluate the performance of sequence salience
detection by our TAGM model, we visualize the attention weights of our model trained
on the noisy Arabic dataset, which is illustrated in Figure 3.4.a. It shows that the atten-
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Figure 3.3: The classification accuracy on the noisy Arabic speech dataset as a function of the size of training
data. Note that our TAGM model outperforms GRU and LSTM when less training data is available.

(a)

(b)

Figure 3.4: The visualization of attention weights of TAGM in Figure a and Attention module+NN in Figure b
(the weighted features are fed into Feed-forward Neural Networks) on 10 samples (one sample for each digit).
For each subfigure, the top subplot shows the spectrogram of the original sequence data, the bottom subplot
shows the attention values at over time. The red lines indicate the ground-truth of salient segments. Note that
TAGM attention weights result in a cleaner attention representation.

tion model can correctly detect the informative section of the raw signal.
To investigate the effect of the temporal information contained in the hidden repre-

sentation, we also visualize the attention weight of the Attention module + Neural Net-
work classifier, which is shown in Figure 3.4.b. It shows that the TAGM results in a cleaner
and smoother attention weight profile, also notice the spiky behavior, which is mainly



3.4. EXPERIMENTS

3

41

Table 3.2: Classification accuracy (%) on Stanford Sentiment TreeBank dataset when training with only the
sentence-level labels. We conduct experiments on both binary and fine-grained (5-class) classification tasks.
Note that our model outperforms all others in the task.

Model Binary Fine-grained

Graphical models
HULM 81.3 44.1

HCRF 84.8 45.3

Syntactic compositions DAN-ROOT [69] 85.7 46.9

Recurrent models

Plain-RNN 83.9 42.3

GRU 85.4 46.7

LSTM 85.9 47.2

Our model TAGM 86.2 48.0

achieved by the bi-directional RNN in our temporal attention module.

3.4.2. SENTIMENT ANALYSIS EXPERIMENTS
Sentiment analysis is a popular research topic in the field of natural language processing
(NLP) which aims to identify the viewpoint(s) underlying a text span [66]. We conduct
experiments for sentiment analysis to evaluate the performance of our TAGM model on
the text modality.

DATASET

The Stanford Sentiment Treebank (SST) [67] is a data corpus of movie review excerpts.
It consists of 11,855 sentences each of which is assigned a score to indicate the senti-
mental attitude towards the movie reviews. The dataset offers two types of annotations,
sentiment annotations at the sentence level (with a total of 11,855 sentences) and at the
phrase level (with a total of 215,154 phrases). The sentence-level and phrase-level labels
are provided with two resolutions: binary-classification task (positive or negative) and
fine-grained task (5-level classes).

EXPERIMENTAL SETUP

Following previous work [67], we utilize 300-d Glove word vectors (300 dimensions) pre-
trained over the Common Crawl [68] as the features for each word of the sentences. Our
model is well suited to perform sentiment analysis using sentence-level labels. Never-
theless, we also perform experiments with phrase-level labels so as to have a fair and
intuitive comparison with state-of-the-art baselines.

We follow the same data split as described by Socher et al. [67]: 8544/1101/2210 sam-
ples are used for training, validation and testing respectively in the 5-class task. The cor-
responding splits in the binary classification task are 6920/872/1821.

RESULTS AND DISCUSSION

Evaluation of Classification Performance We conduct two sets of experiments to eval-
uate the performance of our model in comparison with the baseline models. Since our
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Table 3.3: Classification accuracy (%) on Stanford Sentiment TreeBank dataset when training with both phrase-
level and sentence-level labels. Our TAGM achieves the best overall result.

Model Binary Fine-grained
Overall

Performance

Unordered

compositions

NBOW-RAND [69] 81.4 42.3 123.7

NBOW [69] 83.6 43.6 127.2

BiNB [69] 83.1 41.9 125.0

Syntactic

compositions

RecNN [70] 82.4 43.2 125.6

RecNTN [67] 85.4 45.7 131.1

DRecNN [71] 86.6 49.8 136.4

DAN [69] 86.3 47.7 134.0

TreeLSTM [72] 86.9 50.6 137.5

CNN-MC [73] 88.1 47.4 135.5

PVEC [74] 87.8 48.7 136.5

Our model TAGM 87.6 50.1 137.7

model is designed for unsegmented and possibly noisy sequences modeling, it is more
suitable to only use sentence-level labels, although phrase-level labels are also provided
in SST dataset. Table 3.2 shows the experimental results of several sequential models
trained with only sentence-level labels. Our model achieves the best result in both binary
classification task and fine-grained (5-class) task. LSTM and GRU outperform plain-
RNN model due to the information-filtering capability performed by additional gates. It
is worth mentioning that our model achieves better performance than LSTM with only
half the hidden parameters.

To have a fair comparison with the existing sentiment analysis models, we conduct
the second set of experiments with both sentence-level and phrase-level labels. The re-
sults are presented in Table 3.3. It shows that our model outperforms most of the existing
models and achieves comparable accuracy with the state-of-the-art results. Our TAGM
model actually obtains overall best results considering both binary and fine-grained cases.
This is an encouraging result, in particular, since our model is not specifically designed
towards NLP tasks.

Sequence Salience Detection In order to investigate the performance of salience de-
tection by our TAGM model on Sentiment dataset (SST), we visualize the calculated at-
tention weights for each word in the test sentences. Group (a) in Figure 3.5 presents a
number of examples that are predicted correctly by our model in the binary-classification
task. It shows that our model is able to successfully capture the key sentimental words
and omit irrelevant words, even for the sentences with complicated syntax. We also test
the examples that include negated expressions. As shown in the last two sentences of
group (a), our model can deal with them very well. We also investigate the samples our
model fails to predict the correct sentiment label (see Figure 3.5b).
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A grim , flat and boring werewolf movie that refuses to develop an energy level .

Score = 0.208

Pryor Lite , with half the demons , half the daring , much less talent , many fewer laughs .

Score = 0.361

Once again , director Jackson strikes a rewarding balance between emotion on the human scale and action effects on the spectacular scale .

Score = 0.75

A thoughtful , provocative , insistently humanizing film .

Score = 0.819
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To the film 's credit , the acting is fresh and unselfconscious , and Munch is a marvel of reality versus sappy sentiment .

Score = 0.792

For me , this opera is n't a favorite , so it 's a long time before the fat lady sings .

Score = 0.167

The cartoon that is n't really good enough to be on afternoon TV is now a movie that is n't really good enough to be in theaters .

Score = 0.167

(a) Correct predictions.

Watching the film is like reading a Times Portrait of Grief that keeps shifting focus to the journalist who wrote it .

Score = 0.139

Opens as promising as any war adventure film you 'll ever see and dissolves into a routine courtroom drama , better suited for a movie titled ‘‘ Glory : A Soldier 's Story . ''

Score = 0.278

(b) Wrong predictions.

Figure 3.5: The visualization of attention weights of Recurrent Attention Model: (a) correct predictions and (b)
wrong predictions. The scores displayed are the groundtruth label indicating the writer’s overall sentiment for
this review. Darker color indicates smaller scores.

3.4.3. EVENT RECOGNITION EXPERIMENTS
We subsequently conduct experiments for video event recognition to evaluate our model
on the visual modality.

DATASET

Columbia Consumer Video (CCV) Database [75] is an unconstrained video database col-
lected from YouTube videos without any post-editing. It consists of 9317 web videos
with average duration of 80 seconds (210 hours in total). Except for some negative back-
ground videos, each video is manually annotated into one or more of 20 semantic cat-
egories such as ‘basketball’, ‘ice skating’, ‘biking’, ‘birthday’ and so on. It is a very chal-
lenging database due to the many noisy and irrelevant segments contained inside these
videos.

EXPERIMENTAL SETUP

Following Jiang et al [75], we use the same split for training and test sets: 4659 videos
as the training set and 4658 as the test set. We compare our model with the baseline
method [76] on this dataset, which performs classification separately with Support Vec-
tor Machine (SVM) models trained on the bag-of-words representations for several pop-
ular features separately and then combines the results using late fusion. Its experimental
results show that Convolutional Neural networks (CNNs) features perform best among
all features they tried, hence we choose to use CNN features with the same setup, i.e., the
outputs (4,096 dimensions) of the seventh fully-connected layer of a pre-trained AlexNet
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Event: biking

Event: birthday

Event: baseball

Figure 3.6: The calculated attention weights of our TAGM model for examples from test set of CCV database.
The attention weight is indicated for representative frames. Our TAGM is able to capture the action of ‘riding
bike’ for the event ‘biking’, ‘cake’ for the event ‘birthday’ and ‘infield zone’ for ‘baseball’. A video containing
these three complete sample sequences is presented in the supplementary material.

model [77]. For the sake of computational efficiency, we extract CNN features with a
sampling rate 1/8 (one out of every eight frame).
We adopt mean Average Precision (mAP) as the evaluation metric, which is typically used
for CCV dataset [75, 76]. Since more than one event (correct label) can happen in a sam-
ple, we perform binary classification for each category but train them jointly, hence the
prediction score for each category is calculated by a sigmoid function instead of softmax
Equation 3.3:

P (yk = 1|hT ) = 1

1+exp{−(W>
k hT +bk )}

(3.9)

and joint binary cross-entropy over K categories is minimized:

L =−
N∑

n=1

K∑
k=1

[
logP (yk = 1|hT )+ log(1−P (yk = 0|hT ))

]

RESULTS AND DISCUSSION

Evaluation of Classification Performance. We compare our model with the event recog-
nition system proposed by dataset authors [76]. Table 3.4 presents the performance of
several models for event recognition, in which our TAGM outperforms the other recur-
rent models by a large margin. The baseline BOW+SVM employs the one-vs-all strategy
to train a separate classifier for each event while our model trains all events jointly in a
single classifier. Our model still shows encouraging results since it is quite a challenging
task for TAGM to capture salient sections for 20 events with complex scenes simultane-
ously. Moreover, our TAGM can provide a meaningful interpretation which the baseline
models cannot do.

Sequence Salience Detection. Salience detection for CCV database is a difficult but
appealing task due to complex and long scenes in videos. Figure 3.6 shows some exam-
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Table 3.4: Mean Average Precision (mAP) of our TAGM model and baseline models on CCV dataset.

Model Training strategy Feature mAP

BOW+SVM

+late average fusion

Separately

(one-vs-all)

SIFT 0.52

STIP 0.45

SIFT+STIP 0.55

CNN 0.67

Plain-RNN Jointly CNN 0.45

GRU Jointly CNN 0.56

LSTM Jointly CNN 0.55

TAGM Jointly CNN 0.63

ples where TAGM correctly locates the salient subsequences by the attention weights.
Our model is able to capture the relevant action, object and scene to the event, e.g., the
action of riding bike for the event ‘biking’, cake for the event ‘birthday’ and baseball play-
ground for the event ‘baseball’. It is interesting to note that the frame with the score 0.42
in event ‘baseball’ achieves the high score probably because of the real-time screen in
the top right corner.

3.5. CONCLUSION
In this work, we presented the Temporal Attention-Gated Model (TAGM), a new model
for classifying noisy and unsegmented sequences. The model is inspired by attention
models and gated recurrent networks and is able to detect salient parts of the sequence
while ignoring irrelevant and noisy ones. The resulting hidden representation suffers
less from the effect of noise and and thus leads to better performance. Furthermore, the
learned attention scores provide a physically meaningful interpretation of relevance of
each time step observation for the final decision. We showed the generalization of our
approach on three very different datasets and sequence classification tasks. As future
work, our model could be extended to help with document or video summarization.
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The main challenges of age estimation from facial expression videos lie not only in the
modeling of the static facial appearance, but also in the capturing of the temporal fa-
cial dynamics. Traditional techniques to this problem focus on constructing handcrafted
features to explore the discriminative information contained in facial appearance and dy-
namics separately. This relies on sophisticated feature-refinement and framework-design.
In this chapter, we present an end-to-end architecture for age estimation which is able to
simultaneously learn both the appearance and dynamics of age from raw videos of fa-
cial expressions. Specifically, we employ convolutional neural networks to extract effec-
tive latent appearance representations and feed them into recurrent networks to model
the temporal dynamics. More importantly, we propose to leverage attention models for
salience detection in both the spatial domain for each single image and the temporal do-
main for the whole video as well. We design a specific spatially-indexed attention mech-
anism among the convolutional layers to extract the salient facial regions in each indi-
vidual image, and a temporal attention layer to assign attention weights to each frame.
This two-pronged approach not only improves the performance by allowing the model to
focus on informative frames and facial areas, but it also offers an interpretable correspon-
dence between the spatial facial regions as well as temporal frames, and the task of age
estimation. We demonstrate the strong performance of our model in experiments on a
large, gender-balanced database with 400 subjects with ages spanning from 8 to 76 years.

This chapter is submitted for publication as:
Wenjie Pei, Hamdi Dibeklioğlu, Tadas Baltrušaitis and David M.J. Tax. Attended End-to-End Architecture for
Age Estimation from Facial Expression Videos. IEEE Transactions on Image Processing.
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Experiments reveal that our model exhibits significant superiority over the state-of-the-art
methods given sufficient training data.
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4.1. INTRODUCTION
Human age estimation from faces is an important research topic due to its extensive
applications ranging from surveillance monitoring [78, 79] to forensic art [80, 81] and
social networks [82, 83]. The widely-used discriminative features for age estimation are
appearance-related, such as wrinkles in the face, skin texture and luster, hence plenty
of prevalent methods focus on modeling the appearance information from the static
face [84, 85]. Recent studies [86, 87] also indicate that the dynamic information in facial
expressions like temporal properties of a smile can be leveraged to significantly improve
the performance of age estimation. It is reasonable since there are intuitive temporal
dynamics involved in facial expressions which are relevant to the age. For instance, the
exhibited facial movement like wrinkles in the smiling process is different for people of
different ages.

The traditional approaches to age estimation from facial expression videos focus on
constructing handcrafted features to explore the discriminative information contained
in static appearance and temporal dynamics separately, and then combining them into
an integrated system [86, 87]. However, these kinds of methods rely on sophisticated fea-
ture design. In this work, we propose a novel end-to-end architecture for age estimation
from facial expression videos, which is able to automatically learn the static appearance
in each single image and the temporal dynamics contained in the facial expression si-
multaneously. In particular, we employ convolutional neural networks (CNNs) to model
the static appearance due to its successful representation learning in the image domain.
The learned latent appearance features for each image are subsequently fed into recur-
rent networks to model the temporal dynamics. In this way, both static appearance and
temporal dynamics can be integrated seamlessly in an end-to-end manner. A key ben-
efit of this design is that the learned static appearance features and temporal dynamic
features are optimized jointly, which can lead to better performance for the final task of
age estimation. Additionally, the end-to-end manner of our method avoids separating
feature design from the age regression as a two-stage procedure, which is the typical way
of the methods using handcrafted features.

Attention models have been proposed to let models learn by themselves to pay at-
tention to specific regions in an image [50] or different segments in a sequence [48, 88]
according to the relevance to the aimed task. Likewise, different facial parts (in each
single image) and different phases of the expression (in the inspected video) may ex-
hibit varying degrees of salience to age estimation. To incorporate attention, we cus-
tomize a specific attention module for spatial facial salience detection. To detect tempo-
ral salience in the sequential expression, we mount a temporal attention module upon
the recurrent networks. It serves as a filtering layer to determine the amount of infor-
mation of each frame to be incorporated into final age regression task. All functional
modules including convolutional networks for learning appearance, recurrent networks
for learning dynamics, two attention modules as well as the final age regression module
can be trained jointly, without any manual intervention.

Extensive experiments on a real-world database demonstrate the substantial supe-
riority of our model over the state-of-the-art methods. Our model has the capacity to
learn and it could do even better on more data while other models potentially saturate
and do not get better no matter how much data you give them. Notably, larger training
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data tends to explore more potential of our model and expand its advantages compared
to other methods.

4.2. RELATED WORK
In this study, we propose to effectively learn spatial and temporal patterns of aging in
an attended end-to-end manner for a more reliable age estimation. To comprehend the
related concepts, in this section, the literature on automatic age estimation will be sum-
marized, and an overview of neural attention models will be given.

4.2.1. AUTOMATIC AGE ESTIMATION

Based on the fact that age information is crucial to understand requirements or pref-
erences of people, automatic estimation of age from face images has quite a few real-
life applications, and thus, it has been a very active area of research over the last two
decades. Biometric search/authentication in facial image databases, denying purchase
of unhealthful products (e.g. alcohol and tobacco) by underage customers, and person-
alization/adaptation of interactive systems to the users (displaying personalized adver-
tisements) can be counted as some examples of the use of age estimation.

One of the major requirements in facial age estimation is the capturing/modeling
of facial properties that change by age. These patterns are related to craniofacial de-
velopment [89] and alteration in facial skin (e.g. wrinkles) [90]. While the majority of
earlier studies in the area focus on describing such patterns using engineered (hand-
crafted) representations such as local binary patterns (LBP) [91] and its variations [92],
Gabor filter based biologically-inspired aging features (BIF) [93], and shape-based fea-
tures [94], some studies propose to capture aging patterns through learning-based ap-
proaches such as subspace learning [78, 95–98], PCA-tree-based encoding [99], and met-
ric learning [100, 101].

