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Abstract

In this thesis, we evaluate the statistical procedure based on the similarity index proposed by Ypma and Ross
[6]. The function for the similarity index is defined as:

S(t1, t2) =
∫ t2

t1
f1(t ) f2(t )d t∫ t2

t1

[
f1(t )

]2 + [
f2(t )

]2 − f1(t ) f2(t )d t
(1)

It consists of two probability density functions, assumed to be related to the Weibull distribution. The evalu-
ated statistical test aims to verify whether an observation of censored lifetime data is compliant with a given
reference distribution. The test is compared to both the likelihood ratio test and a test using a variation of the
similarity index. The comparison between these tests is based on their power function.

First, a clear explanation of the complete statistical procedure using the similarity index is provided. Then the
observations for which the test can be used are explained further. Its application and small limitations are
shown using an example. Then, the two alternative tests are introduced. This will be followed by a theoretical
overview of the power comparison method. Finally, the simulation for the power comparison is conducted.
The power function is estimated for multiple relevant base cases along a few alternative parameter lines. It
can then be concluded that the likelihood ratio test has consistently higher power than the similarity index
test. However, the variation of the similarity index demonstrates a varying power, with instances of both
higher and lower values than the original similarity index test.
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1
Introduction

In an article in 2017 by Ypma and Ross [6] a method was proposed for quantifying the similarity between two
failure density functions in the paper ’Determining the Similarity between Observed and Expected Ageing
Behavior’. They proposed using the formula given in Equation (1.1), which will be called the similarity index
from now on.

S(t1, t2) =
∫ t2

t1
f1(t ) f2(t )d t∫ t2

t1

[
f1(t )

]2 + [
f2(t )

]2 − f1(t ) f2(t )d t
(1.1)

This similarity index takes as input two probability density functions. In the objective of the article, those are
probability density functions of distributions that model the time until a certain object fails. In this research,
the assumption is made that those distributions are Weibull distributions. This is a common assumption for
the lifetimes of insulated electrical systems, which is the application proposed in the paper.

The authors aim to utilize the similarity index "to quantify the confidence that the observed failure distribu-
tion agrees with the prescribed (expected) failure distribution." They propose a statistical procedure based on
the similarity index to achieve this goal. This procedure will be evaluated in this research. The primary objec-
tive is to compare the procedure with other appropriate statistical tests and determine whether the similarity
index-based statistical procedure is the optimal choice.

In Chapter 2 the similarity index and the corresponding statistical test will be explained thoroughly. First,
a formal definition of both the test and the input data for which it can be used will be given. This detailed
information allows for a more insightful analysis of the similarity index and the values it attains. The chapter
further explores how the similarity index is employed in the statistical procedure and outlines the specific
steps involved. An example presented in the original paper by Ypma and Ross [6] is utilized to illustrate these
concepts, while also discussing some limitations associated with the similarity index test.

Once a solid understanding of the similarity index test is established, Chapter 3 outlines the theoretical plan
for comparison. Two alternative approaches, namely the likelihood ratio test and a test based on a variant of
the similarity index, are introduced. The variant of the similarity index might be a solution for the discontinu-
ities observed when using the similarity index. Alongside presenting these alternatives, the chapter provides
a theoretical explanation of the comparison methodology: a power comparison between the three tests.

Since the power comparison can only be done through simulation, Chapter 4 focuses on conducting simula-
tions. Multiple base cases are selected to reduce computational complexity. The power is calculated for the
three tests in the base cases, considering various alternative parameter directions. Special emphasis is placed
on the most important cases, relevant for verifying the compliance of breakdown data. Based on the results,
conclusions are drawn regarding the similarity index-based test in comparison to its alternatives.

Chapter 5 will provide the concluding remarks of this research, along with discussing topics for further explo-
ration and offering recommendations.

1





2
Ypma-Ross similarity index procedure

To make informed choices regarding the comparison between the statistical test based on the similarity index
proposed by Ypma and Ross [6] and other statistical tests, it is important to have a clear understanding of the
specific procedures and the intended applications described by the authors. In this chapter, that insight and a
thorough explanation of the whole procedure will be provided. Afterwards, the finding of this chapter will be
used for some recommendations for the comparison plan which is constructed and executed in the following
chapters.

The statistical test, based on the procedure developed by Ypma and Ross, will be introduced in Section 2.1.
This section will clarify the type of data for which the test can be utilized and its intended purpose. It will be
followed by an analysis of the similarity index formula in Section 2.2, considering its important role in the test.
The proposed methodology for employing the test, including the use of estimations and simulations, will be
fully described in Section 2.3. Subsequently, an illustrative example will be provided in Section 2.4, demon-
strating the application of the method. Additionally, this example will highlight certain practical limitations
associated with the use of the test.

2.1. Introduction to the statistical test

The particular scenario that served as the basis for the article by Ypma and Ross [6] was the application of
the similarity index as seen in Equation (1.1) to compare two ’failure density distributions’. This term is used
in the article to refer to a family of probability distributions commonly used when analyzing the lifetimes of
products. More specifically, they want to determine whether such an observation of lifetimes is coming from
a certain reference distribution or not. Before providing a formal definition of the statistical test based on this
objective, it is important to develop an understanding of this particular type of data for which Ypma and Ross
want to use the similarity index.

2.1.1. Censored failure times

There are multiple probability distributions that are associated with the lifetimes of products. Such a distribu-
tion could even be a complicated mix of known distributions, as mentioned in Ypma and Ross [6]. However,
in this thesis the assumption is made that the data is a realization of a sample of random variables following
a Weibull distribution. This is also in correspondence with the examples used in the article by Ypma and
Ross. The probability density function and the cumulative distribution function of a Weibull distribution are
shown in Equation (2.1) and (2.2). The parameter α > 0 is the scale parameter, the parameter β > 0 is the

3



4 2. Ypma-Ross similarity index procedure

shape parameter and the variable t > 0 represents the time-to-failure.

f (t ) = β

α

(
t

α

)β−1

exp

(
−

(
t

α

)β)
(2.1)

F (t ) = 1−exp

(
−

(
t

α

)β)
(2.2)

The data used for conducting the test will be realizations of an independent and identically distributed sam-
ple from the Weibull (α,β) distribution. However, since the test’s intended use in Ypma and Ross [6] also
includes conducting the test before all lifetimes are known, this data could be censored. This means that the
lifetime is not yet known for a part of the sample.

There are several types of censored data. An important distinction for censored data is type I and type II cen-
soring. In type II censoring the lifetime of the first r components is known, where r is predefined. In type I
censoring the lifetime is known for all components which failed before a certain time tc , where tc is prede-
fined. In this thesis, in line with the procedure of Ypma and Ross, type I censored data will be considered.
More information on both types can be found in section 8.3 of the Weibull handbook by Rinne [4].

2.1.2. Formal definition

With the previous subsection in mind, it is now possible to state a formal definition. The definition below will
be used in the remaining part of this research when evaluating the statistical use of the similarity index.

Assume that lifetimes x1, x2, ..., xn are realizations of an independent and identically distributed sample with a
Weibull (α,β) distribution and let θ = (α,β). The lifetimes are censored with type I censoring at time tc . More-
over, let θ0 = (α0,β0) represent the parameters of the reference distribution, which is a Weibull distribution as
well. This results in the following null hypothesis (Equation (2.3)) and alternative hypothesis (Equation (2.4)):

H0 : θ = θ0 (2.3)

H1 : θ ̸= θ0 (2.4)

The test statistic is the similarity index, S, as defined in Equation (1.1). The similarity index has values in [0,1]
and is analyzed further in Section 2.2. Let K be a critical region for this test statistic of the following form

K = {S ≤ cγ} (2.5)

such that

Pθ0 (S ∈ K ) = γ (2.6)

The parameter γ is the significance level. Whenever the calculated value of the similarity index based on the
observed data falls within the range of K , the null hypothesis is rejected. It implies that if the null hypoth-
esis would be true, the probability that the value of the similarity index would be less than or equal to that
particular value is less than or equal to γ.

2.2. The similarity index formula
Before delving into the specific procedure employed for conducting the statistical test, the central compo-
nent of the test is analyzed more thoroughly: the similarity index. While the general form was presented in
Equation (1.1), it is now possible to introduce the more specific form, which will be used in the statistical test.

