
 
 

Delft University of Technology

Pressure-induced nonlinear resonance frequency changes for extracting Young’s
modulus of nanodrums

Sarafraz, Ali; Givois, Arthur; Rosłoń, Irek; Liu, H.; Brahmi, Hatem; Verbiest, Gerard; Steeneken, Peter G.;
Alijani, Farbod
DOI
10.1007/s11071-023-08660-y
Publication date
2023
Document Version
Final published version
Published in
Nonlinear Dynamics

Citation (APA)
Sarafraz, A., Givois, A., Rosłoń, I., Liu, H., Brahmi, H., Verbiest, G., Steeneken, P. G., & Alijani, F. (2023).
Pressure-induced nonlinear resonance frequency changes for extracting Young’s modulus of nanodrums.
Nonlinear Dynamics, 111(16), 14751-14761. https://doi.org/10.1007/s11071-023-08660-y

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s11071-023-08660-y
https://doi.org/10.1007/s11071-023-08660-y


Nonlinear Dyn (2023) 111:14751–14761
https://doi.org/10.1007/s11071-023-08660-y

ORIGINAL PAPER

Pressure-induced nonlinear resonance frequency changes
for extracting Young’s modulus of nanodrums

Ali Sarafraz · Arthur Givois · Irek Rosłoń ·
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Abstract The resonance frequency of ultra-thin lay-
ered nanomaterials changes nonlinearly with the ten-
sion induced by the pressure from the surrounding
gas. Although the dynamics of pressurized nanomate-
rial membranes have been extensively explored, recent
experimental observations show significant deviations
from analytical predictions. Here, we present a multi-
mode continuum model that captures the nonlinear
pressure-frequency response of pre-tensioned mem-
branes undergoing large deflections. We validate the
model using experiments conducted on polysilicon
nanodrums excited opto-thermally and subjected to
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pressure changes in the surrounding medium. We
demonstrate that considering the effect of pressure
on the nanodrum tension is not sufficient for deter-
mining the resonance frequencies. In fact, it is essen-
tial to also account for the change in the membrane’s
shape in the pressurized configuration, the mid-plane
stretching, and the contributions of higher modes to
the mode shapes. Finally, we show how the presented
high-frequency mechanical characterization method
can serve as a fast and contactless method for deter-
mining Young’s modulus of ultra-thin membranes.

Keywords Nonlinear pressure-frequency response ·
Reduced-order modelling · Suspended nanodrums ·
Experimental characterization · Large deflections

1 Introduction

Owing to their low bulk modulus and outstanding in-
plane stiffness, sensors made of ultra-thin membranes
and two-dimensional (2D) materials have recently
gained interest for gas [1,2], pressure [3–5], and
biosensing [6] applications. Despite numerous experi-
mental and theoretical studies [7,8], probing the elas-
ticity of these membranes has remained challenging
[9,10], making the development of new methods for
their mechanical characterization of great importance
[11–13].

Atomic force microscopy (AFM) is the most widely
used technique for extracting Young’s modulus of 2D
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membranes, which is achieved by fitting their nonlinear
force–deflection response [14,15]. Pressurized blister
test [16,17], electrostatic deflection method [18–20],
andDuffing-type nonlinear response at large amplitude
vibrations [11,13] are other methods used to character-
ize thin membranes.

Recently, it was also shown that the tension-induced
shift in the resonance frequency of 2D membranes as
a function of applied pressure could be used to charac-
terize elastic properties [21]. In contrast to AFMwhich
requires large indentations to enter the nonlinear regime
for estimating Young’s modulus [22], it was demon-
strated that the geometrically nonlinear regime may
be easily reached using this approach by sweeping the
pressure across the membrane. However, it was found
that the fit of the pressure-frequency response, results
in estimations of Young’s modulus that are an order
of magnitude lower than the well-accepted values in
the literature [21,23]. Therefore, in order to use this
method to characterize suspended ultra-thin materials
that undergo large deflections, a more comprehensive
model is required to describe the underlying physics.

