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A B S T R A C T   

The accuracy of diaphragm electromyogram (EMGdi) derived parameters, as used in critically ill intensive care 
unit (ICU) patients, can be compromised due to electrocardiographic (ECG) interference in the EMGdi signal. 
Removal of ECG contamination from the esophageal recordings of the EMGdi is challenging due to spectral 
overlapping of EMG and ECG signals and because of variability in ECG shape and amplitude. Therefore, we 
designed an Estimated ECG Subtraction (EES) method, based on three steps: (1) identification of the timing of the 
ECG artifact without an ECG reference channel, (2) estimation of the normalized ECG, considering the EMGdi as 
noise, and (3) subtraction of the denormalized ECG estimate from the EMGdi recordings. We evaluated the EES 
method against the use of a single wavelet-based adaptive filter. Using EMGdi signals of ten ICU patients and 
simulated contaminated EMG, we demonstrated that the EES method yields uncontaminated EMGdi, and showed 
that it is more effective than a wavelet-based adaptive filter only. Implementation of this technique may offer 
means to improve diaphragm activity monitoring and control in clinical practice.   

1. Introduction 

The diaphragm is the most important respiratory muscle. Monitoring 
diaphragm activity in mechanically ventilated intensive care unit (ICU) 
patients is performed to facilitate diaphragm-protective ventilation, to 
assess patient-ventilator interaction and work of breathing, as well as to 
identify neuromuscular dysfunctions [1–4]. Bedside monitoring of dia
phragm electrical activity (EAdi) is available on a specific ventilator 
(Getinge, Sweden) via a dedicated nasogastric (feeding) tube embedded 
with multiple ring-shaped electrodes positioned at the level of the dia
phragm [5,6]. EAdi reflects the spatial and temporal recruitment of the 
crural diaphragm motor units, and is the closest available signal to the 
neural respiratory center output [5,7]. The EAdi catheter was originally 
designed to control the timing and level of ventilator pressurization in 
neurally adjusted ventilatory assist (NAVA) mode [5], but can also be 
used to monitor diaphragm activity in other ventilator modes or with 
unassisted breathing [1]. Signal processing algorithms within the 

ventilator continuously select the electrode pair closest to the dia
phragm and filter out interferences, such as cardiac electrical activity 
(ECG) and motion artifacts due to cardiac contractions and esophageal 
peristalsis. However, we found that the reliability of EAdi-derived pa
rameters to monitor diaphragm activity is compromised by these 
ventilator signal processing algorithms [8,9]. Furthermore, we demon
strated that ineffective filtering and inadequate removal of QRS com
plexes that interfere with the raw diaphragm electromyogram (EMGdi) 
limits interpretation of patient-ventilator interaction and detection of 
neural inspiration onset [10]. Improved filtering methods are needed for 
optimal use of the EMGdi – and its processed EAdi signal – in clinical 
decision-making and research. 

Removal of ECG contamination from any type of EMG is a major 
challenge because of spectral overlapping of the ECG (0–100 Hz) and the 
EMG (20–250 Hz, but mostly <150 Hz) [11], causing an increase in 
power content of the EMG and distortion of its frequency information. 
Different methods for removal of ECG interference from the EMGdi have 
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been described, using gating [12], subtraction techniques [13,14], 
wavelets [15–17], high-pass filtering [11], adaptive filtering [18,19], or 
independent component analysis [20–22]. However, most of these 
techniques could not fully eliminate cardiac activity noise without 
important information loss, or clinical application is limited due to 
computational complexity, user dependency, or the need for a multi
channel input or dedicated reference ECG recording. The latter is 
especially challenging with regard to esophageal recordings of the 
EMGdi, as the QRS complex may vary in shape and amplitude depending 
on the location of the electrode pairs relative to the heart. In 2009, Zhan 
et al. described a wavelet-based adaptive filtering technique for removal 
of ECG contamination from esophageal EMGdi recordings without 
requiring extra channels for ECG reference [15]. This method performs 
well in general; however, it is less robust for removal of ECG artifacts 
that overlap with diaphragm contraction, and selection of the mother 
wavelet is challenging. Also without the need for a reference ECG 
channel, Costa Junior et al. recently demonstrated that a template 
subtraction method was effective in attenuating the ECG present in 
surface EMG of the right erector spinae muscle [23]. In their work, a 
template was directly constructed from the contaminated EMG. We 
figured that this method could also be applicable in EMGdi processing. 
However, in esophageal EMGdi signals the ECG contamination can be 
more pronounced and variable due to the close proximity of the EAdi 
catheter to the heart and motion artifacts. 

The aim of the current study is to design and evaluate a modified 
template subtraction method for offline attenuation of ECG interference 
in the EMGdi signal obtained with a nasogastric catheter in ICU patients. 
A second aim is to evaluate how this method compares to a wavelet- 
based adaptive filter, using clinical and simulated EMG data. 