Let f1(t ) and f2(t ) represent two probability density functions for the Weibull distribution with parameters
(α1,β1) and (α2,β2), respectively. The similarity index is expressed as follows:

S(0, tc ) =
∫ tc

0 f1(t ) f2(t )d t∫ tc
0

[
f1(t )

]2 + [
f2(t )

]2 − f1(t ) f2(t )d t
(2.7)

The motivation behind choosing this particular interval of integration, (0, tc ), instead of the more general
(t1, t2) is to assess the similarity of the probability density functions across the entire domain where failures
have been observed. This is in correspondence to the method in Ypma and Ross [6].



2.2. The similarity index formula 5

2.2.1. Range of the similarity index

The similarity index takes on values in [0,1]. This can be proved by rewriting Equation (2.7) into the following:

S(0, tc ) =
∫ tc

0 f1(t ) f2(t )d t∫ tc
0 f1(t ) f2(t )d t +∫ tc

0

[
f1(t )− f2(t )

]2 d t
(2.8)

Since f1(t ) and f2(t ) are both probability density functions, they both have non-negative function values.
Therefore, their product, f1(t ) f2(t ), will have non-negative values as well. From this, it can be concluded that
the integrals in Equation (2.8) are all non-negative. Thus the following holds:∫ tc

0
f1(t ) f2(t )d t +

∫ tc

0

[
f1(t )− f2(t )

]2 d t ≥
∫ tc

0
f1(t ) f2(t )d t ≥ 0 (2.9a)

(2.9b)

It follows that Equation (2.8), and therefore the similarity index, has values in [0,1]. Also, S(0, tc ) = 1 if and
only if f1(t ) = f2(t ) for t ∈ (0, tc ).

2.2.2. Analysis of the integrals

The convergence of the integrals in the similarity index is not guaranteed for all pairs of Weibull probability
density functions. To assess the impact of this on the value of the similarity index, a proper look into the
integrals is needed. The different integrals in Equation (2.7) can be expanded as follows:∫ tc

0
f1(t ) f2(t )d t = β1β2

α
β1
1 α

β2
2

∫ tc

0
tβ1+β2−2 exp

(
−

(
t

α1

)β1

−
(

t

α2

)β2
)

d t (2.10a)

∫ tc

0

[
f1(t )

]2 d t = β2
1

α
2β1
1

∫ tc

0
t 2β1−2 exp

(
−2

(
t

α1

)β1
)

d t (2.10b)

∫ tc

0

[
f2(t )

]2 d t = β2
2

α
2β2
2

∫ tc

0
t 2β2−2 exp

(
−2

(
t

α2

)β2
)

d t (2.10c)

In general, no closed expression exists for those integral. So to find out when the integrals might diverge it
is helpful to find an upper or lower bound. An integral becomes an improper integral which might diverge
if its function values go to infinity within the domain of the interval. In Equations (2.10a) up to (2.10c) the
exponential function takes on values in (0,1], due to the negative power. So the parts that might go to infinity
on the domain of the integral and the corresponding constraints for this are the following:

tβ1+β2−2 if β1 +β2 < 2 (2.11a)

t 2β1−2 if β1 < 1 (2.11b)

t 2β2−2 if β2 < 1 (2.11c)

If none of the conditions in the equations above are satisfied, then all integrals are proper and thus finite. To
determine whether the resulting integrals are convergent or divergent improper integrals, it can be useful to
look at the integral in Equation (2.12). The functions over which the integrals are taken are all, up to some
constant, bounded above and below by an integral of this form.

lim
ϵ→0

∫ tc

ϵ
t p d t = lim

ϵ→0

1

p +1

(
t p+1

c −ϵp+1
)

(2.12)

This limit is finite if and only if p +1 > 0. Thus the integral on the left-hand side is in its limit a convergent
(improper) integral if and only if p > −1. This information can be used to make a distinction between three
possible situations for the integrals of the similarity index when at least one of the conditions in Equations
(2.11a) up to (2.11c) is met.
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case 1: all convergent integrals In the case that β1 +β2 < 2, but both β1 > 1
2 and β2 > 1

2 , all the integrals in
the similarity index will be convergent improper integrals.

case 2: one divergent integral Whenever either β1 ≤ 1
2 or β2 ≤ 1

2 , but β1 +β2 > 1, the integral in Equation
(2.10a) still converges. However, the integral in either Equation (2.10b) or Equation (2.10c) will then diverge.
This results in a similarity index value of 0 as it leads to an infinite value in the denominator and a finite value
in the numerator. This results in a discontinuity of the similarity index function.

case 3: at least two divergent integrals In this case, β1 +β2 ≤ 1, resulting in both a diverging integral in
Equation (2.10a) as in Equation (2.10b) or (2.10c). As the denominator in the similarity index will always
hold a more dominant diverging term, the value will still be 0. However, this value of 0 results again in a
discontinuity of the similarity index.

The practical implications of the discontinuities in cases 2 and 3 will be discussed further in the example
introduced in Section 2.4.

2.3. The procedure

To be able to employ the statistical test as described in Section 2.1.2, a few steps have to be taken. Since these
steps partly depend on estimation methods, the exact choices made by Ypma and Ross [6] will be used in this
thesis. Below an overview of the procedure is given, based on the overview in [6]. Some steps might require
extra information, these will be explained more thoroughly in the subsequent subsections.

Let the lifetimes x1, x2, ..., xn be a realization of an i.i.d. sample of size n following a Weibull distribution.
Assume that the true parameters of this Weibull distribution are θ = (α,β). Let θ0 = (α0,β0) denote the pa-
rameters of the reference distribution. Let tc denote the chosen censoring time. To form a critical region K as
defined in Equation (2.5), the cumulative distribution function of the test statistic under the null hypothesis
is needed. Since this distribution is not known, it has to be estimated. This can be done by simulation and is
explained further in Subsection 2.3.2.

When K is computed, the only thing left to do is to calculate the value of the test statistic, S, based on the ob-
servation and check whether S ∈ K or not. For the computation of the similarity index in Equation (2.7) two
probability density functions are needed. Let f (t ) and g (t ) denote those functions. The function f (t ) rep-
resents the probability density function of the reference distribution, a Weibull distribution with parameters
(α0,β0). The function g (t ) is the probability density function based on the sample. Since the true parame-
ters of this distribution are unknown, they need to be estimated for g (t ). The procedure for the estimation
method used by Ypma and Ross [6] is explained in Subsection 2.3.1. After this estimation, S can be calculated
and a conclusion of either rejecting or not rejecting the null hypothesis can be drawn.

2.3.1. Ordinary Least Squares estimation on the order statistics

The method used by Ypma and Ross is based on the method described in Montanari et al. [2] which is the
IEEE standard for the statistical analysis of electrical insulation breakdown data, the type of data for which
the similarity index would be used. This standard uses an ordinary least squared estimation on the order
statistics of the data and can be used for type I censored data like the observation in the constructed test. The
following paragraphs contain a complete description of this method, based on the instructions in Montanari
et al. [2].

In order to apply the ordinary least squares model, the data is initially transformed using a method similar
to the one used in constructing QQ-plots. The initial step involves arranging the data in ascending order
of lifetimes, resulting in t(1), ..., t(n). Equation (2.13) can then be employed to generate a sequence of values
that can be regarded as an approximation for the cumulative distribution of the data. This approximation is
validated due to the resemblance between the expected value of F (xi ) and F (i ,n).

F (i ,n) ≃ i −0.44

n +0.25
(2.13)

In the case of the type I censored data that is used, the F (i ,n) are simply only calculated for the lifetimes
which are known at time tc . The unknown lifetimes are omitted. Let the number of failure times lower than
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or equal to tc be denoted by r . Then there are n − r unknown failure times. The value F (i ,n) can then be
calculated for the first r lifetimes of the ordered observation.

