
Delft University of Technology
Master of Science Thesis in Embedded Systems

Schedulability analysis of globally
scheduled preemptive applications

Srinidhi Srinivasan

Supervisor : Dr. Geoffrey Nelissen
Co-supervisor : Dr. Mitra Nasri

Embedded
Networked
Systems

Schedulability analysis of globally scheduled

preemptive applications

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Srinidhi Srinivasan
S.Srinivasan-2@student.tudelft.nl

nidhi.2396s@gmail.com

mailto:S.Srinivasan-2@student.tudelft.nl
mailto:nidhi.2396s@gmail.com

Author
Srinidhi Srinivasan (S.Srinivasan-2@student.tudelft.nl)
(nidhi.2396s@gmail.com)

Title
Schedulability analysis of globally scheduled preemptive applications

MSc Presentation Date
30-Sept-2020

Graduation Committee
Dr. Fernando Kuipers, Delft University of Technology
Dr. Mitra Nasri Delft University of Technology, Eindhven University of Technology
Dr. Pieter Cuijpers Eindhoven University of Technology
Dr. Geoffrey Nelissen Eindhoven University of Technology

mailto:S.Srinivasan-2@student.tudelft.nl
mailto:nidhi.2396s@gmail.com

Abstract

For any real-time system, being predictable with respect to time is a basic ne-
cessity. The combination of a preemptive execution model and a multiprocessor
platform poses a challenge when analysing the predictability of a system. In
this thesis, we present a new type of framework for the worst-case response
time analysis for preemptive tasks scheduled on multiprocessor platforms. The
proposed framework analyses this worst-case response time by building a sched-
ule abstraction graph that abstracts all the execution scenarios that occur in
the system. Since preemptive tasks scheduled on a multiprocessor platform cre-
ates a large state space of execution scenarios to explore, a schedule abstraction
graph can easily face a state space explosion problem. A novel methodology has
been introduced in this thesis, that allows us to eliminate state space explosion
altogether. We used this new schedule abstraction graph framework to initially
develop an analysis for uniprocessor platforms and compare it to the state-of-
the-art. We then explain how the analysis can be extended from uniprocessor
to multiprocessor platforms.

iii

iv

Preface

This journey has been many things but I could have never imagined it to be this
enjoyable. And the reason for this was because of some of the amazing people
that I had the privilege of working with.

I am especially grateful to Geoffrey Nelissen for the immense motivation, for
helping me stay grounded and level headed and more than anything, for being
a friend and a mentor. I also thank Mitra Nasri, who not only introduced me
to the fascinating world of real-time systems but also inspired me carry out my
own research in this wonderful field. I remain eternally grateful to the both of
them.

And finally, to my parents and my brother, who even though are thousands
of kilometers away, have always been there and supported me throughout this
incredible journey.

Though this journey has come to an end, it is has opened up many more
exciting and adventurous doors, and I cannot wait to find out what lies ahead

Srinidhi Srinivasan

Delft, The Netherlands
24th September 2020

v

vi

Contents

Preface iii

Preface v

1 Introduction 1
1.1 The problem . 1
1.2 Limitations of the state-of-the-art 2

1.2.1 Solutions based on finite state machines 2
1.2.2 Solutions that extend the response time analysis solution

on uniprocessor systems 3
1.2.3 Schedule abstracion graph 3

1.3 Our Solution . 3
1.4 Manuscript organization . 4

2 System model 5
2.1 Workload Model . 5
2.2 Execution Model . 7

3 Related Work 9
3.1 Solutions based on finite state machines 10
3.2 Solutions that extend the response time analysis solution on uni-

processor systems . 10

4 Background 13
4.1 Schedule abstraction graph . 13

5 Response-time analysis for single-core platforms 17
5.1 Naive extension of the schedule abstraction graph to preemptive

scheduling . 17
5.2 New system state abstraction . 19

5.2.1 Creating a new state . 20
5.2.2 Update a state . 24
5.2.3 Removing jobs from the graph 32
5.2.4 Worst-case response time 33
5.2.5 A working example of the new abstraction graph 33
5.2.6 Graph generation algorithm 34

5.3 Evaluation . 36
5.3.1 Comparison baseline selection 36
5.3.2 Synthetic taskset generation 36

vii

5.3.3 Experiments . 37

6 Response-time analysis for multi-core platforms 41
6.1 Modified worst case interference 41
6.2 Graph generation algorithm on a multiprocessor platform 43
6.3 Evaluation . 43

6.3.1 Comparison baseline selection 43
6.3.2 Synthetic taskset generation 44
6.3.3 Experiments . 45

7 Conclusions 49
7.1 Discussions . 49

7.1.1 Sources of pessimism . 49
7.2 Future work . 51

viii

List of Figures

2.1 Example of a task its parameters 6
2.2 Example of jobs and their parameters 7
2.3 A lower priority task being preempted due to the arrival of a

higher priority task . 8

3.1 Visualization of exact solutions and sufficient solutions 9

4.1 Schedule of a deterministic taskset with exact execution time
modelled by the schedule abstraction graph 14

4.2 Visual representation of the components of the schedule abstrac-
tion graph . 14

4.3 Schedule of a non-deterministic taskset with execution time vari-
ation and release time jitter modelled by the schedule abstraction
graph . 15

4.4 An abstract depiction of the merge technique used in schedule ab-
straction graphs in order to curb the state space explosion problem. 16

5.1 Segment ordering with preemptive tasks 18
5.2 Segment ordering with preemptive tasks and non-deterministic

parameters . 18
5.3 Terminology and structure of the state of the graph. 20
5.4 Reasoning for Equation 5.3. All release times depicted in this

image are the latest release times of the jobs. 23
5.5 Reasoning for the interference caused to a lower priority job J2

by a newly added job J1. All release times depicted in this image
are the latest release times of the jobs. 24

5.6 Under-estimation of the additional worst-case interference 26
5.7 Upper bound of the additional worst-case interference as given

by Algorithm 1 . 29
5.8 Reasoning for Equation 5.9. All the release times in this figure

depict the earliest release times of the jobs. 31
5.9 Working example of the new abstraction graph 33
5.10 Evaluation results of solutions where the utilization is varied over

a fixed number of tasks in a taskset 38
5.11 Evaluation results of solutions where the number of tasks in a

taskset is varied over a fixed utilization 39

6.1 Visualization of the interference on a single core platform and a
multicore platform . 43

ix

6.2 Evaluation results of solutions where the utilization is varied over
a fixed number of tasks in a taskset and a fixed number of cores 46

6.3 Evaluation results of solutions where the number of tasks in a
taskset is varied over a fixed utilization and a fixed number of cores 46

6.4 Evaluation results of solutions where the number of cores is varied
over a fixed utilization and a fixed number of tasks in a taskset . 47

7.1 Overestimation of the interference as computed by Equation 5.3. 50

x

Chapter 1

Introduction

Dependency on computing systems have been on the rise as the integration of
these systems in our daily lives have become more seamless day by day. These
closely integrated devices are known as cyber-physical systems. Cyber-physical
systems have critical functionalities, where a small malfunction could have ad-
verse impacts on the portion of the physical world that are influenced by them.
Hence, checking the behaviour of such systems is important. If we also account
for the timing of their behaviour, then the systems are known as real-time sys-
tems. Therefore, real-time systems are a subset of cyber-physical systems, where
both the functional and temporal correctness are necessary requirements.

1.1 The problem

Real-time systems like automotive systems typically have a repeating (periodic)
pattern of workload (tasks) [20],[14],[6]. Since they are periodic, we can predict
when a task should be executed and if it executes within a stipulated amount
of time. In a multi-tasking system, tasks must be scheduled by a scheduling
algorithm in order to be able to access shared hardware resources such as the
processor. The system is said to be temporally correct if all tasks for every pos-
sible schedule in the system finish before their respective deadlines [11]. In this
thesis, we propose new tools that can help us analyse the temporal correctness
of systems, assuming that the system functions correctly.

With the burgeoning demand for high-performance applications, parallel pro-
cessing is becoming progressively relevant to cyber-physical systems and hence
many critical applications are being developed as parallel programs[6]. The
availability and use of multicore and many-core processing platforms allow for
more efficient use of resources and thus leads to lower response times.

A common execution model for tasks in a real-time system is preemptive ex-
ecution [6]. In preemptive execution, a task that is running on the processor
can be preempted (halted) for some time before it is resumed. Most multipro-
cessor scheduling policies allow to resume a preempted task on a different core
than it was executing before (this phenomena is called task migration). While

1

the combination of preemptive execution and migration increases the ability
of the scheduling algorithm to meet the timing constraints of the tasks (also
called schedulability) and better utilize the platform, it significantly increases
the complexity of the response-time analysis of the tasks in the system as all
the execution scenarios need to be accounted for. The goal of this thesis is to
derive a schedulability analysis for preemptive applications on multiprocessor
platforms while ensuring that pessimism is curbed to the maximum extent.

1.2 Limitations of the state-of-the-art

Attempts at solving the problem of building a schedulability analysis technique
for preemptive tasks under global scheduling have been made in the past. Those
solutions have been reviewed in Sun et al. [27] and all the analysis methodo-
logies either have scalability or accuracy issues. Sun et al. [27] shows us that
solutions that are accurate cannot handle realistic system sizes and solutions
that can scale very well to large system sizes are highly inaccurate. This causes
a gap in the state-of-the-art making it important to develop a system that is
highly accurate while being able to scale to realistic system sizes.

The state-of-the-art solutions can be categorized into two main categories.
Many solutions form an analysis technique by extending the solution by Auds-
ley et al. [2] which is a schedulability analysis technique for tasks that can be
preempted and are scheduled on uniprocessor systems. Many different works
such as the solutions by Guan et al. [16] and Bertogna et al. [7] extend the
response time analysis solution by Audsley et al. [2] to multiprocessor sys-
tems. This forms the basis of the first category of the state-of-the-art. The
second category of solutions are those that that try to tackle the problem by
using finite state machines such as the solution by T.P. baker and M. Cirinei [4].

1.2.1 Solutions based on finite state machines

The solution by T.P Baker and M. Cirinei [4] explores the schedulability problem
where the entire state space was computed by means of a finite state machine.
In such solutions, the expanse of the state space is determined by the granularity
of time that is considered while exploring all possible schedules. By using finite
state machines we can ensure that we explore the entire state space thoroughly
thereby obtaining a solution that is highly accurate. The drawback, however, is
that as the task sets start getting larger, the state space that has to be explored
also gets very large. Hence, such solutions do not scale well at all and are only
able to handle systems of very small sizes. Many works such as the solution
by Burmyakov et al. [10] and Bonifaci et al.[9] try to improve this method
by reducing the number of states that are explored by eliminating unnecessary
states that do not contribute to the schedulability of a task set. Even with these
improvements, the state space that needed to be explored still remains very large
and hence such solutions cannot scale to large system sizes. In the work of this
thesis, we build a schedulability technique that does not look at schedules with
respect to time but rather only looks at the ordering of the arrival of the jobs
which helps to reduce expanse of the state space.

2

1.2.2 Solutions that extend the response time analysis
solution on uniprocessor systems

The response time analysis solution established by Audsley et al. [2] allows for
the analysis of tasks that can be preempted and are scheduled on uniprocessor
systems. Extension of this solution to multiprocessor platforms is very simple
and hence we have many various works by Guan et al. [16] and Bertogna et al.
[7] and many more that try to extend this solution to handle global schedul-
ing. These solutions however do not aim to obtain an accurate analysis and
therefore try to obtain over approximated bounds on the response time in order
to determine the schedulability of a system. Due to this over-approximation
method, these class of solutions are able to scale up to very large system sizes
but fall short when accuracy is in question. These solutions are very similar and
try to find the response time of a task by determining the interference that the
task faces. The goal of this class of works is to make sure that upper bounds
on the interference are made as tight as possible thereby increasing the accur-
acy of the solution. Even then, these solutions are very pessimistic and from a
set of schedulable tasksets, only a small portion of these tasksets are deemed
schedulable.

