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EvoPriority: Evaluating Fitness Functions in Priority-Based
Evolutionary Testing for the XRP Ledger Consensus Protocol

Călin Ciocănea

Technical University of Delft
Delft, Netherlands

ABSTRACT
The XRP Ledger Consensus Protocol is a Byzantine fault-tolerant al-
gorithm that enables the XRP Ledger to reach agreement on which
transactions to apply, supporting millions of transactions daily.
While the protocol is correct by design, its practical implementa-
tion is vulnerable to concurrency-related bugs triggered by nonde-
terministic message delivery between distributed validator nodes.
These bugs are subtle and difficult to expose through conventional
testing. In this paper, we investigate the use of evolutionary concur-
rency testing combined with a priority-based message scheduling
strategy to explore different message interleavings. Specifically,
we evaluate multiple fitness functions and assess their ability to
guide the search toward buggy executions. Our results show that
EvoPriority, which applies evolutionary testing to priority-based
schedules, is difficult to guide toward buggy executions regardless
of the fitness function used. Although it is capable of uncovering
violations on a bug-seeded versions of the XRP Ledger Consensus
Protocol, its performance is similar to randomized concurrency
testing.

1 INTRODUCTION
The XRP Ledger (XRPL) is a decentralized public blockchain that
powers the XRP cryptocurrency. Over 50 billion XRP tokens are
in circulation today, equating to more than 120 billion USD, with
around 1.3 billion dollars worth being traded every day [6]. With
such a high volume, one small flaw in the system could havemassive
implications. This is why the silent threat of implementation level
bugs grows louder in the context of high-volume decentralized
networks.

With over 300 institutional partners across more than 40 coun-
tries [10], the XRPL is one of the most widely adopted enterprise
blockchain platforms. It functions as a decentralized network of
computers, called nodes, which must maintain a common view of
the ledger. In practice, this means nodes must agree on the set, order
and content of transactions applied to the ledger, as well as the ac-
counts involved in these transactions. At the core of this process lies
the XRP Ledger Consensus Protocol (XRPL CP), a Byzantine fault-
tolerant protocol that helps the XRPL achieve agreement across
the network. It defines specific rules that allow nodes to exchange
messages and converge on a common ledger state.

Unlike traditional blockchains such as Bitcoin, it does not rely
on proof-of-work. Instead, XRPL CP uses a synchronized execution
among nodes through a tightly timed sequence of consensus rounds.
This design enables high throughput and low latency and, under
ideal conditions, has been proven correct by design [16]. However,
this theoretical robustness assumes stable network conditions and
predictable message timing. In practice, even small variations in

message timing or ordering, combined with possibly faulty or ma-
licious nodes, can trigger concurrency issues. These issues could
lead to consensus violations such as forks in the network, where
different subsets of nodes agree on different versions of the ledger.
Detecting such violations requires testing the XRPL CP under a
range of message orderings and analysing how some orderings
might trigger consensus violations.

Prior work by Van Meerten et al. [18] demonstrated the effec-
tiveness of evolutionary algorithms for uncovering concurrency
bugs in the XRPL CP. Their approach tested different fitness func-
tions using a delay-based event representation, where the timing
of message deliveries is manipulated. While their results show that
evolutionary testing outperforms the random delay strategy, they
did not investigate how these fitness functions behave when used
with a priority-based strategy, where messages are reordered based
on assigned priorities rather than delayed. The question remains:
which fitness functions best guide the evolutionary search when
applied to priority-based testing?

In this paper, we address this gap by applying evolutionary algo-
rithms to priority-based testing of the XRPL CP. We refer to this
approach as EvoPriority. Priority-based testing assigns different
priorities to messages and then delivers each message in order of
their priority, allowing exploration of different message interleav-
ings. We use the EvoPriority approach to guide the bug search
process by assigning scores to individual test cases, allowing the
algorithm to generate new test cases based on the highest scoring
ones. We rank test cases using different fitness functions in order to
evaluate which one guides the evolutionary algorithm to the most
bugs found over all generations. We evaluate two fitness functions,
each emphasizing different aspects of XRPL CP behaviour: (1) Tim-
eFitness, which favours test cases with longer execution times; (2)
ProposalFitness, which rewards test cases requiring more proposal
messages to reach consensus. To evaluate the effectiveness of each
fitness function, we compare them to each other and to a base-
line strategy, which we refer to as RandomPriority. This baseline
randomly assigns priorities to messages, producing interleavings
without evolutionary guidance. We evaluate the performance of
each execution by the number of violations found over a fixed
number of generations. All experiments are conducted within the
Rocket framework [15], a system-level fuzzing platform that allows
fine-grained control over message delivery in XRPL test networks.