It is thus expected that the values for F (i ,n) are similar to the true distribution function values F (ti ). By
rewriting both with the following steps, an equation can be found which can be useful for the ordinary least
squares method:

F (i ,n) ≃ 1−exp

(
−

(
ti

α

)β)
(2.14a)

ln(1−F (i ,n)) ≃−
(

ti

α

)β
(2.14b)

ln(− ln(1−F (i ,n))) ≃β(ln(ti )− ln(α)) (2.14c)

ln(ti ) ≃ 1

β
ln(− ln(1−F (i ,n)))+ ln(α) (2.14d)

By substituting Equation (2.14d) with

yi = ln(ti ) (2.15a)

xi = ln(− ln(1−F (i ,n))) (2.15b)

the following equation arises with ϵi representing the difference:

yi = 1

β
xi + ln(α)+ϵi (2.16)

Let X be an r x 2 matrix with Xi 1 = xi in the first column and only ones in the second column. Let vector Y
be a vector of length r with Yi = ln(ti ). Then Equation (2.16) can be put together for all i ∈ 1,2, ...,r with the
following equation:

Y =
[ 1

β

ln(α)

]
X +ϵ (2.17)

Finding a solution with the ordinary least squares method means essentially minimizing the residual sum of
squares. The estimations that minimize this are given by the following set of equations:

1

β̂
= ((X T X )−1X T Y )1 (2.18a)

ln(α̂) = ((X T X )−1X T Y )2 (2.18b)

From those equations α̂ and β̂ can be derived. Since the general assumptions for the ordinary least squares
method are not met, (α̂, β̂) will not necessarily be the estimations with the smallest variance and they won’t
be unbiased. However, they can still be used.

There is one condition for using this estimation process on the censored data: the number of observed fail-
ures before time tc should be larger than 1. If r = 1, the 2 x 2 matrix X T X will have a determinant of 0 since
the columns and rows are then linearly dependent. The resulting matrix will not be invertible which makes
it impossible to execute the estimation procedure. It follows that for the estimation procedure to work, it is
necessary to have r ≥ 2.

2.3.2. Computing the empirical distribution

It was mentioned before that the cumulative distribution function of the test statistic under the null hypoth-
esis has to be estimated. This can, as suggested in Ypma and Ross [6], be done by simulating the test statistic
under the null hypothesis with a Monte Carlo simulation and then using the empirical distribution function
of those simulated values as an estimation. The empirical distribution function is defined as follows:

F̂SI M (s) = 1

m

m∑
i=1

1{Si≤s} (2.19)
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The indicator function 1{Si≤s} has value 1 if and only if the i ’th simulated value of the similarity index, Si , is
smaller than or equal to s. If not, the value of the indicator function is 0. The sum of all simulated values is
taken and then divided by the total amount of simulated values. When using a very large simulation size m,
the empirical distribution function can be used as an estimation for P (S ≤ s). In this equation, S represents
a random variable with the distribution of the similarity index under the null hypothesis and s is a particular
similarity index value.

The process for computing this empirical distribution function for the similarity index under the null hypoth-
esis with θ0 = (α0,β0) and an realization of a sample of size n censored at time tc is written down below:

1. Generate m samples of failure times of size n, using the reference distribution Weibull (α0,β0).

2. Estimate for each sample a pair of parameters α̂ and β̂with the same method as provided in Subsection
2.3.1.

3. Calculate the value of the similarity index for each sample with the estimated parameters.

4. Compute the empirical distribution function F̂SI M (s) as in Equation (2.19).

In Ypma and Ross [6] it is suggested to use m = 16000 so for the completeness of this research that number
will be used from now on too.

To find the critical region K such that Pθ0 (S ∈ K ) ≤ γ, the inverse of the empirical distribution function in
Equation (2.19) can now be used. The solution is provided in the next equation:

cγ = F̂−1
SI M (γ) (2.20)

Now all the different parts of the statistical procedure are fully explained, which makes it possible to apply
the procedure to an example.

2.4. Example

To find out more about certain practical limitations or problems that can arise when using the statistical
procedure described in this chapter, an example will be shown. The data and chosen cases used for this
example are the same as in Example II in Ypma and Ross [6]. The data can be found in Appendix A. The
following is provided:

• The sample consist of n = 87 data points.

• The reference parameters, α0 and β0 are respectively equal to 475 and 1.2.

• The data is tested against the null hypothesis at tc ∈ {40,92,175,4750}.

• A significance level of γ= 0.1 is used.

All the computations are done in R.

2.4.1. Method

For the computation of the empirical distribution the complete procedure as described in Subsection 2.3.2 is
executed per value for tc . The first step is creating 16000 samples of size n from a Weibull (475,1.2). Then the
sample is censored on time tc . The estimated parameters can then be calculated with the method in Equation
(2.18). In some cases, the ordinary least squares method can not be used due to fewer than two observations
that failed before time tc . The procedure can not be executed when this is the case, so those samples must be
omitted from the simulation. In Subsection 2.4.2 the number of samples that were discarded because of this
reason will be stated and evaluated.
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Now for those 16000 pairs of (α̂, β̂) per tc the similarity index can be calculated. In case this was not possible,
the sample was omitted and not replaced. First the combination of β0 and β̂ should be checked on the condi-
tions in Subsection 2.2.2. In the case of a divergent integral in either the numerator or denominator, the value
of the similarity index is 0. In all other cases, the value of the similarity index is calculated with a numerical
approximation of the integrals. For this thesis, the standard R function integrate was used. The empirical
distribution of the test statistic per tc can then be calculated with the help of Equation (2.19). The empirical
distribution function will be plotted, to obtain a similar figure as Figure 4 in Ypma and Ross [6].

Table II in the article will also be replicated with the values found through the simulation. That table displays
two additional values which were not previously discussed: the p-value of the data, estimated through the
empirical distribution, and the value of c1−γ which can be found in a similar way as cγ in Equation (2.20).

2.4.2. Results

In Figure 2.1 the empirical distribution of the similarity index under the null hypothesis, θ0 = (475,1.2) is plot-
ted for multiple values of tc . It can be seen that the higher the value of tc , which results in more observations
from which the failure time is known, the higher the p-value of the observed lifetimes (the dotted lines).

Figure 2.1: Empirical distribution of S(0, tc )

This figure should be similar to Figure 4 in Ypma and Ross [6] since the same data and procedures are used.
However, there is a slight difference in the line representing the empirical distribution of the test statistic
when tc = 40. In Figure 2.1 this line makes a jump at 0, whereas in Figure 4 in the article, this jump is not seen.

tc α̂ β̂ S(0, tc ) Fs (S) S10% S90%

40 69.4 4.34 0.311 0.18 0.12 0.938
92 190.1 2.06 0.666 0.18 0.56 0.977

175 301.9 1.60 0.870 0.28 0.76 0.989
4750 470.8 1.23 0.999 0.96 0.95 0.998

Table 2.1: Multiple findings when executing the statistical test based on the similarity index on a data sample
of size 87.

The differences can be seen even better when comparing Table 2.1 to Table II in Ypma and Ross [6]. The value
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of Fs (S) at tc = 40, which is in Table 2.1 equal to 0.12, is in the table in the article equal to 0.29. Apart from
this difference between the two tables, which also leads to different p-values, the other values in the tables do
correspond. There are two noteworthy distinctions between tc = 40 and the other tc values which might have
influenced those different values, both explained below.

Divergent integrals: At tc = 40, there were 599 samples in the simulation for which β̂ turned out to be smaller
than 0.5, resulting in a diverging integral in the denominator of the similarity index as explained in Subsection
2.2.2. In Ypma and Ross [6] it is suggested that an alternative domain for the integral could be selected in this
case. This alternative domain would be of the form (ϵ, tc ) with ϵ small. This could be a reason for the different
values at tc = 40 between Table 2.1 and the table in the article. However, it is decided for this thesis to not
use the proposed workaround for the discontinuity. The reason for this decision is that choosing a domain of
this form when an integral diverges, may introduce fluctuations between different cases, thereby making the
evaluation and comparison of the similarity index less feasible.

The problem might be even more relevant when the reference distribution has a smaller β0 than 1.2. When
for example the null hypothesis results in over 10% of the simulated samples having an estimated parameter
value smaller than 0.5, the null hypothesis would be rejected only if β̂ of the data is also smaller than 0.5. The
test would in such a case not be able to reject realizations from a Weibull distribution with a very high value
for β. It would thus be interesting to see whether a variant of the similarity index which does not exhibit this
behavior, could be an alternative.

Insufficient amount of failures: The other deviation between tc = 40 and the other censoring times is that
there was a significant amount of samples for which the parameters α̂ and β̂ could not be estimated. This
was the case for 987 of the 16000 samples. This means that nearly 1

16 of the simulations had to be discarded
because they could not be used. It is thus advisable to not use the similarity index when the probability of
having to discard a sample due to having less than 2 failures before tc is so high. In this case, a larger time
interval could be considered to make a more proper judgment. At tc = 92 for example, there was only one
sample that had to be omitted.