The increase in the number and size of facial age databases, and the recent dramatic
improvements in the field of deep learning have shifted the focus towards deep architec-
tures to learn complex (nonlinear) patterns of facial aging from a large collection of face
images. For instance, [102] presents the first exploration of employing CNNs for age esti-
mation, where representations obtained from different layers of CNN are used. In [103],
a multi-task CNN architecture is proposed to optimize the facial representation jointly
for age and gender estimation. [104] models the features extracted from a pre-rained
CNN (VGG-Face [105]) using the kernel extreme learning machines. [106] uses VGG-
16 CNN architecture [107] (pre-trained on ImageNet images) and fine-tunes the model
using a multi-class classifier for age estimation. Then, softmax-normalized output prob-
abilities are used for the final prediction. Differently from conventional methods, [106]
solely employs face detection for face alignment rather than using facial landmark de-
tection, leading to a more accurate age estimation. In [108], Agustsson et al. comple-
ment [106] with their proposed Anchored Regression Network (rather than employing
softmax classifier on top the VGG-16 CNN architecture), enhancing the reliability. In a
recent study [109], Xing et al. have analyzed different loss functions and CNN architec-
tures for age estimation as well as employing a joint optimization together with race and
gender classification tasks.
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In contrast to regression and multi-class classification, some studies approach age
estimation as an ordinal ranking problem. For instance, [110] presents a deep (category-
based) ranking model that combines deep scattering transform and ordinal ranking.
[111] formulates the problem as ordinal regression using a series of binary classifica-
tion tasks which are jointly optimized by a multiple output CNN architecture. In [112],
instead of a multiple output model, a series of basic CNNs are employed (a separate CNN
for each ordinal age group), and their binary outputs are aggregated. Such an approach
allows capturing different patterns for different age groups.

The use of deep architectures has significantly improved the reliability of automatic
age estimation, especially under pose and illumination variations. Facial expression
variation, however, is still a challenge since expressions form deformations on the facial
surface that can be confused with aging-related wrinkles. Yet, only a few recent works
in the literature explore solutions for this issue [113–116]. Guo et al. [113] model corre-
lation between aging features of the neutral face and a specific expression (i.e. smile) of
individuals. Learned correlation is used to map the features of expressive faces to those
of neutral ones. In this way, the confusing influence of expressions in aging patterns are
removed. However, this method requires an accurate estimation of facial expressions
(before the age estimation), and a separate training for each expression of interest using
neutral and expressive face images of each subject in the training dataset. [114] learns a
common subspace for a set of facial expressions that reduce the influence of expressions
while preserving the aging patterns. [115] defines four age groups, and models each fa-
cial expression in each age group as a different class for cross-expression age estimation.
In a similar manner, [116] proposes a multi-task framework that jointly learns the age
and expression using the latent structured support vector machines.

Interestingly, until a recent work of Hadid [117], none of the methods in the litera-
ture have used facial videos for age estimation. In [117], the volume local binary patterns
(VLBP) features are employed to describe spatio-temporal information in videos of talk-
ing faces for age grouping (child, youth, adult, middle-age, and elderly). Yet, this video-
based method ([117]) could not perform as accurate as the image-based methods. On
the other method, more recently, Dibeklioğlu et al. have presented the first successful
example of video-based age estimation [86], where displacement characteristics of fa-
cial landmarks are represented by a set of handcrafted descriptors extracted from smile
videos, and combined with spatio-temporal appearance features. In a follow-up study,
Dibeklioğlu et al. [87] have enhanced their engineered features so as to capture tempo-
ral changes in 3D surface deformations, leading to a more reliable age estimation. It is
important to note that these two studies exploit the aging characteristics hidden in tem-
poral dynamics of facial expressions, rather than reducing the influence of expressions
in aging features. Thus, following the informativeness of temporal dynamics of facial ex-
pressions and based on the success of deep models, the current study proposes a deep
temporal architecture for automatic age estimation.

Because the literature on automatic age estimation is extensive, for further informa-
tion, we refer the reader to [118], [81], and to the more recent [119].
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4.2.2. ATTENTION MODELS

Much of progress in neural networks was enabled by so called neural attention, which
allows the network to focus on certain elements of a sequence [48, 53, 88] or certain re-
gions of an image [50] when performing a prediction. The appeal of such models comes
from their end-to-end nature, allowing the network to learn how to attend to or align
data before making a prediction.

It has been particularly popular in encoder-decoder frameworks, where it was first
introduced to better translate between languages [48]. The attention network learned to
focus on particular words or phrases when translating sentences, showing large perfor-
mance gains on especially long sequences. It has also been extensively used for visual
image and video captioning, allowing the decoder module to focus on parts of the image
it was describing [50]. Similarly, the neural attention models have been used in visual
question answering tasks, helping the alignment between words in the question and re-
gions in the image [120]. Spatial Transformer Networks which focus on a particular area
of image can also be seen as a special case of attention [121]. Somewhat relatedly, work
in facial expression analysis has explored using particular regions for facial action unit
detection [122, 123], however, they did not explore dynamically attending to regions de-
pending on the current facial appearance. Our work is inspired by these attention mod-
els, but explores different ways of constructing neural attention and applying it to age
estimation.

4.3. METHOD
Given a video displaying the facial expression of a subject, the aim is estimate the age
of that person. Next to that, the model is expected to capture the salient facial regions
in the spatial domain and the salient phase during facial expression in the temporal do-
main. Our model is composed of four functional modules: 1) a convolutional appear-
ance module for appearance modeling, 2) a spatial attention module for spatial (facial)
salience detection, 3) a recurrent dynamic module for facial dynamics, and 4) a tempo-
ral attention module for discriminating temporal salient frames. The proposed model is
illustrated in Figure 4.1. We will elaborate on the four modules in a bottom-up fashion
and explain step by step how they are integrated into an end-to-end trainable system.

4.3.1. CONVOLUTIONAL APPEARANCE MODULE

Convolutional neural networks (CNNs) have achieved great success for automatic latent
representation learning in the image domain. We propose to employ CNNs to model the
static appearance for each image of the given video. Compared to conventional hand-
crafted image features which are generally designed independently of the aimed task,
the features learned automatically by CNNs tend to describe the aimed task more accu-
rately due to the parameters learning by back-propagation from the loss function of the
aimed task.

Our model contains three convolutional layers with coarse-to-fine filters and subse-
quent two fully-connected layers. The output of the last fully-connected layer is fed as
input to recurrent modules at the corresponding frame. Response-normalization lay-
ers [77] and Max-pooling layers follow the first and second convolutional layers. The
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Figure 4.1: The graphical representation of our end-to-end age estimation architecture. Note that we only give
one instance of the convolutional appearance module, the spatial attention module and temporal attention
module for one frame at time step t . Other frames share exactly the same structure for all three modules.

ReLU [63] function is used as the nonlinear activation function for each convolutional
layer as well as the fully-connected layer. We found that creating deeper networks did
not lead to a performance improvement, possibly due to comparatively small training
dataset used. It should be noted that the spatial attention module presented subse-
quently in Section 4.3.2 is embedded among convolutional layers to perform facial salience
detection. The details are depicted in Figure 4.1.

For each frame, the input image with size 114×114×1 is filtered by the first convolu-
tional layer with 128 kernels with size 7×7 and stride size 2. The second convolutional
layer filters the output of the first convolutional layer with 256 kernels of size 5×5. The
spatial attention module (Section 4.3.2) then takes as input the output of the second
convolutional layer and extracts the salient regions in the face. The generated attended
feature map containing salience is filtered by the third convolutional layer that has 256
kernels of size 3×3. The first fully-connected layer has 4096 neurons while the second
fully-connected layer has the same number of neurons as the subsequent recurrent net-
work (as will be explained in Section 4.3.3).

It should be noted that the same convolutional module is shared across all frames in
the time domain. Thus, the forward pass of the convolutional module can be computed
in parallel for all frames. In the backward pass, the parameters in the convolutional mod-
ule are optimized by back-propagating output gradients of the upper recurrent module
through all frames.

4.3.2. SPATIAL ATTENTION MODULE
The goal of the spatial attention module is to dynamically estimate the salience and rel-
evance of different image portions for the downstream task (in our case age estimation).
It is implemented as a feature map filter embedded after one of the convolutional lay-
ers in the convolutional appearance modules to preserve the information based on the
calculated saliency score.

Formally, suppose the output volume F of a convolutional layer L has dimensions
M ×N ×C , with C feature maps of size M ×N . The spatial attention module embedded
after the convolutional layer L is denoted by a matrix A with the same size M ×N as the
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feature map. The element Ai j of A indicates the attention weight (interpreted as saliency
score) for the feature vector Fi j composed of C channels located at (i , j ) (i.e., |Fi j | ≡ C )
in the feature map. Each feature vector corresponds to a certain part of the input image
(i.e., receptive field). Therefore, the receptive field of the attention becomes larger when
the attention module is inserted in latter convolutional layers. Section 4.5.1 presents an
experimental comparison of the different positions of spatial attention module in the
convolutional appearance module. In practice, we insert the spatial attention module
after the second convolutional layer.

We propose a spatially-indexed attention mechanism to model A. Concretely, the
attention weight A is modeled by two fully-connected layers: the first layer is parame-
terized by individual weights for each entry of feature map while the second layer shares
the transformation weights across the whole feature map. Thus the attention weight Ai j

is modeled as:
Ai j =σ(u> tanh(Wi j Fi j +bi j )+ c) (4.1)

Herein, Wi j ∈ Rd×C is the transformation matrix for the first fully-connected layer and
u> ∈Rd is the weight vector for the second fully-connected layer to fuse the information
from different channels and c is a bias term. A sigmoid function σ is employed as the
activation function at the top layer of the attention module to constraint the attention
weight to lie in the interval [0,1]. The obtained attention matrix A controls the informa-
tion flowing into the subsequent layer in the convolutional appearance module by an
element-wise multiplication to each channel (feature map) of F:

I = F¯A (4.2)

Here I is the output of the spatial attention module, which is fed into the subsequent
layer of the convolutional appearance module.

It is worth mentioning that we use individual weights (Wi j ) for the first layer and
shared weights u for the second fusion layer in the spatial attention module (this will be
called a spatially-indexed mechanism). The first layer is expected to capture the local
detailed (fine-grained) variation while the second fusion layer is designed to capture the
global variation and smooth the attention distribution. It is different from the design of
the soft attention model for image caption generation [50], in which the transformation
weights are shared in both two layers of the attention model. In that scenario, the atten-
tion model is used to capture the related objects in the input image to each word of gen-
erated caption and the objects are always easily separable from the background scene
in the image. By contrast, we aim to capture the salient parts in a face image, which re-
quires to model more detailed variation. Employing shared weights in both layers tends
to blur the spatial variation. Besides, the typical attention model is translation-invariant.
Namely, if the picture is rearranged, the attention would be very similar, whereas our
attention is spatially-indexed. Section 4.5.1 provides an comparison between different
attention mechanisms by visualizing the learned attention weight distribution.

4.3.3. RECURRENT DYNAMIC MODULE
The temporal facial dynamics are expected to contribute to age estimation, which has
been demonstrated by Dibeklioğlu et al. [87]. In contrast to the handcrafted dynamics
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features they use [87], we propose to employ recurrent networks to capture the under-
lying temporal information automatically. The potential advantages of using recurrent
networks are that (1) they learn relevant dynamics feature to the aimed task (age estima-
tion) smoothly and progressively over time; (2) all modules in our model can be trained
jointly in an end-to-end manner to be compatible with each other.

Suppose the output appearance feature of last fully-connected layer of convolutional
appearance module is pt at frame t , then the hidden representation zt is calculated by:

zt = g (Wpt +Vzt−1 +b) (4.3)

Herein W and V are the transformation matrices for appearance feature in current frame
and the hidden representation in the previous frame. We use a ReLU function as the
activation function g since it eliminates potential vanishing-gradient problems. In prac-
tice, we employ two-layer recurrent networks in our recurrent dynamic module, which is
expected to potentially learn more latent temporal dynamics than single-layer recurrent
networks.

4.3.4. TEMPORAL ATTENTION MODULE
The attention scheme can be leveraged not only for the selection of the salient facial re-
gions in the spatial domain, but also for the selection of the salient sequential segments
(frames) in the temporal domain. Hence we propose to use a temporal attention module
on top of the recurrent dynamic module to capture the temporal salience information.
The temporal attention module produces an attention weight as the salience score for
each frame, thereby filtering the output information flow from the recurrent dynamic
module.

Formally, suppose the output hidden-unit representation of the recurrent dynamic
module is zt at the frame t , then the temporal attention score et is modeled by a two-
layer perceptron:

et =σ(v> tanh(Mzt +b)+ c) (4.4)

Here M ∈ Rn′×n is the weight matrix and b is the bias term for the first perceptron layer,
v ∈ Rn′

is the fusion vector of the second layer. Here n′ is a hyper-parameter that is the
dimension of transformed mid-representation. Again, we use a sigmoid function to con-
strain the values between 0 and 1. We employ this perceptron to measure the relevance
of each frame to the objective task, i.e., age estimation. Next, the attention score is nor-
malized over the whole video to get the final temporal attention weight ot :

ot = et∑T
t ′=1 et ′

(4.5)

The obtained temporal attention weights are used to control how much information for
each frame is taken into account to perform the age estimation. Concretely, we calcu-
late the weighted sum of the hidden-unit representation for all frames of the recurrent
dynamic module to be the information summary s for the whole video:

s =
T∑

t=1
ot zt (4.6)
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Ultimately, the predicted age of the corresponding subject involved in the video is esti-
mated by a linear regressor:

ỹ = k ·s+b (4.7)

where k contains the regression weights.

4.3.5. END-TO-END PARAMETER LEARNING

Given a training dataset D = {x(n)
1,...,T(n)

, y (n)}n=1,...,N containing N pairs of facial videos

and their associated subject’s age, we learn the involved parameters of all four modules
(convolutional appearance module, spatial attention module, recurrent dynamic mod-
ule, and temporal attention module) and the final linear regressor jointly by minimizing
the mean absolute error loss of the training data:

L = 1

N

N∑
n=1

|ỹ (n) − y (n)| (4.8)

Since all modules and the above loss function are analytically differentiable, our whole
model can be readily trained in an end-to-end manner. The loss is back-propagated
through four modules successively using back-propagation through time algorithm [64]
in the recurrent dynamic module and normal back-propagation way in other parts.

4.4. EXPERIMENTAL SETUP

4.4.1. UVA-NEMO SMILE DATABASE
We evaluate the performance of our proposed age estimation architecture on the UvA-
NEMO Smile Database, which was collected to analyze the temporal dynamics of spon-
taneous/pose smiles for different ages [124]. The database is composed of 1240 smile
videos (597 spontaneous and 643 posed) recorded from 400 subjects (185 female and
215 male). The involved subjects span an age interval ranging from 8 to 76 years. Fig-
ure 4.2 presents the age and gender distribution.
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Figure 4.2: Age and gender distributions of the subjects in the UvA-NEMO Smile database.

To collect posed smiles, each subject was asked to pose a smile as realistically as pos-
sible. Spontaneous smile was elicited by short and funny video segments. For each sub-
ject, approximately five minutes of recordings were made and the genuine smiles were
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then segmented. A balanced number of spontaneous and posed smiles are selected and
annotated by the consensus of two trained annotators for each subject. Each segment of
video starts/ends with neutral or near-neutral expressions.

4.4.2. TRACKING AND ALIGNMENT OF FACES

To normalize face images in terms of rotation and scale, 68 landmarks on facial bound-
ary (17 points), eyes & eyebrows (22 points), nose (9 points), and mouth (20 points) re-
gions are tracked using a state-of-the-art tracker [125]. The tracker employs an extended
version of Constrained Local Neural Fields (CLNF) [126], where individual point distri-
bution and patch expert models are learned for eyes, lips and eyebrows. Detected points
by individual models are then fit to a joint point distribution model. To handle pose
variations, CLNF employs a 3D latent representation of facial landmarks.

The movement of the tracked landmarks is smoothed by the 4253H-twice method [127]
to reduce the tracking noise. Then, each face image (in videos) is warped onto a frontal
average face shape using a piecewise linear warping. Notice that the landmark points are
in the same location for each of the warped/normalized faces. Such a shape normaliza-
tion is applied to obtain (pixel-to-pixel) comparable face images regardless of expression
or identity variations. The obtained images are cropped around the facial boundary and
eyebrows, and scaled so as to have a resolution of 114×114 pixels. Images are then con-
verted to gray scale.

4.4.3. SETTINGS

Following the experimental setup of Dibeklioğlu et al. [87], we apply a 10-fold cross-
validation testing scheme with the same data split to conduct experiments. There is no
subject overlap between folds. Each time one fold is used as test data and the other 9
folds are used to train and validate the model. The parameters are optimized indepen-
dently of test data. For the recurrent dynamic module, the number of hidden units is
tuned by selecting the best configuration from the set {128,256,512} using a validation
set. To prevent over-fitting, we adopt Dropout [128] in both the convolutional networks
and the recurrent networks and we augment the loss function with L2-regularization
terms. Two dropout values, one for the recurrent dynamic module and one for the con-
volutional appearance module, are validated from the option set {0,0.1,0.2,0.4}. The L2-
regularization parameterλ is validated from the option set {0,1e−4,3e−4,5e−4,1e−3,3e−3,5e−3}.
We perform gradient descent optimization using RMSprop [129]. The gradients are clipped
between −5 and 5 [65] to avoid potential gradient explosion.

4.5. EXPERIMENTS
We first investigate the different mechanisms to implement spatial attention and vali-
date the advantages of our proposed spatially-indexed mechanism over other options.
Then we present the qualitative and quantitative evaluation on our model respectively,
especially to validate the functionality of each module. Subsequently, we compare our
model with state-of-the-art methods. Finally, we make a statistical analysis on predicted
error distributions to investigate the difference between the method based on the hand-
crafted features and our method with automatically learned features.
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Figure 4.3: The visualization of the learned attention weights on four different spatial attention mechanisms.
For each group of plots corresponding to a mechanism, we first present the original input image, subsequently
we visualize the learned weights from the spatial attention module and finally we up-sample the attention
distribution back to the size of input image by a Gaussian filter. Note that the spatial attention module is
inserted after the 2nd convolutional layer in this set of experiments.