1.2.3 Schedule abstracion graph

Our motivation at aiming to fix this gap in the state-of-the-art comes from
building a directed acyclic graph that abstracts preemptive tasksets and their
schedules. Schedule abstraction graphs have previously been built for non-
preemptive tasks as can be seen in the works of Nasri et al. [22], [23] and [24].
Here, we are introduced to a new methodology that designs a schedulability
analysis technique that builds a graph that abstracts the schedules of a system.
These solutions handle tasks that are non-preemptive or limited-preemptive
which means that the execution of the tasks cannot be halted at any time.
These solutions are the motivation for building a schedulability technique for
preemptive tasks that are both accurate and can scale to realistic system sizes.
The details of these solutions are discussed in Section 4.1.

1.3 Our Solution

In order to build a schedulability analysis that can analyse tasks under global
scheduling, the initial approach is to first build a solution that works well for
uniprocessor systems. Once this solution on uniprocessor systems has been
tested and evaluated to see how accurate and efficient it is when compared to the
state of the art, the solution can then be extended to analyze multicore platforms
executing tasks under global preemptive job-level fixed-priority scheduling. In
Section 5.2 we first see a solution where a schedule abstraction graph has been
built for preemptive tasks scheduled on a uniprocessor system. The extension
of this system to multiprocessor systems have then been discussed in detail in
Section 5.1.

3

1.4 Manuscript organization

The thesis report has been subdivided into five sections. Chapter 2 presents the
system model and describes the terminology required to understand the prob-
lem. Chapter 3, provides an overview of the state-of-the-art solutions and their
analysis methodologies. Background information required to build a schedulab-
ility analysis technique has also been explored in Chapter 4. Chapter 5 illus-
trates the detailed approach to the solution on a uniprocessor platform and the
reasoning behind the design decisions. An extension of the solution from a uni-
processor platform to a multiprocessor platform has been elucidated in Chapter
6. Chapter 7 describes the key findings of the thesis and illustrates what can
be done in future work.

4

Chapter 2

System model

We consider the problem of globally scheduling preemptive tasks on a multipro-
cessor platform with m identical cores. In this work, we assume that tasks have
the ability to migrate between the cores.

2.1 Workload Model

The term task refers to a piece of code that implements one of the system’s
functionalities. We denote the ith task of the system by τi. In this work, we
assume that tasks must execute periodically. Each time it must execute, it re-
leases an instance that is added to the ready queue of the system. An instance
of a task is called a job. We denote the jth job of τi by Ji,j . Each job Ji,j
is defined by its release time ri,j (i.e., the time at which it becomes ready for
execution), its actual execution time ci,j (i.e., how much time it keeps a core
busy) and its absolute deadline di,j (i.e., the absolute time by which it must
finish its execution). Due to non-determinism aspects, it is usually impossible
to know the exact release and execution time of a job a priori. Therefore, for
analysis purposes, we model a job by its earliest and latest release times rmini,j

and rmaxi,j , its minimum and maximum execution time cmini,j and cmaxi,j , and its

absolute deadline di,j . The earliest release time rmini,j is also called the arrival
time of job Ji,j .

Similar to a job, a task is defined by various parameters such as its execution
time, period, relative deadline etc. The execution time of a task is the amount
of time each of its jobs takes to perform its functionality. As already mentioned
above, in real systems, this execution time is rarely constant and each job re-
leased by the task may exhibit a different execution time. Therefore, in this
work, we specify the execution time of a task τi with a lower bound (Cmini) and
an upper bound (Cmaxi) on the execution time of each job released by τi. The
period (Ti) of a task τi denotes the inter-arrival time between two consecutive
jobs of τi. That is, we have rmini,j+1− rmini,j = Ti for j >= 0. The relative deadline
(Di) of the task τi is the time within which the execution of a job of τi must
be completed. This parameter is relative to the time at which each job Ji,j
of a task τi arrives in the system. That is, for the deadline of a job, we have
di,j = rmini,j + Di. A simple example of a task, its jobs and their parameters

5

have been illustrated in Figure 2.1.

We also assume that tasks may have an offset and experience a release jitter.
The task release jitter refers to the uncertainty on the actual time at which
a job is effectively released in the system and thus competes for the computa-
tional resource. A release jitter of Xi denotes that a job Ji,j can release anytime
between rmini,j and rmaxi,j = rmini,j + Xi. An offset Oi defines the arrival time of

the first job of τi, i.e., rmini,0 = Oi.

We assume that the time is discrete, i.e., all the jobs and tasks parameters
are integer multiples of a basic time unit (e.g., a clock tick).

Figure 2.1: Example of a task its parameters

We denote the set of all tasks in the system by τ , and the set of all jobs
released by tasks in τ in an a priori computed observation window by J . In
Figure 2.2, we see an example of a set of the first three jobs of task τ1 seen in
Figure 2.1. These jobs and their parameters have been displayed in Figure 2.2.

6

Figure 2.2: Example of jobs and their parameters

A job’s response time is considered as the time between the earliest release
time of the job and the time at which the job has completed its execution. This
is in accordance to Audsley et al. [1], which states that the release jitter of a
job is also a part of the response time of a job. Since the parameters of the job
arre not deterministic, the response time can have a variety of values too, and
hence for a taskset, each job is said to have a best-case response time(BCET)
and the worst-case response time(WCET). If the worst-case response time is
always smaller or equal to the deadline of a job, for all jobs, in every possible
schedule of taskset, then that taskset is said to schedulable.

To avoid notation clutter, in the rest of this document, we omit the index i
of the task when referring to a generic job Ji,j , hence we only write Jj .

2.2 Execution Model

We assume that tasks are preemptive, which means that the execution of their
jobs can be interrupted by a higher priority task as exemplified in Figure 2.3.
We assume that priorities are assigned to jobs using any job-level fixed prior-
ity(JLFP) scheduling policy. This means that the priority of the job is fixed and
does not change during runtime. The family of JLFP scheduling policies include
well-known policies such as rate monotonic(RM), deadline monotonic(DM) and
earliest deadline first(EDF). The priority of a job Ji is denoted as pi. The lower
the numeric value of pi, the higher it’s priority i.e., if pi < pj then Ji has a
higher priority than Jj . For the sake of simplicity, in this work, we assume
that no two jobs have the same priority and therefore a tie-breaking rule is not
required.
In this work, we assume that each job runs sequentially, which means that a
job can run on only one core of the multiprocessor platform at any given time.
However, we assume a global scheduling policy, meaning that a job may migrate
from one core to another during runtime. A job is said to be ready if it has been

7

released into the system and is not running(i.e., executing on a processor).
Since we assume a global JLFP scheduling policy, the scheduler always dis-
patches the m highest priority ready jobs. The scheduler is assumed to be
work-conserving which means that the scheduler does not leave a core idle if
there is a ready job, that is, if a core is free and at least one job is ready,
then the highest priority job is immediately dispatched on that core. The tasks
considered here do not have any precedence constraints and hence when a job
arrives in the system, it can be released onto the system without checking for
any dependency with other jobs.

Figure 2.3: A lower priority task being preempted due to the arrival
of a higher priority task

8

Chapter 3

Related Work

Analysing the worst-case response time of sporadic preemptive tasks scheduled
with task-level fixed priority on uniprocessor platforms is deterministic as the
worst-case scenario was proven in Liu and Layland [21] to occur when all the
tasks release their first job into the system synchronously and all next jobs are
released as fast as possible. Therefore, exact analyses were already proposed for
such systems. Exact schedulability tests are those tests that are able to find all
the schedulable tasksets and reject all the unschedulable ones while sufficient
solutions can only determine a subset of the schedulable tasksets as schedulable.
Figure 3.1 illustrates the difference between exact and sufficient solutions.

Figure 3.1: Visualization of exact solutions and sufficient solutions

The analysis methodology in use for uniprocessor platforms which finds the
worst-case scenario that applies to all jobs in the system cannot be easily ap-
plied to multiprocessor platforms as there does not exist just a single worst-case
scenario for each job. Both the works of Sun et al. [28] and Davis et al.[12] show
that each job may experience its worst-case for a different execution scenario,
and no common pattern as yet been identified. Due to this, an exact analysis
for sporadic tasks scheduled on multiprocessor platforms under a task-level or
job-level fixed priority scheduling scheme requires analysing every possible job
release pattern. Since such an exhaustive search does not scale, many works
attempt at deriving sufficient solutions that are pessimistic instead.

9

Hence, there are two ways in which this problem can be handled. On the
one hand, an exhaustive analysis that is exact can be derived but the scalability
problem has to be overcome. Such an exhaustive search was performed by many
solutions by using finite state machines. On the other hand, we have solutions
that are pessimistic instead because they only aim at being sufficient, but the
problem of being too inaccurate has to be overcome. Sufficient tests usually
extend the analysis of Audsley et al. [2] from uniprocessor to multiprocessor
platforms. Based on these two approaches, we divide the state-of-the-art ana-
lysis into two categories. Section 3.1 provides an overview of the solutions that
use finite state machines and Section 3.2 provides an overview of the solution
that provides analysis methodologies that extend the solution by Audsley et al.
[2].

3.1 Solutions based on finite state machines

The earliest solutions that used finite state machines to perform an exhaustive
search of the large state-space caused by the numerous job release patterns were
by T.P. baker and M. Cirinei [4]. The proposed solution is only practical for
very small system sizes because the time and space complexity of this solution
prevents it from scaling to large system sizes. Many solutions provided im-
provements to this initial solution. Due to the complexity of T.P. baker and
M. Cirinei [4], Geeraerts et al.[15] improved this solution by identifying and
eliminating states in the state space that need not be explored. The solution by
Bonifaci et al. [9] also provides a methodology that improves the solution by T.P.
Baker and M. Cirinei [4] by developing a new solution based on a new two-player
game strategy. This methodology inspired Burmyakov et al. [10], to extend this
methodology and find a faster and less memory consuming schedulability test
by further reducing the state-space that needed to be explored. Even though
many solutions did try to reduce the state-space explored, the complexity of the
solutions still did not allow for scalability as established by Sun et al. [27].

3.2 Solutions that extend the response time ana-
lysis solution on uniprocessor systems

Due to the exhaustive search problem faced by exact solutions, the majority of
the research that has been conducted derived solutions that are sufficient and
hence pessimistic. Baker[3] provides a schedulability analysis technique that
computes the interference and worst-case response time of tasks within a selec-
ted time interval. Bertogna et al.[8], shows that the solution can be analysed
within a problem window and found a solution that was less pessimistic when
a large execution time variation was present.

The solution by Bertogna et al.[7] divided the tasks that cause interference
within a problem window into two categories: 1) carry-in tasks that release be-
fore the start of the problem window and 2) non carry-in tasks that start within
the problem window. Baruah [5], finds a way to upperbound the interference
caused by the carry-in jobs thereby improving the accuracy of the solution.

10

The solution of Baruh [5] dealt with tasks that were scheduled under a global
fixed priority scheduling policy. The extension of this solution to global earliest
deadline first scheduling policy was proposed by Guan et al.[16]. Sun and Lipari
[28] use a similar method as in Guan et al.[16] and improved the schedulability
of tasks scheduled under global fixed priority scheduling policy. Motivated by
building an analysis that handles scheduling policies that are non-fixed priority,
Lee and Shin [19] built a schedulability analysis technique for any work con-
serving scheduling algorithm.

Since all the solutions discussed above are sufficient solutions, they are pess-
imistic which means that the results are inaccurate. On the other hand, all the
exact solutions that use finite state machines perform exhaustive search and
thus do not scale. Our aim in this thesis is to bridge this gap and build a solu-
tion that is accurate while being able to scale to realistic system sizes.