2.5. Conclusion

The statistical test using the similarity index, as proposed in Ypma and Ross [6], has now been fully described.
When searching for alternatives to compare to the statistical test described in this chapter, it is necessary to
look at tests that can deal with censored data and the assumption of a Weibull distribution. Additionally,
it would be interesting to investigate whether alternative distance measures which do not have the same
discontinuities as the similarity index can be found, as such discontinuities can yield undesired outcomes as
seen in Section 2.4. These considerations are taken into account for the selection of alternative tests in the
next chapter.



3
Analysis for comparison

To thoroughly evaluate the use of the similarity index as part of a statistical test it is essential to look at two
key components: a framework for quantifying the quality of a statistical test and suitable alternatives for the
similarity index statistical test. The term ’suitable’ might lack specificity. Therefore it is important to make
some sensible choices when selecting alternatives. In this chapter, both aspects will be discussed.

In Section 3.1 and Section 3.2 two alternatives will be presented: the likelihood ratio test and a variant of
the similarity index test. These are chosen based on their capabilities to decide on the same null hypothesis
with censored data as presented in Section 2.1. Apart from those requirements, the motivation for these
tests and a thorough explanation of their use will be given as well. Finally, in Section 3.3, the method of
comparison utilized in this research, the power comparison method, will be introduced. The theoretical
meaning of this method, as well as its computational limitations, will be discussed. This discussion will lead
to recommendations for the simulation study in Chapter 4.

3.1. Likelihood ratio test

When considering alternative tests for the given case, there are multiple options to explore. Given that the
similarity index relies on measuring the similarity or distance between probability density functions, it is
natural to explore alternative test statistics within this category. For instance, methods based on the Total
Variation or Hellinger distance, as mentioned in Cha [1] (which is also referenced by Ypma and Ross [6]),
could be considered. However, it is also interesting to explore a test that fundamentally differs in its approach,
not relying on distance measures between probability density functions. This led to the consideration of the
likelihood ratio test, which is a widely used and applicable test. In Rinne [4], it is mentioned as a suitable test
for various hypotheses regarding Weibull parameters, although it emphasizes the need for enough data to
ensure reliability. Nonetheless, due to the test’s widespread use and its applicability in censored Weibull data
scenarios, it is chosen as one of the alternatives in this research. In this section, the approach of the likelihood
ratio test will be explained.

3.1.1. Test statistic

The test statistic for the Likelihood Ratio Test is given in Equation (3.1):

λ (X ) = supθ∈Θ pθ (X )

supθ0∈Θ0
pθ0 (X )

(3.1)

In this research, the null hypothesis space is defined asΘ0 = {θ0}, with θ0 = (α0,β0). Consequently, the supre-
mum in the denominator of Equation (3.1) can be omitted. The parameter spaceΘ for this research is defined
as R≥0 ×R≥0.

11
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The function pθ (X ) is the likelihood function, which is defined to be the probability density function of the
observation. Since it was assumed previously in Subsection 2.1.1 that lifetimes x1, x2, ..., xn are realizations
of an independent, identically distributed sample from a Weibull distribution with parameter pair θ = (α,β),
this density function can be described as follows:

pθ (X ) =
n∏

i=1

β

α

( xi

α

)β−1
exp

(
−

( xi

α

)β)
(3.2)

However, since time censoring is used, a part of this equation needs to be written down differently. In Rinne
[4], it is suggested for observations that are singly censored on the right at tc to include those observations as
the probability that the time-to-failure is higher than tc :

1−F (tc ) = exp

(
−

(
tc

α

)β)
(3.3)

This results in the likelihood function shown in Equation (3.4), where the number of failed observations
within time interval tc is denoted by r .

pθ (X ) =
r∏

i=1

β

α

( xi

α

)β−1
exp

(
−

( xi

α

)β) n∏
j=r+1

exp

(
−

(
tc

α

)β)
(3.4)

Equation (3.4) provides a means to compute the likelihood statistic. However, to calculate the numerator of
Equation (3.1), the parameter pair (α,β) must be chosen from Θ in such a way that the likelihood equation
given in (3.4) is maximized. This process aligns with a maximum likelihood estimation for α and β. The
methodology for conducting this estimation will be outlined in the next subsection.

3.1.2. Maximum likelihood estimation

As usual, the maximum likelihood estimators can be found by finding the optimum of the log-likelihood
function. This function, derived by taking the log of the likelihood function in Equation (3.4), is defined as
follows:

L (α,β) = r [ln(β)−β ln(α)]+ (β−1)
r∑

i=1
[ln(xi )]−α−β

[
r∑

i=1
xβi + (n − r )tβc

]
(3.5)

The approach used for finding the optimum follows the methodology outlined in Chapter 11.6.1.1 of Rinne
[4]. It is worth noting that the equations in the cited reference are slightly different as they are based on type
II censoring. The distinction is that the value of xr in the book is replaced by tc in this research, in correspon-
dence with type I censoring. However, this alteration does not introduce any changes in the derivation and
approximations methods, as it merely involves a constant factor change.

Equation (3.5) can be partially differentiated. This results in two separate equations, which give the maximum
likelihood estimators when equalized to 0. Those derivations are omitted here but can be found in Rinne [4].
Substitution leads to Equation (3.6) for which the solution β̂ can be found. With this first estimation, the
solution can be found for α̂ as seen in Equation (3.7).

0 = 1

β
+ 1

r

r∑
i=1

ln xi −
∑r

i=1 xβi ln xi + (n − r )tβc l ntc∑r
i=1 xβi + (n − r )tβc

(3.6)

α̂=
∑r

i=1 xβ̂i + (n − r )t β̂c
r


1
β̂

(3.7)
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The solution β̂ for Equation (3.6) can not be found analytically, but is easily done with a Newton-Rhapson
method. There is again the requirement that r ≥ 2. There are multiple variants available, one can be found in
Rinne [4] in Chapter 11.6.1.1.

3.1.3. Overview of the test

To summarize all the steps that need to be taken when using the likelihood ratio test as an alternative, an
overview is given in this subsection.

The first step is to prepare the data like it was done when using the similarity index. This includes ordering
the lifetimes that are smaller than tc as x(1), ..., x(r ) and writing down the number of lifetimes higher than tc by
n − r . With those values, estimations α̂ and β̂ can be calculated with the use of Equations (3.7) and (3.6) and
a Newton-Rhapson approach. By filling in those estimates in Equation (3.1), using the function in Equation
(3.4), the test statistic value can then be calculated.

The subsequent step involves determining the distribution of the test statistic under the null hypothesis.
While the distribution of the likelihood equation is known when an adequate number of data points are
available, this is not always the case in the proposed applications of the similarity index in Ypma and Ross [6].
Consequently, when using this test as an alternative to the similarity index test, the cumulative distribution
function has to be estimated. The procedure for this estimation remains unchanged from what was described
in Subsection 2.3.2, with the exception that the similarity index is replaced by the likelihood ratio statistic.

There is however one crucial difference in calculating the critical region for the likelihood ratio statistic. This
region is defined as

K = {L ≥ dcγ } (3.8)

where L represents the likelihood ratio statistic and K is determined such that the following holds:

Pθ0 (L ∈ K ) ≤ γ (3.9)

The reason for this different representation of the critical region is that the range of the likelihood ratio statis-
tic is [1,∞] and its value is going to be larger whenever the maximum likelihood estimates deviate further
from the reference parameters. It is thus wanted to reject the null hypothesis whenever L is large, resulting in
the given definition for K .

