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Abstract

The term technical debt has been used to described the increased cost of changing or maintaining a system
due to expedient shortcuts taken during development, possibly due to financial or time constraints. The term
has gained significant attention in software engineering research and the agile community.

Tribler, a platform to share and discover content in a complete decentralized way, has accumulated a tremen-
dous amount of technical debt over the last ten years of scientific research in the area of peer-to-peer network-
ing. The platform suffers from a complex architecture, an unintuitive user interface, an incomplete and un-
stable testing framework and a large amount of unmaintained code. A new layered, flexible and component-
based architecture that readies Tribler for the next decade of research is proposed and discussed. We lay the
foundations for this new architecture by implementing a RESTful API and a new graphical user interface. By
removing the old user interface, the amount of technical debt in Tribler is dramatically reduced.

Additional work includes the pay off of various kind of technical debt by the means of major improvements
to the testing framework, heavy modifications within the core of Tribler and changes in the infrastructure to
make it more usable and robust. With the deletion of 12.581 lines, the modification of 765 lines and addition
of 12.429 lines, we show that several important software metrics are improved and that we paid off a huge
amount of technical debt. Raising awareness about technical debt in general is of uttermost importance if we
wish to prevent deterioration of the system. Together with a code review policy and static code analysis tools
to track code coverage and the amount of code violations, we hope to prevent huge amounts of technical debt
in the future.

We perform experiments to verify the stability and performance of various components in the core of Tri-
bler and propose future work for the components that require more work. In our final experiment, we will
test Tribler on a large scale and lay the foundations for an application testing framework that is useful for
failure identification.
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1
Introduction

The resources, budget and time frame of software engineering projects are often constrained[27]. This re-
quires software engineers to analyse trade-offs that have to be made in order to meet deadlines and budgets.
Making decisions that are beneficial on the short term, might lead to significantly increased maintenance
costs in the long run. The phenomenon of favouring short-term development goals over longer term require-
ments is often referred to as technical debt. While technical debt might not have implicit consequences on the
user experience, it impacts quality and maintainability of software. Research has confirmed that there exists
a correlation between the amount of design flaws and vulnerabilities in a system[40]. A high amount of tech-
nical debt also leads to a greater likelihood of defects, unintended re-engineering efforts[32] and increased
development time when implementing new functionalities.

1.1. Technical Debt
The term technical debt was first introduced by Ward Cunningham in 1992 as writing "not quite right" code
in order to ship a new product or feature to market faster[20]. Since then, the term has gained progressively
more attention in software engineering research and the agile community. Effective management of tech-
nical debt is considered critical to achieve and to maintain an adequate level of software quality. In 2007,
Steve McConnell proposed the technical debt taxonomy where he refined and expanded the definition[4]. He
points out that some kind of engineering practices are not considered technical debt, such as deferred fea-
tures, incomplete work that is not shipped and other features where one does not have to "pay" the debt for.
Martin Fowler considers technical debt more as a metaphor to use when communicating with non-technical
people and introduced the technical debt quadrant in 2009[6]. According to his work, technical debt can be
categorized in distinct types, separating issues arising from recklessness from those decisions that are made
strategically. Figure 1.1 presents this distinction in more detail, together with an example for each quadrant.

Figure 1.1: The technical debt quadrant, as proposed by Martin Fowler[6].
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2 1. Introduction

Technical debt has various interesting properties, explored and defined in the work of Brown et al[16]. Whether
the debt is visible or not to the developer is an important factor during software engineering as significant
problems can arise when the debt is not clearly visible to other developers. The value of technical debt is the
economic difference between the system as it is and the system in an ideal state for the assumed environ-
ment. The technical debt is relative to a given or assumed environment. The phenomena has an origin which
can be traced back to strategic decisions taken earlier in the development process. Otherwise, the debt could
be accumulated in a more unintentional way, either due to recklessness or a lack of knowledge. Finally, we
consider the impact of the technical debt: for instance, what are the required changes we have to perform in
order to pay off the debt?

From the perspective of end users, technical debt can be both invisible and visible[31]. Examples of invis-
ible technical debt includes bad code practices, coding style violations, low internal quality and high code
complexity, negatively impacting the development process. Visible debt is expressed in defects that are af-
fecting users but can also be identified by user-unfriendly, cluttered graphical user interfaces (GUIs) that has
been subject to various reckless modifications: decisions to extend and evolve the user interface with new
visual elements, can lead to a significant amount of technical debt and a worse user experience. In more ex-
treme cases, the price of technical debt has to be paid with human lives as is painfully illustrated by a Toyota
car accident due to unintended acceleration: after a review of Toyota’s software engineering process and the
source code for the 2005 Toyota Camry car, it was concluded that the system was defective and dangerous,
riddled with bugs and gaps in its failsafes that led to the root cause of the crash[1].

The term technical debt is borrowed from the finance domain[26]. There is however one important distinc-
tion between financial and technical debt: when dealing with financial debt, the costs that the debtor has to
pay is usually clear. This is not always the case with technical debt since there might be some situations where
no debt is incurred. For instance, if it is known for a part of the system to never be updated or maintained in
the future, development time can be saved by not updating the related documentation. Software engineers
need to be careful with the consideration what technical debt they wish to incur and whether or when this
debt will be paid off at specific points in time.

There are several causes that contribute to the amount of accumulated technical debt during the software
development process[35]. Time pressure can cause developers to think reckless about their design and archi-
tecture. Uncertainty in decision making during an early stage of development might lead to higher technical
debt later on. Finally, in an agile environment, software requirements might change more often, causing the
underlying architecture and code base to change to a certain extent. Not properly managing such changes
can lead to incurred technical debt.

1.2. Tribler
Technical debt often becomes a noticeable issue in large systems that are built and maintained by many de-
velopers and contributors. Tribler is an example of such a system: the software is the result of ten ongoing
years of scientific research in the area of decentralized network technology and has incurred a serious amount

Figure 1.2: The four disruptive technologies as integrated in Tribler.
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of technical debt, both visible and invisible for users. Tribler is the combination of four disruptive technolo-
gies in one large code base: decentralized file downloading, onion routing, providing anonymous download
and end-to-end encryption, the blockchain, offering a way to introduce the notion of trustworthiness inside a
decentralized network and collaborative editing of content like Wikipedia. These technologies, together with
an example application are depicted in Figure 1.2.

Anonymity by the utilization of a Tor-like protocol has been added in 2014 by the work of Plak[42] and
Tanaskoski[52]. In 2015, the protocol has been extended to support anonymous seeding of torrents[46]. More
recent research is focussed on credit mining where it is attempted to build a mechanism to automatically join
torrent swarms and donate bandwidth to the network. The work of Norberhuis[39] who implemented a cy-
bercurrency for cooperation in Tribler, is currently being explored and extended. The graphical user interface
of Tribler is shown in Figure 1.3.

Figure 1.3: The graphical user interface of Tribler v6.5.2.

1.3. Research Questions
This thesis work will be centred around identification and management of the accumulated technical debt
within the code base of Tribler. With this in mind, we formulate the overall research question:

How can we track, erase and prevent technical debt within Tribler?

This research question can be divided into three aspects:

1. What are the required tools to identity how much technical debt there is in Tribler?

2. What is the right approach to pay off each identified kind of technical debt?

3. What are the adequate requirements in the software development process to prevent decisions that are
leading to a high amount of debt later in the development process?



4 1. Introduction

The rest of this document is outlined as follows: in Chapter 2, the current state of the system will be elabo-
rated, highlighting flaws and impurity in the design and code base. In Chapter 3, the evolution of Tribler over
the past ten years will be discussed and we lay the foundations for a next decade of scientific research with
Tribler by proposing a new future-proof, robust and layered architecture. The first efforts towards a realisa-
tion of this new architecture will be discussed in Chapter 4 by the implementation of a RESTful API and a new
graphical user interface. Next, in Chapter 5, we will focus on identified technical debt within the Tribler core
and analyse the required steps to reduce it. We will discuss efforts to pay off code debt, testing debt, infras-
tructure debt, architectural debt and documentation debt.

The performance of Tribler after our refactoring efforts will be discussed in Chapter 6. By conduction various
benchmarks and performance measurements, we try to get insights in the usability of various components
available in the Tribler core. In Chapter 7, we extended the experiments performed in Chapter 6 and test Tri-
bler at a larger scale where we focus on the identification of failures and the duration of operations commonly
performed by Tribler users. We will end with our conclusions and propose future work in Chapter 8.



2
Problem Description

The goal of this thesis project is to help Tribler mature from an experimental research prototype into production-
level code with reliable usage by millions of users.

After careful analysis it was decided that within the context of a nine month project the strongest contribu-
tion to the future of Tribler would be a reduction in technical debt. At this point we believe the project does
not need a particular focus on feature improvements, novel additional features, or boosting performance.
After more than ten years of software development by 111 unique contributors, the amount of accumulated
technical debt is worrying.

Tribler suffers from all various types of technical debt, including instability issues, race conditions, coding
style violations, code complexity, deferred infrastructure update decisions and feature pollution in the graph-
ical user interface. This is illustrated by the fact that there even is a dedicated file in the Tribler code base,
called hacks.py that facilitates various workarounds caused by incompatible software.

This thesis is focussed on a round of invasive maintenance and cleaning of the code and all other infras-
tructure such as the continuous integration (CI) environment and Tribler installers. Our work aims to ensure
that it is possible to conduct another decade of experimental research with the Tribler code base. The alter-
native is continued usage and uncontrolled expansion of the code, which is likely to lead to a forced clean
slate approach.

The structural problem is the lack of maintenance capacity. Each contributor to Tribler in the form of a bach-
elor, master, or PhD student needs to be primarily focussed on their thesis work. A thesis requires concrete
experimental results, contribution to theory, or both. We believe that the lack of student enthusiasm for fixing
bugs, writing documentation and the absence of a code review policy are the root causes of current state of
the code base and the huge amount of technical debt.

In the remainder of this chapter, various problems within the Tribler project will be highlighted and dis-
cussed.

2.1. A Large Code Base
Tribler has a large and complex code base. This makes Tribler an unattractive open-source project for exter-
nal developers to work on since the process to get familiar with the code base takes a considerable amount of
time. Figure 2.1 illustrates the number of commits per months over the past ten years of software engineering
in Tribler, reported by Open Hub[11]. The evolution of the amount of source lines of code (SLOC) is shown
in Figure 2.2. The magnitude of the project is also visible in Figure 2.3, where statistics about commits, con-
tributors and modification of code are summarized. From these figures, it becomes evident that Tribler has
continued to grow to a project with an unmaintainable amount of code. According to the basic software cost
estimation model COCOMO[30], the established costs of the project is $2,371,403 with an estimated effort of
43 person-years.

5



6 2. Problem Description

Figure 2.1: A history of commits per month on the Tribler project, as reported by Open Hub.

Figure 2.2: The evolution of lines of code in the Tribler project, as reported by Open Hub.

Figure 2.3: Statistics about modifications to the code base, as reported by Open Hub.

This continued growth can be explained by the fact that Tribler is a research-oriented prototype. Students
often contribute to Tribler by implementing a specific feature of the system, such as an anonymous down-
load mechanism, a credit mining system or an adult filter to hide explicit content in the user interface. After
delivery of these features, the student leaves the project and knowledge about that specific part of Tribler he
or she contributed to, might be lost. Afterwards, that part of Tribler transits to an unmaintained state, due to
lack of knowledge and manpower.

Continuous expansion of a system inevitably leads to feature pollution. During the lifetime of Tribler, no
single effort has been made to do a proper clean-up of the code, leading to huge amounts of accumulated
technical debt. If this trend continues, Tribler will evolve into a complex system where the choice to use a
clean-slate approach is favoured over continued usage of the current code base, leading to wasted develop-
ment effort and additional engineering work.

2.2. Lack of Maintenance
Many features of Tribler are completely unmaintained, either due to lack of knowledge or resource con-
straints. There are even some experimental features that are disabled due to malfunctioning.

The lack of maintenance is clearly visible in the messaging system of Tribler, the Distributed Permission Sys-
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tem (Dispersy). Dispersy is a platform to simplify the design and implementation of decentralized communi-
ties and is mostly designed and written by Zeilemaker and Schoon[56]. After these developers left the project,
knowledge of Dispersy disappeared and the system transited to an unmaintained state where the process of
fixing defects is being deferred.

Most researchers contributing to Tribler have a specific feature to deliver. This means that defects in other
unmaintained parts of Tribler are not prioritized, causing long outstanding issues on GitHub that are not re-
solved and delayed for many major or minor releases. Of the 300 open issues on GitHub, 100 of these issues
are open for over a year.

2.3. Architectural Impurity
The Tribler architecture has been subject to numerous major and minor modifications, leading to high amounts
of architectural debt. Started as a fork of Another BitTorrent Client (ABC), a torrent client based on BitTor-
nado, Tribler has evolved to an extensive platform that allows users to discover, manage, share and download
content. The evolution of the Tribler architecture will be explained in-depth in Chapter 3.

On the highest level of the code base, two main modules can be identified: the module with code that is
responsible for the GUI and the code that contains the implementation of core functionalities such as the
download engine. These modules have a mutual dependency on each other which is considered bad design
since the core of Tribler should not be dependent on code realising a user interface. We consider breaking
this dependency a high priority issue since it significantly impacts testability and modularity of Tribler.

Overall, the code base feels like a bunch of glued together research works where every developer has ap-
plied his own code style and practices. No clear design patterns can be identified throughout the code and
there is a staggering amount of legacy code that is either broken or unused. After more analysis of the core
module, we managed to identify various other issues, mostly related to code and design debt in the form of
undesirable dependencies, code style violations and code smells.

The code related to the GUI is of very poor quality and plague with an astounding amount of cyclic depen-
dencies. Having two files being dependent on each other, makes testing of the classes that these files contains
in isolation significantly harder. To get a better idea about the location of the main problems inside the pack-
age, we created an import graph of the GUI code base, presented in Figure 2.4. A red edge indicates that this
import dependency is part of a cycle. Besides the huge amount of cyclic references, we notice that there are
various files which seems to have a huge number of incoming references, possibly indicating that these files
have too much responsibilities and could benefit from a split into smaller components.

While the current decade of software engineering provides a plethora of visual design tools that requires
barely any hand-written code, our complete user interface consists of code that’s unmaintained and hard to
understand. Many features and visual elements in the GUI are unnecessary and unintuitive, impacting (visi-
ble) technical debt. Finally, the user interface has been written using the wxPython GUI framework which is
unmaintained since late 2014. The library builds upon native Application Programming Interfaces (APIs), i.e.
Cocoa on macOS and win32 on Windows. While the library claims to be cross-platform with a native look and
feel, various features in Tribler are limited to a subset of the supported platforms due to incompatibilities.

2.4. Unstable and Incomplete Testing Framework
Testing should be a responsibility of every developer that contributes code to Tribler. Over the past ten years,
this responsibility has been completely neglected by the majority of contributors, leading to a significant
amount of testing debt. This is clearly visible in Figure 2.5 where we plot the ratio between the amount of
code lines in the test suite (TLOC) and the number of code lines related to production code (PLOC). Tribler
has a structural lack of well-designed (unit) tests. Currently, around 100 tests are available that cover 71,2% of
the source lines of code located in the Tribler core. Many of these tests are taking over half a minute to com-
plete and are dependent on an active Tribler session. Only a small fraction of the test suite has characteristics
of unit tests. Having tests that are doing a broad range of operations, inevitably leads to undesired side-effect
and unstable tests. As far as we are aware, no attempt has been made to mock components of the system to
simplify testing and to focus on specific parts of the system that is subject to testing efforts.
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Figure 2.4: An import graph of the GUI code base. A red edge indicates that this edge is part of an import cycle.

There is an additional flaw that contributes to the instability of the current tests. A significant part of the
test suite depends on external network resources, ranging from torrent trackers and seeders to other peers
in the decentralized Dispersy network. This fragile architecture gives rise to failing tests due to unavailable
nodes, unexpected responses from external peers and other unpredicted circumstances.

In general, well-designed tests exclude any dependency on external resources that is outside the control of
the developer. This can be achieved by mocking method calls to return dummy data. Additionally, one can
make sure that the external resource is available in the local testing environment. For instance, when a test is
dependent on a specific torrent seeder, a local session can be started that seeds this torrent.

While Tribler is packaged and distributed for multiple platforms, the tests in our CI environment are only
executed on a machine running a Linux operating system. Limiting test execution to only one platform, low-
ers the overall code coverage and hides platform-specific bugs[14]. Tribler would greatly benefit from tests
that are executed on multiple platforms.
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Figure 2.5: The ratio between test lines of code (TLOC) in the tests package and production lines of code (PLOC) over time.



3
Architecture and Design

In this chapter, we first focus on the evolution of the Tribler architecture throughout the last decade of re-
search. Better understanding of the architectural and design decisions that have been taken in the past, will
help us to shed light on the question what contributed to the current state of the Tribler system. Next, we will
propose a new future-proof architecture that can be adopted in the next generation of Tribler.

According to the Open Hub tool[11] which gathers statistics about many open-source projects available on
the Internet, Tribler received code contributions from 111 unique contributors so far. This list is most likely
not exhaustive since some work of contributors might have been finished by other members of the Tribler
team or has never been merged into the main code base. A search query for Tribler in the repository of Delft
University of Technology1, yields a total of 66 search results, consisting of 35 results which are contributions
in the form of a MSc or BSc thesis and 31 research-oriented papers in the form of a PhD dissertation or (pub-
lished) research work.

The remainder of this chapter will present a historical view of the evolution of the Tribler platform, start-
ing in 2007 and concluding with the proposal of a new, robust and scalable architecture that is ready for the
next decade of research.

3.1. From ABC to Tribler: A Social-based Peer-to-Peer System
In April 2005, Tribler started out as a fork of the Another BitTorrent Client (ABC) application, an improved
BitTorrent client. ABC is based on BitTornado which extended from the BitTorrent core system, originally
written by Bram Cohen. ABC was shipped with a user interface and a variety of features to manage BitTorrent
downloads. The software utilizes the BitTorrent engine, at that time completely written in Python like the rest
of ABC. This is most probably the reason why the Python programming language is used for Tribler develop-
ment. In March 2006, the first public version of Tribler got released with version code 3.3.4.

In 2007, the first major research paper was published[44], describing Tribler as a social-based peer-to-peer
system. The key idea as described in this paper is that social connections between peers in a decentralized
network can be exploited to increase usability and performance of the network. This is based on the idea that
peers belonging to a social group are not likely to steal (free-ride) bandwidth from each other. Free-riding is
a phenomena that is widely observed in the regular BitTorrent network. The system architecture of Tribler as
described in the work of Pouwelse et al. is presented in Figure 3.1. We will now highlight the most important
components of this architecture.

3.1.1. Collaborative Downloads
The BitTorrent engine provides tools to download and seed files in a decentralized way using a BitTorrent-
compatible protocol. In addition, the module allows usage of the collaborative downloader feature which
significantly increases download speed by exploiting idle upload capacity of online friends in the network.
The implemented protocol to facilitate these collaborative downloads is called 2Fast and it uses social groups

1http://repository.tudelft.nl

9
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Figure 3.1: The system architecture of Tribler in 2007 as described in [44].

where members who trust each other, collaborate to improve their download performance.

The 2Fast protocol works as follows: peers that are participating in a social group are either collectors or
helpers. A collector is a peer that is interested in obtaining a complete copy of a particular file whereas a
helper is a peer that is recruited by a collector to help downloading that file. Both types of peers start down-
loading a file using the regular BitTorrent protocol and the collaborative download extensions. However, be-
fore a helper tries to obtain a file piece in the network, it first asks the collector for approval which is granted
when no other helpers have downloaded or are downloading the file piece in question already. Afterwards,
the helper peer sends the piece to the collector. According to the performed experiments, the maximum
achievable speed-up is 4 and 8 times respectively for ADSL and ADSL-2 internet connections, compared to
the regular BitTorrent protocol.

3.1.2. Geo-Location Engine
On the left side of the architecture in Figure 3.1, we notice the Geo-Location Engine, Peer Geo-Location Engine
and the map component in the user interface. The Geo-Location Engine is used to determine the physical
location of other peers in the torrent swarm, using the open hostip API2. The Peer Geo-Location Engine has
been built on top of this module, providing the primitives to display the location of peers on a map in the user
interface. This feature stems from the goal to ease the process of visual identification of potential collabora-
tors.

