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Abstract

Bilateral teleoperation with force feedback aims to transmit human expertise over long
distances by transferring the sensation of physical contact. One of the primary challenges
in achieving this goal is the ultra low latency requirement. Tactile internet and model-
mediated teleoperation are promising research areas addressing the latency constraint.
In model-mediated teleoperation, it is crucial that the remote environment parameters
are tracked with minimal latency to update the local model. This work investigates the
potential of designing a cost-effective object tracking solution that performs comparably to
state-of-the-art systems while maintaining low tracking latency. A method is proposed to
streamline the design process by leveraging assumptions about the tracking conditions. An
object-tracking algorithm that can effectively fuse high-frequency noisy inertial data (>1
kHz) with delayed, low-frequency (30 Hz) but accurate camera data has been designed.
A practical system was constructed using cost-efficient components, and a dataset was
collected for testing and characterization. The system demonstrated the ability to produce
object pose estimates at 1 ms intervals. In experiments along a single axis, the system
achieved a mean positional estimation error of 0.1 cm and a mean orientation estimation
error of 0.5◦. The algorithm also successfully corrected for camera latencies of up to 350
ms while maintaining accurate estimates. These results demonstrate the possibility of
achieving a low latency, accurate object tracking system while keeping component and
computation costs reasonable.
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Chapter 1

Introduction

In today’s world, connecting with someone across the globe is as easy as a single click.
Even with a standard smartphone, we can see and hear the person we are talking to,
enjoying a natural, real-time conversation with minimal effort. Since their inception, cell
phones and video calling technologies have overcome many communication barriers and
have been essential in simplifying complex processes in the industry and our daily lives.
However, as these technologies approach a state of refinement, it raises the question of

what the next evolutionary step in human interaction will be. We argue that the answer
lies in remote force-feedback interactions, specifically bilateral teleoperation with force
feedback.
Bilateral teleoperation with force feedback enables the possibility to physically manipu-

late a remote environment while simultaneously preserving the feeling of the applied forces
locally. A compelling example of this kind of interaction might be found in disaster re-
sponse and hazardous environment exploration. In an earthquake disaster scenario where
rescue teams are tasked with finding survivors in the rubble, teleoperated robots can be
used for the search mission instead of sending in humans. They can navigate through
dangerous and unstable terrain. The operators will be able to feel the resistance of the
materials and their textures in real time. This enables them to decide the appropriate levels
of force to remove the debris and will effectively increase the safety, efficiency, and success
of the extraction of survivors. This might be an example of a somewhat extreme case, but
bilateral teleoperation will leave no industry unaffected, from gaming to agriculture and
from the medical industry to education.
Individual industries aside, one of the most prominent changes this technology will

bring is the effortless importation and exportation of human skills worldwide and beyond.
Experts from any field that requires human physical interaction can lend their expertise
without moving significantly large distances. This has many palpable advantages but also
accommodates many benefits that are not evident initially. Professionals who do not have
to relocate to offer their expertise conserve ample resources when considered in scale. This
approach saves vast amounts of time, money, and energy, contributing to individual and
travel-related carbon emissions goals. Furthermore, remote access to expertise can create
unprecedented opportunities for smaller and isolated communities by providing previously
unreachable services and skills. This can even boost local economic development and
provide a more equal distribution of resources. The distribution of economic activities
more evenly across different regions by making living and working conditions outside of
major urban centers can help address the problem of overpopulation from which many large
cities worldwide suffer. This technology’s environmental, economic, and social advantages
promote a more sustainable approach to managing the global workforce, enabling broader
access to opportunities for everyone.
Obviously, this future is still far ahead of us, but research on bilateral teleoperation with

force feedback has existed for many years. In the classic sense, a bilateral teleoperation
system consists of two distinct domains, the operator domain and the remote domain, and
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Figure 1.1: Illustration of a model-mediated bilateral teleoperation system.

a network that connects these two domains. An example of a bilateral teleoperation setup
can be seen in Figure 1.1. The operator domain consists of a haptic device with which an
operator can interact. The haptic device is connected to a robotic actuator in the remote
domain. The robotic actuator imitates the movements that the operator dictates on the
haptic device and, thus, interacts with its environment. The interaction of the robotic
actuator is captured via sensors and sent back to the operator domain over the network,
where the force feedback can be applied to the haptic device such that the operator can feel
the consequences of its remote manipulations. In addition to the force-feedback in some
bilateral teleoperation settings, a live audio-visual feed of the remote environment can be
incorporated. This feature, in combination with precise force feedback, can be crucial in
scenarios where the operator has to maintain accurate hand-eye coordination.
A significant challenge in realizing bilateral teleoperation systems is managing the delay

that is introduced by the network and other system components. When interacting with
a remote environment, it is crucial that the applied force is relayed back to the operator
in time. The presence of significant lag, resulting in delayed feedback, can lead to the
operator applying too much force, or the force can be applied for too long. Especially
in critical applications, this can have detrimental results. Research has found that the
time of a round trip latency for feedback must be in the order of 1 ms [1]. This is also
called the ultra low latency requirement. One approach that deals with this requirement is
Tactile Internet (TI). TI aims to minimize network latencies as much as possible, which can
enable reliable low-latency bilateral teleoperation. The foremost obstacle in applying TI
over long distances is the fundamental limitation imposed by the speed of light. Light can
traverse a maximum distance of approximately 300 kilometers (or 150 km each way) before
exceeding the 1 ms latency threshold. Another approach that tries to accomplish reliable
and stable bilateral teleoperation is model-mediated teleoperation (MMT). MMT considers
that there will always be a latency component present in such systems and tries to deal
with this problem by introducing a model of the remote domain that runs in the operator
domain. This local model is a digital twin of the remote domain. When the operator
interacts with the haptic device, the force feedback can be calculated almost instantly
through the local model, and it can be applied before the actual feedback from the remote
environment even arrives. This local model enables a smooth teleoperation experience
for the operator while handling divergence and latency issues under the hood. MMT
research has predominantly focused on static remote environments. This indicates that
objects in the remote environment cannot be manipulated such that they undergo large
displacement, rotation, or deformation. Under these static circumstances, parameters to
form the local model need to be sent over the network just once, and therefore, only minor
corrections might be needed during operation. The real challenge arises when dynamic
environments are considered. Dynamic environments inherently need a multitude more
parameters to form an accurate model. If the environment is not known beforehand,
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environment detection is needed. Furthermore, since the parameters of the objects will
change significantly during operation in such environments, the new parameters must
be calculated and sent back to the operator domain to update the local model. This
considerably increases the system’s complexity as it requires updating the local model
frequently and more drastically. Hence, the need for a reliable, accurate, robust object-
tracking system arises. State-of-the-art object tracking methods are reliable but often are
costly solutions, require complex setups, and suffer from computational limits. To enable
and kickstart accessible research on bilateral teleoperation, an object-tracking system that
solves these problems is needed, which brings us to the research question of this thesis:

How can an accurate, low-latency object pose tracking system be set up
as accessible as possible with minimal component and time costs?

This thesis proposes a method for reliably tracking an object with low latency. It
describes an accessible system implementation that can be used to research bilateral tele-
operation systems with relative ease and minimal cost. Our approach utilizes both inertial
sensor data and camera data, leveraging the advantages of each method. We employ
a custom pose-tracking algorithm to fuse data from both sensors. The practical system
setup is implemented using off-the-shelf components and validated with a robot arm setup.
Our focus is on creating a system that is lightweight, easy to set up, user-friendly, and
cost-effective.
The contributions of this thesis are as follows:

• Proposed a method to tackle the object tracking component in bilateral teleoperation
research in a practical and accessible way.

• Designed an object tracking algorithm that accurately estimates object pose with
low latency by fusing inertial measurements with camera data.

• Designed and built a cost-effective object tracking system that integrates the pro-
posed algorithm into a practical setup.

• Built a dataset with reliable ground truth data using a robot arm with accurate
pathing.

• Demonstrated the effectiveness of the proposed method by analyzing and character-
izing the proposed system with the produced dataset.

The rest of the report is organized as follows: chapter 2 reviews the relevant literat-
ure accumulated over the years related to this research, chapter 3 explains the theoretical
concepts that are of importance to understand the designed system and the work done,
chapter 4 describes the methods employed in this thesis, chapter 5 states the implementa-
tion details of the designed system, chapter 6 discusses and analyses the obtained results,
chapter 7 explains steps that could be taken in further research, chapter 8 evaluates the
project process and learning outcomes, and finally, chapter 9 finishes this report with
concluding remarks.
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Chapter 2

Related Works

2.1 Model Mediated Teleoperation

Model-mediated teleoperation (MMT) is a technique used in bilateral teleoperation sys-
tems to enhance stability and performance, particularly in environments with significant
communication delays. This technique uses a local model of the remote environment to
measure and provide force feedback to the user, eliminating the need to wait for relayed
signals from the remote side. The concept of using local models to improve stability in
bilateral teleoperation applications has been around since the late 1980s [2, 3, 4]. Over
the years, research in this area has advanced significantly, and [5] has introduced the con-
temporary concept of MMT. Until this point, the remote environments considered in these
applications were static. This was due to the increased complexity of tracking parameters
required to update local models in dynamic environments. Consequently, no sophistic-
ated methods were required to track the model parameters in the remote environment.
However, in the early 2010s, research began addressing the challenges of dynamic remote
environments [6, 7]. For instance, in [6], the authors use a combination of position, force,
and vision sensors to obtain a system with 2 degrees of freedom (DoF). Similarly, in [7], a
stereo camera setup is combined with point clouds to track and update the model paramet-
ers of the tracked environment. Additionally, [8] can be considered the first comprehensive
study including actual movable objects in the environment. The authors consider a 3 DoF
system, but no specific tracking method is proposed. Today, research on MMT continues
to evolve [9, 10].

2.2 Object Pose Tracking

The position and orientation of an object in 3D space together form the object’s pose.
Estimating and tracking the pose of one or multiple objects is essential in various fields,
including augmented reality (AR) [11], virtual reality (VR) [12], autonomous driving [13],
and robotics [14]. Each of these applications has unique requirements and challenges. For
instance, autonomous driving systems require a high degree of accuracy and robustness to
ensure the safety and reliability of the vehicle in various environmental conditions [15]. On
the other hand, AR and VR systems often demand real-time capabilities with low latency to
provide a seamless and immersive user experience. In these scenarios, even slight delays can
break the illusion and cause discomfort to the user [16]. Similarly, model mediation with
dynamic environments in bilateral teleoperation has its own unique set of requirements
that must be fulfilled. Precise and real-time tracking of object pose is essential to ensure
accurate and responsive control, which is crucial for tasks requiring high levels of dexterity
and coordination. Pose tracking algorithms for these systems demand low latency, high-
frequency data updates, robust handling of variable environmental conditions, and often
working with delayed measurements.
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2.2.1 Visual Pose Tracking

One field that has particularly been interested in the object pose estimation and tracking
problem for a long time is computer vision. Although this problem has been studied for a
long time in this field, developments in computing technology, the advancement of machine
learning methods, and the availability of much higher quality cameras in recent years have
resulted in rapid advancement in pose tracking algorithms [17]. The authors of [18] divide
visual object pose tracking methods roughly into three categories: traditional methods,
end-to-end deep-learning-based methods, and a combination of the two.
Traditional methods are robust, effective in controlled environments, and generally com-

putationally efficient. Nevertheless, they tend to suffer from problems like background
clutter, lighting conditions, and occlusion. Furthermore, they are less flexible in dealing
with unseen objects as the tracked objects need to be registered beforehand, either as
features or as a template of the object. These algorithms generally operate in two stages
where the features from an image are matched with object features using feature detec-
tion and description algorithms like RANSAC [19] and SIFT [20]. Then, the pose of the
object is estimated using an algorithm like Perspective-n-Point (PnP) [19, 21], which uses
non-linear optimization to reproject the matched 2D features into 3D space. [22, 23, 24]
are some recent works in this category.
The end-to-end deep-learning methods provide high accuracy and robustness, even for

complex representations. They are effective in cluttered environments, low-lighting scen-
arios, and occlusion. Their limitations are that they generally have larger computational
requirements and must be trained on large annotated datasets, and the quality of the train-
ing data directly affects tracking performance. These methods use deep neural networks
to directly estimate objects’ pose from the input image. YOLO-6D [25] is a well-known
method in this category. It uses a convolutional neural network architecture to match
and predict an object pose from a single image in real time. Furthermore, [26] can be
given as a state-of-the-art example in this category. The authors propose a novel Deep
Fusion Transformer Block, which proves to be very robust under varying environmental
conditions.
The integration of deep learning techniques with traditional methods for pose estimation

has shown significant advantages. Deep learning algorithms, particularly convolutional
neural networks (CNNs), excel at extracting high-level features from images, enhancing
pose estimation’s robustness and accuracy. When combined with traditional methods like
geometric approaches or optimization-based techniques, these algorithms can leverage the
strengths of both worlds. Traditional methods contribute well-understood, understandable
models and fast computation, while deep learning provides superior feature extraction and
adaptability. RNNPose [27] is an example of such a system. The authors combine a
recurrent neural network with a Levenberg-Marquardt optimization algorithm to obtain
object pose.

2.2.2 Visual-Inertial Pose Tracking

Inertial measurement units (IMUs) have become widely available and cheaper over the
years. They can provide motion data sampled at high frequencies and can be easily
integrated into other objects or devices due to their compact size. Their measurements
can be used to obtain accurate position and orientation estimates of the objects for short
periods of time, but these estimates suffer from error accumulation over longer times [28].
IMU pose estimates can provide frequent updates with low latency and are unaffected

by environmental conditions. This is why inertial measurements are often used with other
less frequently updated sensors like cameras that provide non-drifting measurements. This
way, the tracking system benefits from the advantages of both modalities.
Depending on the application, several setups and algorithms are used in object pose

tracking with IMU and cameras. One very common setup is mounting a camera and
IMU on a single platform and tracking the platform’s 6 DoFs. This is also referred to

6



as inside-out tracking. This setup can be seen in AR, VR, and robotics applications
[29, 30, 31, 32]. The advantages of these systems are that they do not need an external
setup of cameras, and they reach good accuracy. For instance, [32] reports sub 1◦ mean
accuracy for orientation tracking and sub 8 mm accuracy for positional tracking. Another
way of tracking the pose of objects is a setup with a fixed camera and a moving object.
This tracking method is called outside-in tracking [33]. In such systems, the object must
constantly remain in the camera’s field of view (FoV) and, therefore, have a more restricted
application field. Nevertheless, they require less specialized hardware, and they benefit
from fixed reference points, which can increase their accuracy under different environmental
conditions.
Another important aspect of visual-inertial tracking is the utilized data fusion algorithms.

The most common fusion algorithms are the Kalman filter-based algorithms [31, 32]. These
algorithms are computationally efficient and perform well with well-understood models.
Another contender is particle filter-based methods, which allow flexibility for non-linear
models, making them suitable for complex, dynamic environments [34]. Some downsides
are that they are computationally expensive and less scalable. Finally, in recent years,
some deep-learning-based methods have been proposed that offer great accuracy but gen-
erally require large training datasets and are also computationally demanding [35].
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Chapter 3

Theory

This chapter provides a theoretical background on the core principles behind object track-
ing, focusing on both camera-based and IMU-based tracking techniques. First, object
tracking concepts, such as the dynamics and coordinate systems essential for describing
object motion, are introduced, followed by an overview of orientation representation meth-
ods. The chapter continues with a discussion of tracking techniques, including the use of
inertial measurement units and fiducial markers for camera tracking. Finally, the chapter
concludes with an explanation of the novel sensor fusion algorithm developed in this thesis.

3.1 Object Tracking

Object tracking is essential in various fields, including navigation, autonomous driving,
and, more recently, the augmented and virtual reality (AR-VR) space. Although being
used in different fields, the fundamentals of object tracking remain the same. At its core,
object tracking refers to determining the pose of an object, which includes its position and
orientation in a predetermined coordinate system over time. As discussed in chapter 1,
object tracking plays a crucial role in model-mediated bilateral teleoperation. To maintain
the accuracy and validity of the local model, the objects in the remote environment must
be tracked. Ideally, this tracking occurs with minimal latency as the model parameters
must be transmitted over the network to the operator domain. One of the main challenges
of bilateral teleoperation is to keep the model as accurate as possible so that the operator
can maintain hand-eye coordination.
In this thesis, we focus on tracking the pose of a single object in an empty environment

and explore two main modalities for object tracking: camera tracking and inertial measure-
ment unit (IMU) tracking. We analyze the strengths and weaknesses of both approaches
and then combine them to develop a tracking method that leverages the advantages of
each. A fundamental algorithm that is used for IMU tracking is the Kalman filter [36], a
widely used optimal algorithm for the state estimation of linear systems. To address the
non-linear dynamics of orientation estimation and facilitate the integration of IMU and
camera tracking, we utilize a modified version of this filter known as the extended Kalman
filter.
The pose of an object is typically referenced within a predetermined coordinate system.