3.2. Variant of the similarity index
Opposed to a more established method like the likelihood ratio test, it is also interesting to see if a more
similar method to the one presented in Chapter 2, but then without discontinuities, will lead to the same or
even better quality. The natural variant that arises is presented in Equation (3.10), where f1(t ) and f2(t ) are
the same as described in Equation (2.7):

Svar (0, tc ) =
∫ tc

0

√
f1(t ) f2(t )d t∫ tc

0 f1(t )+ f2(t )−√
f1(t ) f2(t )d t

(3.10)

The reasoning in the first part of Subsection 2.2.2 still applies to this equation, which means that the values
will again range from 0 to 1 with the latter if and only if f1(t ) = f2(t ) for t ∈ (0, tc ). However, unlike the similarity
index, where diverging integrals resulted in a discontinuity, this alternative does not exhibit such issues. This
can be seen by rewriting Equation (2.10a) up to Equation (2.10c) for this variant of the similarity index. The
results are: ∫ tc

0

√
f1(t ) f2(t )d t =

√√√√ β1β2

α
β1
1 α

β2
2

∫ tc

0
t
β1+β2

2 −1 exp

(
−1

2

(
t

α1

)β1

− 1

2

(
t

α2

)β2
)

d t (3.11a)

∫ tc

0
f1(t )d t = β1

α
β1
1

∫ tc

0
tβ1−1 exp

(
−

(
t

α1

)β1
)

d t (3.11b)

∫ tc

0
f2(t )d t = β2

α
β2
2

∫ tc

0
tβ2−1 exp

(
−

(
t

α2

)β2
)

d t (3.11c)
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Following the same reasoning as described in Subsection 2.2.2, it can now be easily seen that there are no
diverging integrals since the power of t in those integrals will never be smaller than or equal to −1. Since
all integrals are now convergent, the function has no discontinuities. As a result, it offers a more robust and
consistent measure that can be utilized effectively in various scenarios.

As this modification introduces only minor adjustments to the calculation of the test statistic in the original
similarity index test, the entire procedure outlined in Section 2.3 can be applied and replicated for this test.
The only necessary alteration lies in the computation of the similarity index itself.

3.3. Power comparison

Having selected two appropriate alternatives, the next step is determining the most appropriate method for
comparing their performance. When two statistical tests are conducted at the same significance level, it be-
comes inadequate to compare them based on a situation corresponding to the null hypothesis. However, it is
a possibility to look at the performance of the test when the true parameters of the sample do not correspond
to the null hypothesis. By examining the power function under the alternative parameter set Θ1 = Θ\{θ0},
it becomes possible to indicate the test with the highest power. Therefore, in this thesis, the comparison of
the three selected tests will be based on their power functions, allowing for a meaningful and informative
evaluation of their respective capabilities.

3.3.1. Power function

The power function for a statistical test with critical region K for test statistic T can be found in Equation
(3.12) and corresponds to the probability that a realization x of a sample with distribution parameters θ is
rejected.

π(θ;K ) =P (T (x) ∈ K ) (3.12)

An ideal scenario would involve obtaining an analytical solution for the power function across all parameter
values θ ̸= (α0,β0) and comparing these values among different tests. However, for the tests chosen in this
thesis, the exact distribution of the test statistic remains unknown even when the true data parameters θ
are provided. Consequently, a simulation-based approach becomes necessary, similar to the methodology
employed in estimating the empirical distribution of the test statistic under the null hypothesis.

A simulation-based methodology can be implemented by generating k samples of a Weibull distribution with
parameters set to the alternative pair θ1 = (α1,β1) where θ1 ̸= θ0. By conducting the test on each sample and
calculating the ratio of rejected samples to the total number of samples m, an estimate of the power can
be obtained. Subsequently, the power estimate can be compared to that of other tests, employing the same
simulation-based approach for all tests. Through this comparative analysis, the most powerful test for when
the true parameters of the observation equal θ1 can be identified within the selected set of tests.

3.3.2. Limitations

One potential limitation of a power comparison is the computational complexity. For a complete compari-
son between the tests, the power function would need to be calculated for every pair of reference parameters
(α0,β0). The complete power function consists of the power for every distinct pair of alternative parameters
(α1,β1). Moreover, considering that the tests may also exhibit varying performance under different censor-
ing times tc , incorporating this additional parameter into the power function would result in an even greater
amount of simulation work. This would be impracticable. Thus, to obtain an overview of the power differ-
ences between the tests, a selection process must be employed to create a balance in computational work
and the additional information it provides. It is advisable to select a few different alternative parameter pairs
and a small set of censoring times and repeat this setup for multiple null hypotheses. This could still give an
insight into the outline of the power function but can be computed in a reasonable amount of time.

Another potential limitation is that the comparison of power may not always yield a definitive conclusion.
One test may perform better in certain regions of the alternative parameter domain, while another test per-
forms better in different regions. It can thus be helpful to identify which parts of the domain are particularly
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relevant in this research. By identifying and emphasizing the most significant regions, a more nuanced un-
derstanding of the performance of the similarity index test compared to the alternatives can be achieved.

3.4. Conclusion

In conclusion, this chapter focused on how to create a comparison between the statistical test based on the
similarity index and other alternative tests. The chosen alternatives are the well-known likelihood ratio test
and a variant of the similarity index as proposed in Equation (3.10). Both can deal with the censored Weibull
data for which the similarity index is initially proposed.

Additionally, this chapter introduced the concept of computing the power of the tests to compare their per-
formance. Although a great way to compare the different tests, there should be a careful selection of the
parameters for which the power is calculated to avoid too much computational effort. In Chapter 4 a relevant
selection of parameters will be presented, along with the outcome of the simulation process based on this
selection.





4
Simulation

Taking into account the content of the last two chapters, it is now finally possible to develop a simulation
that can provide more insights into the effectiveness of the similarity index as a test statistic through a power
comparison. Given that Chapter 3 mentioned the time-consuming nature of computing the entire power
function, this chapter will focus on both carefully selecting the best scenarios for simulation and conducting
the actual simulations.

In Section 4.1 six base cases of fixed parameters are established which belong to two distinct null hypotheses.
The reasoning behind the chosen parameters will be shown. For those six base cases, an estimation of the
power function will be made. Since it would be too time-consuming to estimate the complete power function,
it will be estimated along a few 1-dimensional directions in the 2-dimensional parameter space Θ. Those
directions will be presented along with a method to choose a few points along those directions consistently for
the estimation. Then the practical relevance of these directions concerning the application of the similarity
index will be thoroughly explained, establishing a clear focus for evaluating the results. The results will be
presented in Section 4.3 through separate graphs. Some interesting cases will be highlighted, leading to a
conclusion on the quality of the similarity index in terms of power.

4.1. Base cases

To facilitate a meaningful power comparison, a set of base cases is chosen for which the power function
will be estimated. The selection of parameters for those base cases is based on two criteria: alignment with
the scenarios for which the similarity index is intended to be utilized, as described in Ypma and Ross [6],
and practical considerations for conducting the power comparison. Below is a concise summary of all the
parameters for a base case:

1. Parameter pair θ0 for the null hypothesis

2. A censoring time tc

3. The sample size n

4. The significance level γ

5. The size of the Monte Carlo simulation m

The choice for the parameter pairs for the null hypotheses, number 1, will be thoroughly explained in Sub-
section 4.1.1, with a focus on the practical context in which the similarity index was introduced in Ypma and
Ross [6]. The values of the other parameters, which will mostly remain constant throughout the base cases,
will be determined in Subsection 4.1.2.

17
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4.1.1. Relevant null hypotheses

The selection of parameters α0 and β0 for the reference distribution in the base cases should be in alignment
with real-life scenarios for which the test based on the similarity index could be applicable. It is chosen to
consider values that reflect the characteristics of the intended applications described in Ypma and Ross [6].
There, the similarity index was proposed to be used "to quantify the similarity between observed and refer-
ence breakdown behavior". For the comparison, it is thus interesting to calculate the power with reference
distributions that are likely to be found in this field of breakdown behavior.

To get more insight into the parameters of the Weibull distribution before making the actual choices, a small
analysis is given below. Recall that the density function of the Weibull distribution is given by:

f (t ) = β

α

(
t

α

)β−1

exp

(
−

(
t

α

)β)
(4.1)

The parameter α, also known as the scale parameter, is given in the same unit of time as the observation (e.g.,
days or years, depending on the component and field of application). In Subsection 2.2.2. of Montanari et al.
[2] it is shown that every Weibull distribution is a linear transformation of the reduced form with α = 1. An
explanation for this is presented here. Assume that W1 = Weibull (1,β) and let W2 be defined as follows:

W2 =αW1 (4.2)

The following can be said about the cumulative distribution function of W2:

F2(t ) =P (αW1 ≤ t ) =P
(
W1 ≤ t

α

)
= F1

(
t

α

)
(4.3)

By differentiating the cumulative distribution function of W1 with input t
α , it leads to the following probability

density function of W2:

f2(t ) = 1

α
f1(

t

α
) (4.4)

= β

α

(
t

α

)β−1

exp

(
−

(
t

α

)β)
(4.5)

This results in a probability density function related to a Weibull (α,β, .) The conclusion is that it is sufficient
to use α = 1 for the base cases in the power comparison, as it can be linearly transformed into any Weibull
distribution with the same β through the equations above.