3.1.3. Content Discovery and Recommendation
On the right side of the architecture in Figure 3.1, we identify components to facilitate content discovery and
recommendations. The BuddyCast algorithm is designed to serve recommendations to users and to enable
peer and content discovery. BuddyCast is an epidemic protocol which works as follows: each peer in the net-
work maintains a number of taste buddies with their content preference lists and a number of random peers,
void of any information about their content preferences. Periodically, BuddyCast performs an exploration or
exploitation step: when an exploration step is executed, the peer connects to one of its taste buddies. When
an exploitation step is performed, the peer connects to a random peer in the network. When the connection
with the other peer is successful, a BuddyCast message is exchanged, containing the identities of a number of
known taste buddies along with their top-10 preference lists, a number of random peers, and the top-50 con-
tent preferences of the peer. The age of each peer is included in the message to help other users know about
the "freshness" of peers. After the BuddyCast messages are exchanged, the received information is stored in
the local database of each peer, called the Preference Cache. Information about discovered peers are stored in
the Peer Cache. To limit the exchange of redundant information, each peer maintains a list of recently con-
tacted peers.

2http://hostip.info
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The BuddyCast mechanism interacts with the user interface in two different ways. On the Files I Like page
in the user interface, each peer indicates its preference for certain files expressed as a score between 1 and
5. Initially, this list is filled with the most recent downloads of the peers. Second, the user interfaces dis-
plays similar taste buddies and facilitates a content browser where each item is annotated with an estimated
interest indicator for that user.

3.2. Tribler Between 2007 and 2012
The first version in the next generation of Tribler, version 4.0, was released in 2007[5]. Many features from
the 3.x release cycles are untouched and some new functionalities have been added, most notable in the user
interface. With a new embedded video player, users are able to play videos (while being downloaded) directly
from within the user interface. This video player is powered by the popular VLC library3 and a compatibility
library that facilitates video management and playback in various popular user interface libraries. Tribler 4.0
allowed users to search for content inside the Tribler network but also supported searches of content avail-
able on YouTube4 and LiveLeak5. These search results were presented in a YouTube-like thumbnail grid to
the user. The user interface of Tribler 4.0 is displayed in Figure 3.2.

Figure 3.2: The user interface of Tribler 4.0.

The development of Tribler continued with the release of version 5.0 in 2009[7]. The user interface has been
subject to a complete redesign, introducing a dark theme, which was replaced by a white theme shortly after
release. The focus of Tribler 5.0 has been on the stability and performance of remote content search and the
download mechanism. The thumbnails have been dropped in favour of a paginated list.

Tribler 5.1 contained some major improvements to the user interface, thanks to feedback of the community.
A new, novel addition in Tribler 5.2 is the concepts of channels, similar to YouTube. One goal of the orga-

3http://www.videolan.org/vlc/
4https://www.youtube.com
5http://www.liveleak.com
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nization of content into channels was to prevent spam inside the network by favouring content available in
more popular channels. Whereas custom widgets with an own look-and-feel have been used in this version,
they all got replaced in Tribler 5.3 by native buttons to create a more natural feel on each supported platform.
Additionally, a tag cloud with popular keywords have been added to the home page of Tribler to help users
determine which content they possibly want to look for. The paginated list was replaced by a single, scrol-
lable list of items. In the next release, Tribler 5.4, a magic search feature has been implemented where similar
search results are collapsed using text similarity functions and digit extraction. The usefulness of this feature
is apparent when searching for content that is split into several parts such as a sequel of books or a television
show. This idea is that this feature leads to a much cleaner and comprehensive results list when searching for
content.

The final release in the 5.x series, Tribler 5.9, bought some major additions. The complete BuddyCast core
has been rewritten, moving away from a TCP overlay to an implementation based on UDP, providing bene-
fits to the compatibility with Network Address Translation (NAT) firewalls. Tribler adopted the Peer-to-peer
streaming peer protocol (PPSPP) protocol[13], implemented in libswift[33], PPSPP provides download capa-
bilities over UDP, thus removing the TCP layer from the BitTorrent engine.

The architecture around the time of Tribler 5.5 is depicted in Figure 3.3. We notice that this architecture
is significantly more complex compared to the design as presented in Figure 3.1. The architecture excludes
the structure of the user interface which is equally complex. This model is the result of gradually adding and
modifying smaller components in Tribler that have been developed during research, such as 2fast, BuddyCast
and the Secure Overlay, providing a high-level communication mechanism. We notice four different threads
that need to work together, contributing to the complexity of the code since developers need to be aware of
context switches (the jumping between different threads during execution of the application). Whereas the
project contained around 45.000 lines of code in 2007, this number has increased to over 90.000 in 2010.

Figure 3.3: An overview of the core architecture around the time of Tribler 5.5.
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Community name Purpose
AllChannel Used to discover new channels and to perform remote channel search operations.
BarterCast4 While currently disabled, this community was used to spread statistics about the up-

load and download rates of peers inside the network and has originally been created
as a mechanism to prevent free-riding in Tribler[37].

Channel This community represents a single channel and is responsible for managing tor-
rents and playlists inside that channel.

Multichain This community utilizes the blockchain technology and can be regarded as the ac-
counting mechanism that keeps track of shared and used bandwidth.

Search This community contains functionalities to perform remote keyword searches for
torrents and torrent collecting operations.

(Hidden)Tunnel This community contains the implementation of the Tor-like protocol that enables
anonymity when downloading content and contains the foundations of the hidden
seeder services protocol, used for anonymous seeding.

Table 3.1: An overview of implemented Dispersy communities in Tribler as of July 2016.

3.3. Tribler between 2012 and 2016
Shortly after the release of Tribler 5.9, version 6.0 is released where a new user interface has been imple-
mented and the PPSPP protocol implementation has been replaced by the libtorrent library, written in C++6.
This release contained minor bug fixes that increased performance and usability in general. After the release
of version 6.0, several smaller releases (6.1, 6.2 and 6.3) followed. The focus of the Tribler platform shifted
toward the realisation of anonymous downloads and end-to-end encryption, designed and implemented by
Plak, Tanaskoski and Ruigrok in 2014 and 2015[42][52][46]. The Tribler 6.4 release shipped an experimen-
tal anonymous download mechanism and hidden seeding services implementation. Additionally, the release
also introduced a Trivial File Transfer Protocol (TFTP)[50] implementation, a simplified version of the popular
File Transfer Protocol (FTP)[43], commonly used to transfer files over the Internet. TFTP in Tribler is utilized
to exchange torrent files between peers in Tribler when searching for content. The Tribler 6.4.1 release con-
tained some major security fixes after an external code review by a member on the Tor mailing list[10].

We will now describe two major dependencies of Tribler: Dispersy and Twisted. These dependencies are
crucial for a correct functioning of Tribler and a basic knowledge of the working of these dependencies is
beneficial when developing for Tribler.

3.3.1. Dispersy
With the release of Tribler 6.1, Dispersy got introduced as dependency. Described in [56] and mainly de-
veloped by Zeilemaker and Schoon, Dispersy lies at the foundations of the messaging and synchronization
system in Tribler and is designed to deliver messages reliably in unpredictable networks. It provides a NAT
traversal mechanism to improve the extent to which users are connectable in the network. Dispersy provides
tools to create distinct overlay networks, called communities, that peers can join and where messages can be
exchanged. The implemented communities in Tribler, together with a short description, is presented in Table
3.1. While being a major dependency of Tribler, an extensive analysis of Dispersy is considered outside the
scope of this thesis.

3.3.2. Twisted
In 2014, it was decided to make significant changes to the architecture by utilizing the Twisted library, an
event-driven networking engine written in Python7. Twisted allows programmers to write code in an asyn-
chronous way. The utilization of Twisted has been motivated by the presence of various callback mechanisms
in Tribler as can be identified in Figure 3.3. The library provides a simple model for handling callbacks and
events. At the heart of Twisted, we find the reactor which is the implementation of the event loop[12]. The
event loop is a programming construct that waits for and dispatches events or messages in a Python applica-
tion.

6https://github.com/arvidn/libtorrent
7https://twistedmatrix.com/trac/
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The threading model as present in Tribler 6 has been illustrated in Figure 3.4. In most applications that are
using Twisted, the reactor operates on the main thread of a Python application. In Tribler, the reactor runs on
a separate thread since the main thread is occupied by the event loop of wxPython, the library used to realise
the user interface. This means that code performing operations with the user interface such as a refresh of a
list, should always be executed on the main thread in Python. Operations that are using Twisted constructs
however, should be scheduled on the reactor thread to function correctly. The Twisted threadpool provides a
pool of additional threads to dispatch work to and can be utilized for longer-running operations that should
not block the main or reactor thread. To make context switching more easy to implement, several method
decorators have been implemented by Tribler developers, visible in Figure 3.4.

Developers should always be aware of the threading context when implementing new features or modify-
ing existing ones. Long, blocking calls on the main thread should be avoided as much as possible since they
lead to an unresponsive user interface during the execution of that method. However, database calls should
be scheduled on the reactor thread. While this architecture reduced the number of threads we have to man-
age compared to Figure 3.3, we are still stuck with a dedicated thread for the Twisted reactor and confusing
thread switching patterns.

Figure 3.4: The threading model used by Tribler 6, together with the primitives to schedule operations on different threads.

3.4. The Roadmap of Tribler
In the previous section, the evolution of Tribler has been discussed. We have illustrated the increased com-
plexity in terms of the architecture, design and threading model over time. We now turn our attention to the
future of Tribler and propose a new architecture where we address some of the design flaws introduced in
previous development iterations of Tribler. This new architecture should prepare Tribler for another ten year
of research. We start by defining three requirements that our new architecture should meet:

• simplicity: we wish to shift towards an architecture that has a better learning curve for new developers
that are not familiar with the code base. The current architecture is hard to learn, prone to errors and
has a complex threading model, increasing the time for new developers to get familiar with the code. By
simplifying the architecture, we save developer time and increase possibilities for contributions from
external developers outside the Tribler organization.

Creating a simplified architecture inevitably leads to decisions whether to remove unnecessary, un-
used or broken components. The current architecture has various features for which we believe that
the maintenance costs outweighs the benefits of that particular feature for end users. Making decisions
to remove some components and thus code, can lead to a significant reduction of technical debt.

• flexibility: by introducing a sufficient level of flexibility in the system, developers can focus on the devel-
opment of individual components when contributing. While we can identify many different modules
in Figure 3.3, there are still numerous interdependencies between them, making it hard to modify and
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test parts of the system in isolation. We propose a methodology based on component-based software
engineering, where we provide interfaces between components to communicate with each other. The
user interface should be implemented as a separate component, in comparison to the current archi-
tecture where the core and user interface cannot be used as separate modules (this will be elaborated
in more detail in Section 5.5.1).

• focus on performance: Tribler contains various time-critical components that should work reliably and
fast. Examples of such components include the download engine, the anonymous overlay and the
content discovery mechanisms. Several development tasks have been conducted that are focused on
performance optimization of individual components or on the system as whole.

The new architecture should be designed with future performance engineering in mind. An unclear
and unstructured architecture causes overhead for developers when boosting performance as is for in-
stance illustrated by the thread switching mechanisms necessaries to implement a specific feature that
utilizes both the Tribler core and the user interface. By considering performance engineering early in
the process, we can adjust our architecture to allow for performance modifications in the future.

We propose the architecture depicted in Figure 3.5 which design follows a layered, component-based ap-
proach. The remainder of this section will discuss components in the architecture in more detail and high-
light decisions that have been made during the design process.

Figure 3.5: The proposed architecture of Tribler 7, consisting of a trusted overlay (1), a content-discovery mechanism (2), libtribler (3)
and a user interface (4).
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3.4.1. Trusted Overlay
The trusted overlay is the lowest layer in Tribler and provides primitives for discovering new trusted peers in
the network. At the lowest level of the trusted overlay, we identify the trusted walker, a central component for
discovering other peers.

Currently, the Dispersy framework is responsible for discovering new peers within the network, using a gos-
siping protocol[56]. This discovery mechanism is illustrated in Figure 3.6 and executed at fixed time intervals.
It works as follows: suppose node A wants to discover an additional peer. First, he sends an introduction-
request message to a random peer he knows, say node B. Node B now replies with an introduction-reply
message, containing information about a node that B knows, in this case node C. Meanwhile, node B sends
a puncture-request message to node C which in turn punctures the NAT firewall of node A, making sure that
node A can connect to him. This algorithm both provides a NAT-puncturing mechanism and allows a node
to discover new peers.

Figure 3.6: The peer discovery and NAT puncture mechanism as implemented in Dispersy.

The described mechanism of discovering new peers using Dispersy will be replaced by a trusted walker that
uses accumulated reputation in the Multichain community, the accounting mechanism that keeps track of
shared and used bandwidth, providing more reputation when a user provides upload capacity to help other
users. The key idea is that sybil nodes (forged identities in the network) and free riders (peers that are only
interested in downloading content while not actively uploading to help other peers) are ignored and not con-
sidered as trusted peers since their reputation is low and are not likely to be selected by the trusted walker.

New peers in the network that have not accumulated any reputation yet, start out by creating some random
interactions with other nodes while learning about the network and the amount of reputation of other peers.
With an interval, every node runs an algorithm to calculate the reputation of their known peers. The amount
of uploaded and downloaded data does not have to be the only factor of this reputation mechanism: the up-
time of the user in question can also be considered, where a higher uptime might lead to a better reputation
and thus a higher trustworthiness. This leads to a trust network where each node knows about other trusted
peers with which they can exchange content.

Interaction with the trust overlay can be realised by using an higher-level Application Programming Inter-
face (API) which provides the facilities to perform operations regarding the discover of new trusted peers and
management of known ones. By providing a trusted overlay API, the component allows for easy reuse in other
projects which is beneficial when the module will be published as an open-source project.

3.4.2. Spam-Resilient Content Discovery
Discovering content is a key feature of Tribler. The spam-resilient content discovery component allows users
to discover and search for torrents, channels and playlists using peers discovered by the trusted overlay.
The current implemented mechanism for information exchange in Tribler where messages are disseminated
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within segregated communities works well enough for this purpose, except for the exchange of more ex-
otic meta data such as content thumbnails. Providing users with a visual preview of content in the form of
thumbnails is an opportunity to make the user interface more appealing, however, a robust implementation
in a complete decentralized network is challenging due to the fact that the content can be present in a huge
volume, thus increasing the total size of the thumbnails that have to be synchronized. We wish to keep over-
head introduced by thumbnail synchronization to a minimum and we must have a decent filtering algorithm
to avoid inappropriate imagery from being shown in the user interface. These features will be considered
future work and are not discussed in the remainder of this thesis.

3.4.3. libtribler
libtribler provides primitives to developers to make use of the above described components and contains the
implementation of a RESTful API that is used to communicate with it. We will now discuss the components
which together account for this layer.

Download Engine
The download engine is one of the most crucial parts in Tribler: before facilitated by the BitTorrent and lib-
swift libraries, we currently utilize the open-source libtorrent library to facilitate decentralized downloads.
libtorrent is written in the C++ programming language, however compatibility layers for various other pro-
gramming languages such as Python, Go and Java are available. libtorrent uses an alert mechanism to notify
the application that is using the library about events, such as download state transitions, peer discovery in the
torrent swarm or completion of a meta info lookup in the Distributed Hash Table (DHT). There are no benefits
for replacing the current download engine with another library that allows to download torrents. Moreover,
the current way libtorrent is used in Tribler requires minimal changes to adhere to the proposed architecture,
except for some optional refactoring of the current code. This includes a revision of the code to remove calls
to deprecated methods in the libtorrent library.

We should note that the method to fetch peers from the DHT in libtorrent is private and not accessible from
Tribler. Under normal circumstances, this method is only invoked by libtorrent, however, we manually call
this method when performing a DHT lookup on behalf of another peer during the execution of the hidden
services protocol, described in more detail in [46]. To still be able to perform a lookup of peers in the DHT, we
make use of a third-party library, named pymdht8, an implementation of the DHT protocol, written in Python
and available on GitHub. This dependency is undesirable since it introduces extra complexity and load of the
system. Effort should be made to make the desired method accessible in libtorrent so Tribler can get rid of
the dependency.

Video Streaming Server
The video streaming server streams the video data to a video player outside libtribler after or during a down-
load. The implemented video server in the current architecture listens for and serves HTTP requests and
is implemented using the SimpleHTTPServer library9, a built-in Python module that can be used to build
a HTTP web server. The functioning of the video server is based on HTTP range requests (where a specific
range of a file is specified in the request header), allowing the web server to serve a subset of a file when the
user jumps to a random time position during video playback.

The inner working of the video player is illustrated in Figure 3.7 and works as follows: when the user starts
playing a video in an external video player, the player performs a HTTP range request to the video server
implemented in Tribler (1). This range request contains information in the header about the requested byte
range of the video file. When the video server receives the request, it first checks whether the requested range
has been downloaded by the download engine (libtorrent) already. If so, the server returns the requested data
to the client (5). If the requested range is not available, the video server notifies libtorrent that the bytes in
the requested range should be prioritized for download (2), reducing the latency before the requested range
is completely available. The download engine waits until all bytes are downloaded and when the requested
range is downloaded, the video server is notified about this event (4) and completes the request by sending
the data to the client (5).

8https://github.com/rauljim/pymdht
9https://docs.python.org/2/library/simplehttpserver.html
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Figure 3.7: The sequence of operations when performing a HTTP range request when streaming a video using Tribler.

While the video server in the current form is functional, there is a performance improvement that we should
consider: the video player currently runs on a separate thread. By integrating the video server inside the
Twisted reactor thread, we can reduce the complexity of the server and utilize all of the functionalities that
Twisted provides, for instance, managing incoming HTTP requests. An additional consideration could be to
run the video server in a dedicated process, separate from Tribler. This might increase the complexity since a
communication mechanism between the Tribler and video server processes is required to inform libtorrent
about the prioritization of pieces. Since it is easier to integrate the video server in Twisted, we might consider
to create a separate process only if we encounter performance issues when running the video server.

Family Filter
The freedom to upload any type of content in the network, comes with a price. The legal aspect of the avail-
able content in Tribler can be disputable. While Tribler contains legal content such as pornographic material,
that content might be undesirable for most casual users. A mechanism called the family filter is implemented
to filter out content that is not always safe for display. This filter is enabled by default and uses a list of key-
words that can be associated with pornographic content. Discovered torrents gets classified by this filter,
based on the torrent name, file names and other meta data. Unfortunately, this ad-hoc approach is not very
effective since there are quite a few false positive classifications. While it provides some basic filtering, we
noticed that the keyword-based approach can be greatly improved by using a more sophisticated classifica-
tion approach such as collaborative voting. However, we would consider this as an enhancement rather than
a defect that prevents a correct usage of Tribler.

CreditMining
Ongoing work on a credit mining system (CMS) in decentralized systems has been extensively described by
the work of Capotą et al[17] and is defined as the activity performed by peers for the purpose of earning
credit. A possible purpose of the earned credits is to access exclusive content or receiving preferential down-
load treatment in case of network congestion. Although the credit mining component is not enabled for
end-users by default, a CMS has been implemented in Tribler, responsible for contributing bandwidth to the
community without any intervention of the user. This mechanism is displayed in Figure 3.8 and works as fol-
lows: first, the user selects a source of swarms for the CMS to take in consideration. Possible swarm sources
are Tribler channels, RSS feeds or a directory containing one or more torrent files. Next, the CMS periodically
selects a subset of the chosen swarms by the user. Finally, Tribler joins the swarms and tries to maximize
earned credits by downloading as little as possible and by maximizing the amount of uploaded data.

The CMS can apply different policies for swarm selection. The first policy is to selects a swarm with the low-
est ratio of seeders to all peers (leechers and seeders). Intuitively, this boosts swarms that are under-supplied
(having a low amount of seeders). The second policy is to select swarms based on the swarm age. The intu-
ition behind this policy is that newer content is often better seeded so it might be more beneficial to boost
older swarms. The final policy that can be used is a random policy that selects a swarm using a uniform dis-
tribution.
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Figure 3.8: The credit mining system described in the work of Capotą et al.[17]

This credit mining mechanism is a convenient way for users to increase their reputation by supplying band-
width to the community, requiring minimal intervention. The CMS functions in conjunction with the Multi-
chain community which is used as accounting tool to keep track of downloaded and uploaded bytes.

ChannelManagement
Tribler allows users to create their own channel and share content within that channel. Content can be shared
in the form of torrents and playlists where a playlist is composed of a bundle of potentially related torrents,
for instance, some episodes of a tv show. Users can add content to the channels of other users, providing that
the owner of the channel has set the type of the channel to open. Other channel types include semi-open and
closed where the difference between these two types is that in a closed channel, users cannot write comments
on torrents.

3.4.4. Communication Between the GUI and libtribler
The communication between the the GUI and libtribler should be facilitated by a Representational State
Transfer (REST) API. The REST architecture was introduced and defined by Roy Fielding in 2000[24] and is
used frequently when building APIs that operate on the World Wide Web. A service that conforms to the REST
architecture, is called RESTful.