4.5.1. INVESTIGATION OF SPATIAL ATTENTION MODULES
We first conduct experiments to investigate the effectiveness of the proposed spatially-
indexed attention mechanism compared to other options for the spatial attentions mod-
ule. Then we illustrate the effect of position where the spatial attention module is in-
serted in the convolutional appearance module.

COMPARISON OF DIFFERENT SPATIAL ATTENTION MECHANISMS.
We propose a spatially-indexed attention mechanism indicated in Equation (4.1) to model
the spatial attention weight A. In order to validate the design motivation behind it, we
investigate the difference of four different mechanisms:

• Spatially-agnostic mechanism: both W in the first layer and u in the second layer
are shared across all entries of the feature map, which is the typical attention model [50].

• Fully spatially-indexed mechanism: both the transformation weights W and u are
individually designed for each entry of the feature map.

• Mediate spatially-indexed mechanism: the first layer shares the transformation
weights W while the second layer model each entry by individual weight u.

• Spatially-indexed mechanism (adopted by our model): the weight W of the first
layer is individually designed and the weight u in the second layer is shared.

Figure 4.3 presents the qualitative comparison between these four mechanisms. For
each group of images, we first visualize the learned spatial attention weights for each
option directly (the middle plot of each group), then we up-sample it back to the initial
size of the input image by a Gaussian filter (the last plot of each group). This allow us to
visualize the receptive field of attention.

It shows that the attention distribution of the spatially-agnostic mechanism appears
blurred and less contrasting than other mechanisms. It is only able to capture the salient
regions around mouth and near eyebrow. It even gives high scores to the background.
It is not surprising since the receptive fields of each entry overlap, hence it is hard for
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the shared weights to capture the fine-grained differences. The fully spatially-indexed
mechanism can roughly capture the contour of the facial regions in the images but with
no highlights inside the facial area. This is because individual weights can hardly model
the spatial continuity in the face. In contrast, the spatially-indexed mechanism achieves
the best result among all options. Furthermore, adopting shared weights in the first
layer and individual weights in the second layer (mediate spatially-indexed mechanism)
is much worse than the other order. It is probably because the individual weights can
hardly take effect after the smoothing by the shared weights. Therefore, our model em-
ploys the spatially-indexed mechanism, which can not only clearly distinguish the face
from the background, but also capture the salient regions like the area under the eye,
area around mouth and two nasolabial folds in cheeks. More examples are presented in
Section 4.5.4.

THE EFFECT OF THE POSITION OF THE SPATIAL ATTENTION MODULE

Theoretically, the spatial attention module can be placed after any convolutional layer
in the appearance module. However, the latter convolutional layers output feature maps
with larger receptive fields for each entry than the previous layers, which leads to more
overlapping receptive fields of adjacent entries. As a result, each spatial attention weight
also corresponds to a larger receptive field in the input image. Figure 4.4 shows the
learned spatial attention weights after inserting the spatial attention module after dif-
ferent convolutional layers. In the case that the spatial attention is placed after the first
layer, the distribution of learned attention weights is very noisy. This is because the
small receptive fields of each attention weight results in excessively fine-grained model-
ing, which causes over-fitting. In contrast, placing the spatial attention module after the
third convolutional layer generates more coarse and less contrasting attention weight
distributions, which weakens the effect of the spatial attention module. We achieve a
good balance by inserting the spatial attention module after the second convolutional
layer, as shown in Figure 4.4.

Input image After cnn layer 1 After cnn layer 2 After cnn layer 3

0

0.2

0.4

0.6

0.8

1

Figure 4.4: The visualization of the learned spatial attention weights when placing the spatial attention mod-
ule after different convolutional layers. Note that we adopt the spatially-indexed mechanism described in
Section 4.5.1.

4.5.2. QUANTITATIVE EVALUATION OF FUNCTIONALITY OF EACH MODULE
Next we perform the quantitative evaluation on the four functional modules of our mod-
ule, by evaluating the functionality of each module and the contribution it makes to
performance of the whole architecture. To this end, we conduct ablation experiments
which begin with the single convolutional appearance module in the system and then
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Figure 4.5: Mean absolute error (years) for different functional modules on the UvA-NEMO smile database.

incrementally augments the system by one module at a time. When we only employ the
convolutional appearance module (without modeling dynamics) in our system, we per-
form age estimation on each single image in the video and then average the predicted
results as the final age estimation. Figure 4.5 presents the performance of all ablation
experiments.

The individual convolutional appearance module in the system achieves an age esti-
mation performance of 5.13 years’ mean absolute error (MAE), which is an encouraging
result considering the fact that it only performs appearance learning (without any dy-
namics information involved for age estimation). More detailed comparisons to hand-
crafted features are made in Table 4.1 presented in subsequent Section 4.5.3. Equip-
ping the system with the recurrent dynamic module results in 4.93 years’ MAE, which
indicates that the dynamics learning by recurrent dynamic module makes a substantial
improvement. Subsequently, the spatial attention module is added into the system to
capture the spatial salience in each facial image, and the MAE is decreased to 4.81 years.
We will present a qualitative visualization of learned spatial attention salience in Sec-
tion 4.5.4 and Figure 4.8. Finally, including the temporal attention module, leading to
our full end-to-end system, results in the best performance with 4.74 years’ MAE.

It should be mentioned that the power of the temporal attention module is actually
not fully exploited, since this data has been segmented to retain the smile phase mostly.
Most of irrelevant segments before and after the smile have been removed. The tem-
poral attention module will be shown qualitatively to be capable of capturing the key
smile segment precisely in Section 4.5.4 and Figure 4.9. Hence more improvement by
the temporal attention module is expectable given temporally noisier data.

4.5.3. COMPARISON TO OTHER METHODS

Next, the model is compared with existing methods for age estimation, that can be ap-
plied to sequential images (videos). According to the mechanism of the feature design,



4.5. EXPERIMENTS

4

61

Table 4.1: Mean absolute error (years) for different methods on the UvA-NEMO smile database.

Method
MAE (years) for Different Age Ranges

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 All

Spatio-temporal
VLBP [117] 10.69 12.95 15.99 18.54 18.43 16.58 23.80 26.59 15.70 (±12.40)

LBP-TOP [130] 9.71 11.01 14.19 15.88 16.75 15.29 19.70 23.71 13.83 (±10.97)

Dynamics
Deformation [87] 4.85 8.72 12.22 13.06 13.53 11.55 14.13 17.82 10.81 (±8.85)

Displacement [86] 5.42 9.67 11.98 14.53 12.77 15.42 20.57 20.35 11.54 (±11.49)

Appearance

IEF, Fusion [87] 3.54 4.38 5.43 6.74 6.01 8.96 13.52 14.05 5.71 (±4.65)

LBP, Fusion [87] 4.18 4.99 6.31 7.37 6.19 8.67 10.34 12.93 6.12 (±5.11)

CNNs 2.30 3.09 4.69 5.26 5.82 10.58 17.20 23.29 5.13 (±5.68)

Appearance+Dynamics

IEF+Dynamics [87] 3.96 4.45 4.50 5.29 4.74 6.85 12.43 11.94 5.00 (±4.25)

LBP+Dynamics [87] 3.49 4.68 5.13 5.85 5.24 7.05 12.17 12.00 5.29 (±4.36)

Our model 1.79 2.45 4.26 4.97 5.36 11.86 16.43 23.12 4.74 (±5.70)

Number of Samples 158 333 215 171 250 66 30 17 1240

these baseline methods can be classified into four categories as listed in Table 4.1:

• Spatio-temporal: Hadid et al. [117] propose to employ the spatio-temporal infor-
mation for the age interval classification. Particularly, they extract volume LBP
(VLBP) features and feed them to a tree of four SVM classifiers. Another method
using spatio-temporal information is proposed to extract the LBP histograms from
Three Orthogonal Planes (LBP-TOP): XY (two spatial dimensions in a single im-
age), XT (X dimension in the image and temporal space T) and YT [130]. Thus the
information in temporal domain is also utilized together with information in spa-
tial image domain. These two spatio-temporal methods are implemented for age
estimation as baselines by Dibeklioğlu et al. [87], from where we report the results.

• Appearance + Dynamics: Dibeklioğlu et al. [87] is the first study which leverages
both the facial dynamics and appearance information for age estimation. They
propose several handcrafted dynamics features specifically for facial expressions
and combine them with appearance features to perform age estimation through
a hierarchical architecture. They combine their dynamics features with four dif-
ferent kinds of appearance descriptors in their system. Among them we select
two combinations with the best performance as our baselines: dynamics + IEF
(Intensity-based encoded aging features [99]) and dynamics + LBP (local binary
patterns) [91].

• Dynamics: We incorporate the baseline models using sole dynamics information.
Following Dibeklioğlu et al. [87], we compare the deformation-based features and
the displacement dynamics features [86].

• Appearance: We also compare our method to appearance-based approaches that
solely employs IEF and LBP features [87], where age estimations from the first and
the last frame of a smile onset (a neutral and an expressive face, respectively) are
averaged for the final prediction. Furthermore, we evaluate a modified version of
our method that uses only convolutional appearance module.
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Figure 4.6: Cumulative distribution of the mean absolute error for different models using both appearance and
dynamics on the UvA-NEMO Smile Database.

PERFORMANCE COMPARISON

Table 4.1 shows the mean absolute errors (MAE) obtained by four categories of age esti-
mation methods mentioned before. Our model achieves the best performance consid-
ering all the age ranges with the minimum MAE of 4.74 years. While spatio-temporal
methods perform worst, the methods utilizing both appearance and dynamics are more
accurate than the methods based on sole appearance or dynamics. It illustrates the im-
portance of both appearance and dynamics to the task of age estimation.

In particular, the performance of our model is better than the other two methods us-
ing both appearance and dynamics: IEF+Dynamics and LBP+Dynamics [87]. Figure 4.6
shows the success rate as a function of the MAE for these three methods. For age devi-
ations up to nine years, our model outperforms the other two methods. For larger age
deviations, the model is slightly worse. Our model suffers from some severe estimation
errors on a few samples. These samples appear to be from the high-age groups, where
our model is severely hampered by the low sample size in these groups. Figure 4.2 and
Table 4.1 both show that the number of samples in these age ranges is much less than
that in the younger age ranges. Compared to handcrafted features used in IEF+Dynamics
and LBP+Dynamics [87], the convolutional appearance module and recurrent dynamic
module in our model require more training data.

THE EFFECT OF TRAINING SIZE PER AGE

To investigate the effect of training size per age on the performance of three Appear-
ance+Dynamics models, we conduct experiments where the data are reduced by remov-
ing ages for which a low number of samples are available. The results are presented in
Figure 4.7. The experiments begin with the case that all the samples involved (threshold
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Figure 4.7: Performances of three methods using both the appearance and dynamics on the UvA-NEMO Smile
Database as a function of minimum number of samples per evaluated age.

= 1). As the threshold (minimum number of samples) is increased, the performance gap
between our model and the other methods becomes larger: the MAE of our model de-
creases much faster than the other two methods and the variance also drops deeply at
the beginning of the curve. A t-test shows that our model significantly outperforms other
methods when the threshold on the number of sample is larger than 5 (p < 0.01). They
are actually quite encouraging results, since these results in turn indicate that larger data
tend to explore more potential of our model and make it more promising than the other
two methods on the task of age estimation.

4.5.4. QUALITATIVE EVALUATION OF ATTENTION MODULES

In this section, we qualitatively evaluate the spatial attention module and temporal at-
tention module by visualizing the learned attention weights.
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Figure 4.8: The heat map visualization of the learned attention weights by our spatial attention module. For
each subject, the middle plot corresponds to attention weights and the last plot is the up-sampled attention
weight distribution back to the size of initial input image by a Gaussian filter.

In Figure 4.8, three sample images are presented to visualize the results of spatial at-
tention module. For this module the optimal configuration is used: it uses the spatially-
indexed mechanism and includes the spatial attention module after the second convo-

0.001 0.000 0.010 0.020 0.027 0.030 0.030 0.028 0.026 0.024

0.000 0.001 0.009 0.024 0.038 0.045 0.047 0.037 0.036 0.036

Figure 4.9: The visualization of learned temporal attention weights for examples from test set of UvA-NEMO
smile database. Higher bar indicates larger attention weight. The attention weight is indicated for represen-
tative frames. Our temporal attention modules is able to cut off neutral faces in the beginning phase of the
smiling and assign higher value to frames with higher degree of smiling. Note that attention weights for all
frames in a video are normalized (Equation 4.4) to make them sum up to 1. The red dash line indicates the
maximum value of attention weights.
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lutional layer. The images on the left are the original inputs, the images in the middle are
heat maps of the attention values, and the images on the right are upscaled heat maps to
the original resolution. These heat images show that our spatial attention module is able
to not only discriminate the core facial region from the background accurately, but also
capture the salient parts inside the facial region. Specifically, the area under eyes, nasal
bridge, two nasolabial folds, and area around mouth (especially mentolabial sulcus) are
detected as the salient parts. It is reasonable since these areas tend to generate wrinkles
easily when smiling, which are discriminative features for the task of age estimation.

THE TEMPORAL ATTENTION MODULE

To demonstrate the temporal salience detection, the learned temporal attention weights
for several representative frames from two video samples are shown in Figure 4.9. Each
row shows the smile progression from a neutral state to smiling and back to neutral. For
the neutral faces at the beginning, our module predicts very small temporal attention
weights. As the degree of smiling increases, the attention weight goes up accordingly,
until to the peak value. It should be noted that the attention value grows rapidly with
the appearance of the two nasolabial folds, which is consistent with the facial salience
captured by the spatial attention module (shown in Figure 4.8). Then the attention value
decreases with the recession of smiling. However, the value still retains a relatively high
value at the last frame. It is partially because the hidden representation of the last frames
contains the information of all previous frames as well as key frames about smiling,
hence they are still helpful for age estimation. Besides, the smile videos in the given
database do not end with a perfectly netural face. Otherwise, the attention weight would
continuously decrease for the latter neutral faces.

4.6. CONCLUSION
In this work, we present an attended end-to-end model for age estimation from facial
expression videos. The model employs convolutional networks to learn the effective ap-
pearance features and feed them into recurrent networks to learn the temporal dynam-
ics. Furthermore, both a spatial attention mechanism and a temporal attention mech-
anism are added to the model. The spatial attention can be integrated seamlessly into
the convolutional layers to capture the salient facial regions in each single image, while
the temporal attention is incorporated in recurrent networks to capture the salient tem-
poral frames. The whole model can be trained readily in an end-to-end manner. Pro-
vided that a sufficient number of samples are available for training, we show the strong
performance of our model on a large smile database. Specifically, our model makes a
substantial improvement over the state-of-the-art methods.

In future work, we aim to leverage the pre-trained convolutional neural networks
on large image data for the appearance learning instead of training our convolutional
appearance module from scratch. This would not only accelerate the training speed but
also allows employing quite deeper architectures and abundant existing image data to
improve the performance of the appearance learning.





5
MODELING TIME SERIES

SIMILARITY WITH SIAMESE

RECURRENT NETWORKS

Traditional techniques for measuring similarities between time series are based on hand-
crafted similarity measures, whereas more recent learning-based approaches cannot ex-
ploit external supervision. We combine ideas from time-series modeling and metric learn-
ing, and study siamese recurrent networks (SRNs) that minimize a classification loss to
learn a good similarity measure between time series. Specifically, our approach learns
a vectorial representation for each time series in such a way that similar time series are
modeled by similar representations, and dissimilar time series by dissimilar representa-
tions. Because it is a similarity prediction models, SRNs are particularly well-suited to
challenging scenarios such as signature recognition, in which each person is a separate
class and very few examples per class are available. We demonstrate the potential merits
of SRNs in within-domain and out-of-domain classification experiments and in one-shot
learning experiments on tasks such as signature, voice, and sign language recognition.

This chapter is in preparation for publication.
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Figure 5.1: Graphical representation of the Siamese Recurrent Network (SRN). For the SRN-L model, the feature
representations h are obtained by taking the hidden unit activations at the last timestep, zT (solid line). For
the SRN-A model, the feature representations h are obtained by averaging the hidden unit activations z over
all timesteps (solid and dashed lines). The SRN outputs a scalar similarity measure s.

5.1. INTRODUCTION

Successful classification, verification, or retrieval of time series requires the definition of
a good similarity measure between time series. Classical approaches to time-series anal-
ysis handcraft such similarity measures [11, 131], which limits their ability to incorporate
information on the relative scale of features in the similarity measure. Other approaches
use unsupervised learning in order to define the similarity measure [2, 12], which has the
disadvantage that it cannot exploit class label information in determining which features
are most relevant for the underlying similarity structure.

In this paper, we study a novel model for time-series analysis that learns a similarity
measure over pairs of time series in a supervised manner. The proposed model com-
bines ideas from metric learning with that of learning embeddings for time series using
recurrent networks. The model takes as input two time series, which are both processed
by the same recurrent network to produce a representation for each of time series. The
similarity between the time series is defined as a weighted inner product between the
resulting representations. All parameters of the model are learned jointly by minimizing
a classification loss on pairs of similar and dissimilar time series. We refer to the result-
ing model as siamese recurrent network (SRN). The structure of the SRN is illustrated in
Figure 5.1. We evaluate the performance of two variants of the SRN in within-domain
classification and out-of-domain classification experiments representing a range of dif-
ferent machine-learning tasks.