In our evaluation, we applied priority-based testing to the XRPL
CP using both RandomPriorty and EvoPriority strategies. While all
approaches were able to detect a small number of violations in the
bug-seeded version, none found any issues in the original (currently
used) protocol. EvoPriority with TimeFitness uncovered slightly



Evaluating Fitness Functions in Priority-Based Evolutionary Testing for the XRPL CP EEMCS, Delft University of Technology, The Netherlands

more violations than RandomPriority, while ProposalFitness per-
formed slightly worse, but these differences were not statistically
significant. Overall, the results suggest that priority-based testing
is capable of finding injected bugs, but may be difficult to guide
effectively using evolutionary algorithms and limited in its ability
to uncover deeper or unknown bugs.

This paper makes the following contributions:

• We introduce and empirically evaluate EvoPriority, our priority-
based evolutionary testing strategy, assessing the impact of
different fitness functions on its effectiveness in uncovering
consensus violations.
• We extend the Rocket framework by implementing support
for priority-based testing and evolutionary search, including
the integration of fitness functions.
• We provide a complete replication package, including our
implementation, test logs, and experiment configurations, to
support reproducibility and future research [5].

2 BACKGROUND INFORMATION AND
RELATEDWORK

In this section, we give an overview of the XRPL CP, explaining how
it processes transactions and reaches agreement across distributed
nodes. We also introduce evolutionary testing and explain why it’s
useful for exploring different message interleavings. Lastly, we look
at related work on testing distributed systems, including methods
that have been applied specifically to the XRPL CP.

2.1 The XRP Ledger Consensus Protocol
The XRPL CP is a Byzantine Fault Tolerant (BFT) consensus proto-
col, meaning it can still reach agreement within the network even
when some of the nodes are faulty or malicious. This is because
the protocol follows the design of the Practical Byzantine Fault
Tolerance (PBFT) algorithm [2]. However, unlike PBFT, the XRPL
CP allows open membership, by not having a fixed set of trusted
validators. To achieve this, each node in the network maintains a
list called the Unique Nodes List (UNL), which contains other nodes
that it individually trusts [3]. This allows nodes to join or leave the
network without requiring global agreement on membership.

Each consensus round, i.e. when the protocol is applied, follows
a number of phases [3]:

(1) Collection Phase:
Each node collects all valid transactions it has received up to
the start of the current consensus round. These may include
newly submitted transactions as well as transactions left
over from previous consensus rounds. The node sends the
collected transactions to the nodes in its UNL, then proceeds
to the next phase.

(2) Proposal Phase:
The goal of this phase is to reach consensus on a set of
transactions which will then be added to the next version of
the ledger. At the beginning of the phase, each node sends a
proposal to the nodes in its UNL. This proposal contains the
set of transactions that the node believes should be applied
to the ledger, based on the transactions it collected during
the Collection phase.

Each node then compares proposals it received against its
own, after which it flags transactions which do not appear
in all proposals as disputed transactions.
Nodes continually update their own proposals, adding dis-
puted transactions if they are supported by a sufficient por-
tion of their UNL and removing transactions if they are not
widely supported. Initially the threshold to add a transac-
tion to the proposal is set to 50%, after which it increases
gradually until it reaches 95%. We refer to this dynamic
threshold as the Proposal Avalanche Threshold. This is
done to bring the proposals of each node closer to each other
gradually, reducing the risk of getting stuck in a continuous
disagreement.
Nodes have a limited amount of time to reach consensus
on a set of transactions. If ≥ 80% of the node’s UNL agrees
on the same transaction set before the timeout, the node
considers consensus successful and moves on to the next
phase. We refer to this fixed 80% agreement requirement
as the Transaction Agreement Threshold. Otherwise,
the round is considered unsuccessful, and the protocol tries
again from the collection phase.

(3) Validation Phase:
Nodes finalize the agreed ledger from the proposal phase
and broadcast its hash to the network. Once a node receives
the same ledger hash from ≥ 80% of its UNL, the ledger
is considered validated and transactions are applied. This
final 80% threshold is referred to as the Ledger Validation
Threshold.