Position is generally expressed in x, y, z Cartesian coordinates, while orientation can be
represented in various ways, each with its own set of advantages and limitations. Given
the complexity of managing multiple coordinate systems or reference frames during object
tracking, it is crucial to establish clear conventions for both the coordinate systems and ori-
entation representations to ensure consistency and minimize confusion. In this thesis, the
quaternion representation is predominantly used for orientation due to its computational
efficiency and ability to avoid mathematical issues associated with other representations.
The specific conventions that are used for the coordinate system and orientation are de-
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Figure 3.1: Illustrations of the various coordinate systems used in this thesis.
The earth frame, depicted on the left, has its axes labeled with the superscript
e. On the right, the local, body, sensor, and camera frames are shown, with
their respective axis superscripts l, b, s, and c.

tailed further in subsection 3.1.1 and subsection 3.1.2.

3.1.1 Coordinate Systems

In this report, we need to establish several coordinate frames to discuss the dynamics of an
object. We will follow the guidelines from [28]. The description of an object’s movement
depends on the coordinate system used, though the actual movement remains unchanged.
The used coordinate systems are illustrated in Figure 3.1. First, the earth frame, e is
assumed to lie on the center of the Earth’s core and rotates with the Earth. Next, the local
frame, l is introduced as the frame relative to which the object is tracked. The z axis of
this frame is always assumed to originate from the earth’s center and point outwards. This
frame remains stationary with respect to the earth frame, providing a localized reference
for the movement. The body frame, b is established directly at the object’s center and is
fixed to the object of interest. The camera frame, c represents another coordinate system
that is stationary with respect to the local frame, allowing any pose to be transformed
using a fixed transformation from the camera frame to the local frame. The center of this
coordinate system is assumed to be at the camera’s focal point, primarily used in camera
tracking. Finally, the sensor frame, s is placed at the center of the IMU, aligned with
the accelerometer and gyroscope axes. In the application, the sensor is fixed to the object.
Therefore, the sensor frame is stationary with respect to the body frame, and poses can
be transformed between the two frames using a fixed transformation. Later on in this
section, this transformation is denoted as Rimu. In Figure 3.1 and the rest of this section,
the body and sensor frames are assumed to be aligned.

3.1.2 Orientation Representation

The orientation of an object can be represented in various ways, each offering different
properties. One widely recognized form is the Euler angle representation, which consists
of a 3D vector of roll, pitch, and yaw angles. These angles simply correspond to rotations
about the object’s intrinsic axes. While Euler angles provide an intuitive understanding of
orientation, they have limitations. One significant issue is Gimbal Lock, a situation where
two or three axes become aligned, causing a loss of one degree of freedom. This restricts
the use of Euler angles in certain situations. Additionally, calculations with Euler angles
involve trigonometric functions, which can increase computational costs and complexity.
Despite these drawbacks, Euler angles are still used to describe certain rotations in this
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thesis. However, to overcome these limitations, quaternion representation is predominantly
employed to represent orientation.

Quaternions for Orientation Representation Quaternions are complex numbers
made up of a 4D vector that includes a scalar real part (λ) and a 3D imaginary vector
component (ϕ) as in

q = [λ,ϕT ]T = [q0, q1, q2, q3]
T . (3.1)

A quaternion whose norm is 1 is known as a unit quaternion. Unit quaternions are
particularly useful for representing rotations in 3D space, as they avoid singularities and
discontinuities present in other methods. The axis-angle representation is used to describe
a rotation using a unit quaternion. If a rotation of angle θ around a unit vector axis n̂
is to be represented, the components λ and ϕ of the corresponding unit quaternion q are
given by:

λ = cos

(
θ

2

)
, ϕ = sin

(
θ

2

)
n̂. (3.2)

Here, λ corresponds to the cosine of half the rotation angle, and ϕ is the product of the
sine of half the angle and the unit vector n̂ that indicates the axis of rotation.
One of the key features of quaternions is their ability to represent rotations through

multiplication. Given two quaternions q1 and q2, their product q′ is another quaternion
representing the combined rotation:

q′ = q1q2. (3.3)

The order in which the quaternions are multiplied matters and affects which orientation
the combined quaternion represents. The quaternion multiplication is defined for two
quaternions p = [p0,pv]

T , and q = [q0, qv]
T in [28] as follows:

pq =

[
p0q0 − pv · qv

p0qv + q0pv + pv × qv

]
. (3.4)

To rotate a vector v using a quaternion q, the vector is first converted into a quaternion
vq with 0 as the scalar part: vq = [0, vx, vy, vz]. The rotated vector v′

q is obtained as the
following:

v′
q = qvqq∗, (3.5)

where q∗ is the conjugate of q defined as

q∗ = [q0,−q1,−q2,−q3]. (3.6)

Rotation Matrices Another common way to apply a rotation to a vector in Euclidean
space is through a rotation matrix R ∈ R3x3. For a vector p ∈ R3, the rotated vector p′

can be obtained by:
p′ = Rp. (3.7)

A unit quaternion can be converted into a rotation matrix using the following formula
[37], which provides a convenient way to apply the quaternion’s rotation to any vector:

R = I3 + 2λ[ϕ]× + [ϕ]2×, (3.8)

where I3 is the 3× 3 identity matrix, and the [.]× operator represents the skew-symmetric
matrix of its operand, defined for a vector v = (vx, vy, vz)

T as:

[v]× =

 0 −vz vy
vz 0 −vx
−vy vx 0

 . (3.9)
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3.2 Object Tracking with an IMU

A notable approach that has gained widespread acceptance in the industry for various
applications is tracking an object with an IMU. The working principle behind IMUs al-
lows for tracking objects without relying on specific object properties. The compact size
of MEMS (Micro-Electro-Mechanical Systems) IMUs makes them particularly suitable
for embedding in objects of any size. Additionally, IMUs are often used to complement
other object-tracking methods due to their various advantages. In this section, we discuss
the pros and cons of using only IMUs for tracking objects. We also propose models for
the sensors we utilize and describe their application within the tracking algorithm. This
analysis will be used later to compare with the proposed object-tracking method in this
thesis.

3.2.1 Inertial Measurement Unit

IMUs are typically equipped with an accelerometer and a gyroscope. The accelerometer
measures the acceleration on the sensor along three orthogonal axes, while the gyroscope
measures the rotational velocity of the sensor around these axes. These measurements
can be used to calculate the sensor’s pose starting from an initial reference point. Double
integration of the acceleration data provides the displacement of the device, while single
integration of the rotational velocity yields the change in the device’s orientation.
A significant advantage of using IMUs is their ability to provide high-frequency data,

often reaching multiple kilohertz (kHz), with minimal processing required for pose estim-
ation. This capability is useful for detecting sudden changes during tracking and reduces
the latency between movement and pose estimation. However, a notable drawback of using
IMUs for tracking is the presence of significant noise components in the measurements.
Because the calculations rely on integrating these measurements and are relative to an
initial pose, substantial drift can accumulate over time.
One effective method to mitigate drift is using estimation filters, such as the Kalman

filter, which is primarily employed in this thesis. The application of the Kalman filter
will be discussed in subsequent sections. Additionally, it is crucial to calibrate the IMU
sensors before use, as proper calibration can significantly delay the onset of drift in the
estimations.

Accelerometer As mentioned, the accelerometer measures the linear acceleration acting
on the sensor. In addition to this, it detects a constant gravity vector that points outward
from the center of the earth frame and is aligned with the z axis of the local frame.
This means that when laying flat on a surface, the accelerometer measures a constant
acceleration of 1 G (9.806m/s2) and registers 0 G during free fall. However, the accuracy of
the accelerometer measurements is affected by several error sources, including measurement
noise, scaling errors, bias, and axis misalignment. To accurately utilize accelerometer data
for object tracking algorithms, it is essential to adopt a mathematical model that accounts
for these errors. This thesis uses the mathematical model for the accelerometer as derived
in [32], represented by the following:

aA = RIMUR
T (q)

(
a+ g +H(ω,a)OIMU

)
+ bA + δA. (3.10)

In this model, RIMU is the rotation matrix from the sensor to the body frame, q denotes the
rotation quaternion of the sensor frame relative to the local frame, with R(.) converting the
quaternion into a rotation matrix using Equation 3.8. The term a signifies the sensor’s ideal
linear acceleration, g stands for gravitational acceleration, and H(ω,a)OIMU encompasses
the effects of Coriolis forces on the acceleration measurements. In [32], H(ω,α) = [ω]2× +
[α]× and OIMU is given as the offset of the sensor frame with respect to the body frame
of the object. In this thesis, since these two frames are assumed to coincide, the effects of
Coriolis forces on the model are neglected. Furthermore, bA represents the accelerometer

12



bias which is assumed to be a constant offset, while δA denotes the measurement noise,
which is assumed to follow a zero-mean Gaussian distribution. This comprehensive model
allows for a more accurate interpretation of accelerometer data by accounting for various
errors and forces that may affect the measurements.

Gyroscope The gyroscope measures the angular velocity relative to the sensor frame,
which is crucial in determining the rotational movements of the device. Accurate ori-
entation data obtained through the gyroscope is also essential for compensating for the
influence of the gravity term g, as highlighted by the accelerometer’s mathematical model.
However, gyroscope readings are subject to similar error sources as the accelerometer, in-
cluding noise and bias. The following mathematical model, also derived in [32], is used to
account for these factors:

ωG = RIMUω + bG + δG. (3.11)

Within this model, ωG signifies the gyroscope’s measured angular velocity, while RIMU

represents the constant rotation matrix of the sensor frame relative to the body frame.
The term ω denotes the true angular velocity. Additionally, bG refers to the constant
gyroscope bias, and δG accounts for the measurement noise, which is modeled as a zero-
mean Gaussian distribution.

3.2.2 Kalman Filtering

The Kalman filter, introduced by [36], is a widely used optimal state estimation filter.
It estimates the state of a linear system by utilizing a mathematical model and noisy
measurements of the system state. The filter assumes that the system it models is linear
and that the noise within the system follows a zero-mean Gaussian distribution. This
makes the Kalman filter particularly suitable for estimating the position of an object
using accelerometer data, as the translational component of the pose estimation aligns
with the filter’s linear system model requirements.
The Kalman filter operates in two main steps: a time update (prediction) step and a

measurement update (correction) step. The time update forecasts the system’s next state
using the system model, as outlined by the following equation:

xk+1 = f(xk,uk) + ωk. (3.12)

In this equation, the system function f predicts the next state xk+1 by using the current
state estimate xk, the control input vector uk, and an additive noise component wk. The
noise component represents the uncertainties in the system’s dynamics. Furthermore, a
time component is implicitly included in the system function, generally as a small time
step. In the measurement update step, the prediction is refined by incorporating actual
measurements of some state variables using an observation model:

zk = h(xk) + ϵk. (3.13)

Here, h represents the observation model that maps the predicted state xk to the meas-
urement zk. The term ϵk denotes the measurement noise, which is also assumed to follow
a zero-mean Gaussian distribution. By utilizing these models and iterating through a
series of steps, the Kalman filter continuously updates its estimates of the system’s state,
effectively reducing the uncertainty and noise inherent in the measurements. This process
results in a more accurate estimation of the system’s true state after each measurement of
the states.
The Kalman filter not only estimates the state of the system but also keeps track of the

uncertainties associated with these state estimates, updating them with each prediction
and update step. This tracking of uncertainties is crucial, as it determines how much
weight should be assigned to the predicted state and the measured state during the update
process. The weight, dynamically calculated at each step, is known as the Kalman gain.
Table 3.1 shows the individual steps that are performed during both steps.
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Time Update Measurement Update

1: x̂−
k = F x̂k−1 +Guk 3: Kk = P̂−

k H
T (HP̂−

k H
T +R)−1

2: P̂−
k = FP̂k−1F

T +Q 4: x̂k = x̂−
k +Kk(zk −Hx̂−

k )

5: P̂k = (I −KkH)P̂−
k

Table 3.1: Linear Kalman Filter Equations [32]

Tracking position with a linear Kalman filter

As mentioned before, the position of the object can be tracked using the accelerometer
measurements and a Kalman filter. This can only be done accurately if the constant
gravity vector of the accelerometer is compensated, usually by estimating the orientation
of the sensor first. In the following explanation, the components of the gravity vector are
assumed to be subtracted from the acceleration measurements.
Each time new measurements for the three axes are obtained, the steps detailed in

Table 3.1 are performed. In the first line of Table 3.1, x̂k−1 denotes the current state
vector before state estimation. The hat symbol indicates an estimate. The state vector
for position estimation can be constructed as in Equation 3.14:

x =
[
p v a

]T
. (3.14)

Here p denotes the position vector, v denotes the linear velocity vector, and a denotes
the linear acceleration vector (not including a gravity component). At the very first run
of the Kalman filter, the value of the state vector needs to be initialized. For this system,
these values can all be initialized to start from 0 as we can determine that the origin of the
local frame coincides with the body frame, and the object begins in a stationary position.
Other systems where the initial state is unknown should be initialized with either an initial
measurement or an educated guess.
The F matrix in line 1 is the state transition matrix and models the system dynamics.

The F matrix for the position tracking system is as follows:

F =



1 0 0 ∆T 0 0 1
2∆T

2 0 0

0 1 0 0 ∆T 0 0 1
2∆T

2 0

0 0 1 0 0 ∆T 0 0 1
2∆T

2

0 0 0 1 0 0 ∆T 0 0

0 0 0 0 1 0 0 ∆T 0

0 0 0 0 0 1 0 0 ∆T

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



. (3.15)

From Equation 3.15, it can be seen that the position of the system is obtained by integrating
the velocity, and the velocity is obtained by integrating the acceleration. The acceleration
is predicted to be stationary in this model. ∆T refers to the time between the current and
previous prediction steps. The G matrix in line 1 is called the control matrix, and u is the
input vector. Since there are no external inputs in our system, the control matrix can be
considered empty.
In the second line of Table 3.1, The error covariance matrix P is predicted into the future.

The error covariance matrix is the matrix that keeps track of the uncertainties associated
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with each state. The diagonal elements in this matrix indicate the variance of the state
variables, while the off-diagonal elements represent the covariance between all the state
variables. At the initial run, this matrix also needs to be initialized. The initialization for
our system can be done by setting all diagonal entries to 0.001 while setting all off-diagonal
entries to 0. Usually, a very low initial variance is set, indicating that the initial guess for
the state is very accurate. Matrix Q is the process noise covariance matrix. This matrix
has the same dimensions as the process error covariance matrix. This matrix represents
the uncertainty in the dynamics of the system. This matrix is needed since the model
dynamics will contain randomness that cannot be represented in the model itself.
In the third line of Table 3.1, the Kalman gain Kk is calculated. The Kalman gain is

used as a way to determine which component of the system should be given more weight,
either the measurement or the outcome of the model dynamics equations. The H matrix
is the observation matrix that relates the state vector to the obtained measurements. The
H matrix for the position tracking system can be seen in Equation 3.16:

H =


0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

 . (3.16)

Only the accelerations are measured. The R matrix is the measurement noise covariance
matrix. Just like the process noise covariance matrix, this matrix captures the uncertainties
in the measurements. This matrix should be set with the specified or measured variances of
each sensor that is used in the system. In the 4th and 5th lines of Table 3.1, the state vector
and the error covariance matrix are updated with the help of the obtained measurements.
zk is the measurement vector given as follows

z =
[
ax ay az

]T
. (3.17)

With these equations, the new state estimate x̂k is calculated alongside the new state
uncertainties in the error covariance matrix P̂k. It must be noted that in the setting
of this linear Kalman filter, there is no mitigation of the constant gravity vector being
measured by the accelerometer. As long as the orientation of the object does not change,
this gravity vector can simply be removed from the measurement obtained on the sensor’s
z-axis. Nevertheless, in more complex situations where the object orientation also changes,
the exact orientation of the object must be known in order to remove this component. This
is explained in the following section.

Initialization and tuning At the startup of the Kalman filter, it is essential to initialize
both the state vector and the error covariance matrix. Assuming the object is stationary at
the beginning, the state vector can be initialized to zero. The error covariance matrix, on
the other hand, should be initialized based on the confidence in this initial state estimate:
high values in the error covariance matrix indicate low confidence and assume that the
initial state may be significantly erroneous, while smaller values reflect high confidence.
Another important consideration is the initialization of the process noise covariance matrix
Q and the measurement noise covariance matrix R. Setting R is relatively straightforward,
as it can be derived from the variance of the sensor measurements. In contrast, determining
the appropriate Q is more challenging due to the complexities in accurately modeling the
process noise. This matrix can be initialized by tuning the system with trial and error.