2. Materials and methods 

2.1. Subjects and signal acquisition 

Data were part of a previous study in which diaphragm activity was 
measured when patients were disconnected from the ventilator (SERVO- 
i, Getinge, Sweden) for performing a spontaneous breathing trial with T- 
tube and supplemental oxygen [24]. Recordings of raw EMGdi signals 
from ten ICU patients with varying amplitude and timing of diaphragm 
activity and ECG contamination were selected aiming to represent the 
variety range that was observed in the study population. Because the 
duration of the spontaneous breathing trial varied among subjects, in 
that study [24] stable recordings during ventilator disconnection were 
divided into six epochs of at least 1 minute taken at equal time intervals 
in between. We randomly selected two of these epochs per patient to 
evaluate the performance of the filtering method. The average duration 
of these recordings per patient was 7.2 minutes (min–max: 3–8 mi
nutes). EMGdi signals were acquired with a nasogastric catheter which 
was embedded with two balloons and a multiple-array electrode con
sisting of nine stainless steel rings (width 2 mm, diameter 2 mm) placed 
10 mm apart, creating an array of eight sequential differential electrode 
pairs (NeuroVent Research Inc., Canada). Signals were amplified and 
digitized (Porti 7-16, 22 bits, 71.5 nV/least significant bit, noise level 
<1 µV; TMSi B.V., The Netherlands) at a sampling frequency of 2000 Hz 
for each channel. 

2.2. Signal pre-processing 

All (offline) signal processing and analysis for this study was custom 
programmed in Matlab R2018b (Mathworks, Natick, USA). First, EMGdi 
recordings from all separate electrode pairs were bandpass filtered 
through a 2nd order Butterworth block with a frequency band of 30–400 
Hz, to remove low-frequency and high-frequency noise. Interference 
from the 50 Hz power line was removed with a Notch filter. Subse
quently, a cross-correlation and double-subtraction technique was 
applied to determine the center of the electrical active region of the 

contracting diaphragm (EARdi), as described in detail by Sinderby et al. 
[25]. The signal segments obtained from the electrode channel above 
and below this EARdi were subsequently subtracted from each other. 
This technique reduces influence of movement of the center of this 
EARdi relative to the electrode array and increases signal-to-noise ratio. 
The double-subtracted contaminated EMGdi signal is further referred to 
as the EMGdi-DS. 

2.3. Wavelet-based adaptive filter 

To remove ECG interference from the EMGdi-DS, a wavelet-based 
adaptive filter as designed by Zhan et al. [15] was applied. By using 
the discrete wavelet transform, the EMGdi-DS was decomposed into 
details and approximation parts. We performed a wavelet decomposi
tion to level 5 using a 4th order Daubechies (db4) wavelet, which qual
itatively best matched the shape and form of the ECG artifacts, 
consistent with earlier work [15]. Then, the signal was filtered in the 
wavelet space by using an adaptive threshold (sigmoid function). This 
improves performance as compared to a fixed threshold as the EMGdi to 
ECG amplitude varies over time. Finally, the wavelet-filtered signal 
(EMGdi-WA) was reconstructed using the inverse discrete wavelet 
transform. 

2.4. Estimated ECG Subtraction method 

Here, we describe an Estimated ECG Subtraction (EES) method, 
adapted from Costa Junior et al. [23]. The concept is based on three 
main actions: 1) identification of the timing of the ECG artifact without 
an ECG reference channel, 2) estimation of the normalized ECG, 
considering the EMGdi as noise, and 3) subtraction of the denormalized 
ECG estimate from the EMGdi recordings. 

This was done according to the following algorithm, of which the 
steps are shown in Fig. 1. 

A1. Algorithm of the Estimated ECG Subtraction method 
INPUT: EMGdi-DS signal contaminated with ECG interference 
OUTPUT: Denoised EMGdi-DS signal (EMGdi-EES signal) 
Step 1: Apply a 4th order Butterworth 4–50 Hz bandpass filter (ECG 

frequency band) to promote the ECG amplitude relative to the EMGdi. 
Step 2: Perform signal rectification. 
Step 3: Compute the signal required for detection of QRS segments: 

apply a moving average filter (window width, 16.7 ms) and normalize 
the signal to the amplitude of the EMGdi-DS (EMGdi-DS-A). 

Step 4: Compute a time-dependent threshold as the mid-range value 
of the EMGdi-DS-A signal over a fixed interval of 0.5 s, interpolated and 
filtered with a moving average filter (window width, 12.5 ms). 

Step 5: Detect start and end time points of potential QRS segments as 
the crossing of the EMGdi-DS-A with the time-dependent threshold of 
step 4. 