The parameter β, also known as the shape parameter, gives rise to different-looking density functions de-
pending on its value. In Subsection 2.2.3. of Montanari et al. [2], six cases are distinguished, and three of
them are highlighted below. For this analysis, it is assumed that α= 1.

1. β< 1

In this case, the density function of the Weibull distribution has the following limits:

lim
t→∞ f (t ) = 0

lim
t→0

f (t ) =∞

According to Ross [5], this is unlikely to be observed in the data for which the similarity index procedure
is used. This is due to the quality control often carried out before products are put into use and the
assumption that most early failures (childhood mortality) are due to a rather fast-aging sub-population
(high α) instead of a low β. Thus, this case will not be used as a base case in the power comparison.

2. β= 1

This resembles the density of an exponential distribution, which is known for random failure. For most
components, it is assumed that the probability of failure increases at a higher rate while aging, implying
thatβ> 1. However, usingβ= 1 essentially shows whether the similarity index is powerful when testing
whether the assumption of random failure over a Weibull distribution can be rejected.
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3. β> 1

The Weibull density function with β > 1 does not contain any infinite function values and reaches a
maximum within the domain. The examples where the similarity index was used in both [6] and [5], all
satisfy this condition.

From those three different scenarios, it is chosen to use both β0 = 1 and β0 = 3 for the base cases. So two
parameter pairs will be used for the null hypotheses in the power comparison: θ0 = (1,1) and θ0 = (1,3)

4.1.2. Additional parameters

There are four remaining parameters, tc , n, γ, and m. All of them might influence the power function, but
some are more interesting to vary than others. This will be explained in the following paragraphs.

For the significance level γ and the number of simulations for the empirical distribution m, the same values
as in Ypma and Ross [6] will be used to be able to evaluate the exact procedure in the article. Therefore, the
following values will be used in the power comparison:

γ0 = 0.1 (4.6)

m = 16000 (4.7)

For n and tc , the chosen values will have a significant impact on the number of failures that are not censored
at tc . Choosing a high value for n might lead to a higher power in the test because then estimations will be
more precise. However, the goal is to create a base case that is realistic to a real-life scenario. In Ypma and
Ross [6], an example with n = 87 was used. For the power comparison, a value in the same order of magnitude
but more convenient for calculations will be chosen:

n = 100 (4.8)

With all the other parameters fixed, it is chosen to vary tc , allowing for an assessment of the performance of
the similarity index throughout the whole failure process. The goal is to select tc in such a way that there are
enough failures before tc to be able to execute the procedure, but without having a majority of the failures
before tc . To ensure an easy way to find such a tc value per null hypothesis, a method based on the expected
number of failures will be used to determine tc . Let Y be the random variable defined in Equation (4.9),
based on a random vector X , which represents an independent, identically distributed sample of Weibull
distributed random variables.

Y =
n∑

i=1
1{Xi≤tc } (4.9)

Then, Y ∼ Bin(n, p), with p equal to P(X ≤ tc ), which can be expressed as:

p = 1−exp

(
−

(
tc

α

)β)
(4.10)

It is possible to choose tc such that different null hypotheses result in the same value of p, thereby ensuring
the same expected value for the total number of failures, E[Y ]. The expected value can be calculated using
the binomial distribution and is shown in Equation (4.11):

E[Y ] = np (4.11)

Three possible values of p that would lead to enough failures to estimate the parameters, while not having a
majority of the sample failed, are p ∈ (0.2,0.3,0.4).

With two different null hypotheses and three different censoring times per null hypothesis, six base cases can
be formed. The overview of those base cases can be seen in Table 4.1.
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α0 β0 tc n m γ

1 1 0.223 100 16000 0.1
1 1 0.357 100 16000 0.1
1 1 0.511 100 16000 0.1
1 3 0.607 100 16000 0.1
1 3 0.709 100 16000 0.1
1 3 0.799 100 16000 0.1

Table 4.1: The parameters of the six bases cases for the power comparison

4.2. Alternative Weibull parameters

With the parameters for the base cases determined, a plan can be formulated to estimate the power function
defined in Equation (3.12) for those base cases. The power function represents the probability of rejecting the
null hypothesis when the true distribution parameters θ = (α,β) differ from the chosen base case parameters
θ0. When θ = θ0, the power function should be equal to the selected significance level γ, while as θ deviates
further from θ0, the power function is expected to approach 1. The goal is to estimate the power function of
the different tests efficiently and without having to estimate it for the whole parameter space.

Some parts of the parameter space are of greater interest when using the similarity index, since the actual
motivation for the similarity index is to test non-compliance for samples which perform worse than the ref-
erence distribution. Those parts will be indicated in Subsection 4.2.2.

4.2.1. Directions

To make an efficient estimation, the power will be calculated along 4 directions through θ0. Those are the
directions obtained by only varying α, only varying β, varying both in the direction with slope 1 and varying
both in the direction with slope −1.

A total of 20 combinations of alternative parameters pairs (α1,β1) per direction will be used to create an out-
line of the power function. The spread of those 20 combinations will be chosen based on different methods
per direction, which will be explained in the following paragraphs. The goal is to choose the spread in such a
way that the parts with the largest variation in the power function can be shown and to create consistency be-
tween different null hypotheses. This is done by first considering the relation between two different Weibull
distributions. For this it can be helpful to rewrite the cumulative distribution function and find its inverse,
similar to what was done in Equation (2.14) in order to perform the OLS estimation. The following Equation
resembles Equation (2.14d), where the variables are substituted with their corresponding random variables
W ∼ Weibull (α,β) and U ∼U (0,1). This results in the following:

ln(W ) = 1

β
ln(− ln(1−U ))+ ln(α) (4.12)

W =αexp

(
ln(− ln(1−U ))

β

)
(4.13)

Equation (4.13) can be employed to compare two Weibull distributions and assess the magnitude of their
differences. This approach provides an indication of the parameter scale for the selected directions of change,
enabling the method to be applied to multiple null hypotheses. Suppose we have W0 ∼ Weibull (α0,β0) and
W1 ∼ Weibull (α1,β1). Then the following holds, where the substitution Z = ln(− ln(1−U )) is used:

W1

W0
= α1

α0
exp

((
1

β1
− 1

β0

)
Z

)
(4.14)

Based on this insight, a set of four different equations can be made which represent the four direction lines
which will be used for the alternative parameters. Suppose (α0,β0) is known. For Equation (4.15a) the values
for (α1,β1) are on the line β1 = β0, for Equation (4.15b) on the line α1 = α0, for Equation (4.15c) on the line
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β1 =α1 −α0 +β0 and for Equation (4.15d) on the line β1 =α0 −α1 +β0.

W1

W0
= α1

α0
(4.15a)

W1

W0
= exp

((
1

β1
− 1

β0

)
Z

)
(4.15b)

W1

W0
= α1

α0
exp

((
1

β0 +α1 −α0
− 1

β0

)
Z

)
(4.15c)

W1

W0
= α1

α0
exp

((
1

β0 −α1 +α0
− 1

β0

)
Z

)
(4.15d)

A possible strategy is to set the non-random part of the right hand side of those equations equal to 1+δi
with δ > 0 and i ∈ {−10,−9, ...,−1,1, ...,9,10}. In this way δ can be chosen per direction and per base case,
by observation, in such a way that the power function can be simulated in both the positive and negative
direction of each line up to the point where it is close to 1 for at least one of the tests. This way the power values
exhibits significant variability along the interval, allowing for a clear depiction of the function along that
direction. The value of δ can for this reason also be chosen differently for when i is negative or positive. This
leads to the following equations for which a solution should be found when i ∈ {−10, ...−1} and i ∈ {1, ...,10}:

α1

α0
= 1+δi (4.16a)

exp

(
1

β1
− 1

β0

)
= 1+δi (4.16b)

α1

α0
exp

(
1

β0 +α1 −α0
− 1

β0

)
= 1+δi (4.16c)

α1

α0
exp

(
1

β0 −α1 +α0
− 1

β0

)
= 1+δi (4.16d)

There are a few limitations that are experienced when using those equations. A solution might not always be
found, since some functions have discontinuities and there are the restrictions that both α1 > 0 and β1 > 0.
Those constraints are summarized per Equation:

Equation (4.16a): Since α0 = 1 in all the null hypotheses in the base cases, the range of the left-hand side
function is (0,∞).