Tracking orientation with an extended Kalman filter

As discussed in the previous chapter, knowing the orientation of the sensor is crucial for
accurate position estimation and for correctly subtracting the gravity vector from acceler-
ation measurements. However, directly applying the linear Kalman filter in combination
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with gyroscope measurements to estimate orientation is not feasible because orientation
dynamics are inherently non-linear. Various algorithms exist for calculating orientation,
such as the Madgwick Filter [38], which is a type of complementary filter. While algorithms
like the Madgwick Filter offer computational efficiency, the EKF provides a more robust
framework for handling the complex non-linearities associated with orientation estimation
in our specific application. In this thesis, we will use the extended Kalman filter (EKF),
an advanced version of the Kalman filter that is designed to handle non-linear systems.
The EKF extends the applicability of the linear Kalman filter by linearizing the non-linear
system around the current estimate, allowing it to be used for a broader class of non-linear
dynamic systems. The extended Kalman filter has the same steps as the linear Kalman
filter, with slight changes in the equations. These equations can be seen in Table 3.2.

Time Update Measurement Update

1: x̂−
k = f(x̂k−1,uk,ωk) 3: Kk = P̂−

k H
T
k (HkP̂

−
k H

T
k +R)−1

2: P̂−
k = FkP̂k−1F

T
k +Q 4: x̂k = x̂−

k +Kk(zk − h(x̂−
k ))

5: P̂k = (I −KkHk)P̂
−
k

Table 3.2: Extended Kalman Filter Equations [32]

For the orientation of the system, we need to establish the state vector first. As discussed
earlier, we can represent the orientation of an object using quaternions so the state vector
can be constructed as follows:

x =
[
qT wT

]T
, (3.18)

where q is the unit quaternion representing the orientation of the object’s body frame with
respect to the local frame, and w are the angular velocities of the object in three axes.
The angular velocities are included as this is the physical quantity we can actually measure
with the gyroscope. From Table 3.2, it can be seen that the first line has changed relative
to Table 3.1. Since we can’t linearly relate the angular velocities in the state vector to
orientation, we need to calculate the next system state using a non-linear function, which
is described in the first line. The non-linear system dynamics function of our system is as
follows:

x̂−
k =

qk−1 +∆T q̇k−1

wk−1

 , (3.19)

where,

q̇k−1 =
1

2
qk−1 ⊗ wT

k−1. (3.20)

With the upper equation in Equation 3.19, the change in each quaternion component in
a single time step is obtained by multiplying a small time step with the derivative of the
quaternion at the previous state. A quaternion derivative can be obtained with the angular
velocity according to Equation 3.20, assuming the time step is very small. This is done by
applying a quaternion multiplication between the current state quaternion and the current
state angular velocities in quaternion representation. This representation is obtained by
making a 4D quaternion-like vector from the angular velocities where the scalar component
is set to 0. The angular velocities are assumed to be stationary in this dynamic system
model. Another change between the two equation tables is in line 4, where the observation
model is used. The observation model, as discussed in subsection 3.2.1 for the gyroscope
can be given as,

h(xk) = [RIMUwk + bG,k]. (3.21)

Since we assumed the sensor frame to coincide with the body frame, the term RIMU

denotes no rotation and the observation model reduces to
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h(xk) = [wk + bG,k]. (3.22)

Since in the extended Kalman filter, a non-linear dynamic system model and a non-
linear observation model are used, the F and H matrices are obtained by linearizing these
models at the current estimate. Specifically, F is the Jacobian of the state transition
function, and H is the Jacobian of the observation function, both with respect to the state
vector. These Jacobian matrices are evaluated at the current state estimate, effectively
linearizing the non-linear models around the current point of estimation at each time step.
The Jacobian matrix is constructed by taking the partial derivatives of each component
of the function with respect to each element of the state vector, thereby forming a matrix
of these partial derivatives. The Jacobian F is obtained by deriving Equation 3.19 with
respect to Equation 3.18 as in

F =
∂f(x, u)

∂x

∣∣∣∣
x=x̂k

. (3.23)

For the orientation estimation system, this will result in :

Fk = 0.5



2 −∆Twx −∆Twy −∆Twz −∆Tq1 −∆Tq2 −∆Tq3

∆Twx 2 ∆Twz −∆Twy ∆Tq0 −∆Tq3 ∆Tq2

∆Twy −∆Twz 2 ∆Twx ∆Tq3 ∆Tq0 −∆Tq1

∆Twz ∆Twy −∆Twx 2 −∆Tq2 ∆Tq1 ∆Tq0

0 0 0 0 2 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 2


. (3.24)

Similarly, to obtain the Jacobian H the following equation is constructed with Equa-
tion 3.22 and Equation 3.18:

H =
∂h(x)

∂x

∣∣∣∣
x=x̂k

. (3.25)

For the orientation estimation system, this will result in:

H =


0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

 (3.26)

With these Jacobians and the non-linear system dynamics and observation models, the
equation steps in Table 3.2 can be applied with the gyroscope measurements to estimate
the orientation of the object. An important thing to note is that after every time update
and measurement update step, the obtained new quaternions will not be unit quaternions
anymore. The newly estimated quaternions need to be normalized according to

qunit =
q

||q||
=

[
q0
||q||

,
q1
||q||

,
q2
||q||

,
q3
||q||

]
, (3.27)

where,

||q|| =
√
q20 + q21 + q22 + q23 . (3.28)
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3.3 Object Tracking with a Camera

Camera-based object tracking is a well-studied field and forms an important part of com-
puter vision. To track an object with a camera, one or multiple specific features of the
object must be known, which can then be used to track the object’s pose in the obtained
camera frames. When a common RGB camera is used for object tracking, these features
typically consist of easily recognizable patterns such as edges, corners, colors, blobs, and
distinct shapes.
A widely used approach for this is machine learning or pattern recognition, where sys-

tems can be trained with example features so that they can recognize these features in
the frames. Machine learning can be a powerful tool for tracking objects when the nature
of the objects is not known beforehand, and it scales well for multiple object tracking.
Nevertheless, these methods are known to require large amounts of processing power and,
in some cases, have long training times.
In cases where the object of interest is known and available for manipulation before

tracking starts, a more convenient and reliable way to make object features known to the
system is by embedding predefined markers on the object. This approach eliminates the
need for extensive training and allows for relatively easy setup. The processing time is
significantly improved because the system knows exactly what features to look for. Since
this is also the case in this thesis, a marker-based object-tracking method is utilized and
is explained in further detail in this section.
While marker-based methods improve certain aspects, it is important to note that they

are still susceptible to inherent limitations of camera tracking. The accuracy and reliability
of camera tracking can suffer from several factors, such as occlusion, insufficient lighting,
background clutter, motion blur, noise, incorrect depth estimations, complexity, and false
positives. Furthermore, there is a significant processing delay when compared to other
modalities, such as the IMU method discussed before.

3.3.1 Tracking with Fiducial Markers

In marker-based tracking, a predefined set of markers is placed on an object, with the
relative pose of these markers to the object being known and constant. By recording the
object using a stationary RGB camera, the poses of these markers relative to the camera
can be estimated using a 2D-to-3D transformation method, such as the Perspective-n-
Point (PnP) algorithm [19]. In this transformation, the 2D coordinates obtained from the
camera frames are matched with the known 3D positions of the marker points. Since the
relative transformation of the markers to the object is known and static, the object’s pose
can be accurately estimated by combining the marker pose estimates from each frame,
thus enabling continuous tracking of the object.

ArUco markers and marker detection

ArUco markers are rectangular markers featuring unique bit patterns at their center. An
example of a marker consisting of a 6 by 6 pattern can be seen in Figure 3.2. These bit
patterns encode a unique binary code that identifies different markers within the same
image and includes error detection and correction mechanisms [39]. The four corners of
each marker are utilized to estimate its pose relative to the camera.
ArUco markers are designed to maximize the inter-marker distance within a predefined

set of markers or a dictionary to minimize false positives and incorrect marker identifica-
tion. This feature facilitates robust pose estimation when multiple markers are used on the
same object. Moreover, the built-in error detection and correction are particularly advant-
ageous in challenging conditions such as low camera resolution, rapid camera movements,
poor lighting, and occlusion.
The process of detecting and identifying ArUco markers involves several steps:
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Image Preprocessing The acquired RGB image is converted to grayscale and then
transformed into a binary image using a local adaptive threshold. This simplifies
the image and highlights the markers against the background.

Contour Extraction A contour extraction algorithm [40] is employed to identify the
outlines of polygons within the binary image.

Contour Filtering Filters are applied to the detected contours to eliminate shapes that
do not meet the criteria of potential markers—specifically, non-rectangular shapes,
concave polygons, inner contours, and other incompatible forms.

Marker Binary Extraction For each candidate marker, a homography matrix is com-
puted to correct perspective distortion, effectively ”flattening” the marker. The
corrected image is divided into a square grid, and Otsu’s thresholding method [41] is
applied to binarize each cell. The binary code that represents the unique ID of the
marker is then extracted.

By completing these steps, the corner points and unique IDs of the markers present in
the image are obtained. These corner points are crucial for estimating the pose of each
marker, which in turn enables precise tracking of the object’s position and orientation in
space.

Figure 3.2: A typical example of a 6x6 AruCo marker. The marker can be used
to obtain the pose of an object on which it is placed using a camera tracking
algorithm.

3.3.2 Marker Pose Estimation

The marker’s pose can be calculated after extracting the set of corner points from the
image. The objective is to compute the pose of the marker in the coordinate system of
the stationary camera, a problem commonly referred to as the Perspective-n-Point (PnP)
problem. To solve this problem, we utilize the pinhole camera model, as illustrated in
Figure 3.3. This model provides a mathematical framework for understanding how a
3D point in the world coordinate system projects onto a 2D point in the image plane. It
assumes the camera is a point in space without lenses, simplifying the relationship between
the coordinates.
According to [42], the relationship between the world coordinates and the image plane

coordinates using the pinhole camera model is expressed as:


u

v

w

 = P


Xw

Yw

Zw

1

 (3.29)
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In this equation, u, v, and w are the homogeneous coordinates on the image plane. The
actual image coordinates are obtained by normalizing these values: x = u/w and y = v/w.
The vector [Xw, Yw, Zw]

T represents the homogeneous coordinates of a point in the world
coordinate system. The matrix P is the camera projection matrix. The camera projection
matrix P can be decomposed into the intrinsic matrix K and the extrinsic matrices [R|T ],
as shown:

P = K [R | T ]. (3.30)

The intrinsic matrix K contains the internal parameters of the camera, such as the focal
lengths fx and fy, and the principal point coordinates cx and cy:

K =


fx 0 cx

0 fy cy

0 0 1

 . (3.31)

The principle point is the point where the z axis of the camera frame meets the image
plane. These parameters are specific to the camera and are obtained through a calibration
process. The calibration process for these parameters is explained later in this section.
The extrinsic matrix [R|T ] consists of the rotation matrix R and the translation vector

T :

[R|T ] =


R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz

 (3.32)

Here, R represents the rotation of the camera frame (or the camera itself) relative to the
earth frame, and T represents the translation (position) of the camera in the earth frame.
By substituting the intrinsic and extrinsic matrices back into the original equation, we
relate the 3D world points to their 2D projections on the image plane. To solve for the
marker’s pose, we use the known 3D coordinates of the marker’s corners (in the earth
coordinate system) and their corresponding 2D projections (in the image plane). This
forms a set of equations that can be solved using algorithms designed for the PnP problem.
One effective method for solving these equations is the Levenberg-Marquardt optimiza-

tion algorithm [43], which iteratively refines the estimate of the rotation and translation
vectors (called rvec and tvec in the OpenCV [44] framework) to minimize the reprojec-
tion error. The reprojection error is the difference between the observed 2D image points
and the projected 3D points using the current estimate of the pose. The specifics of this
algorithm are beyond the scope of this thesis. Once rvec and tvec are obtained, they rep-
resent the pose of the marker relative to the camera frame. Depending on the application,
it may be necessary to invert these transformations to obtain the camera’s pose relative
to the marker or to express the pose in a different coordinate system.

3.3.3 Camera Calibration

While the objective in marker pose estimation is to find the extrinsic parameters of the
camera, the intrinsic parameters must be known beforehand. Intrinsic parameters define
the internal characteristics of the camera that affect how 3D points are projected onto the
2D image plane. As seen previously in Equation 3.31, these parameters include the focal
length (fx and fy), the coordinates of the principal point (cx and cy), and lens distortion
coefficients that account for imperfections in the camera lens. These parameters can be
obtained by calibrating the camera before tracking. Since these parameters do not change
over time (unless camera settings change), they must be calculated only once.
Calibration is essential since inaccuracies in these parameters can lead to significant

errors in pose estimation. The calibration process involves capturing multiple images of
a known calibration pattern, such as a checkerboard or a ChArUco board, from different
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Figure 3.3: Illustration of the pinhole camera model. 2D coordinates on the
focal surface are represented by coordinates u, v, w. 3D world coordinates are
represented by Xw, Yw, Zw. The length between the origin of the camera frame
and the focal surface is the focal length of the camera and is camera-specific.
The optical axis is aligned with the zc axis of the camera frame.

orientations and distances to cover as many different camera angles as possible. A ChArUco
board is a board where the white tiles in a checkerboard are replaced with a series of ArUco
markers to make the calibration process more robust. By analyzing the correspondences
between the known 3D coordinates of the pattern points and their 2D projections in
the images, calibration algorithms can solve for the intrinsic parameters. The OpenCV
framework [44] incorporates many of these algorithms, which have also been used in this
thesis.

3.4 Object Tracking using Sensor Fusion

As previously discussed, both inertial measurement unit (IMU) tracking and camera-based
tracking systems have inherent advantages and disadvantages. IMU data offers low-latency
tracking with frequent updates; however, it is prone to rapid drift due to the accumulation
of sensor errors over short periods, which limits its accuracy. In contrast, camera-based
tracking provides higher accuracy but delivers updates less frequently, and the required
processing time introduces delays that make the estimates outdated upon arrival. In bilat-
eral teleoperation settings, it is essential to obtain model parameters with minimal latency
to directly update the local model, as any divergence can lead to significant synchronization
issues. Considering these constraints, we have developed a novel object-tracking algorithm
and system that exploits the strengths of both modalities. This algorithm is founded on
the extended Kalman filter (EKF), and we have enhanced its capabilities by integrating
additional steps beyond the conventional EKF procedure to improve performance and
adaptability.
A high-level overview of the algorithm can be seen in Figure 3.4. The core of the

algorithm consists of an EKF that uses the same EKF steps shown in Table 3.2. The aim
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Figure 3.4: Flowchart showing a high-level overview of the proposed sensor
fusion algorithm.

of this EKF is to fuse both IMU data and delayed camera pose estimates to get reliable
high-frequency, low-latency pose estimates. To address the challenge of delayed camera
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measurements, the system implements a buffering mechanism that stores the last n states,
estimates, and IMU measurements of the EKF. When a camera measurement becomes
available, corresponding to a specific point in the past, the system reverts the EKF to the
state at that exact timestamp. It then performs a measurement update using the camera
estimate, effectively correcting the past state estimate. Subsequently, the system reapplies
the saved IMU measurements from the buffer to propagate the corrected state forward to
the current time. This approach allows the system to incorporate accurate past camera
data into the current estimate, effectively mitigating drift while maintaining low-latency
updates.
The state vector of the EKF, x is defined as

x =
[
q ω α p v a bG bA

]T
. (3.33)

x is a 25× 1 vector. q = [qw, qx, qy, qz] is the unit quaternion representing the orientation
of the object frame with respect to the local frame, ω is the angular velocity of the object
around the three principle axes of the body frame, α is the angular acceleration in the
three principle axes of the local frame, p is the position of the center of the body frame
with respect to the origin of the local frame, v is the velocity of the object in the three
principle axes of the local frame, a is the linear acceleration in the local frame, bG are
the gyroscope biases for each axis, and bA are the accelerometer biases for each axis. By
using this algorithm, the principle aim is to get accurate estimates for q and p to get the
estimates for orientation and the position of the object.
The dynamics of the object are modeled with the process dynamics model as follows:

f(xk) = xk +∆T
[
q̇k αk 03 vk ak 09

]T
= x−

k+1. (3.34)

In this equation, ∆T is the time step between the previous update and the current update.
q̇ represents the derivative of the quaternion and can be calculated with Equation 3.20.
The updated angular velocity is obtained by multiplying the time step with the angular
acceleration α. The angular acceleration is assumed to stay constant during an update.
The updated position p is the time step multiplied by the current linear velocity v, and
the updated linear velocity is the current linear acceleration a multiplied by the time step,
and the linear acceleration itself is assumed to stay constant. Furthermore, in the model,
the gyroscope and accelerometer biases, bG and bA, are also modeled to be static. In the
update step of the EKF, it is necessary to calculate the Jacobian matrix F of the system
dynamics equation given in Equation 3.34. This matrix will yield the following result:

F = I25 +∆T
[
diag{ϕ, ψ, 06×6}

]
, (3.35)

where,

ϕ =
1

2



0 −ωx −ωy −ωz −qx −qy −qz
ωx 0 ωz −ωy qw −qz qy

ωy −ωz 0 ωx qz qw −qx
ωz ωy −ωx 0 −qy qx qw

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, (3.36)

and

ψ =


03 I3 03

03 03 I3

03 03 03

 . (3.37)
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Incorporating IMU measurements

The EKF uses two measurement modalities in the estimation process. The first sensor mod-
ality is the IMU embedded in the object, and the second is the pose estimation obtained
with a marker pose estimation algorithm with a camera. As can be seen in Figure 3.4, the
EKF operates based on which modality arrives at that time. The IMU data is assumed
to arrive more frequently. Whenever IMU data arrives, a time update with the system
dynamics function given in Equation 3.34 is applied, and afterward, a measurement update
with the following observation model is applied:

hIMU(xk) =

 RIMUωk + bG,k

RIMUR
T (qk)

(
ak + g

)
+ bA,k

 . (3.38)

In this model, the first row is the gyroscope model, also given in Equation 3.11, and
the second row is the accelerometer model given in Equation 3.10. The difference in the
accelerometer model is that since the accelerometer is assumed to be in the center of the
object frame, the offset term OIMU is 0, and therefore, the term that handles the Coriolis
effect is omitted. In order to calculate the Kalman gain in the measurement update step
of the EKF, the Jacobian H IMU of the IMU measurement model needs to be calculated.
This Jacobian can be constructed as the following:

HIMU =
[
Hq, Hω, Hα,p,v, Ha, Hb

]
, (3.39)

where

Hq =

 03×4

∂(RIMURT (q)(a+g))
∂q

 , (3.40)

Hω =

RIMU

03×3

 , (3.41)

Hα,p,v =
[
06×9

]
, (3.42)

Hq =

 03×3

RIMUR
T (q)

 , (3.43)

and
Hb =

[
I6

]
. (3.44)

Each time an IMU measurement is obtained, the EKF performs a time update and a
measurement update. A pose estimate is obtained in the form of a state matrix given
in Equation 3.33. Furthermore, each time a Kalman estimation cycle is performed, the
measurement values, the state vector x, and the error noise covariance matrix P are
inserted in a first in, first out (FIFO) buffer. This buffer has a fixed length. When this
length is reached, values at the front will be discarded while new values are added. The
exact length of the FIFO will depend on the camera estimates’ pre-measured latency. This
buffer will be used to reset the state of the EKF and extrapolate the state once a delayed
camera measurement is obtained and used.

Incorporating camera pose estimates

The frequency of incoming camera measurements depends on the frame rate of the used
camera. A typical camera frame rate is 30 frames per second (fps), or one frame approx-
imately every 33 ms, which is significantly less than the IMU measurements. As an initial
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step after obtaining a camera measurement, every frame needs to be processed with the
algorithm described in subsection 3.3.2 to obtain a pose estimate for the object. The
camera pose estimates consist of an object position estimate and a quaternion orientation
estimate. Both obtaining the camera frame and processing the frame with this algorithm
introduce latency in the obtained pose estimates. This latency is presumed to follow a
Gaussian distribution. The mean of the Gaussian distribution needs to be taken as the
expected delay of each camera pose estimate to be used in the algorithm. Whenever a
camera pose estimate is obtained, the algorithm needs to perform several steps as outlined
in the flow chart. The first step is to locate the actual time of the camera measurement by
subtracting the expected latency from the timestamp of the camera measurement. With
the actual timestamp, the location of this measurement among previous IMU measure-
ments can be located in the buffer. Once the location is known, the EKF can be reverted
to one state previous to the camera measurement time. This can be done with the state
vector and the error covariance matrix in the buffer. Now the EKF can be run with the
camera estimate. For the time update, the system dynamics equation is the same as was
given in Equation 3.34. Therefore, the Jacobian will be calculated as in Equation 3.35.
The difference lies in the measurement update. The measurement model of the camera
pose estimate is linear and can be specified as:

hcam(xk) =
[
qk pk vk

]T
. (3.45)

qk and pk are direct outputs of the algorithm described in subsection 3.3.2. Nevertheless,
the instantaneous linear velocity measurement of the camera, vcam, needs to be calculated
separately. This is obtained as the following:

vcam = vk − [(pk − pcam)/∆Tcam] (3.46)

Note that in Equation 3.46, vk represents the linear velocity vector of the state vector at
the actual camera measurement time. pk is the position measurement at the actual camera
measurement time, and ∆Tcam is the time that has passed from the previous actual camera
measurement time until the current. With Equation 3.46, the bias that the velocity vector
has at the actual camera measurement time is corrected and used as a camera velocity
measurement.
Like with the IMU measurements, the Jacobian of the camera measurement model needs

to be calculated. Due to Equation 3.45 being a linear equation, the Jacobian HCAM can
be calculated as the following:

HCAM =

 I4 04×6 04×6 04×9

06×4 06×6 I6 06×9

 . (3.47)

Now that the equations are complete, the camera measurement update can be performed
in the correct state of the system. This will effectively correct the state estimates from the
past when the actual camera measurement was taken. With this correction, the filter now
needs to extrapolate the state estimates to the current time to get a corrected estimate of
the current state of the system. This is done by applying the buffered IMU measurements
to the corrected EKF state sequentially until the current time. With this step, a corrected
pose estimate is obtained, the system can continue to receive new measurements, and the
object is tracked.
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Chapter 4

Methodology

As highlighted in chapter 1, object tracking is a fundamental aspect of any MMT system.
Ideally, such a system would be versatile enough to function in entirely unknown remote
environments. It would be able to explore these environments and monitor any changes
that occur with objects within them. To address this complex problem, we have to begin
with a basic approach. We have posed the critical question regarding the scenario where
we have complete control over our working environment: What advantages can we leverage
to enhance the feasibility, reliability, and performance of object tracking? This question is
the starting point of this thesis and aims to lay the foundations for developing even more
effective and dependable MMT object-tracking systems.
Working in an environment where we can manipulate and fully understand every aspect

simplifies several challenges. For instance, having the ability to use specific objects or
embed tracking devices inside them gives us a significant advantage. Additionally, we
can begin our efforts assuming that an object’s movement is limited to a specific number
of degrees of freedom. This approach allows us to tackle the task in stages, gradually
progressing until we achieve tracking across all six degrees of freedom (6 DoF). This step-
by-step method helps streamline the process, making the goal of comprehensive object
tracking more attainable.
In addition to developing a high-performance object tracking solution, another import-

ant objective of this project has been to ensure cost-effectiveness and ease of implementa-
tion. Throughout the electronics design phase of the project, we have carefully considered
these aspects, which have influenced the choice of algorithms we could employ. By achiev-
ing these objectives, we aim to deliver a reliable, cost-effective, and high-performance
tracking solution. This solution is designed to integrate seamlessly with our group’s ongo-
ing research and to support other MMT projects requiring an object-tracking solution.
The development of our project has gone through several phases, each expanding the sys-

tem’s capabilities. Initially, we aimed to create an object pose estimation system that em-
bedded a microprocessor with an IMU inside the tracked object. However, we encountered
challenges due to sensor errors and drift. To tackle these issues, we have expanded the
system by incorporating correction inputs. These inputs, derived from an independent
object tracking solution such as a camera or depth sensor, can compensate for drift. At
the same time, the IMU can improve the latency and noise associated with other tracking
modalities. Ultimately, we have advanced our design to a comprehensive system capable
of achieving complete, low-latency object tracking. This system combines a smartphone
camera with an IMU embedded within the tracked object, offering a robust solution for
accurate tracking.
A single computer has been used for all computational tasks, network interfacing tasks,

and simulations that were required during this project. The hardware specifications of this
computer can be found in Appendix A. Whenever this computer is used in the text, it is
referred to as ’the computer’. Furthermore, the object that is being tracked by the object
tracking system and has the electronics embedded inside it is referred to as ’the object’.
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The following section lays out the project’s initial requirements and general design de-
cisions. Next, several simulation and visualization tools developed and employed through-
out the process are explained. The latter sections in this chapter detail the progression
of the project’s electronics design, followed by the development of the object tracking
algorithms.

4.1 Requirements

To better understand and define our project, we set specific requirements and limitations
from the start. Our initial plan was to track a single object within a predetermined, empty
space. This allowed us to start with a manageable scenario that could be expanded upon
later if necessary. Specifically, we decided to track a cube object with 12 cm sides. We
chose a cube for its predictable behavior when manipulated, such as pushing, ensuring it
would not roll, and that it could maintain a stable orientation on a set path. Furthermore,
a cube can easily be restricted to a path along one of its principal axes. This way, we
can experiment with tracking a single degree of freedom. As a next step, it is possible to
push the cube on a flat surface without toppling. This allows for tracking in 3 degrees of
freedom, adding orientation to 2d positional tracking. Finally, it can also be utilized for
full 6 DoF tracking. The dimensions of the tracking area were partly determined by the
haptic device used by our research group, a Novint Falcon [45]. The Novint Falcon is a
haptic device with a controller that can move in 3D space and can provide accurate force
feedback. The device can be used by the operator as a controller and in the remote domain
as a robot actuator. The device occupies a space of 22.86 cm3. The controller arm can
extend between 3.5 cm and 15.5 cm above its base, which proves ideal for manipulating a
cube of the determined dimensions.
An important project requirement is that the object should be tracked with ultra-low

latency. Latency in this context refers to the time that passes between the sensing of
the object and the processing of a pose estimation. Research on the round trip latency
required for a bilateral teleoperation system was found to be in the order of 1 ms [1].
Having this in mind, we set out to reach this goal as closely as possible. This requirement
directly dictates the frequency that the object tracking algorithm should be, which is at
least 1 kHz with processing latency under 1 ms.
During the project, we also set flexible criteria regarding the project’s cost. We determ-

ined that the final product should consist of easily accessible off-the-shelf components that
are also cost-efficient.

4.2 Tools for Testing and Simulation

During the system’s development, we simultaneously focused on the electronics design and
the development of the tracking algorithms. This periodically required the simulation of
hardware or sensor outputs to test the algorithms, observe performance problems, and
quickly prototype solutions. To aid in this process, we have developed several tools. The
first tool allows the visualization of the outputs of the tracking algorithms by simulating
the tracked object and rendering its movements in a 3D model. Following this, we have
created virtual versions of the sensors used throughout the project. These virtual sensors
can generate data either on a preprogrammed path or through interaction with a simulation
that runs on a game engine. Together, these tools form a complete test bed that has been
important in refining the development process and allowing iterative testing of our tracking
system.

4.2.1 Visualization Tool

The visualization component of the testing tools has been developed using a 3D game
engine, specifically the Unity game engine [46]. Utilizing a 3D game engine is an effective
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Figure 4.1: The Unity scene created for the visualization tool. The red cube
is the object that is being tracked, representing the real-life tracked cube
object. The object is placed on a flat surface representing the real-life tracking
environment. The object can be moved around in the simulation based on
obtained tracking estimates to visualize and test tracking algorithms or it can
be moved around in the simulation to create movement data.

way of visualizing and simulating the physical environments relevant to our project. They
provide a way to easily create 3D models for objects and environments and are equipped
with a physics engine that can be adjusted to meet our needs. The Unity game engine
has been chosen due to its user-friendly interface, which is intuitive but has powerful
incorporated tools. It is documented well since it is widely used, which makes picking it
up easier. Furthermore, it incorporates a sufficiently accurate physics engine that played
a crucial role in developing the virtual sensor, which will be explained in the next section.
Our objective for the visualization tool was to digitally replicate the tracking environment
and objects accurately, allowing these digital replicas to closely mimic their real-world
counterparts. For this purpose, we created a Unity scene featuring a flat tabletop with 1
m sides and placed a cube in the center as the starting point. The created scene can be
observed in Figure 4.1.
To add functionality within the game engine, scripts are utilized. Several scripts are

written and attached to the objects to manipulate the objects within the created virtual
environment. Initially, our goal was to visualize the outputs of the tracking algorithms
by having the objects in the scene move according to these outputs. We achieved this
by having a C# script that reads tracking estimates from a CSV file and replicates the
movements recorded in the file, which can be obtained from experiments with the actual
tracked object. Next, we aimed to visualize the tracking algorithm outputs in real time.
Initially, we established a serial connection to communicate the outputs from the object
to the computer. As we progressed in the project, we moved to wireless communication
by sending data packets over a WiFi connection based on a UDP socket. We implemented
a script that could read from a specific terminal to which the device was connected and
designed a communication protocol for this purpose. In the wireless implementation, the
script was used to read a specific port instead.
With this implementation, the object’s pose in the virtual model represented the pose

calculated with the algorithm used at the time. This visualization not only aided in identi-
fying trends and problems encountered during the development of the tracking algorithms
but also became a vital component of the virtual test tools explained in the next section.
We significantly expanded functionality by integrating the visualization system into our
test tools. It offered a more comprehensive and effective tool for developing and refining
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our tracking solutions.

4.2.2 Virtual Sensor

After visualization had been established, the following functionality that was implemented
was the virtual sensor. The concept behind virtual sensor is to allow for testing tracking
algorithms without the need to fully implement them on the microprocessor initially. This
approach provides the advantage of easily tweaking sensor parameters, which facilitates
experimentation with the effects of these parameters on tracking performance. Moreover,
even after algorithms are implemented on the microprocessor, they often require rigorous
calibration and configuration to function correctly. In such scenarios, the ability to quickly
test the algorithm without the time-consuming setup process is highly beneficial. Lastly,
debugging and data generation for specific object movements is significantly simplified.
Therefore, the goal was to create a program capable of taking perfect object poses from

a simulation and delivering sensor data with adjustable parameters as output. Initially,
the sensor to be virtualized was the IMU. This required knowledge of the object’s accel-
eration and angular velocity in its body frame. We have taken advantage of the tracking
environment modeled for the visualization tool to achieve this. The position and orienta-
tion are monitored when a simulation is run in the Unity game engine. Since the object
pose is known, angular velocity can be calculated using the orientation angles, and the
acceleration can be determined by double derivating the displacement and adjusting for
body rotation using the orientation to obtain acceleration in the body frame. Once the
perfect acceleration and gyroscope values are obtained that simulate an IMU at the ob-
ject’s center, noise and other parameters can be added to produce realistic sensor data. In
the later stages of the project, camera data had to be simulated as well. For this, instead
of simulating an actual camera, the pose of the virtual objects was taken, and sensor noise
was added to simulate the output of a camera tracking algorithm.
The C++ programming language has been chosen to build the program. The com-

munication between Unity and the program is established via an internal UDP link on
a socket, and a communication protocol is established that can send the necessary data
between programs.