The model we study in this chapter is of particular interest in challenging learning
settings in which the number of classes is large and the number of training examples per
class is limited. An example of such a setting is an online signature verification task. Here
each person who provided one or more signatures is considered to be a separate class,
and the number of training examples per person is extremely limited. Such a task may
benefit from sharing parameters between classes by learning a global similarity measure
over the set of all pairs of time series, which is what the SRN does. We perform one-shot
learning experiments to illustrate the potential merits of the global similarity measure
over time series learned by our models.
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5.2. RELATED WORK
Traditional approaches to measuring time-series similarity such as dynamic time warp-
ing (DTW; Vintsyuk [11], Sakoe and Chiba [131]) use handcrafted similarity measures
that are not adapted to the observed data distribution. This shortcoming was addressed
by the introduction of similarity measures that first fit a generative model to the data,
such as Fisher, TOP, marginalized, and product-probability kernels [12, 19, 132, 133]. In
particular, Fisher kernels have seen widespread adoption in computer vision [13]. While
these methods benefit from modeling the data distribution before the computation of
pairwise similarities, they are limited in that they cannot exploit available supervised
class or similarity information, which may hamper their performance in classification
problems. By contrast, the time-series similarity approach we study in this work is based
on supervised learning. It combines ideas from modeling time series using recurrent
networks with those from metric learning. We discuss related work on both topics sepa-
rately below.

Recurrent networks learn a representation for each timestep that is influenced by
both the observation at that time step and by the representation in the previous timestep
[59, 64]. The recurrent nature of the models equips them with a memory that is capable
of preserving information over time. This has made them popular for tasks such as lan-
guage [60, 134], handwriting [62], and image generation [61], and music prediction [65].
SRNs employ a pair of standard recurrent networks, the parameters of which are shared
between the two networks. It differs from prior work in the loss that it minimizes: in-
stead of minimizing a “generative” loss such as negative log-likelihood, it minimizes a
loss that encourages representations to be close together for similar time series and far
apart for dissimilar time series.

Metric learning techniques learn a similarity measure on data that lives in a vectorial
space. While several studies have explored learning non-linear “metrics” by backpropa-
gating pairwise losses through feedforward networks [135–141], most prior work on met-
ric learning focuses on learning Mahalanobis metrics; prominent examples of such stud-
ies include Goldberger et al. [142], Weinberger and Saul [143], Davis et al. [144]; and Xing
et al. [145]. Our work is most similar to latent coincidence analysis (LCA; Der and Saul
[146]) in terms of the loss it is minimizing, but it differs substantially from LCA in that it
backpropagates the loss through the recurrent network that is modeling the time series.

5.3. SIAMESE RECURRENT NETWORKS
A time-series similarity model produces a single similarity value for each input pair of
time series (with potentially different lengths). Similarly to a siamese network, our time-
series similarity model employs two neural networks that share their network parame-
ters in order to extract comparable hidden-unit representations from the inputs. The
resulting hidden-unit representations are compared to compute the similarity between
the two time series. The parameters of the neural networks and the comparison func-
tion are learned jointly in a supervised manner to predict whether two time series are
similar or not. We use recurrent networks as the basis for our siamese architecture, lead-
ing to the siamese recurrent network (SRN) depicted in Figure 5.1. The advantage of
using recurrent networks is that they allow our model (1) to extract relevant features for
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the similarity computation and (2) to remember these relevant features over time when
needed. The resulting features have the same size irrespective of the time series length.

Suppose we are given two time series X (1) =
{

x(1)
1 , . . . ,x(1)

T1

}
and X (2) =

{
x(2)

1 , . . . ,x(2)
T2

}
whose lengths are respectively T1 and T2. The hidden-unit representations z(1)

t and z(2)
t

in the SRN model are defined as:

z(i )
t = g

(
Wx(i )

t +Az(i )
t−1 +b

)
. (5.1)

We use a rectified linear unit (ReLU) function g(x) = max(0, x) as this activation function
eliminates potential vanishing-gradient problems.

The hidden-unit representations obtained from the two sub-networks for the corre-
sponding input time series, h(1) and h(2), are combined to compute the SRN’s prediction
for the similarity of the two time series. We consider two approaches for comparing
hidden-unit representations.

In the first approach, the element-wise product between the hidden representations
on the last time steps T1 and T2 is computed and the output is a weighted sum of the
resulting products. This approach encourages the recurrent networks to remember rel-
evant features over time, thereby making these features available for the final similarity
computation.

In the second approach, all the hidden-unit representations for each of the two time
series are averaged over time to construct a single feature representation for both time
series, and the resulting feature representations are combined in the same way as before
to compute the time-series similarity. This approach removes the burden on the recur-
rent networks to memorize all important features over time, but may potentially pollute
the time-series features by averaging over time.

Mathematically, the two approaches compute the following latent representations h
for each time series:

• The SRN-L (last timestep) model:

h(i ) = h
(

X (i )
)
= z(i )

T . (5.2)

The recurrent connections in recurrent networks allow it to memorize the previous
inputs in the hidden states in a recursive way. Consequently, the hidden units
in the last time step should be able to store the information accumulated in the
time domain for the whole time series. Therefore, we conjecture it is capable of
modeling the entire time series.

• The SRN-A (average) model:

h(i ) = h
(

X (i )
)
= 1

T

T∑
t=1

z(i )
t . (5.3)

By averaging the hidden units z over time, this model treats the information of
each time step equally and avoids the potential memory-vanishing problem whilst
still considering the temporal information in the previous time steps when com-
puting hidden-unit representations.
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Denoting the latent representations obtained from the two recurrent networks as h(1)

and h(2), the SRN model defines the similarity of the two time series as:

s
(
X (1), X (2))= 1

1+e
−v>

[
diag

(
h(1)h(2)>

)]
+c

. (5.4)

Herein, the similarity between two time series is defined as a weighted inner prod-
uct between the latent representations h(1) and h(2). Such similarity measures between
hidden-units activations have previously been used as part of attention mechanisms in
speech recognition [147], machine translation [48], and handwriting generation [62].

5.3.1. PARAMETER LEARNING
Suppose we are given a training set T containing two sets of in total N pairs of time se-
ries, a set with pairs of similar time series S and a set with pairs of dissimilar time series
D. We learn all parameters Θ= {A,W,v,c,b} of the SRN jointly by minimizing the binary
cross-entropy of predicting to which set each pair of time series belongs with respect to
the parameters. This is equivalent to maximizing the conditional log-likelihood of the
training data:

L (Θ;T ) =−
[ ∑

(n1,n2)∈S

log s
(
X (n1), X (n2))+ ∑

(n1,n2)∈D

(
1− log s

(
X (n1), X (n2)))],

where n1 and n2 indicate the indices of the first and second time series in a training
pair. The loss function is backpropagated through both recurrent networks (the weights
of which are shared) using a variant of the backpropagation through time algorithm [64]
with gradient clipping between −5 and 5 [65].

The sets S and D of similar and dissimilar time series can be constructed in various
ways, for instance, by asking human annotators for similarity judgements. When class
labels yn are available for time series X (n), the sets can be defined as S ={(n1,n2): yn1 =
yn2 } and D= {(n1,n2) : yn1 6= yn2 }. In contrast to time-series classification models [4, 18,
148, 149], this allows SRNs to be used on objects from unknown classes as well. For
instance, the SRN may be trained on the signatures of a collection of people, and like
any classification model, it can then be used within-domain to verify new signatures
of the same people. However, the SRN can also be used out-of-domain to verify the
signatures from people that were not present in the training set. The SRN only needs
one genuine, verified signature to compute the similarity to a new, unknown signature
(one-shot learning). The underlying assumption is that the inter-person variation of the
signatures is modeled well by the SRN because it was trained on signatures from many
other people.

5.4. EXPERIMENTS
We performed experiments with SRNs on three different datasets in three different learn-
ing settings: (1) within-domain similarity prediction, (2) out-of-domain similarity pre-
diction, and (3) one-shot learning. Before presenting the setup and results of our exper-
iments, we first introduce the three datasets below.
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Table 5.1: Characteristics of the five datasets considered in our experiments: dimensionality of features, num-
ber of classes, number of samples, and the minimum, mean, and maximum length of the time series.

Time series length
Dataset Dimens. Classes Samples Min. Mean Max.
Arabic (digit) 13×2 10 8800 3 39 92
Arabic (voice) 13×2 88 8800 3 39 92
MCYT (without forgery) 5×3 100 2500 34 349 1161
MCYT (with forgery) 5×3 100 5000 34 438 2687
Sign 77×2 19 40 760 112 198

5.4.1. DATASETS
We performed experiments on three different datasets.

The Arabic Spoken Digit dataset [150] comprises 8,800 utterances of digits produced
by 88 different speakers. Each speaker uttered each digit ten times. The data is repre-
sented as a time series of 13-dimensional MFCCs that were sampled at 11,025Hz and 16
bits using a Hamming window. We use two different versions of the spoken digit dataset:
(1) a digit version in which the uttered digit is the class label and (2) a voice version in
which the speaker of a digit is the class label.

The MCYT signature dataset [1] contains online signature data collected from 100
subjects. For each subject, the data comprises 25 authentic signatures and 25 skilled
forgeries. The signatures are represented as time series of five features: the x-coordinate,
y-coordinate, pressure, azimuth, and elevation of the pen. We consider two different
versions of the dataset, namely, a version without forged data and a version with forged
data.

The American sign language dataset [151] contains eight manual signs that represent
different words and eleven non-manual signs such as head or shoulder motions. The
data thus comprises nineteen classes. Each sign was produced five times by eight differ-
ent subjects, leading to a total of 760 samples. The time series are represented using a
hand-crafted feature representation that contains a total of 77 hand motion, hand posi-
tion, hand shape, and head motion features [151].

Following common practice in time series analysis, we preprocessed all three datasets
by applying a sliding window (with stride 1) to the time series, concatenating the features
in the frames under the window into a single frame. This enriches the feature representa-
tion, making it easier for the models to capture feature gradients. For the Arabic, MCYT,
and Sign datasets, we used a window size of 2, 3, and 2, respectively. In Table 5.1, the
main characteristics of all five datasets are summarized.

5.4.2. EXPERIMENTAL SETUP
In our experiments, the model parameters of the SRNs were initialized by sampling them
from a uniform distribution within an interval [−0.1,0.1]. Training of the model is per-
formed using a RMSprop [152] stochastic gradient descent procedure using mini-batches
of 50 pairs of time series. To prevent the gradients from exploding, we clip all gradients
[65] to lie in the interval [−5,5]. We decay the learning rate during training by multiplying
it by 0.4 every time the AUC on the validation set stops increasing. We applied dropout
on the hidden-unit activations of our model: the dropout rate was tuned to maximize the
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AUC on a small held-out validation set. Code reproducing the results of our experiments
is available on http://www.anonymized.com.

In all experiments except for those on the MCYT (with forgery) dataset, we defined
the sets of similar and dissimilar time series as suggested in Section 5.3, that is, we define
similar time series to be those with the same class label and dissimilar time series to be
those with different class labels: S = {(n1,n2) : yn1 = yn2 } and D = {(n1,n2) : yn1 6= yn2 }.
Herein, yn represents the class label of the time series as described in section 5.4.1. On
the MCYT (with forgery) dataset, we define the positive pairs in the same way but we
define the set of negative pairs D slightly differently: the negative pairs are pairs of a
genuine signature and a forged version of the same signature. These negative pairs are
more difficult to distinguish, as a result of which training on them will likely lead to better
models.

We compare the performance of our SRNs with that of three variants of our model,
and with three baseline models. The three variants of our model we consider are: (1) a
feedforward variant of SRN-A, called SN-A, that removes all recurrent connections from
the model, i.e., in which A= 0 but which still averages the hidden representation over
time; (2) a feedforward variant of SRN-L, called SN-L, that removes all recurrent connec-
tions from the model and uses the hidden representation of the last time step; and (3)
a naive logistic model that removes all hidden units from the model and that predicts
similarities by averaging all features over time and computing a weighted sum of the
element-wise product of the resulting feature representations. These three variants of
SRNs allow us to investigate the effect of the recurrent connections and non-linearities
on the prediction performance of our models.

The three time-series similarity models we use as baseline models are: (1) dynamic
time warping [11]; (2) Fisher kernels [12]; and (3) Fisher vectors [13]. Details of these
three baseline models are given below.

Dynamic time warping (DTW; Vintsyuk [11]) measures time series similarities by
aligning both time series and summing the pairwise distances between all correspond-
ing frames, minimized over the set of all possible alignments between the two time
series. An alignment is a set of (potentially many-to-many) correspondences between
frames, with the restriction that correspondences cannot be crossing each other in time.
DTW similarities can be computed efficiently using a dynamic-programming algorithm.
Despite its simplicity, DTW has been quite successful, in particular, on problems in
which the time series are already relatively well aligned and the time series show some
clear salient features in time. We leave comparisons with approaches that combine dy-
namic time warping and metric learning [153] to future work.

Fisher kernels measure the similarity between two time series by the inner product
of the log-likelihood gradients that are induced by the time series with respect to the
parameters of a generative model [12]. Our generative model of choice for time series
is the hidden Markov model (HMM). Mathematically, we denote the gradient of the log-
likelihood L(X (n)) of a time series X (n) with respect to the parameters of the HMM as

gn =
[
∀θ ∈Θ : ∂L(X (n))

∂θ

]
. We define the Fisher kernel similarity κ between two time series

as an inner product between their corresponding gradients:

κ
(

X (i ), X ( j )
)
= g>

i U−1g j . (5.5)

http://www.anonymized.com
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Figure 5.2: Area under the receiving-operator curve curve (AUC) of our two variants of Siamese Recurrent
Networks (SRN-A and SRN-L) on five datasets as a function of the number of hidden units (higher is better).
For reference, the performance of SRNs without recurrent connections (SNs) is also shown. All results were
obtained by averaging over five repetitions. The standard deviation of the results is typically smaller than 0.01.

Herein, the matrix U is the Fisher information metric, which is replaced with identity
matrix I in our experiments. The number of hidden states of our HMMs is tuned by
maximizing the AUC on a small, held-out validation set.

Fisher vectors compute the same gradients gn as before, but instead of computing
their inner products, we concatenate the gradients gi and g j to obtain a feature repre-
sentation of the time-series pair

(
X (i ), X ( j )

)
. Such Fisher vector representation are com-

monly used in computer vision [13]. Because the concatenated Fisher vectors cannot
directly measure time-series similarity, we perform 1-nearest classification on the col-
lection of similar and dissimilar pairs to predict whether a pair of time series is similar.
(In other words, the time series similarity is the negative Euclidean distance between
the example and its nearest pair of similar time series in the concatenated Fisher vector
space.)

5.4.3. RESULTS
Below, we separately present the results for the three learning settings we considered:
(1) within-domain similarity prediction, (2) out-of-domain similarity prediction, and (3)
one-shot learning. We also present t-SNE visualizations of the learned time-series rep-
resentations.

WITHIN-DOMAIN SIMILARITY PREDICTION

We first evaluate the within-domain similarity prediction performance of the SRN: we
randomly split the time series into a training and a test set, and we measure the ability
of the models to accurately predict whether pairs of time series in the test set are similar
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Figure 5.3: Area under the receiving-operator curve curve (AUC) on five different datasets using eight different
time-series similarity learning models in a within-domain similarity prediction setting (higher is better). See
text for details.

or not in terms of the area under the receiving-operator curve (AUC). We opt for the AUC
as a performance measure because it naturally deals with the potential imbalance in the
sizes of S and D. We refer to this experiment as within-domain because all classes in
the test data were also observed during training.

Figure 5.2 presents the within-domain similarity prediction performance of SRNs as
a function of the number of hidden units in the model on five different datasets. We
present results for both the variant that averages all hidden-unit activations over time
(SRN-A) and the variant that uses only the hidden unit activations at the last timestep
(SRN-L). The reported results were averaged over five repetitions, randomly initializing
the parameter of the models in each repetition. The figure also reports the performance
of models without recurrent connections, called a Siamese network (SN, where SN-A is
a Siamese network with averaged hidden activations and SN-L is a network that uses the
last time step activations). From the results presented in Figure 5.2, we make three main
observations.

First, the results show that the performance of SRNs tends to increase with the num-
ber of hidden units, in particular, on challenging datasets such as the Arabic speech
datasets. This shows that SRNs effectively use the additional capacity that is provided by
additional hidden units to learn more informative features for the time-similarity mea-
surements. In our experiments, we did not observe much overfitting, although overfit-
ting is likely to occur when the number of hidden units is increased much further.

Second, we observe that there is no clear winner between averaging hidden unit ac-
tivations over time (SRN-A) and using the activations at the last timestep (SRN-L). This
suggests that the recurrent networks in the SRN-L models are at least partly successful
in remembering relevant features over time.

Third, we observe that the recurrent connections in the SRN models are, indeed,
helpful: the SRN models outperform their counterparts without recurrent connections
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Table 5.2: Area under the receiving-operator curve curve (AUC) of eight time-series similarity models on five
datasets in an out-of-domain similarity prediction setting (higher is better). The standard deviation of the five
repetitions we performed is typically smaller than 0.01. The best performance per dataset is boldfaced. See
text for details.

Dataset Training
classes

Test
classes

Model

SRN-A SRN-L SN-A SN-L Logist. DTW Fisher K. Fisher V.

Arabic (digit) 1-7 8-10 0.681 0.714 0.768 0.539 0.761 0.725 0.600 0.561

Arabic (voice) 1-60 61-88 0.849 0.788 0.802 0.684 0.730 0.640 0.698 0.630

MCYT (without forgery) 1-70 71-100 0.914 0.920 0.816 0.760 0.824 0.952 0.752 0.844

MCYT (with forgery) 1-70 71-100 0.888 0.876 0.828 0.668 0.782 0.894 0.805 0.813

Sign 1-14 15-19 0.862 0.670 0.748 0.565 0.836 0.729 0.770 0.566

(SNs) in nearly all experiments1. This result underlines the hypothesis that recurrent
connections can preserve features relevant for time-series similarity computations over
time. Somewhat surprisingly, the performance of the SN-L models is not as bad as one
may expect. It should be noted that the windowing of features makes the feature rep-
resentation of the last timestep richer, which is sufficient to obtain acceptable perfor-
mances on some of the datasets.