In order for the XRPL CP to reach agreement and maintain its
Byzantine fault tolerance guarantees, some conditions have to be
met. Firstly, the protocol requires that at least 80% of the nodes in
a given node’s UNL behave honestly. Secondly, the protocol relies
on a synchronous transition between protocol phases, achieved by
predefined time intervals for each phase. This helps the protocol to
avoid getting stuck at a certain point and also makes phase transi-
tions more predictable. However, there are some drawbacks, such
as possible network latency, which could cause desynchronisation
of nodes if not properly handled.

The XRPL CP ensures the following core distributed consensus
guarantees [18]:

(1) Agreement: Honest nodes do not finalize different ledgers.
(2) Validity: Finalized transactions must originate from honest

proposals.
(3) Integrity: A node cannot finalize more than one ledger per

consensus round.
(4) Termination: Every correct node eventually finalizes a

ledger, assuming sufficient honest participation and syn-
chrony.

2.2 Evolutionary Testing
Evolutionary testing is a software testing technique that automat-
ically generates and evolves test cases over multiple generations.
The goal is to explore a diverse and meaningful space of executions
to uncover subtle bugs.

Evolutionary testing follows the next steps [1]:
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(1) Initialization: Randomly generate a initial population of
test cases.

(2) Execution: Test cases are executed, which provides execu-
tion information for the selection step.

(3) Selection: Rank test cases with the help of fitness functions
and select the top test cases based on their rank.

(4) Reproduction: Combine and possibly mutate selected test
cases to produce a new set. Go back to execution step with
newly generated test cases.

To help guide the evolutionary algorithm to produce meaningful
test cases, we use fitness functions. These quantitatively asses the
execution of the algorithm being tested on different aspects. In the
case of the XRPL CP, some examples may include the duration of the
execution or the number of proposals needed to reach consensus
on a set of transactions.

2.3 Related Work
A wide range of approaches have been proposed for testing dis-
tributed systems, with some tools aiming to systematically ex-
plore all possible interleavings of concurrent events. However,
this approach quickly becomes impractical for large-scale systems
like blockchains. Some examples include dBug [17], DeMeter [11],
SAMC [12], and FlyMC [13]. Partial order reduction can be applied
to systematic testing approaches, in order to prune redundant inter-
leavings and make systematic exploration more manageable. Still,
this fails to make systematic testing a viable option for large-scale
applications.

A scalable alternative to systematic testing is randomized testing,
which simulates random network partitions and injects consistency-
related faults to reveal bugs [14], [4]. Building upon this idea, other
techniques introduce enhancements such as reinforcement learning
to steer test generation toward buggy executions.

While these concurrency testing approaches have shown success
in uncovering bugs in distributed systems, they are not specifically
applied to consensus protocols. ByzzFuzz introduces a randomized
testing strategy designed specifically for Byzantine fault-tolerant
algorithms. It introduces mutations to messages in the network to
simulate Byzantine faults. Through this approach, ByzzFuzz has
successfully uncovered implementation-level violations [19].

Another approach to concurrency testing involves the use of evo-
lutionary algorithms, as shown in prior work on the XRPL CP con-
sensus protocol [18]. Evolutionary methods were applied to delay-
based testing, successfully uncovering a previously unknown bug
in the implementation. Building on this idea, our work introduces
EvoPriority, which adapts evolutionary testing to a priority-based
message scheduling framework. We investigate whether different
fitness functions can effectively guide the evolutionary search to-
ward revealing buggy executions in the XRPL CP.

3 METHODOLOGY
This chapter describes the methodology used to generate, execute,
and evaluate test cases targeting the XRPL CP. We first detail what
inputs a priority-based test needs and how messages are sched-
uled and dispatched over the network according to their assigned
priorities. We then show how this strategy can be extended with

evolutionary testing and fitness functions to explore different mes-
sage interleavings in a targeted way, as to reach scenarios that are
more likely to cause bugs.

3.1 Priority-based Testing
In this approach, we control the delivery order of messages by
assigning priorities to specific message types. Each test case is
defined by a list of integers, referred to as an encoding, which
maps priority values to selected message types exchanged between
every pair of nodes in the network. This encoding is the input
of the priority-based testing strategy and directly influences the
behaviour of the consensus process. Rather than assigning priorities
to individual messages, we assign them based on their message type.
This significantly reduces the size of the search space and keeps
the results more interpretable.