11

12

Chapter 4

Background

4.1 Schedule abstraction graph

The schedulability analysis presented in this document builds upon the notion
of schedule abstraction introduced in [24] and [23]. In order to understand how
such an analysis works, we present the original schedule abstraction graph ana-
lysis by Nasri et al. [24] in this section.

The schedule abstraction graph framework developed by Nasri et al. [24] was
intended to analyse the schedulability of non-preemptive tasks by exploring, at
design time, all possible schedules that may potentially happen at runtime. The
analysis was building a graph (called schedule abstraction graph) by analysing
all possible job orderings that may result from different execution scenarios (see
Definition 4.1). Each job ordering is represented by a path in the graph. As
stated in Definition 4.1, different execution scenarios result from different pos-
sible release time and execution times of a set of jobs. Note that if there was no
release jitter and execution time variation, then we would have only one possible
execution scenario resulting in a single possible job execution ordering. For such
a deterministic system, the schedule abstraction graph would just be composed
of a single path as there is only a single possible sequence of job execution or-
dering (see Figure 4.1).

Definition 4.1. [24] An execution scenario γ = (r1, C1), (r2, C2), ..., (rn, Cn),
where n = |J |, is an assignment of execution times and release times to the jobs
of J such that, for each job Ji, Ci ∈ [Cmini , Cmaxi]andri ∈ [rmini , rmaxi].

Formally, a schedule abstraction graph is a directed acyclic graph G =<
V,E > where V is the set of vertices and E is the set of directed edges. The
vertex v0 ∈ V represents the system state when all cores are idle. Each edge
ex ∈ E connecting a vertex vy to vz (with vy, vz ∈ V) is labelled with a job Jj as
can be seen in Figure 4.2. It represents a job being dispatched by the scheduler
in the system state represented by vy. Then, the vertex vz models the state of
the system after dispatching the job Jj in system state vy. Hence, a path in the
graph G defines a possible job execution ordering that could occur at runtime
and each vertex on that path represents the intermediate states of the system
during the schedule associated to that job execution ordering.

13

Figure 4.1: Schedule of a deterministic taskset with exact execution
time modelled by the schedule abstraction graph

Figure 4.2: Visual representation of the components of the schedule
abstraction graph

Example 4.1.1. When there are uncertainties on the actual release and exe-
cution time of each job, the schedule abstraction graph no longer comprises a
single path. Instead, it branches every time the scheduler may take a different
scheduling decision. To understand this further, Figure 4.3 presents the sched-
ule abstraction graph of a taskset with execution time uncertainty and release
jitter. Every task experiences execution time variation as specified in Figure
4.3(a). Task τ3, is the only task with a release jitter (equal to 15 time units).
There are multiple job execution orderings that can occur at runtime. In this
example, we only consider two of them (see Figure 4.3(b) and 4.3(c)). The first
schedule (see Figure 4.3(b)) assumes that the first job of τ2 executes for 8 units
of time and the first job of τ3 is released at time 13. Given these assumptions,
the taskset is schedulable , i.e., there is no job that misses its deadline. In
the second schedule (see Figure 4.3(c)), it is assumed that the first job of τ2 ex-
ecutes only for 7 time units and τ3 releases its first job at time 5. This leads to a
schedule where τ3 starts executing before the second job of τ1, causing a deadline
miss for that job. Hence, the system is not schedulable under these assumptions.

All possible schedules that may occur at runtime are included in the schedule
abstraction graph. As we can see in Figure 4.3(d), when there is a variation in
the job orderings, the graph branches.

Note that for systems composed of has a large number of tasks and where
the tasks themselves have large execution time variations and release jitters,
the number of possible execution scenarios and thus the schedule abstraction

14

(a) Example taskset

(b) Schedule where τ1 releases at time 13 and τ2 executes for 8 units

(c) Schedule where τ1 releases at time 5 and τ2 executes for 7 units

(d) Generated schedule abstraction graph

Figure 4.3: Schedule of a non-deterministic taskset with execution time
variation and release time jitter modelled by the schedule abstraction
graph

graph would rapidly grow. This could quickly lead to a state space explosion
problem where there are too many parallel branches to analyse, to be able to
complete the analysis in an acceptable amount of time. In order to curb this
problem, the schedule abstraction graph analysis framework implements merge
techniques where similar paths with similar states are merged together. The
states are said to be similar if the paths up until those states contain the same
set of jobs on their edges and some other properties (specific to non-preemptive

15

systems and thus not relevant in the context of this document) are respected.
Using a breadth-first search approach, the states of all the paths in the graph
are compared and merged in order to reduce the total number of vertices in the
graph. This helps to ensure that the number of vertices and paths are kept as
small as possible for as long as possible (see Figure 4.4for an example of what
a schedule abstraction graph would look like after applying the merge rule).

Figure 4.4: An abstract depiction of the merge technique used in sched-
ule abstraction graphs in order to curb the state space explosion
problem.

16

Chapter 5

Response-time analysis for
single-core platforms

To build a schedulability analysis for preemptive parallel tasks under global
scheduling using the schedule abstraction graph idea, we first built a solution for
the simpler, yet still challenging problem of analyzing preemptive tasks executed
on a uniprocessor platform. The intent is to later extend the developed solution
for single-core platforms to analyse tasksets scheduled under a global scheduling
policy on multicore platforms. We present the solution for single-core platforms
in this chapter, and present the extension to multicore platforms in Chapter 6.

5.1 Naive extension of the schedule abstraction
graph to preemptive scheduling

The most intuitive approach to extending the methodology of Nasri et al.[22]
is to keep the same semantic for the graph. That is, paths depict possible job
execution orderings and nodes represent abstract system states. The major
challenge with this approach is that in preemptive systems, jobs can now be
preempted and hence the execution of a job may be divided into several seg-
ments. Thus, instead of just maintaining the orderings of jobs, the ordering of
the segments of the jobs need to be kept track of in the schedule abstraction
graph. For instance, Figure 5.1 presents an example where a high priority job
J1 is released at time instant 2. Therefore, the currently running job J3 is pree-
mpted to allow the higher priority job J1 to execute instead. This means that a
segment of J3 is added to the schedule abstraction graph before job J1 and the
second segment of J3 is added later in the graph when J3 resumes its execution.
That is, the job J3 appears twice in the same path of the graph.

When release time jitter or execution time variation is introduced to the
example in Figure 5.1, then for a single taskset, there would be multiple ways
a job may be preempted, and thus the same job may be divided in different
numbers of segments in each execution scenario. An example of such a situation
is shown in Figure 5.2. In this example, out of multiple possible execution
scenarios, we show two possible schedules. Here, we can see that in scenario 1,
J3 is preempted once, creating two segments in the graph while in scenario 2, J3

17

Figure 5.1: Segment ordering with preemptive tasks

is preempted twice creating three segments in the schedule abstraction graph.
Similar to the solution in Nasri et al. [22], each job segment execution ordering
creates a different branch in the schedule abstraction graph.

Figure 5.2: Segment ordering with preemptive tasks and non-
deterministic parameters

Now that we understand, at a high level, how a schedule abstraction graph
would look like for preemptive systems, we discuss how states would be merged
together to curb the state space explosion problem. In order to apply the merge
techniques from Nasri et al. [22], we have to merge states in a breadth first
search manner. States are similar if they have the same set of completed jobs.
Therefore, the states that could potentially merge in Figure 5.2 are states v6 and
v8 as both of them have the same set of completed jobs ({J1, J2, J3}). But with
breadth-first, search states v6 would only be compared to v7 for the possibility
of a merge. Yet in state v7, J3 has not yet been completed and hence states
v6 and v7 cannot be merged. We, therefore, see that the breadth-first search
methodology proposed in Nasri et al.[22], for merging states in a non-preemptive
system, would not be effective in the preemptive case.

The next intuitive step here would be to assume a merge technique where
depth-first search is carried out instead. A depth-first search methodology for

18

merge allows the states v6 and v8 to have an opportunity to merge. However, a
breadth-first search would require to make decisions on which branch to explore
first. If the analysis picks an appropriate branch early on, the merge technique
will be very effective else it will not merge often and state space explosion will
be more likely to happen.

In order to eliminate this randomness, we decided to take a different route.
Hence, we defined a completely new semantic for the schedule abstraction graph
and developed a new system state abstraction. Our proposed solution ensures
that the graph never branches. Since the graph never branches (literally re-
ducing itself to a single path), merge techniques are not needed at all and the
problems discussed above do not apply anymore.

5.2 New system state abstraction

Due to the constraints seen in the previous section on the extension of the
schedule abstraction graph by Nasri et.al. [22], we redefine the semantic of
the schedule abstraction graph. Our new schedule abstraction graph contains
only a single path. Every edge in the path is labelled with a job. Contrary
to solutions proposed in earlier work, in our new solution, a job appears only
once in the graph. Jobs appear in the path in order of their earliest release time.

Now, let Jx be the set of jobs recorded on the path until reaching vertex vx.
Then, the vertex vx records the earliest and latest finish time of every job in Jx
assuming that the jobs in Jx are the only jobs executed in the system. That is,
we iteratively analyze the system by adding one more job to the analysis each
time we create a new vertex.

Note that unlike the solutions proposed in the previous work, the earliest and
latest finish times of every job in Jx must be recomputed whenever a new job
Ja is added to the system since Ja may now preempt or block the execution of
other jobs. Each vertex of the new schedule abstraction graph records the finish
times of every job in Jx. That is, for each job Ji in Jx we record the priority
level-i completion interval, which is bounded by the earliest finish time(EFT)
and latest finish time(LFT) of job Ji as shown in Figure 5.3. The completion in-
tervals are maintained based on the priority of their associated job as this helps
to easily determine the jobs in Jx that might be affected by a newly added job
Ja.

To summarize, jobs are added to the graph based on their earliest release
time (rmini). The job with the smallest earliest release time is the job added to
the graph first. When a new state is created, the earliest and latest finish times
of the newly added job Ja are computed assuming that the system is composed
only of a Ja and the jobs added before Ja in the graph. Then, we also update
the finish time intervals of all the jobs in the previous state that have a lower
priority than Ja. Those jobs that have a higher priority that Ja in the previous
state are carried over as a lower priority job cannot preempt them and hence
cannot impact their finish times. The techniques involved in calculating the
finish times and updating a state are explained in the following subsections in

19

Figure 5.3: Terminology and structure of the state of the graph.

detail.

5.2.1 Creating a new state

Let vx be the last vertex added to the schedule abstraction graph and let Jx be
the set of jobs considered on the path ending in vx. We build the next abstract
system state vx+1 as follows. We pick the job Ja, that has not been considered
yet, with the earliest minimum release, that is, Ja = argmin{Ji∈J\Jx} r

min
i .

Then, we divide Jx in two subsets based on the earliest release time rmina of
Ja. We define Ax as the set of jobs that may still be potentially active (i.e.,
did not complete their execution) when Ja is released. That is, Ax = {Ji|Ji ∈
Jx ∧ LFTi > rmina }. We define HP (Ja, vx) as the set of jobs in Ax that have
a higher priority than Ja .i.e, HP (Ja, vx) = Ji|Ji ∈ Ax ∧ pi < pa. We consider
two cases depending on the priority of Ja relative to that of the jobs in Ax to
create the next abstract system state vx+1 resulting from scheduling Ja.

Case 1. If Ja has a higher priority than all the jobs in Ax, i.e., HP (Ja, vx) =
∅, then there is no job in Ax that can block or preempt the execution of Ja.
Hence, job Ja can start executing as soon as it is released and will finish its
execution without interruption. Therefore, the earliest and latest finish time of
Ja in vx+1 is straightforwardly given by Equations 5.1 and 5.2.