In a RESTful architecture, resources and collections, identified by Uniform Resource Identifiers (URIs), are
returned by servers to clients that performed a request. Common HTTP operations (GET, POST, PUT and
DELETE) are used to manipulate or retrieve these resources and collections. Table 3.2 provides a summary of
the most common operations that are used in a RESTful API, together with their semantic meaning.

Resource type GET PUT POST DELETE
Collection Retrieve the col-

lection.
Replace the col-
lection.

Create a new entry
in the collection.

Delete the collec-
tion.

Item Retrieve the item. Replace the item,
create it if it does
not exist yet.

Often not used. Delete the item.

Table 3.2: A summary of REST verbs and their meaning when dealing with a resource collection or a single item.

Prior to implementation of this API, we can already define some of the resources and collections. In Tri-
bler, we can identify torrents, channels, playlists and downloads as collections that should be available for
retrieval or modification using the API. Other than that, we might define a debug collection that contains
various statistics that are tracked by Tribler so developers can build debug tools, helpful during modification
of features, performance measurements or when solving defects.

A RESTful API provides a flexible and high-level interface that allows developers to write applications that
are using Tribler, ranging from command-line interface (CLI) applications to appealing user interfaces. A
great benefit is that the implementation of these utility applications is not bound to a specific programming
language, providing implementation freedom to developers. Moreover, it allows to run the these applications
and Tribler in separate environments, improving responsiveness, flexibility, performance and testability.
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3.4.5. Graphical User Interface
The user interface is located at the highest level of the Tribler architecture stack. The user interface should
be able to communicate with the Tribler core using the RESTful API as described in the previous section. A
critical feature of the user interface is the ability to play and control a video. The current user interface uses
the wxPython compatibility library for the VLC player, however, these bindings are not functional on macOS
due to differences in the platform architecture.

The implementation of this interface is not limited to a specific programming language, however, to be able
to reuse prior-existing logic and in the Tribler code base, it is a decent choice to write the GUI in Python.
Since the programming language is high-level and relatively easy to learn, new developers can easily make
modifications to the user interface. We might also consider to refactor the current user interface to support
the API. This consideration will be analysed in more detail in Chapter 4.

3.4.6. Requirements Conformance
In Section 3.4, we defined three requirements that our architecture should meet: simplicity, flexibility and
a focus on performance. After the proposal and discussion of the new architecture, we will now evaluate to
what extent our proposed design meets the requirements we composed.

Simplicity
Our first requirement was simplicity. The architecture as depicted in Figure 3.3 is complex and has a steep
learning curve for new developers. The proposed architecture is simpler by design and more divided into sep-
arate components, increasing re-usability and testability. When modifying a specific component in a layer,
developers should not have to care about the layers below the layer that is being modified. In this sense, the
architecture meets our requirement that it should be more comprehensible and usable for developers.

Flexibility
The APIs that are facilitating communication between the layers in the architecture, increases the flexibility.
As described in Section 3.4.4, the RESTful API allows a great amount of flexibility for developers. We strive
towards an implementation where individual components can easily be toggled by developers using a con-
figuration file. Some components should also be configurable by users, such as the credit mining mechanism.

FocusOn Performance
One addition reason to split the architecture into different components, is based on performance engineering
efforts performed on the system. By having components that are communicating with each other through
an API, we are able to more easily extract and refactor these parts of the system in separate processes later
on, thus increasing performance since different processes can utilize more CPU cores. Also, performance
engineering is easier if the components can be modified in isolation.



4
Towards a New Architecture

The discussion in Chapter 3 concluded with the proposal of a new future-proof, layered architecture. We
now present our implementation steps towards the new architecture with the implementation of a new user
interface and the RESTful API to communicate between the GUI and libtribler. We will consider libtribler in
more detail in Chapter 5.

4.1. RESTful API
As described in Chapter 3, communication between the user interface and the core of Tribler is facilitated by
a RESTful API in our design. This section explains the implementation details of this API.

The REST API has been implemented using facilities provided by the Twisted library. While there are plenty
of Python solutions available that allow developers to build a web server, we made the choice to use Twisted
since it is already utilized to a great extent in Tribler. With the ability to integrate the REST API into the main
application flow, we avoid having to create special constructions to execute the API on a separate thread like
we are doing now with the video server. Currently, there are 38 different endpoints implemented, including
endpoints to get information from the Multichain community, created by other Tribler developers. The API
in Twisted is represented as a tree of resources which is in accordance with the REST architecture where the
URL of a request can be treated like a path in the resource tree. If we visualize the import graph of the package
that contains the implementation of the API, this tree-like structure is somewhat visible, see Figure 4.1. We
will now highlight and discuss some important files in this API package:

• rest_manager.py: this file contains the RESTManager class which is responsible for starting and stop-
ping the API. In addition, it contains the RESTRequest class which is a subclass of server.Request (in-
stantiated by Twisted on an incoming request) and handles any exception that occurred during the
execution of a HTTP request. Error handling in the API is discussed in Section 4.1.1.

• root_endpoint.py: this file hosts the RootEndpoint class which represents the root node of our resource
tree. This class dispatches all incoming requests to the right sub nodes in the resource tree.

• util.py: this file contains various helper functions used by classes of the REST API, such as conversion
utilities to easily transform channel and torrent data originating from the database into JavaScript Ob-
ject Notation (JSON) format that can be sent to the client that initiated the request.

Data returned by the API is usually structured in JSON format. This format is well adopted in the field of web
engineering, easy to parse and human-readable. However, in some occurrences we do not return JSON but
instead, binary data. An example of this is when exporting a torrent file where we return the (binary) content
of the torrent file instead. While introducing some kind of inconsistency in the API, sometimes outputting
the raw file instead allows for easier management of the request response when performing requests from the
command line since developers do not have to decode and parse the JSON object first.

Most of the API endpoints are straightforward implementations: the client performs a request and some
data is returned, possibly originating from the persistent database. There are situations where the client does
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Figure 4.1: The import graph of the REST API module.

a request and a asynchronous stream of data is preferred. For instance, this occurs when the user performs
a search query. In some occurrences, data should be returned to the client, even if the client did not ask for
this data. When a crash in the Tribler core code occurred, the client (possibly a GUI) should be notified of
this crash and possibly warn the user that he or she should restart the application. This motivates the design
of an asynchronous events stream that notifies clients about interesting events in Tribler. This event stream
has been implemented and all messages that are sent over the events connection are presented in Table 4.1.
Developers can add new events with only a few lines of code, making it easy to extend this events endpoint.

The start procedure of the REST API proceeds in two steps during the initialization of Tribler: first, we enable
the asynchronous events connection after which the upgrade procedure in Tribler starts. Next, when Tribler
has completely started, we enable the other endpoints. By starting the RESTful API in two steps, we are able to
broadcast events that are happening during the upgrade procedure. This way, the user interface can already
display the status of the upgrade procedure, even when Tribler itself has not fully started yet.

Listing 4.1: The response in JSON format returned when an exception is observed in Tribler during the processing of an API request.

{
" error " : {

"message " : " integer divis ion or modulo by zero " ,
"code " : " ZeroDivisionError " ,
"handled " : f a l s e ,
" trace " : [

" F i l e \"/ Library /Python /2.7/ s i t e−packages/ twisted /web/ server . py \" ,
l i n e 183 , in process \n s e l f . render ( resrc )\n" ,
. . .

]
}

}
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Event name Description
events_start The events connection is opened and Tribler is ready to send events.
search_result_channel Tribler received a channel search result (either remote or from the local

database). The event contains the channel result data.
search_result_torrent Tribler received a torrent search result (either remote or from the local

database). The event contains the torrent result data.
upgrader_started The upgrade procedure in Tribler started.
upgrader_tick The status of the Tribler upgrader changed. This event contains a human-

readable string with the status update, usable for display in a user inter-
face.

upgrader_finished The Tribler upgrader finished.
watch_folder_corrupt_torrent The watch folder module has encountered a corrupt .torrent file. The

emitted event contains the name of the corrupt file.
new_version_available A new version of Tribler is available. The version number is part of the

event information.
tribler_started Tribler has completed the start up procedure and is ready to serve HTTP

requests on all endpoints.
channel_discovered A new channel has been discovered. The events contains information

about the discovered channel.
torrent_discovered A new torrent has been discovered. The events contains information

about the discovered torrent.

Table 4.1: An overview of all events that are passed over the events connection, part of the REST API.

4.1.1. Error Handling
A proper designed API should have a mechanism to notify users about any internal errors that occurred dur-
ing requests. Our API returns HTTP response code 500 (internal server error) when we observe an exception
during execution of requests. Moreover, we return a JSON-encoded response that contains more specific
information about the observed exception such as the name of the exception, whether the error has been
handled by the core and if available, the stack trace of the exception. An example of an error response re-
turned in case of an exception is displayed in Listing 4.1.

4.2. The Graphical User Interface
The amount of accumulated technical debt in the current GUI of Tribler is devastating. After going through
several development cycles where some impacting changes to the user interface have been made, the code
base has reached the point where it might be more beneficial to design and implement a complete new user
interface. 29.3% of the Tribler code base, excluding Dispersy, is related to the user interface. We now will
continue the discussion that has been initiated in Chapter 2 regarding the architecture of the user interface
package. First, the structure of the current user interface will be described. We will make the consideration
between refactoring efforts of the existing wxPython user interface or designing and implementing a new
one.

4.2.1. Analysis of the Current GUI
The user interface of the latest version of Tribler, 6.5.2, is unintuitive and cluttered with unused and unnec-
essary visual elements. There are various spelling errors in buttons and the navigation through the GUI is
complex. The interface feels uncomfortable for users that are using Tribler for the first time and there are
no instructions or guides for these users. For instance, when users are starting Tribler, there is no indica-
tion about the content discovery process in the background. This is one of the improvements to the GUI we
should consider to make.

When focussing on the code base by performing a manual code review, we notice that it is full of undesired
workarounds and bad coding practices (code smells). The user interface code package contains over 20.000
SLOC and contains very few code comments. Some functionality that should be located in the core module, is
present in the user interface package, including a relevance sorting algorithm of search results, code to man-
age important configuration settings and a large part of the start up procedure of Tribler. We were unable to



24 4. Towards a New Architecture

find a documented structure throughout the code and we can think of several reasons underlying that. One
of the causes is the mindset of developers that the code base of the user interface is subordinate to the code
related to core functionalities of Tribler: while it is often true that minor defects in the GUI are less critical
than errors in important core functionalities such as the download engine, developer should always strive
to write maintainable and well-designed code to prevent large amounts of technical debt in the long term,
a responsibility which is clearly neglected by user interface developers of Tribler. The fact that the GUI has
undergone dramatic changes throughout ten years of research and development is an additional reason that
led to this unstructured code base. Short-term decisions including quick and dirty fixes were favoured over
decisions that benefit the longer-term development process, leading to many code smells and huge amounts
of technical debt. Additionally, developers feel that it might not be necessary to write tests for modifications
in the user interface, making it easy to recklessly modify the GUI.

By investigating the structure of the user interface code base, various files with many class definitions can
be found. We already presented the import graph of the user interface code base in Chapter 2, Figure 2.4
where many cyclic dependencies can be identified. While cyclic dependencies are not always undesired at
the level of classes, we are dealing here with a web of dependencies between files, each file possibly consisting
of multiple class definitions. Automated testing of individual classes has become significantly more involved
with these dependencies.

We now turn our attention to the layout of user interface, where we use the wxPython inspection tool to
investigate the widget structure of the interface at runtime. We noticed here that the naming convention of
widget elements is unclear and does not represent content that the widget should present. For instance, the
ActivityListItem class is representing a list item in the left menu of Tribler, however, the class name is confus-
ing since the purpose of this list item is not necessary a specific activity. We think that something along the
lines of MenuListItem would be a more appropriate and clear name.

We noticed that the developers of user have attempted to reuse widget elements, especially noticeable in
list-related widgets such as headers, footers and list row items. However, we think this should be classified as
a failed attempt since the amount of flexibility is too much: by making widgets adapt to many different use-
cases in the user interface, the complexity of the class definition increases significantly due to conditional
code that is only executed in a subset of all the supported use-cases. We consider this an addition reason for
the bad architecture as displayed in Figure 2.4.

It is hard for developers to get familiar with the code base of the user interface and to modify it. We think
the most appropriate metaphor of the user interface code base is a big ball of mud, proposed by Brian Foote
and Joseph Yoder in 1997[25]:

A Big Ball of Mud is a haphazardly structured, sprawling, sloppy, duct-tape-and-baling-wire, spaghetti-
code jungle. These systems show unmistakable signs of unregulated growth, and repeated, expe-
dient repair. Information is shared promiscuously among distant elements of the system, often to
the point where nearly all the important information becomes global or duplicated. The overall
structure of the system may never have been well defined. If it was, it may have eroded beyond
recognition. Programmers with a shred of architectural sensibility shun these quagmires. Only
those who are unconcerned about architecture, and, perhaps, are comfortable with the inertia of
the day-to-day chore of patching the holes in these failing dikes, are content to work on such sys-
tems.
- Brian Foote and Joseph Yoder, Big Ball of Mud[25].

Due to the bad structure, the huge amount of code smells and high complexity of the code, we think that it is
not worth the effort to refactor the code base of the current user interface and that it saves time to work on
the design and implementation of a new user interface. However, we should think about a migration plan:
while designing a new interface, critical issues should still be fixed in the current user interface code. By
guaranteeing a minimal maintenance level of the wxPython GUI, we are not under time pressure to ship the
new interface in a specific release of Tribler. Only when the new user interface is ready, stable and tested, we
will remove the old user interface.
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4.2.2. Choosing the Right Tools
Before designing and implementing the new user interface, we should first decide which library we would
like to use for this task. Because our proposed architecture in Figure 3.5 is communicating to libtribler using
a RESTful API, this library does not necessary has to support the Python programming language. However, to
make reuse of code easier and to maintain a consistent system, we will implement our new user interface in
Python. There are plenty of Python libraries that are suitable for this and below, several of such libraries are
summarized, together with a small description for each library:

• wxPython[45]: this is the current GUI library utilized by Tribler. wxPython is built upon wxWidgets (a
C++ GUI library)1 and provides the Python interface to this latter library. The library is cross-platform
and we might choose to utilize wxPython in the new GUI. We already have a large code base written in
wxPython so continued usage of this library allows us to reuse several widgets. The main disadvantages
of this library are the minor inconsistencies across different platforms, the incompatible video player
on macOS and the lack of a visual designer, requiring us to specify the complete layout in Python code.

• Kivy[49]: the cross-platform library Kivy has been used already by Tribler developers, particularly in
past attempts to run Tribler on Android[22][47]. A decision to make use of the Kivy library for a new
user interface enables us to reuse the interface logic already available for the Android app. The layout
can either be implemented using .kv files or specified in code. While the library is rather new, it has
gained significant attention and adoption in the Python community.

• Tkinter[34]: the Tkinter library is built upon the Tcl/Tk framework and is considered the de-facto GUI
library for Python. Like wxPython, Tkinter does not provide a visual designer. The library is built-in
in Python which means that no additional libraries have to be installed in order to start writing code.
Tkinder however is considered more suitable for simple applications due to the simplistic nature of the
library.

• PyQt[51]: PyQt provides the Python bindings for the Qt framework and is widely used in open-source
and commercial applications. With a first version released in 1995, the Qt framework has evolved into a
mature, well-maintained state. The library has a large documentation base and provides many different
plugins to support a wide range of applications. One of these plugins is a visual WYSIWYG designer
where the layout of an interface can be specified in a drag-and-drop manner. This generates a xml file
which can be read and parsed by Qt. Visual styles in the GUI can be specified using the Cascading Style
Sheet (CSS) language, widely used when designing websites. The latest version of PyQt is PyQt5.

Since the GUI will be an important aspect of Tribler, we wish to use a library that is mature, future-proof,
well-maintained, easy to use and offers a large amount of tools so we can reduce the SLOC count that has
to be maintained. We think that in the context of this thesis, choosing PyQt is the best choice to build a
new user interface. The fact that we can specify our layout using a visual editor is an enormous advantage
since this will mean that we have less Python code to maintain. In addition, the visual designer allows other
developers that are not familiar with the Tribler code base to contribute to the GUI. The Qt visual designer
also offers abilities for translation of the user interface in multiple languages. Tasks like these are perfect
opportunities for contributions in an open-source project and can attract new developers. A screenshot of
the visual designer in Qt is visible in Figure 4.6.

4.2.3. Designing the New GUI
Designing an attractive, user-friendly interface is a non-trivial task and creating a proper design together with
mock-ups, is a thesis task itself. Since the design of the new user interface is important but should not be the
main focus of this work, we decide to adopt various design principles of existing applications that contain
somewhat similar functionalities of Tribler.

In 2008, two design studies have been conducted on the Tribler GUI by master students[2][3]. These stud-
ies have shown that the Tribler user interface contains various inconsistencies and lack of visual feedback.
Various users reported frustration due to features that did not function as they expected. This is a common
phenomena when designing a user interface as a developer: developers tend to assume that users under-
stand concepts integrated in the user interface, such as torrents and channels while this is often not the case.

1https://www.wxwidgets.org
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Figure 4.2: The RSS-feed management page in the old user interface. This page is textual and complex for users.

Some of the concepts present in Tribler need to be explained to some extent. It is beneficial to have the user
interface designed by a specialist, however, this is not possible for us due to lack of manpower and budget.

Most applications that provide torrent download capabilities have a similar interface: they present a list with
downloads and a detail page (often at the bottom of the window) with specific information about a selected
download. The current user interface also follows this design when displaying the downloads and we see no
reason for now to differ from this design. However, Tribler provides more abilities than downloading torrents:
browsing through content, management of channels and playback of videos are also use-cases that should
be taken into consideration.

We believe that YouTube2 is an example of an application that has a large feature overlap with Tribler, namely
the browsing and streaming of videos, managing channels and creating playlists. The home page of the
YouTube interface is presented in Figure 4.3. We copy the left menu as present in the current Tribler user
interface and use it in the new GUI, however, we modify it slightly: first, we add an option to open and close
the menu by clicking the hamburger icon in the upper-left corner of the application window since the menu
might clutter the interface and does not always need to be visible. Next, we make use of icons in menu items
so users can faster identify what the idea behind each menu item is. In general, we are using more icons in
the new user interface since we believe that the old GUI contains elements with too much text.

An example of a page that we consider too textual and complex is presented in Figure 4.2 where we show
the RSS feed management page of your channel. This page contains many buttons and users that are on this
page for the first time, might be confused by the technical terms in the text. It might have been better if the
data was presented in a single list where users can press a help button if they need more information about
the inner working of the RSS feed mechanism.

To make the user interface more appealing, we attach a thumbnail to each content item. There is however an
issue here: the thumbnails as implemented in Tribler are not functioning correctly. Since the implementa-

2https://youtube.com
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Figure 4.3: The user interface of YouTube.

tion of a new thumbnail mechanism is outside the scope of this thesis, we use thumbnails that are generated
based on the content. This is a technique also adopted by popular platforms such as Stack Overflow and
Telegram to display a profile image when the user has not uploaded a picture yet.

Finally, we want to get rid of buttons that are only visible when hovering over content like currently imple-
mented in the old GUI. To make it more clear that a specific action can be performed with content, we do not
conditionally hide and show buttons but instead, persistently display these widgets.

Due to time constraints, it is decided to not implement all features available in the old interface. Functionali-
ties such as the debug panel, local content filtering and sorting of content will not be implemented in the first
iteration of the new user interface. The core functionalities of this new GUI will be searching and streaming
content.

Our vision during development of this interface is that in essence, it should only display data and do as few
processing operations on this data as possible. This means that various code that is now present in the user
interface library should be moved to the Tribler core, such as the ranking algorithm of search results.

4.2.4. Implementing the GUI

The result after implementation of the new GUI is visible in Figure 4.4 where the home page of the new Tribler
GUI is presented. This user interface runs in a separate process and communicates with libtribler using the
RESTful API described in Section 4.1. More screenshots of the new Qt GUI are available in Appendix B. The
majority of the new user interface has been built using the visual designer, part of Qt. The Python code that
we had to write is responsible for handling requests to the Tribler core, displaying the right content in lists
and to manage interface-related settings.

A key feature of the Qt library is the signal-slot mechanism which facilitates communication between code
and widgets in the GUI. Widgets in Qt can contain signals, events they want to broadcast. Some widgets have
built-in signals, for instance, a button emits a clicked signal if the user clicks on this widget with the mouse.
Other widgets or objects in Python can subscribe to these signals and perform specific actions when the sig-
nal is observed. Signals and slots can either be created using code, or designed in the visual designer. To
keep the amount of written code to a minimum, we decided to specify our widgets connections in the visual
designer as much as possible.

During development of the user interface, we encountered various interesting implementation challenges
that required some form of analysis. We will now present these issues and discuss them.
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Figure 4.4: The home page of the new Tribler GUI. More screenshots of the new Qt GUI are available in Appendix B.