Comparison with baseline models. Next, we compare the performance between of
SRNs with the naive logistic model and three other baseline time-series similarity learn-
ing models: (1) dynamic time warping, (2) Fisher kernels, and (3) Fisher vectors (see
section 5.4.2 for details). We used the same experimental setup as in the previous ex-
periment, but we tuned the main hyperparameters of the models (the number of hidden
units in SRNs and SNs; the number of HMM hidden states for Fisher kernels and Fisher
vectors) on a small held-out validation set. Figure 5.3 presents the results of these exper-
iments.

The results of these experiments show that, indeed, the SRN can be a very competi-
tive time-series similarity model, even when trained on relatively small datasets. In par-
ticular, SRNs substantially outperform the baselines models on the Arabic (digit), Arabic
(voice), and MCYT (without forgery) datasets. On most datasets, the Fisher vectors are
the best baseline model (they perform substantially better than standard Fisher kernels),
which is line with results in the literature [13]. The naive logistic model performs sub-
stantially worse than the SRN models, which suggests that hidden units are essential in
solving difficult similarity assessment problems.

Dynamic time warping (DTW) performs reasonably well on relatively simple datasets
such as the Sign dataset, but its performance deteriorates on more challenging datasets
in which the similarity labels are not aligned with the main sources of variation in the
data, such as the Arabic (voice) dataset: the main sources of variation in this dataset are
likely due to the differences in the digits being uttered, whereas the similarity labels we
are interested in concern the speaker of the digit and not the digit itself. DTW (as well as
Fisher vectors and kernels) cannot exploit this information, which explains its inferior

1It should be noted that because we preprocess the time-series data by windowing features, the SN is actually
a convolutional network that is very similar to the time-delay neural networks of Bromley et al. [135].
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Table 5.3: Classification accuracy of one-shot learning models of an 1-nearest neighbor classifier using three
different similarity measures on four different datasets (higher is better). The best performance per dataset is
boldfaced. See text for details.

Dataset SRN-A SRN-L DTW
Arabic (digit) 0.618 0.613 0.801
Arabic (voice) 0.273 0.228 0.151
MCYT (without forgery) 0.418 0.548 0.913
Sign 0.599 0.381 0.531

performance on the Arabic (voice) dataset.

OUT-OF-DOMAIN SIMILARITY PREDICTION

In the next set of experiments, we measure the performance of SRNs on out-of-domain
similarity prediction: we use the same experimental setup as before, however, we split
the training and test data in such a way that the set of class labels appearing in the train-
ing set and the set of class labels appearing in the test set are disjoint. This is a more
challenging learning setting, as it relies on the time-series similarity model exploiting
structure that is shared between classes in order to produce good results. We obtain the
test data by selecting 3 out of 10 classes on the Arabic (digit) dataset, 28 out of 88 classes
on the Arabic (voice) dataset, 30 out of 100 classes on the MCYT datasets, and 5 out of
19 classes on the Sign dataset. As before, we measure the performance of our models in
terms of AUC, and we tune the hyperparameters of the models on a validation set. The
results of these experiments are presented in Table 5.2.

From the results presented in the table, we observe that the strong performance of
SRNs on difficult datasets such as the Arabic (voice) datasets generalizes to the out-of-
domain prediction setting. This suggests that, indeed, the SRN models are able to learn
some structure in the data that is shared between classes. On the (much smaller) MCYT
datasets, however, dynamic time warping outperforms SRNs. Most likely, this result is
caused by the SRNs (which have high capacity) overfitting on the classes that are ob-
served during training.

ONE-SHOT LEARNING

To further explore the potential of SRNs in out-of-domain settings, we performed an
experiment in which we measured the performance of SRNs in one-shot learning. We
adopt the same dataset splits as in 5.4.3 to obtain train and test data. On the training
data, we train the SRNs to learn a similarity measure for time series. This similarity mea-
sure is used to train and evaluate a nearest-neighbor classifier on the test set. We use
only a single time series per class from the test set to train the nearest-neighbor clas-
sifier, and use the remaining time series in the test set for evaluation. We measure the
classification accuracy using leave-one-per-class-out validation.

The results are presented in Table 5.3. For datasets that have clear salient features,
like the MCYT, and to a lesser degree the Sign dataset, DTW performs well. For more
complex data, the SRN performs well provided that sufficient training data is available.
For the Arabic (digit) dataset, the seven classes used in training are insufficient for the
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Low

High

Figure 5.4: t-SNE map of the 2,500 signatures in the MCYT test set (100 subjects) data based on embeddings
computed by an SRN-L. The signatures were drawn by integrating the pen movements over time, and colors in-
dicate the pen pressure (red indicates high pressure and blue indicates low pressure). A full-resolution version
of this map is presented in the supplemental material.

SRN, and the SRN overfits on those classes. On the Arabic (voice) dataset 60 classes are
available, which allows the SRN to fully exploit its potential.

VISUALIZING THE REPRESENTATIONS

The one-shot learning experiment presented above exploits an interesting property of
the SRN model, namely, that it learns a single embedding for a time series. An advan-
tage of this is that the resulting time-series embeddings can be used in a wide variety
of other learning algorithms that operate on vectorial data, such as alternative classifi-
cation techniques, clustering models, etc. To obtain more insights into what the SRN
models have learned, we apply t-SNE [154] on embeddings obtained by a SRN-L on the
MCYT (without forgery) test set. Figure 5.4 shows a map of the 2500 signatures in the test
set; the signatures were drawn by integrating the pen movements over time. The color
indicates the pen pressure. We refer the reader to the supplemental material for a full-
resolution version of this map. The t-SNE visualization shows that, indeed, the SRN-L is
capable of grouping similar signatures together very well.

In Figure 5.5, we show a t-SNE map of the Arabic (voice) test set constructed on SRN-
L embeddings. For comparison, we also show a t-SNE map of the same data, based on
pairwise distances computed with DTW. The two maps clearly show the potential advan-
tage of SRN: it has used the supervised similarity information to group all the utterances
corresponding to a single class together, something that DTW is unable to do due to its
unsupervised nature.

5.5. CONCLUSIONS
We have investigated models for learning similarities between time series based on su-
pervised information. Our study shows that a combination of ideas from metric learning
and deep time-series models has the potential to improve the performance of models for
time-series classification, retrieval, and visualization. The proposed siamese recurrent
networks (SRNs) are particularly effective compared to alternative techniques in settings
in which the similarity function that needs to be learned is complicated, or when the
number of labeled time series for some of the classes of interest is limited. When a rea-
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(a) SRN-L. (b) DTW.

Figure 5.5: t-SNE maps of the Arabic (voice) test data from five randomly selected classes, constructed based
on (a) siamese recurrent network (last timestep) embeddings of the time series and (b) pairwise similarities
computed using dynamic time warping.

sonably large collection of examples of similar and dissimilar time series is available to
train the models, the siamese recurrent networks can produce representations that are
suitable for challenging problems such as one-shot learning or extreme classification of
time series. This result is in line with earlier results for siamese convolutional networks
by, for instance, Kamper et al. [155].

This study is an initial investigation into learning similarities between time series,
and we foresee several directions for future work. In particular, we intend to explore vari-
ants of our model architecture: (1) that employ a bilinear model to measure the similarity
of the RNN representations; (2) that employ long-term short-term units [8] or gated re-
current units [7] instead of the simple rectified linear units we are currently using; (3) that
employ multiple layers of recurrent units; and (4) that have a tree structure or generic
(planar) graph structure instead of the current sequential structure. The latter extension
would make our models applicable to problems such as molecule classification [156]. We
also plan to explore improvements to our learning algorithm. In particular, our current
implementation selects negative pairs of time series in a somewhat arbitrary manner:
in all our experiments, we select negative examples uniformly at random for the set of
all candidate negative pairs. We plan to investigate approaches that perform a kind of
“hard negative mining” during learning, akin to some modern metric learning [143] and
multi-modal learning [157] approaches. We also plan to study applications of SRNs in,
for instance, learning word-discriminative acoustic features [158].
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INTERACTING ATTENTION-GATED

RECURRENT NETWORKS FOR

RECOMMENDATION

Capturing the temporal dynamics of user preferences over items is important for recom-
mendation. Existing methods mainly assume that all time steps in user-item interaction
history are equally relevant to recommendation, which however does not apply in real-
world scenarios where user-item interactions can often happen accidentally. More impor-
tantly, they learn user and item dynamics separately, thus failing to capture their joint
effects on user-item interactions. To better model user and item dynamics, we present the
Interacting Attention-gated Recurrent Network (IARN) which adopts the attention model
to measure the relevance of each time step. In particular, we propose a novel attention
scheme to learn the attention scores of user and item history in an interacting way, thus
to account for the dependencies between user and item dynamics in shaping user-item
interactions. By doing so, IARN can selectively memorize different time steps of a user’s
history when predicting her preferences over different items. Our model can therefore pro-
vide meaningful interpretations for recommendation results, which could be further en-
hanced by auxiliary features. Extensive validation on real-world datasets shows that IARN
consistently outperforms state-of-the-art methods.

This chapter is published as:
Wenjie Pei*, Jie Yang*, Zhu Sun, Jie Zhang, Alessandro Bozzon and David M.J. Tax. Interacting Attention-
gated Recurrent Networks for Recommendation. The 26th ACM International Conference on Information and
Knowledge Management (CIKM), 2017.
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Figure 6.1: Example of user-item interactions determined by dependent user dynamics and item dynamics.
The numbers below user and item history are the attention scores inferred by our proposed model, which are
used to select relevant time steps in user and item history to accurately predict the user’s preference over the
item.

6.1. INTRODUCTION
Recommendation is a fundamental task to enable personalized information filtering,
thus to mitigate the information overload problem [159]. The goal is to learn user prefer-
ences from historical user-item interactions, based on which recommend relevant items.
In reality, user preferences often evolve over time, affected by dynamic user inclinations,
item perception and popularity. Temporal context therefore has been recognized as an
important type of information for modeling the dynamics of user preferences. It has
extensive applications, ranging from movie recommendation [160], music recommen-
dation [161], to location recommendation [162].

Most existing methods [161–165] model the temporal dynamics by extending the la-
tent factor model (LFM) [166] with handcrafted features, so as to describe certain tem-
poral patterns of user-item interactions. For example, they either bin user-item interac-
tions into time windows, assuming similar user behavioral patterns in the same window
[161, 162], or adopt a time decay function to under-weight the interactions occurring
deeper into the past [163, 164]. The handcrafted features, though proven to be effec-
tive, cannot capture complex temporal patterns in reality [167]. More importantly, these
methods cannot automatically select important interaction records in user-item inter-
action history when modeling user preferences. This greatly limits their application in
real-world scenarios where user-item interactions can often happen accidentally.

Recently, recurrent neural network (RNN) [168] based methods have emerged as a
promising approach to model the temporal dynamics of user preferences [167, 169, 170].
RNN captures both the latent structures in historical user-item interactions – through
hidden units – and their dynamics along the temporal domain. Unlike LFM based meth-
ods, these methods are nonparametric, thus can learn inherent dynamics that are more
complex and suitable for making recommendations. A specific type of gated RNN, i.e.
Long Short-Term Memory (LSTM) [8], is employed by the state-of-the-art recommen-
dation method [167] to model both user and item dynamics. The gating mechanism is
adopted to balance the information flow from the current and previous time steps, thus
can more effectively preserve historical information over time for recommendation.

Nevertheless, LSTM models the gate w.r.t. each hidden unit instead of the whole time
step, making it difficult to interpret the importance of each time step for the final recom-
mendation. More importantly, gates for modeling user dynamics and item dynamics
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so far are learned separately. In real-world scenarios, however, user and item dynam-
ics are dependent on each other, and can jointly affect user-item interactions. Consider
the target user Bob in Figure 6.1, who is interested in both formal clothing (e.g., leather
shoes and trousers) and casual clothing (e.g., casual shoes and shorts), as described by
his purchasing history. We observe that Bob buys a pair of formal jeans, which were his-
torically bought by users with various interests. The interaction between Bob and the
formal jeans is therefore determined by his interest in formal clothing and the inherent
property of the formal jeans, namely, the formal style. Such an interest and property
could only be learned from historical user-item interactions when no additional auxil-
iary features are given. Therefore, to accurately capture Bob’s preference over the formal
jeans, the recommendation model should be able to identify the important time steps
of Bob’s purchasing history when he bought formal clothing. Similarly, in the history of
formal jeans it should be able to identify time steps when they were bought by users who
are also interested in formal style clothing, thus to capture the item property relevant to
Bob’s interest.

In this chapter, we introduce the Interacting Attention-gated Recurrent Network (IARN)
which adopts the attention model to measure the relevance of each time step of user his-
tory and item history for recommendation. In particular, we propose a novel attention
scheme which allows IARN to learn the relevance – measured by attention scores – of
time steps in user and item history in an interacting way, so as to capture the depen-
dencies between user and item dynamics in shaping user-item interactions. As a result,
IARN can selectively memorize different time steps of a user’s history when predicting
her preferences over different items, thereby providing meaningful interpretations for
the prediction. For instance, attention scores learned by IARN for the example in Fig-
ure 6.1 are shown under the user and item history in the figure (note this example is
based on our results on a real-world dataset).

IARN could be further enhanced by incorporating auxiliary features of users or items.
In this chapter we provide methods to integrate IARN with auxiliary features organized
in a flat or a hierarchical structure. More specifically, our main contributions include:
• We extend recurrent networks for modeling user and item dynamics with a novel gat-

ing mechanism, which adopts the attention model to measure the relevance of indi-
vidual time steps of user and item history for recommendation.

• We design a novel attention scheme which allows the user- and item-side recurrent
networks to interact with each other, thus to capture the dependencies between user
and item dynamics to improve recommendation accuracy and interpretability.

• We propose the IARN method implementing the interacting attention-gate as described
above, and show how it can be further enhanced by auxiliary features organized in dif-
ferent structures.

• We conduct extensive experiments to evaluate the proposed IARN method on six real-
world datasets, demonstrating that IARN consistently outperforms state-of-the-art meth-
ods.

6.2. RELATED WORK
This section provides an overview of state-of-the-art recommendation methods related
to our work. We review them from two orthogonal perspectives: (1) the underlying rec-
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ommendation models; (2) the incorporation of side information for recommendation.

6.2.1. UNDERLYING RECOMMENDATION MODELS
The recently pervasive recommendation methods can be broadly categorized into two
types, namely, the latent factor model based methods and the neural network based
ones.

Latent Factor Model. Due to the high efficiency, state-of-the-art recommendation meth-
ods have been dominated by Latent Factor Model (LFM). It decomposes the high-dimensional
user-item rating matrix into low-dimensional user and item latent matrices. A panoply
of algorithms have been proposed to date based on LFM, including matrix factoriza-
tion (MF) [171], Bayesian personalized ranking (BPR) [172], collective matrix factoriza-
tion (CMF) [173], factorization machine (FM) [174], SVD++ [175], to name a few. De-
spite of their success, LFM based methods suffer from the following essential limitations.
First of all, they merely leverage global statistical information of user-item interaction
data, while cannot capture fine-grained regularities in the latent factors [68]. Second,
LFM based recommendation methods generally learn latent representations of users
and items in a linear fashion, which may not be always suitable in real-world scenarios.
Besides, most LFM based methods ignore the temporal dynamics of user preferences,
assuming that the future user-item interactions are known in advance, which is contra-
dictory with the real-world application. There are a few LFM based methods specifically
designed for fusing temporal information, which will be reviewed in section 2.2.

Neural Networks. Stemming from the success in related domains (e.g., computer vi-
sion, speech recognition, and natural language processing), Neural Network (NN) based
methods have recently attracted a considerable amount of interests from the recom-
mendation community. In contrast to LFM based recommendation methods, NN based
methods have shown to be highly effective in capturing local item relationships by mod-
eling item co-occurrence in individual users’ interaction records. Typical methods are
User2Vec [176] and Item2Vec [177], which are inspired by word embedding techniques
[178, 179]. Furthermore, NN based models can learn nonlinear latent representations
through the activation functions (e.g., sigmoid, ReLU [63]). For instance, Suvash et al.
propose the AutoRec [180] recommendation method based on autoencoders [181]. He
et al. propose neural collaborative filtering [182] to learn non-linear interactions be-
tween users and items. Recently, the Recurrent Neural Network (RNN) based methods
[167, 169, 170, 183] have gained significant enhancement in recommendation thanks to
the ability of preserving historical information over time for recommendation. These
methods learn time-varying representations of users/items (i.e., hidden-states) in each
time step, by taking into account both the present and historical data. The learned states
can be used for generating recommendations for the future, therefore being more real-
istic and attractive for real-world applications. To sum up, NN based methods possess
essential advantages and have shown to be more effective to enhance recommendation
performance.

6.2.2. INCORPORATING SIDE INFORMATION
To better model user preferences thus to further improve recommendation performance,
many researchers endeavor to incorporate side information, i.e., information comple-
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menting user-item interactions, into recommendation models. Here we focus on the
literature with consideration of two types of side information related to our work, i.e.,
temporal context and auxiliary features.

Temporal Context. It has been well recognized that user preferences change over time.
This can be due to drifting user inclinations for item, or the constantly changing item
perception and popularity when new selection emerges [163, 170]. Hence, recommen-
dation methods that capture temporal dynamics of user preferences could provide im-
proved recommendation performance. In the branch of LFM based methods, some take
temporal information into consideration based on time windows, assuming user-item
interactions in the same window have similar patterns. For instance, Koenigstein et al.
[161] and Yuan et al. [162] propose such methods for music and Point-of-Interest rec-
ommendation. A disadvantage is that they regard all interactions within the considered
time window equally, completely ignoring the relationships of interactions among dif-
ferent windows. In addition, binning user-item interactions aggravates the data sparsity
problem. Some other LFM based methods attempt to address these issues by adopting
a time decay function to under-weight the instances as they occur deeper into the past.
These include TimeSVD++ proposed by Koren [163] and HeteRS proposed by Pham et al.
[164]. However, these methods could not capture other types of temporal patterns, e.g.,
certain user-item interactions could be driven by the long-term interest of a user which
could not be modeled in a decay manner. In fact, all LFM based methods handle tem-
poral context by creating handcrafted features, thus cannot capture complex temporal
patterns in reality.