Unlike models commonly used for characterizing
pressurized nanodrums [24,25], here, we develop a
model that accounts for a change in the static equi-
librium shape of the vibrating membrane, mid-plane
stretching, and in-plane and out-of-plane mode cou-
pling. By comparing the model to the finite element
method (FEM) simulations of nanodrums subjected to
large deflections, we validate the analytic formulation.
Finally, we acquire the nonlinear pressure-frequency
response of polysilicon nanodrums experimentally and
demonstrate that the suggested multi-mode model can
be utilized to characterize (extract Young’s modulus)
from the high-frequency dynamic response of pressur-
ized ultra-thin membranes.

2 Theory

2.1 Governing equations

We consider a thin circular drum with a diameter of
2R and thickness h � R clamped at the outer edge,
as shown in Fig. 1a. The drum is assumed to be made
of a homogeneous and isotropic material of density ρ,
Young’s modulus E , and Poisson’s ratio ν. The drum
is also assumed to be subjected to an axisymmetric
tension n0, and the pressure difference alongside it is
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Fig. 1 a Schematic of the membrane and its cross-sections. b
Side-view of the undeformed membrane, and c deformed con-
figuration under transverse loading due to pressure difference
alongside the membrane. g is the cavity depth, and Pext and
Pcav are pressure above the membrane and inside the cavity,
respectively

�p (see Fig. 1b, c). We only account for axisymmetric
vibrations and suppose that the aspect ratio is very small
(i.e., h/R < 0.001 [26]) such that the effect of bend-
ing rigidity can be discarded, and the motion can be
modeled using membrane theory [27]. The equations
of motion for a membrane subjected to large transverse
displacement w, moderate rotations, are the dynamic
equivalents of the von Kármán equations. In this con-
text, the governing equations of a pre-stressed mem-
brane with negligible bending rigidity are [27]:

ρhẅ − n0∇2w − div (N∇w) = �p, (1a)

ρhü − div N = 0. (1b)

where:

N = [Eh/(1 − ν2)] [(1 − ν)ε + ν tr ε1] ,
ε = 1

2

(∇u + ∇Tu + ∇w ⊗ ∇w
)
.

(2)

Here, u = [u; v] is the axial displacements; moreover,
∇2w, ∇w and ∇u denote the Laplacian of scalar field
w, the vector gradient of scalar field w and the tensor
gradient of the vector field u, respectively. divu and
div N are the scalar and vector divergences of vector
field u and tensor field N . Finally, ∇w ⊗ ∇w corre-
sponds to the tensor product between vectors ∇w and
∇w. Overdot indicates derivation with respect to time.
Considering only axisymmetric vibrations the follow-
ing set of equations can be obtained in cylindrical coor-
dinates and in terms of radial (u) and transverse (w)
displacements:

ρhẅ − n0�w − (
Eh/

(
1 − ν2

)) [u,rrw,r + u,rw,rr

+(1 + ν)
u,r
r w,r + ν u

r w,rr + (w,r )
3

2r + 3
2 (w,r )

2w,rr ] = �p,
(3a)

(
Eh/

(
1 − ν2

)) [u,rr + u,r

r
− u

r2
+ 1 − ν

2

(w,r )
2

r
+ w,rw,rr ] = 0,

(3b)
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where ,r and ,rr denote the first and second deriva-
tives with respect to r .

TowriteEqs. (3a, b) in dimensionless form,we intro-
duce the following set of dimensionless variables:

w̄ = w
h , ū = R

h2
u, r̄ = r

R ,

t̄ = 1
R

√
n0
ρh t, �p = R2

n0h
�p, ε = 1

1−ν2
Yh3

n0R2 ,
(4)

This would yield the following non-dimensional form
of Eq. (3):

¨̄w − �w̄ − ε
[
ū,rr w̄,r + (1 + ν)

ū,r
r w̄,r + ν ū

r w̄,rr

+ (w̄,r)
3

2r + 3
2

(
w̄,r

)2
w̄,rr

]
= �p

(5a)

ū,rr + ū,r

r
− ū

r2
+ 1 − ν

2

(
w̄,r

)2

r
+ w̄,r w̄,rr = 0.