Equation (4.16b): This equation has the following constraint on the range, which depends on the value β0:

1

exp
(

1
β0

) < exp

(
1

β1
− 1

β0

)
< exp

(
1− 1

β0

)
(4.17)

This indicates that there is a limit to the magnitude by which one Weibull parameter can be larger than the
other solely due to a change in the shape parameter. The extent of this limit depends on β0, and thus, the
interval for alternative β1 should be determined accordingly based on the value of β0.

Equation (4.16c): In the chosen base cases whereα0 ≥β0, the function is continuous andβ1 =β0+α1−α0 > 0
if α1 > 0.

By observing the function and taking the limits as α1 approaches 0 and ∞, it can be observed that for β0 = 1
the range is (1,∞), indicating that a solution will only be possible for positive i . The function attains its
minimum in α1 = 1. To find values both in the negative and positive direction on this line, the solutions on
(0,1) should be separated from those on (1,∞).

For β1 = 3, the range is (0,∞), so no problems arise and both negative and positive values of i can be used.

Equation (4.16d): This function has a discontinuity atα1 =α0+β0. Fortunately, since the restriction β0−α1+
α0 > 0 is necessary to have β1 > 0, it suffices to consider the domain (0,α0 +β0) for α1. Within this domain,
the function’s range is (0,∞).

With this in mind, 20 alternative parameters (α1,β1) were chosen for all 4 directions. The exact values can be
found in Appendix B.
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4.2.2. Compliance

As described before, the goal of the similarity index as described by Ypma and Ross [6] was to create some
quantification to check whether an observation is coming from the reference distribution or not. It is thus the
question whether a batch of components is compliant with the reference distribution provided by the creator
of the batch. In the search for compliance, the focus is primarily on earlier-than-expected failures, as those
might indicate that the batch has a shorter average lifetime which is unwanted. Conversely, a late first failure
might be perceived as a positive outcome rather than a non-compliant one.

Hence, prior to analyzing the power comparison results, it would be advantageous to examine parameter
combinations that hold particular significance. In this regard, it is worth considering the expected value of a
Weibull distribution, as expressed by the following equation:

E[W ] =αΓ

(
1+ 1

β

)
(4.18)

A smaller value of α indicates a lower expected value, implying an earlier expected occurrence of failure. This
aspect is of particular relevance in non-compliance detection and those alternative parameters in the power
comparison that represent a smaller α than the reference distribution should be examined more closely.

Conversely, the influence of β on the expected lifetime is more complex. The gamma function exhibits a
minimum at xmin ≈ 1.46163, the specific number can be found in Olver et al. [3]. Prior to this minimum, the
gamma function is a decreasing function, while it becomes an increasing function afterwards. In terms of β,
this implies that when 1

β ≈ 0.46163, there exists a transition point where both higher and lower values of β
lead to higher expected values. This transition occurs at approximately β≈ 2.16624.

When β belongs to the interval (0, 1
xmin−1 ), the expected value in Equation (4.18) decreases as β increases.

However, for β within the interval ( 1
xmin−1 ,∞), the expected value increases as β increases and the expected

value will approach α in its limit. Reasoning solely from this perspective might suggest that a very low β is
most preferable. Nevertheless, such low values of β result in a high number of early failures. This can not
be seen in the expected life time since the high probability of an early failure is compensated with the low
probability of a very late failure. This renders it difficult to make a definitive determination regarding the
most interesting direction for β in terms of non-compliance. However, when β0 = 1 in the base cases, the
directions where β1 < β0 are the most interesting, since a true parameter of β < 1 would be unwanted as
discussed in Subsection 4.1.1.

4.3. Results

In the preceding section, the methods for determining alternative parameter combinations along the selected
directions were discussed. By employing these selected alternative parameters, which can be found in Ap-
pendix B, it becomes feasible to calculate the value of the power function for these base cases along those
directions.

The method used for the calculation of the power is the one described in Subsection 3.3.1. The power function
will be calculated for the six base cases presented in Table 4.1, as explained in Subsection 4.1.1. The tests for
which the power will be calculated are the similarity index based test described in Chapter 2, the likelihood
ratio test described in Section 3.1 and the variant of the similarity index based test described in Section 3.2.
The number of samples used to estimate the power, previously named k, will be equal to 1000. This number
is chosen by considering both computation time and precision.

The results are grouped by the directions described in the previous section. The powers of all three tests are
combined in plots which are divided per base case. The jitter feature in R is used to make the points visible
when they are overlapping. An explanation and evaluation will be given per figure.

4.3.1. Univariate variation: α

In Figure 4.1 and Figure 4.2, the power results are depicted for the six base cases when varying only the alter-
native parameterα1. The likelihood ratio test exhibits consistently higher power across all points, particularly
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Figure 4.1: Power of three tests when α0 = 1, β0 = 1,
β1 = 1 and α1 varied

Figure 4.2: Power of three tests when α0 = 1, β0 = 3,
β1 = 3 and α1 varied

when α1 < 1. As discussed in Subsection 4.2.2, this region is of particular interest due to the negative impact
on the expected lifetime when α is lower. The similarity index test and its variant generally demonstrate
similar power values across all base cases, with the variant exhibiting slightly higher power at some points.

4.3.2. Univariate variation: β

The results for varying β1 while keeping α1 equal to α0 are presented in Figure 4.3 and Figure 4.4. There
is a noticeable distinction in power between these figures. In Figure 4.4, where β1 is varied around β0 = 3,
both the likelihood ratio test and the variant on the similarity index test consistently exhibit higher power
across all simulated points. The likelihood ratio test has again the highest power values. When β1 < β0, the
likelihood ratio test continues to exhibit the highest power, especially for the lower values of tc . Nevertheless,
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Figure 4.3: Power of three tests when α0 = 1, β0 = 1,
β1 = 1 and β1 varied

Figure 4.4: Power of three tests when α0 = 1, β0 = 3,
β1 = 1 and β1 varied

the similarity index test demonstrates comparable power values. It is worth noting that the variant of the
similarity index consistently displays lower power values compared to the other two tests when β1 <β0.

The situation when β1 <β0 = 1 is one of the cases for which a high power is preferred, as discussed in Subsec-
tion 4.2.2. It is also the direction for which a diverging integral in the similarity index becomes more probable,
resulting in a value of 0. This characteristic could potentially affect the similarity index test, making it more
prone to rejecting observations from distributions with lower β1 values, in comparison to observations from
distributions with higher β1 values.
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Figure 4.5: Power of three tests when α0 = 1, β0 = 1,
β1 = 1 and both parameters varied

Figure 4.6: Power of three tests when α0 = 1, β0 = 3,
β1 = 3 and both parameters varied

4.3.3. Bivariate variation: positive slope

The results depicted in Figure 4.5 and Figure 4.6 show the variation of both α1 and β1, with both parameters
changing by the same amount on the line with a slope of 1 through (α0,β0). These findings align with the
previous observations. The likelihood ratio test exhibits the highest power across all points and base cases,
followed by the variant of the similarity index test and the similarity index test. Once again, it can be observed
that the similarity index test has a higher power than the variant when β1 < 1.
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4.3.4. Bivariate variation: negative slope

The Figures 4.7 and 4.8 are again based on a bivariate variation of α1 and β1, now on the line with slope −1
through (α0,β0). This results in a similar observation as before. These figures demonstrate once again that
the disparity in power between the likelihood ratio test and the other two tests is particularly pronounced
when α1 becomes smaller than α0, corresponding to the right-hand side of these figures.

Figure 4.7: Power of three tests when α0 = 1, β0 = 1,
β1 = 1 and both parameters varied

Figure 4.8: Power of three tests when α0 = 1, β0 = 3,
β1 = 3 and both parameters varied

4.4. Conclusion

In this Chapter, the power comparison as proposed in the previous chapter was executed. To make the
amount of simulation work manageable, six base cases were chosen for which the power was estimated along
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4 directions in the 2-dimensional alternative parameter grid. For those directions, it was made clear which
directions were of particular interest in non-compliance detection.

Based on the results, it is evident that the likelihood ratio test consistently exhibits higher power, particularly
when the true parameter α1 is lower than the reference parameter α0. Since a lower value of this parameter
was unwanted due to its negative on the expected lifetime, this should be taken into consideration. The
similarity index test and its variant generally demonstrate comparable power, with the similarity index test
displaying higher values whenβ1 < 1 and the variant of the similarity index test exhibiting significantly higher
values when solely varying β1, specifically when β0 = 3.