Contrarily, RNN based methods are nonparametric, thus can learn inherent dynam-
ics of user preferences that are more complex. For instance, Hidasi et al. [169] propose
a RNN based approach for session-based recommendation. Hosseini et al. [183] intro-
duce a recurrent Poisson factorization framework for recommendation. Among differ-
ent RNN models, Long Short-Term Memory (LSTM) [8] has gained much popularity in
recommendation due to their capability in dealing with the gradient vanishing problem
[184]. Jing et al. [170] present a LSTM based method to estimate when a user will return
to a site and what her future listening behavior will be. Wu et al. [167] propose a LSTM
based method, i.e., recurrent recommender network (RRN), to model user and item dy-
namics. This is the most closely related work to ours. However, one major shortcoming
of these gated RNN based methods is that the learned gate lacks interpretability, limiting
further improvements of recommendation accuracy. More importantly, these methods
model user and item dynamics separately, thus failing to capture their dependencies and
their joint effects on user-item interactions.

Motivated by the attention scheme in human foveal vision, attention mechanism has
been employed by NN based methods to cope with the data noisy problem by identifying
relevant parts of the input for the prediction task. It has been applied in a broad spec-
trum of disciplines, from natural language processing [185] to computer vision [50, 88].
However, how to effectively exploit the attention mechanism in recommender systems is
still an open research question. To the best of our knowledge, we are the first to propose
recurrent network based recommendation method that integrates attention mechanism
to automatically learn the relevance of individual time steps for recommendation, so as
to enhance both recommendation interpretability and accuracy. More importantly, we
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design a novel attention scheme that allows user- and item-side recurrent networks to
interact with each other, thus to capture the dependencies between user and item dy-
namics and their joint effects on user-item interactions.

Auxiliary Features. Better representations of users and items can also be obtained by
incorporating auxiliary features into recommendation, due to the rich semantic infor-
mation encoded by them. Most existing feature-based recommendation approaches
are built upon LFM. These methods are either designed to incorporate features in a flat
structure or a hierarchy. For instance, the popular CMF [173] and FM [174] are designed
for integrating flat features into recommendation. Recently it has been found that fea-
ture hierarchies, i.e., hierarchically organized features, can be more effective in boosting
the accuracy as well as the interpretability of recommendation. He et al. [186] devise a
visually-aware recommendation model by manually defining the feature hierarchy in-
fluence on items. Yang et al. [187] design a recommendation method that automati-
cally learns feature hierarchy influence on user/item by a parameterized regularization
traversing from root to leaf features. More recently, Sun et al. [188] introduce a uni-
fied recommendation framework that seamlessly incorporates both vertical and hori-
zontal dimensions of feature hierarchies for effective recommendation. In this chapter,
we show how to incorporate features organized in both flat and hierarchical structures
into our model. Note that although in other domains like nature language processing,
a few work [185] attempts to integrate hierarchies into RNN model, there is few such
kind of approach in recommendation. Hence, we are the first to explore the effect of fea-
tures organized in different structures together with recurrent networks to learn optimal
representations of users and items for improved recommendation interpretability and
accuracy.

6.3. INTERACTING ATTENTION-GATED RECURRENT NETWORKS
Given the historical user-item interaction data as the input, we aim to learn high-quality
hidden representations for both users and items, which are then used for subsequent
recommendation. The extracted representations are expected to: 1) capture the tem-
poral dynamics contained in both user and item history with physical interpretabil-
ity of each time step; 2) learn the dependencies between user and item dynamics in
shaping user-item interactions; 3) extract semantically rich information from training
data through the incorporation of auxiliary features. To achieve these goals, we propose
the Interacting Attention-gated Recurrent Network (IARN), which is composed of three
modules: Attention-gated Recurrent Module, Interacting Attention Module and Feature
Encoder. They are designed correspondingly to the three aforementioned goals.

The overall architecture of IARN is illustrated in Figure 6.2. It employs two recurrent
networks to learn compact and effective hidden representations for the paired user and
item, respectively. Each recurrent network is composed of an Attention-gated Recurrent
Module, an Interacting Attention Module, and a Feature Encoder. Instead of behaving
independently, the two recurrent networks interact with each other to model the depen-
dencies between user and item dynamics.

Input and Output Layers. We first describe the input and output layer of IARN, then in
the following subsections we will elaborate on the three modules in a top-down fashion
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Figure 6.2: Architecture of IARN. Two recurrent networks are employed to learn hidden representations of
users and items. Each recurrent network is composed of an Attention-gated Recurrent Module to capture
the user/item dynamics, an Interacting Attention Module that models the attention, and a Feature Encoder
to extract semantically rich information from the input data. For the sake of clarity, here we only show the
connections from a single attention gate in the user (item) network to the forward and backward layers of the
item (user) network, however the attention gates of all time steps in the user (item) network are connected to
forward and backward layers of the item (user) network. Overall, the two recurrent networks interact with each
other to learn the dependencies between user and item dynamics.

to explain step by step how the input and output layers are connected to achieve our
goal.

Let U and V be the user and item set, respectively. As input, each user i ∈ U is
described by a sequence xi , which contains the representations (e.g., the embeddings)
of all the items rated by her, ordered by the rating time. Similarly, each item j ∈ V is
described by a sequence x j that contains the representations of all users who have rated
the item, ordered by the rating time. Through the three modules, IARN learns from xi

and x j the hidden representation of user i , denoted by ũi , and the hidden representation
of item j , denoted by ṽ j . ũi and ṽ j are then used to predicted user i ’s preference rating
r̃i j over item j via an inner product operation:

r̃i j = 〈ũi , ṽ j 〉 (6.1)

6.3.1. ATTENTION-GATED RECURRENT MODULE
In order to learn high-quality hidden representations ũi t and ṽ j t , we propose the Attention-
gated Recurrent Module to preserve the information of previous time steps with rel-
evance modeled by attention scores, which are obtained by the Interactive Attention
Module that will be present in section 6.3.2. Specifically, we construct two attention-
gated recurrent modules for the paired user and item, respectively. It should be noted
that these two modules do not share parameters, since users and items are not expected
to share similar hidden representations. This makes our method different from Siamese
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Network [135, 189], a well-known method for object comparison.
Both user- and item-side Attention-gated Recurrent Modules contain two layers, namely,

a recurrent layer and a fully-connected layer. The recurrent layer models the temporal
dynamics of users and items as hidden-states, while the fully-connected layer transform
the hidden-states of users and items in the last time step to the hidden representations
for prediction. We first describe the full-connected layer, then introduce in detail the
recurrent layer.

User- and Item-Side Fully-Connected Layers. Denote the last hidden-states of user-
and item-side recurrent layers as ui Ti and v j T j , respectively. The hidden representations
ũi and ṽ j are transformed from these hidden-states by non-linear transformations:{

ũi = g (W̃u ·ui Ti + b̃u)

ṽ j = g (W̃v ·v j T j + b̃v )
(6.2)

Herein, W̃u and W̃v are linear transformation parameters of the user- and item-side lay-
ers, respectively; b̃u and b̃v are the bias terms; g is the activation function, for which we
use the Parametric Rectified Linear Unit (PReLU) [190]. PReLU allows the output of the
unit to be either positive or negative, thus is more suitable for representing users/items
– intuitively, a user could either like or dislike certain types of items (e.g., action movies),
and an item could either be of a specific type or not.

User-Side Attention-gated Recurrent Layer. Given the user i whose corresponding in-
put sequence is xi = {xi 1,xi 2, . . .}. We denoted the attention score at time step t by ai t ,
which is a scalar value between [0,1] inferred by the Interacting Attention Module. The
hidden-state of user i at time t is then modeled as

ui t = (1−ai t ) ·ui (t−1) +ai t ·u′
i t (6.3)

where ui (t−1) is the hidden-state in the previous time step and u′
i t is the candidate state

value obtained by fully incorporating the input at the current time step:

u′
i t = g (Wu ·ui (t−1) +Hu ·Eu(xi t )+bu) (6.4)

where Wu and Hu are respectively the linear transformation parameters for the previous
and current time steps; bu is the bias term; and Eu(·) is the Feature Encoder that trans-
forms the original user sequence by considering auxiliary features, which will be detailed
in section 6.3.3. We use ReLU for the activation function g .

Equation 6.3 balances the contributions of the input of the current candidate hidden-
state and the previous hidden-state with an attention gate described by the attention
score ai t . Attention gates with high scores will focus more on the current input than pre-
vious hidden-states, while recurrent gates with low attention scores will ignore the cur-
rent input and inherit more information from previous time steps. The attention score
therefore quantifies the importance of individual time steps in the final prediction.

Item-Side Attention-gated Recurrent Layer. Similarly, for the item-side recurrent layer,
we model the the hidden-state as follows{

v j t = (1−a j t ) ·v j (t−1) +a j t ·v′j t

v′j t = g (Wv ·v j (t−1) +Hv ·Ev (x j t )+bv )
(6.5)
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where x j t is the input of item j at time t ; Wv , Hv , and bv are the network parameters;
a j t is the attention score that serves as attention gate; and Ev (·) is the Feature Encoder
for transforming item sequences, introduced in section 6.3.3.

6.3.2. INTERACTING ATTENTION MODULE
We propose the Interacting Attention Module for both users and items to measure the
saliency and relevance of the input in each time step to rating prediction. The key point
in this module is that the inferred attention score should not only consider the current
time step in the sequence on its own side, but also take into account the information of
the other side so as to model the interacting dependency between the paired user and
item.

User-Side Interacting Attention Module. To maximize the utility of the input sequence,
we model the saliency score based on both the input observation at the current time step
and the information from neighboring observations in both directions. This is achieved
by using a bi-directional RNN [191], which includes a forward layer and a backward layer,
as depicted in Figure 6.2. The attention score ai t at time step t in Equation 6.3 on the
user side is modeled as:

ai t =σ(Mu
> · tanh(Lu · (

→
ui t ;

←
ui t ;

→
v j T j ;

←
v j 1)+b′

u))) (6.6)

Wherein a two-layer network is used to calculate the attention score: Lu is a matrix as the
parameter of the fusion layer that measures the compatibility of information summary
in user side and item side; b′

u is the bias term of the fusion layer; and Mu is the weight
vector of the second layer; σ is sigmoid function applied as the activation function to
control the attention score to lie between [0,1]; (; ) denotes the concatenation among

vectors;
→
ui t and

←
ui t perform as the summary of context information around time step t

in the user sequence xi . Specifically,

→
ui t = g (

−→
Wu ·Eu(xi t )+−→

Hu ·→ui (t−1) +
→
b u)

←
ui t = g (

←−
Wu ·Eu(xi t )+←−

Hu ·←ui (t+1) +
←
b u)

(6.7)

Therefore,
→
ui t summarizes the sequence from the beginning to time t , while

←
ui t sum-

marizes the sequence from the end to time t .

Similarly,
→
v j T j

←
v j 1 in Equation 6.6 are the summary of the paired item sequence x j ,

whose calculation will be introduced later in detail by Equation 6.9. They are concate-
nated together with the summary of the user-side sequence, and used as input of the
fusion layer. In this way, the resulting attention score ai t is used to characterize the rel-
evance of the current time step t of user sequence xi conditioned on the paired item
sequence x j .

Item-Side Interactive Attention Module. Similarly, for item-side, we have

a j t =σ(Mv
> · tanh(Lv · (

→
v j t ;

←
v j t ;

→
ui Ti ;

←
ui 1)+b′

v ))) (6.8)

where Lv ,b′
v are the parameters of the fusion layer, and Mv is the weight vector of the

second layer;
→
v j t and

←
v j t perform as the summary of the context information around
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time step t in the item sequence x j :

→
v j t = g (

−→
Wv ·Ev (x j t )+−→

H v ·→v j (t−1) +
→
b v )

←
v j t = g (

←−
Wv ·Ev (x j t )+←−

H v ·←v j (t+1) +
←
b v )

(6.9)

The summary of user sequence, i.e.,
→
u i Ti

←
u i 1, are taken as input for modeling the atten-

tion score a j t , so as to condition the learning of a j t on the paired user sequence xi .
By modeling the attention of each time step in both the user- and item-side networks,

our method can capture the interacting dependency and the joint effects of user and
item dynamics on user preferences. It thus enable us to gain “second order” insights
such as how user preferences are determined by the dynamics of user inclinations and
the change of item perception/popularity together.

6.3.3. FEATURE ENCODER
We now introduce Feature Encoder, which is used to extract semantically rich informa-
tion from the input data for learning high-quality hidden-states. Here we focus on Fea-
ture Encoder for processing item-side input, as features of items are in generally richer
than users (e.g., the datasets we will take for validation in section 6.4). It is however non-
trivial to adapt our method for processing the user-side input when auxiliary features of
users are given.

We consider two structures of feature organizations, namely, flat structure and hier-
archy. Formally, let F denote the set of features organized in a flat structure or a hier-
archy. Each item j ∈ V is affiliated with a subset of features F ( j ) = { f 1

j , f 2
j , . . . , f L

j }. The

effect of feature f k
j is modeled as a linear transformation function, denoted by Mk

j , that

projects the input x j t for all 1 ≤ t ≤ T j to a new space determined by the feature (i.e., the
column space of Mk

j )

Mk
j ·x j t (6.10)

The problem is how to combine the effects of different features of F ( j ) to project the
input for best learning the hidden-states. Considering feature organizations, we design
our Feature Encoder as follows.

Flat Feature Encoder. In the case when features are organized in a flat structure, we
simply add the effects of different features together. Formally, for the input x j t , the com-
bined effects of all affiliated features F ( j ) are given by

Ev (x j t ) =∑L
k=1 Mk

j ·x j t (6.11)

Hierarchical Feature Encoder. In the case when F ( j ) is a feature hierarchy, let f 1
j be

the feature in the leaf layer and f L
j be the root feature. Intuitively, features in top-layers

(close to root in the hierarchy) provide more general description of the item, while those
in bottom-layers (close to the leaf layer in the hierarchy) provide more refined descrip-
tion. Inspired by the recursive nature of a hierarchy, we consider the recursive parent-
children relationships between features in connected layers from the root to leaf layer. In
every two connected-layers, the input will be first projected by the parent feature, then



6.3. INTERACTING ATTENTION-GATED RECURRENT NETWORKS

6

91

by the child feature. By doing so, they will be first mapped to a more general feature
space, and then mapped to a more semantically refined feature space. The effects of all
affiliated features in different layers will be combined recursively, such that the input can
be sequentially mapped to more refined spaces.

Formally, for the input x j t , the combined effects of all affiliated features F ( j ) are
given by

Ev (x j t ) = (M1
j · (M2

j . . . · (ML
j ·x j t ) . . .)) =∏L

k=1 Mk
j ·x j t (6.12)

6.3.4. END-TO-END PARAMETER LEARNING
Given the training data Dtr ai n containing N instances in the form of (i , j ,ri j , t i mest amp),
IARN learns the involved parameters by minimizing the mean squared error loss func-
tion:

J = 1

N

∑
ri j ∈Dtr ai n

(r̃i j − ri j )2 (6.13)

Since all the modules and the above loss function are analytically differentiable, IARN
can be readily trained in an end-to-end manner. In the learning process, parameters are
updated by the back-propagation through time (BPTT) algorithm [64] in the recurrent
layers of the Attention-gated Recurrent Module and the Interacting Attention Module,
and by normal back-propagation in other parts. We use RMSprop [152] to adaptively
update the learning rate, which has proven to be highly effective for training neural net-
works. To prevent over-fitting, we use dropout [192] to randomly drop hidden units of
the network in each iteration during the training process.

6.3.5. COMPARISON WITH RECURRENT NETWORK BASED METHODS
Comparison with RNN- and LSTM-backbone. One could argue that our framework can
also employ two RNN or LSTM as the backbone for user- and item-side recurrent net-
works. However, the major downside of RNN- and LSTM-backbone is two-fold. First,
RNN- and LSTM-backbone cannot provide interpretable recommendation results either
due to the lack of gates (RNN-backbone), or the gates modeled as multi-dimensional
vectors (LSTM-backbone). In contrast, gates in IARN are represented by attention scores
in scalar values, therefore IARN can provide meaningful interpretations on the relevance
of each time step for recommendation. Second, RNN- or LSTM-backbone models user
dynamics and item dynamics separately, thus can only learn fixed attention scores for
each user and item. The attention scores for a specific user (item) actually indicate the
general importance (e.g., the frequency) of each item (user) in purchased history of this
user (item), which may not be effective in predicting specific user-item interactions. Un-
like them, the novel attention scheme designed for IARN can learn different attention
scores for an individual user (item) when interacting different items (users), thus can
model the dependencies between user and item dynamics. In addition to the above,
when compared with LSTM-backbone, IARN has less parameters, so is less prone to be
over-fitting. Moreover, IARN uses the bi-directional recurrent network to model atten-
tion gates, which helps to maximize the utility of the input data.

Comparison with TAGM. IARN is inspired by the Temporal Attention Gated Model (TAGM)
[88] recently proposed for sequence classification. IARN inherits the bi-directional at-
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Table 6.1: The statistics of datasets, where #U_av_T (#I_av_T) is the average length of sequences w.r.t. users
(items).