Out of all message types in the XRPL CP, only a subset are
actually assigned priorities, while the rest are passed through im-
mediately. We refer to this selected subset as core messages, as they
represent the fundamental interactions that directly affect the out-
come of consensus. By focusing only on these core messages, the
strategy targets the areas where concurrency and message ordering
are most critical to correctness. This selective prioritization not only
reduces the computational cost of each test run but also ensures
that the exploration remains focused on meaningful interleavings.
Table 1 provides more details about the prioritized message types
and their roles in the consensus protocol. Figure 1(a) illustrates
how priority values are assigned to different XRPL CP message
types. Each coloured block represents a core message type, with the
corresponding priority value shown above. Lower values indicate
higher delivery priority. For example, TMValidation (TMV) has the
highest priority (1), while TMStatusChange (TMSC) has the lowest
(7). These priority values determine the order in which messages
are dispatched during testing.

To implement this strategy, all network messages are first in-
tercepted. If the intercepted message is not a core message, it is
forwarded immediately to its intended destination. Otherwise, the
message is matched to its corresponding priority in the encoding
and placed into a priority queue. Message dispatch from the queue
is controlled by an adaptive sending rate. When the queue grows
beyond a target threshold, the dispatch rate is increased to prevent
congestion. Conversely, when the queue is too small, the dispatch
rate is decreased.

Let 𝐼 denote the current queue size and 𝑟 the current dispatch
rate in packets per second. The system adjusts 𝑟 based on how
𝐼 compares to a defined target queue size 𝑇 . The update rule is
defined as:

𝑟 ←

min(𝑟 · 𝑠, 𝑟max) if 𝐼 > 𝑇 · 𝛼
max

(
𝑟
𝑠 ,

𝑟max
6

)
if 𝐼 < 𝑇 · 𝛽

𝑟 otherwise

Here, 𝑠 is a sensitivity ratio controlling how aggressively 𝑟 is ad-
justed, and 𝑟max is an upper limit on the dispatch rate. The effective
message dispatch rate is then given by:

packets_per_second = max(𝑟min, ⌊𝑟⌋)
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Table 1: Message Types Assigned Priorities in Priority-Based
Testing

Message Type Description

TMTransaction Carries client-submitted transactions to be
proposed for inclusion in the ledger.

TMGetLedger Requests a specific ledger or its metadata
from a peer.

TMLedgerData Responds to TMGetLedger with ledger con-
tent such as transaction sets or state data.

TMProposeSet Communicates a validator’s current proposal
for the next ledger’s transaction set.

TMStatusChange Signals a change in a validator’s consensus
status (e.g., entering deliberation).

TMHaveTransactionSet Informs peers that the validator has received
a specific transaction set.

TMValidation Sends a signed validation message for a
ledger candidate after consensus.

where 𝑟min is the minimum number of packets that can be dis-
patched per second. This mechanism allows the queue to gather
messages to make more use of the assigned priorities, while ad-
justing the dispatch rate to prevent build-up and maintain a steady
throughput of messages over the network. Figure 1(b) illustrates
how messages are intercepted, assigned priorities and after dis-
patched in order of these priorities. For example, TMProposeSet
(TMPS) is intercepted before TMValidation (TMV), but assigned a
lower priority, so it is dispatched last.

3.2 EvoPriority Approach and Fitness Functions
Building on the priority-based testing method, we apply an evolu-
tionary algorithm to explore the space of possible message interleav-
ings. In this approach, each population is defined by an encoding,
a list of integers used to assign priority values to core messages.
Populations evolve over generations and contain a number of test
cases. The goal is to discover message schedules which are more
likely to expose bugs in the XRPL CP, guided by the help of fitness
functions.

The evolutionary process follows four main stages: initialization,
execution, selection, and reproduction. As illustrated in Figure 2,
the process begins by randomly generating a set of test cases. Each
test case is executed and then evaluated using a fitness function:

(1) TimeFitness: Measures the average time taken for the XRPL
CP to reach consensus. The more time a test case takes to
execute, the higher the score it receives. The intuition behind
this is that longer runtimes may lead to delayed consensus
progress and violations of the termination property. Time-
Fitness is defined as:

(a) Mapping priorities to core message types.