EFTa(vy) = rmina + Cmina (5.1)

LFTa(vy) = rmaxa + Cmaxa (5.2)

Equation 5.1 states that Ja finishes at the earliest when Ja is released as soon
as possible and executes for the shortest possible duration. Similarly, Equation
5.2 states that Ja has the latest finish time when it is released as late as possible
and executes for the longest possible duration.

Case 2. When the newly added job Ja has a higher priority than all the jobs
in Ax i.e., HP (Ja, vx) 6= ∅, then the active jobs with higher priority than Ja
determine when Ja finishes its execution.

Therefore, we compute the latest finish times of the newly added job Ja using
the finish time intervals of all the jobs in Ax that have a higher priority than
Ja. To do so, we introduce the notion of worst-case interference, that is, the
longest duration of time during which Ja remains blocked or is preempted by

20

higher priority job when experiencing its worst-case response time. A job Ja
suffers it’s worst-case interference when it has been released as late as possible
(rmaxa) as has been proven in Redell et al. [26]. Hence, the largest time that Ja
is blocked or preempted when it has released at rmaxa is to be computed. The
worst-case interference of Ja, when it is added to the new state vx+1 is denoted
by Ia(vx+1) and is given by Equation 5.3

Ia(vx+1) ≤

0 if rmaxa ≥ LFTi(vx),∀Ji|Ji ∈ HP (Ja, vx)∑
Ji|Ji∈HP (Ja,vx)

Cmaxi if rmaxa ≤ rmaxi ,∀Ji|Ji ∈ HP (Ja, vx)

LFTb(vx)− rmaxa otherwise

(5.3)
where LFTb(vx) is the latest finish time of job Jb such that Jb is the lowest

priority job in Ax that has a higher priority than Ja, i.e., Jb is given by Equation
5.4.

Jb = argmax
Ju∈HP (Ja,vx)

{pu} (5.4)

We now prove in Lemma 5.2.1, 5.2.2 and 5.2.3 and Theorem 5.2.4 that Equa-
tion 5.3 provides a safe upper bound on Ia(vx+1).

Lemma 5.2.1. If ∀Ji ∈ HP (Ja, vx), rmaxa ≥ LFTi(vx), then the interference
suffered by Ja when Ja is released at rmaxa is Ia(vx+1) = 0.

Proof. For the job Ja to experience interference due to higher priority jobs, there
must be higher priority workload left to execute after Ja’s release. However since
by assumption, rmaxa ≥ LFTi(vx), for all Ji ∈ HP (Ja, vx), all higher priority
active jobs have completed their execution when Ja is released. Hence there is
no interference experienced i.e., Ia(vx+1) = 0.

Lemma 5.2.2. If ∀Ji ∈ HP (Ja, vx), rmaxa ≥ LFTi(vx), then Ia(vx+1) =∑
Ji|Ji∈HP (Ja,vx)

Cmaxi .

Proof. From [26], job Ja experiences its worst case response time when it is re-
leased at rmaxa and all higher priority active jobs are released as close as possible
from Ja’s release and Ja will suffer its maximum interference when all higher
priority active jobs are released at rmaxa and executes for their worst-case exe-
cution time (i.e., Cmaxi).

Since all higher priority active jobs (i.e., jobs inHP (Ja, vx)) were added before
Ja in the schedule abstraction graph, we have ∀Ji ∈ HP (Ja, vx), rmini ≤ rmina ≤
rmaxa . Furthermore, by assumption, we have rmaxi ≥ rmaxa ,∀Ji ∈ HP (Ja, vx).
Therefore ∀Ji ∈ HP (Ja, vx), rmini ≤ rmaxa ≤ rmaxi , thereby meaning that, all
higher priority active jobs can be released synchronously with Ja at rmaxa . Thus,
the worst case interference suffered by Ja is

∑
Ji∈HP (Ja,vx)

Cmaxi

Lemma 5.2.3. The interference of a newly added job Ja is upper-bounded by
LFTb(vx)− rmaxa , where Jb is given by Equation 5.4.

Proof. We prove this lemma by contradiction. Let us assume that there is a job
Jh|Jh ∈ HP (Ja, vx) with higher priority than Jb that interferes with the execu-
tion of Ja but whose interference on Ja is not accounted for in LFTb(vx)−rmaxa .

21

Let us now consider two cases:

Case 1. LFTh(vx) ≤ LFTb(vx). In this case, Jh finishes before Jb. Since
LFTb(vx) is an upper bound on the finish time of Jb, it must thus account for
all possible interference generated by jobs released before its completion, and
hence accounts for the interference caused by Jh. This contradicts the assump-
tion that LFTb does not account for Jh’s interference.

Case 2. LFTh(vx) > LFTb(vx). Since Jb is in Ax, we know from the
definition of Ax that LFTb(vx) > rmina . Furthermore, because Jh was added
to the graph before Ja, we have that rminh ≤ rmina . Therefore, we have that
rminh ≤ rmina < LFTb(vx) < LFTh(vx). Since Jh may be potentially released
before the completion of Jb (i.e., rminh < LFTb(vx)) and may also finish after
the completion of Jb (i.e., LFTb(vx) < LFTh(vx)), it must hold that Jh can be
released during Jb’s execution. Because Jh’s priority is higher than Jb’s, Jh can
thus preempt Jb’s execution and therefore the worst-case finish time LFTb(vx)
of Jb must account for that preemption. Again, it contradicts the fact that the
interference generated by Jh is not accounted for in LFTb(vx).

Therefore, in both cases, there is a contradiction with the assumption that
LFTb(vx) does not account for the interference of Jh.

Theorem 5.2.4. Equation 5.3, is an upper-bound on the interference experi-
enced by Ja, when it is released at rmaxa .

Proof. From Lemma 5.2.1, given that when the latest release time rmaxa of Ja
is larger than the latest release time of all the jobs in HP (Ja, vx), then the
Ia(vx+1)can be exactly calculated using the first case of Equation 5.3. This
proves the first case of Equation 5.3.

Similarly, from Lemma 5.2.2, we know that when the latest release time rmaxa

of Ja is smaller than the latest release time of all the jobs in HP (Ja, vx), then
the Ia(vx+1) can be exactly calculated using the second case of Equation 5.3.
This proves the second case of Equation 5.3.

From Lemma 5.2.3, the third case of Equation 5.3 is always an upper bound
on Ia(vx + 1).

This proves the theorem.

Example 5.2.1. Equation 5.3 accounts for various scenarios for the value of the
interference based on the positioning of rmaxa with respect to the other higher
priority jobs in the state. The three scenarios of the equation have been visual-
ized in Figure 5.4.

The first scenario is when the latest release time of the job Ja (J3 in the ex-
ample) is larger than the latest finish times of all the other higher priority jobs
in the system. In this scenario, the newly added job does not face any interfer-
ence at all and hence can start executing as soon as it is released into the system.

22

Figure 5.4: Reasoning for Equation 5.3. All release times depicted in
this image are the latest release times of the jobs.

In the second scenario, the latest release time of the newly added job is earlier
than the latest release times of all the higher priority jobs, then the interference
faced by newly added job Ja is the sum of the execution time of all the higher
priority jobs.
In any other case, the release time might coincide with the execution of a higher
priority job and hence the upper-bound on the interference would be until Jb
(J2 in the example) has finished its execution.

Now, that the worst-case interference has been calculated, this value can be
used while calculating the latest finish time of the newly added job.

LFTa(vy) = rmaxa + Ia(vx+1) + Cmaxa (5.5)

Since the maximum interference has already been calculated in equation 5.3,
the LFTa(vy) just needs its own largest execution to be added to the interfer-
ence Ia(vx+1).

Similarly, we compute a lower bound on the earliest finish time of Ja as
follows:

EFTa(vy) = rmina + Cmina (5.6)

The earliest finish time of a newly added job Ja would just be the time at
which Ja starts at the earliest added to its best case execution time.

23

5.2.2 Update a state

When a new job Ja is added onto the graph, the jobs in the state that have
a lower priority than Ja may now be preempted by Ja and hence may have
their finish time impacted. Thus, we update the finish time interval of each
of the lower priority jobs in Ax. When the finish time of a job is updated in
system state vx+1, only the interference of the newly added job Ja needs to be
considered as all the higher priority job’s interference were already accounted
for when building vx. The equation for computing the interference caused by
Ja on a lower priority job Ji is a simplified version of Equation 5.3 , as it now
needs to account for the interference of only one job. Figure 5.5 shows three
scenarios depicting the ways in which lower priority jobs can face interference
by Ja. The scenarios depict the various positions the rmaxi value can assume.
If the latest release of job Ji is later than the latest finish time of the newly
added job, then there is no additional interference that occurs due to Ja as
seen in scenario 1. If the latest release of job Ji is earlier than the latest fin-
ish time of the newly added job, then Ja may preempt Ji and the additional
interference suffered by Ji would be equal to the maximum execution time of
the newly added job. In the event that the latest release of job Ji is between
the latest release of Ja and the latest finish of Ja, Ji could only start to ex-
ecute when Ja completes its execution and thus the interference suffered by Ji
due to Ja would be upper-bounded by the difference between the release time of
Ji and the latest finish time of Ja as depicted in the third scenario in Figure 5.5.

Figure 5.5: Reasoning for the interference caused to a lower priority
job J2 by a newly added job J1. All release times depicted in this
image are the latest release times of the jobs.

Before showing how we can compute the worst-case interference Ii,a a job Ja
may cause on Ji, we note that when Ja causes interference on a lower priority job
Ji ∈ Ax\HP (Ja, vx) such that rmaxa < rmaxi < LFTavx+1, according to scenario
3 in Figure 5.5, Ii,a = LFTa(vx+1) − rmaxi . However, the example presented
in Figure 5.6, we see that LFTa(vx+1) − rmaxi is in fact optimistic. That is,
it returns an interference that is smaller than the actual additional worst-case

24

interference that could occur. With the taskset in Figure 5.6(a), the worst-case
schedule, when J2 and J3 are the only jobs in the system, is depicted in Figure
5.6(b). In that case, J3 completes at time 13. When a new higher priority job J1
is added, scenario 3 in Figure 5.5 would compute I3,1 = LFT1(vx+1)−rmax3 = 1.
But if Ii,a is only 1 time unit, then J2 should complete at time 14, which would
result in J2 and J3 executing simultaneously as can be seen in Figure 5.6. This
is of course not possible on a uniprocessor platform. Hence, the computed value
is not the additional worst-case interference but is in fact a value smaller than
the additional worst-case interference.

In Figure 5.6(d), we see a schedule that provides the actual additional worst-
case interference. This scenario occurs because J1 preempts J2 and thus causes
an additional interference I2,1 = 3 on J2. This additional interference on J2, in
turn, causes the same amount of interference to J3.

In order to properly calculate an upper-bound on the additional worst-case
interference Ja may cause to a lower priority job Ji, we define the new notion of,
the start of the last level-i busy period (SBi), which is equal to the last time the
processor was idle before the release time rmaxi of Ji, assuming that only jobs
with equal or higher priority than Ji execute, i.e., it refers to the start of a level-i
busy period. 1. For example, in Figure 5.6(d), we see that the SB3 = 4 as from
time 0 to 4 the processor is idle. The main idea is that, if Ja executes within
the level-i busy period, then Ja’s execution fully participates in the interference
suffered by Ji. For example, in Figure 5.6(d), since the level-3 busy period starts
at time 4 and J1 executes for 3 time units between time 4 and the finish time
of J3, then, J1 interferes for 3 time units with J3 (indirectly through J2 in this
case). The value of (SBi), is calculated using Algorithm 1.
s

1A level-i busy period is an interval of time during which only jobs with priority higher or
equal to that of job Ji execute [xx].

25

(a) Example jobset

(b) Schedule when only J2 and J3 have been added to the system

(c) Schedule when J1
has been added to the system, and the Ii,a is calculated as per Scenario 3 in Figure 5.5.