Datasets #User #Item #Rating #Feature #U_av_T #I_av_T

Netflix 17,043 9,598 721,017 – 36.45 64.73
MovieLens 9,737 5,121 316,891 19 31.07 59.08
Electronic 11,117 15,985 136,998 590 11.35 7.89
Home 15,745 19,383 201,660 883 11.62 9.44
Clothing 19,939 20,785 135,128 690 6.07 5.82
Sport 11,723 13,811 127,178 1,130 9.82 8.33

tention gates from TAGM, however, our attention scheme is specifically designed with
the purpose of recommendation in mind. The nature of recommendation requires proper
modeling user-item interactions, for which we design the Interacting Attention Module
for modeling the interacting attention for both users and items. This allows IARN to
capture the dependencies between user and item dynamics, making IARN particularly
suitable for modeling user-item interactions.

6.4. EXPERIMENTS AND RESULTS
In this section, we conduct experiments to evaluate the performance of IARN on six real-
world datasets. We aim to answer the following research questions: (1) How do the in-
teracting attention scheme and feature encoder of IARN contribute to recommendation
performance and interpretability? (2) How effective is IARN compared to state-of-the-
art recommendation methods in both rating prediction and personalized ranking? They
will be addressed by section 6.4.2 and section 6.4.3, respectively.

6.4.1. EXPERIMENTAL SETUP

Datasets. To evaluate the effectiveness of IARN, we utilize six real-world datasets, namely
Netflix prize dataset, MovieLens, and four Amazon Web store datasets introduced by
McAuley et al. [193], i.e., Electronic, Home, Clothing, Sport. Each data point in these
datasets is a tuple – (user id, item id, rating, time stamp). Specifically, the Netflix dataset
is a large movie rating dataset scaled from 1 to 5 with a step size of 1, which is collected
between November 1999 to December 2005. MovieLens is also a personalized movie rat-
ing dataset collected from September 1995 to March 2015 with ratings ranging from 0.5
to 5.0 with a step size of 0.5. Besides, it also contains for each movie the genre informa-
tion as features in a flat structure. The Amazon Web store datasets are collected from
Amazon1, which is a large on-line shopping website, including electronics, clothing, etc.
The time span is from May 1996 to July 2014. In addition, there is an item category hier-
archy associated with each of the four datasets. We sample the datasets such that only
users and items with more than 3 ratings are preserved. Table 6.1 summarizes the statis-
tics of all the considered datasets.

Comparison Methods. We compare with the following state-of-the-art algorithms, 1)
MF [171]: matrix factorization as the basic latent factor model (LFM) aiming at rating

1https://www.amazon.com/
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prediction; 2) BPR [172]: Bayesian personalized ranking as the basic LFM designed for
item ranking; 3) TimeSVD++ [163]: LFM with the incorporation of temporal context;
4) HieVH [188]: LFM integrating feature hierarchies; 5) Item2Vec [177]: the basic neu-
ral network (NN) model; 6) NCF [182]: neural collaborative filtering replacing the inner
product with non-linear network layers for item ranking; 7) MP2Vec [194]: NN model
considering auxiliary features. Note that methods designed for incorporating feature hi-
erarchies can also handle features in a flat structure, by considering all features in the
same level; similarly, methods designed for incorporating features in a flat structure can
also handle feature hierarchies by flattening them into flat structures, with the loss of
certain structural information.

To investigate the effect of attention-gates and our novel attention scheme, we also
compare the following IARN variants using different recurrent networks as the back-
bone, a) RNN-backbone: the basic variant using RNN as the backbone of user- and item-
side recurrent neural networks; b) LSTM-backbone: the variant using LSTM as the back-
bone; c) TAGM-backbone: the variant using TAGM as the backbone; d) IARN-Plain: the
variant of our proposed attention-gated recurrent networks integrated with the interact-
ing attention scheme; e) IARN: the upgraded version of IARN-Plain by fusing auxiliary
features. Note that LSTM-backbone is similar to [167] which also employs LSTM as the
backbone; while TAGM-backbone is a completely new method which is adapted from
TAGM for recommendation. Given their same goal in modeling temporal dynamics, we
compare them together.

Evaluation Metrics. We adopt Root Mean Square Error (RMSE) and Area Under the ROC
Curve (AUC) to measure the performance of rating prediction and personalized ranking,
respectively. The smaller RMSE and the larger AUC, the better the performance. We split
all the datasets into training and test data according to the following time stamps: June
1st, 2005 for Netflix dataset; January 1st, 2010 for MovieLens dataset; and January 1st,
2014 for the four Amazon datasets. The data before these time stamps are treated as
training data, while the rest are considered as the test data.

Parameter Settings. We empirically find out the optimal parameter settings for each
comparison method. For all the methods, we set the dimension of the latent factor
d = 25 on Netflix and MovieLens datasets, and d = 50 on the four Amazon datasets. We
apply a grid search in {10−5,10−4,10−3,10−2,10−1} for the learning rate and regulariza-
tion coefficient. For TimeSVD++, decay_r ate = 0.4;bi n = 30. For HieVH, α = 0.01. For
MP2Vec, α = 0.1. For all recurrent networks mentioned in this work (RNN-backbone,
LSTM-backbone, TAGM-backbone, IARN) as well as NCF, the number of hidden units
is set to 64 which is selected as the best configuration from the option set {32, 64, 128}
based on a held-out validation set. To avoid potential over-fitting, the dropout value is
validated from the option set {0.00, 0.25, 0.50}. Model training is performed using a RM-
Sprop stochastic gradient descent optimization algorithm with mini-batches of 50 pairs
of user-item interactions. All the gradients are clipped between -10 and 10 to prevent
exploding [65].

6.4.2. EFFECTS OF ATTENTION AND FEATURE ENCODER
Attention. In order to investigate the impact of the proposed attention scheme, we com-
pare the performance (measured by RMSE) of IARN-Plain with different recurrent net-
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Figure 6.3: Performance (measured by RMSE) of IARN variants with different recurrent networks as the back-
bone on different configurations of the real-world datasets with varying minimum sequence lengths.
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Figure 6.4: Performance of rating prediction of IARN variants with and without feature encoder on the five
datasets.

works as the backbone, including RNN-backbone, LSTM-backbone, and TAGM-backbone.
To understand their capability in modeling temporal dynamics of users and item history
in different lengths, we test their performance on different configurations of the datasets
by constraining the minimum length of user and item input sequences. A grid search in
{3,10,20,30,50,100} is applied for the minimum length of sequences on all the datasets,
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excluding Clothing and Sport since there are few users possessing long length sequences
in these two datasets. Due to space limitation, we only show the results on four Amazon
datasets as depicted by Figure 6.3, however similar observations as below can be ob-
tained on all the datasets.

As the minimum length of input sequences increases, the performance of all meth-
ods generally improves, indicating that sufficient temporal context could ensure recur-
rent network based methods to better model the dynamics of user preferences. The
performance of gated recurrent networks, i.e., LSTM-backbone, TAGM-backbone, and
IARN-plain, is generally better than the non-gated recurrent network, i.e., RNN-backbone.
Such a difference is minor when the minimum sequence length is less than a thresh-
old (e.g., 30), and becomes significant with the further growth of the sequence length.
This shows the benefit of gating mechanism in effectively preserving historical informa-
tion deep into the past for recommendation. The observation further explains the close
performance of different methods on Clothing dataset, whose sequences are mostly less
than 30 and the average sequence length (i.e., around 6, Table 6.1) is significantly smaller
than all the other datasets.

The overall performance of TAGM-backbone and IARN-Plain, is better than that of
LSTM-backbone. LSTM-backbone adopts multi-dimensional gates w.r.t. each hidden
unit, which can be more easily over-fitted than the (bi-directional) attention-gates em-
ployed by TAGM-backbone and IARN-Plain. With respect to attention-gated recurrent
networks, IARN-Plain outperforms TAGM-backbone across all different configurations
of minimum sequence length. This is mainly due to the fact that TAGM-backbone learns
user and item dynamics separately, i.e., only fixed attention scores for user history and
item history are learned (LSTM-backbone suffers from the same issue). Whereas equipped
with our novel attention scheme, IARN-Plain can adaptively learn different attention
scores for user (item) history when the user (item) interacts with different items (users).
Such a comparison clearly shows the advantage of our proposed attention scheme for
modeling the dependencies between user and item dynamics.

Overall, IARN-Plain achieves the best performance across all different configurations
of all the datasets, especially when the sequence length gets larger. On average, the
relative improvements w.r.t. the second best method are 2.54% with minimum length
= 50 and 11.65% with minimum length = 100. This implies the remarkable advantage of
IARN-Plain in dealing with long sequences.

Feature Encoder. We further examine the effectiveness of auxiliary features which are
organized in either a flat or hierarchical structure on all the datasets, excluding Netflix
which does not contain any auxiliary features. The results are given by Figure 6.4. By
integrating auxiliary features IARN outperforms IARN-Plain across all the datasets, with
1.19% lift (p-value < 0.01) in RMSE on average. This clearly indicates the benefit of con-
sidering feature encoder in our proposed IARN approach.

Interpretation by IARN. The attention scores learned by IARN for individual time steps
in user and item history can help quantify the relevance of each time steps in user and
item history for recommendation. We now qualitatively analyze such attention scores to
investigate their effects on providing meaningful interpretations for recommendation.
Figure 6.5 shows the attention scores learned by IARN on examples of four datasets.

In each of the four examples, we can observe varying attention scores assigned to
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Figure 6.5: Examples of attention scores learned by IARN. The target user and item in each sub-figure have an
observed interaction. The attention scores of individual time steps are shown under user and item history.

different time steps in both user and item history. Such attention scores can effectively
capture the target user’s preference related to the inherent property of the target item,
as inferred from the data. For example in MovieLens dataset, IARN learns high attention
scores for the time steps in user history when the user was watching movies of genre
“Adventure” and “Action”. These time steps are highly indicative of his potential prefer-
ence over the target item, i.e., “The Lost World: Jurassic Park”. In contrast, low attention
scores are assigned to those time steps when he was watching movies of other genres,
e.g., “Drama”. IARN thus can selectively memorize most relevant time steps of the user’s
history in predicting his preference over the target item. Similarly, IARN can also se-
lect the most relevant time steps in item history to characterize the inherent genre of
the item, i.e., those time steps when it was being watched by users who share the same
interest as the target user, i.e., “Adventure” and “Action” movies (e.g., “Aliens”). Simi-
lar observations can be noted in the other three examples. For instance in the Sport
dataset, IARN can infer the most relevant time steps in the user history when the user
bought hiking related item; and in the item history when the item was bought by users
who like hiking. Such dependency between the relevance of time steps in user history
and in item history is highly useful for discovering the link between the target user and
item, and thus provides strong interpretations for the recommendation results.

6.4.3. COMPARATIVE RESULTS

Rating Prediction. The left side of Table 6.2 presents the rating prediction performance
on the six real-world datasets. BPR, Item2Vec, NCF, and MP2Vec are excluded since
RMSE cannot be applied to these methods. BPR and NCF optimize ranking based ob-
jective function. Item2Vec and MP2Vec learn the embeddings of items and then adopt
the similarity score between item embeddings to predict recommendations, instead of
minimizing the difference between the real ratings and the estimated ratings. Several
interesting observations can be obtained.
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Table 6.2: Performance of rating prediction (measured by RMSE) and personalized ranking (measured by AUC)
of all comparison methods on the six real-world datasets. The best performance is boldfaced; the runner up is
labeled with “*”. The results of HieVH and MP2Vec on Netflix is not available (marked by “–”) due to the lack of
feature information in the Netflix dataset.

Datasets
Rating prediction: RMSE Personalized ranking: AUC

MF TimeSVD++ HieVH IARN MF BPR TimeSVD++ HieVH Item2Vec NCF MP2Vec IARN

Netflix 1.1828 1.1243* – 1.0582 0.6147 0.7414 0.6289 – 0.7642 0.7654* – 0.7901
MovieLens 1.1319 1.0623 1.0326* 0.9622 0.6305 0.6971 0.6504 0.7214 0.7130 0.7128 0.7135* 0.7135*
Electronic 1.3213 1.3152 1.1694* 1.0970 0.5757 0.6699 0.5820 0.7257* 0.6794 0.7052 0.7072 0.7359
Home 1.2010 1.1974 1.1231* 1.0419 0.5305 0.6341 0.5520 0.7132* 0.6902 0.6973 0.7007 0.7210
Clothing 1.3587 1.2851 1.2283* 1.0998 0.5092 0.6246 0.5205 0.7011 0.6717 0.6720 0.6919 0.7004*
Sport 1.2021 1.1690 1.1279* 0.9597 0.5489 0.6492 0.5515 0.6962* 0.6787 0.6759 0.6792 0.6975

It is unsurprising that MF – as the basic LFM – considering no auxiliary information,
performs the worst among all the considered methods. By integrating temporal context
into LFM, TimeSVD++ outperforms MF. This confirms that modeling temporal dynamics
of user preferences can significantly improve the recommendation performance. HieVH
is also a LFM based approach, which takes into account the influence of both vertical and
horizontal dimensions of feature hierarchies on recommendation. It outperforms MF,
and even slightly exceeds TimeSVD++, confirming the effectiveness of auxiliary features
for better recommendation.

Our proposed approach – IARN, consistently outperforms the other methods in the
comparison pool, with an average performance gain (w.r.t. the second best method)
of 8.58% on RMSE. Pair-wised t-test demonstrates that the improvements of IARN on
all the datasets are significant (p−value< 0.01). Such big enhancement clearly shows
the effectiveness of the integration of interacting attention scores as well as auxiliary
features.

Ranking Performance. We further evaluate the ranking quality of items recommended
by the methods in the comparison pool. Results are shown on the right side of Table 6.2.
A number of meaningful findings can be noted from the table.

In terms of the LFM based methods, TimeSVD++ and HieVH outperform MF by tak-
ing temporal context and feature hierarchies into account, respectively. This observation
further verifies the usefulness of the two types of side information for better recommen-
dations. For NN based method, the fact that the performance of MP2Vec is better than
that of Item2Vec and NCF also helps to reach the same conclusion, as MP2Vec considers
auxiliary features while Item2Vec and NCF do not. The superior performance of NCF
over Item2Vec shows the effectiveness of hidden layers in neural networks for modeling
non-linear user-item interactions. In both LFM based methods and NN based methods,
those specifically designed for personalized ranking, i.e., BPR and NCF, perform better
than methods for rating prediction, i.e., MF and Item2Vec, which strongly confirms the
conclusion that methods designed for personalized ranking are more efficient than rat-
ing prediction methods for the item ranking problem [172].

Our proposed approach IARN generally achieves the best performance on item rank-
ing when compared with the other considered methods. This demonstrates the effec-
tiveness of IARN in modeling user and item dynamics for improving recommendation
performance. However, the performance improvements of IARN on ranking prediction
is far behind those on rating prediction. The underlying explanation is that the objective
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function of IARN aims to minimize the squared error between the observed ratings and
the estimated ratings, which is just in accordance with the definition of RMSE. IARN is
therefore more effective on rating prediction. We leave it as future work the improve-
ment of IARN on item ranking.

6.5. CONCLUSIONS
User preferences often evolve over time, thus modeling their temporal dynamics is es-
sential for recommendation. This chapter proposes the Interacting Attention-gated Re-
current Network (IARN) to accommodate temporal context for better recommendation.
IARN can not only accurately measure the relevance of individual time steps of user and
item history for recommendation, but also capture the dependencies between user and
item dynamics in shaping user-item interactions. We further show that IARN can be
easily integrated with auxiliary features for enhanced recommendation performance.
Extensive validation on six real-world datasets demonstrates the superiority of IARN
against other state-of-the-art methods. For future work, we intend to further improve
the effectiveness of IARN on the item ranking problem.



7
DISCUSSION

In this chapter, we first conclude this thesis and then foresee several research topics for
future work.

7.1. CONCLUSIONS
This thesis focuses on the supervised learning on sequence data. In particular, we have
made advances by proposing models to answer the five research questions posed in
Chapter 1.

Research Question 1: Can we propose a sequence classification model which is able to
model complex decision boundaries with a limited number of latent variables?

We proposed a sequence classification model called Hidden-Unit Logistic Model (HULM)
in Chapter 2. The model is similar in structure to the popular hidden CRF model, but it
employs binary stochastic hidden units instead of multinomial hidden units between
the data and label. As a result, the HULM can model exponentially more latent states
than a hidden CRF with the same number of parameters. In addition, our HULM is also
more computationally efficient than the HCRF model given the same number of hidden
variables. The results of experiments on several real-world data sets showed that this ad-
vantage results in improved performance on challenging time-series classification tasks.

One potential drawback of our model is that the modeling of temporal dependencies
is somewhat limited by the linear-chain connection between adjacent time steps.

Research Question 2: Can we propose a sequence classification model which is able to
deal with unsegmented sequences and meanwhile measure the relevance of each time step
of the input sequence to the classification task?

To address this question, we presented the Temporal Attention-Gated Model (TAGM) in
Chapter 3, which is able to deal with unsegmented sequences. The model is inspired
by attention models and gated recurrent networks and is able to detect salient parts of
the sequence while ignoring irrelevant and noisy ones. The resulting hidden representa-
tion suffers less from the effect of noise and and thus leads to better performance. Fur-
thermore, the learned attention scores provide a physically meaningful interpretation
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of relevance of each time step observation for the final decision. We showed the gener-
alization of our approach on three, very different, datasets and sequence classification
tasks.

The attention scores are learned per frame, which is able to accurately identify the
relevance of each frame. However, the learned attention scores do not proceed con-
tinuously and smoothly, which prevent them to be used for sequence segmentation or
detection.

Research Question 3: Can we propose a one-stage supervised sequence model which
learns features together with the supervised learning (classification or regression)?