(b) Priority-based dispatch ordering from the
queue.

Figure 1: Illustration of priority assignment and message
dispatch in the priority-based strategy.

Figure 2: Overview of the evolutionary testing cycle.

TimeFitness(𝑇 ) = 1
𝑛

𝑛∑︁
𝑖=1

validation_time𝑖 (1)

Where:
• 𝑇 is the test case (i.e. encoding),
• 𝑛 is the number of validator nodes,
• validation_time𝑖 is the time taken by node 𝑖 to validate a
ledger.

(2) ProposalFitness: Rewards test cases in which nodes send
more proposal messages in a single consensus round. This
indicates increased difficulty in reaching agreement. Propos-
alFitness is defined as:

ProposalFitness(𝑇 ) =
𝑛∑︁
𝑖=1

countProposeSet,𝑖 (2)

Where:
• countProposeSet,𝑖 is the number of ProposeSet messages
sent by node 𝑖 .
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To evolve test cases, we use a multi-objective genetic algorithm
based on NSGA-II. Each test case is evaluated according to two
objectives:
• Execution Fitness: calculated using either TimeFitness or
ProposalFitness.
• Consensus Violations: Number of violations found during
execution.

Each generation proceeds as follows. First, parent individuals are
selected using tournament selection based on dominance (DCD),
which considers both objectives. Two selected parents are recom-
bined using Simulated Binary Crossover (SBX) [7], producing two
offspring. These offspring are then possibly mutated using Gaussian
mutation [8], with each gene having a small independent mutation
probability. All genes are clamped to valid bounds after mutation.

To maintain diversity and select the next generation, we apply
NSGA-II [9], which sorts individuals into Pareto fronts and applies
crowding distance to break ties.

4 EVALUATION
In this section, we evaluate the effectiveness of the EvoPriority
approach by examining how different fitness functions guide the
evolutionary search toward consensus violations in the XRPL CP.
We begin by listing our research questions. Next, we detail the
experimental setup, including the testing environment, key param-
eters, and metrics used. Finally, we present and discuss the results
of our experiments, comparing the ability of each fitness function to
uncover violations and analysing their impact on search efficiency.

4.1 Research Questions
We test the XRPL CP in order to answer the following questions:
• RQ1: Can RandomPriority and EvoPriority uncover bugs in
the XRP Ledger Consensus Protocol?
This question investigates the bug finding capability of our
priority-based evolutionary algorithm in the XRPL Consen-
sus Protocol.
• RQ2: How does the bug detection performance of EvoPriority
compare to the RandomPriority strategy?
This question investigates the added value of using fitness
functions to guide the evolutionary search, compared to a
baseline approach that explores the space randomly.
• RQ3: How does the choice of fitness function influence the
effectiveness of EvoPriority?
This question investigates how different fitness functions
affect the total number violations found.

4.2 Experimental Setup
We tested the XRPL CP using the Rocket testing framework [15].
The network consists of seven validator nodes running in Docker
containers, where each node includes all other nodes in its UNL,
forming a fully connected trust model. Experiments were conducted
on a dedicated research server equipped with 2× AMD EPYC 7H12
64-core CPUs (128 cores/256 threads total) and 256 GB of RAM.

To initialize the ledger state, we submit three genesis transactions
that fund three accounts (Accounts 1, 2, and 3). The test concurrently
issues four regular transactions from Account 1, which attempts

Table 2: Values Used for Priority-Based Dispatch Parameters

Parameter Value

target_inbox 10
overflow_factor 1.2
underflow_factor 0.8
sensitivity_ratio 1.2
min_packets_per_second 100
max_events 1000

to overspend its balance by transferring funds to Accounts 2 and 3
through four different validator nodes. The transactions are:
• Tx1 = {Account1→ Account2, 80 XRP}
• Tx2 = {Account1→ Account3, 81 XRP}
• Tx3 = {Account1→ Account3, 82 XRP}
• Tx4 = {Account1→ Account2, 83 XRP}

All four transactions are submitted simultaneously 2 seconds after
the start of execution to nodes 0, 1, 5, and 6 respectively.

A single test case consists of submitting these transactions to
the network and observing the outcome over 14 ledgers. For the
first 10 ledgers, we apply a priority-based strategy to control the
delivery order of consensus messages. For the final 4 ledgers, we
disable message manipulation to observe whether the network can
recover and reach agreement naturally.

