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Abstract

Interest in oceanic climate change and to better understand the oceanic dynamics, a key interest in
oceanic topography pushes for cheaper and smaller EO satellites which can achieve similar resolu-
tion and measurement accuracy. Alticube+ lies at the forefront of a new frontier, aggregated system
of CubeSats connected by booms to fulfil the scientific objective of providing accurate ocean height
measurements on par with large monolithic satellites. This configuration introduces strong coupling
between attitude dynamics, flexible structural modes, and reaction wheel jitter, posing a challenge for
attitude controller design.

This research aims to design a centralised LQR attitude controller that enables effective utilisation
of reactions wheel to satisfy scientific motivated pointing control and knowledge requirements. The
second objective is to research how reaction wheel jitter interacts with the large aggregated structure
to degrade the pointing control, affecting the measurement accuracy. To achieve this, a comprehensive
simulation framework was developed in MATLAB/Simulink, capable of modelling both rigid-body and
flexible spacecraft dynamics within a unified environment. A centralised Linear Quadratic Regulator
(LQR) combined with a Kalman filter was designed to address multi-axis attitude regulation and pointing
knowledge requirements under realistic actuator and sensor constraints.

The flexible spacecraft model was formulated using Kane’s equations and a lumped-parameter rep-
resentation of the dominant structural modes. Reaction wheel jitter was modelled via static imbalance
effects, enabling realistic excitation of flexible modes. The simulation framework was verified through
analytical comparisons for the rigid-body case and validated for the flexible model by comparison with
a finite element model, including modal frequency alignment and structural response under controlled
torque excitation.

Simulation results demonstrate that the centralised LQR controller achieves stable attitude conver-
gence within the allocated 450 s operation window for the majority of initial conditions. Monte Carlo
analysis shows that approximately 80% of the simulated cases satisfy the absolute pointing error re-
quirement of 0.2 deg, with performance primarily limited by reaction wheel saturation. Flexible dynamics
introduce oscillations, particularly in the pitch axis, where reaction wheel jitter and inertia uncertainty
result in pointing errors up to 0.3 deg under worst-case conditions. Despite this, internal antenna mis-
alignment and pointing knowledge errors remain within mission requirements for nominal operating
conditions.

The results indicate that centralised LQR-based control remains a viable and effective solution for
flexible assembled CubeSat systems such as Alticube+, provided that actuator saturation, structural
flexibility, and uncertainty effects are explicitly accounted for during design. This work provides insight
into the achievable pointing performance envelope of Alticube+’s architecture.
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1
Introduction

Interest in oceanic climate change and to better understand the oceanic dynamics, a key interest in
oceanic topography pushes for cheaper and smaller EO satellites which can achieve similar resolu-
tion and measurement accuracy. Alticube+ lies at the forefront of a new frontier, aggregated system
of CubeSats connected by booms to fulfil the scientific objective of providing accurate ocean height
measurements on par with large monolithic satellites. Alticube+ uses Ku-band SAR interferometry
to measure the ocean height. Although this aperture is an effective payload for this purpose, ele-
vated sensitivity to roll pointing errors stresses the importance understanding both pointing control and
knowledge capabilities. Pointing control error sources stem from the controller design and Alticube+’s
reaction wheel jitter, possibly interacting with the structure.

This research aims to design an attitude controller that utilises reactions wheel to satisfy scientific moti-
vated pointing control and knowledge requirements. The second objective is to research how reaction
wheel jitter interacts with the large aggregated structure to degrade the pointing control, affecting the
measurement accuracy. This research will achieve the objective by first expanding the research objec-
tive through literature informed supporting research questions. Then this research provides a modelling
framework implementing Kane’s equations to validate the controller design and analyse the reaction
wheel jitter interaction. Bode analysis on the LQR cost matrix tuning will be used to identify a feasible
range of tuning parameters that provides a stable response of the LQR controller. Then controller capa-
bilities is further researched through variations in initial conditions and assumed inertia matrix. Lastly,
the interaction between the reaction wheel jitter and the structure is then analysed using the simulation
data obtained.