Step 6: Delete incorrectly detected QRS segments based on outliers 
in the interval between potential QRS segments (inter-QRS interval). 
Next, restore wrongfully deleted segments utilizing the quasi-periodic 
nature of the ECG, starting at the highest peak of the first potential 
QRS segment (QRSi=1): 

for i = 1 
expected window of QRSi+1 = QRSi + [median inter-QRS length 

± (0.66 × median inter-QRS length)]. 
if no QRS segment exists in expected window 

insert QRSi+1 segment at location of highest peak above time- 
dependent threshold 

i = i + 1 
else i = i + 1 
end 
Step 7: For all identified locations of QRS segments, detect in the 

EMGdi-DS signal the R wave as the highest positive peak, and the Q and 
S waves as the nadir (negative peaks) before and after the R wave, 
respectively. 
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Step 8: Select a 0.3 s window length around each R wave to capture 
the complete QRS artifact. Adapt window length if deemed necessary (e. 
g., in patients with prolonged PQ time and/or large P waves or large T 
waves such as illustrated in Fig. 2) 

Step 9: 9a: capture each selected QRS artifact; 9b: normalize the 
artifact to the largest peak Q, R and S values in the original EMGdi-DS: 

perform local normalization to two negative peaks (Q and S waves) by 
dividing the QRS segment into QR and RS segments. 9c: compute an 
average QRS template to retain the QRS pattern while reducing the 
stochastic elements in that segment. 9d: for each selected QRS artifact 
(9a), denormalize the QRS template to the amplitude of the original QRS 
artifact 
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Fig. 1. Illustration of the Estimated ECG Subtraction algorithm. See text for further details on each step.  
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Step 10: Construct a new time series starting with zero-baseline 
signal: at each instance of an R peak in the EMGdi-DS, insert the 
denormalized QRS segment. 

Step 11: Subtract the new time series of the estimated ECG recording 
from the EMGdi-DS. 

As these constructed ECGs will never be a perfect copy of the original 
ECG (e.g., because of variability in QR and RS duration), some residue of 
ECG noise could still be present after step 11. Residue noise was further 
attenuated by applying the wavelet-based adaptive filter as described in 
Section 2.3. 

2.5. Evaluation of performance 

The performance of the filtering technique was evaluated visually in 
the time domain and by quantitative analysis in the frequency domain. 
Spectral analysis of the EMGdi-DS, the EMGdi as processed by a wavelet- 
based adaptive filter only (EMGdi-WA) and by the Estimated ECG Sub
traction method (EMGdi-EES) was performed using Welch’s averaged 
periodogram method with a frequency resolution of 0.5 Hz. As we 
cannot obtain the true clean EMGdi of the clinical data, it is not possible 
to assess signal-to-noise ratio or relative error of the power spectrum. 
Differences in power spectral densities between clinical signals were 
quantitatively assessed by computing the total power and the median 
frequency for the full recordings. As we identified the location of the 
QRS artifacts, we also calculated the median frequency for those EMGdi- 
DS signal segments that were not contaminated with cardiac artifacts; 
results were compared with the median frequency obtained from the 
same ECG-free segments in the EMGdi-WA and EMGdi-EES signals. 

Differences in total power and median frequency between signals 
were analyzed by repeated measures ANOVA with Greenhouse-Geisser 
correction at the 95% significance level; pairwise comparison was per
formed after Bonferroni correction. Assumption of normality was 
assessed with the Shapiro-Wilk normality test and a log-transformation 
of the data was applied if necessary. Statistical analysis was performed 
using SPSS (version 26, IBM Corp., USA). Data are presented as median 
with interquartile range [q1-q3] unless otherwise stated. 

In addition, performance of the Estimated ECG Subtraction method 
was evaluated using simulated EMG data. To this end, one clean EMG 
signal (AcqKnowledge 5.0 sample data, BIOPAC Systems Inc., USA) was 
artificially contaminated by means of adding an ECG template that was 
constructed with the Estimated ECG Subtraction method (see Section 
2.4. Estimated ECG Subtraction method, and Fig. 1, step 10). We used ECG 
templates derived from our clinical dataset instead of artificial or 
reference ECG signals obtained with surface electrodes, since the 

algorithm was developed for denoising of QRS artifacts obtained with a 
nasogastric catheter (i.e., different artifact shape and amplitude). As 
such, we generated ECG templates from two random patients; these 
templates were subsequently varied in amplitude and timing relative to 
the clean EMG signal, resulting in a set of four simulated contaminated 
EMG signals of about 40 s each. The performance of the filtering tech
nique was evaluated 1) visually in the time domain, 2) by comparing the 
median frequency and power spectral densities (total power, ECG band 
power (0–100 Hz), and EMG band power (20–250 Hz)) in the frequency 
domain, and 3) by quantitatively assessing the difference between the 
simulated clean EMG and the processed EMG signal by calculating a 
relative error (in percentage) over the 0–250 Hz band, according to Chen 
et al. [26]: 

δ(%) =

∑250
0 [P(f ) − P’(f ) ]2
∑250

0 P2(f )
× 100% 

with P(f) the spectral density of the original clean EMG signal, and 
P’(f) the spectral density of the processed EMG signal. In addition, we 
evaluated how the Estimated ECG Subtraction method as applied to 
simulated data (EES-processed EMG) compares to a wavelet-based 
adaptive filter (WA-processed EMG). 