In our priority-based strategy, the key parameters controlling the
rate at which messages are sent over the network are all mentioned
in Table 2.

To answer the research questions, we run concurrency tests on
two different versions of the XRPL CP, a bug seeded version and
the original current version used by the XRPL (2.4.0):
• Bug-Seeded Version: A modified version of the original
source code of the XRPL CP, which lowers the Transac-
tion Agreement Threshold and the Ledger Validation
Threshold, from 80%, down to 40%. TheProposalAvalanche
Threshold is also fixed to 40% instead of gradually increas-
ing over each consensus round. These modifications cre-
ate more opportunities for nodes to agree on two different
ledgers, causing a split in the network.
• Original Version: An unmodified version of the currently
used XRPL CP source code (2.4.0).

For each XRPL CP version that we used, we applied the following
priority-based testing strategies:
• RandomPriority: generates a random list of priorities for
each test case.
• EvoPriority (using TimeFitness): the priority-based evolu-
tionary testing guided with the TimeFitness fitness function.
• EvoPriority (using ProposalFitness): the priority-based
evolutionary testing guided with the ProposalFitness fitness
function.

Each configuration of different XRPL CP version and priority-
based testing strategy (as listed in Table 3), is executed over of 50
generations with populations of size 10. This means that a gen-
eration executes 10 test cases with 10 different encodings, each
of which is executed once (1 iteration). For the RandomPriority
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Table 3: Experimental Configurations

Config XRPL CP Version Testing Strategy

C1 Bug-seeded RandomPriority
C2 Bug-seeded EvoPriority (TimeFitness)
C3 Bug-seeded EvoPriority (ProposalFitness)
C4 Original RandomPriority
C5 Original EvoPriority (TimeFitness)
C6 Original EvoPriority (ProposalFitness)

strategy, all encodings are created randomly using different seeds.
As for the EvoPriority strategies, they begin with a randomly gen-
erated initial generation, after which selection is applied, using
their respective fitness functions. The best performing test case
encodings are selected and used to generate the next generation of
test cases.

4.3 Results
Each test run configuration output logs containing information
about the consensus protocol and evolutionary algorithm execu-
tions. From these logs we were able to determine whether or not
violations of the XRPL CP occurred. We checked two types of vio-
lations [3]:
• Liveness Violations: a violation of the termination prop-
erty. For this type of violation we check if ledgers are final-
ized in a specific time frame. This time frame is set to 65
seconds. Usually, the XRPL CP will validated a ledger every
four to five seconds, hinting at a problem if it is unable to
do so in 65 instead.
• Safety Violations: a violation of the agreement, validity or
integrity properties. For this type of violation we check if:
(1) two nodes have both validated two different ledgers, (2)
a node finalized more than one ledger in a consensus round.

Table 4 presents the total number of violations identified by
each testing configuration across 50 generations, with 10 test cases
evaluated per generation. Since no violations were detected on the
original version of the XRPL consensus protocol under any strategy,
statistical analysis and visualization were limited to the bug-seeded
version only. The cumulative violations observed for each strategy
on the bug-seeded version are shown in Figure 3.

To assess whether the differences in violations detected by the
strategies are statistically significant, we performed independent
two-sample t-tests on the bug-seeded results. These tests evaluate
whether the mean number of violations per generation differs be-
tween strategies under the assumption of normality. The resulting
p-values are reported in Table 5. A p-value quantifies the probabil-
ity of observing a difference at least as large as the one measured,
assuming no true difference exists. A low p-value (typically below
0.05) indicates that such a difference is unlikely to have occurred
by chance and is considered statistically significant.

Based on these results from 500 test cases performed on each
configuration, we can discuss our research questions:

(RQ1) Can RandomPriority and EvoPriority uncover bugs
in the XRP Ledger Consensus Protocol?