Scalability of List Items
The Qt framework allows to display many basic items (limited to some text) in a simple list. The performance
decreases dramatically if custom widgets containing images or other custom elements are rendered in a list.
Loading 1.000 of such list items takes over 22 seconds on a high-end iMac computer which is an unaccept-
able duration when displaying a list with content. When loading each item in a list, the associated interface
definition file has to be read, parsed and rendered. Channels hold potentially several thousand of torrents
which should be presented in the GUI in a timely matter.

This scalability bottleneck has been solved by utilizing a simple technique: lazy loading. By taking advantage
of a lazy loading approach where additional data is loaded in chunks (30 items for every lazy-load operation
in our new interface) when the user has scrolled to the end of a list, we can postpone and most likely avoid
loading the whole list at once. This solution has also been implemented in the old user interface. By load-
ing only a subset of the list rows, the user experience can be significantly increased since users don’t have
to wait until the whole list of items is loaded, at the cost of a small delay when the end of the list is reached
and new items have to be loaded. The implementation of this lazy-loading solution is general enough to be
reused for any type of list in Qt and is located in the lazyloadlist.py source file. This implementation however,
still resulted in a significant period of waiting when the next set of items is being loaded: around one second
(using the same iMac as described above). It turned out that loading and parsing of the interface definition
file is a time-consuming operation. The solution to reduce this processing time is to pre-load the interface
definition as soon the user interface starts. This has a minor effect on the total start-up time (around 40
milliseconds on a high-end iMac device). This reduced the latency when loading additional items to several
hundred milliseconds.
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A FunctioningMulti-platformVideo Player
One of our main focusses of the new GUI is the playback of a video stream. The embedded video player
in the old user interface did not function correctly on macOS due to incompatibilities with the wxPython
library. This video player has been implemented using the popular VLC library3, a free and open-source
cross-platform multimedia player and framework that plays most media files. We started the design of the
new GUI by creating a prototype where the implementation of a cross-platform, embedded video player with
support for starting and stopping a video is centrally involved. While example code was available for PyQt4
using the VLC Python compatibility library, there were some minor quirks when implementing the video
player using PyQt5, mostly involved around obtaining a reference to the frame of the video player (which
should be done in different ways on each platform). The code for this prototype player has been used as basis
for the implementation of the video player in the new user interface of Tribler and is available as open-source
project on GitHub[21].

4.3. Threading Model Improvements
In Section 3.3.2, we discussed that the current threading model is complex and prone to implementation
errors unintentionally introduced by developers. The implementation of a new GUI and a RESTful API as
described in the last sections, results in a cleaner and stable threading model. Now that the user interface runs
in a separate, dedicated process and in combination with the removal of wxPython from Tribler, we are able
to run the Twisted reactor on the main thread. This enables us to get rid of the confusing decorators to switch
between the main and reactor thread since from now on, we only have one thread (besides the threadpool) to
schedule method calls on. Getting rid of the abundant thread switching should slightly increase performance
since we avoid overhead introduced by the thread switches. The new, simplified threading model is presented
in Figure 4.5.

Figure 4.5: The new, simplified threading model in Tribler 7, together with the primitive to schedule operations on the threadpool.

4.4. Relevance Ranking Algorithm
We significantly improved the search algorithm in Tribler by adjusting the search result sorting mechanism.
When users are performing a keyword search in the GUI, the returned search results are sorted according to
a relevance ranking algorithm that considers several attributes of the resulted content. A key problem of this
algorithm is that the implementation is located inside the code base of the user interface. Essentially, sorting
search results should be considered a task where the Tribler core is responsible for (if we follow the idea that
the GUI only displays data it receives from Tribler). Moving the algorithm to the core package seems to be a
adequate solution but this requires us to understand the old relevance ranking rules so we can reimplement
the algorithm in the core module. Unfortunately, the code that is responsible for the relevance ranking is hard
to read and understand. Even worse, it lacks proper documentation, making the algorithm rather obscure.
Moreover, the code it split between several classes, making it though to understand its behaviour and to get
insights in the underlying philosophy behind the algorithm.

3http://www.videolan.org/vlc/
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4.4.1. Old Ranking Algorithm
We will first describe the functioning of the old relevance ranking algorithm. Channels and torrents are sorted
according to different criteria: channels are ranked based on the number of torrents where ones that contain a
higher number of torrents, are considered more relevant. The algorithm to rank torrents is more involved and
uses five different scores. These scores are determined as follows (ordered on importance, the most deciding
score first):

1. The number of matching keywords in the name of the torrent. Keywords are determined by splitting
the name of a torrent on non-alphabetical characters. Common keywords such as the or be are filtered
out and are not considered as a keyword.

2. The position of the lowest matching keyword in the torrent name. For instance, when searching for
one and there is a torrent result named Pioneer-one-S01E03.avi, the position of the lowest matching
keyword is 2, since the Pioneer keyword is not present in the search query.

3. The number of matching keywords in the file names that the torrent contains.

4. The number of matching keywords in the extension of files this torrent contains (for instance, .avi, .iso
etc).

5. A sub score that is based on several (normalised) attributes of the torrent. This sub score is determined
after the set of local search results is available. To calculate this sub score, the following formula is used:

s = 0.8ns −0.1nvn +0.1nv p (4.1)

where s is our sub score, ns denotes the number of seeders (by default, this will be zero if this infor-
mation is not available yet), nvn the number of negatives votes of this torrent and nv p the amount of
positive votes this torrent has received. We should note that the number of positive and negative votes
do not exist any more and as a consequence will always be zero during the algorithm, making this score
only dependent on the number of seeders, which during our observation is often zero. The normaliza-
tion process calculates the standard score for every data item, using the following formula:

z = x −µ
σ

(4.2)

where z is our normalized score, x the score to be normalized, µ the mean of the data set and σ the
standard deviation of the data set.

For each torrent, the set of five scores as described above is determined. The comparison between two tor-
rents now proceeds based on these five determined scores, starting with the first score, proceeding to the next
score in case when two scores are equal.

Finally, the list with torrent results is prepared and a channel result is inserted between every five torrent
items in the list. This insertion is likely to be done since usually, the amount of torrents is much bigger than
the amount of channels. Not only channels matching the search query are displayed: for each torrent, the
most popular channel that contains this specific torrent, is determined (called the associate channel) and
also displayed in the list of results.

While the algorithm described above takes many factors in consideration, we detected some problems and
possible improvements:

• One of the main problems is that the amount of matches inside a torrent name/torrent file name is not
taken into consideration. For instance, when searching for Pioneer One, a torrent named Pioneer One
Collection probably has a higher relevance than a torrent named Pioneer One - Episode 3, Season 4 since
the matching in the first torrent is considered better.

• The relevance sorting of channels in the result set is only dependent on the number of torrents in that
channel. The number of matching terms in the channel name and description is not even considered.
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• When building the data structure used for searching in the local database, duplicate words are removed.
As a consequence, when we search for years, a torrent named best years will be ranked equal to a torrent
named years and years (if we only consider a ranking based on the torrent name). However, the torrent
named years and years should be assigned a higher relevance since the keyword years occurs twice in
the torrent name. Another example is a search for for iso: a torrent file that contains 100 iso files is
currently ranked equivalent to a torrent file that only has one iso file.

• The current relevance ranking algorithm only returns results that matches all given keywords: when
searching for pirate audio, only torrents are returned that are matching on both terms. It might be
better to show the user also torrents matching pirate and matching audio (while still giving a higher
relevance score to torrents that matches both keywords).

4.4.2. Designing a New Ranking Algorithm
In the previous section, we described the old ranking algorithm, together with some problems and improve-
ments. Now we will design and implement an improved relevance ranking algorithm. The heart of the algo-
rithm will be based on Okapi BM25, a ranking function used by search engines to rank matching documents
according to their relevance to a given search query[28]. BM25 can be implemented using the following for-
mula:

s =
n∑

i=1
I DF (qi )

f (qi ,D)(k1 +1)

f (qi ,D)+k1(1−b +b ∗ |D|
av g dl )

(4.3)

In Equation 4.3, we have a document D where the length of D (the number of words in the document) is
denoted as |D|. There are n keywords present in our search query, qi representing the keyword at index i .
f (·,D) gives the frequency of keyword qi in document D . av g dl is the average length of all documents in the
database. k1 and b are free parameters where usually k1 ∈ [1.2,2.0] and b = 0.75. In our algorithm we choose
k1 = 1.2 and b = 0.75. The I DF (qi ) denotes the inverse document frequency of keyword qi which basically
states how important a keyword is in a collection of documents. The IDF is usually calculated as:

I DF (qi ) = l og
N −n(qi )+0.5

n(qi )+0.5
(4.4)

In Equation 4.4, N is the total number of documents and n(qi ) is the number of documents containing key-
word qi . The full text search engine (FTS) in SQLite offers tools to calculate a BM25 score when performing
a query. Unfortunately, this is not implemented in the engine we are currently using, FTS3. This motivates
us to upgrade to a newer engine, FTS4, which offers the necessary tools to calculate the BM25 score. This
requires a one-time upgrade of the database engine of users which should be performed when Tribler starts.

In our new algorithm, each search result is assigned a single relevance score. The final relevance score as-
signed to a torrent is dependent on three other sub-scores that are calculated using the BM25 algorithm and
is a weighted average of the sub-scores, determined by the BM25 scores of the name of the torrent (80%),
the file names of the torrent (10%) and the file extensions of the torrent (10%). The final relevance score of a
channel is the weighted average of the BM25 scores of the name of the channel (80%) and the description of
the channel (20%).

While this works when searching for local search results, we should also be able to assign a relevance score to
incoming remote torrent or channel results. The difference between a local and remote keywords search, is
that we do not have the contextual information such as the total amount of rows retrieved from the database
when a remote search results comes in, rendering us unable to calculate a BM25 score. To still be able to
assign a BM25 score, we keep track of the latest local searches and the gathered information that is used by
Equations 4.3 and 4.4. If we receive an incoming search result, we are using that stored information to quickly
determine the relevance score of the remote result. Using this approach, we avoid a lookup in the database
for every incoming remote search result. If we have no information about the latest local database lookup
available, we assign a relevance score of 0 to the remote search result.

4.4.3. Ranking in the User Interface
After each search result got a relevance score assigned, we should order the search results in the user inter-
face. We cannot make the assumption that the data we receive from the Tribler API is already sorted (however,
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a relevance score should be available) thus we need a way to insert items dynamically in lists in the user in-
terface. The lazy-loading list we are using in the user interface makes this task more difficult since we both
have to insert items dynamically in the list and make sure that we are not rendering too much row widgets.
We also wish to avoid reordering operations of rows in a list as they are computational expensive to perform.

The implemented solution works as follows: in the user interface, we maintain two lists in memory: one
list that contains the torrent search results and another list that contains channel search results. We guaran-
tee that these lists are always sorted on relevance score. Insert operations in these lists are performed using a
binary search to determine the new position of the item in the sorted list, yielding a complexity of O(log n)
for each insert operation (where n is the number of items in the list). In the visible result list, we first display
channels since there are usually a few. The rationale behind this idea is that users might prefer to see match-
ing channel results since these channels might contain many relevant torrents.

A presentation of the performance of the new relevance ranking algorithm is presented in Chapter 6.6.
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Figure 4.6: The Qt visual designer used to create the new user interface of Tribler.





5
From Technical Debt to Technical Wealth

In Chapter 2, the extraordinary amounts of technical debt that Tribler has accumulated over the past decade
has been highlighted. We presented the architectural evolution from a historical perspective and proposed a
new robust and future-proof architecture in Chapter 3. The top-level components of this new architecture,
the GUI and RESTful API to communicate between the user interface and libtribler, have been implemented
and discussed in Chapter 4. We did not focus yet on libtribler, which can be considered as the core of the
Tribler platform. Shaping libtribler to fit in the proposed architecture of Figure 3.5, requires some invasive
refactoring efforts. Since this might be the most important component in our system, we will investigate lib-
tribler in more detail and determine how we can identify and pay off the accumulated technical debt in the
core. A summary of the re-engineering efforts conducted during this thesis work is displayed in Table 5.1.

Lines modified 765
Lines added 12.429
Lines deleted (without old GUI) 12.581
Lines deleted (with old GUI) 25.010

Table 5.1: A summary of refactoring efforts as conducted during this thesis work, excluding the work on the new GUI.

Roughly, we can identify five different types of technical debt[48]: code debt, testing debt, infrastructure debt,
architectural debt and documentation debt. Tribler shows symptoms for every of the summarized types of
technical debt.

We argue that refactoring in a dynamic typed programming language like Python is harder than when using a
statically type language: information about errors when renaming is not observed before runtime because of
the lack of type information. This issue becomes apparent when trying to rename a variable using a Python
Integrated Development Environment (IDE): the application logic might miss various occurrences when per-
forming the renaming operation and we only become aware of this issue when either running Tribler itself or
when executing the test suite. This shows the importance of having a solid, extensive test suite before we start
to refactor major components in the system and we started with improvements to the tests to create a solid
foundation for our refactoring efforts. Improving the test suite first has an additional advantage: by studying
the test code, we can familiarize ourselves with the code base. Also, a review of the test code may help to us
to understand the structure and detect code smells in the production code[54].

5.1. Investigating the Debt
It is hard to get accurate numbers on the amount of technical debt since it is not always clear what we con-
sider as technical debt. When a decision to pay off (a part of) the debt is made, developers might run into
unexpected situations that take longer than expected, especially if working with unfamiliar code written by
other developers. This makes estimations of the amount of work required unreliable. Several tools exist to
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monitor and estimate technical debt, the most prominent being CAST1 (commercial) and SonarQube2[23]
(open source). In this section, we will use SonarQube to track and identify the amount of technical debt in
Tribler by setting up a SonarQube server to identify technical debt, bugs and vulnerabilities in the Tribler
project. We do this for the old and new user interface and for the Tribler core, before and after our refactoring
efforts. The reported results are summarized in Table 5.2. We should emphasize that a small amount code
smells are very hard, if not impossible to fix in our application.

SLOC Code smells Bugs Estimated debt
wxPython GUI 20.080 2.139 11 ± 21 days
Qt GUI 2463 14 0 ± 1 hour
Tribler core (before refactor) 15.732 365 6 ± 4 days
Tribler core (after refactor) 15.700 117 0 ± 2 days

Table 5.2: Software metrics as reported by SonarQube.

The most interesting observation is that the wxPython GUI contains around five times more technical debt
than the Tribler core and contains almost six times more code smells. To better investigate which files suffer
from the most technical debt, SonarQube provides a bubble chart where the relation between the amount of
technical debt, the number of code smells and the amount of SLOC is visualized. For the wxPython GUI, this
bubble chart is visible in Figure 5.1. In this chart, the size of the bubble is correlated to the amount of code
smells. The files suffering the most under technical debt are annotated with the file name. By taking Figure
2.4 in Chapter 2 as reference, we notice here that the files that contain a high amount of technical debt, are
also the files with the most dependencies.

Figure 5.1: The amount of technical debt in the wxPython GUI as reported by SonarQube.

5.2. Code Debt
We now focus on the core of Tribler and present the bubble chart associated with the core package in Fig-
ure 5.2. It is immediately evident that the SQLiteCacheDBHandler.py file urgently needs refactoring. This file
contains various utility classes to perform common database operation such as retrieval of specific channels,

1http://www.castsoftware.com
2https://sonarqube.com
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torrents and playlists. This file hosts the implementation of seven classes and our first effort consists of split-
ting this file into smaller, manageable files where each file contains only one class definition.

However, we still identify many other files where technical debt is present in the form of code smells. We
performed efforts to pay of this debt in the code base and we will now summarize the most common code
smells in the Tribler core package:

• The cyclomatic complexity of various methods is too high, indicating that the procedure contains many
independent linear execution paths. The cyclomatic complexity as developed by McCabe in 1976[36]
is a quantitative measure of the number of linear independent paths through a program’s source code.
This negatively impacts the testability of this method since more distinct tests are necessary to guar-
antee an adequate coverage of the method. During this thesis, we reduced the complexity of several
methods by splitting them.

• We identified various methods that could be static. Static methods are meant to be relevant to all the
instances of a class rather than to any specific instance. The usage of static methods is beneficial for
performance and readability. SonarQube recommends to use static methods where possible and we
changed as much recommended methods by SonarQube to static ones as possible.

• Naming conventions were not following during the development process and this is most notable in
the inconsistency between usage of CamelCase practice and the usage of underscore notation. Since
we wish to conform to the PEP8 styling guidelines3, we should use the latter form. Part of our efforts to
pay off the identified code debt in the core includes work to rename methods, attributes and variable
names to conform to the underscore notation. We should emphasize that some used libraries such as
wxPython and PyQt are using the camelCase notation, leading to forced violation of this convention
when overriding methods from this library.

The bubble chart of the technical debt identified in the core after the refactoring efforts described above is
visible in Figure 5.3. We emphasize the difference in scale on the vertical axis here compared to Figure 5.2. The
variance of the code debt has decreased significantly. Notice that the database handler definition files (that
were originally located in the larger SQLiteCacheDBHandler.py file) still suffers from some technical debt.
However, there are many methods in these files that are unused when the new user interface will be deployed
and these could be removed at that point. Table 5.2 shows the statistics after our refactoring efforts. While
we did not solve all code smells, we solve the most prominent occurrences of code debt and contributed to a
more useful, maintainable and consistent code base.

5.3. Testing Debt
The most fundamental way to verify a correct functioning of software is by having an well-designed and stable
test suite. A solid test suite leads a to high quality bar, thus introducing a mechanism to keep the amount of
technical debt under control[18]. As pointed out in Chapter 2, the current test suite is plagued with unstable
and non-functional tests. We will now focus on the performed work to strengthen and stabilize the test suite.
A summary of the improvement of various metrics related to the test suite during this thesis is presented in
Table 5.3. Notice that the number of unit tests has dramatically increased, while the average execution time
of a test and the total duration of the tests has decreased.

November ’15 July ’16
Number of unit tests 80 676
Number of assertions 117 1205
Number of failed runs after 10 runs 2 0
TLOC/PLOC ratio 0.06 0.14
Total Linux test duration on Jenkins (sec) 448 (7 min. 28 sec.) 350 (5 min. 50 sec.)
Average execution time per test (sec) 18.90 0.85

Table 5.3: A summary of improvements made to the test suite between November ’15 and July ’16.

3https://www.python.org/dev/peps/pep-0008/
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Figure 5.2: The amount of technical debt in the Tribler core package as reported by SonarQube before refactoring.

Figure 5.3: The amount of technical debt in the Tribler core package as reported by SonarQube after refactoring.

5.3.1. Identifying Code Smells in the Tests
As described in the work of van Deursen et al[55], there is a difference between refactoring test and produc-
tion code in a sense that test code often has a characteristic set of code smells, originating from the way tests
are structured. Before we start to make major modifications to the test suite, we present a list of code smells
identified after a manual code review of the test suite of Tribler. This list is presented in Table 5.4 where each
code smell is described and a solution is proposed.

Table 5.4 has been used as reference during the refactoring efforts of the test suite. We fixed most of the
outlined code smells. Dependencies on external resources have been reduced to a minimum as explained
in Section 5.3.4. The efforts on increasing the stability of the tests is outlined in Section 5.3.5. During the
refactoring process of tests, we placed clear assertions, added comments in the tests and got rid of managing
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Code smell Description Solution
Dependencies on external re-
sources

Several tests are using external
resources outside the test suite,
leading to unpredictable and un-
stable tests.

Remove the dependency on the
resource or make sure that the
resource is locally available (see
Section 5.3.4).

State leak The state of a previous executed
test is leaking to the next test,
mostly notable due to delayed
calls left in Twisted after comple-
tion of a test.

Make sure that any delayed call
in Twisted is correctly removed
when the test is finished.

Too much responsibility Many tests have multiple respon-
sibilities, testing both parts of the
user interface and core compo-
nents in Tribler.

Make sure that each test is only
verifying one small unit in the
system. Also implement a sepa-
rate bundle of tests for the user
interface.

High execution time There are some tests that are tak-
ing long to complete (sometimes
over 30 seconds), negatively im-
pacting productivity. This is an
indication that the specific test is
doing too much.

Identify why the test takes long
to complete and shorten the run-
time i.e. by breaking the larger
test into smaller parts.

Unclear assertions Tests that consists of multiple as-
sertion statements often do not
annotate this assertion well with
a clear and meaningful descrip-
tion when it fails.

Add an annotation with the
cause of the failure if an as-
sertion fails so developers can
determine the problem quicker.

Dependencies on a Tribler ses-
sion

Some tests are starting a full Tri-
bler session while only a small
subset of the system is tested,
leading to unpredictable circum-
stances.

Use mocking techniques to inject
a mocked session or refactor the
component so no session is re-
quired to test it.