(5b)

In order to solve Eqs. (5a, b), we first expand the trans-
verse displacement w and radial displacement u as fol-
lows:

w̄(r, t) =
Nw∑

k=1

�k (r) qk(t) , (6a)

ū(r, t) =
Nu∑

p=1

�p (r) ηp(t), (6b)

where qk and ηp denote the unknown modal coordi-
nates, and Nw and Nu are the number of generalized
coordinates that will be retained in the analysis. More-
over, �k and �p are mode shapes associated with
the transverse and radial displacements, respectively.
These modes are chosen such that they satisfy the fol-
lowing eigenvalue problems that originate from the lin-
ear counterpart of Eqs. (5):

��k+ω2
k�k=0, �,rr+�,r

r
−�

r2
+γ 2

p�p=0 (7)

with ωk and γp being the transverse and in-plane
dimensionless eigenfrequencies, respectively. We note
that Eqs. (7) are Bessel equations, and their solution
can be expressed as:

�k(r) = κk J0(ωkr), �p(r) = λp J1(γpr). (8)

Thesemodes have orthogonality properties and are nor-
malized with respect to the modal mass, by fixing the
values of κk , λp introduced in Eqs. (8) and (7). They
are chosen such that:∫∫

S
�i� jdS=δi j and

∫∫

S
�p�ldS=δpl . (9)

where S is the domain of integration. By applying
Galerkin technique, namely inserting Eqs. (8), and
Eqs. (6) in Eqs. (5), multiplying Eq. (5a) by �k and
Eq. (5b) by �p, and then integrating over the entire
domain, the nonlinear partial differential Eqs. (5a) and
(5b) reduce to:

q̈k + ω2
kqk + ε

Nu∑

p=1

Nw∑

i=1

akpiηpqi

+ε

Nw∑

i=1

Nw∑

j=1

Nw∑

l=1

cki jlqi q jql = Qk (10a)

γ 2
pηp −

Nw∑

i=1

Nw∑

j=1

bp
i j qiq j = 0 (10b)

where Qk = �p
[∫ 1

0 �2
krdr

]−1 [∫ 1
0 �krdr

]
is the pro-

jection of �p on the k-th mode of vibration, and the
nonlinear modal coefficients akpi , b

p
i j , and cki jl are:

akpi = −[∫ 1
0 �2

krdr ]−1
∫ 1
0 �k(�p,rr�i,r

+�p,r�i,rr + (1 + ν)
�p,r�i,r

r

+ν
�p�i,rr

r )rdr,

(11a)

bp
i j = +1

2
[
∫ 1

0
�2

prdr ]−1
∫ 1

0
�p(

1 − ν

r
�i,r� j,r

+(�i,r� j,r ),r )rdr, (11b)

cki jl = −1

2
[
∫ 1

0
�2

krdr ]−1
∫ 1

0
�k(�i,r� j,r�l,r

+ (�i,r� j,r�l,r ),r

r
)rdr. (11c)

In order to find ηp in terms of qk , we rewrite
Eq. (10b) as:

ηp = 1

γ 2
p

Nw∑

i=1

Nw∑

j=1

bp
i j qiq j . (12)

Inserting Eq. (12) in Eq. (10a) [28] leads to:

q̈k + ω2
kqk + ε

Nw∑

i=1

Nw∑

j=1

Nw∑

l=1

�k
i jlqi q jql = Qk, (13)

with

�k
i jl = cki jl +

Nu∑

p=1

bp
jla

k
pi

γ 2
p

. (14)

Eq. (13) is a reduced-order model, which accounts
for mid-plane stretching and higher-mode interactions
and can be used for investigating nonlinear pressure-
frequency response of nanodrums.
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2.2 Solution procedure

Generally, the force vector applied on a membrane
can be split into a constant, and a time-varying part.
The constant force leads to a static deflection, and the
time-varying force vibrates the structure around the
new configuration. Considering small-amplitude oscil-
lations around large pressure-induced deflections, it is a
decent approximation to separate the contribution into
static (qsk ) and dynamic (qdk ) components as follows
[12]:

qk = qsk + qdk . (15)