We presented an attended end-to-end model for age estimation from facial expression
videos in Chapter 4, which is a one-stage supervised learning model that learns features
for each time step together with the supervised learning. The model employs convolu-
tional networks to learn the effective appearance features and feed them into recurrent
networks to learn the temporal dynamics. Furthermore, both a spatial attention mecha-
nism and a temporal attention mechanism are added to the model. The spatial attention
can be integrated seamlessly into the convolutional layers to capture the salient facial
regions in each single image, while the temporal attention is incorporated in recurrent
networks to capture the salient temporal frames. The whole model can be trained read-
ily in an end-to-end manner. Specifically, our model makes a substantial improvement
over the state-of-the-art methods.

Research Question 4: Can we propose a sequence model that learns a good similarity
measure in a supervised way?

As an attempt of modeling symmetric association, we presented a supervised learn-
ing model for similarity scoring between two sequences. Our proposed model, named
Siamese Recurrent Networks (SRNs), combines the idea from metric learning and deep
recurrent networks. It is particularly effective compared to alternative techniques in set-
tings in which the similarity function that needs to be learned is complicated, or when
the number of labeled time series for some of the classes of interest is limited. When a
reasonably large collection of examples of similar and dissimilar time series is available
to train the models, the siamese recurrent networks can produce representations that are
suitable for challenging problems such as one-shot learning or extreme classification of
time series.

Research Question 5: Given two input sequences representing a pair of historic user and
item data, how to model the preference of the user over the item, which takes into account
not only the information contained in each individual sequence, but also the interdepen-
dencies between them?

The proposed model in Chapter 6, named Interacting Attention-gated Recurrent Network
(IARN), is designed to learn the user preference over the item in recommendation sys-
tems. IARN can not only accurately measure the relevance of individual time steps of
user and item history for recommendation, but also capture the dependencies between
user and item dynamics in shaping user-item interactions. We further showed that IARN
can be easily integrated with auxiliary features for enhanced recommendation perfor-
mance. Extensive validation on six real-world datasets demonstrated the superiority of
IARN against other state-of-the-art methods.
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7.2. FUTURE WORK
While the research presented in this thesis has gained new insights, we foresee several
future research directions in which the work in this thesis can be extended.

7.2.1. SEQUENCE CLASSIFICATION

Sequence Classification by Extending the HULM model. Our proposed Hidden-Unit
Logistic Model (HULM) for sequence classification employs simple first-order Markov
chains on the hidden units to model the temporal dependencies between different time
steps. One promising future work is to study the variants of the HULM model by replac-
ing the first-order chains with more powerful, higher-order chains via a similar factoriza-
tion as used in neural autoregressive distribution estimators [46]. The resulting models
will likely have longer temporal memory than our current model, which will likely lead
to stronger performance on complex time-series classification tasks.

A second interesting direction might be to remove the linearly connected Markov
chains completely and model the temporal relationships as fully-connected chains be-
tween adjacent time steps, which is more powerful to model the temporal dependencies.
However, the resulting model has no analytical formulation. A potential option to tackle
the difficulty is to employ variational inference methods [195] to find an approximated
solution.

Sequence Classification by CNN-based models. Convolutional Neural Networks (CNNs)
led to great progress in image domain such as object detection [196, 197] and image clas-
sification [198]. Recently, CNNs have been shown to be powerful for sequence data too in
the case of the neural machine translation [199]. Specifically, the temporal information
contained in the sequence can be modeled well by convolutional operations. Inspired by
this fact, a promising future direction for sequence classification is to leverage the Con-
volutional Neural Networks to model both, the static information in each single time
step, and the temporal information of the sequence. It might be especially beneficial for
video data due to the success of CNNs in image domain.

Sequence Classification by densely connected RNNs. Recurrent Neural Networks (RNNs)
have been widely applied to language [134], age estimation from videos [200], image gen-
eration [61] and recommendation system [201]. One important limitation of a standard
RNNs is that it is difficult to store long-term information due to the vanishing gradient
problem caused by the Markov connections between adjacent time steps. Similar limi-
tation about the vanishing gradient also exists in the deep CNNs. An effective way to ad-
dress this problem in the case of CNNs is to introduce the shorter or high-order connec-
tions between nonadjacent layers, such as Resnet [198] or dense connected CNNs [202].
Hence, it might be interesting to introduce the shorter or densely connection into RNNs
to maintain a long-term memory since RNNs can be viewed as deep feed-forward net-
works in which all layers share the same weights.

7.2.2. MULTI-TASK LEARNING ON SEQUENCE DATA
Multi-task learning scenarios are common among sequence applications. For instance,
recognition of short-term actions and long-term activities, or optical character recog-
nition and word classification, can be performed simultaneously. This can potentially
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improve the learning performance since what is learned for one task can be beneficial
for other tasks. Hence, multi-task learning on sequence data is a promising research
direction that is worth to explore in the future.

7.2.3. SIMILARITY MEASUREMENT
The Siamese Recurrent Networks (SRNs) proposed in Chapter 5 employ a weighted inner
product between the hidden representations of two sequences which is learned by re-
current networks to represent the similarity between the two sequences. Recently, Deep
Canonical Correlation Analysis [203] (DCCA) was proposed to learn complex nonlinear
transformations of a pair of objects such that the resulting representations are maximally
correlated. The method employs two deep networks to learn a hidden representation for
each of object. The parameters are trained to maximize the correlation between the two
hidden representations using gradient-based optimization. It can be considered as a
nonlinear extension of the linear Canonical Correlation Analysis. Interestingly, DCCA
can be applied to a pair of sequence data (eg., using CNNs or RNNs) to learn the hidden
representations for two sequences by maximizing the correlation between them.

Another direction is to apply triplet loss [204] to the task of similarity measurement.
The main idea of triplet loss is to train the model so as to ensure a predefined margin
between the distance of a similar pair of sequences and a dissimilar pair of sequences. It
is interesting to compare this scheme to the binary cross-entropy loss used in our model.

7.2.4. UNSUPERVISED LEARNING ON SEQUENCE DATA
This thesis focuses on the supervised learning on sequence data. However, it is worth to
explore the unsupervised learning on sequence data. First, this might be used to learn
a fixed-length hidden representations for sequences. Nowadays, a popular approach
is to apply an autoencoder to sequence data. Having, a fixed length representation for
variable length sequences, standard learners can be used.

Another possibility is to employ Generative Adversarial Nets (GAN) [205] , which en-
able to generate new sequence data to enlarge the training set. To adapt GANs to se-
quence data, one might use RNNs as backbone model rather than multilayer percep-
trons or deep CNNs. Another option is to assimilate the idea of Variational Autoen-
coder [206], which is a generative model that encourages the learned latent vectors to
follow a gaussian distribution. How to apply VAE to sequence data is a nontrivial task
that is worth to investigate.

As a final remark, we have shown that building predictive models on sequence data is
challenging. We are, however, confronted more and more with sequence data, so we are
in a need for new approaches that deal with these challenges. With this thesis, we have
made a step in that direction by contributing to different aspects of supervised learning
on sequence data. Nevertheless, more research is still necessary.



REFERENCES

[1] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M. Faundez-Zanuy,
V. Espinosa, A. Satue, I. Hernaez, J.-J. Igarza, C. Vivaracho, D. Escudero, and Q.-
I. Moro, MCYT baseline corpus: A bimodal biometric database, IEE Proceedings on
Vision, Image and Signal Processing 150 (2003).

[2] L. Rabiner, A tutorial on hidden markov models and selected applications in speech
recognition, Proceedings of the IEEE 77, 257 (1989).

[3] J. Lafferty, A. McCallum, and F. Pereira, Conditional random fields: Probabilistic
models for segmenting and labelling sequence data, in ICML (2001) pp. 282–289.

[4] A. Quattoni, S. Wang, L.-P. Morency, M. Collins, and T. Darrell, Hidden conditional
random fields, IEEE Trans. Pattern Anal. Mach. Intell. 29, 1848 (2007).

[5] S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell, Hidden con-
ditional random fields for gesture recognition, in CVPR, Vol. 2 (2006) pp. 1521–1527.

[6] Y. Wang and G. Mori, Learning a discriminative hidden part model for human ac-
tion recognition, NIPS 21 (2008).

[7] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, On the properties
of neural machine translation: Encoder-decoder approaches, in Proceedings of
SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics and Structure in Sta-
tistical Translation (2014) pp. 103–111.

[8] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9,
1735 (1997).

[9] A. Graves, A.-r. Mohamed, and G. Hinton, Speech recognition with deep recurrent
neural networks, in ICASSP (2013).

[10] M. Müller, Information Retrieval for Music and Motion (Springer-Verlag New York,
Inc., 2007).

[11] T. Vintsyuk, Speech discrimination by dynamic programming, Kibernetika 4, 81
(1968).

[12] T. Jaakkola and D. Haussler, Exploiting generative models in discriminative classi-
fiers, in In Advances in Neural Information Processing Systems 11 (1998) pp. 487–
493.

103



7

104

[13] F. Perronnin, J. Sánchez, and T. Mensink, Improving the Fisher kernel for large-
scale image classification, in Proceedings of the European Conference on Computer
Vision (2010) pp. 143–156.

[14] H. Larochelle and Y. Bengio, Classification using discriminative restricted boltz-
mann machines, in ICML (2008) pp. 536–543.

[15] L. van der Maaten, M. Welling, and L. Saul, Hidden-unit conditional random fields,
Int. Conf. on Artificial Intelligence & Statistics , 479 (2011).
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[49] W. Pei, H. Dibeklioǧlu, D. M. J. Tax, and L. van der Maaten, Multivariate time-series
classification using the hidden-unit logistic model, IEEE Transactions on Neural
Networks and Learning Systems (2017).

[50] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio,
Show, attend and tell: Neural image caption generation with visual attention, in
Proceedings of the 32nd International Conference on Machine Learning (ICML-15),
edited by D. Blei and F. Bach (JMLR Workshop and Conference Proceedings, 2015)
pp. 2048–2057.

[51] X. Chen and C. L. Zitnick, Mind’s eye: A recurrent visual representation for image
caption generation. in CVPR (IEEE Computer Society, 2015) pp. 2422–2431.

[52] H. Fang, S. Gupta, F. N. Iandola, R. K. Srivastava, L. Deng, P. Dollár, J. Gao, X. He,
M. Mitchell, J. C. Platt, C. L. Zitnick, and G. Zweig, From captions to visual concepts
and back. in CVPR (IEEE Computer Society, 2015) pp. 1473–1482.

[53] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. Courville, Describ-
ing videos by exploiting temporal structure, in Computer Vision (ICCV), 2015 IEEE
International Conference on (IEEE, 2015).

[54] M.-T. Luong, H. Pham, and C. D. Manning, Effective approaches to attention-based
neural machine translation, in EMNLP (2015).

[55] B. Sankaran, H. Mi, Y. Al-Onaizan, and A. Ittycheriah, Temporal attention model
for neural machine translation, CoRR abs/1608.02927 (2016).

[56] A. Haque, A. Alahi, and L. Fei-Fei, Recurrent attention models for depth-based per-
son identification, in The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2016).



7

107

[57] A. Graves, S. Fernández, and F. Gomez, Connectionist temporal classification: La-
belling unsegmented sequence data with recurrent neural networks, in In Proceed-
ings of the International Conference on Machine Learning, ICML 2006 (2006) pp.
369–376.

[58] S. Sharma, R. Kiros, and R. Salakhutdinov, Action recognition using visual atten-
tion, CoRR abs/1511.04119 (2015).

[59] J. SCHMIDHUBER, A local learning algorithm for dynamic feedforward and recur-
rent networks, Connection Science 1, 403 (1989).

[60] T. Mikolov, S. Kombrink, L. Burget, J. Cernocký, and S. Khudanpur, Extensions of
recurrent neural network language model. in ICASSP (IEEE, 2011) pp. 5528–5531.

[61] L. Theis and M. Bethge, Generative image modeling using spatial lstms, in Proceed-
ings of the 28th International Conference on Neural Information Processing Sys-
tems, NIPS’15 (2015) pp. 1927–1935.

[62] A. Graves, Generating sequences with recurrent neural networks, in arXiv:1308.0850
(2013).

[63] V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann ma-
chines, in Proceedings of the 27th International Conference on Machine Learning
(ICML-10) (2010).

[64] P. J. Werbos, Generalization of backpropagation with application to a recurrent gas
market model, Neural Networks 1 (1988).

[65] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, Advances in optimizing
recurrent networks, in Proceedings of the IEEE Conference on Acoustics, Speech and
Signal Processing (2013).

[66] B. Pang and L. Lee, A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts, in Proceedings of the 42Nd Annual Meet-
ing on Association for Computational Linguistics, ACL ’04 (2004).

[67] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts,
Recursive deep models for semantic compositionality over a sentiment treebank,
in Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing (Association for Computational Linguistics, Stroudsburg, PA, 2013) pp.
1631–1642.

[68] J. Pennington, R. Socher, and C. D. Manning, Glove: Global vectors for word repre-
sentation, in Empirical Methods in Natural Language Processing (EMNLP) (2014)
pp. 1532–1543.

[69] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III, Deep unordered com-
position rivals syntactic methods for text classification, in Association for Compu-
tational Linguistics (2015).



7

108

[70] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning, Semi-
supervised recursive autoencoders for predicting sentiment distributions, in Pro-
ceedings of the Conference on Empirical Methods in Natural Language Process-
ing, EMNLP ’11 (Association for Computational Linguistics, Stroudsburg, PA, USA,
2011) pp. 151–161.
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SUMMARY

Much of the observational data that we see around is, is ordered in space or time. For in-
stance, video data, audio data or text data. This ordered data, called sequence data, calls
for automatic analysis using supervised learning. Traditional single-observation super-
vised learning is challenged by sequence data, because (1) the length of sequence exam-
ples is often variable; (2) the sequence data may contain irrelevant segments which yield
negative impact on the learning performance and (3) there exist temporal dependencies
between consecutive observations in a sequence that need to be exploited by supervised
learning on sequence data. This thesis introduces new models for supervised learning
on sequence data that specifically address these challenges.

We first propose a sequence classification model which is a graphical model using
hidden variables to model the latent structure in the sequence data. It advances the
state-of-the art by using the same number of hidden variables to model much more
complex decision boundaries. Subsequently, we present a sequence classification model
which is able to deal with unsegmented sequences. The proposed model integrates ideas
from attention models and gated recurrent neural networks. It is able to discern the
salient segments and filter out the irrelevant ones, but it also measures the relevance of
each time step of the sequence data to the final task. Finally, we propose an end-to-end
model for age estimation from facial expression videos that performs feature learning
and supervised learning for the final task jointly.

Next we considered the supervised learning on paired sequences in which we want
to predict whether the two sequences are similar. We combined ideas from sequence
modeling and metric learning, and propose Siamese Recurrent Networks to learn a good
similarity measure between two sequences. Our model is superior to current techniques
that are based on handcrafted similarity measures or models using unsupervised learn-
ing. Finally, we present a model that predicts the preference of users for items in a rec-
ommendation system. In this case, two input sequences represent a pair of historic user
and item data each with their own properties. The dependencies between the two se-
quences are modeled using an attention scheme.
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SAMENVATTING

Veel van de waarnemingsgegevens die we om ons heen zien, is geordend in ruimte of tijd.
Bijvoorbeeld videogegevens, audiogegevens of tekstgegevens. Deze geordende data, se-
quentiegegevens genaamd, roept op tot automatische analyse met behulp van gesuper-
viseerd leren. Voor traditioneel gesuperviseerd leren op ongeordende data zijn sequen-
tiegegevens een uitdaging, omdat (1) de lengte van sequentievoorbeelden vaak varia-
bel is; (2) de sequentiedata kunnen irrelevante segmenten bevatten die een negatieve
invloed hebben op de leerprestaties en (3) er bestaan temporele afhankelijkheden tus-
sen opeenvolgende waarnemingen in een sequentie die moeten worden uitgebuit door
gesuperviseerd leren over sequentiegegevens. Dit proefschrift introduceert nieuwe mo-
dellen voor gesuperviseerd leren over sequentiegegevens die specifiek deze uitdagingen
aanpakken.

We stellen eerst een sequentieklassificatiemodel voor, een grafisch model dat ver-
borgen variabelen gebruikt om de latente structuur in de sequentiegegevens te model-
leren. Het verbetert de state-of-the-art door hetzelfde aantal verborgen variabelen te
gebruiken om veel complexere beslissingsgrenzen te modelleren. Vervolgens presente-
ren we een sequentieclassificatiemodel dat niet-gesegmenteerde sequenties kan verwer-
ken. Het voorgestelde model integreert ideeën uit aandachtsmodellen en Gated Recur-
rente Neurale Netwerken. Het is in staat om de saillante segmenten te onderscheiden
en de irrelevante segmenten eruit te filteren, maar het meet ook de relevantie van elke
tijdstap van de sequentiegegevens. Ten slotte stellen we een end-to-end-model voor
leeftijdschatting voor van gelaatsuitdrukkingvideo’s waarin zowel de kenmerken als de
uiteindelijke taak gelijktijdig worden geleerd.

Vervolgens hebben we gekeken naar het gesuperviseerde leren op gepaarde sequen-
ties waarin we willen voorspellen of de twee sequenties vergelijkbaar zijn. We combi-
neerden ideeën uit sequentiemodellering en metrisch leren en stelden Siamese Recur-
rente netwerken voor om een goede similariteitsmeting tussen twee sequenties te le-
ren. Ons model is superieur aan de huidige technieken die zijn gebaseerd op handge-
maakte gelijkheidsmaatstaven of modellen die gebruikmaken van niet-gesuperviseerd
leren. Ten slotte presenteren we een model dat de voorkeur van gebruikers voor items in
een aanbevelingssysteem voorspelt. In dit geval vertegenwoordigen twee invoerreeksen
een paar historische gebruikers- en artikelgegevens met elk hun eigen eigenschappen.
De afhankelijkheden tussen de twee sequenties worden gemodelleerd met behulp van
een aandachtschema.
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