(d) Schedule when J1 has been added to the system, and the actual Ii,a

Figure 5.6: Under-estimation of the additional worst-case interference

26

Algorithm 1: Algorithm calculating the start of the level-i busy period
and updating the latest finish time of each job with lower priority than
Ja

Input: Ax \HP (vx, Ja)
Output: SBi and LFTi(vx+1)
Data: Vector of all the end of idle times E

1 for all Ji ∈ Ax \HP (vx, Ja) in decreasing priority order do
2 Initialize SBi to 0

/* If there is no identified idle gap yet then the SBi is rmax
i */

3 if E = ∅ then
4 Append rmaxi to E
5 SBi = rmaxi

6 else
/* Jk is the lowest priority job among the jobs that have a higher

priority than Ji */

7 Jk = argmaxJu∈HP (Ji,vx+1) pu
/* If rmax

i > LFTk(vx+1), there is an idle time before the start

of Ji and hence SBi, would be rmax
i */

8 if rmaxi > LFTk(vx+1) then
9 SBi = rmaxi

10 Append rmaxi to E
11 Sort E

12 else
/* If rmax

i is smaller than the smallest element in E, then the

SBi is rmax
i */

13 if rmaxi ≤ min(x|x ∈ E) then
14 SBi = rmaxi

/* For any other value of rmax
i , SBi is the end of the last gap

that occurs just before rmax
i */

15 else
16 SBi = max{x|x ∈ E ∧ x ≤ rmaxi }

17 Ii,a = min{max{0, LFTa(vx+1)− SBi}, Cmaxa }
18 LFTi(vx+1) = LFTi(vx) + Ii,a

In Algorithm 1, the start of the level-i busy period (SBi) that includes Ji is
computed. In Algorithm 1, E is an ordered set maintained for all the jobs in vx
that need to be updated when building vx+1. In order to explain Algorithm 1,
we use the following example.

Example 5.2.2. In Figure 5.7(a), we have a set of jobs, and in Figure 5.7(b),
shows the schedule all the jobs in the jobset before adding J1. In Figure 5.7(c),
we see how the schedule will be updated when J1 is added and we must calculate
the start of the level-i busy period of each job using Algorithm 1. For J2, from
line 3 in Algorithm 1, we can see that since it is the first job to be updated, E
is empty. Hence, SB2 = rmax2 = 4. This value is appended to E. Note that it
is indeed true that the level-2 busy period starts at time 4 in Figure 5.7(b). For
J3, since E = {4} and hence is not empty and rmax3 � LFT2(vx+1), from line

27

16 in Algorithm 1, we have SB3 = 4. Again, we can see in Figure 5.7(b) that
only jobs with a priority higher than or equal to that of J3 executes from time
4 onward. For J4, since we have (rmax4 = 20) > (LFT3(vx+1) = 16), from line
8 in Algorithm 1, we have found a new idle period in the schedule. The end
of this idle time, i.e., rmax4 is appended to E and the start of the level-4 busy
period is given by SB4 = rmax4 = 20. For job J5, we have E = 4, 20 and thus
(rmax5 = 3) < (min(x|x ∈ E) = 4) and hence from line 14 in Algorithm 1, we
calculate SB5 = rmax5 = 3.

28

(a) Example jobset

(b) Schedule before J1 is added onto the system

(c) Schedule when J1 has been added to the system, Ii,a is calculated according to

Algorithm 1.

Figure 5.7: Upper bound of the additional worst-case interference as
given by Algorithm 1

We now prove that the additional interference that Ja causes to Ji , i.e., Ii,a
can be computed with Equation 5.7 using the start of the busy period SBi.

Ii,a(vx+1) = min{max{0, LFTa(vx+1)− SBi}, Cmaxa } (5.7)

Lemma 5.2.5. If Ji ∈ Ax \ HP (Ja, vx), such that SBi ≥ LFTa(vx+1), then
Ii,a(vx+1) = 0.

29

Proof. Similar to the proof for Lemma 5.2.1, for the job Ji to suffer interference
(Ii,a(vx+1) > 0) due to the newly added higher priority job Ja, the level-i busy
period should start either before or during the time when Ja executes i.e., the
processor must be busy executing Ji or higher priority jobs than Ji within the
interval [rmina , LFTa(vx+1)].

However, since by assumption SBi ≥ LFTa(vx+1), Ja has completed its exe-
cution before Ji’s busy period starts. Hence Ja cannot cause interference to Ji
i.e., Ii,a(vx+1) = 0.

Lemma 5.2.6. If Ji ∈ Ax\HP (Ja, vx), such that SBi ≤ rmaxa , then Ii,a(vx+1) =
Cmaxa .

Proof. Since Ji is a part of Ax, we know that LFTi(vx) > rmaxa . Since SBi ≤
rmaxa < LFTi(vx), it means that Ja may be released after the start of the
level-i busy window but before Ji’s completion (i.e., the end of the level-i busy
window). Therefore, in the worst-case, Ja will be released during the level-i
busy window and will thus fully execute before Ji’s completion (because Ja
has a higher priority than Ji). Therefore, the additional worst-case interference
suffered by Ji due to Ja is equal to Ja’s worst-case execution time Cmaxa .

Lemma 5.2.7. Let Ji be a job in Ax \ HP (Ja, vx), such that SBi is in
[rmaxa , LFTavx+1], then the interference caused by the newly added job Ja is
upper-bounded by LFTa(vx+1)− SBi.

Proof. Since SBi contains Ji, we have SBi <= rmaxi . We assume that SBi is
in [rmaxa , LFTavx+1] and hence, we have rmaxi ≥ rmaxa . Since Ji releases during
the execution of the higher priority job Ja, Ji cannot start execution until Ja
completes, i.e., LFTa(vx+1). Therefore, the interference caused by Ja on Ji is
upper bounded by LFTa(vx+1)− SBi.

Theorem 5.2.8. Equation 5.7 results in an upper bound worst case interference
caused by a newly added job Ja on a lower priority job Ji in Ax.

Proof. From Lemma 5.2.6, we know that given that when the latest release time
rmaxa of Ja is smaller than or equal to the start of the level-i busy window, then
Ii,a(vx+1) = Cmaxa .

Similarly, from Lemma 5.2.5, we know that when the latest release time rmaxa

of Ja is larger than or equal to the level-i busy period SBi, then the interference
it causes on Ji is given by Ia(vx+1) = 0.

From Lemma 5.2.7, we have that if rmaxa < SBi < LFTa(vx+1) ,i.e., in the
cases that are not covered by the special cases above, then Ii,a(vx+1) is an
upper bounded by LFTa(vx+1) − SBi. Now, note that if SBi ≤ rmaxa then,
LFTa(vx+1)−SBi ≥ LFTa(vx+1)−rmaxa ≥ Cmaxa (from Equations 5.2 and 5.5)
. Therefore, Equation 5.7 returns Cmaxa as it should according to Lemma 5.2.6.
Similarly, if SBi ≥ LFTa(vx+1), then LFTa(vx+1)−SBi ≤ 0 and Equation 5.7,
returns 0 as expected according to Lemma 5.2.5. In all other cases, Equation
5.7, returns LFTa(vx+1)− SBi. Therefore, Equation 5.7 is an upper bound on
Ii,a(vx+1).

30

The latest finish time of the job Ji can now be updated to account for the
interference generated by Ja as follows:

LFTi(vx+1) = LFTi(vx) + Ii,a(vx+1) (5.8)

Similarly, the earliest finish time (EFT) of the lower priority job Ji can be
updated as follows:

EFTi(vx+1) =

{
EFTi(vx) + Cmina if EFTi(vx) > (LFTa(vx+1)− Cmaxa)

EFTi(vx) otherwise
(5.9)

The earliest finish time of the job to be updated Ji depends on whether the
newly added job Ja preempts it or not.

Lemma 5.2.9. Equation 5.9 provides a lower bound on the finish time of Ji
for any execution scenario involving the jobs in J(vx+1)

Proof. Since adding a job to a preemptive system can only increase the response
time of lower priority jobs and because in EFTi(vx) is a lower bound on the
finish time of Ji for all execution scenarios involving jobs in J(vx), it directly
holds that EFTi(vx) is a lower bound on the finish time of Ji for all execution
scenarios involving jobs in J(vx) ∪ Ja. This proves the second case of Equation
5.9.

Therefore, we focus on proving that EFTi(vx+1) is lower bounded by EFTi(vx)+
Cmina when EFTi(vx) > LFTa(vx+1)− Cmaxa . To do so, we first state that be-
cause LFTa(vx) is the latest time at which Ja may finish its execution, it holds
true that LFTa(vx+1) − Cmaxa is the latest time at which Ja may start ex-
ecuting in any execution scenario involving the jobs in J (vx+1). Therefore, if
EFTi(vx) > LFTa(vx+1)−Cmaxa , then Ja must start executing before the earli-
est finish time of Ji. Associating this to the fact that the earliest release of Ja is
no later than that of Ji (because Ji was added before Ja to the schedule abstrac-
tion graph), it results that Ja certainly preempts Ji when Ji is released at rmini

(see Figure 5.8 for an illustration of that scenario). Thus, the response time
of Ji is certainly increased by the execution time of Ja, i.e., by Ja’s best-case
execution time Cmina in the best case.

Figure 5.8: Reasoning for Equation 5.9. All the release times in this
figure depict the earliest release times of the jobs.

31

5.2.3 Removing jobs from the graph

Keeping track of all jobs in J (vx) in each vertex vx of the schedule abstraction
graph would be memory and computation time inefficient. Instead, we prove
that if the response time of a job Jh in the state vx is no longer affected by
the release of the next job added to the graph, then Jh can be removed from
the graph. This is so because (1) its worst-case response time is then known
(see Lemma 5.2.5) and (2) Jh does not impact the response time of any job in
J \ J (vx) (see Lemma 5.2.1).
If the earliest release of the newly added job Ja is later than the latest finish
time of an already existing job Jh in state vx, then we can say that no job
will preempt Jh anymore and Jh can hence be removed from the graph. This
statement has been proved and justified in Lemma 5.2.10

Lemma 5.2.10. Let Ji in state vx, be a job such that rmina ≥ LFTi(vx), and
let Ja be the last job added to the schedule abstraction graph. No job added
later in the graph will cause interference to Ji.

Proof. By contradiction, let us assume that there is a job Jj added after Ja that
causes interference to Ji. Based on the order of adding Ji, Ja and Jj to the
schedule abstraction graph, we know that rmini ≤ rmina ≤ rminj . Since a newly
added job can only cause interference to Ji if its earliest release is earlier than the
latest finish time of Ji, we have that LFTi(vx) > rminj . However, by assumption,

we also have that LFTi(vx) ≤ rmina . From these two inequalities, we get that
rminj < rmina which is in contradiction with the fact that rmini ≤ rmina ≤ rminj

as proven before. Hence, if a newly added job Ja does not cause interference to
another job Ji, then no job added later to the graph will cause interference to
Ji.

Lemma 5.2.11. If Di ≤ Ti for all τi in τ , and τ is schedulable, then every
vertex vx in the schedule abstraction graph has at most |τ | jobs in Ax.

Proof. Let Ja be the job added to vertex vx to create vertex vx+1. By contra-
diction, let us assume that two jobs of task τi, say Ji,k and Ji,l, are in Ax at
the same time. Then, by definition of Ax, we have that LFTi,k(vx) > rmina and
LFTi,l(vx) > rmina . Furthermore, because Ji,k and Ji,l were added to the sched-
ule abstraction graph before Ja, we have rmini,k ≤ rmina and rmini,l ≤ rmina . Now,
without any loss of generality, let us assume that Ji,k was released before Ji,l by
τi. Then, we have rmini,k ≤ rmini,l − Ti, and thus by the assumption that Di ≤ Ti,
rmini,k +Di ≤ rmini,l . Since we assume that the system is schedulable, we must have

that Ji,k must complete before its deadline and thus LFTi,k(vx) ≤ rmini,l . Using

the fact that rmini,l ≤ rmaxa , we have LFTi,k(vx) < rmina which is a contradiction
with the assumption that Ji,k ∈ Ax.