This separation allows us to separate Eq. (13) to a
static and dynamic part as well.We can obtain the static
deflection due to Qk , and obtain the dynamic equations
around the statically deflected configuration which we
will then use for obtaining the natural frequencies of
the nanodrum in the deformed state and as a function
of the applied pressure, as follows:

ω2
kq

s
k + ε

Nw∑

i=1

Nw∑

j=1

Nw∑

l=1

�k
i jlq

s
i q

s
j q

s
l = Qk, (16a)

q̈dk + ω2
kq

d
k + ε

Nw∑

i=1

αk
i q

d
i = 0, (16b)

where

αk
i =

Nw∑

j=1

Nw∑

l=1

(2�k
jil + �k

i jl)q
s
jq

s
l . (17)

In order to solveEq. (16a) forqsk , we use the software
packageMANLAB. The software uses the Asymptotic
Numerical Method (ANM) [29], a continuation algo-
rithm based on high-order Taylor series expansions, to
solve nonlinear systems of equations. The ANM con-
tinuationmethod allows for solving nonlinear algebraic
equations written in the form:

F(U, λ) = 0, (18)

where F denotes a set of nonlinear algebraic equations,
U = [qs1, qs2, . . . , qsNw

] is a vector of unknown coeffi-
cients, and λ is the continuation parameter. Themethod
also requires the system of equations to be written with
quadratic nonlinearities [29]. To perform continuation,
we thus recast the static part of Eq. (16a) to:

ω2
kq

s
k + ε

Nw∑

i=1

Nw∑

j=1

Nw∑

l=1

�k
i jl S jlq

s
i − λQk = 0, (19a)

S jl − qsjq
s
l = 0. (19b)

By solving Eq. (19) for qsk , one can find the shift in
resonance frequencies due to pressure.We note that the
fundamental frequency of the pressurized nanodrum
�u can be obtained by considering the pre-factors of
qdk in Eq. (16b) which is denoted with the matrix A,
defined as:

Auv = ω2
uδuv + εαv

u . (20)

where δuv is the kronecker delta. Diagonalizing the
matrix A leads to the modified frequencies and mode
shapes of the bulged nanodrum with an initial bulged
shape:
[
�2

uδuv

]

u,v∈[1,Nw]
= P−1AP, (21)

where P are the eigenvectors associated with the fre-
quencies �u for the pressurized membrane.

3 Results

3.1 Numerical simulations

3.1.1 Convergence study

As mentioned in Sect. 2, in order to better capture
small-amplitude oscillations of a pressurized mem-
brane, one must (i) linearize the dynamic response
around the new static configuration, (ii) account for
mid-plane stretching effect, and (iii) include contri-
butions from out-of-plane modes. Thus, to emphasize
the significance of these assumptions and to facilitate
a more accurate comparison of these parameters in a
pressurized configuration versus a flat configuration, in
Fig. 2, we simulate the effect of pressure on the static
and dynamic in-plane and out-of-plane displacements
of a nanodrum with R = 5 μm, h = 20 nm, ρ =
2300 kg.m−3, E = 160GPa, ν = 0.22, n0 = 0.3 N/m.

Figure 2a shows that the original flat configuration
changes significantly with increasing pressure. This
result suggests that when estimating frequency shifts
due to pressure, the dynamic governing equation must
be obtained around the new bulged shape (qsk �= 0)
rather than the flat configuration (qsk = 0). The appli-
cation of pressure causes a nonlinear in-plane displace-
ment field at high pressures, as depicted in Fig. 2b. In
addition, Fig. 2c illustrates the slight differences in the
first mode shape that emerge due to statically deformed
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Fig. 2 Variation of the static and dynamic displacement fields
with pressure. a Normalized static transverse displacement vary-
ing from a flat to a nearly parabolic configuration; b normalized
in-plane displacement showing deviation from linear variation in
the radial direction with increasing pressure; c normalized mode

shape as a function of external pressure obtained from the multi-
mode model (wd

0 denotes the dynamic transverse deflection at
the center of the membrane). One must bear in mind that the
membrane is flat at �p = 0 mbar

configurations. As we will discuss next, neglecting
these effects could yield wrong estimation of the reso-
nance frequencies of pressurizedultra-thinmembranes.