4.3 Object Hardware Design

4.3.1 Object Electronics

We started our project by identifying the hardware components required to build the sys-
tem. For the electronics, we would need an Inertial Measurement Unit (IMU) to measure
forces, a wireless transmitter device such as a Bluetooth transceiver or a WiFi module for
communication between the object and the computer, a microcontroller capable of driving
the IMU and the wireless device as well as processing the algorithms, and a battery pack
to power the entire device. Additionally, it was necessary to design the casing for the cube
object, which is discussed later in this section.
The first critical component to be selected was the IMU due to the low-latency require-

ment. We found that common commercially available IMUs, with sampling rates up to a
couple of kHz, offered a suitable low-latency solution. We settled on a 1 kHz sampling rate
as a sufficient starting point, given the 1 ms sampling period requirement. A typical IMU
consists of an accelerometer and a gyroscope. Still, we opted for an additional magneto-
meter, which did not significantly increase the price of the sensor and could be beneficial
for orientation estimation. After comparing various IMUs, we chose the TDK InvenSense
MPU9250, which was suitable for our application and readily found in our office. The
MPU9250 is a 9-axis IMU that includes an accelerometer with an output data rate (ODR)
of up to 4 kHz, a gyroscope with an ODR of up to 8 kHz, and a magnetometer. It is
important to note that the MPU9250 has been marked as end-of-life by its manufacturer
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and is not recommended for new designs. However, we did not consider this a significant
issue due to its wide usage among hobbyists and ample market supply.
Next, we needed to select a suitable microcontroller to read the IMU data and run the

tracking algorithms. The requirements for the microcontroller included an SPI communic-
ation interface for sufficient bandwidth for reading data from the IMU, sufficient processing
power to handle the pose estimation algorithms, ample documentation and library sup-
port for ease of development, and a small form factor to fit within the cube’s dimensions.
We decided to use the Raspberry Pi Pico microcontroller board [47], which we already
had experience with. The Pico features an RP2040 microcontroller chip with a dual-core
Arm Cortex-M0+ processor that can go up to 133 MHz. It comes with 264 kB of SRAM
and 2 MB of onboard flash memory, in case any tracking algorithm has large memory
requirements. Additionally, the Pico provides 26 multi-function GPIO pins and several
communication interfaces, including 2 SPI busses. Furthermore, the board is extensively
documented and has robust library support. The compact size of the Pico measures 51
x 21 mm, ensuring a good fit inside the cube object. The board also has an onboard
power management unit that operates within 1.8 V and 5.5 V DC, allowing it to be eas-
ily powered by AA batteries. Although we had not yet determined the pose estimation
algorithms, the Pico’s specifications indicated it could drive the IMU and wireless device
while having spare peripherals if needed. Some initial research has also shown that the
M0+ architecture can run similar orientation estimation algorithms [48], which invoked
confidence in our decision.
Before designing other system components, such as wireless communication, we tested

the compatibility of the IMU and microcontroller combination. Our first objective was
to be able to read the IMU sensors with a data rate of 1 kHz. After connecting the two
components on a breadboard and powering the device via USB to the computer, we started
experimenting. After setting up the SDK, we confirmed that the sensors could be read at
the desired rate. We have also learned how to configure the IMU for different sensitivities
and data rates. Although the other sensors worked as expected, we encountered an issue
with obtaining reliable readings from the magnetometer within the MPU9250, which we
found houses two different dies in a single package. After significant effort, we read the
magnetometer at a 100 Hz frequency through a special pass-through mode using internal
I2C communication. I2C has a significantly slower clock; therefore, the magnetometer
could be read at only 100 Hz, which did not pose a significant issue for our purposes as it
is not the primary sensor to be used.
With the sensors functioning correctly, we could begin experimenting with algorithms.

We started by implementing a complementary filter. The goal was to confirm we could use
the sensor data in an estimation algorithm with the required data rate. The success of this
initial algorithm implementation at 1 kHz frequency allowed us to proceed with selecting
the remaining electronic components. We focused on wireless communication to transmit
the object tracking estimates to the computer. One straightforward solution we considered
was to purchase the RP Pico W, a variant of the RP Pico we were using. The Pico W is
equipped with an onboard single-band 2.4 GHz wireless interface. This option would have
allowed us to seamlessly transfer our existing knowledge of the microcontroller and IMU
interfacing while incorporating wireless capabilities. Unfortunately, supply chain issues
resulted in delivery times of up to several months, leading us to explore alternatives. During
our search, we discovered the nRF24L01+ 2.4 GHz Transceiver module. This module
appeared to meet the project’s requirements according to its documented specifications.
This module has an on-air transmission bandwidth of 2 Mbps. To ensure compatibility,
we conducted a preliminary calculation considering the module’s primary purpose, which
is to transmit object pose estimates from the object to the computer. Each pose estimate
includes three coordinates and three orientation values, represented by six floating point
numbers (4 bytes each), in addition to a timestamp represented by a 4-byte unsigned
integer. This results in a minimum payload of 28 Bytes.
The NRF24 can send packets of 32 Bytes, fitting our payload comfortably. We aimed
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Figure 4.2: The discrete electronics for the object implemented on a breadboard
with component names and dimensions. The nRF24 is the wireless module that
transmits tracking estimates. The MPU9250 is the IMU. The RP Pico is the
microcontroller. The battery pack consists of 3 AA batteries.

for a transmission frequency of 1 kHz, which, with our payload, amounts to 28kBps-well
within the module’s bandwidth. Despite packet handling overhead, which is managed by
the device, practical data rates will be lower. However, further research confirmed that
data transfer rates up to 46.5 kBps are achievable, equating to 1452 payloads per second.
These rates meet our requirements and even allow for a higher transmission frequency.
Additionally, the nRF24 module is very cost-effective and capable of operating both as

a transmitter and receiver. For our system, we configured the object as a transmitter
and added another Pico with an NRF24 as the receiver connected to the computer. After
acquiring and setting up the system, we confirmed that the calculated data rates were
achievable with the correct configuration, finalizing the system design. A block diagram
illustrating the system design can be seen in Figure 4.3. The transmitter side is embedded
in the object, while the receiver side is the microcontroller connected to the computer.
After determining the necessary components and finalizing the design, the system was

assembled on a breadboard, which allowed for testing the compatibility of the fully integ-
rated system. The test setup, along with its dimensions, can be seen in Figure 4.2.
However, before moving forward with evaluating the completed hardware design, we

decided to pivot our hardware strategy from the discrete design we had developed to an
integrated, single-board approach. The primary motivation for shifting to a single-board
approach was the realization that our hardware would be embedded within an object
that is often in motion. This makes mechanical stability a critical concern. A single-
board solution significantly reduces the risk of mechanical issues compared to a discrete
design where the components are typically connected with jumper cables or through hand-
soldering. Both methods introduce potential points of failure, particularly in dynamic
environments. Another consideration was the form factor. Despite careful selection to
ensure that the separate components could fit within the intended cube object, assembling
them on a prototype board or PCB would result in a much larger footprint than a pre-
assembled single-board configuration. This larger size would make integration into the cube
more challenging. Lastly, ease of use and replicability were critical factors in our decision.
One of the project’s objectives was to create a system using off-the-shelf components that
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Figure 4.3: Block diagram of the tracking hardware setup with the RP Pico. The
transmitter side consists of the individual hardware components that produce
tracking estimates. The estimates are wirelessly transmitted to the receiver
side, where a host PC receives and processes the obtained tracking estimates.

could be easily set up and replicated. A commercially available single board is better
aligned with this goal. Hence, we searched for a microcontroller board that ideally met all
the previously set component requirements. Finding a board with the exact combination
of features was unlikely. Therefore, certain compromises were made during the board’s
selection process.
Ultimately, we arrived at the Arduino Nano RP2040 Connect [49] for its use of the

same chip as the previously utilized Pico, which we anticipated would simplify develop-
ment due to our familiarity with the hardware and its capabilities. The Nano has a 6-axis
LSM6DSOXTR IMU on board, featuring an accelerometer and gyroscope with ODR of
up to 6.6 kHz, significantly surpassing our 1 kHz requirement. This IMU also has built-in
hardware filters, decreasing the need for additional software filtering of the sensor data.
Wireless connectivity is provided by a Nina W102 uBlox module, supporting both WiFi
and Bluetooth. This enables a direct computer connection, simplifying the data transfer
process. Arduino also has a library available to drive the chip called WIFININA, which
makes interfacing with the chip trivial. The Arduino allows an input voltage range from
5 V to 21 V, which offers flexibility in terms of power sources. A compromise in selecting
the Arduino is the absence of a magnetometer, which, despite its potential to increase yaw
estimation accuracy, presents calibration challenges and sensitivity to magnetic disturb-
ances, especially in indoor settings where the system is planned to be used. A render of
the Arduino Nano RP2040 Connect (inside the designed case) can be seen in Figure 4.4.

Limitations of the Arduino Upon finalizing the hardware configuration, we faced
certain performance limitations, including slower data reading speeds from the IMU and
reduced processing performance compared to the previous hardware setup. The slower
IMU reading speeds were attributed to the RP2040’s connection to the IMU via I2C
instead of SPI. We have circumvented this problem by overclocking the I2C bus. While
the bus is rated for a maximum of 400 kbit/s, the setting has been set to 1 Mbit/s to
achieve the required speed we have also attained with the previous approach. Although
this approach is generally not recommended due to possible stability concerns, we have
not encountered any issues on multiple devices during the project and thus approved this
approach. Furthermore, we identified the cause of reduced processing performance as the
inclusion of the MBED-OS RTOS, which is pre-installed on the Nano and runs the Arduino
core. It differs from the bare-metal programming approach of our previous design. We
were unable to uninstall MBED-OS without losing access to essential drivers and, thus,
opted for a third-party RTOS [50] that offered a closer performance to bare-metal by
reducing overhead and enabling the use of the processor’s second core. This mitigated the
performance issues to a certain degree. Nevertheless, adjustments in the system design had
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Figure 4.4: A render of the designed cube object and the lid design. On the left,
the lid can be seen lifted above the bottom side of the case. On the right, the
components on the lid are visible. The lid has an attached sword that holds
the Arduino Nano and a battery pack. The lid can be screwed to the bottom
of the case to form a cube object with embedded electronics.

to be made. These adjustments to address hardware limitations are detailed in section 4.4.

4.3.2 Object Casing

During the process of developing a case for the object, we evaluated several options before
arriving at a decision. When we started looking into options for our cube’s casing, we
initially considered purchasing an off-the-shelf case and modifying it to fit our needs.
However, it soon became apparent that finding a suitable pre-made case was not feasible,
leading us to discard this option. Instead, we decided to design and 3D print our own
case. This decision does not stray from our goal of using easily accessible, off-the-shelf
components for the project since 3D printers have become a staple of almost any research
facility, and the design files are sufficient to print the case and make modifications if needed.
The dimensions of the cube object have already been established. Therefore, the task is

to find a way to embed the electronics inside the object. Given our decision to use a cube
with 12 cm sides as the first object, we needed a design that would integrate the electronics,
ensuring they fit well inside the object and could be mounted rigidly to avoid disturbances
in sensor readings such as vibrations. Additionally, the case needed to be lightweight and
easily manipulated by the Novint Falcon. To address these requirements, we developed
a cube with a removable lid design, where the electronics are mounted on a shield that
attaches to the lid. The design can be seen in Figure 4.4. This configuration facilitates
easy access to the electronics from the case when necessary. Moreover, the lid and the
shield that holds the electronics are designed as separate components, allowing the shield
to be attached to various objects that can be designed later for different experimental
setups. The next step involved selecting an appropriate locking mechanism to secure the
lid to the cube. Initially, we considered an annular locking mechanism for its ease of use
to put on and off but ultimately rejected it due to potential fragility and manufacturing
challenges. Self-locking clips were also dismissed for similar reasons. We decided on screws
as the locking mechanism due to their simplicity, ease of design and use, rigidity, and wide
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Figure 4.5: Experimental setup to test the drift performance of the sensor al-
gorithm. The MPU9250 IMU is rigidly attached to a small breadboard (blue).
The breadboard is fixed into place by a contraption. The experiment starts
in the position shown in the picture. The breadboard and IMU are moved
randomly and reinserted into the contraption to execute the drift test.

availability.
Another critical consideration was ensuring the object’s center of mass was close to its

geometric center to prevent unpredictable movement during interaction with the object.
This was achieved by carefully weighing and positioning the electronics and the battery
housing and adjusting the infill rate for the 3D printing process to counterbalance any
asymmetry caused by the design. Following the design phase, we successfully printed the
parts for the cube. Additionally, we designed another cylindrical object that can utilize
the same shield as the electronics, although this design was not printed during the project.

4.4 Tracking Algorithms

4.4.1 IMU Tracking

We began our project with the objective of tracking the pose of an object by utilizing data
from an IMU embedded within the object. The pose of an object is defined by its position
and orientation, which collectively represent six degrees of freedom (DoF). Our approach
to tackling this problem was to achieve incremental tracking from 1 DoF to 6 DoF. In
the early stages, after acquiring the electronic components as mentioned in section 4.3 and
confirming the Pico’s capability to read data from the MPU9250 at a frequency of 1 kHz, we
tested whether the processor had enough processing power to run estimation algorithms at
the desired frequency. Our initial literature review on object tracking algorithms presented
several promising options. As explained in chapter 2, a majority of similar applications
use complementary and Kalman filters, and some use particle filters. Particle filters are
effective for systems with non-linear dynamics but require significant computational and
memory resources due to the need for numerous particles to represent the system’s state.
Given our goal of running the application on a modest processor, we decided against using
particle filters. The initial algorithm we tried is a simple complementary filter. This
algorithm calculates the pitch and roll angles of the device by integrating a weighted sum
of the gyroscope and the angles derived from the gravity vector components on each axis.
The successful implementation of this algorithm allowed us to estimate the device’s roll
and pitch angles, confirming the processor’s capacity to manage this light computational
load. Nevertheless, the implemented algorithm was limited in that it could not accurately
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Figure 4.6: Graphs showing the result of the random movement experiments
done with the complementary filter to test drift performance. The graphs
show the Roll (blue), Pitch (green), and Yaw (orange) angle estimations of the
complementary filter run on the microcontroller.

calculate the yaw angle due to the orthogonality of the gravity vector to the yaw axis,
and magnetometer readings were not utilized. However, a simple test demonstrated the
algorithm’s effectiveness under static conditions. The algorithm accurately estimated the
correct roll and pitch angles when the device was placed on a flat surface. Furthermore,
a random movement test has been done with the setup shown in Figure 4.5. The IMU
starts in the shown contraption and then is subjected to a random movement. Afterward,
the IMU is placed back in the contraption to the exact same starting position, and the
angles are tracked during this motion. The results of these random movement tests can be
seen in Figure 4.6. We anticipated a drift in the angle estimates due to error accumulation
in the integration process, but the accelerometer’s gravity vector calculations successfully
corrected this drift for the pitch and roll angles by utilizing the gravity vector. Nevertheless,
as can be seen in Figure 4.6, while the roll and pitch angles successfully return to a 0◦ after
the random movement test, the yaw angle is subject to drift and remained at an angle
offset of 60◦ after being returned to the contraption.
Moving forward, we explored a more sophisticated algorithm for orientation estimation,

the Madgwick filter. This filter estimates orientation by fusing data from the accelerometer,
gyroscope, and magnetometer through a gradient descent algorithm, aiming to minimize
orientation error. It is a complementary filter like the previous algorithm but offers higher
accuracy and includes magnetometer data for yaw angle estimation. Since the Madgwick
algorithm is open source, a robust C implementation has been found easily on GitHub
[51].
The next step involved testing this implementation on the Pico to assess its feasibility

on the system. The algorithm presented a straightforward interface, accepting sensor data
and the sampling period as input. To evaluate the implementation, we conducted two
similar basic tests as we did with the complementary filter: one with the sensor on a flat
surface to observe static drift characteristics and another involving random movements to
understand drift after dynamic activity and assess the out-of-the-box performance of the
algorithm. During static testing, the angles initially started from the correct values of 0◦

but exhibited a drift of approximately 5◦ per second. Similarly, while the angles started
correctly in the dynamic case, they did not return their original values after movement,
instead settling at significantly different angles. Although better results were expected
from the Madgwick filter than were obtained with the simple complimentary filter, the

36



outcomes indicate notable drift under both static and dynamic conditions. This suggests
the need for further experiments to characterize and mitigate this drift. However, further
experimentation has been paused as we concluded that the results could likely be improved
through better sensor calibration and filter parameter optimization. Acknowledging these
challenges, we shifted our focus to developing a solution for the position-tracking com-
ponents, initially attempting the basic approach by integrating acceleration data twice
for displacement estimation. However, this method quickly proved problematic due to
drift resulting from the accumulation of errors. We then explored the zero velocity update
(ZUPT) algorithm [52], commonly used in gait analysis. This algorithm assumes there will
be stationary periods (zero velocity) in the movements and applies corrections to reduce
the drift. We adopted this technique by identifying stationary periods and calculating
the norm of the acceleration vector. A few assumptions needed to be made for this logic
to work. The accelerometer senses the gravity vector directed outwards from the earth’s
center at 1 G. If a force not opposite to the gravity vector is applied to the object, the
norm of the total acceleration will be larger than 1 G. Hence, the zero velocity potential
update can be applied when a norm less than a certain threshold is calculated. Neverthe-
less, this approach only works for 3 DoF, as when the object is in free fall, the norm will
also be under 1 G while the object is still moving. The implementation showed a signific-
ant improvement, yet drift remained an issue during dynamic movements. We recognized
that optimizing the performance of both the Madgwick and ZUPT algorithms could po-
tentially be achieved with better sensor calibration, additional filtering, and algorithm
configuration adjustments. However, it became clear that relying solely on an IMU for
object pose tracking would not meet the stringent requirements of our project. Even with
improvements, the system’s performance would only be tolerable for a limited time before
requiring a reset due to excessive drift. In response, we began developing a new high-level
system design, incorporating improvements to address the limitations encountered.