Resource writing to source code
directories

Various tests are writing re-
sources to source code direc-
tories. They might accidentally
end up in the Version Control
System (VCS) if developers are
not noticing these files.

Temporary resources produced
by tests should always be written
to a temporary directory that is
cleaned up after test execution.

Uncontrolled allocation of local
network ports

Some tests that are running in
parallel are claiming the same lo-
cal network port, leading to test
failures.

Reserve port ranges to individual
parallel test runs or try to avoid
the allocation of local ports.

Timing issues Some tests are checking for a
condition after a fixed time inter-
val. This interval is often based
on intuition rather than empiri-
cal data. This is particularly dan-
gerous when the test is depen-
dent on external resources.

Refactor the test so the condition
check is no longer necessary.

No usage of code comments There are no code comments
that are explaining the purpose
and expected output of the test.

Tests should be annotated with
comments to explain the pur-
pose of the test together with the
expected in- and output.

No directory structure in the tests
package

There is no directory structure
and a large amount of the tests
are located inside the same direc-
tory.

Restructure the tests package
and organise tests in different,
logical named directories.

Table 5.4: Identified code smells in the test suite of Tribler as of November ’15.
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November ’15 July ’16
Line coverage Branch coverage Line coverage Branch coverage

Tribler core 71,2% 58,1% 81,2% 67,3%
REST API - - 99,4% 92,7%
wxPython GUI 65,8% 42,7% - -
Qt GUI - - 73,4% 50,4%

Table 5.5: The improvements in code coverage between November ’15 and July ’16.

Tribler sessions as much as possible.

5.3.2. Improving Code Coverage
Code coverage is defined as the percentage of SLOC that is covered by at least one test. Our CI environment
offers tools to track the code coverage over time. After each test suite execution, a comprehensive report with
detailed information about the coverage is generated. The reported metrics by this report are not accurate
enough since some third-party libraries are included in the report, such as the VLC bindings and pymdht,
a library to fetch peers from the DHT. We are not responsible for the code coverage of these libraries so we
modified the report generation to exclude these files.

A summary of improvements of the code coverage metric during the span of this thesis are displayed in Table
5.5 where the line and branch coverage is visible before and after this thesis work. Branch coverage is a metric
that specifies how well conditional statements are covered and this metric includes the fact that a conditional
is either resolved to true or false, possibly influencing the program execution path. In the ideal scenario, we
wish to have a set of tests that cover all conditional statements in the case they resolve to true and in the
case they resolve to false, thus covering all possible execution paths in the program. This objective gets sig-
nificantly harder to achieve when dealing with code containing many nested conditional statements. Any
conditional statement written has a negative effect on the cyclomatic complexity of a method. The branch
coverage is usually lower than the SLOC since it is either hard to cover specific branches or the missing branch
might be considered as not unimportant. For instance, this might happen when we have a branch that only
logs an event when an error occurs.

While at first sight it may look like the code coverage has not increased significantly, we should emphasize
that the complete architecture of the tests have been overhauled in parallel. Refactoring of the test suite has
consequences on the code coverage in other locations in the code base. To elaborate this, the smaller unit
tests are not starting the old user interface any more, leading to a lower coverage in GUI code

Improving the coverage has been realised by writing small unit tests where we use mocked objects to con-
trol the system we are testing. The increase in the amount of unit tests is displayed in Figure 5.4 where we
annotated November ’15, when this thesis started. Using mocking is necessary since some components have
many other dependencies that are hard to keep under control. Writing tests makes a developer more aware
of the written code and it can be considered as a possibility to get familiar with an unknown code base. An
additional advantage is that various bugs have been identified and solved during the process of writing addi-
tional tests.

In Chapter 2, Figure 2.5 we visualised the ratio between the number of code lines in the tests package and
the amount of other code lines. Together with the code coverage, this number can be a useful metric to de-
velopers. While one might argue that a high code coverage in conjunction with a low TLOC/PLOC ratio is a
desired result, it indicates that the tests are not granular enough and are possibly performing many different
operations. A low code coverage with a high TLOC/PLOC ratio indicates that there are some flaws in the tests,
possibly that they are testing the wrong components of the system. When starting this work, the code cover-
age is reasonable but the TLOC/PLOC ratio is very low, indicating that most likely, the tests are not granular
enough. This is in accordance with the discovered code smell that individual tests have too many responsi-
bilities.

After writing additional unit tests, removal of the old user interface and addition of the new one, the new
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Figure 5.4: The number of tests over time until July 2016 (November 2015 is annotated).

TLOC/PLOC ratio is 0.16 which means that there is roughly one line of test code for six lines of production
source code in Tribler. Defining a good TLOC/PLOC ratio is dependent on the used programming language,
development methodology and application structure. Discussion on the wiki of Ward Cunningham[8] pro-
poses an optional TLOC/PLOC ratio of 1:1, however, several other ratios have been proposed in the same
discussion such as 2:1 and 5:1. In the work of van Deursen et al.[55], a ratio of 1:1 is proposed for extreme
programming practices. Overall, the trend appears to be that the amount of test line code is around the same
or a bit higher than the lines of production code. An important question is whether this proposed ratio is
suitable for Tribler. Tribler differs from a commercial software engineering project in the sense that it is used
primarily for the purpose of scientific research. When performing research, testing is considered a subordi-
nate task and the main focus is gathering experimental results. The difficulty here is that Tribler is distributed
to and used by over a million of users, requiring at least some form of quality assurance. We think an adequate
TLOC/PLOC ratio for the Tribler project is between 1:2 and 1:4. With this ratio, we do not spent too much on
writing tests while still maintaining a solid test base.

To make sure that the responsibility of code coverage is not neglected in future work on Tribler, an additional
check for each pull request on GitHub has been added that verifies that the code contributed in the respective
pull request is covered by at least one test. While this mechanism is not implemented by the author of this
thesis, it is an effective way to keep the code coverage metric under control and to make developers more
aware of their testing responsibilities.

5.3.3. Testing the GUI
One of the issues identified in the tests package, is the lack of separation between tests that are testing the
GUI and tests that are asserting core functionalities of Tribler. This is the main reason that has led to big,
individual tests in the old test suite. Since testing is an important aspect of this thesis work, constructing a
solid test suite for the user interface has been a prioritized task earlier in the development process.

User interface testing is a field of software engineering and is part of the application testing methodology.
GUI testing can be more involving than unit testing since a user interface might have many different opera-
tions and verification of the correct output of an action is often a non-trivial task. A common way of testing
user interfaces is a Finite State Machine-based modelling where the user interface is modelled as a state ma-
chine that transitions when actions in the user interface are performed[19][15]. Another model to create a
test script based on genetic algorithms has been proposed by the work of Kasik et al[29]. While these models
might lead to good results when dealing with a large application, consisting of many pages and transitions,
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we think they are unnecessary to utilize when testing the Qt user interface at this point. Future Tribler re-
search can lead to the implementation of an extensive test suite for the new user interface.

The test suite of the new Qt user interface utilizes the QTest framework. This framework provides various
tools to perform non-blocking waits in the tests and to simulate mouse clicks and keyboard actions. An
example of a test written with the QTest framework is presented in Listing 5.1. This test has the following exe-
cution flow: after the interface is started, the test navigates to the home page, clicks on the channels button in
the header and waits for items to be loaded. During the test execution, two screenshots are taken, one when
we are loading items and another one when the requested items are loaded and displayed.

Primitives to capture screenshots during test execution has already been implemented and used in the old
test suite, using the rendering engine of wxPython. The Qt frameworks offers similar methods. Captured
screenshots are saved as JPEG files and the name of the file is specified by the developer. In the example pre-
sented in Listing 5.1, the exported screenshots are saved as screenshot_home_page_channels_loading.jpg and
screenshot_home_page_channels.jpg respectively. At the end of each test run, an image gallery is generated in
our CI environment where the captured screenshots are archived and displayed in a grid. This allows devel-
opers to manually verify whether there are defects in the layout of the user interface. A part of the generated
image gallery in our CI environment is presented in Figure 5.5.

Figure 5.5: The generated image gallery after executing of the user interface tests, generated by Jenkins.

To avoid any dependency on core components of Tribler itself, we implemented a small piece of software
that provides the same interface as the REST API implemented in Tribler. This "fake" API is much simpler
in nature and has a very simplistic in-memory data model. By utilizing this API, we are able to control API
responses, significantly improving the predictability of the tests. The downside of this approach is that new
endpoints have to be written twice, once in Tribler and once in this fake API. We should note that it takes less
time to implement an endpoint in the fake API since it is more simple.

A summary of various statistics related to these GUI tests is displayed in Table 5.6. We note that the aver-
age execution time per test is higher than the time presented in Table 5.3, however, during the tests there are
various situations where we have to wait for incoming data from the fake API provider. Starting the GUI and
the Tribler core also takes several seconds.
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Listing 5.1: An example of a test that tests the new Qt Tribler GUI.

def test_home_page_channels ( s e l f ) :
QTest . mouseClick (window . left_menu_button_home , Qt . LeftButton )
QTest . mouseClick (window . home_tab_channels_button , Qt . LeftButton )
s e l f . screenshot (window, name="home_page_channels_loading " )
s e l f . wait_for_home_page_table_populated ( )
s e l f . screenshot (window, name="home_page_channels " )

Amount of tests 23
Total execution time on macOS 1 min. 4 sec.
Average execution time per test 2.8 sec.

Table 5.6: A summary of statistics of the GUI tests.

5.3.4. External Network Resources
One of the identified code smells in Table 5.4 is the dependencies on external resources, leading to unstable
and unpredictable tests. To elaborate, the test suite contains various tests where external torrent files are
fetched from the Internet, in particular, from the Ubuntu repository. While this repository guarantees a high
availability, any downtime in this external resource leads to failing tests, failures not caused by code con-
tributed by a specific developer. The implemented solution for this flaw is to start up a local HTTP server that
serves the torrent file. While this approach requires additional code for management of a local web server, it
completely removes the dependency on the Ubuntu repository, thus increasing reliability of our tests.

A similar solution has been applied to solve the dependency on seeders in the libtorrent network by setting
up a local session that seeds a torrent. Again, this approach requires code to properly start and shut down the
seeder session, thus increasing complexity of the test suite. However, the implementation is reusable to an
extend that developers of tests can reuse the implemented solution with only a few lines of code.

There are various external dependencies left which are considered harder to refactor. A handful of tests are
performing a remote keyword search, requiring various communities in Dispersy to be available. These tests
are dependent on available peers in the respective community in order to ensure incoming search results.
Due to time constraints, getting rid of this dependency and a major refactoring of these tests is considered
future work.

5.3.5. Instability of Tests
An unstable test suite has a direct impact on the productivity of developers: when tests fails to reasons un-
related to the code that the developer contributed in a specific commit, developers have to execute the test
suite again. One method to do this is by writing a comment on the pull request (PR) on GitHub that says
retest this please. Every retest operation is "wasting" several minutes since developers have to wait for the
completion of test execution before they have the necessary feedback about the stability of their PR. This is a
structural problems that Tribler developers are experiencing since the utilization of continuous integration.

To further investigate this problem, we estimate the total time developers had to wait for retests by writing a
small script that uses the GitHub API4 to analyse every opened PR and count the amount of retests required
before the PR is merged into the main code base. Before we present the results, we should note that we might
miss some occurrences since it is possible to remove comments on GitHub. In addition, some retests might
be related to failures in the continuous integration environment and are not caused by flaws in the test suite.
In total, we counted 2.045 retests in 1.481 pull requests, on average, 1.38 retests for each merged PR. If we use
an optimistic estimation where an execution of the full test suite takes six minutes in total, we spent around
204 hours retesting pull requests. We argue that we can stabilize the test suite in much less time so we need
less retests. To demonstrate that we are dealing with a structural problem here since 2013, the number of
retests over time has been displayed in Figure 5.6 where each vertical bar represents an individual PR. The

4https://developer.github.com/v3/
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vertical axis denotes the number of (manual) retests required before the PR got merged.
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Figure 5.6: The number of retests required in PRs over time.

Essentially, we are dealing here with a special kind of technical debt: developers prudently made the decision
to postpone fixing of the problems in the test suite by retesting the PR until the tests suite succeeds. The in-
centives to spent some time to fix test errors are not apparent and often, developers do not feel that they are
responsible for failing tests since it might have been caused by code written by other developers. This makes
it attractive to ignore test failures.

Well-designed tests should only fail if some new code is breaking existing functionality. If no changes are
presents, the tests should always succeed, regardless of how many times they are executed. Reducing depen-
dencies on external resources is not sufficient to guarantee this desired property. The structural problem of
the tests is that the system is infected a great amount of race conditions (a type of bug where events do not
happen in the order the programmer intended, possibly leading to an inconsistent system state). Race con-
ditions can be hard to spot since they often occur in a very specific runtime setting, making the debugging
process of these kind of errors frustrating. In fact, it is very easy to deliberately introduce a race conditions
that is not noticed after the code is merged into the main branch. A complex architecture is directly influenc-
ing this phenomena and leads to more race conditions, possibly caused by wrong threading assumptions.

During this thesis, several race conditions have been detected and solved. One interesting observation is
that some issues only occurred on a specific platform. We believe this can be explained by differences in
the implementation of the underlying threading model and runtime architecture across operating systems.
The most common origin of the detected race conditions is addressed to delayed calls in Twisted. During
execution of the test suite, a Tribler session is started several times. If a developer does not properly clean
scheduled calls when the shut down procedure has been completed, this delayed call might be executed in
another Tribler session, possibly leading to an inconsistent state of the system. Making sure Twisted is void of
any delayed call is not straightforward: if one is not aware of scheduled calls in the system, this error is easily
made.

5.4. Infrastructure Debt
Tribler uses the popular CI platform Jenkins5. Jenkins allows developers to create jobs which can be executed
manually or when pushing a commit to the code base. The CI platform is responsible for running the tests,
packaging Tribler and executing research-oriented experiments on the DAS5 supercomputer.

We noticed that the test suite is only executed in a Linux environment. Beller et al[14] conducted research
on CI usage and it turned out that for some languages, it is beneficial to run tests in different environment.

5https://jenkins.io
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We strongly agree with this result and since Tribler is shipped for multiple platforms, we think it is important
to run the tests in different environments. An addition argument for this is the presence of some platform-
specific workarounds: to make sure that this code is covered by the tests, we must run the test suite in the
specific environment. This will allow developers to detect defects on other platforms more earlier in the
development process. By aggregating the generated coverage report on each platform, this multi-platform
set-up should have a (small) positive influence on the code coverage metric.

The set-up of the testing environments on Windows and macOS is straightforward: new slave nodes to spec-
ify the Windows and macOS test runners have been created in Jenkins. The tests on macOS are executed on a
Mac Mini, late 2014 model with 4GB of DDR3 memory and an Intel Core I5 1.4 GHz processor. In order to run
the tests on Windows, two virtual machines using Proxmox6, a server virtualization management platform,
have been created, both with 32-bit and 64-bit environments. After the utilization of these additional ma-
chines, the tests are executed on four platforms: Linux, 32-bit and 64-bit Windows and macOS. So far, both
the macOS and Windows test runners have completed over 2.700 test executions. Each test runner generates
a coverage report and all reports are merged in the final analysis step in the build pipeline.

5.4.1. Future Improvements
While multi-platform test execution is certainly a step in the right direction, there are additional steps in the
execution plan that could enhance the testing procedure. In Figure 5.7, we present what we think is the ideal
test execution plan, together with various stages in this pipeline. The dashed boxes are jobs in the pipeline
that are not implemented yet. The Jenkins job is triggered by a commit on GitHub and starts with the exe-
cution of the tests on multiple platforms where during these runs, code coverage is being tracked. After this
phase, the coverage reports are combined and the total difference with the upstream branch is determined.
When the commit decreases the total code coverage, the job fails and the pipeline aborts. This negative result
is presented in the PR on GitHub, together with a link to the specific execution report for each job.

Figure 5.7: The desired test execution plan in our CI environment. Dashed boxes are Jenkins jobs that are not implemented yet.

A static Pylint7 analyser to check for code style violations has been available in our CI environment for a long
time, however this only gave insight in the total amount of Pylint errors in the whole code base and did not
stimulate developers to actually fix errors in committed code. While not implemented by the author of this
thesis, the Pylint checker has been extended to fail if new violations are introduced in committed code. Addi-
tionally, a report is generated with an overview of the introduced violations, together with the relevant source
code. This helps developers to get more aware of their code style and helps to realise a consistent code base.
This check is executed in parallel with the tests to decrease the total time of the pipeline execution.

6https://www.proxmox.com
7https://www.pylint.org
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After the coverage phase has passed, the AllChannel experiment should be performed. This experiment
is executed on the DAS5 supercomputer and starts 1.000 Tribler clients that are synchronizing torrent and
channel information with each other. When the experiment is completed, various graphs are generated. Ex-
amples of these graphs includes the number of connections, the amount of Dispersy messages synchronized
and the number of invalid messages sent. These graphs provides developers insights in the performance of
their modified code when Tribler runs in a large-scale setting. For instance, the experiment can highlight
introduced issues in the message synchronization between peers in the network.

In parallel with the AllChannel experiment, we should package Tribler for distribution to end-users. An addi-
tional purpose of this step is the execution of deployment tests on various platforms to check whether Tribler
works when being distributed to end users. On Windows, an installer will be created that installs Tribler to
the Program Files directory. On macOS, we create a .dmg file that contains an app bundle. On Linux, the re-
quired files are bundled in a .deb archive. Packaging and deployment testing jobs can be executed in parallel
to shorten the time of the testing pipeline as visible in Figure 5.7.

5.5. Architectural Debt
Already indicated by Figure 2.4 in Chapter 2, Tribler is plagued with many dependencies that are leading to a
highly coupled system where it is hard to reuse individual components. We aim for a low coupling to increase
testability of packages. This section will focus on identification and removal of undesired dependencies be-
tween packages.

(a) Before refactoring

(b) After refactoring

Figure 5.8: The dependencies between Tribler modules at the highest level. Cyclic import dependencies are shown in red.

5.5.1. GUI and Core Dependencies
As described in Chapter 2, the source code for the user interface and Tribler core code is interleaved to a large
extent and there is no clear separation between those two. There are various instances where we identified
code present in the GUI code base that should be moved to the core and vice versa. To realise a clear separa-
tion between libtribler and the user interface, we should make sure that we move code to the package where
it belongs.

In the present code base, the Core package is dependent on the user interface which is undesired: we are
unable to utilize the Tribler core without the GUI code being present, leading to high coupling. The exact de-
pendency is visible in Figure 5.8a and is caused by the DefaultDownloadStartupConfig class which is located
in the globals.py file, part of the GUI package. This class is responsible for providing default configuration op-
tions when a download is being started, in case the user did not override default options like the destination
of the downloaded file and the amount of anonymous hops used during the download. Since the superclass
of DefaultDownloadStartupConfig, DownloadStartupConfig, is already located in the Tribler core, it makes
sense to move the DefaultDownloadStartupConfig class to the DownloadConfig.py file, which already con-
tains the DownloadStartupConfig class. After we moved this class to the core and modified the references to
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(a) Before refactoring
(b) After refactoring

Figure 5.9: The import graph of the Video package and the LaunchManyCore file in the Tribler core before and after refactoring.

point to the new location of the class, the core is completely independent of the user interface, displayed in
Figure 5.8b.

5.5.2. Category Package
Referring to Figure 5.8, we note a cyclic import dependency between the Core and Category package. The
Category package hosts the source code to facilitate the family filter. Obviously, the family filter is used by the
Tribler core, however, the family filter also has dependencies on classes inside the Tribler core, leading to a
cyclic import.

In the architecture proposed in Figure 3.5, we specified the family filter as a component of libtribler. We
think that the best solution to solve this dependency, is to move the Category package to the Core package so
it’s part of libtribler. This change is reflected in Figure 5.8b.

5.5.3. Video Player
We will now zoom in on the core package which contains some GUI-related code that should not be present
in that package. The most obvious occurrence is attributed to management of the (embedded) video player
in Tribler which is handled by the VideoPlayer class in the Video package. Figure 5.9a shows the import graph
of the Video package before refactoring. The VideoPlayer class makes use of the VLC bindings for Python,
however, in our design, the core does not need to have any dependency on VLC since managing the video
player is an operation that should be performed on the level of the user interface. The LaunchManyCore class
(not part of the Video package) contains code to initialize all components available in Tribler, including the
VideoPlayer. When initialized, this VideoPlayer creates a VideoServer that is responsible for the streaming
capabilities of Tribler. Finally, the VLCWrapper class contains various utility methods to work with raw VLC
data such as the time position within a video.