We also note that the model is obtained in modal
coordinates. Nonetheless, the governing partial differ-
ential equations (Eq. (3))were formulatedwith in-plane
(u) and out-of-plane (w) displacement fields. More-
over, Fig. 2 depicts the results for u,ws , andwd , rather
than qs , and qd . Thus, to retrieve u from the modal
equations, one must use Eqs. (4), (6b), and (12) and
obtain u(r, t) as follows:

u(r, t) = h2

R

Nu∑

p=1

Nw∑

i=1

Nw∑

j=1

�p (r)
bp
i j

γ 2
p
qsi q

s
j . (22)

However, for the out-of-plane deflection, one should
note that separation of static and dynamic modal coor-
dinates results in the separation of static and dynamic
transverse displacements. Using Eqs. (15), (6a) and (4),
the transverse displacement can be then obtained as fol-
lows:

w = ws + wd , (23)

where:

ws = h
Nw∑

k=1

�k (r) qsk , (24a)

wd = h
Nw∑

k=1

�k (r) qdk . (24b)

In order to highlight the influence of the effects
depicted in Fig. 2 on the estimation of the resonance
frequencies, we benchmark in Fig. 3a–c the fundamen-
tal frequency derived from our model against FEM
results. The simulations are performed for the same
drum specifications as Fig. 2. In Fig. 3a, we simulate
the frequency shift where only one single out-of-plane
mode is retained in the analysis (Nu = 0, Nw = 1).
Frequency shifts are found, by using Eq. (16b) for the
undeformed (flat) as well as deformed configurations.
The figure confirms our earlier prediction in Fig. 2a
that using the equations around the deformed config-
uration substantially increases accuracy. When com-
pared to FEM results, the model still has a maximum
error of 9% at 1 bar.

To illustrate the effect of in-plane displacements on
the predicted frequencies, we increase Nu from 0 to 4
in Fig. 3b while retaining only one out-of-plane gener-
alized coordinate (Nw = 1) in the analysis. It can be
seen that including more in-plane modes in the model
results in a more accurate result (the error relative to
FEM simulations decreases to 4% at 1 bar). This con-
firms the important role of mid-plane stretching when
tracing the fundamental resonance frequency of nan-
odrums as a function of pressure.

Although the response from this model is already
close to the FEM simulations, Fig. 3c shows that the
accuracy can be even further improved by including
more transverse degrees-of-freedom in the basis func-
tions by increasing Nw in Eqs. (16). This finally leads
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Fig. 3 Comparison of the proposedmodel to the FEMresult by a
linearizing the dynamic governing equation about the deformed
static configuration rather than flat position; b increasing the
number of in-plane modes; c addition of out-of-plane modes

to a negligible difference between simulations based
on the present multi-mode model and FEM results,
which highlights the slight contribution of higher order
out-of-plane modes to the estimated resonance fre-
quency [30]. Notably, each of these three criteria con-
tributes to model convergence, and neglecting them
would reduce the accuracy the model. It should be also
noted that, considering more out-of-plane displace-
mentswhile ignoring in-plane displacementswould not

produce accurate results, as in-plane displacements are
always required to account for themid-plane stretching
effect.