4.4.2 IMU Tracking with Correction Inputs

IMU-based object pose tracking operates on the dead reckoning principle, requiring the
object to start from a predetermined pose. The system then calculates displacement and
rotation from the initial pose to determine the object’s new pose. However, this method
is susceptible to drift over time. RGB cameras and depth cameras, on the other hand,
offer the ability to estimate an object’s absolute pose relative to the camera’s position,
regardless of the object’s initial pose. This capability significantly reduces the impact of
drift, making these devices ideal for providing correction inputs to our system. Neverthe-
less, using cameras as external input introduces another set of challenges, including noise
in the estimates due to the limited resolution of these devices, the reliance on 2D to 3D
transformations, more complex computations, and added delay due to processing. In re-
sponse to these challenges, the second iteration of our system was designed to leverage the
strengths of both IMU data and external correction inputs, aiming to offset their respect-
ive weaknesses. This version processes the same raw IMU data while also incorporating
modeled inputs from external sources, such as delayed and noisy pose estimates. We did
not focus specifically on camera tracking itself. Instead, we attempted to design the system
to be generic enough to accommodate any correction input.
We started this second phase by concentrating on how to integrate frequently updated

pose estimates from IMU data, which drifts over time, with pose estimates that are less
frequently updated, drift-free, noisy, and delayed due to processing. We found several
studies proposing the use of a multi-rate Kalman filter to fuse data with varying update
rates and delays, such as [53] and [54]. Based on these insights, we set out to develop
a system design that combines pose estimates from individual sensors using a multi-rate
Kalman filter with a general system design shown in Figure 4.7. In this system, a single
multi-rate Kalman filter fuses the high-frequency orientation outputs of the Madgwick
filter with the position outputs of the Kalman filter and, on top of that, corrects itself
with a lower frequency correction input. Furthermore, the prediction step of the position
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Figure 4.7: Initial high-level system design of the second phase. A multi-rate
Kalman filter is used to fuse the high-frequency orientation estimates of the
Madgwick filter, the high-frequency position estimates of the Kalman filter,
and the low-frequency camera pose estimates to obtain high-frequency pose
estimates of the tracked object.

Kalman is performed with the position estimates obtained from the multi-rate Kalman
filter. The gravity vector corrections for accelerometer measurements are handled in the
filter. Initial experimentation of the approach using the virtual test setup showed a major
issue with the correction of the gravity vector, leading to significantly diverging position
estimates. This led to a secondary design where the multi-rate Kalman filter is split into
two distinct filters to estimate the orientation with one and the position of the object with
the other. The high-level block diagram of this design can be seen in Figure 4.8. The
advantage of this design is that the gravity vector subtraction is handled explicitly before
the accelerometer measurements are used in the filter before the multi-rate Kalman filter
and, thus, is not affected by inaccuracies introduced by the initial position Kalman filter
stage. This approach showed improved performance over the initial design in tests done
in the virtual test setup.
However, as explained in subsection 4.3.1, a transition to an integrated electronics board

introduced performance challenges, requiring a shift in our approach. Initially, we imple-
mented the Madgwick algorithm on the microprocessor, but due to these new limitations,
we could only achieve half of the processing rate of the previous setup, about 500 Hz.
Considering the remaining filters that still needed to be implemented, we decided to of-
fload all computational tasks, including those involving IMU data, to a computer. With
this change, the Arduino embedded inside the object was left with the task of sampling
the IMU and sending the data to the computer. Following this adjustment, we started
implementing the algorithm proposed by [54]. This algorithm proposes a method to fuse
frequent state estimates with infrequent and delayed estimates. Our focus was initially on
fusing single-degree of freedom (DoF) movement of the position to test the performance
of the data fusion with the intention to expand to 6 DoF. Since we did not have a camera
setup, all tests for this algorithm were done using the virtual sensors setup explained in
subsection 4.2.2. The algorithm proposed in [54] can be used to fuse state estimates, but
it does not describe a way to calculate them from raw sensor data. Therefore, we have
shifted from the previously utilized ZUPT algorithm to a regular Kalman filter for position
tracking with the IMU data as explained in chapter 3. The multi-rate Kalman filter oper-
ates in 3 distinct modes based on data availability from the different modalities. Initially,
it acts as a regular Kalman Filter when only the estimates from IMU data are available.
If a measurement is taken by the second modality but has not yet been calculated, the
algorithm continues as a regular Kalman filter but begins iterating on a correction matrix
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Figure 4.8: Secondary high-level system design of the second phase. Two separ-
ate multi-rate Kalman filters are used for orientation estimation and position
estimation. The output of the orientation estimates is directly used to sub-
tract gravity components of the acceleration measurements. Low-frequency
correction inputs are fused with high-frequency IMU measurements to obtain
high-frequency pose estimates.

to account for the time elapsed since the second modality’s measurement was taken. Upon
calculation of the second modality’s estimate, this correction matrix is then used to fuse
the estimate, taking into account its delay, thereby correcting any bias in the IMU data
and extrapolating the second modality’s estimate to the relevant time point.
After implementing and testing this algorithm with the virtual setup for a single axis of

position, we observed that the tracking seemed accurate visually. However, the tracking
estimates undesirably incorporated the noise component from the camera estimates, res-
ulting in an interpolated signal that resembled a staircase pattern. The exact issue was
difficult to pinpoint but may have stemmed from incorrect implementation or misconfig-
uration of the state dynamics within the multi-rate Kalman filter. Given the challenges
encountered with this complex approach, we opted for a more straightforward method to
fuse two distinct types of signals. The first signal comprised estimates calculated from
IMU data, sampled at approximately 1 kHz. These estimates tend to drift over time but
are accurate in the short term. The second signal consisted of estimates obtained from
camera data, which, although less frequent at approximately 90 Hz and subject to delay,
are less accurate in the short term but do not exhibit long-term drift. This strategy aimed
to leverage the strengths of both data sources to achieve more reliable tracking estimates.
In this approach, we used a smoothing filter for the camera estimates. By applying an
exponentially weighted Moving Average (EWMA) filter [55], we aimed to represent the
camera estimates as a delayed but unbiased signal of the ground truth. This method
proved more successful than the multi-rate Kalman approach, allowing us to remove the
bias from the frequently updated, accurate, yet biased IMU estimates. Despite its success
in bias removal, this approach introduced additional delay in the camera measurements,
complicating bias corrections during rapid dynamic movements and negatively affecting
our goal for a low-latency system. A significant challenge was the delay of camera es-
timates, which caused overshooting and undershooting in tracking the object during the
dynamic periods. We explored several strategies to address these issues, finding the most
effective solution to identify the dynamic periods by checking for significant changes in
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Figure 4.9: Experimental result from a position tracking experiment using the
stationary detection tracking algorithm. The experiment is done in a virtual
test setup where the object is moved up and down on the x-axis. The collected
data is used to estimate the x position of the object using different tracking
algorithms, and the results are compared.

position estimates from the camera. During these periods, the IMU estimates are not
corrected by the calculated camera estimate bias, resuming bias updates once the object
becomes stationary again. Figure 4.9 shows the result of a simple experiment where the
object is moved up and down along the x-axis in the virtual test environment. The move-
ment is tracked with a standard Kalman filter (red), with filtered camera estimates (cyan),
and the fusion of the two with the stationary detection algorithm (green). It can be ob-
served that the IMU estimates closely follow the ground truth but they tend to drift over
time. The filtered camera estimates are accurate overall but are delayed with respect to
the ground truth. For the fused tracker, the vertical lines in the figure mark the detection
of stationary periods, indicating that while the tracker outperforms the individual modal-
ities, accuracy diminishes at the transient points with this method. This approach yielded
sub-optimal but reasonable results; however, the method for calculating stationary periods
lacked consistent reliability.
In these approaches, we assumed that the correction inputs are generic and could be

directly fused with the IMU-derived estimates. This assumption has led to unsatisfactory
outcomes, prompting us to reconsider our strategy once again due to practical concerns.
Our new approach was to use an actual camera and implement an algorithm that can fuse
that data with IMU data in a more complete system that incorporates all components
and can capture their interrelations to provide a better and complete way of tracking the
object. This approach is laid out in the next section.
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Figure 4.10: Test setup for camera tracking. The laptop’s camera is used to
track the position of the cube object with markers on its side. The camera
view can be seen on the monitor. During the experiment, the cube is moved
on a straight path up and down along its x-axis. The movement of the object
is measured using a tape measure attached to the surface.

4.4.3 Camera and IMU Fused Tracking

We finally decided to transition to a complete system to further enhance our tracking
capabilities by integrating a more direct and real-time method of acquiring pose informa-
tion. Thus, we shifted our development efforts towards creating a complete, self-contained
object-tracking system. This comprehensive solution encompasses a dedicated camera
setup for visual tracking, an object with the IMU setup inside it, and a tailored tracking
algorithm that fuses data from both modalities optimized for our specific use case. By
doing so, we retained the system’s previous adaptability to fuse various data sources and
significantly improved its tracking accuracy and reliability through direct visual inputs.
To achieve this, several steps were required. Initially, we needed to select an appropriate

camera, establish a method for obtaining pose estimates with this camera setup, and
finalize the algorithm to combine these estimates with IMU data, creating a complete
tracking solution. We opted to use a smartphone camera as our camera setup due to the
ubiquity of smartphones, their high-resolution cameras, and the fact that they are a cost-
effective solution. For transmitting the camera footage to the computer, we utilized an
application called IRIUN [56] for its free availability on Android and IOS platforms and its
simple use. Since we could receive camera footage on the computer, a way was needed to
process this footage. A natural choice was to use OpenCV [44] since it is a freely available,
comprehensive computer vision library designed for computational efficiency and real-time
applications. With the camera setup in place, we needed to decide what method to use to
track the object. We considered two main methods: deep learning-based and marker-based
methods. Given the significant computational resources and training data required by deep
learning methods and our full access to the object and tracking environment, we chose to
use fiducial markers for their efficiency and simplicity. Specifically, we selected AruCo
markers due to OpenCV’s comprehensive support and the robustness of these markers as
indicated by research [57].
We printed a 6 cm by 6 cm AruCo marker and attached it to one side of the object,

as seen in Figure 4.10. After setting up the required code for receiving and processing
the camera data, we set up a simple test rig to evaluate the position-tracking accuracy of
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Figure 4.11: Graph showing test results of a dynamic camera tracking test on a
single axis. During this experiment, the object is moved on the x-axis starting
from a position at 0 cm. Then the object is moved to 15 cm and 30 cm and
back to 0 cm in the same order. The position estimates of the camera tracking
algorithm are shown in the graph.

the system on a single axis. The test setup can be seen in Figure 4.10. Before the tests,
the camera was calibrated using the tools also provided by openCV. The tests included
evaluating the noise of the position estimates at three different distances from the camera
while the object is static, and comparing the accuracy of position tracking by moving
the object to three predetermined distances and comparing the estimations to the actual
positions. For the static test, the position estimates for the shortest object-camera inter
distance of 20 cm, the standard deviation of the estimates has been found to be 0.88
mm, and the furthest test of 60 cm from the camera has shown a standard deviation of
2.11 mm during a 15-second long static test. These low standard deviations for the given
distances show that the camera system achieves high precision. Figure 4.11 shows one
of the obtained graphs following a dynamic test. In this particular test, the object was
moved from a starting x position of 0 mm to 15 cm to 30 cm, as shown by the dotted
horizontal lines on the graph, and then moved back in the same order. The vertical axis
shows the x position of the marker, while the horizontal axis shows time. As can be seen,
the estimates overshoot more the further the object moves from the camera, and the high-
frequency noise component increases as well. Nevertheless, when returned to its starting
position, the estimates do not drift and end up on the correct value. Several similar tests
have resulted in the same findings. This indicates that there is a scaling issue. This issue
has been resolved by applying a scaling factor based on the empirical results.
The experiments confirmed that (for 1 DoF) the camera system works and can be utilized

further with the remaining system. At this point, the camera tracking was established,
and for the IMU estimates, we had the Kalman filter approach. A way to fuse the two
modalities reliably still needed to be established. During our search, we found [37], which
uses an extended Kalman filter for a very similar setup to ours. In their approach, both
the IMU and the camera are embedded in the object (Robot in their case), while in our
approach, the camera is external and aimed towards the object with the IMU. Based on
this successful approach, we decided to adapt the Extended Kalman Filter to our case.
Furthermore, we have used [32] to get more insight into this approach and have finally
adapted it to our case, designing a complete Extended Kalman filter for our system that
can fuse the two sensors with additional steps that mitigate the latency introduced by
camera estimates. This Kalman Filter was detailed in chapter 3.
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Chapter 5

Implementation

This section details the implementation of the proposed algorithm in software and its
integration with hardware to achieve a functional setup. First, the general system design
is explained, followed by a discussion of the system components used in the experimental
setup.

5.1 Overall System Implementation

The general system consists of several components. There are two sensor components, the
camera and the IMU, and a processing component, the computer. The setup of these units
and how they communicate with each other are specified in the following sections.

5.1.1 Camera Setup

The camera being used in the system is a standard smartphone camera capable of taking
30 fps video with a resolution of 1280 x 720. A free-to-use application called DroidCam [58]
transfers the camera feed to the central computer. This frame transmission method has
been chosen as an alternative to a dedicated webcam or camera to mitigate additional costs
since smartphone cameras nowadays have improved significantly, and they are ubiquitous.
The footage sent by the application is received by an accompanying desktop application
that is mounted on the Linux drivers as a camera device. From there, the application
responsible for reading the footage uses the hardware drivers, as would be done like a
standard webcam.
The processing of the camera frames is done with the freely available open Computer

Vision Library (OpenCV) [44]. This library is chosen due to its extensive and customizable
libraries.
Camera frame reception is done with the help of a dedicated thread on the central

computer. This thread receives the camera frame and applies the necessary processing to
obtain a pose estimate from the frame. When the pose estimate is ready, the estimate is
sent to the main thread for processing.

5.1.2 Arduino Firmware

We have chosen the Arduino Nano RP2040 Connect for the setup as explained in chapter 4.
The main components of this Arduino used for this project are the CPU, IMU, and WiFi
module. The main task of the Arduino is to send the sampled IMU data to the central
computer for further processing. Some preliminary filtering and averaging are applied
in the Arduino before the data is sent. The IMU is capable of a sampling rate of 6.6
kHz for both the accelerometer and the gyroscope. The tracking system is required to
achieve tracking estimates with a 1 kHz frequency. To achieve this, the IMU still samples
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Figure 5.1: Timing diagram showing the operation of firmware IMU sampling.
Core 0 samples the IMU at a high frequency and relays the average of the last
6 samples to core 1. Subsequently, core 1 applies preliminary filtering of the
samples and sends the output over WiFi to the central computer.

the sensors with its maximum sampling frequency of 6.6 kHz but does not immediately
send all the data. A couple of limitations are involved in sending all data directly if the
sampling rate is 6.6 kHz. First, the WiFi module on board has processing limitations
and bandwidth issues. Although the WiFi controller is a separate processing unit on the
Arduino, the CPU of the Arduino still requires significant overhead to send each packet
to the WiFi module, and the WiFi module has limited bandwidth. Since 1 KHz is enough
to satisfy our requirements, the process explained in Figure 5.1 has been implemented.
The Arduino has two available processing cores. Core 0 is used for sampling the IMU and
averaging six samples before sending it to core 1. Averaging is done as a simple noise
reduction step to eliminate high-frequency noise in the system. Core 1 is responsible for
receiving the data and relaying it to the onboard WiFi module for transmission. The
communication between the WiFi module and the central computer is done via UDP
protocol. UDP is a sufficient communication method since low latency is required, and the
algorithm can compensate for packet loss. Besides the averaging of samples, the IMU has
built-in hardware filters that are used to mitigate high-frequency noise. These hardware
filters provide an additional low-latency step for filtering.

5.1.3 Software Libraries

OpenCV (version 4.8.0) was used in the final system for image processing and part of the
camera tracking functions. OpenCV is a powerful open-source library for computer vision
tasks. The Eigen library (version 3.4.0) [59] was also used for linear algebra calculations,
such as matrix operations needed in the Kalman filter. Eigen is known for being efficient
and easy to use for mathematical computations.