3. Results 

3.1. Clinical data 

Fig. 3 presents the results from three patients with differences in ECG 
to EMGdi intensities and timing and demonstrates that the Estimated 
ECG Subtraction method was more successful in attenuating ECG 
contamination as compared to a wavelet-based adaptive filter only 
(Fig. 3A-C). In addition, the EMGdi-WA recordings illustrate that cardiac 
artifacts that are still present just before – or overlapping with – the start 
or end of diaphragm contraction may limit accuracy of neural inspira
tory time detection. The periodogram of these examples (Fig. 3D-F) 
clearly demonstrates spectral overlapping of the ECG and EMGdi in the 
EMGdi-DS, and a reduction in power for the lower frequencies with 
corresponding increase in median frequency for the EMGdi-WA and 
EMGdi-EES, with effects more pronounced for the EMGdi-EES. 

Median frequencies and total power for the full recordings of the 
EMGdi-DS, EMGdi-WA and EMGdi-EES signals obtained from all pa
tients are presented in Table 1. Post-hoc tests revealed a significant in
crease in median frequency from 40.8 [35.7–51.4] to 66.3 [61.9–69.2] 
to 68.8 [67.8–73.3] Hz, and a reduction in total power from 390 
[264–530] to 196 [157–236] to 167 [134–237] µV2 when comparing the 
full recordings of the contaminated EMGdi-DS to EMGdi-WA to EMGdi- 
EES signals, respectively (P < 0.001 for both parameters). For those 
signal segments free of QRS artifacts, median frequency of the EMGdi- 
EES and EMGdi-WA was similar (69.7 [68.8–75.9] vs. 68.2 
[64.2–75.9] Hz, respectively (P = 0.11)), but significantly different from 
the median frequency of the EMGdi-DS (65.6 [60.6–71.2] Hz (P = 0.001 
for differences with the EMGdi-WA and the EMGdi-EES)), however ab
solute differences were small. 

3.2. Experimental data 

Fig. 4 demonstrates the performance of the Estimated ECG Sub
traction method for two simulated contaminated EMG signals and as 
compared to the wavelet-based filtering technique (WA-processed 
signal). The median frequency, power spectral density (total, ECG band, 
and EMG band) and relative error for the four different simulations are 
presented in Table 2. On average, the relative error between the clean 
and EES-processed EMG was 0.97% (min–max: 0.50–1.22%). Although 
this was slightly higher than the relative error for the WA-processed 
signal (average: 0.35% (min–max: 0.16–0.52%)), both relative errors 
were low and the resulting median frequency of the EES-processed 

-100

-50

0

50

100
EMGdi-DS
ECG template

0.5 sec

EM
G

di
 (µ

V)

Fig. 2. Example of an ECG template for which the duration of the template was 
manually prolonged in order to capture the complete artifact. 
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signal was closer to the true median frequency (mean difference with the 
true median frequency: 1 Hz vs. 5.1 Hz for the EES-processed EMG vs. 
WA-processed EMG, respectively; P = 0.034 for differences between 
both methods). In addition, Fig. 4a demonstrates that remaining ECG 
frequencies were present in the WA-processed signal. 

4. Discussion 

In the current study we present a new method (template subtraction 
plus wavelet-based adaptive filtering technique) for removal of ECG 
artifacts from EMGdi recordings obtained with a nasogastric catheter in 
ICU patients. In recordings with different amplitudes and timing of 
EMGdi and ECG contamination, we demonstrate that the Estimated ECG 
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Fig. 3. Evaluation of the performance of the Estimated ECG Subtraction (EES) method for diaphragm electromyography (EMGdi) recordings from three repre
sentative patients with various EMGdi to ECG amplitudes and timing. A-C: EMGdi recordings of the original double subtracted EMGdi signal (EMGdi-DS, bottom 
tracing), the EMGdi as filtered by the wavelet filter (EMGdi-WA, middle tracing) and as processed using the EES method (EMGdi-EES, top tracing). D-F: corre
sponding Welch’s periodogram for the EMGdi-DS, EMGdi-WA and EMGdi-EES. Note that the drop at 50 Hz is the result of removal of the power line frequency. 
Example 1 (A and D): data from the same patient as demonstrated in Fig. 1 and identified as patient 1 in Table 1. The EMGdi-EES demonstrates a clean EMGdi signal 
whereas ECG artifacts were not completely removed in the EMGdi-WA signal. The periodogram shows successful removal of the ECG frequency band. Example 2 (B 
and E): recordings of a patient with relatively low diaphragm activity and large ECG amplitudes (patient 3 from Table 1). The EMGdi-DS signal is zoomed for 
clarification as ECG amplitudes were as large as 100 µV. Due to the high respiratory rate of this patient (40 breaths/min), there is a consistent overlap of the ECG 
artifact with the start and end of diaphragm activity. Again, ECG artifacts were not fully removed in the EMGdi-WA signal, which limits accurate detection of neural 
inspiratory time. The ECG artifact was not fully captured in the wavelet (note the large P wave in the EMGdi-DS), while this was included in the estimated ECG 
template (same patient as presented in Fig. 2). As a result, the periodogram of the EMGdi-WA shows that low frequency harmonics (<20 Hz) related to ECG are still 
present. Example 3 (C and F): patient with high diaphragm activity and EMGdi amplitudes as large as ECG amplitudes (patient 9 from Table 1). This substantiates 
the need for promoting the relative ECG amplitudes as described in step 1 of the EES processing algorithm. A clear improvement of the EES method is observed as 
compared to the wavelet technique. 