3.1.2 Single-transverse-mode approximation

Although increasing the number of transverse modes
improves model accuracy, it also increases the com-
plexity of the governing equations, necessitating the
employment of numerical techniques to solve them.
However, the model can be analytically solved using
just one transverse mode. Figure3 demonstrates that
the single-transverse-mode approximation is precise
enough for tracing the pressure induced resonance fre-
quency shifts up to 1 bar. Considering only Nw = 1 and
Nu = 4, and converting equations back to dimensional
form using Eq. (4) one can find the following equations
as a simplified version of Eq. (16):

5.7831n0
ρhR2 q̃s1 + 1.181

E� (ν)

ρR4

(
q̃s1

)3 = 1.6019

ρh
�p,

(25a)

¨̃qd1 + 5.7831n0
ρhR2 q̃d1 + 3.543

E� (ν)

ρR4

(
q̃s1

)2
q̃d1 = 0,

(25b)

where �(ν) is plotted in Fig. 4. Moreover, q̃s1 = hqs1
denotes dimensional static deflection at the center of the
nanodrum and q̃d1 = hqd1 is the dimensional dynamic
deflection at the center of the membrane. For this sim-
plified scenario, the nonlinear pressure-deflection and
pressure-frequency relationships are derived analyti-
cally as follows:

�p = A
n0
R2 q̃

s
1 + B

Eh

R4

(
q̃s1

)3
, (26a)

f = 2.4048

2πR

√
n0
ρh

+ C
E

ρR2

(
q̃s1

)2
, (26b)

where A, B, and C are defined for the current study in
Table (1). It is worth noting that Eq. (26a) only retains
the cubic term in the high pressure regime, hence�p ∝(
q̃s1

)3. By applying the same reasoning, it is possible
to demonstrate that Eq. (26b) results in f ∝ (

q̃s1
)
and

thus f ∝ �p1/3.
We finally compare the result of our reduced-order

model (Eq. (26)) with analytic models available in
the literature, which are often used for the dynamic

123



Pressure-induced nonlinear resonance frequency changes 14757

Fig. 4 Function �(ν) used in single-transverse-mode analysis
(see Eqs. (26)). The function is evaluated for finite numbers of
Poisson ratios and interpolated with the cubic spline method

characterization of pressurized nanodrums [24,25] (see
Fig. 5).

In Table (1) we benchmark this new formulation
against the analytic solutions available in the litera-
ture for pressurized nanodrums [24,25]. Significant
discrepancies between our model and those of Refs.
[24,25] can be attributed to the simplifying assump-
tions lifted in our study, including linearization about
flat configuration, absence of mid-plane stretching, and
out-of-plane modal interactions. As demonstrated in
Fig. 3, the first two assumptions have a greater impact
on the model’s accuracy than the third one.

3.2 Experimental validation

To verify the applicability of the proposed formu-
lation for the dynamic characterization of ultra-thin
drums,wemeasure 33 nm thick polysiliconmembranes
measured by Atomic Force Microscopy (AFM), which
we transfer over SiO2 substrate cavities, that are cre-
ated using reactive ion etching with a depth of 350
nm. The 10 µm-diameter drums are placed in a vac-
uum chamber with variable pressure ranging from 50

Fig. 5 Comparison of models available in the literature and
single-mode approximation proposed in Eqs. (26)

to 1000 mbar. We employ a modulated blue laser diode
(λ = 405 nm) to push the polysilicon nanodrums into
resonance (Fig. 6a). The suspended nanodrum modu-
lates the intensity of the reflected red laser (λ = 633
nm),which is collected at a photodiode and analyzed by
a Vector Network Analyser (VNA). Our setup includes
a PID controller that monitors chamber pressure using
a vacuum pump and gas supply (nitrogen). Figure6b
depicts the frequency spectra of a polysilicon drum
at different pressures �P = Pext − Pcav, where Pcav
and Pext are the pressure outside and inside the cavity,
respectively (see Fig. 1). As a result of increased pres-
sure, we observe an apparent tension-induced increase
in the nanodrum’s resonance frequency. To obtain the
pressure-frequency response, we sweep the pressure
from 50 to 1000 mbar and fit the resonance peaks
with the damped linear harmonic oscillator model to
obtain resonance frequencies at each pressure values
(See Fig. 6b). In Fig. 7a we show typical pressure-
frequency measurement data which we fit using our
model (E = 155 GPa, n0 = 1.6N/m). In contrast to
Fig. 3, we see a minimum in the pressure-frequency
response at Pcav = 248 mbar, which corresponds to
a flat configuration. In this configuration, the drum’s