This proves that each task in τ has at most one job in Ax and hence, Ax
contains at most |τ | jobs.

Lemma 5.2.12. If τ is schedulable, then vertex vx has at most
∑
τi∈τdDi/Tie

jobs in Ax.

Proof. Let Ja be the job added to vertex vx to create vertex vx+1. By contra-
diction, let us assume that k jobs of a task τi are in Ax such that k > dDi/Tie.
Let the jobs of τi in Ax range from Ji,p to Ji,p+k. By the definition of Ax, we

32

have that LFTi,p > rmina and LFTi,p+k > rmina . Since, all the jobs from Ji,p
to Jp+k have already been added to the graph as they belong in Ax, we have
rmini,p ≤ rmina and rmini,p+k ≤ rmina . By assuming that Ji,p is the job of τi in vx
with the earliest release and Ji,p+k is the job of τi in vx with the latest release,
we have rmini,p ≤ rmini,p+k − (k× Ti). Since we have assumed that k > dDi/Tie, we

generalize and say k × Ti > Di. Therefore, we have rmini,p +Di ≤ rmini,p+k. Since,

we assume the system is schedulable, LFTi,p(vx) ≤ rmini,p+k as job Ji,p must finish

before its deadline. Using the fact that rmini,p ≤ rmaxa which is a contradiction
with the assumption that Ji,p ∈ Ax.

Hence, we can say that there are at most dDi/Tie jobs af a task τi in Ax and
hence, the maximum number of jobs in Ax is

∑
τi∈τdDi/Tie.

5.2.4 Worst-case response time

Formally written, we have WCRT (Ji) = maxvx∈V LFTi(vx)− rmini . Thus, the
worst-case response time of a job is recorded when a job is either removed from
the graph or the graph has reached its last state and there are no more jobs to be
added. Indeed, when a job Ji is removed from the graph during the creation of
an intermediate state, the latest finish time of Ji at that point minus its earliest
release is an upper bound the worst case response time of the job (since LFTi
will not increase any more after that point as proven by Lemma 5.2.5). For all
the jobs that are still present in the last state of the graph, the latest finish
time of each job in the last state would be their respective worst-case response
time. For a graph built from a jobset J , we can say that J is schedulable if
the worst-case response time of all the jobs in J is smaller or equal to their
respective deadlines.

5.2.5 A working example of the new abstraction graph

In order to understand the working of the concepts of creating a state, adding,
updating and removing jobs as have been discussed in Subsections 5.2.1, 5.2.2,
5.2.3, the working of a simple example has been discussed in this section. Figure
5.9 shows a jobset with execution time variation and also depicts what the graph
would look like for this jobset.

Figure 5.9: Working example of the new abstraction graph

In Figure 5.9, among the jobs in the jobset the job to release the earliest if
J3 and hence it is the job that has been added to the graph the first. Since the

33

system so far only has J3, it is the highest priority job in the state and hence
the earliest and latest finish times of the job would follow Equations 5.1 and 5.2.
Once the state v2 has been formed, among the remaining jobs J1 and J2, the
job that will be added to the graph next would be J2 as it has an earlier release.
When this job J2 is added to the new state of v3, it is the highest priority job in
the state and hence the earliest and latest finish times would follow Equations
5.1 and 5.2, while updation of the finish intervals of J3 would follow Equations
5.9 and 5.8. The last remaining job would then be added to the new state of v4.
While adding this new job, it can be seen that the release time of J1 is larger
than the latest finish times of both J2 and J3 and hence J1 can never cause any
interference to both the existing jobs. These jobs are therefore removed from
the forthcoming states. In order to check if the jobset is schedulable or not the
worst-case response time of each job is checked to see if it is smaller or equal to
their respective deadlines. Since in this example we can see that this condition
holds for all the jobs in the jobset, this jobset is said to be schedulable.

5.2.6 Graph generation algorithm

Now that we have seen a working example of how the graph is built we discuss
the graph generation algorithm that is used to generate the graphs as seen in
Figure 5.9. The graph generation algorithm starts with an input of a job set
which consists of all the jobs in an observation window whose length can be
calculated a priori. With this jobset as input, the algorithm produces a graph
G as output. The jobs are first sorted in ascending order based on their earliest
release times. Since the graph currently has no states, it is initialized by adding
state v0 which is an empty state (i.e., assuming that no job has been executed
yet). Then one by one as a new job is added to the system, a new state is added
to the graph.

For a job that is newly added to the graph, the finish times intervals are
calculated based on the relative priority of the job with respect to the jobs in
vx. If the newly added job is the highest priority job, then the finish times
are calculated using Equations 5.1 and 5.2, else the finish times are calculated
using Equations 5.6 and 5.5. Then every job in state vx is considered. It is first
checked if the job is carried on further or whether it is removed from the graph.
This can be done by checking the condition LFTj(vx) < rmini . If this condition
holds true, then the job from vx can be removed from the graph else the job is
prepared to be added to the new state.

If it has been decided that a job from vx is to be added to vx+1, the next
step is to decide whether the finish time intervals have to be updated or not. If
the job in contention is of a higher priority than the newly added job, then the
job can be added to vx+1 as is. Otherwise, the finish time intervals have to be
updated using Equations 5.9 and 5.8. Once the state vx+1 has been built it is
then added to the graph. This procedure is repeated for all the jobs in the jobset.

While building this graph, from both the example in Figure 5.9 and Algorithm
2, we can see that this solution does not build a graph that branches. Due to this
property of the new schedule abstraction graph, we do not need to employ merge
techniques as state space explosion problems have been completely eradicated.

34

Algorithm 2: Graph generation algorithm

Input: Jobset J
Output: Graph G

1 sort(J) based on rmini

2 Initialize G by adding v0 = ∅
3 for Ji in J do
4 Create new state vx+1

5 State vx is the last state that as added to G
6 if Ji is the highest priority job in vx then
7 EFTi(vx+1) ← Equation 5.1
8 LFTi(vx+1) ← Equation 5.2

9 else
10 EFTi(vx+1) ← Equation 5.6
11 LFTi(vx+1) ← Equation 5.5

12 Add Ji to state vx+1

13 for all Jj in state vx do
/* If the job in the previous state has a smaller latest finish

time than the earliest release of the newly added job */

14 if LFTj(vx) < rmini then
15 Jj is not carried forward to vx+1

/* If the job in the previous state has a larger latest finish

time than the earliest release of the newly added job */

16 else
/* If the job in the previous state has a higher priority than

the newly added job */

17 if pi > pj then
18 Add Jj to vx+1

/* If the job in the previous state has a lower priority than

the newly added job */

19 else
20 EFTj(vx+1)← Equation 5.9
21 LFTj(vx+1)← Equation 5.8
22 Add Jj to vx+1

23 Add vx+1 to G

Theorem 5.2.13. The time and space complexity to build any vertex vx in
the schedule abstraction graph is O((

∑
τi∈τdDi/Tie)2) and O(

∑
τi∈τdDi/Tie),

respectively.

Proof. Lemma 5.2.12 proves that there are at most
∑
τi∈τdDi/Tie jobs in Ax.

Hence, the space complexity of vx is bounded by
∑
τi∈τdDi/Tie. Moreover,

Algorithm 2 goes at most once through each job in Ax. For each node vx, Al-
gorithm 1 also goes at most once through each job in Ax and for each job may
have to perform at most

∑
τi∈τdDi/Tie operations (Lines 13 and 16). Thus, the

time complexity of Algorithm 1 is bounded by O(
∑
τi∈τdDi/Tie2). Since Al-

gorithm 2, calls Algorithm 1 for every job in vx, the time complexity is bounded

35

by O((
∑
τi∈τdDi/Tie)2).

Corollary 5.2.13.1. If Di ≤ Ti for all tasks in τ , then the time and space
complexity of Algorithm 2 is O(|τ |2) and O(|τ |), respectively.

Proof. The proof is a direct consequence of Theorem 5.2.13, since Algorithm 1
and Algorithm 2 are bounded by

∑
taui∈τdDi/Tie and (

∑
taui∈τdDi/Tie)2, re-

spectively. From Lemma 5.2.11, we know that when Di ≤ Ti,
∑
taui∈τdDi/Tie =

|τ |. hence, the time complexity of Algorithm 1 is O(|τ |). Therefore, the time
complexity of Algorithm 2 is O(|τ |2).

5.3 Evaluation

In order to understand how effectively the newly developed solution performs
against the state of the art, experiments were conducted. Algorithm 2 was
implemented as a python program and this analysis was tested against the
state of the art using synthetically generated tasksets. The state of the art that
was tested were both exact and sufficient tests.

5.3.1 Comparison baseline selection

The first stage of experiments was performed on the schedule abstraction graph
built to handle tasksets scheduled on uniprocessor systems. The state of the art
chosen for this methodology can be separated into three categories depending
on their ability to handle jitter and offsets. The first category of solutions are
those that do not handle both jitter and offset. In this category, we have the
solution by Audsley et al. [2] which is an exact solution that helps analyse
preemptive tasks on a uniprocessor platform. Two other tests were also chosen,
namely the Park test by Park et al. [25] and the distance constrained taskset
[DCT] algorithm by Han et al. [17]. The second category has a solution by
Goossens [18] that can handle tasksets having various offsets. This solution too
is exact in nature. The final category resembles the solution presented in this
paper as close as possible and looks at handling tasks that contain both release
time jitter and offsets. The solution by Redell et al. [26] is an exact solution
that handles both jitter and offsets.

5.3.2 Synthetic taskset generation

In order to be able to perform experiments, tasksets were synthetically generated
using the Emberson and Davis tool [13]. The tasksets were generated such that
the tasks per taskset ranged from 3 tasks to 18 tasks with a step of 3. The
period of the taksets followed either a uniform or a log-uniform distribution and
ranged from 10 to 10,000 time units, and the total utilization of the system
U =

∑
τi
∈ Ci/Ti was equal to a predefined value. When experiments for task

sets with release jitter were performed, each task was assigned a release jitter
proportional to its period (i.e., the release jitter was set to 5% of the task period).
Similarly, when experiences accounting for release offsets were performed, each
task was also assigned an offset picked as a random value smaller than or equal
to the period of the task. Since all the solutions stated in Section 5.3.1, provide

36

only the worst-case response time, the execution time variation is not considered.
This is because in a worst case analysis, all jobs always execute for Cmaxi time
units. A rate-monotonic priority assignment, where a shorter period results in
a higher priority, was designated to each task as the deadlines of the tasks was
assumed to be equal to the period of the task i.e., Di = Ti. For each combination
of parameters, 100 different tasksets were generated.

5.3.3 Experiments

Two types of experiments were performed. First, the utilization is varied for
constant values of the number of tasks in a taskset. Then in the second set
of experiments the utilization is kept constant while the number fo tasksets is
varied is presented.

Experiments by varying the total utilization U

In order to compare Algorithm 2 against the state of the art, for each setup, we
plot the schedulability ratio i.e., the ratio of schedulable tasksets to the number
of tasksets that were synthetically generated. With such a plot the best analysis
is the analysis that shows the highest schedulability ratio.