Table 4: Number of violations found for each testing configu-
ration

Config Liveness
Violations

Safety
Violations

Total
Violations

C1 2 7 9
C2 3 9 12
C3 4 3 7
C4 0 0 0
C5 0 0 0
C6 0 0 0

Table 5: p-values from independent t-tests comparing viola-
tions per generation between strategies (bug-seeded version)

Random
Priority

Time
Fitness

Proposal
Fitness

Bug-Seeded Version
TimeFitness 0.419 - 0.306
ProposalFitness 0.809 0.306 -
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Number of Violations Found (Bug-Seeded Version)

RandomPriority
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ProposalFitness

Figure 3: Cumulative violations found up to each generation
on the bug-seeded version of the XRPL CP

• Observed Results: All three testing strategies were able to
uncover violations in the bug-seeded version of the XRPL
consensus protocol, with total counts ranging from 7 to 12
violations (Table 4). In contrast, none of the strategies found
any violations in the original (non-seeded) version across all
50 generations and test cases.
• Discussion: The small number of violations found over the
50 generations might indicate that priority-based testing,
regardless of whether it is guided by fitness or random se-
lection, has limited effectiveness in discovering bugs under
the current experimental conditions.
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These results suggest that priority-based testing is capable
of detecting bugs across different strategies. Both Random-
Priority and EvoPriority successfully uncovered violations
in the bug-seeded version of the XRPL consensus protocol.
However, the overall number of violations is relatively low,
and no bugs were uncovered on the original version. Taken
together, these findings provide a answer to our first research
question (RQ1). On the bug seeded version, the answer is yes,
but on the original source code, no violations were observed
with the current experimental setup.

(RQ2) How does the bug detection performance of EvoPri-
ority compare to the RandomPriority strategy?

• Observed Results: From Table 4, we see that EvoPriority us-
ing TimeFitness outperformed RandomPriority, but Propos-
alFitness did not. The ranking of total violations found over
the 50 generations is: EvoPriority (TimeFitness), followed
by RandomPriority, and then EvoPriority (ProposalFitness).
None of the strategies found any violations on the original
version of the XRPL CP, showing no observable difference
in their performance under these conditions.
However, Table 5 shows that none of the differences ob-
served in the bug-seeded configurations are statistically sig-
nificant. This indicates that the higher violation count for
EvoPriority (TimeFitness) and the lower count for EvoPrior-
ity (ProposalFitness) may be due to random variation rather
than a consistent effect of the fitness functions. These results
suggest that EvoPriority using TimeFitness, does not outper-
form a random search of the encoding space in a statistically
meaningful way, answering our second research question
(RQ2).
• Discussion: The lack of a significant improvement from
the EvoPriority strategy could have two underlying causes.
First, the nature of the priority-based approach itself may
contribute to the instability. Small changes to an encoding
can result in disproportionately large changes in system
behaviour, due to the message timing and ordering. This
sensitivity means that even similar encodings can produce
widely different execution paths, reducing the evolutionary
process to what is effectively a random search and limiting
its ability to converge toward more effective test cases over
time. In Figure 3 we can see that all strategies have very
similar bug finding capabilities, finding bugs gradually across
generations, further showing how EvoPriority struggled to
guide towards bug-inducing executions.
Second, each encoding in the evolutionary process was only
executed once, meaning the fitness score is based on a single
observation. This introduces a high degree of noise, possibly
making it difficult for the evolutionary algorithm to reliably
assess the quality of a given encoding and guide selection
effectively.

(RQ3) How does the choice of fitness function influence
the effectiveness of EvoPriority?

• Observed results: From Table 4 and Table 5 we can observe
that even though EvoPriority performed better using Time-
Fitness than it did using ProposalFitness, these differences

are most likely caused by a random variation, indicated by
the p-value between the two strategies in Table 5.
To further compare the performance of EvoPriority with
both fitness functions, we can see in Figure 3 that their bug
finding capabilities on the seeded version are linear. This
means that both fitness functions lack the ability to guide
EvoPriority in creating more bug-inducing executions.
• Discussion: If the fitness functions were to actually help
guide EvoPriority to finding more bugs, we could have ex-
pected an increase in the number of bugs found as the al-
gorithm reached higher generations. There is nothing to
suggest this behaviour in our results. This could possibly
be explained by the same reasons to why EvoPriority didn’t
significantly outperform RandomPriority: the small number
of iterations per test case or the large change in behaviour
caused by small changes to encodings.
These results answer our third and final research question
(RQ3), leading us to the conclusion that, under these test-
ing configurations, the choice of fitness function does not
influence the bug finding performance of EvoPriority.

5 RESPONSIBLE RESEARCH
We considered both the reproducibility of the experimental methods
and the ethical implications of testing the XRPL CP.