We performed refactoring work within this package and removed the VideoPlayer and VLCWrapper classes.
The composition of the Video package after this operation is displayed in Figure 5.9b. We modified the code
so the LaunchManyCore class starts a video server instead of a video player. We point out that there are some
classes that are unused now, such as VideoUtility and utils: these classes contains various helper methods
to retrieve thumbnail images from a video file and is considered legacy code. Due to time constraints, we
are unable to implement these features in the new user interface so for the time being, we keep these files as
reference for future development.

5.6. Documentation Debt
During the last years of development on Tribler, the main focus of the project has been to deliver working
code. The project has a severe lack of updated software artifacts, including documentation, code comments
and architectural diagrams, leading to a huge amount of documentation debt. Some of the conducted re-
search has been documented on the Tribler wiki8, however, this wiki contains many outdated pages and is

8https://www.tribler.org/TitleIndex/
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not used or maintained any more. After the migration of the project to GitHub, this platform was favoured for
storing documentation over continued usage of the Tribler wiki archive. A good documentation helps to get
new developers familiar with the system but also helps to prevent software ageing[41], the situation where it
gets harder for software to meet requirements over time.

Currently, there are distinct locations where we store the few software artifacts we have. Documentation
is either stored in the GitHub wiki, in the wiki on the Tribler website or in the docs directory in the Tribler
source code repository. The ideal situation is to have one single location for all generated software artifacts
during the process. Many Python projects are using readthedocs9, a platform to host documentation of open-
source projects for free. The hosted documentation should be located in the Tribler source code repository,
in reStructuredText (RST) format. By utilizing the Python module Sphinx, a website can be generated from
all the available documentation. Sphinx also provides possibilities for translation of documentation in other
languages.

Figure 5.10: The new documentation base of Tribler, as available on the readthedocs website.

During this thesis, all available (relevant) documentation of Tribler has been rewritten in RST format in con-
junction with Sphinx. Moreover, the available documentation has been expanded with several guides, in
particular, guides that help new developers to set-up an environment on their machine. Prior to this thesis,
these guides were not available and development on other platforms than Linux was not supported. By the
addition of these guides, new developers can start as soon as possible with Tribler development. The website
with documentation of Tribler is visible in Figure 5.10 and is available on the readthedocs website10.

The REST API has been well documented. Since external developers should use the REST API to control and
get information from Tribler, we wish to provide a clear and comprehensive documentation base for this API.
To simplify the process of writing documentation, the documentation can be written as doc strings above
each method in the source code. This documentation is parsed by the autosummary tool11 that is executed
each time the documentation is built: it navigates through the API code base, extracts all doc strings and gen-
erates separate sections for each annotated method. The doc string can be attributed with RST syntax. This

9https://readthedocs.org
10http://tribler.readthedocs.io/en/latest/
11http://www.sphinx-doc.org/en/stable/ext/autosummary.html
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feature decreases chances that developers accidentally forget to write or update artifacts since the code and
documentation is present in the same file instead of being spread across different distinct files.

5.7. Preventing Technical Debt
Prevention is the best medicine and we must think about changes in the development process that prevents
technical debt in the future. Developers have never been aware of the long-term consequences of code viola-
tions introduced in their work. To stop deterioration of the system, we must raise awareness of technical debt
and the term needs to play a more profound role when making long-term development decisions. To realise
this, we present the following list of implemented ways to raise technical debt awareness:

• Introducing mandatory code reviews of new PRs is an effective way of ensuring that problems in the
code are detected as early as possible[9] but additionally, it helps developers to learn from their mis-
takes and to raise the quality bar of contributed code. The new policy introduced during this thesis
requires each PR of developers to be reviewed by at least two other Tribler developers. This policy also
helps developers to get more aware of ongoing work performed by other developers.

• Continuous integration and automated testing is an excellent opportunity to maintain a higher level of
code quality and to catch bugs during the development process before end users are reporting them.
The work as described in this chapter, has matured the Jenkins and testing environment so it can be
used reliably by the next generation of Tribler developers.

• Our CI environment already used static analysis tools to report violations in the source code which
is an effective way to make developers aware of introduced violations[38]. However, when starting
this thesis, these analysis tools have been implemented as separate jobs and were not executed on
every pull request. This has been changed so developers receive fast feedback when they push a new
commit to GitHub. The implemented checks executed for every PR on GitHub are visible in Figure
5.11. Besides the reports of the test execution on multiple platforms and the code violation reporter,
the code coverage report fails if developers added or modified lines that are not covered by a test. This
tool will definitely contribute towards an increase of the code coverage metric in the long run. The code
style violation checker will help us to prevent the amount of code smells identified by the static code
analyser.

Figure 5.11: The implemented checks in Jenkins, executed on every new commit in a PR.





6
Performance Evaluation of libtribler

Technical debt has a negative impact on product quality in terms of defects and other structural quality
issues[53]: it is significantly harder to fix defects in a complex, unstructured system and more dangerous
in a sense that one might introduce additional bugs when trying to fix one. Boosting performance is often
achieved by minor or major refactoring efforts of system components to utilize another underlying model or
structure. These kind of modifications are more involved when the system as whole is suffering from huge
amounts of technical debt.

Now that we got rid of most technical debt identified in the Tribler core and user interface, the next step
towards a stable, future-proof libtribler involves research efforts on the usability and performance of compo-
nents in the Tribler core. We wish to quantify the performance of operations performed by users to get an idea
about the usability of Tribler in general. For various components such as the torrent lookup mechanisms we
have no performance baseline or previous work to help us to make statements about usability. We will per-
form a number of experiments and for each experiment, we will present and discuss the observed results. We
have two additional purposes with these experiments: on the one hand, we show that the performance of the
system did not degrade to an unacceptable extent due to our refactoring efforts. On the other hand, we use
the performance measurements to identify possible failures or issues that we will document and classify as
future work.

6.1. Environment Specifications
The experiments performed in this chapter are executed on a virtual private server (VPS). We wish to stay
as close as possible to the specifications of a machine that an actual user could be using. A summary of the
specifications of the configured machine used for most of the experiments in this chapter, is given in Table
6.1.

Processor Intel Xeon CPU E5-2450 (2.50GHz, 4 cores)
Memory 8GB 1000MHz
Storage 50GB
Operating system Ubuntu 15.10

Table 6.1: The specifications of the machine used for most of the experiments.

The experiments are not executed in an isolated, artificial environment but are using the deployed Dispersy
network. While the obtained results may be different between users, this set-up can be used to get more in-
sights in the performance of Tribler from the perspective of the user.

If not stated otherwise, the default Tribler configuration file values are used. These default values are lo-
cated in the defaults.py file in the source code directory of Tribler1. In the configuration file used during the
experiments, all communities, except for the BarterCast community, are initialized. Dispersy, the REST API

1https://github.com/Tribler/tribler/blob/devel/Tribler/Core/defaults.py
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and the video server are enabled during the experiments. All experiments are executed without running the
wxPython or Qt GUI.

Some of the experiments are created using a scenario file. In a scenario file each line specifies a specific
command of a peer at a specific point in time during the experiment. Our framework used to run the experi-
ments, Gumby, contains code to read scenario files, interprets the commands to be executed and to schedule
these actions in Twisted. Several utility methods have been implemented to gather and write statistics to
files in a processable and readable format that can be parsed by visualization tools such as R2. Various Dis-
persy experiments are already built using the scenario file framework, including the AllChannel experiment
that runs on the DAS5 supercomputer. Before we execute the experiments, we first extended the usability
of the scenario files to run and manage a Tribler session and we improved the framework with the addition
of various commands to support the required operations in the experiments in this chapter. An overview of
all implemented commands together with optional arguments can be found in Appendix A. The flexibility
and ease of usage of these scenario files gives developers a robust framework to use when conducting perfor-
mance analysis, failure detection and other kinds of scientific research with Tribler.

Persistent data generated during runtime of Tribler is saved in a state directory which is usually located in
the home directory of the user. This state directory contains the persistent database, the torrent meta info
database and configuration files. By replacing this state directory, we can start Tribler in another state which
is for instance helpful when we wish to analyse the impact of a big database on the performance of Tribler.
During some experiments, we replace this state directory.

6.2. Profiling Tribler on Low-end Devices
The implementation of a RESTful API gives developers possibilities to run Tribler on one device and con-
trol the session from another device. For instance, one can run Tribler on a low-end, cheap device such as a
Raspberry Pi and use it to accumulate reputation in the Multichain by enabling the credit mining mechanism.
Mobile phones running Android is another group of devices that can run Tribler and during the last years, var-
ious research has been conducted to explore the possibilities of deploying Tribler on Android devices[47][22].
Executing and profiling Tribler on a low-end device with limited resources can yield valuable information
about performance bottlenecks in the system that might not be directly visible when running Tribler on a
regular desktop or a supercomputer.

The experiments described in this section are executed on a Raspberry Pi, third generation with 1GB LPDDR2
RAM, ARM Cortex-A53 CPU with 4 cores, a 1.2GHz CPU and 16GB storage on a microSD card. The installed
operating system (OS) is Raspbian, an OS specifically designed for the Raspberry Pi and derived from Debian,
an OS suitable for desktop computers and often used in server architectures.

Some preliminary exploration of the performance on the Raspberry Pi using the RESTful API has us sus-
pected that the device is under heavy load when running Tribler. Monitoring the process for a while using the
top tool, reveals that the CPU usage is often around 100%, completely filling up one CPU core. To see what is
causing this, the Yappi profiler has been used to gather statistics about the execution time of methods in Tri-
bler and Dispersy. This profiler is available on PyPi3 (a Python software repository) and has been integrated in
Tribler so developers can easily enable the profiler by passing a command-line option. The output generated
by the profiler is a callgrind file that can be loaded and analysed by third party software. The breakdown of
a 20-minute run is visible in Figure 6.1 and has been generated using the QCacheGrind4 application, a call-
grind file visualizer. We start this experiment with a clean state directory which is equivalent to the first run
of Tribler. the column Incl. denotes the inclusive cost of the function, in other words, the execution time of
function itself and all the functions it calls. The column self denotes only the execution time of the function
itself, without considering callees. The other columns are self-explanatory and could be used to locate the
respective function in the Tribler code base.

In the breakdown presented in Figure 6.1, the wrapper method appears to have a huge impact on the per-

2https://www.r-project.org
3https://pypi.python.org/pypi
4https://sourceforge.net/projects/qcachegrindwin/
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Figure 6.1: The breakdown of method execution times of a 20-minute Tribler run on a Raspberry Pi.

formance, being called 340.246 times during our run, however, only 1.22% of the run time is spent in this
method. The method itself is responsible for running specific methods on the Twisted reactor thread using
a decorator. Many of these decorators can be removed when we remove the old user interface, further ex-
plained in Section 4.3. Next, we notice various methods in the EPollReactor class. These methods are only
calling methods that are scheduled in the event loop of Twisted and the run time of these methods themselves
can be neglected.

Further analysing the breakdown, we notice that Dispersy has a huge impact on the performance of Tribler
when running on the Raspberry Pi. The ecdsa_verify method (second method from the bottom) is dominating
the runtime of Tribler: 45.81% of the Tribler run time is spent inside the method. This specific method verifies
the cryptographic signature of an incoming Dispersy message and is invoked every time a signed message is
received. Disabling cryptographic verification of incoming messages should improve the situation, however,
this is a trade-off between security and performance: by not verifying incoming messages, fake messages can
be forged by an adversary and are accepted without any verification in such a system.

To verify whether the system load decreases when we disable cryptographic verification of incoming mes-
sages, we measure the CPU usage of two different runs. Both runs start with a non-existing Tribler state
directory and have a duration of ten minutes. In the first run, we are using the default configuration of Tri-
bler, like in most of the other experiments described in this chapter. In the second run, we disable verification
of incoming messages in Dispersy by changing the cryptography option of Dispersy to NoVerifyCrypto (by de-
fault, this setting is set to ECCrypto, specifying that elliptic curves cryptography is used). The CPU utilization
over time of the two runs, up to ten minutes are displayed in Figure 6.2: on the horizontal axis, we show the
time into the experiment and on the vertical axis, we display the CPU utilization in percentage. We emphasize
that the Tribler core is limited to run on a single CPU core.

In Figure 6.2, some occurrences can be identified where the CPU utilization appears to be slightly over 100%.
This is explained by the fact that some of the underlying code is designed to run on multiple processors.
While the threading model of Tribler is limited to a single core, the Python interpreter might execute code on
additional cores to improve performance. In the run where we enable cryptographic verification of incom-
ing messages, the CPU usage is often 100%, leading to a non-responsive system. When we disable message
verification, we observe a somewhat lower CPU usage but overall, this utilization is still relatively high. Un-
fortunately, disabling incoming message verification is not enough to always guarantee a more usable and
responsive system.

To detect other performance bottlenecks, we sort the report of Figure 6.1 on the self column to get insights
in methods that are taking a long time to complete. This is visible in Figure 6.3. An interesting observation
is that the Python built-in all method takes up a significant amount of time (6.13% of the runtime). The all
method takes an iterable object and returns true if all objects of this collections resolve to a true value. The
all method is used in the _resume_delayed method, indicating that this method might causing performance
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Figure 6.2: The CPU utilization of one core on a Raspberry Pi device when running Tribler with and without cryptographic verification
of incoming Dispersy messages.

issues. Since further analysis of this method requires more knowledge of Dispersy, analysis and optimization
is considered future work and has been documented in GitHub issue 5055.

Figure 6.3: The breakdown of a 20-minute run of Tribler on the Raspberry Pi, sorted on the Self column.

To summarize, we demonstrated how adequate usage of the Yappi profiler can aid with the detection of per-
formance bottlenecks present in Tribler and Dispersy. Integration of the profiler in Tribler makes it conve-
nient for developers to run and analyse Tribler sessions under different circumstances and on a broad range
of devices that are able to run Tribler.

6.3. Performance of the REST API
The responsiveness of the REST API is directly influencing the user experience. If response times of API calls
are high, users of Tribler have to wait longer before their data is available and visible in the user interface. For
this reason, we wish to make the API serve requests as fast as possible. The purpose of this section is to as-
sess the performance of the API with a particular focus on latency of request response times. However, some
other statistics will be considered such as average request time, standard deviation of the response times and
observed bandwidth. These statistics will help us to get more insights in the performance of the REST API
and the responsiveness of Tribler.

We make use of the Apache JMeter application6 that we configure to perform HTTP requests to Tribler and to
gather and process performance statistics. The application allows to simulate a realistic user load, however, in
this experiment we will limit the load to one user that performs a request to Tribler with a fixed time interval.
The performed (GET) request will be targeted to a specific endpoint in the REST API: /channels/discovered.
The response of the request consists of a JSON-encoded dictionary of all channels that Tribler has discovered
so far. The returned response by this request can be rather large, especially if Tribler has been running for a

5https://github.com/Tribler/dispersy/issues/505
6http://jmeter.apache.org
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Requests/sec. Avg. (ms) Std. dev. (ms) Median (ms) Min. (ms) Max. (ms) KB/S
1 241 476.34 76 56 4246 585.58
2 170 327.86 68 58 3394 1127.04
5 123 210.23 60 52 2082 2538.36
10 115 238.72 60 50 2450 4120.70
15 182 497.61 68 52 4937 3296.45

Table 6.2: A summary of the experimental results when measuring the performance of the RESTful API.

long time and has discovered many channels (in our experiments, the average response size of the request is
around 613KB). We emphasize that the size of the database and thus the response size grows when Tribler is
running idle, however, we observed this increase to be at most 1KB, negligible compared to the response size.
During the processing of this request, a database query is performed to fetch all channels that are stored in
the persistent SQLite database. This exact request happens when users are clicking the discover menu button
in the new Qt GUI.

We perform multiple experiments with different time intervals between requests made and a fixed amount of
500 requests per experiment. First, we conduct an experiment where we perform one request every second
and we expect that the system should be able to hand this load and serve these requests in a timely mat-
ter. Next, the frequency of requests is increased to respectively 2, 5, 10 and 15 requests per second. Each
experiment is started around five seconds after Tribler has started. During the experiment, we are using a
pre-filled database with around 100.000 discovered torrents, 1.200 discovered channels and a subscription
to 20 channels. A summary of the experimental results are presented in Table 6.2 where we display various
request statistics.

If we focus on the average request time (second column), the most interesting observation is that it appears
that requests are served faster if we are performing requests at a faster rate, indicating that Tribler is able to
handle the incoming requests well. This is surprising since one would expect this to be the other way around:
when the frequency of requests is increased, the average request time is expected to increase since Tribler
is under more load, thus increasing request latency. The observed result is most likely explained by caching
mechanisms of data used by the underlying database engine or Twisted.

The standard deviation of the request times in Table 6.2 (third column) is for all experiments rather high
compared to the average request time. We suspect that this can be explained by the fact that Tribler is per-
forming many different operations besides serving API requests. In particular, we think that Twisted is busy
with processing other methods that have been scheduled earlier, causing the API requests to be processed
later. To verify this, we ran the experiment again where we disable Dispersy, the component responsible for
a significant part of the system load (as concluded in Section 6.2). We perform five requests per second and
500 requests in total for this experiment. The observed results are illustrated in Figure 6.4 where we display
the time into the experiment in seconds on the horizontal axis and the request response time in milliseconds
on the vertical axis.

In Figure 6.4a, the response times of the performed requests with a regular Tribler session is displayed (cor-
responding to the 5 requests/sec row in Table 6.2) whereas in Figure 6.4b, we display the response times of
the run with Dispersy disabled. Indeed, the average request time of the requests displayed in Figure 6.4b is
48 milliseconds, significantly lower than the average of the response times when Dispersy is enabled, namely
123 milliseconds. The standard deviation in Figure 6.4b is 5.73 milliseconds and the standard deviation in
Figure 6.4a is 210.23 milliseconds. We conclude that the variation in response times is much lower when we
disable Dispersy and that Dispersy is producing a huge system load, introducing considerable amounts of
latency when performing API requests.

We identified a key issue here: the latency of methods to be processed in Twisted is high, causing the pro-
cessing of operations of incoming requests to be delayed. This is not only a situation that occurs for REST
API requests: the same problem is present in Dispersy and the Tunnel community where possibly many in-
coming connections have to be processed and served. A step in the right direction is to make sure that there
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Figure 6.4: The response times of API requests, in a Tribler session both with Dispersy enabled and disabled.

are no big blocking calls scheduled in Twisted that take a considerable amount of time to complete. When a
method with a long execution time is executed, Tribler is unable to process other events during that period,
leading to a less responsive system. Ongoing work by another Tribler developer is focussed on making the
disk operations in Tribler non-blocking. This should reduce the latency of event processing and improve the
responsiveness of the system in general.

Table 6.2 provides us with another interesting observation, namely that it appears that the bandwidth is re-
ducing as the number of requests per second increases. This becomes more obvious if we plot the theoretical
maximum bandwidth together with the observed bandwidth during the experiments, see Figure 6.5. In this
figure, we presented both the obtained bandwidth by running a regular Tribler session and one where Dis-
persy has been disabled on the vertical axis. The horizontal axis denotes the frequency of the performed
requests. We assume that each request contains 613KB (627.712 bytes) of data in the response body. The the-
oretical maximum obtainable bandwidth is determined as b = 613n where n is the number of requests per
second and b is the theoretical maximum bandwidth in KB/s. In practice, we will never reach this theoretical
bandwidth since some time is required to initialize the HTTP connection to Tribler which we do not consider
in our simple model. Figure 6.5 clearly shows the impact of a running Dispersy on the bandwidth. Whereas
we almost obtain the theoretical bandwidth when we disable Dispersy, the gap between the theoretical max-
imum and observed bandwidths becomes bigger in the run where we use a full session. When performing
fifteen requests every second, the bandwidth even decreases, possibly due to the high system load.

We conclude this experiment with the conclusion that we can use the API response times as a benchmarking
tool to measure the responsiveness of the Tribler core. Using the Apache JMeter application, we can easily
build a stress test and verify whether performance has increased or decreased after a specific set of modifica-
tions. Implementation of such a performance regression framework is considered future work.

6.4. Start-up Experience
The first user interaction with Tribler, is the process of booting the software. During this boot process, various
operations are performed:

• The Tribler state directory where persistent data is stored, is created and initialized with necessary files
such as the SQLite database, the Dispersy member key pair and various configuration files.

• A connection to the SQLite database is opened and initialized.

• Dispersy is initialized and the communities that are enabled in the configuration file are loaded.

• Various Tribler components are created and initialized, including the video streaming server, the REST-
ful API, the remote torrent handler, responsible for fetching torrent information from other peers and
a key-value storage for torrent meta info.
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Figure 6.5: The theoretical maximum bandwidth compared to the observed bandwidth in the experiments (using a full Tribler session
and disabled Dispersy).

The start-up process of the Tribler core proceeds sequentially and no parallel operations are implemented
to speed up the process. Depending on the enabled components in the configuration file, the start-up time
might vary.