Table 1 Benchmarking the
present model against the
analytic formulations
available in the literature

Model A B C

Ref. [24] 4
8

3(1 − ν)

2

3 (1 − ν)

Ref. [25] 4
8

3(1.026 − 0.793ν − 0.233ν2)

2

3
(
1 − ν2

)

Current Study 3.61 0.737�(ν) 0.612�(ν)
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Fig. 6 The laser interferometry setup and obtained frequency
spectra of polysilicon drums. a After passing through the polar-
ized beam splitter (PBS) and the quarter-wave plate (λ/4), the red
laser is combined with the blue laser and focused on the drum
using a dichroic mirror (DM). The readout is performed by a
high-frequency photodiode (PD), and the output is fed into the
Vector Network Analyzer (VNA). The VNA modulates the blue

laser that actuates the drum. A PID controller is used to regulate
gas pressure inside the vacuum chamber. b Frequency spectra
(light green) are obtained from the VNA at different pressures.
To determine the fundamental mode’s resonance frequency, a
damped harmonic oscillator model is fitted (dark green). (Color
figure online)

fundamental frequency is determined solely by pre-
tension. By increasing pressure, the nanodrum deforms
statically, and the resonance frequency varies nonlin-
early as f ∝ 6

√
E�p1/3. Knowing this relation, such

pressure-frequency measurements can also be used to
determine the nanodrum’s Young’s modulus.

To demonstrate the versatility of the method for
characterizing Young’s modulus of ultra-thin mem-
branes, we repeated the same measurements on 13
nanodrums that were adequately sealed (or the leak
rate was low enough relative to the experiment’s data
collection speed) and did not exhibit hysteresis in the
pressure-frequency response when the pressure was
swept up and down. From these measurements, we
determined n0 = 1.1 ± 0.5N/m for the nanodrums.
Figure7b depicts the retrieved Young’s moduli his-
togram. We see that the obtained average value E =
148 ± 7GPa from our technique is comparable to the
literature-reported uni-axial stretching test findings for
thin polysilicon beams [31,32], further validating the
accuracy of ourmodel.We note that in our experiments,
owing to the low aspect ratio of the fabricated devices,
the bending rigidity is very small and the linear stiff-
ness mediated by bending rigidity is proportional to
kbending = Eh3/(12R2(1 − ν2)) = 0.02 N/m which
compared to the linear stiffness due to the pre-tension
of the nanodrum (kstretching = n0 = 1.1 N/m) in the flat

configuration is negligible. Therefore, consistent with
our modelling approach, the motion of the nanodrum
is dominated by its tension.

At highpressures, the damping also rises,whichmay
make it difficult to observe resonance peaks. Yet, our
experiments demonstrate that even at ambient pressure
the oscillation is under-damped and the resonance peak
is apparent. In addition, as depicted in Fig. 7a, themem-
branes reach the nonlinear regime at �p ≈ 400 mbar,
which is sufficient for characterization purposes.

4 Discussion

Employing the pressure-frequency response as a mate-
rial characterization method has several advantages
over commonly used techniques. Compared to AFM
that requires considerable deflections to estimateYoung’s
modulus, i.e., the force–deflection curve should reach
a cubic regime [22] (F ∝ δ3; F : tip force, δ: mem-
brane’s center deflection), pressurization using the sur-
rounding gas requires a lower force for determining
Young’s modulus and distributes the load over the
membrane, minimizing the chance of membrane fail-
ure. Themethod also reaches the nonlinear regime suit-
able for estimating Young’s modulus with substantially
less deflections and stresses, thus making it a more
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Fig. 7 Experimental result obtained for polysilicon drums. a
Pressure-frequency of a drum in both sweeping up and down of
pressure, fitted with our model with E = 155 GPa. b Histogram

of the Young’s moduli obtained through fitting the experimental
data with the average value of 148 GPa, and standard deviation
of 7 GPa

practical method for characterizing brittle nanomateri-
als such as polysilicon (see supplementary information
S1). Furthermore, unlike nonlinear dynamic character-
ization, which uses large driving signals to push the
membrane into a nonlinearDuffing regime and requires
proper calibration of the vibration amplitude [11], this
method is independent of the vibration amplitude and
only measures the resonance frequency as a function
of the applied pressure.