5.1 Reproducibility
To ensure reproducibility, we provide a replication package [5] that
contains:
• The exact repository configurations used during testing,
• The result logs of all test runs,
• A README file with instructions on how to reproduce the
experiments.

Each test execution can be reproduced by following the docu-
mented configuration steps and re-running the associated strategy
within the Rocket framework.

5.2 Ethical Considerations
Although the XRPL CP is a production-grade protocol powering fi-
nancial infrastructure, all experiments in this study were conducted
on an isolated, private test network. No tests were run on the live
XRP Ledger network. There was no risk of disrupting real-world
financial transactions or affecting users’ assets.

If any previously unknown bugs or vulnerabilities had been
discovered during testing, we were prepared to follow a responsi-
ble disclosure protocol. This ensures that any findings would be
reported confidentially to the relevant maintainers of the XRPL soft-
ware, providing them the opportunity to address the issue before
public disclosure.

Our work aligns with the broader goal of strengthening the reli-
ability and fault-tolerance of blockchain systems through rigorous
and ethical testing practices.

6 THREATS TO VALIDITY
One limitation of this evaluation is that it focuses exclusively on
the XRP Ledger Consensus Protocol. As a result, the findings may



Evaluating Fitness Functions in Priority-Based Evolutionary Testing for the XRPL CP EEMCS, Delft University of Technology, The Netherlands

not generalize to other distributed consensus algorithms with dif-
ferent communication models, fault assumptions, or consensus
mechanisms. The effectiveness of priority-based evolutionary test-
ing and the selected fitness functions could vary significantly in
other systems.

Another potential threat is the inherent nondeterminism in the
test environment, including message scheduling, timing variations,
and random elements in the evolutionary process. This can intro-
duce variability in the outcomes across runs. To reduce this risk,
we executed a large number of generations and test cases per strat-
egy, allowing consistent patterns and trends to emerge despite the
stochastic nature of the setup.

7 CONCLUSION AND FUTUREWORK
In this paper, we investigated the effectiveness of the EvoPriority
strategy, an evolutionary algorithm based on priority-based event
representation, for testing the XRP Ledger Consensus Protocol.
Specifically, we evaluated how different fitness functions (TimeFit-
ness and ProposalFitness), influence EvoPriority’s ability to uncover
protocol violations. Our results show that EvoPriority is capable
of detecting faults when seeded bugs are present, identifying 12
violations using TimeFitness and 7 using ProposalFitness. These
findings confirm that the evolutionary strategy is functional.

However, when comparing EvoPriority against a random priority
baseline, we observed that EvoPriority did not make a statistically
significant improvement in bug detection performance, regardless
of the fitness function used. The comparison between TimeFitness
and ProposalFitness revealed no meaningful difference in their
effectiveness. These results suggest that, despite its theoretical
advantages, the evolutionary approach may not be well suited for
priority-based testing. A likely explanation lies in the instability
of the priority-based encodings, meaning that small mutations in
the priorities can result in drastic changes in message delivery
order, leading to unpredictable consensus protocol behaviour. This
pairs badly with the evolutionary algorithm’s ability to exploit local
fitness gradients, effectively reducing its search to a randomized
process.

In conclusion, while EvoPriority demonstrates that it can be
applied to the XRP Ledger Consensus Protocol, our findings raise
concerns about the suitability of priority-based encodings for evo-
lutionary search and the ability of fitness functions to guide the
search towards bug-inducing executions.

Future work should aim to address some of the limitations im-
posed by the constrained timeline of this study. We were limited
to running a single test iteration per encoding, which may have
reduced the ability for our fitness functions to properly guide Evo-
Priority andmight of contributed to the observed lack of statistically
significant differences. Time for test runs with more iterations per
test case could provide a more reliable picture of the algorithm’s
performance and sensitivity to different configurations. Evaluating
additional fitness functions may help determine whether the lack
of guidance observed in this study was due to the fitness functions
themselves or the unpredictability of the priority-based encodings.
It would also be valuable to test other message scheduling strate-
gies with evolutionary algorithms, such as delay-based encodings,

which may be easier to guide in the search for bugs. Finally, ex-
tending the testing framework to additional systems similar to
the XRP Ledger Consensus Protocol. This could help generalize
the findings and explore whether the limitations of EvoPriority
are system-specific or more broadly applicable across Byzantine
fault-tolerant protocols.
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