Table 1 
Median frequency and total power derived from the Welch’s periodogram for the EMGdi recordings as processed by the different filtering techniques. Data are 
presented per patient as well as the population median [q1-q3]. Median frequency and total power differed statistically significantly between the EMGdi-DS, EMGdi- 
WA and EMGdi-EES; all pairwise comparisons were significant (P < 0.001).   

Median frequency (Hz) Total power (µV2) 

Patient EMGdi-DS EMGdi-WA EMGdi-EES P-value EMGdi-DS EMGdi-WA EMGdi-EES P-value 

1 29.8 34.6 35.1  535 180 146  
2 28.9 68.1 73.5 514 149 130 
3 41.2 63.5 67.8 356 186 160 
4 36.3 61.4 67.9 1029 513 427 
5 48.7 69.3 75.2 424 206 175 
6 35.5 64.6 68.6 142 76 70 
7 67.7 74.9 74.9 256 210 212 
8 40.4 56.3 60.5 72 41 38 
9 52.3 69.5 72.9 1297 838 766 
10 64.0 68.7 69.0 287 245 245 
Median [q1-q3] 40.8 [35.7–51.4] 66.3 [61.9–69.2] 68.8 [67.8–73.3] <0.001 390 [264–530] 196 [157–236] 167 [134–237] <0.001 

Abbreviations: EMGdi, diaphragm electromyogram; EMGdi-DS, double-subtracted EMGdi; EMGdi-WA, EMGdi as processed with the wavelet-based adaptive filter; 
EMGdi-EES, EMGdi as filtered with the Estimated ECG Subtraction method. 
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Subtraction method is feasible and efficient in processing a clean EMGdi 
signal without the need for a dedicated reference ECG channel. Imple
mentation of this technique could facilitate improved processing of the 
EMGdi and its derived parameters for diaphragm activity monitoring 
and control. 

4.1. Development of the Estimated ECG Subtraction method 

Template subtraction techniques for filtering ECG contamination 
from EMGdi recordings acquired with surface electrodes have been 
described previously, using different methods for template creation and 
QRS segment detection [11–13,27]. In general, a template can be ob
tained from additional recordings of the contamination (i.e., from a 
separate reference ECG recording), from a pre-existing template, or by 
estimating the template from an EMG recording when the muscle is in a 
relaxed state. Such methods cannot be applied to esophageal recordings 
of the EMGdi, because the shape of the artifact depends on the position 

of the catheter electrodes near the heart and varies among – and 
sometimes also within – patients; therefore, it will not match any artifact 
template when derived from a noninvasive simultaneous ECG recording 
or from a pre-existing ECG template. Moreover, obtaining a template 
from a recording with the muscle in a relaxed state (i.e., during expi
ration with very low amplitude of EMGdi as compared to ECG) could be 
challenging in ICU patients with high and variable respiratory rate, 
expiratory diaphragmatic activity, or EMG interference from extra- 
diaphragmatic muscles. Such method could require recordings during 
apnea events or when diaphragm activity is temporarily artificially 
suppressed (i.e., recordings under deep sedation or neuromuscular 
blockade), however such interventions may also change the shape and 
timing of the artifact and do not outweigh the benefits of obtaining a 
cleaner signal with our Estimated ECG Subtraction method as compared 
to other available filtering techniques. 

Costa Junior et al. were the first that estimated an ECG template 
directly from the complete recording of the contaminated EMG of the 
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Table 2; 4B: simulation 3 of Table 2. 
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limb muscle [23]. The lack of need for an ECG reference channel is an 
important prerequisite for processing EMGdi signals using any template 
subtraction method. The core of this method is that, to estimate the ECG 
representation in the registration, first the EMG is considered as noise to 
estimate an ECG template from ensemble averaging over several 
heartbeats. With this template the ECG artifacts can be almost 
completely eliminated by subtraction of this template from the EMGdi 
registration. The method presented in the current study was partially 
based on their work [23], however important differences and im
provements should be mentioned. First, as ECG artifacts may vary in 
amplitude due to slight catheter motion relative to the heart, we intro
duced a dynamic threshold for detection of QRS segments to account for 
low and varying ECG to EMGdi ratio. Second, we implemented an al
gorithm to delete and restore any wrongfully detected or removed QRS 
segments utilizing the quasi-periodic nature of the ECG. Third, an 
average QRS complex segment was constructed after local normaliza
tion to the Q, R and S amplitudes (i.e., normalization to one maximum 
value (R wave) and two local minima (Q and S waves)). Normalization 
to only the R wave has been described before [23,27,28], while our 
method takes into account the within-patient variability in relative Q, R 
and S amplitudes. Fourth, we created a template of longer duration 
(default 0.3 s instead of 0.16 s, which was manually prolonged if deemed 
necessary) to enable removal of the complete ECG segment as substan
tial P and T waves could be present due to the close proximity of the 
catheter near the heart. In addition, Costa Junior et al. did not evaluate 
the performance of their algorithm in clinical data, while we used 
EMGdi signals of ICU patients with varying intensity and timing of 
diaphragm activity and ECG contamination to design our method and to 
confirm its efficiency. Last, we additionally applied a wavelet-based 
adaptive filter to remove residual ECG noise, if present, since any esti
mated ECG template will never be the perfect copy of the original 
contamination. 