5.2 Test Setup

To analyze the performance of the proposed solution, the following test setup has been
prepared: A unique cube object has been 3D printed in the exact dimensions as mentioned
in chapter 5, but mounting holes have been placed on the bottom such that the cube can
be attached as an end effector to the robot arm. A depiction of the object attached to the
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Figure 5.2: The 3D printed, mountable cube object attached to the end of the
robot arm for the experimental setup (left) and the smartphone mounted on
a tripod as used in the experimental setup (right). In the experimental setup,
the camera is positioned towards the cube. The robot arm moves the cube
on preprogrammed paths while the smartphone camera records its movement.
The electronics inside the cube simultaneously send IMU data to the central
computer. The obtained dataset is used to analyze the performance of the
proposed tracking algorithm.

robot arm can be seen on the left side of Figure 5.2. Furthermore, a smartphone has been
mounted on a tripod and directed to the robot arm such that the object is in the frame of
its camera. A picture of the mounted phone can be seen on the right in Figure 5.2.
The components of this setup communicate with a central computer via WiFi and

ethernet connections. The computer is used to control the robot arm and collect and
save the data from the IMU sensor that is sent from the microcontroller. Furthermore,
it receives and saves the camera frames that are taken by the smartphone. A connection
diagram of the whole experimental setup can be seen in Figure 5.3. The WiFi module on
the Arduino inside the cube acts as an access point to which the computer’s WiFi module
is connected. The computer is also connected to a router via Ethernet. This router also
connects to the robot arm via an Ethernet connection, while the smartphone is connected
to the WiFi access point created by this router.
The experiments are conducted as follows: The robot arm is controlled using ROS2

[60]. Therefore, the complete data collection program has been written using ROS2 nodes.
One node moves the robot on a preprogrammed path. The second node opens a UDP
connection with the IMU and records the obtained IMU samples. The third and last node
uses openCV to record the video frames taken by the smartphone, which acts as a webcam.
A launch file has been written to send synchronization messages to the nodes. Once the
system has been set up, a first synchronization message is sent to the IMU and camera
nodes to establish connections and record data for three seconds. The recorded data during
this phase calibrates the algorithm before the experiments. After three seconds, another
message is sent to the robot, IMU, and camera nodes, signaling the start of the actual
data collection during the cube’s movement. After the movement of the robot arm is
completed, the robot node publishes a final message to the data collection nodes to finish
the experiments.
Two movements were conducted using the experimental setup. During Movement 1,

the robot arm moves the cube back and forth 20 cm in the +x direction in the local frame
with a sinusoidal speed pattern. During this movement, the cube is held steady in all other
axes for both position and orientation. The sinusoidal speed pattern is chosen to better
illustrate the tracking performance during an accelerated and decelerated movement. Fur-
thermore, the larger the acceleration, the more effect the delayed camera measurements

45



Robot Arm

Smartphone

Embedded IMU
(AP mode Wifi)

Host PC

Router
(AP mode Wifi)

Ethernet

Ethernet

WiFi

WiFi

Figure 5.3: Diagram showing connections between components used in the ex-
perimental setup. The robot arm and smartphone are connected to the Host
computer via an intermediate router. The embedded IMU inside the cube
is directly connected to the host computer by acting as a WiFi access point.
Both ethernet and WiFi connections are used in the setup.

will have on tracking performance. Movement 2 has been designed to assess the orient-
ation tracking performance of the system. The object position is not changed while a 90◦

rotation is applied on the yaw angle of the cube object with a sinusoidal speed. All other
angles are also held stationary. The sinusoidal speed has been chosen for the same reasons
as in the first movement.
During both experiments, the standard settings on the sensors were used. The IMU

sends data with 1.14 kHz while the camera takes measurements at 30 fps.
Although the position of the robot’s end effector has been logged to obtain a ground

truth measurement for the movements during the result analysis, these logs have not
been used directly. The reason is that these position measurements are obtained by a
forward kinematic function in the robot arm and are not 100% accurate. Instead, to
obtain reliable ground truth, the tracking results are compared using the camera footage
of the experiments. The captured frames are first filtered using a Sav-Gol filter [61] with
a polynomial order of 3 and a window length of 9 to smooth out the noise. Then, the
timestamps are adjusted for camera latency to match the IMU data timestamps directly
and compared with the forward kinematic logs of the robot arm. The Kalman parameters
used during the experiments are the parameters that are specified in Appendix B unless
stated otherwise.
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Chapter 6

Results

Several experiments have been conducted to analyze the tracking performance of the pro-
posed system. The tracked object has been moved on predetermined paths, and data from
the sensors have been collected. The movements are intended to emulate an object in
a dynamic environment at the controlled side of a teleoperation system. The proposed
algorithm has been run on the collected data to assess tracking accuracy in position and
orientation under different conditions, which are explained in the subsequent sections.
The performance of the system is analyzed for the following cases:

1. Comparison of position tracking performance between the proposed system, tracking
estimates obtained by camera measurements, and tracking estimates obtained using
only IMU estimates.

2. Comparison of orientation tracking performance between the proposed system, track-
ing estimates obtained by camera measurements, and tracking estimates obtained
using only IMU estimates.

3. Comparison of position tracking performance in the presence of increasing camera
estimate latency between the proposed system and tracking estimates obtained by
camera measurements.

4. Comparison of orientation tracking performance in the presence of increasing camera
estimate latency between the proposed system and tracking estimates obtained by
camera measurements.

5. Analysis of position and orientation tracking performance with different camera es-
timate frequencies.

In the 3rd and 4th experiments, artificial camera estimate latency has been added to
the datasets obtained in movements 1 and 2 to compare the system’s performance under
similar conditions. The timestamp of the camera estimates has been adjusted, and the
algorithms have been run with these adjusted timestamps. For the 5th experiment, the
camera estimate frequencies have been adjusted for each run by decimating the base camera
estimates.

6.1 Tracking Performance Analysis

The upper graph in Figure 6.1 shows the position tracking estimate results of different
methods for movement 1, while the lower plot shows the absolute error of these estimates.
It can be seen that when only IMU data is used to calculate the position tracking estimates,
an accurate result of a positional error below 1 cm can be attained for approximately 1.3
seconds. After this time, the position estimates obtained using only IMU data tend to drift
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drastically due to the accumulation of errors from the double integration of acceleration
measurements. The IMU-only estimates are able to follow the direction of the movement
until approximately 6 seconds, after which it diverges completely. Another observation
of the IMU-only measurements is that a high-frequency error is introduced as time pro-
gresses. In the IMU-only Kalman filter, the only measured state concerning position is the
acceleration. Hence, the only state that converges to a fixed process noise is that of accel-
eration, while the velocity and position states continue to diverge as new measurements
come in. In time, the filter will trust the acceleration measurements more, resulting in the
propagation of acceleration measurement noise to the position state estimates.
In the upper plot of Figure 6.1, it can be seen that the camera estimates follow the

ground truth relatively well. The camera estimates do not accumulate drift as is expected.
Due to the inherent latency of the camera estimates, it can be seen that the estimates
lag behind the ground truth. This lag was observed to be approximately 30 ms. As a
result of this lag, an error pattern of the camera estimates can be observed in the lower
plot of Figure 6.1. If the object had been moved with a constant velocity, the constant
lag would have resulted in a constant error between the camera estimates and the ground
truth proportional to movement speed. The speed in this experiment is sinusoidal, which
causes the object to reach a speed of 0 at the peaks and valleys of the sinusoid while
reaching its largest speed precisely between them. Since the error of the lagging camera
estimates is proportional to object speed, a sinusoidal error pattern can be observed in
the camera error as well. Another notable feature in the camera position estimates can
better be seen in Figure 6.2, which shows a close-up of the first 2 seconds of Figure 6.1.
In the upper plot of Figure 6.2, the camera estimates follow a sample and hold signal
resembling a staircase pattern. This is because the camera algorithm operates with only
30 Hz. This means that the algorithm has no new information about the object’s position
after a camera estimate is obtained. Therefore, the estimate remains on the last outcome
for approximately 33 ms until a new estimate is received. The effect of lack of estimates
can consequently be observed in the error signal of the camera estimates. In the lower plot
of Figure 6.2, the error signal of the camera shows a zigzag pattern in combination with its
sinusoidal path. The error will naturally increase if the object moves between two camera
estimates. Furthermore, this error will be compensated for when a new camera estimate
arrives, resulting in a zigzag pattern. In Figure 6.2, it is also visible that when the object
is moving slower at second 2, the zigzag pattern diminishes while it is the most prominent
at second 1.
In the upper plot of Figure 6.1, the position estimates of the EKF can be seen to

follow the ground truth accurately throughout the whole movement. The lower plot shows
that the maximum error of the EKF position estimates is a little above 0.2 cm while
the average remains around 0.1 cm. Considering that in this experiment, the EKF is
using the same camera estimates and imu data as the other algorithms shown in the same
figure, it performs significantly better than both methods individually. No drift is observed
throughout the movement. Even though the EKF uses the camera estimates with latency,
it does not show the same error pattern and effectively uses the camera estimates to correct
the drift from the imu data while eliminating the latency they introduce. Although the
EKF performs better than both modalities, it is still affected by the accuracy of the
individual measurements. This can be seen by comparing the error signal of the EKF
and the camera at approximately 2.2 seconds in Figure 6.1. At this point, the camera
estimates can be seen to be less accurate than average, and a jump is caused in its error
signal. Similarly, at that time, the EKF also suffers from a spike in its error. Looking at
the error signal of the EKF in the close-up in Figure 6.2, it can be seen that the EKF
error is affected by the frequency of the camera estimates. In between camera estimates,
the EKF is prone to drift due to its operation solely on imu data at these intervals, and
that is corrected whenever a camera estimate is received and used.
The upper plot in Figure 6.3 shows the resulting orientation estimates of different object

pose tracking methods for movement 2. The lower plot shows the corresponding absolute
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Figure 6.1: Tracking estimates and absolute error of the object’s x position
from movement 1. The upper plot shows the estimates over time, while the
lower plot displays the absolute error of the position estimates relative to the
ground truth. The graphs compare the estimates obtained from three different
tracking methods: IMU only, camera tracking, and the proposed EKF. Note
the time axis is aligned.

angle errors of these orientation estimates. Similarly to the position estimates obtained
by the IMU-only algorithm, the angle estimates obtained with the IMU-only algorithm
tend to drift. These angle estimates are able to accurately trace the ground truth data for
approximately 2 seconds. During this interval, the error of these estimates stays around
1◦, after which the estimate drift increases.
In contrast to the IMU-only position estimates, the imu-only angle estimates do not

diverge completely during the movement and still follow the direction of movement until
the end of the experiment. This decrease in drift is caused by the single integration of
gyroscope measurements to obtain angle estimates, in contrast to the double integration
of acceleration measurements for the position. This also affects the high-frequency error of
the IMU-only angle estimates. Furthermore, the less noisy nature of gyroscope measure-
ments also affects this. When looking at the camera angle estimates and its corresponding
error in Figure 6.3, similar trends can be seen as were observed in position camera estim-
ates. Due to the sinusoidal rotation speed and the camera estimate latency that has been
calculated as 100 ms for this movement, the error of the camera angle estimates also follow
a sinusoidal pattern. Due to the camera frequency of 30 Hz, the camera angle estimates
also follow a staircase pattern. Consequently, the angle errors also follow a zigzag pattern
where, at its height, an oscillation of 1 degree is observed. The angle orientation estimates
obtained with the EKF can be seen to follow the ground truth accurately, similar to the
position estimates. The maximum angle error of the EKF estimates is approximately 3.5◦

during movement 2. This maximum value is observed at second 7 in the lower plot of
Figure 6.3. A sudden peak in the camera rotation estimates can be seen. This error in
the camera estimate translates to a peak in the EKF estimates. Throughout the move-
ment, the EKF error stays consistently below the camera and IMU errors with a mean
value of approximately 0.5◦. Overall, it can be concluded that the proposed algorithm can
accurately track both the position and the angle of the object by using delayed camera
estimates and noisy IMU data. The latency of the camera estimates and the noise in IMU
data is effectively eliminated, and the data is fused to obtain accurate tracking.
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Figure 6.2: A close-up of the first two seconds of the graphs shown in Figure 6.1.
This figure similarly depicts tracking estimates and absolute error of the ob-
ject’s x position from Experiment 1. The upper plot shows the estimates over
time, while the lower plot displays the absolute error of the position estimates
relative to the ground truth. Note the time axis is aligned.

6.2 Impact of Camera Latency on Tracking Perform-
ance

Figure 6.4 and Figure 6.5 show the experimental results of the latency experiments. In
these experiments, the latency of the camera estimates has been artificially increased
and used in the tracking algorithms to see the impact camera latency has on tracking
performance. In each step, the latency has been increased by 10 ms. While Figure 6.4
shows position error results obtained from movement 1, Figure 6.5 shows the angle error
results obtained from movement 2.
In Figure 6.4, the red line with triangle data points shows the absolute median error

of the camera estimate tracking method as the latency of the camera estimates increases.
When the camera estimate latency is 0, the median error of the camera estimate is also
approximately 0 with minimal spread. This indicates that the camera-only method is
very successful in accurately and precisely estimating the object’s position. As the latency
of these estimates increases, the camera-only estimates are still accurate, but when they
arrive, the object has moved on. Therefore, the estimation indicates a position in the
past. This effectively increases the error for all estimates, especially when a fast movement
occurs. Furthermore, an increase in latency will result in an increase in error. This fact
can be observed in Figure 6.4. The median error of the camera-only estimates in each
step increases linearly, and the error distribution widens as latency increases. Every 10 ms
of added camera latency increases the median position error by approximately 1 mm. It
should be kept in mind that this linear relation is proportional to the movement velocity of
the object, and the mentioned relation is unique to the sinusoidal movement pattern used
in movement 1. The increase in error spread as latency increases is also a direct result of
the sinusoidal pattern.
The blue line with crossed data points and the green line with the dotted data points

in Figure 6.4 show the median error for the position estimates under increasing camera
latency for the proposed method. While the blue line indicates the results where the
algorithm has been run with the default Kalman parameters, the green line indicates the
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Figure 6.3: Tracking estimates and absolute error of the object’s yaw angle
from Experiment 2. The upper plot shows the estimates over time, while the
lower plot displays the absolute error of the yaw angle estimates relative to the
ground truth. The graphs compare the estimates obtained from three different
tracking methods: IMU only, camera tracking, and the proposed EKF. Note
the time axis is aligned.

results where some algorithm parameters have been modified, namely the process noise
covariance entries for velocity (Qv). Qv equals 0.15 in the default parameters, and for
the other run, they have been decreased to 0.0001. It can be seen that the EKF with
Qv = 0.15 is able to keep positional tracking error very low in between camera latency
values of 0 ms to 160 ms. This window shows A slight increase from 0.2 mm to 1.2 mm.
This slight increase can be attributed to the fact that the larger the latency of the camera
estimates, the longer the algorithm has to rely on imu data for extrapolation, resulting in
a larger drift. After 160 ms of latency an increase in median error to approximately 2.1
mm is observed until latency becomes 190 ms for the EKF with Qv = 0.15. This bump
in error signals that the EKF cannot keep up with the camera latency, and drift starts
to occur. After 190 ms of camera latency, the error of the EKF with Qv = 0.15 can be
seen to be completely diverging. The reason for this is that the filter cannot handle the
amount of extrapolation under its current configuration. One reason might be the velocity
measurement calculation method from the camera estimates. The amount of extrapolation
results in a significant drift between camera measurements, resulting in positive feedback
during velocity calculation, causing the filter to diverge.
The green line in Figure 6.4 shows how this effect can be delayed by compromising

initial position tracking accuracy. The green error line indicates the results where Qv has
been lowered to a value of 0.0001. This decrease in the velocity process covariance causes
the filter to trust the velocity measurements less and rely more on the dynamic model.
As can be seen in Figure 6.4, this results in a shift in the divergence point of the filter
from 190 ms to 360 ms. Nevertheless, this increased tolerance to camera latency increases
overall error for position tracking, especially in the lower latencies. When the blue and
green lines are compared between 0 ms latency and 160 ms latency, the filter with default
parameters has a constant lower error of approximately 0.2 mm. Figure 6.4 shows that the
proposed method can very accurately estimate object position even when using camera
estimates that are delayed up until 350 ms. Nevertheless, camera-only measurements are
still more accurate if no latency is present than the proposed filter. Judging from the
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Figure 6.4: Median absolute position error as a function of camera estimate
latency with interquartile ranges, comparing Extended Kalman Filter (EKF)
estimates with different settings and camera-only estimates. Qv represents the
process noise covariance matrix entries of velocity.

apparent tradeoff of tolerating latency and decreased accuracy when the results for Qv

= 0.15 and Qv = 0.0001 are compared, it can be said that it is crucial to optimize and
calibrate the Kalman parameters of the proposed filter depending on the conditions of the
used measurements. This will result in more accurate filter tracking. Furthermore, if it
is impossible to gain camera estimates with a latency of less than 350 ms, camera-only
estimates might be preferred over the proposed method.
Figure 6.5 shows the impact of camera estimate latency on orientation tracking for

the camera-only method and the proposed method. The camera-only algorithm and the
proposed EKF are run on the dataset obtained with movement 2. Similar to position
tracking, the angle error of the camera-only method starts with a very low median error
and reaches an angle estimation error of 1◦ when the latency is 20 ms. The median error
increases linearly with latency and quickly reaches 5◦ when the latency is 50 ms. On the
other hand, the proposed EKF can keep angle estimation error low until the filter diverges
at around 270 ms. Even when camera estimates are delayed by 250 ms, the median
absolute angle error of the EKF is 2◦, while at the same latency, if only camera estimates
are used, the median angle error reaches 14◦. Notably, the spread of error distribution
for the proposed EKF is narrow until the divergence point. This points out consistent,
accurate estimations throughout each run. After the divergence point of 270 ms, the EKF
method is no longer usable for angle estimations. After this point, it is preferable to
use the camera-only method. This divergence is thought to be caused by similar reasons
the position tracking diverges, namely the velocity measurements. Furthermore, at low
latencies, it can be seen that the camera-only method outperforms the EKF, and the
EKF performance starts overtaking at 10 ms latency. When there is no latency present,
although the same camera estimates are used in both methods, the interpolation with imu
data by the EKF causes a slight performance drop. At 0 ms latency, the camera median
error is measured as 0.07◦ while the EKF median angle error at that point is measured as
0.4◦. All in all, in a range where camera estimates are delayed between 10 ms and 270 ms,
the proposed EKF provides reliable and accurate angle tracking and effectively eliminates
latency introduced by the camera measurements.
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Figure 6.5: Median absolute orientation error as a function of camera estimate
latency with interquartile ranges, comparing Extended Kalman Filter (EKF)
and camera-only estimates.