To analyse the start-up time, we perform two experiments where we start Tribler 50 times in a row. In one
experiment, the software is started for the first time, with no prior existing state directory. When starting Tri-
bler with no prior existing state directory, a new one is created and the required files are initialized. In the
other experiment, a pre-filled database containing just over 100.000 torrents is used. This database has been
built by running Tribler idle for several hours, after subscribing to various popular channels to synchronize
and discover as much torrents as possible. In both experiments, there are no active downloads. A timer is
started when the start method of the Session object is called and stopped when the notification that Tribler
has started, is observed. This allows us to determine the total start-up time of Tribler to a granularity of mil-
liseconds.

During the span of this thesis, there have been various changes to the start-up procedure of Tribler where
code has been modified, removed and added. Since we would like to guarantee that our modifications did not
significantly decrease the start-up speed, we make a comparison between the Tribler code in November ’15
and July ’16. The results are presented in Figure 6.6, where we present an empirical cumulative distribution
function (ECDF) with the boot time in seconds on the horizontal axis and within each plot, the distribution
of start-up times from a clean and pre-filled state directory. The ECDF for the distribution of boot times using
the November ’15 code base is presented in Figure 6.6a whereas the boot times of the July ’16 code base is
visible in Figure 6.6b.

The average start-up times for a clean and filled state using the November 2015 code base are 0.35 and 0.59
seconds respectively. For the July 2016 code, these values are 0.35 and 0.50 seconds. In both plots of Figure
6.6, It is clear that size of the Tribler database has impact on the boot time of Tribler, however, this impact is
relatively minor since the system still starts within a second. We think that this statistic justifies removal of
the splash screen that is shown in the old user interface: the duration of the splash screen visibility in the new
interface is so short that users would not even be able to read and interpret the content of the splash screen.
In contrast to the old user interface, the new GUI starts Tribler and shows a loading screen after the interface
has started. However, the difference is that users are able to already perform some basic actions before Tribler
has started, such as browsing of discovered content.

Whereas the boot times of the experiments performed with the November ’15 code are very constant, both
when using a clean and pre-filled state directory, we notice a larger variation when starting from a clean state
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(a) The boot time of Tribler with the code base of November ’15.
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Figure 6.6: The start-up time of Tribler from a clean and pre-filled state using the code base from November ’15 and July ’16.

in the experiment with the code base from July ’16, indicating that there is a component that has a high vari-
ation in initialization time during the start-up procedure. Further analysis learns us that this variation can be
addressed to Dispersy, possibly caused by the initialization of a community. However, further investigation
of the boot time of Dispersy is outside the scope of this thesis work.

6.5. Remote Content Search
We wish to serve relevant information to users as fast as possible. To help users to get content they are inter-
ested in, a remote keyword search has been implemented, allowing users to search for torrents and channels
inside the Tribler network. Channel results are fetched by a query in the AllChannel community whereas tor-
rent results are retrieved by a query in the Search community, however, for the experiments in this section, we
will focus on remote search for torrents since the amount of channels is rather small compared to the number
of torrents available in the network.

Several experiments to verify the speed of remote torrent search are discussed now. A list of 100 search terms
that have a high chance of triggering search results is used and each query is executed when there are at least
twenty connected peers in the Search community (this condition is checked every second). The time out
period of the remote search is 60 seconds, indicating that incoming search results after this period are not
regarded (the used search queries are presented in Appendix C.1). This experiment is focussed on two perfor-
mance statistics: the time interval until the first remote torrent search result arrives and the turnaround time
of the search request, meaning the interval until the last search response arrives. We should note that users
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performing a remote search might see results earlier since a lookup query in the local database is performed
in parallel (the performance of local search is discussed in Section 6.6). The results of our remote search ex-
periment are presented in Figure 6.7 where we created two ECDF plots with the distributions of time until
the first response (Figure 6.7a) and time until the last response (Figure 6.7b). On the horizontal axis, the mea-
sured time interval in seconds is displayed.

Overall, the remote torrent search as implemented in Tribler is fast and performs reasonable. On average,
there are 61 incoming search results for each performed query where the first torrent result takes on average
0.26 seconds to arrive. As we see in Figure 6.7a, over 90% of the first search results are available within a sec-
ond. During our experiment, we always have the first incoming torrent result within 3.5 seconds. Figure 6.7b
the turnaround time of the request, indicating the time until the last response within our time out period. On
average, it takes 2.1 seconds for all torrent search results to arrive. In Figure 6.7b, we notice that in over 90%
of the search queries, we have all results within 10 seconds.
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Figure 6.7: The response times of API requests, in a Tribler session both with Dispersy enabled and disabled.

The same experiment has been performed in 2009 by Nitin et al. where 332 remote search queries have been
performed. Their results are presented in an ECDF in Figure 6.8 where the time until the first response from
any remote peer in the network is measured (the horizontal axis denotes these response times). The graph
makes a comparison before and after a significant improvement to the message buffering mechanism, caus-
ing messages to be exchanged at a faster rate. The observed average time until first response in 2009 is 0.81
seconds whereas the observed average time in our experiments is 0.26 seconds, more than three times as fast.

We conclude this experiment with the conclusion that the remote search is reliable and fast. We receive an
adequate amount of search results and the first remote search results are often available within a second. We
might add anonymity to the searches by having other peers (say peer A) perform the search query on behalf
of a peer B. If we built an anonymous circuit between peer A and B when peer B wants to perform a remote
search, it becomes significantly harder for adversaries to determine which query peer A initiated.

6.6. Local Content Search
In the previous section, we demonstrated and elaborated the performance of the remote content search
mechanism. Now, we will shift the focus to performance measurements of local content search, which is
considered more trivial than the remote search counterpart due to the lack of network communication. In
particular, our goal is to quantify the performance gain or loss when switching to the new relevance ranking
algorithm where we utilized a newer database search engine, as described in Section 4.4.

The set-up of this experiment is as follows: a database with just over 100.000 torrents is used. Around ten
seconds after starting Tribler, we perform a local torrent search every second and we do this for 1.000 random
keywords that are guaranteed to match at least one torrent in our database. We will measure both the time
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Figure 6.8: The performance of remote content search, performed by Nitin et al. in 2009. The new remote search had an improved
input/output mechanism, causing messages to be exchanged faster.

spent by the database lookup and the time it takes for the data to be post-processed after being retrieved from
the database. In the code base of November ’15, this post-processing step involves determining the associated
channels that are containing a specific torrent result. This experiment is performed for the old method that
uses the Full Text Search 3 (FTS3) engine and the new procedure that uses the more recent Full Text Search
4 (FTS4) engine. According to the SQLite documentation, FTS3 and FTS4 are nearly identical, however, FTS4
contains an optimization where results are returned faster when performing searches with keywords that are
common in the database. The result of the experiments with the old and new local search logic is visible in
Figure 6.9, presented in two ECDF plots: Figure 6.9a gives the distribution of local keyword search times with
the old algorithm, using FTS3. Figure 6.9b presents the search times of the new local search algorithm, using
FTS4. In both plots, the horizontal axis denotes the time of either the database query time (the orange line)
or the total time for the processing of results, including the database query time (the blue/green line).

Local content search is very fast, delivering results in several milliseconds and performance engineering on
the local content search engine should not be prioritized. We see that the two lines in the FTS3 and FTS4
plots have moved closer to each other which means that the total time of post-processing of torrent results
has decreased. This is in line with our expectations since the new relevance ranking algorithm should be less
computationally expensive than the old one. In addition, the new algorithm takes less factors in considering,
for instance, the swarm health of the torrent. The increase in performance from FTS3 to FTS4 is visible but
not significant.

In 2009, Nitin et al. performed the same experiment where they used a database filled with 50.000 torrents.
Their generated ECDF is displayed in Figure 6.10. We notice that the performance of local search in our exper-
iment is dramatically better than the performance obtained during the 2009 experiment, however, we should
note that the experiment by Nitin et al. has most probably been performed with older, slower hardware than
used in our experiment. Another explanation for the huge differences in local query duration is that Tribler
used a custom inverted index implementation when the experiment in 2009 was conducted. An inverted in-
dex is a data structure where a mapping is stored from words to their location in the database and is used on a
large scale by search engines, including the FTS engine of SQLite. By utilizing this mapping when performing
a full text search, we can get results in constant time. However, there is a slight overhead for maintaining
and building the inverted index when new entries are added to the database, also impacting the size of the
database disk file. The built-in FTS engine of SQLite is optimized to a large extent and clearly offers a higher
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Figure 6.9: The distribution of local search durations of the old (FTS3) and new (FTS4) algorithm.

performance than the custom implementation in 2009.

6.7. Video Streaming
The embedded video player in Tribler allows users to watch a video that is being downloaded and the inner
working is explained in more detail in Section 3.4.3. Video playback has been available since Tribler 4.0 and
has been implemented using the VLC library. One distinguishable feature is support for seeking so the user
can jump to a specified time offset in the video. Video downloads have a special video on demand (VOD)
mode which means that the libtorrent piece picking mechanism uses a linear policy mode, downloading
pieces in a sequential order. When the user moves to a specified position in the video, the prioritization of the
pieces is modified, giving priority to pieces just after the specified seek position. The bytes are streamed to
a VLC-compatible client using a HTTP stream. When Tribler starts, a video server is started if enabled in the
configuration file. Users do not have to use the built-in player and also have the possibility to use an external
video player that support playback of a HTTP video stream.

To improve user experience, we wish to minimize the delay that users experience when performing a seek
operation in the video player. The experiment performed in this section, will quantify this buffering delay.
For this purpose, the well-seeded Big Buck Bunny7 movie will be downloaded. The movie file has a size of
885.6 MB and has a duration of 9 minutes and 56 seconds. We will perform various HTTP range requests us-
ing the curl command line tool8, immediately after starting the download in Tribler (the download is started
around ten seconds after Tribler has started). For every run, we will request 10 megabyte of data with differ-
ent offsets within the file and we will measure the total time it takes for each HTTP request to complete. The

7https://peach.blender.org
8https://curl.haxx.se
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Figure 6.10: The performance of a local database query as verified by Nitin et al. in 2009.

First byte Time until request done (sec)
0 11.6
1∗109 64.4
2∗109 64.6
3∗109 65.9
4∗109 100.6
5∗109 115.6
6∗109 115.8
7∗109 12.2
8∗109 66.6
9∗109 52.4

Table 6.3: Performance of the video player when requesting 10MB of data at different byte offsets of a video that is being downloaded.

results are visible Table 6.3 where we specified the first requested byte and the time until the request has been
fulfilled and the response is received.

Theoretically, we would expect around the same request time for each range request, assuming that the avail-
ability of each piece is high. When performing a seek operation in the video, the piece picking mechanism
adjusts priorities and these prioritized pieces should start to download immediately. The experiments shows
various anomalies in this mechanism where it might take up to two minutes for data to be available. Further
investigation of this issue learns us that the video player always tries to download the first 10% of the video
file. We found out that this is intended behaviour of the code since the video player needs the information
embedded in the file header first. This file header provides information about the file type, file duration and
encoding used. There are some video formats where this kind of information is present at the end of the video
file.

We conclude this experiment with the statement that the video player is a very important component in
Tribler and requires more attention. Apart from performance gain by integrating the video player in Twisted,
we might think about a smarter algorithm to make sure that we download the video file header first. Always
downloading the first 10% of the file might lead to wasted time in case of a large video file if the user jumps
immediately to the middle of the video. This situation becomes even worse when we enable the anonymous
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download overlay, decreasing the download speed and increasing latency before playback of a video starts.

6.8. Content Discovery
Content discovery is a key feature of Tribler. By running Tribler idle for a while, content is synchronized with
other peers using the Dispersy messaging mechanism. When a user starts Tribler for the first time, there is no
discovered content yet. We will verify the discovery speed of content after a first fresh start. The experiment
is structured as follows: we measure the interval from the completion of the start procedure to the moment
in time where the first content (a channel and a torrent) is discovered. The experiment is repeated fifteen
times. The results are presented in Figure 6.11 where we created an ECDF with a distribution summary of the
discovery times of torrents (green line) and channels (orange line). The horizontal axis denotes this channel
or torrent discovery time.
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Figure 6.11: The discovery time of the first channel and torrent after starting Tribler for the first time.

The delay of discovering the first channel is reasonably: this happens on average 18 seconds after start-up. In
all runs, we have our first channel discovered within 35 seconds after Tribler starts. Discovery times of the first
torrent is slightly slower and in all runs, the first torrent in a channel is discovered within 40 seconds. Figure
6.11 suggests that a torrent discovery always happens after there is at least one discovered channel. This is
true: after the channel is discovered, the PreviewChannel community is joined where torrents are exchanged
and discovered after a while.

In the old wxPython user interface, users were presented with a blank screen with no feedback about con-
tent that is being discovered in the background. In the new Qt user interface, the user is presented with a
screen that informs the user that Tribler is discovering the first content. This screen is only visible the first
time Tribler is started and is dismissed when there are five discovered channels after which the page with an
overview of discovered channels is presented to the user. We think that it is justifiable for users to wait until
some channels have been discovered before they can perform actions: the time they have to wait is relatively
short (around 30 seconds) and the waiting period could be combined with a small tutorial about Tribler (this
feature is not implemented in the first iteration of the new Qt interface).

6.9. Channel Subscription
When Tribler runs idle, not all available content in the network is discovered. The majority of torrents is dis-
covered when users subscribe to a channel (in the old user interface, this is equivalent to marking a channel as
favourite). When Tribler discovers a new channel, users are able to browse through a preview of this channel.
Internally, Tribler connects to the PreviewChannel community associated with that channel, a community
derived from the channel community. In this preview community, the amount of torrents that are collected
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is limited. The channel community is joined the moment the user subscribes to a channel, after which all
available content is synchronized. Removing the preview mechanism might significantly increases the re-
source usage of the Tribler session since the amount of incoming messages to be decoded and verified will
increment.

The experiment as described in this section, will focus on the discovery speed of additional content after the
user subscribes to a specific channel and on the resource allocation when we are running Tribler without en-
abling the preview mechanism of channels. For the first experiment where we determine the discovery speed
of additional content inside a channel, the twenty most popular channels (having the most subscribers) are
determined. To get these channels, we have used a Tribler state directory with many discovered channels but
void of any channel subscriptions. Exactly ten seconds after Tribler started, we subscribe to one of these pop-
ular channels and we measure the time interval between subscription to the channel and the first additional
torrent discovered. Tribler is restarted between every run and the state directory is cleaned so we guarantee
a clean state of the system. The observed results are visible in an ECDF displayed in Figure 6.12 with the time
until torrent discovery on the horizontal axis.
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Figure 6.12: An ECDF of discovery times of the first additional torrent after subscribing to a popular channel.

The average discovery time of additional torrents after subscription to a channel is 36.8 seconds which is quite
long, compared to the discovery speed of the first channel and torrent after start up as described in Section
6.8. The discovery times have a high variation as can be seen in Figure 6.12. This can be explained by the fact
that immediately after subscribing to a channel, Tribler will connect to the channel community and it takes
some time for new peers to be discovered.

To verify the impact of automatically subscribing to each channel and synchronizing all content when it is
discovered, we perform a CPU utilization measurement. In two idle runs of a Tribler session, both lasting
for ten minutes, we measure the CPU utilization every ten seconds using output provided by the top tool.
In the first run, a regular Tribler session is used where previews of discovered channels are enabled. In the
second run, we bypass the preview of a discovered channel and immediately join the channel community,
synchronizing all available content. Both types of runs start with an empty state directory. The results of this
experiment are visible in Figure 6.13 where we display the time into the experiment in seconds on the hori-
zontal axis, up to ten minutes and the CPU utilization in percentage on the vertical axis. We display both the
utilization with channel previews enabled and disabled.

Whereas the CPU usage of the normal run is around 45% on average, the CPU is quickly rising to 100% uti-
lization when we enable the auto-join mechanism of channels. This shows that it is infeasible to enable this
auto-join feature if we still wish to guarantee a responsive system. One might limit the rate at which discov-
ered torrents are fetched, however, this requires a feedback mechanism where we should notify other peers in
the community to limit the amount of messages sent to the peer that is discovering content. Implementation
of such as feature is outside the scope of this thesis work and is considered future work.



6.10. Torrent Availability and Lookup Performance 65

0

25

50

75

100

0 200 400 600
Time into experiment (sec)

C
P

U
 u

til
iz

at
io

n 
(%

)

Preview disabled

Preview enabled

Figure 6.13: The CPU utilization of one core during a period of ten minutes with channel preview enabled and disabled.

6.10. Torrent Availability and Lookup Performance
While specific information about torrents such as the name and file names are distributed within the Dispersy
communities, this does not hold for the meta info about the torrent itself, which includes additional data
such as available trackers and piece information. This meta info might be important for users since trackers
provides information about the health of a torrent swarm. The experiments as performed in this section, will
investigate the torrent availability and lookup performance of meta info of torrents, both by downloading
them from remote peers in the Tribler network and when querying the Distributed Hash Table (DHT).

6.10.1. Trivial File Transfer Protocol Handler
When users are performing a remote torrent search, the first three incoming results are pre-fetched in the
old user interface which means that the meta info of these torrents are fetched automatically. An incom-
ing search result from the Dispersy network might contain information about remote peers (candidates) that
have meta info of this torrent available. If candidates for a specific remote torrent result are present, an at-
tempt to fetch the torrent meta info from this candidate is scheduled. This request is performed using the
TFTP mechanism[50]. TFTP is also used to transfer meta data about torrent files such as thumbnails between
peers, however, the exchange of torrent meta data is currently disabled in Tribler. The implementation of
TFTP is located in the Tribler core package.

There has been no published studies yet about the performance of our TFTP implementation so we have no
reference material. The experiment performed in this section will focus on the performance of TFTP when
fetching meta info from remote peers. We start from a clean state directory and exactly one minute after start-
ing Tribler, we perform a remote torrent search. For each incoming remote search result, we perform a TFTP
request. We perform ten remote torrent search operations in total, with interval of 60 seconds between them
(the used search queries can be found in Appendix C.2). For every incoming result, we schedule a remote
torrent lookup with a priority of 0. A TFTP request is performed every five seconds. After eleven minutes, we
stop Tribler and gather the statistics of the TFTP sessions. The observed results are presented in Table 6.4,
where we display the total amount of scheduled requests, requests still in the queue, the number of failed
requests and the amount of succeeded requests.

We notice that the queue keeps growing: when our experiment is finished, 75.5% of the initiated requests
is still in the queue. We must emphasize that we are scheduling requests at a rather fast rate. The second
observation is the high failure rate when compared to the amount of succeeded requests (42.9% if we do not
consider the requests in the queue). We identified two underlying reasons for the failed requests: first, some
of the requests timed out, possibly due to the fact that several remote peers are not connectible. A solution
for this kind of failure would be a robust NAT puncturing method. The second reason is that the remote peer
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Total requests scheduled 1008
Requests in queue 761 (75.5%)
Requests failed 106 (10.5%)
Requests succeeded 141 (14.0%)

Table 6.4: A breakdown of the final state of the performed requests during the TFTP performance measurement.

might not have the requested file in the local persistent storage. While this situation might seem unusual, it
can happen if the remote peer has the requested torrent information in the SQLite database but not in their
meta info store, a separate persistent database used to store binary torrent files. We can solve this by not re-
turning the peer as candidate if the torrent is not available in the meta info store. This solution might reduce
the total bandwidth used by the TFTP component.

Next, we will focus on the turnaround time of successful TFTP requests, presented in the ECDF in Figure 6.14.
This ECDF only considers requests that have succeeded and the horizontal axis denotes the total time in sec-
onds it took before the TFTP request has been finished. We notice the weird distribution of the turnaround
times: we would expect that the total request times to fetch meta info using TFTP is somewhat constant, how-
ever, we see outgoing requests that take over 400 seconds to complete. This trend will probably continue if we
did not stop the experiment after eleven minutes. The most reasonable explanation for this is that requests
are added to the request queue at a faster rate than the processing speed of these requests. This also explains
the values denoted in Table 6.4 where 75.5% of the request are still in the queue after the experiment ends.
Better support for parallel requests should help, however, this is considered further work.
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Figure 6.14: An ECDF of the performance of the torrent meta info download mechanism using TFTP in Tribler.

6.10.2. Distributed Hash Table
Another additional source of torrent meta info is the DHT. In the DHT, we can lookup meta info of a torrent.
In this section, we will perform an experiment to get insights in the availability of torrent files and the perfor-
mance of lookup operations in the DHT. Like in the TFTP experiment described in the previous section, we
wish this meta info to be available as soon as possible to the user.