4.2. Comparison with a wavelet-based adaptive filter and simulated EMG 
signal 

We demonstrated that the Estimate ECG Substraction method was 
efficient in removing ECG artifacts from variable EMGdi recordings and 
yielded better performance as compared to a wavelet-based adaptive 
filtering technique only, as demonstrated visually, as well as indicated 
by the significant increase in median frequency from the Welch’s 
periodogram for the full signal recordings. Although we could not 
compare both techniques with the true clean EMGdi for clinical data, 
this finding indicates that more lower frequencies (likely related to the 

ECG contamination) were present in the EMGdi-WA as compared to the 
EMGdi-EES. Using EMG simulations, we further confirmed efficacy of 
the new method, demonstrating low relative error between the denoised 
contaminated signal (EES-processed EMG) and the original clean EMG. 
Although the wavelet-based filter method showed low relative error 
with the true clean EMG as well, ECG frequencies were not fully 
removed in the WA-processed signal for all simulations; in line with 
results from clinical data. In addition, the median frequency of the EES- 
processed EMG was closer to the signal’s true median frequency as 
compared to the WA-processed EMG. 

Wavelet-based adaptive filters have been increasingly proposed for 
removal of ECG noise from EMG recordings of various muscles, 
including the diaphragm, and with and without the use of extra channels 
for ECG recording [15–17,20,29,30]. This method performs well 
particularly when the ECG to EMG amplitude is high. However, 
obtaining a clean EMGdi can be difficult when the ECG amplitude is 
similar to the EMGdi amplitude, when the artifact consistently overlaps 
with diaphragm contraction, or when the contamination cannot be fully 
captured in a wavelet. The current study also illustrates that residue ECG 
noise present in the EMGdi-WA – particularly when overlapping with 
the start or end of diaphragm contraction – may limit reliability of 
neural inspiratory time detection. In addition, robustness and efficiency 
of this method may be limited by the computational complexity of the 
technique, including defining the optimal threshold and wavelet type. 

4.3. Clinical importance 

Monitoring the respiratory drive and diaphragm activity in critically 
ill patients using EMGdi (or its further processed EAdi signal) facilitates 
the implementation of a diaphragm-protective ventilation strategy and 
assessment of neuromuscular dysfunctions [1–3]. Recording and inter
preting adequate diaphragm activity signals requires specific expertise 
and may be challenging in ICU patients [4,10]. We have previously 
demonstrated that reliability of EAdi-derived parameters and detection 
of neural inspiratory onset could be limited by suboptimal filtering of 
the ECG contamination from the EMGdi signal as processed by the 
ventilator software [8–10]. This could result in ventilator settings poorly 
adapted to the patient’s physiology. Adequate detection of neural 
inspiratory time promotes the identification and solving of patient- 
ventilator asynchronies, especially when expressed as the phase angle 
amongst the sequential onset or offset of the EMGdi and the start or end 
of ventilator pressurization (e.g., such as with premature cycling and 
reverse triggering) [31–33]. In addition, it is important for assessment of 
(changes in) the coordination and contribution of the diaphragm and 

Table 2 
Performance of the Estimate ECG Subtraction (EES) method for processing of simulated EMG that was contaminated with ECG artifacts, and compared to the wavelet- 
based adaptive filter (WA) method. Simulations 1 and 2, and simulations 3 and 4 were contaminated with the same ECG templates. Note the differences in power for 
the contaminated signals – especially in the ECG frequency band (0–100 Hz) – to confirm variations induced in ECG artifact amplitudes and timing.    

Power (µV2) Median frequency (Hz) Relative error Clean vs. Processed EMG (0–250 Hz) (%)  

EMG Total 0–100 Hz 20–250 Hz   

Simulation 1 Contaminated 1853 1751 1605  26.7  – 
Clean 262 164 242  82.8  – 
Processed, EES method 235 151 220  81.2  0.95 
Processed, WA method 269 183 249  75.6  0.16 

Simulation 2 Contaminated 850 746 820  41.7  – 
Clean 264 165 244  82.8  – 
Processed, EES method 233 148 219  82.8  1.22 
Processed, WA method 279 190 262  76.7  0.52 

Simulation 3 Contaminated 413 314 362  50.7  – 
Clean 261 163 241  82.8  – 
Processed, EES method 231 147 216  81.6  1.19 
Processed, WA method 242 157 226  80.2  0.44 

Simulation 4 Contaminated 2636 2530 2118  27.2  – 
Clean 260 162 239  82.8  – 
Processed, EES method 240 153 227  81.5  0.50 
Processed, WA method 270 179 251  78.3  0.29  
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extra-diaphragmatic muscles of the respiratory pump during increased 
loaded breathing [34,35], and for the quantification of expiratory dia
phragmatic activity [24,36]. If translated into a (near) real-time algo
rithm for use at the bedside – ideally when implemented within the 
ventilator software – our proposed method could allow an important 
optimization for bedside monitoring of diaphragm activity. In addition, 
improved offline processing of the EMGdi signal will result in more 
accurate evaluation of the diaphragm for diagnostics and research 
purposes. Theoretically, the Estimated ECG Subtraction technique could 
allow application to EMG signals derived from any type of muscle, since 
the need for efficient removal of ECG contamination from EMG is not 
just limited to the diaphragm (e.g., motor control studies involving trunk 
muscles). 