6.3 Impact of Camera Frequency on Tracking Perform-
ance

Figure 6.6 and Figure 6.7 present the results of the frequency experiments. Figure 6.6
shows the median error in position estimates from the proposed EKF applied to the dataset
obtained from movement 1. Figure 6.7 illustrates the median error in orientation estimates
from the proposed EKF applied to the dataset obtained from movement 2. A range of
frequencies is obtained by decimating camera estimates from the original datasets. Since
the original camera used in the experiments runs at 30 fps, the graphs show a frequency
range from 0.12 Hz to 30 Hz.
When the position error versus camera estimate frequency in Figure 6.6 is observed, it

can be seen that the median error follows an exponential decrease with increasing frequency
as expected. At low camera estimate frequencies, 0.12 Hz to around 1 Hz, the median
position error can be seen to have diverged to above 50 mm. As the camera estimate
frequency increases from 0.12 Hz to around 0.8 Hz, there is a notable decrease in the
median position error that swings around 5 mm. From 0.8 Hz to 1.1 Hz, this oscillation
continues in a decreasing fashion. Beyond 1.1 Hz, the error continues to decrease, and the
graph shows a significant drop in error, stabilizing at lower values. The interquartile range
is wide at lower frequencies, indicating high variability in the error. As the frequency
increases, the variability decreases. This means that at higher frequencies the EKF is able
to consistently estimate more accurately. The graph demonstrates that the frequency of
camera updates profoundly affects the position-tracking accuracy of the EKF. Using higher
camera estimate frequencies of 1.1 Hz and above is beneficial for optimal performance.
Nevertheless, beyond 10 Hz, the error does not decrease significantly as it approaches the
baseline performance of the tracker.
It should be noted that at frequencies below 1 Hz, the EKF gets camera updates at

intervals longer than 1 second. This means that the EKF operates on only IMU estimates
for over a second. As is mentioned in section 6.1 The EKF is able to track the position
accurately for about 1.3 seconds, after which the estimates diverge. This is in line with the
findings in this graph, as it can be seen that the tracking accuracy degrades significantly
when the camera estimate frequency is lower than 0.8 Hz ( 1.25 s intervals).
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ranges for the proposed EKF. Note
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Figure 6.7 shows the median angle error of the EKF for a range between approximately
1.2 Hz to 30 Hz. In general, it can be observed that the median error steadily decreases as
the camera estimate frequency increases. At the low-frequency range of around 0.12 Hz,
the median yaw angle starts high at approximately 14 degrees. As the camera estimate
frequency increases from 0.12 Hz to around 1 Hz, the median error decreases significantly
to around 3 degrees. Beyond 1 Hz, the error continues to decrease, stabilizing at lower
values. Around 10 Hz and higher, the median yaw angle error levels off to a baseline and
stays relatively stable, around 1◦. The interquartile range is wide at lower frequencies,
indicating high variability in the yaw angle error. As frequency increases, the variability
decreases, and the interquartile range narrows significantly. This means that not only
does the yaw angle error decrease with higher frequency updates, but the consistency
of the error also improves. Concluding from this graph, the camera estimate frequency
updates profoundly affect the accuracy of the EKF in tracking the yaw angle of the object.
Low-frequency updates result in high and variable yaw angle errors, while high-frequency
updates lead to low and consistent errors. This is a similar trend observed for the position
estimation errors as discussed. For optimal performance in angle tracking, using higher
camera estimate frequencies (10 Hz and above) is beneficial.
It can also be seen that the median error has some high-frequency fluctuations along

its path, with a significant dip at around 0.3. The reason for this may be due to the
method with which the frequency range is obtained. Although this affects the variability
of individual error ranges, it does not affect the general trend observed in the graph.
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Chapter 7

Future Work

Several modifications can be made to the proposed system to improve it in certain areas.
In the current system, the pose-tracking algorithm runs entirely on an external machine,
while the microcontroller inside the object is only used for simple filtering and networking.
The subsequent iterations could make better use of the microcontroller resources by incor-
porating improved preprocessing of the IMU samples before transferring them to increase
overall accuracy or improve the networking operations to decrease the latency even further.
Similarly, the camera frames are sent directly from a phone with many layers of software
stacks (camera application, operating system, etc.) that affect the latency between taking
the image and receiving it on the computer. To mitigate this, a custom system could be
made with a camera and microcontroller that could be capable of the camera pose tracking
algorithms locally for improved latency.
Another improvement could be a complete integration of the system into a working

bilateral teleoperation system. Currently, the system has been tested in an isolated envir-
onment where the primary component is tracking the object’s pose. Bilateral teleoperation
systems consist of many complex components that need to work seamlessly together. When
all components, including object tracking, are brought together in a comprehensive sys-
tem, unforeseeable interactions that need to be investigated may occur. For example, other
components on the network may limit the bandwidth, or other computational loads may
limit performance, which can affect the latency of the system output.
Further research could focus on new system designs. The system developed in this

thesis was designed based on specific requirements and assumptions, aiming to create an
accurate, low-cost, and accessible solution with low latency. However, the requirement
for physical modifications limits the system’s applicability to objects that can be altered,
reducing its flexibility in real-world scenarios. Therefore, this foundation opens the door
to natural next steps. A first step could be eliminating the need for direct access to the
tracked object by integrating alternative sensors such as depth cameras or stereo vision
systems. Additionally, increasing the number of external sensors can enhance spatial cov-
erage and reduce occlusions. Furthermore, the algorithms can be enhanced to incorporate
simultaneous localization and mapping (SLAM), which is crucial for applications where
the environment cannot be predefined. Environment discovery not only aids in object
tracking but is also essential for achieving full bilateral teleoperation with force feedback.
This goal could be reached by employing advanced machine learning techniques, such as
convolutional neural networks for object recognition and recurrent neural networks for mo-
tion prediction. As discussed in this thesis, these sophisticated algorithms would require
more powerful computational resources, such as GPUs, to process the data without com-
promising latency. Finally, a natural last step would be for the system to fully discover
new environments, including tracking non-rigid objects.
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Chapter 8

Discussion

The making of this project has not been a straightforward path, characterized by set-
backs and changing scopes. As the project progressed, adjustments became necessary, and
although these changes presented challenges, they ultimately provided invaluable insights.
In hindsight, a comprehensive literature review before starting the project could have

significantly influenced the direction of the work. While it initially seemed time-efficient to
explore approaches through hands-on experimentation, a broader and deeper review could
have saved significant time in steering the project in better directions and knowing what
was possible or not beforehand.
This project underscored the importance of planning in incremental steps. Establishing

clear objectives for the overall project and smaller, attainable goals is crucial for effectively
achieving the primary outcome. While the project’s planning did not always proceed as
anticipated, this experience highlighted the value of structured goal-setting at both the
macro and micro levels to maintain direction throughout the development process.
The initial approach in the project involved embedding a sensor within an object to

track the object under the assumption that this would be a straightforward task. How-
ever, this part quickly proved more complex than anticipated. Setting up the electronics
and ensuring component integration required substantial time and effort, impacting the
project’s overall timeline. Further in the project, as more components had to be integ-
rated, other significant integration challenges arose. In future projects, accounting for the
complexity of integration early on and avoiding postponing it until the final stages would
be essential.
This project made use of multiple sensors and we found out later on in the project their

performance is heavily dependent on meticulous calibration. Proper sensor calibration,
followed by a validation of both the calibration process and the calibration outcome itself,
is essential. Underestimating the importance of this step led to a loss of significant time,
as issues arising from calibration inaccuracies were initially attributed to other factors. In
future projects, prioritizing thorough calibration and validation procedures would mitigate
such delays.
A virtual test setup was developed to streamline algorithm testing, including a simulation

environment and a virtual sensor. While the visualization tools of this setup proved very
helpful in identifying issues and refining algorithms, the resulting virtual sensor did not
closely resemble an actual IMU since the practicalities of an actual sensor are too complex
to implement quickly and could be a whole project on its own. Future endeavors would
benefit from using existing virtual IMU solutions or focusing only on the visualization
component. Similarly, employing the Unity game engine as a physics simulation tool
without a good understanding of its limitations resulted in challenges. It would be better
to understand the capabilities and limitations of such tools before using them in larger
parts of the project.
Throughout the project, numerous approaches and algorithms were explored. While

exploring various solutions is essential, switching between methodologies too frequently
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diverted attention from actual project goals. Several algorithms were ultimately abandoned
because they were not feasible or applicable, or initial testing showed undesirable results.
A more structured approach would involve thorough research on each algorithm before
implementation and working out the implementation to completion before redeeming them
unsuitable. This way, fewer and more accurate approaches can be determined.
Achieving minimal latency was a primary objective, yet the challenges presented by

managing latency in a complex system were not fully anticipated. Each hardware and
software layer contributed minor latencies, which compounded to impact the overall system
latency. Additionally, synchronization with time-sensitive measurements became an issue,
as even minor divergences led to system failures. This is a point to take into account in
later projects.
While these mentioned obstacles stretched our timeline, they also provided hands-on

learning experiences that were invaluable in understanding practical system development.
Ultimately, we created a robust tracking system that aligns with the project’s original goals.
Nevertheless, while our system is effective, it has limitations. Due to time constraints,
we were unable to test it within a fully operational MMT setup. However, preliminary
performance suggests it could be successful in that context. Additionally, we characterized
the system based on single-axis evaluations for position and orientation but have not
yet assessed it under more complex, multi-axis motions. Further testing with complex
movements would provide a more comprehensive understanding of the system’s behavior
in realistic MMT scenarios. We also did not measure the entire system latency from
movement to pose estimation with high accuracy. As a result, a rigorous comparison
between our final system and state-of-the-art solutions remains an opportunity for future
work.
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Chapter 9

Conclusion

Haptic bilateral teleoperations with force feedback is a research field promising to solve
many real-life problems. It will be possible to accurately and organically interact with
physical environments separated by very long distances. This application is useful in
many fields and industries and will impact the daily lives of everyday people. Certain
limitations make the realization of this technology challenging today. The main obstacle is
data transfer over long distances with minimal delay. In a model-mediated teleoperation
setting, haptic feedback is very susceptible to divergences between the remote and local
environments, even with small latencies. Therefore, it is crucial that the local model can
be updated as fast as possible. The pose of objects in the remote environment needs to
be tracked with very low latency and high accuracy.
This thesis explores the question: How can an accurate, low-latency object pose track-

ing system be set up as accessible as possible with minimal component and time costs?
We hypothesized that by leveraging specific assumptions, such as tracking in a known
environment where the object can be prepared in advance, we could create a system that
performs comparably to state-of-the-art computer vision solutions, which typically require
significant computational resources, are costly, and are complex to set up. Our solution
involves a specially designed, 3D-printed object with an embedded inertial measurement
unit (IMU) and fiducial markers on its surface. A single camera is also used as part of
the setup. We developed an algorithm that uses an extended Kalman filter (EKF) as a
foundation and effectively fuses IMU and camera data to provide accurate, low-latency
pose estimates. This system serves as a drop-in replacement for more advanced tracking
setups and enables further research in model-mediated bilateral teleoperation.
A dedicated test setup was created to evaluate the system and the designed algorithm.

The purpose of this setup is to generate a dataset containing ground truth data, which is
used to assess the accuracy and latency of the object tracking system. In this setup, the
object is mounted on a robot arm programmed to perform predefined motions, allowing
for the testing of both position and orientation tracking performance. These movements
have been recorded with a camera, resulting in a comprehensive dataset for performance
analysis.
The designed system is able to keep the absolute position tracking error below 0.2 cm

during an 8 second position experiment with a mean error value of 0.1 cm. During the
orientation tracking experiment, it is shown that the system is capable of tracking the
object orientation with a mean absolute angle tracking error of 0.5◦, and the absolute
angle error never exceeded 4◦.
Using a standard smartphone camera for accessibility introduces significant latency in

the camera measurements. Specifically, position and orientation errors were initially evalu-
ated with camera data lagging 30 ms behind the IMU measurements. To address this, the
system implements a correction and extrapolation step. Further experiments demonstrated
that the algorithm can effectively utilize camera data delayed up to 350 ms. However, a
tradeoff between correctable camera latency and estimation accuracy was observed. For
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camera latencies below 200 ms, the mean position error remained under 1 cm. With an
adjustment in algorithm parameters, delays of up to 350 ms were corrected, but the error
increased to 2.5 cm.
The system is composed of a 3D-printed object, an off-the-shelf, low-cost microcontroller

board with an IMU and networking capabilities, a smartphone camera, and a standard
computer to run the algorithm. These accessible components, when integrated, provide a
robust and cost-effective tracking solution. Combined with the performance results of the
algorithm, which demonstrate accurate pose estimation despite camera latency, we have
successfully validated our hypothesis that a low-cost system can perform comparably to
more expensive, state-of-the-art tracking solutions.
Overall, we have answered our research question by designing, implementing and testing

the object tracking system. We have confirmed our hypothesis by showing that it is possible
to create an accessible object pose tracking solution that serves as a practical and efficient
replacement for more complex, expensive tracking solutions, enabling further research in
real-time applications in haptic bilateral teleoperation with force feedback.
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Appendix A

Hardware and Device
Specifications

A.1 Computer Specifications

The technical specifications of the computer platform utilized throughout this thesis and
referred to throughout as ’the computer’, are as follows:

• CPU: Intel® Core™ i7-7700HQ CPU @ 2.80GHz × 8

• RAM: 15.5 GiB

• GPU: NVIDIA GeForce GTX 1050 Mobile

• Operating system: Ubuntu 20.04.6 LTS
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Appendix B

Parameters

B.1 Kalman Filter Parameters

This appendix specifies the numerical values of the Kalman filter parameters that were
used in the proposed algorithm during the experiments.
The initial state vector:

x0 =
[
q0 ω0 α0 p0 v0 a0 bG0 bA0

]T
. (B.1)

where,

q0 =
[
1 0 0 0

]T
, (B.2)

ω0,α0,p0,v0,a0 =
[
0 0 0

]T
, (B.3)

bG0 =
[
0.21554229 −0.2368477 −0.04746255

]T
, (B.4)

bA0 =
[
0.0090883 0.00892818 0.01125091

]T
. (B.5)

The initial error covariance matrix:

P0 =
[
0.001 ∗ I25×25

]
. (B.6)

The process noise covariance matrix:

Q =
[
diag{10−4 × 4, 0.00047× 3, 10−4 × 3, 1× 3, 0.15× 3, 300× 3, 10−9 × 6}

]
. (B.7)

The IMU measurement noise matrix:

Rn,IMU =
[
diag{10−3, 10−3, 10−2, 0.001218429, 0.001218429, 0.001218429}

]
. (B.8)

The camera measurement noise matrix:

Rn,CAM =
[
diag{10−3 × 4, 10−1 × 6}

]
. (B.9)

The IMU rotation matrix:

RCAM =


1 0 0

0 −1 0

0 0 −1

 . (B.10)
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B.2 Camera Parameters

The intrinsic camera parameters that have been obtained with the OpenCV ChArUco
calibration tool for the camera used in the experiments are as follows:

K =


8.5556992272374e+02 0.0 6.3461190199486e+02

0.0 8.5532559004904e+02 3.6655589985425e+02

0.0 0.0 1.0

 . (B.11)

The distortion coefficients are obtained as the following:

Dcoeff =



1.9810781283317741e−01

−6.5129482062079969e−01

1.2142714237224128e−04

−1.2259316902929482e−03

6.3303475732352443e−01



T

. (B.12)

Finally, the average reprojection error has been found to be: 3.7273295810922097e−01.
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