It is worth noting that the low aspect ratio of ultra-
thin membranes is an inherent feature of nanomechani-
cal systems, which accounts for their display of nonlin-
ear dynamics even at small amplitudes. In cases where
a higher aspect ratio is present, plate models can be
utilized instead of the membrane model proposed in
this study. Yet, it is important to note that the bend-
ing rigidity essentially re-scales the linear stiffness of
these systems, and in high-pressure regimes, the non-
linear stretching factors caused by pressure continue to
dominate the Young’s modulus characterization.

Several points should be kept in mindwhen employ-
ing the proposed method for characterization. First, in
an optical detection scheme, the cavity depth has to be
optimized so that the photodiode voltage is still linearly
related to themotion at high amplitudes [33].Moreover,
gas leakage through the clamped boundaries and poor
adhesion forces between the nanodrum and substrate
shouldbe avoided to ensure negligible leakage rates and
to prevent significant variations of the internal cavity
pressure during the measurement [21,34,35]. We note

that the present model does not account for morpholog-
ical imperfections such as wrinkles [36] and boundary
slippage [37], that are proven to affect the stiffness of
2D material membranes.

Furthermore, when Pcav > 0, the cavity pressure
change with the membrane’s static deflection, and the
squeeze film effect [38] may influence the dynamics
of pressurized ultra-thin drums. Although both effects
contribute significantly to the tension induced in the
membrane, their cumulative effect on the drum’s fre-
quency shift near 1 bar and in the high-pressure regime
is negligible for our polysilicon nanodrums, keeping
the extracted value ofYoung’smodulus unchanged.We
also note that neglecting the squeeze-film effect and the
bending rigidity of a relatively thick membrane may
result in an overestimation of pre-tension; therefore,
accounting for these two effects can enhance the accu-
racy of the anticipated pre-tension value which was
estimated to be high in our analysis due to neglect-
ing these effects. As discussed in the supplementary
information S2, by accounting for these two effects,
the pre-tension value drops from 1.6 to 1.1 N/m.

Other than material characterization, the model
developed in this work can be used for estimating the
deflection and resonance frequency shifts of pressur-
ized membranes. These include 2D material resonant
pressure sensors [4], microphones [39], and biosensors
[6], where correct estimation of deflection due to sur-
rounding fluid is important for probing the stiffness
of the membrane. Furthermore, the analytical models
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provided here are also useful for accurate estimation of
themass-density of 2Dmembranes [40], which is often
achieved by fitting the resonance frequency curves of
the membrane as a function of pressure with tension
and mass-density as the fit parameters.

5 Conclusion

In summary, attempts to use frequency shifts of pres-
surized nanodrums for characterization purposes were
inaccurate previously due to lack of appropriate math-
ematical models. To resolve this, a multi-mode con-
tinuummodel for predicting the dynamics of ultra-thin
pre-tensioned drums subjected to high pressures is pre-
sented here. By maintaining in-plane and out-of-plane
membrane deformations, we investigate the pressure-
dependent resonance frequency and mode shapes and
illustrate the crucial importance of mid-plane stretch-
ing in the high-pressure regime. We highlight the dis-
crepancies by comparing the model’s accuracy to pre-
viously reported analytical models and FEM simu-
lations. By fitting the resonance frequency measure-
ments of a series of polysilicon drums as a func-
tion of the applied pressure as determined by laser
interferometry, we demonstrate the model’s validity
and applicability for determining Young’s modulus of
ultra-thin nanomaterialmembranes usingon-resonance
high-frequency characterization. Since pressurization
results in a distributed stress field compared to inden-
tation, this method could be utilized as an effective
toolset for determining the Young’s modulus of brittle
nanomaterials.
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