4.4. Limitations 

Limitations of the Estimated ECG Subtraction method that should be 
mentioned are that our method would be less robust in the presence of 
changes in artifact shape within a recording (e.g., such as with ar
rhythmias like premature ventricular or atrial contractions); however, 
this is a common limitation for any EMG filtering method. In addition, 
the normalization operation accounts for variability in Q, R and S wave 
amplitudes, not for variability in QR and RS times. The latter may limit 
accuracy of the template generation; however, any remaining ECG 
contamination, if present, was subsequently removed with a wavelet 
filter. Second, for adequate ECG contamination detection and template 
creation the R wave amplitude should be larger than the EMGdi 
amplitude after promoting the ECG in the 4–50 Hz frequency band. This 
step is especially important for recordings where the EMGdi amplitude 
can be larger than the ECG artifact; it is needed for detection of potential 
QRS segments using the crossing of the EMGdi-DS-A with a dynamic 
threshold level, and to avoid subsequent removal of important EMGdi 
information after template subtraction. In all ten patients with various 
EMGdi to ECG intensities, artifacts could be detected sufficiently after 
promoting the ECG frequency band and wrongly detected QRS artifacts 
were adequately removed based on the estimation of the artifact loca
tion (step 6 of the algorithm). Third, we did not compare our method 
with other denoising techniques described in literature, such as inde
pendent component analysis, or adaptive and hybrid filters. However, 
most of these methods visually seem less efficient than our current 
comparator technique, have high computational costs, or are user 
dependent [19–22] Therefore, we reasoned that adding more compar
ator methods would go beyond the scope of this study. Instead, we 
employed EMG simulations to quantitatively confirm our findings. Last, 
the signals used for development and evaluation of the filtering tech
nique were acquired with a nasogastric catheter embedded with both a 
multiple-array electrode and two pressure balloons, while the EAdi 
catheter (Getinge, Sweden) consists of electrodes only. Addition of these 
balloons may affect the presence of motion artifacts in our recordings. 

4.5. Future work 

Although it was not the focus of the current study, it would be 
interesting to investigate whether a template subtraction filtering 
method can be applied at the bedside in real-time. We are not aware of 
such applications in the current EMG literature, and this requires an 
accurate estimation of future QRS artifact events. It should be explored 
whether advanced time series analyses, e.g., employing probability 
forecasts, could be applied. In addition, a next study should evaluate the 
clinical impact of our filtering technique in a larger sample. For instance, 
it would be interesting to quantify whether assessment of patient- 
ventilator interaction or calculation of neural inspiratory time im
proves when directly comparing the EAdi signal as filtered by the 
ventilator software with the envelope signal of the EMGdi-EES. This 
should be studied prospectively as it requires a simultaneous recording 
of the raw EMGdi and of the ventilator-processed EAdi signal from one 

nasogastric catheter, which was not available in the current study. 

5. Conclusion 

In conclusion, we present and confirmed efficiency of a new method, 
i.e., Estimated ECG Subtraction method, for ECG contamination removal 
from the EMGdi that does not require a dedicated ECG reference channel 
and utilizes the quasi-periodic characteristics of the ECG for template 
creation. The Estimated ECG Subtraction method performs better to 
yield uncontaminated EMGdi as compared to a wavelet-based adaptive 
filter only. Implementation of this technique may offer means to 
improve diaphragm activity monitoring and control in clinical practice. 
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method for reducing electrocardiographic artifacts in EMG signals of low intensity, 
Biomed. Signal Process. Control 47 (2019) 380–386, https://doi.org/10.1016/j. 
bspc.2018.09.004. 

[24] J. Doorduin, L.H. Roesthuis, D. Jansen, et al., Respiratory muscle effort during 
expiration in successful and failed weaning from mechanical ventilation, 
Anesthesiology 129 (2018) 490–501, https://doi.org/10.1097/ 
ALN.0000000000002256. 

[25] C.A. Sinderby, J.C. Beck, L.H. Lindström, A.E. Grassino, Enhancement of signal 
quality in esophageal recordings of diaphragm EMG, J. Appl. Physiol. 82 (1997) 
1370–1377, https://doi.org/10.1152/jappl.1997.82.4.1370. 

[26] J.D.Z. Chen, Z.Y. Lin, M. Ramahi, R.K. Mittal, Adaptive cancellation of ECG 
artifacts in the diaphragm electromyographic signals obtained through 
intraoesophageal electrodes during swallowing and inspiration, 
Neurogastroenterol. Motil. 6 (2008) 279–288, https://doi.org/10.1111/j.1365- 
2982.1994.tb00194.x. 