Figure 5.10 shows the comparison of Algorithm 2 with the three categories of
the state of the art. All three graphs represent tasksets that have log-uniform
periods, such that each taskset is composed of 9 tasks. Figure 5.10(a) compares
Algorithm 2 with the solution by Audsley et al. [2], Park test [25] and distance
constrained taskset [DCT] algorithm by Han et al. [17]. From this graph, we can
see that Algorithm 2 overlaps the exact solution by Audsley et al. [2]. Figure
5.10(b) compares Algorithm 2 with the solution by Goossens [18] and from this
graph too we can see that the solution of both the solutions overlap. Figure
5.10(c) compares Algorithm 2 with the solution by Redell et al. [26] and from
this graph too we can see that the solution of both the solutions overlap. In
all three solutions Algorithm 2 behaves just as well as the exact solutions in all
three categories.

Experiments by varying the number of tasks in a taskset

In this set of experiments, the schedulability ratio is a plot against varying val-
ues of the total number of tasks in a taskset for each category. As the number
of tasks in a taskset increases, the schedulability decreases, as can be seen in
Figure 5.11. All three graphs represent tasksets that have log-uniform periods,
such that all the tasksets have a utilization of 0.94. Here, too similar as before
we see that in all three setups, our solution overlaps with the exact solution.

37

(a)Evaluation results of solutions that do not deal with jitter and offset with respect
to utilization

(b)Evaluation results of solutions that only deals with offsets with respect to
utilization

Evaluation results of solutions that deal with both jitter and offset with respect to
utilization

Figure 5.10: Evaluation results of solutions where the utilization is
varied over a fixed number of tasks in a taskset38

(a) Evaluation results of solutions that do not deal with jitter and offset.

(b) Evaluation results of solutions that only deal with offsets.

(c) Evaluation results of solutions that deal with both jitter and offset.

Figure 5.11: Evaluation results of solutions where the number of tasks
in a taskset is varied over a fixed utilization

39

40

Chapter 6

Response-time analysis for
multi-core platforms

The solution that has been described so far deals with scheduling preemptive
tasks on uniprocessor systems. In order to extend this solution to multipro-
cessor systems with m cores, a modification to the worst case interference was
performed. The structure and terminology of the graph remains the same. The
only difference is the methodology used to calculate the interference caused by
higher priority jobs. In order to further simplify the extension, only the worst
case scenarios are considered and hence the earliest finish time is not a timing
property that is maintained by the graph.

6.1 Modified worst case interference

In the solution for single processor system, there were two instances where the
worst-case interference had to be calculated. (1) A job of a lower priority was
added to the graph and the worst case interference was calculated using equa-
tion 5.3. (2) When updating the intervals of jobs the worst case interference of a
job was calculated using equation 5.7. For the multiprocessor solution, in both
cases, this calculated interference is divided by the number of processors(m) in
order to give us an upper bound on the interference in an m core system.

Let the worst-case interference of Ja scheduled on a multiprocessor platform,
when it is added to a new state vx+1 is denoted by MIa(vx+1). For calculating
the worst-case interference, while adding a job Ja that has a higher priority than
all the jobs in Ax, i.e., HP (Ja, vx) = ∅, Equation 5.3 is modified as follows:

MIa(vx+1) ≤

0 if rmaxa ≥ LFTi(vx),∀Ji|Ji ∈ HP (Ja, vx){∑

Ji|Ji∈HP (Ja,vx)
Cmaxi

}
/m if rmaxa ≤ rmaxi ,∀Ji|Ji ∈ HP (Ja, vx)

{LFTb(vx)− rmaxa } otherwise

(6.1)
The worst-case additional interference that a job Ja can cause to another

lower priority job Ji scheduled on a multiprocessor platform needs to be calcu-
lated. Unlike the extension above that extends the uniprocessor equation for

41

calculating the interference that a new job Ja faces, directly to the multipro-
cessor system the Equation 5.7 cannot be modified directly. This is because
there is a notion of the the start of priority level-i busy window (SBi), which
is not simple to extend to multiprocessor systems as these priority levels are
core dependent. Since the idle time is core-specific, if this idle time is to be
monitored for calculating interference, then which jobs go to which core also
needs to be monitored. Since this would leave us with an exhaustive search
problem, we simplify Equation 6.1, and adapt it to compute the interference a
lower priority job Ji ∈ Ax \HP (Ja, vx) as follows:

MIi,a(vx+1) ≤

0 if rmaxi ≥ LFTa(vx+1)

Cmaxi /m if rmaxi ≤ rmaxa

{LFTk(vx+1)− rmaxi } /m otherwise

(6.2)

where LFTk(vx) is the latest finish time of a job Jk such that Jk is the lowest
priority job in vx+1 that has a higher priority than Ji , i.e., Jk is given by
Equation

Jk = argmax
Ju∈HP (Ji,vx+1)

pu (6.3)

We now prove that the extension of the uniprocessor equations in Equations
6.1 and 6.2, divided by the number of cores m provides a safe upper bound on
he interference.

Lemma 6.1.1. On a multiprocessor platform, an upper bound on the worst
case interference can be obtained by MIi(vx+1) = Ii(vx+1)/m where, m is the
number of processors and Ii(vx+1) is the interference calculated on a unipro-
cessor platform.

Proof. Ii(vx+1) provides an upper bound on the interference because if m = 1,
then MIi(vx+1) = Ii(vx+1). When m > 1, Ii(vx+1) is distributed among m
cores. If the distribution of the interference was not even among all the cores,
a particular core might have less interference scheduled on it that the other
intervals. The worst case interference is when all the cores have Ii(vx+1)/m
units of interference. When a core has an interference that is greater than
Ii(vx+1)/m by k units, there would be another core, that is less Ii(vx+1)/m
by k units. This happens as the total interference Ii(vx+1) always remain the
same. Hence, Ii(vx+1)/m gives an upperbound on the interference.

An example of Lemma 6.1.1 is seen in Figure 6.1. If a job faces an interference
of 9 units on a uniprocessor system the processor availability is as it has been
depicted in the figure. But when this interference is scheduled on a multipro-
cessor system, it gets divided by the number of cores to form the upper bound
on the interference. This can be considered as the upper bound because if the
interference was not evenly spread and one processor had more than 3 units of
interference, then there will definitely be another processor that has less than 3
units of interference scheduled on it. Hence, interference divided by the number
of cores m gives an upper bound on the interference on a multicore platform.

42

Figure 6.1: Visualization of the interference on a single core platform
and a multicore platform

6.2 Graph generation algorithm on a multipro-
cessor platform

Now that the worst case interference has been calculated, the extension of the
solution to multiprocessor systems is hence simplified. The algorithm to gener-
ate a graph for multiprocessor systems is given by Algorithm 3. When calculat-
ing the latest finish time in the algorithm, the modified worst case interference
as in Equations 6.1 and 6.2 are used instead.

6.3 Evaluation

In order to understand how effectively the extended solution for multiprocessor
performs against the state of the art, experiments were conducted. Algorithm 3
was implemented as a python program and this analysis was tested against the
state of the art using synthetically generated tasksets.

6.3.1 Comparison baseline selection

The solutions that use finite state machines to build their analysis have not been
evaluated. This is because, the finite state machine solutions are not scalable
and even the smallest tasksets generated for the experiments would have been
too large for those tools to handle. Hence, the experiments in this section com-
pare how well our solution performs when compared to a solution that extends
the response time analysis by Audsley et al. [2]. As seen in Section 3.2, there
have been many solutions that extend the work of Audsley et al. [2], and since
all the solutions perform very similarly and have very slight variation within
their results (refer Sun et al.[27]), testing against just one of those solutions
will help us understand how the solution developed in this thesis performs. The
chosen baseline was the solution by Guan et al. [16] as this solution has been re-
garded as the state-of-the-art in Sun et al [27] for global fixed priority scheduling.

43

Algorithm 3: Graph generation algorithm on a multiprocessor plat-
form

Input: Jobset J
Output: Graph G

1 sort(J) based on rmini

2 Initialize G by adding v0 = ∅
3 for Ji in J do
4 Create new state vx+1

5 State vx is the last state that as added to G
6 if Ji is the highest priority job in vx then
7 LFTi(vx+1) = rmaxi + Cimax

8 else
9 Ii(vx+1) ← Equation 6.1

10 LFTi(vx+1) = rmaxi + Ii(vx+1) + Cmaxi

11 Add Ji to state vx+1

12 for all Jj in state vx do
/* If the job in the previous state has a smaller latest finish

time than the earliest release of the newly added job */

13 if LFTj(vx) < rmini then
14 Jj is not carried forward to vx+1

/* If the job in the previous state has a larger latest finish

time than the earliest release of the newly added job */

15 else
/* If the job in the previous state has a higher priority than

the newly added job */

16 if pi > pj then
17 Add Jj to vx+1

/* If the job in the previous state has a lower priority than

the newly added job */

18 else
19 Ij,i(vx+1)← Equation 6.2
20 LFTj(vx+1) = LFTj(vx) + Ij,i(vx+1)
21 Add Jj to vx+1

22 Add vx+1 to G

6.3.2 Synthetic taskset generation

Similar to the experiments for the single processor solution, tasksets were syn-
thetically generated using the Emberson and Davis tool [13]. The tasksets were
generated such that the number of cores m ranged from 2 to 8 cores. The period
of the taksets followed a log-uniform distribution and ranged from 10 to 10,000
time units, and the total utilization of the system U =

{∑
τi
∈ Ci/Ti

}
/m was

equal to a predefined value. The number of tasks in a taskset was determined
based on the number of cores. For each core, the number of tasksets ranged
from 1 to 5 times the number of cores i.e, when m = 2 the number of tasks in a
taskset were within the set of values [2, 4, 6, 8, 10]. When experiences accounting

44

for release offsets were performed, each task was also assigned an offset picked
as a random value smaller than or equal to the period of the task. Since Gual
et al. [16], does not account for jitter, the generated tasks do not have release
time jitter. Since Guan et al.[16] only the worst-case analysis, the execution
time variation is also not considered. A rate-monotonic priority assignment,
where a shorter period results in a higher priority, was designated to each task
as the deadlines of the tasks was assumed to be equal to the period of the task
i.e., Di = Ti. For each combination of parameters, 100 different tasksets were
generated.

6.3.3 Experiments

Three types of experiments were performed. In the experiment presented in
Section 6.3.3.1, the utilization is varied for constant values of the number of
tasks in a taskset and number of cores. In the experiments presented in Section
6.3.3.2, the utilization and the number of cores is kept constant while the number
fo tasksets is varied. Lastly, in the experiments presented in Section 6.3.3.3, the
number of cores is varied while the number of tasks per taskset and utilization
is kept constant.

6.3.3.1 Experiments by varying total utilization U

We plot the schedulability ratio against varying values of total system utiliza-
tions. From Figure 6.2, we see the result of the experiment when the number
of cores is set to 4 and the number of tasks in the taskset is set to 5 times
the number of cores, i.e., 20 tasks per taskset. We see that Guan et al.[16] per-
forms slightly better than our solution. Both solutions are able to easily identify
schedulable tasksets that have a utilization less than 0.3, but any schedulable
taskset with a utilization above 0.45 is never found.

6.3.3.2 Experiments by varying the number of tasks in a taskset

We plot the schedulability ratio against varying values of number of tasks in a
taskset. From Figure 6.3, we see the result of the experiment when the number
of cores is set to 5 and the utilization is 0.25. Here, too we see that Guan et
al.[16] performs slightly better than our solution. The schedulabilty ratios of
both the solutions start to drop when the number of tasks in a taskset increases.

6.3.3.3 Experiments by varying the number of cores

We plot the schedulability ratio against varying values of number of cores. From
Figure 6.4, we see the result of the experiment when the number of tasks in a
taskset is twice the number of cores and the utilization is 0.35. Similar to the
results in Figure 6.2 and 6.3, we see that Guan et al.[16] performs slightly better
than our solution. Both solutions are able to easily identify schedulable tasksets
when there are only a few number of cores, but any schedulable taskset sched-
uled on a platform with around 8 cores is never found.