5
Conclusion and discussion

The objective of this thesis was to assess the effectiveness of the similarity index as a statistical test, intro-
duced in Ypma and Ross [6], in comparison to alternative tests applicable in similar scenarios. The power
comparison method described in Section 3.3 facilitated the comparison of the test with two alternatives: a
modified version of the similarity index without discontinuities for Weibull distributions, and the well-known
likelihood ratio test widely used in statistics. The power functions of these three tests were estimated for two
null hypotheses and three censoring times, resulting in six base cases. For each base case, the power function
was estimated along four 1-dimensional parameter lines. The focus was on exploring directions of interest,
as the similarity index aims to identify potential non-compliance based on observed failures.

The analysis revealed that, across all base cases in this thesis, the likelihood ratio test consistently exhibited
greater power than the similarity index test. The difference was particularly pronounced when the actual α
parameter was smaller than the reference parameter, a critical situation in compliance verification. Conse-
quently, it is worth considering the potential benefits of using this test when investigating non-compliance.

The variation of the similarity index was chosen as an alternative because it was continuous for Weibull dis-
tributions, unlike the original similarity index, which exhibited discontinuities due to diverging integrals for
specific combinations of the β parameters of the probability density functions. Since this issue arose when
one of theβ values was smaller than 0.5, it might not always manifest when using the similarity index, as theβ
of the reference distribution is assumed to be greater than 1 in applications. However, even in such cases, the
discontinuity might persist when estimating the distribution of the test statistic under the null hypothesis, as
was seen in the example in Section 2.4. Hence, the variation of the similarity index was considered. Neverthe-
less, this variation did not consistently demonstrate higher or equal power compared to the similarity index
test in the selected base cases and directions. Therefore, further research could explore alternative similarity
measures and see whether those might have a more similar power function to the likelihood ratio test.

In addition to the results of this power comparison, it is advisable to delay conducting a test in the form
of the similarity index until an adequate number of failure times are available for accurate estimation. As
demonstrated in the example in Section 2.4, with a small censoring time, a significant portion of the simulated
samples cannot be utilized.

It is important to note that this research only conducted a power comparison for six base cases and four
directions, which cannot provide a comprehensive overview of the power functions of the tests. Although
these cases were carefully chosen, conducting a more extensive simulation would be necessary to determine
whether the likelihood ratio test is a superior alternative in all situations.
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A
Data example

Index t
1 22
2 26
3 32
4 34
5 36
6 36
7 48
8 65
9 66

10 79
11 89
12 90
13 94
14 94
15 95
16 103
17 112
18 112
19 139
20 153
21 159
22 169
23 171
24 173
25 180
26 188
27 191
28 197
29 201

Index t
30 206
31 220
32 249
33 264
34 278
35 282
36 288
37 296
38 300
39 301
40 302
41 308
42 315
43 326
44 335
45 341
46 348
47 355
48 358
49 361
50 408
51 424
52 433
53 451
54 453
55 472
56 487
57 490
58 500

Index t
59 502
60 510
61 512
62 527
63 541.1
64 581
65 583
66 616
67 626
68 694
69 761
70 777
71 806
72 808
73 818
74 823
75 847
76 848
77 871
78 989
79 1002
80 1021
81 1089
82 1113
83 1124
84 1266
85 1404
86 1822
87 2469

Table A.1: The data used in the example in Section 2.4
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B
Input values

B.1. Univariate variation: α

α1 β1

0.450 1
0.505 1
0.560 1
0.616 1
0.670 1
0.725 1
0.780 1
0.835 1
0.890 1
0.945 1
1.110 1
1.220 1
1.330 1
1.440 1
1.550 1
1.660 1
1.770 1
1.880 1
1.990 1
2.100 1

Table B.1: Alternative parameters for α0 = 1, β0 =
1 obtained by only varying α1

α1 β1

0.750 3
0.775 3
0.800 3
0.825 3
0.850 3
0.875 3
0.900 3
0.925 3
0.950 3
0.975 3
1.045 3
1.090 3
1.135 3
1.180 3
1.225 3
1.270 3
1.315 3
1.360 3
1.405 3
1.450 3

Table B.2: Alternative parameters for α0 = 1, β0 =
3 obtained by only varying α1

The values in Table B.1 are obtained by using Equation (4.16a) with δ = 0.055 for negative values of i and
δ= 0.11 for positive values of i .

The values in Table B.2 are obtained by using Equation (4.16a) with δ = 0.025 for negative values of i and
δ= 0.045 for positive values of i .

B.2. Univariate variation: β

The values in Table B.3 are obtained by using Equation (4.16b) with δ = 0.035 for negative values of i and
δ= 0.09 for positive values of i .
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α1 β1

1 1.757
1 1.609
1 1.489
1 1.391
1 1.308
1 1.238
1 1.178
1 1.125
1 1.078
1 1.037
1 0.921
1 0.858
1 0.807
1 0.765
1 0.729
1 0.698
1 0.672
1 0.648
1 0.628
1 0.609

Table B.3: Alternative parameters for α0 = 1, β0 =
1 obtained by only varying β1

α1 β1

1 5.479
1 5.034
1 4.661
1 4.344
1 4.072
1 3.835
1 3.627
1 3.443
1 3.279
1 3.132
1 2.756
1 2.554
1 2.384
1 2.239
1 2.114
1 2.005
1 1.909
1 1.823
1 1.747
1 1.679

Table B.4: Alternative parameters for α0 = 1, β0 =
3 obtained by only varying β1

The values in Table B.4 are obtained by using Equation (4.16b) with δ = 0.014 for negative values of i and
δ= 0.03 for positive values of i .

B.3. Bivariate variation: positive slope

The values in Table B.5 are obtained by using Equation (4.16c) with δ= 0.008 for the positive values of i , where
both solutions are separated. No negative values of i are used since then there is no solution to Equation
(4.16b).

The values in Table B.6 are obtained by using Equation (4.16c) with δ = 0.03 for both positive and negative
values of i .

B.4. Bivariate variation: negative slope

The values in Table B.7 are obtained by using Equation (4.16d) with δ = 0.008 for negative values of i and
δ= 0.2 for positive values of i .

The values in Table B.8 are obtained by using Equation (4.16d) with δ = 0.03 for negative values of i and
δ= 0.07 for positive values of i .
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α1 β1

1.138 1.138
1.202 1.202
1.254 1.254
1.299 1.299
1.341 1.341
1.381 1.381
1.418 1.418
1.454 1.454
1.488 1.488
1.522 1.522
0.884 0.884
0.841 0.841
0.810 0.810
0.786 0.786
0.765 0.765
0.747 0.747
0.731 0.731
0.717 0.717
0.704 0.704
0.692 0.692

Table B.5: Alternative parameters for α0 = 1, β0 =
1 obtained by varying both parameters on a pos-
itive slope line

α1 β1

1 5.479
1 5.034
1 4.661
1 4.344
1 4.072
1 3.835
1 3.627
1 3.443
1 3.279
1 3.132
1 2.756
1 2.554
1 2.384
1 2.239
1 2.114
1 2.005
1 1.909
1 1.823
1 1.747
1 1.679

Table B.6: Alternative parameters for α0 = 1, β0 =
3 obtained by varying both parameters

α1 β1

0.672 2.672
0.704 2.704
0.736 2.736
0.768 2.768
0.801 2.801
0.834 2.834
0.866 2.866
0.900 2.900
0.933 2.933
0.966 2.966
1.034 3.034
1.068 3.068
1.102 3.102
1.136 3.136
1.171 3.171
1.205 3.205
1.240 3.240
1.275 3.275
1.310 3.310
1.346 3.346

Table B.7: Alternative parameters for α0 = 1, β0 =
1 obtained by varying both parameters

α1 β1

0.720 3.280
0.749 3.251
0.778 3.222
0.806 3.194
0.834 3.166
0.863 3.137
0.890 3.110
0.918 3.082
0.946 3.054
0.973 3.027
1.062 2.938
1.124 2.876
1.184 2.816
1.243 2.757
1.301 2.699
1.357 2.643
1.413 2.587
1.467 2.533
1.520 2.480
1.572 2.428

Table B.8: Alternative parameters for α0 = 1, β0 =
3 obtained by varying both parameters on a neg-
ative slope line
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