For this experiment, a popular channel with over 5.000 torrents is used and a subset of 1.000 random tor-
rent infohashes in this channel is determined. We start Tribler from a clean state and every 40 seconds, a
DHT query is performed with one of the 1.000 random infohashes. The time out period used in Tribler is 30
seconds, after which a failure callback is invoked and an error is displayed in the user interface to notify the
user about the failed request. The results of this experiments are visible in the ECDF depicted in Figure 6.15
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where the horizontal axis denotes the request time in seconds before the DHT lookup is completed.

Figure 6.15: An ECDF of the lookup times of torrents in the DHT.

We immediately notice that the failure rate of DHT lookups is high: 48.9% of the lookup operations are timing
out and never succeed. This issue might be addressed to dead torrents (when no peers in the DHT have this
torrent information available) or private torrents (torrents which information is not exposed in the DHT).
The amount of failures might even be higher if we repeated the experiment with torrents in a less popular
channel since the content in these channels are likely to be less seeded. As explained in the previous section,
the DHT is not the only source for torrents in Tribler and we might also fetch torrents from other peers using
TFTP. Unfortunately, the approach of fetching meta info about torrents from other peers is only useful when
performing a remote search for torrents whereas the DHT can always be queried. Caching and exchanging
torrent candidates is not successful since the availability of candidates cannot be guaranteed.

The average lookup time of torrents that are successfully fetched from the DHT is 5.81 seconds which is rea-
sonably fast. Additionally, a little over 90% of the successfully fetched torrents are retrieved within 10 seconds.

To improve performance of meta info lookups, dead torrents should be handled correctly. One possible so-
lution might be an implementation of a periodical check for each incoming torrent. By limiting the number
of outstanding DHT requests, this approach does not require much additional resources. To further improve
performance, the result of DHT lookups might be disseminated to remote peers in the network. Torrents that
are not successfully fetched from the DHT, could be hidden automatically in the user interface. The down-
side of this approach is that it might not give a realistic view of the availability of a torrent since their might
be Dispersy peers which have information about this torrent available.





7
Testing Tribler on a Large Scale

In the previous chapter, we performed various small performance measurements and quantified the usabil-
ity and performance of common performed operations in Tribler such as performing a remote search and
downloading content. While these experiments gave us insights in the performance of key components in
libtribler, we focused on a single part of the system during every experiment.

In this chapter, we focus on how several components in libtribler work together. The purpose of this exper-
iment is to identify failures and to get a detailed timeline with durations of each operation. We will perform
a test on a large scale, where we start the application, perform a remote keyword search, select a torrent and
start a download using the anonymous overlay network. We will first discuss the set-up of the experiment in
more detail, after which we turn our focus to the results we observed during the experiment. As far as we are
aware, this is the first time that we assess the performance of Tribler with a full sequence of operations.

7.1. Environment Specifications
We utilized the DAS5 supercomputer for this experiment so we are able to run multiple Tribler sessions in
parallel in order to reduce the total experiment time. We created a separate job in our CI environment where
we allocate ten nodes on the DAS5 Vrije Universiteit (VU) cluster every time the job is executed. A summary
of hardware specifications of each DAS5 node is presented in Table 7.1. On each node, we start exactly one
Tribler session.

Processor dual 8-core 2.4 GHz (Intel Haswell E5-2630-v3)
Memory 64GB
Storage 128TB
Operating system CentOS Linux

Table 7.1: The specifications of a node in the DAS5 VU cluster.

7.2. Set-up of the Experiment
The experiment as performed in this chapter is structured as follows: we run a specific Tribler scenario 2.171
times on the DAS5 supercomputer and keep track of the timestamps of interesting events during each run.
The experiment is performed as many times as possible to also detect rare failures that are only occurring in
a very small fraction of the runs. We write this data to a file after each run and combine the results when all
nodes in the DAS5 cluster are finished. Since each execution of the Jenkins job yields exactly ten results, we
repeated the execution of the job multiple times.

For every Tribler session, we perform the following operations: first, we start Tribler with a clean state direc-
tory, without any prior information about the network or content. After Tribler has been started, we wait for
a sufficient amount of peer connections (30) in the Search community before we perform the remote search.
This is different from the value used in the experiment described in Section 6.5 where we wait until we are

69



70 7. Testing Tribler on a Large Scale

connected to at least 20 peers in the community. In our experiment, this number has been increased since
there are running ten other Tribler nodes inside the same network that are possibly connecting with each
other. When this happens, they provide no remote search results to each other since there is likely to be no
discovered content in their databases yet. During each Tribler session, we schedule a check that is executed
every second to verify whether we are connected to a sufficient amount of peers.

Once there are enough established peer connections, a remote torrent keyword search is performed. For
this purpose, we are using a list of 1.000 popular keywords that have been determined as follows: we analysed
a database with just over 100.000 torrents, gathered all keywords in the database together with the frequency
of each keyword and created a list of the 1.000 keywords with the highest frequency. Every run, we pick a
random keyword with a uniform distribution from this list and perform a remote search with the selected
keyword as query.

After performing the remote search, we wait 30 seconds for incoming search results to arrive. The time of
the first and the last incoming remote search results are tracked, like in the experiment described in Section
6.5. If we have no search results within 30 seconds, we mark the run as failed, log the event and stop the
Tribler session. We save all incoming torrent search results and after 30 seconds, we pick five random torrent
results that are not classified as xxx and schedule a meta info lookup in the DHT. We are not scheduling a
single lookup but instead, multiple to significantly reduce the chance of failure (it would not be helpful if our
experiment would fail in half of our runs due to known reasons). We are using a time out period of 60 seconds
for the DHT lookup operation: if we do not receive any response from one of the scheduled DHT lookup after
this time out period, we mark the run as failed and log this failure.

As soon as the first meta info response is received, we start the download of the torrent associated with
the meta info. During the download, one hop anonymity is used which means that our traffic is tunnelled
through one peer. Three minutes after initiating the torrent download, we stop the Tribler session and delete
the downloaded data. We keep track of the duration of anonymous circuit construction and the moment in
time when we receive the first incoming content bytes. Additionally, we keep track of the total amount of
downloaded bytes after these three minutes. A summary of all performed actions during each Tribler run is
displayed in Figure 7.1.

Figure 7.1: The actions performed in each run of the experiment performed in this chapter.

We emphasize that this experiment is performed using the real Tribler network and we did not create an ar-
tificial environment. The selected torrents for the download operations are selected in a uniform random
matter and we are not selecting these torrents based on the health of the swarm or the popularity of the tor-
rent.

To make the experiment succeed, we had to implement a workaround for a bug in Tribler: after starting
an anonymous download for the first time, this download does not receive any bytes when the circuits have
been created. In order to make sure that the download proceeds correctly, we forced start the download
immediately after the circuits have been established.

7.3. Failure Identification
We can think of various failures during each run of Tribler, failures that can be classified as code-level defects
(which should be recognized by the unit tests) and failures that are attributed to external dependencies such
as the health of the swarm or the state of the Tribler network. Below, we summarize some failures:

• There are not enough established connections in the Search community after two minutes.

• There are no search results within 30 seconds after performing a remote search.
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• We do not receive a response containing meta info of a torrent within 60 seconds after scheduling five
DHT meta info lookup.

• Three minutes after the download started, we did not built the required amount of anonymous circuits
yet.

• Three minutes after the download started, we did not receive any content bytes yet.

We abort the Tribler session if one of the first three described failures above is observed. The forth and fifth
failure is observed during the final step of our run and if we encounter one of these two failures, we will find
out after the run ends. We should note that most of these failures can be addressed to the state of the Tribler
network. By performing the run as described in the previous section many times, we get insights in the most
common failures.

7.4. Observed Results
We will now discuss the observed results during this large-scale experiment. The focus will be both on the
amount and distribution of failures that occurred during the experiment and on the duration of the per-
formed operations which allows us to create a detailed timeline of events during our experiment.

7.4.1. Failure Rates
After performing the experiment, we observed a success rate of 54.2% which means that in this percentage
of the 2.171 performed runs, all operations were successful and that we received one or more content bytes
during the download phase of each run. In 45.8% of the runs, we encountered an issue. The exact distribution
of observed outcomes of the 2.171 runs is presented in Figure 7.2.
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Figure 7.2: The distribution of outcomes of all 2.171 runs.

Over half of all runs are succeeding, however, a significant amount of the failures is addressed to the situation
where Tribler did not connect to enough peers in the Search community two minutes after start-up (to be
exact, in 27.9% of the runs). If this failure occurred during a run, we recorded the amount of peers that are
connected after two minutes and we noticed that this amount often between 20 and 30 peers. This indicates
that this failure is not significant any more if we decide to lower the amount of peers required when searching
and that it might have been better if we reduced the required amount of peers before we started the experi-
ment. However, by having less connections to remote peers when performing a search, we might lower the
amount and quality of search results.

In 6.9% of the runs, we did not receive remote search results after 30 seconds. While this result contradicts our
findings in the experiment performed in Section 6.5 (where all our queries resulted in at least one search re-
sult), we should emphasize that there might be keywords in our constructed query list that have an unevenly
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distribution amongst peers. In the database we used to construct the query list, we were subscribed to vari-
ous channels, having access to an extended amount of torrents. Connected peers in the search overlay might
not have discovered as many torrents as we have, possibly because they are subscribed to fewer channels.
This way, the chance for a peer to have content matching a specific keyword, decreases. Another explanation
might be that there is a single torrent with many files that contains a rare keyword in the file name of a signif-
icant part of the torrent files. Our selection algorithm will consider this keyword as frequent in the database,
however, the torrent file might be new or private in which case not many peers have knowledge about this
torrent.

In 2.1% of all runs, we did not receive torrent meta info after scheduling five DHT lookups. In the experi-
ment performed in Section 6.10.2, we concluded that 48.9% of the 1.000 scheduled lookups in the DHT failed
(with a time out period of 30 seconds). When scheduling five parallel lookups, we estimate that the chance
of no request succeeding is 0.4895 ≈ 0.031 or 3.1%. Of all 2.171 runs, we scheduled the DHT lookups in 1.415
runs. In total, 45 runs failed because of an absence of a meta info response, resulting in a failure rate of 3.2%
for the DHT lookup operations in our experiment, close to our expected value. This number is slightly higher
than expected and this might be attributed to the fact that we did lookup more popular torrents in the ex-
periment described in Section 6.10.2. In the experiment described here, we cannot make assumption on the
popularity of the torrents since they are selected randomly.

In 1.9% of the runs, we were unable to build the required after three minutes. While this number is rela-
tively low, it is an indicator that the circuits building strategy might need some investigation efforts to reveal
and fix the root error that causes circuit creation to fail. In 6.9% of the runs, we received no bytes after the
anonymous circuits have been built and the download has started. This failure might be explained by a low
swarm health, a swarm with a low amount of seeders.

This section discussed all kind of failures that can occur during an extensive test run of Tribler where multiple
operations are performed. Overall, most features are functioning as expected, however, the fragility of some
operation requires adequate error handling both in the core and the user interface.

7.4.2. Experiment Timeline
During the experiment, we performed various operations in each run of Tribler. Some interesting events that
provides us insights in the performance of the system are taking place such as the retrieval of search results
and the retrieval of the first content bytes during a torrent download. We kept track of the timestamps of these
events so we are able to determine the average duration of performed operations. A detailed breakdown is
presented in Figure 7.3 where we show a timeline with events during each Tribler run. This timeline starts
when the start up procedure of Tribler is initiated.

Figure 7.3: A timeline of events during the runs. For each event, the average time is calculated across all runs.

The average start-up time of Tribler during our runs is 0.68 seconds. While this number is higher than the
value as determined in Section 6.4 (0.35 seconds), it is still under a second and considered fast. The differ-
ences are most likely due to inequality in hardware specifications between the used machines.

After around 30 seconds, we should have established enough peer connections in the Search community,
and we perform the remote keyword search. We notice that the first incoming response is very fast: on aver-
age, it arrives after 20 milliseconds, which is significantly faster than the value determined in Section 6.5 (260
milliseconds). We believe this is explained due to the fast Internet connection of the DAS5 supercomputer.
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The last response takes on average 2.0 seconds to arrive, which is comparable to the value determined in the
experiment in Section 6.5 (2.1 seconds).

Exactly 30 seconds after performing our remote search, we schedule five DHT lookups assuming we received
search results. On average, it takes 7.16 seconds for our DHT lookup to be completed, which is slightly slower
than the average lookup time we found during the experiment in Section 6.10.2 (5.81 seconds). We do not
have a solid explanation for this difference, other than that we are dealing with a different set of torrents. Af-
ter we received the first meta info response, we immediately start the anonymous download associated with
the torrent of the received meta info.

After the anonymous download has started, Tribler attempts to build circuits which takes on average 40.43
seconds to complete. This seems a long time if we consider that Tribler has been running for several minutes
and should have a sufficient amount of peers in the community responsible for managing circuits (the Tun-
nel community). To better understand the circuit building logic, we create an ECDF to get an overview of the
distribution of time until our anonymous connections are ready, see Figure 7.4. The horizontal axis denotes
the time until the anonymous circuits are built.
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Figure 7.4: An ECDF of the time until the anonymous circuits are ready.

We note that just under 50% of the circuits are built within seven seconds. For runs where circuits are taking
a longer time to be ready, we notice a step-like pattern which can be explained by the fact that the software
builds circuits at fixed time intervals (five seconds). Some circuits can even take minutes to built. Figure 7.4
shows that the circuit built time can be improved, for instance, we might try to create additional, redundant
circuits in case the creation of a circuit times out or fails due to other unknown reasons.

After the circuits are built, it takes on average 7.42 seconds before we received our first content byte, which
might be slightly but not significantly slower than the times observed manually when performing a non-
anonymous download. We address some of this increase in time to our implemented workaround to start the
download and to the overhead caused by the anonymous overlay network.

7.5. Integration in Jenkins
The experiment described in this section gave us insights in the failures and duration of various operations
commonly performed by users in Tribler. In combination with the scenario file mechanism as described in
Section 6.1, we can create a Jenkins job that performs the experiment as described in this section to give de-
velopers feedback about the consequences of their modifications on the operation of core operations. This
job is more extensive than the unit tests and more resembles an application tests where the functioning of
various parts of Tribler is verified. The job can be executed parallel during the testing phase displayed in
Figure 5.7 to save time. We should change the structure of the experiment to have a better success rate, for
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instance, by searching for and downloading torrents with a good swarm health.

This experiment is easy to reproduce and requires minimal work to be ready for usage as a key development
tool that presents the total system performance at a glance. We think that the integration of this experiment
into the development flow of Tribler is beneficial for the process of identifying defects and for performance
measurements executed by developers.



8
Conclusions

Technical debt is a recurring problem in many large software engineering projects. The work in this thesis
investigates the technical debt that has been accumulated by 111 unique contributors during the last ten
years of scientific research in the area of decentralized networks. After careful analysis, we concluded that the
large Tribler code base suffers from architectural impurity, lack of maintenance, an unstable and incomplete
testing framework and a huge amount of technical debt, especially in the source code of the user interface.

To better understand the root causes of the incurred technical debt, we investigated the architectural evo-
lution of Tribler over its lifespan and concluded that Tribler benefits from a new architecture that meets three
requirements to reduce the amount of technical debt in the future: simplicity, flexibility and a focus on per-
formance. We started working towards this architecture by designing and implementing a new user interface,
built using the mature and well-maintained Qt framework. Next, we created a developer-friendly RESTful API
that could be used by external developers to communicate with the core of Tribler, libtribler. This completed
the implementation of the top layer in our new proposed architecture.

While a significant amount of technical debt has been solved by removal of code related to the old user in-
terface, the core of Tribler is still suffering. We identified and solved different kinds of technical debt. Code
debt has been identified with the SonarQube application and with some invasive refactoring efforts in the
core, we reduced the estimated amount of technical debt to just over two days. Testing debt has been han-
dled by refactoring efforts in the test suite by splitting the tests into smaller ones while fixing many test code
smells. By updating and extending our Jenkins CI environment with multi-platform tests and by improving
the Tribler installers, we reduced the amount of infrastructure debt. Architectural debt has been reduced by
breaking dependencies in the Tribler core and by the implementation of the new user interface. Finally, we
have set-up a new documentation structure which reduced the amount of documentation debt.

Prevention is the best medicine. We should learn from mistakes made during the development process over
the past decade. Mandatory code reviews by other team members help to improve one’s code and to get a
more critical attitude towards favouring short-term decisions over long-term agreements. We also propose
that it is the responsibility of every developer to write code that is sufficient covered by tests. By forcing a
strictly increasing code coverage policy, realised by the addition of a code coverage check that runs for every
commit, the coverage metric is under control and can gradually be improved over time. Additionally, the
Pylint code analyser runs on every pull request and fails if a developer introduces code smells in the form of
code style violations.

Since technical debt has a negative impact on product quality in terms of defects, performance and other
structural quality issues, we identified where performance might have been lost due to the many architec-
tural changes. By profiling Tribler on low-end devices, we identified various performance bottlenecks. We
investigated the performance of the REST API and concluded that Dispersy is causing huge variations in the
request response times. We assessed the usability and performance of various components in libtribler such
as the local and remote search, content discovery speeds, the video streaming server and torrent lookup op-
erations. In our final experiment, we tested Tribler on a large scale by performing a sequence of operations.
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This experiment focussed on failure identification and can be used as a foundation for an application testing
framework.

While the work as described above is a big step in the right direction to guarantee a usable platform for future
Tribler research, there is still much work to do. The performance of various components such as the video
player and remote torrent handler that uses the TFTP mechanism should be investigated and improved to
increase usability. Also, we found performance bottlenecks in Dispersy, in particular, a method that is re-
sponsible for over 45% of the Tribler run time. Finally, we did not consider the lower layers in our proposed
architecture: the trusted overlay. Efforts to extend the design and implement a decentralized trust network
where we repel fake identities and free-riders, remains a non-trivial and challenging task.



A
Gumby scenario file commands

As described in Chapter 6, a standalone Tribler runner that uses a scenario file has been created. The scenario
file allows developers to specify commands at specific points in time after Tribler has booted. This Appendix
describes the implemented commands and their usage. Table A.1 presents a table with commands. Listing
A.1 gives a basic example of a Gumby scenario file.

Command Argument(s) Description
start_session - Start a Tribler session.
stop_session - Stop a running Tribler session.
stop - Stop the experiment and write

the gathered statistics to files.
clean_state_dir - Clean the default state directory

of Tribler.
search_torrent The search query and optionally

the minimum number of peers
required in before the search is
performed.

Perform a remote torrent search.

local_search_torrent The search query. Perform a local torrent search in
the database.

get_metainfo The infohash of the torrent to be
fetched.

Fetch meta info of a specified tor-
rent from the DHT.

start_download The URI of the download. Start a download from a torrent
specified by a given URI.

subscribe The Dispersy channel identifier
of the channel (can also be ran-
dom).

Subscribe to a random or speci-
fied channel.

Table A.1: An overview of commands for the Gumby scenario file when performing experiments with Tribler.

Listing A.1: An example of a Gumby scenario file.

# A simple Gumby scenario f i l e that runs T r i b l e r and performs some basic actions
@0: 2 s t a r t _ s e s s i o n
@0:10 subscribe 11FC61602C9533AE51B6A05E47B6BFBB75DCB5FD
@0:15 get_metainfo 3d84795cc957a1d7bf127a129ef17aa680113467
@0:45 search_torrent t e s t
@0:80 stop_session
@0:85 stop

77





B
Qt GUI Screenshots

Figure B.1: The homepage of the Qt GUI.
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Figure B.2: The page with discovered channels.

Figure B.3: The page that presents content in a specific channel.
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Figure B.4: The overview page of the downloads.

Figure B.5: The page where one can manage playlists in an owned channel.
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Figure B.6: The settings page.

Figure B.7: The page with (mocked) search results.
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Experiments Data

C.1. Search Queries Used in Remote Search Experiment

mp4
tribler
iso
brother
movie
mother
serie
dance
warcraft
james bond
china
hot stuff
computer
files
2015
2011
2008
2004
marvel
audio book
arrow

blacklist
game of thrones
spectre
compton
lawrence
horriblesubs
into the woods
imdb
pirate
playlist
battle
madonna
family
amateur
home
sister
school
college
hardcore
clips celeb
collection

red alert
demigod
resource
anydvd
motorola
dvdsrc
axxo
website
alex jones
daily show
dave
castle
poker
knowing
inception
radiohead
moto gp
valkyrie
ubuntu
la matassa
paul kalkbrenner

heroes
man
fast and the furious
windows
mac
divxml
transporter
city
seven
quantum
body of lies
watchmen
underworld
spirit
the terminator
narnia axxo
tropic
fireproof
screamers
discovery
children

frost
lost
fringe
reaper
fallout 3
defiance
kings of leon
the uninvited
csgo
let it rock
zac brown
microsoft
apple
banana
ice age
merlin 2008

C.2. Search Queries Used in TFTP Experiment

tribler
2012

test
pioneer

season
iso

movie
year

amazing
music
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