45

Figure 6.2: Evaluation results of solutions where the utilization is var-
ied over a fixed number of tasks in a taskset and a fixed number of
cores

Figure 6.3: Evaluation results of solutions where the number of tasks
in a taskset is varied over a fixed utilization and a fixed number of
cores

46

Figure 6.4: Evaluation results of solutions where the number of cores is
varied over a fixed utilization and a fixed number of tasks in a taskset

47

48

Chapter 7

Conclusions

This thesis has introduced a new schedule abstraction graph analysis technique
that allows analysing preemptive tasks scheduled under global job-level fixed-
priority [JLFP] scheduling policies. This solution was built initially for a uni-
processor platform and then was extended to work with global scheduling. The
effectiveness of the solution was analyzed by checking the accuracy of the solu-
tion and comparing this to the state of the art. The accuracy of the solution was
determined by obtaining the schedulability ratio of tasksets with various com-
bination of parameters. From Section 5.3.3, we can see that we perform similar
to the state-of-the-art for single core platforms. However, and unfortunately,
our solution is slightly more pessimistic than the state-of-the-art for multipro-
cessor systems. Nevertheless, we have hopes that the accuracy of the analysis
for multiprocessor systems can be improved in the future. Indeed, the analysis
proposed in this work is of a completely different nature than the related work.
The solution proposed in this thesis is the first of its kind and it thus has a lot
of space for improvement yet.

7.1 Discussions

The schedule abstraction graph technique that was developed to analyse pree-
mptive tasks scheduled on a uniprocessor platform performed just as well as the
state of the art solutions. This provides a solution that has a lot of scope for an
extension as it is highly accurate while completely eradicating the state space ex-
plosion problem. However, when extending this solution to multiprocessor sys-
tems, we introduce pessimism because the calculation of the interference caused
by the higher priority tasks is over approximated. This over-approximation was
introduced so that we could keep the extension of the solution very similar to the
original solution on uniprocessor platforms. even though this makes the multi-
processor system more pessimistic, we still face pessimism in the uniprocessor
solution itself.

7.1.1 Sources of pessimism

The first source of pessimism is found in Equation 5.3. As proven in Lem-
mas 5.2.1 and 5.2.2, the first and second cases of Equation 5.3 return exact

49

values for the worst-case interference suffered by the newly added job Ja. How-
ever, the third case (i.e., when there are two higher priority active jobs Ji and
Jj ∈ HP (Ja, vx) such that rmaxi < rmaxa < rmaxj), computes only an upper
bound on the worst-case interference. That is, there might be scenarios where
the returned value is pessimistic. A scenario where such an over estimation
occurs is depicted in Figure 7.1. Here, J3 is newly added to a node vx+1. In Fig-
ure 7.1(a), we see a schedule that shows one of the possible execution scenarios
where J3 faces the largest possible interference. The release pattern of the jobs
in HP (J3, vx) i.e., jobs J1 and J2, determine the largest interference that J3
could face. As proven in Theorem 5.2.4, the following two properties determine
a possible schedule that leads to the worst case interference of J3. 1. Jobs like
J1 that have their latest release time earlier than or equal to the latest release
time of J3, i.e., rmax1 ≤ rmax3 , release at their latest release time. 2. Jobs like J2
that have their latest release time later than the latest release time of J3, i.e.,
rmax2 > rmax3 , are released at rmax3 . Hence, according to those properties and
referring to Figure 7.1(a), the actual worst-case interference suffered by J3 is 4
units of time.

(a) Schedule which is the worst-case for J3

(b) Schedule which is the worst-case for J2

Figure 7.1: Overestimation of the interference as computed by Equa-
tion 5.3.

50

However, according to Equation 5.3 and Lemma 5.2.3, while calculating the
interference for J3, we consider the latest finish time of J2. This is because if
J3 is the newly added job Ja, then according to Equation 5.4, Jb is J2. The
worst-case scenario for J2 is when it releases at rmax2 . As can be seen in Figure
7.1(b), if J2 releases at rmax2 = 9, then it finishes its execution at time 12. Hence
the interference calculated according to Equation 5.3, is 8 units of time. Hence,
Equation 5.3 assumes that J3 can only start its execution at time 12, leaving
the processor idle from time 5 to 9. In fact, that schedule can never occur in a
real system as the scheduler is work-conserving as described in Section 2.2 and
will never leave a processor idle when there is a ready job. Hence, Equation 5.3
over-estimates the worst-case interference.

This over-approximation can be reduced by analysing the interference caused
to Ja by each higher priority job instead of looking at just the latest finish time
of Jb. This would allow for a tighter bound on the upper bound for the interfer-
ence. This pessimism is more visible when the release times of the jobs are far
apart, i.e., the jobs have a large release jitter. Hence, in our experiments where
we had a jitter of 5%, this pessimism does not manifest itself as the jitter was
small.

7.2 Future work

The obvious main goal of future work is to improve the accuracy of the analysis
for multiprocessor systems. In order to do so, the graph could be modified in
order to incorporate information about each core and how each core performs
independently instead of finding an upperbound on all cores as currently done.
This extension, however, is of a very complex nature, since no one so far could
find typical execution patterns that yield the WCRT of a job under global mul-
tiprocessor scheduling. It is an open problem for the last 30 years and, to the
best of our knowledge, no research team seems to be close to finding a solution
yet.

Another extension is to introduce the notion of precedence constraints can be
added to the system. The system currently assumes that the jobs in the analysis
do not have any precedence constraints i.e., jobs are independent of each other
and can hence, have any possible job ordering. With precedence constraints, the
jobs in a task might have to execute in a particular order. We expect that the
solution proposed in this dissertation can easily be extended to support tasks
to contain precedence constraints as the precedence constraints only affects the
release time of each job (i.e., a job may only be released once all its predecessors
are completed).

51

52

Bibliography

[1] N Audsley, A Burns, M Richardson, K Tindell, and A J Wellings. Applying
new scheduling theory to static priority preemptive scheduling. Software
Engineering Journal, 8(5):284–292, 1993.

[2] N C Audsley, A Burns, R I Davis, K W Tindell, and A J Wellings. Fixed pri-
ority scheduling an historical perspective. Real-Time Systems, 8(2-3):173–
198, March 1995.

[3] T. P. Baker. Multiprocessor edf and deadline monotonic schedulability
analysis. In RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003,
pages 120–129, 2003.

[4] Theodore P. Baker and Michele Cirinei. Brute-force determination of mul-
tiprocessor schedulability for sets of sporadic hard-deadline tasks. In Pro-
ceedings of the 11th International Conference on Principles of Distributed
Systems, OPODIS’07, page 62–75, 2007.

[5] Sanjoy Baruah. Techniques for multiprocessor global schedulability ana-
lysis. In Proceedings of the 28th IEEE International Real-Time Systems
Symposium, RTSS ’07, page 119–128, 2007.

[6] Geoffrey Nelissen Sebastian Altmeyer Robert I. Davis Benny Akesson,
Mitra Nasri. A survey of industry practice in real-time systems. In IEEE
Real-Time Systems Symposium (RTSS), 2020, 2020 (to appear).

[7] M. Bertogna and M. Cirinei. Response-time analysis for globally scheduled
symmetric multiprocessor platforms. In 28th IEEE International Real-Time
Systems Symposium (RTSS 2007), pages 149–160, 2007.

[8] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Improved
schedulability analysis of edf on multiprocessor platforms. volume 2005,
pages 209– 218, 2005.

[9] Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. Feasibility ana-
lysis of sporadic real-time multiprocessor task systems. Algorithmica,
63(4):763–780, August 2012.

[10] Artem Burmyakov, Enrico Bini, and Eduardo Tovar. An exact schedulab-
ility test for global fp using state space pruning. In Proceedings of the 23rd
International Conference on Real Time and Networks Systems, RTNS ’15,
page 225–234, 2015.

53

[11] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Springer Publishing Company,
Incorporated, 3rd edition, 2011.

[12] Robert I. Davis and Alan Burns. Improved priority assignment for global
fixed priority pre-emptive scheduling in multiprocessor real-time systems.
Real-Time Systems, 47(1):1–40, 2011.

[13] P. Emberson, R. Stafford, and R.I. Davis. Techniques for the synthesis of
multiprocessor tasksets. WATERS’10, 2010.

[14] Anam Farrukh and Richard West. smartflight: An environmentally-aware
adaptive real-time flight management system. In Proceedings of the 32nd
Euromicro Conference on Real-Time Systems (ECRTS 2020), pages 24:1–
24:22, 2020.

[15] Gilles Geeraerts, Joël Goossens, and Markus Lindström. Multiprocessor
schedulability of arbitrary-deadline sporadic tasks: complexity and anti-
chain algorithm. Real-Time Systems, 49(2):171–218, 2013.

[16] N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds for fixed
priority multiprocessor scheduling. In 2009 30th IEEE Real-Time Systems
Symposium, pages 387–397, 2009.

[17] C-. Han and H-. Tyan. A better polynomial-time schedulability test for
real-time fixed-priority scheduling algorithms. In Proceedings Real-Time
Systems Symposium, pages 36–45, 1997.

[18] Goossens Joël. Scheduling of hard real-time periodic systems with various
kinds of deadline and offset constraints. PhD thesis, Universite Libre De
Bruxelles, 1999.

[19] Jinkyu Lee and Insik Shin. Limited carry-in technique for real-time multi-
core scheduling. Journal of Systems Architecture, 59(7):372 – 375, 2013.

[20] Robert Leibinger. Software architectures for advanced driver assistance
systems (adas). 2015.

[21] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J. ACM, 20(1):46–61, January
1973.

[22] Mitra Nasri and Bjorn Brandenburg. An exact and sustainable analysis of
non-preemptive scheduling. pages 12–23, 2017.

[23] Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. A Response-
Time Analysis for Non-preemptive Job Sets under Global Scheduling. In
Euromicro Conference on Real-Time Systems (ECRTS 2018), pages 9:1–
9:23, 2018.

[24] Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. Response-Time
Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Schedul-
ing. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019),
volume 133 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 21:1–21:23, 2019.

54

[25] Moonju Park and Heemin Park. An efficient test method for rate monotonic
schedulability. IEEE Transactions on Computers, 63:1–1, 2014.

[26] O. Redell and Martin Törngren. Calculating exact worst case response
times for static priority scheduled tasks with offsets and jitter. In 2013
IEEE 19th Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), pages 164– 172, 2002.

[27] Youcheng Sun and Marco Di Natale. Assessing the pessimism of current
multicore global fixed-priority schedulability analysis. In Proceedings of
the 33rd Annual ACM Symposium on Applied Computing, SAC ’18, page
575–583, 2018.

[28] Youcheng Sun, Giuseppe Lipari, Nan Guan, and Wang yi. Improving the
response time analysis of global fixed-priority multiprocessor scheduling.
In RTCSA 2014 - 20th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, 2014.

55

	Preface
	Preface
	Introduction
	The problem
	Limitations of the state-of-the-art
	Solutions based on finite state machines
	Solutions that extend the response time analysis solution on uniprocessor systems
	Schedule abstracion graph

	Our Solution
	Manuscript organization

	System model
	Workload Model
	Execution Model

	Related Work
	Solutions based on finite state machines
	Solutions that extend the response time analysis solution on uniprocessor systems

	Background
	Schedule abstraction graph

	Response-time analysis for single-core platforms
	Naive extension of the schedule abstraction graph to preemptive scheduling
	New system state abstraction
	Creating a new state
	Update a state
	Removing jobs from the graph
	Worst-case response time
	A working example of the new abstraction graph
	Graph generation algorithm

	Evaluation
	Comparison baseline selection
	Synthetic taskset generation
	Experiments

	Response-time analysis for multi-core platforms
	Modified worst case interference
	Graph generation algorithm on a multiprocessor platform
	Evaluation
	Comparison baseline selection
	Synthetic taskset generation
	Experiments

	Conclusions
	Discussions
	Sources of pessimism

	Future work