[27] R. Bloch, Subtraction of electrocardiographic signal from respiratory 
electromyogram, J. Appl. Physiol. 55 (1983) 619–623, https://doi.org/10.1152/ 
jappl.1983.55.2.619. 

[28] P. Zhou, T.A. Kuiken, Eliminating cardiac contamination from myoelectric control 
signals developed by targeted muscle reinnervation, Physiol. Meas. 27 (2006) 
1311–1327, https://doi.org/10.1088/0967-3334/27/12/005. 

[29] L. Xu, E. Peri, R. Vullings, et al., Comparative review of the algorithms for removal 
of electrocardiographic interference from trunk electromyography, Sensors 20 
(2020) 4890, https://doi.org/10.3390/s20174890. 

[30] F. Xiao, D. Yang, X. Guo, Y. Wang, VMD-based denoising methods for surface 
electromyography signals, J. Neural Eng. 16 (2019), 056017, https://doi.org/ 
10.1088/1741-2552/ab33e4. 

[31] C. Graves, L. Glass, D. Laporta, et al., Respiratory phase locking during mechanical 
ventilation in anesthetized human subjects, Am. J. Physiol. 250 (1986) 902–909. 

[32] E. Akoumianaki, A. Lyazidi, N. Rey, et al., Mechanical ventilation-induced reverse- 
triggered breaths, Chest 143 (2013) 927–938, https://doi.org/10.1378/chest.12- 
1817. 

[33] S. Parthasarathy, A. Jubran, M.J. Tobin, Assessment of neural inspiratory time in 
ventilator-supported patients, Am. J. Respir. Crit. Care Med. 162 (2000) 546–552, 
https://doi.org/10.1164/ajrccm.162.2.9901024. 

[34] L.H. Roesthuis, J.G. van der Hoeven, H.W.H. van Hees, et al., Recruitment pattern 
of the diaphragm and extradiaphragmatic inspiratory muscles in response to 
different levels of pressure support, Ann Intensive Care 10 (2020) 67, https://doi. 
org/10.1186/s13613-020-00684-6. 

[35] J. Cecchini, M. Schmidt, A. Demoule, T. Similowski, Increased diaphragmatic 
contribution to inspiratory effort during neurally adjusted ventilatory assistance 
versus pressure support, Anesthesiology 121 (2014) 1028–1036. 

[36] M. Pellegrini, G. Hedenstierna, A. Roneus, et al., The diaphragm acts as a brake 
during expiration to prevent lung collapse, Am. J. Respir. Crit. Care Med. 195 
(2017) 1608–1616, https://doi.org/10.1164/rccm.201605-0992OC. 

A.H. Jonkman et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.jelekin.2009.07.007
https://doi.org/10.1007/s13534-018-0064-5
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0085
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0085
https://doi.org/10.3389/fphys.2019.00885
https://doi.org/10.3389/fphys.2019.00885
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0095
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0095
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0095
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0095
https://doi.org/10.2174/1874120701408010013
https://doi.org/10.2174/1874120701408010013
https://doi.org/10.1016/j.asoc.2016.03.002
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0110
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0110
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0110
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0110
https://doi.org/10.1016/j.bspc.2018.09.004
https://doi.org/10.1016/j.bspc.2018.09.004
https://doi.org/10.1097/ALN.0000000000002256
https://doi.org/10.1097/ALN.0000000000002256
https://doi.org/10.1152/jappl.1997.82.4.1370
https://doi.org/10.1111/j.1365-2982.1994.tb00194.x
https://doi.org/10.1111/j.1365-2982.1994.tb00194.x
https://doi.org/10.1152/jappl.1983.55.2.619
https://doi.org/10.1152/jappl.1983.55.2.619
https://doi.org/10.1088/0967-3334/27/12/005
https://doi.org/10.3390/s20174890
https://doi.org/10.1088/1741-2552/ab33e4
https://doi.org/10.1088/1741-2552/ab33e4
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0155
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0155
https://doi.org/10.1378/chest.12-1817
https://doi.org/10.1378/chest.12-1817
https://doi.org/10.1164/ajrccm.162.2.9901024
https://doi.org/10.1186/s13613-020-00684-6
https://doi.org/10.1186/s13613-020-00684-6
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0175
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0175
http://refhub.elsevier.com/S1746-8094(21)00458-4/h0175
https://doi.org/10.1164/rccm.201605-0992OC

	Estimated ECG Subtraction method for removing ECG artifacts in esophageal recordings of diaphragm EMG
	1 Introduction
	2 Materials and methods
	2.1 Subjects and signal acquisition
	2.2 Signal pre-processing
	2.3 Wavelet-based adaptive filter
	2.4 Estimated ECG Subtraction method
	2.5 Evaluation of performance

	3 Results
	3.1 Clinical data
	3.2 Experimental data

	4 Discussion
	4.1 Development of the Estimated ECG Subtraction method
	4.2 Comparison with a wavelet-based adaptive filter and simulated EMG signal
	4.3 Clinical importance
	4.4 Limitations
	4.5 Future work

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