This MSc thesis is structured as follows. The second chapter reviews the relevant literature and ex-
pands on the research objective. Additional supporting research questions break down the global
objective into a tractable research. The third chapter explores the ADCS requirements that can be de-
rived from the scientific objectives. The fourth chapter provides a mathematical modelling framework,
divided into four section: A orbital model framework, rigid body model, flexible model through the im-
plementation of Kane’s equations and a reaction wheel model framework that includes jitter generation.
The fifth chapter designs and tunes the LQR controller and provides a mathematical implementation
of the Kalman filter for attitude estimation. The sixth chapter presents the simulation setup, verifica-
tion and validation, and simulation results. Chapter 7 concludes the research and chapter 8 provides
recommendations for future research.

1



2
Literature review

2.1. Scientific Motivation
For decades, satellite altimetrymissions have advancedmeasurements of the ocean topography. These
missions have mapped variations in the ocean’s surface, capturing the effects of gravity, ocean cur-
rents, and heat distribution. The data generated has been crucial for advancing scientific research and
supporting practical applications such as weather forecasting, storm surge prediction, fisheries man-
agement, maritime navigation, and disaster risk assessment [1]. Radar interferometry technology can
be used to obtain sub-kilometre resolution given a sufficiently long baseline that accommodates at least
two antennas [2]. The Surface Water and Ocean Topography (SWOT) satellite launched in 2022 is one
of the great examples. This satellite houses the KaRIn (Ka-band Radar Interferometry) using a 10m
baseline and represents the state-of-the-art in radar altimetry providing sub-kilometre resolution [3].
Monolithic spacecraft utilizing KaRIn like SWOT does come at a cost as these missions are expensive
(north to a billion dollars) and take huge effort (15 years) to design and built.
With current efforts heading towards the miniaturization of spacecraft, CubeSat missions have gained
significant traction in the space industry. The development for the miniaturization of spacecraft is not
aimed to replace monolithic spacecraft as a whole, but provide a standardized and flexible low-cost
alternative for a subset of missions. The first CubeSats built were mainly educational and technology
demonstration missions, but since 2017 they are used for Earth Observation (EO) science and include
more flexible platforms, including constellations [4]. The Raincube satellite was one of the critical mis-
sions that contributed to these efforts. The success of the RainCube satellite opened up the possibility
for a CubeSat swarm to serve as a low-cost alternative for EO science [5]. However, the realization
of such standardized swarming solutions is not without challenges. from a study done, [6] concluded
that ”a distributed interferometric swarm for cross-track measurement would require extremely high ac-
curate time/attitude synchronizations and centimetre level formation maintenance, which is not easier
than building a large monolithic satellite”. This issue could be circumvented if the CubeSats are physi-
cally connected to each other such that formation flying is not needed at all during science.
Alticube+ is a ESA funded mission led by TU Delft that wants to take advantage of this to build a capa-
ble CubeSat platform performing in-orbit assembly to perform EO science for Ocean and inland water
applications [7]. This mission will perform high resolution EO hydrology sciences while keeping lower
costs than monolithic spacecraft missions for EO sciences. The key technology used is the in-orbit
assembly to increase the baseline for the Ku-band radar payloads to obtain higher resolution than ever
possible for a single CubeSat. Alticube+ will consist of five 16U CubeSats connected with a boom as
seen in Figure 2.1.

Figure 2.1: Representative model of the fully assembled Alticube+ spacecraft [7]

2



2.2. Ku-band Radar Interferometry 3

Figure 2.2: Alticube+ measuring inland water surface
height using two antennas (single swath band

represented)

At LEOP the five individual CubeSats are inserted
into a 500 km SSO orbit. After deployment, the Cube-
Sats will perform a rendezvous and docking sequence.
Once the spacecraft is fully assembled and correctly
oriented, scientific observations can begin. The total
length of the assembled spacecraft will be 880 cm, with
each CubeSat platform measuring 40 cm and each
boom in between extending 180 cm. Figure 2.2 gives
a visual representation on how the Alticube+ will mea-
sure high resolution data. Science operations will be
conducted by either Sat #1 and Sat #4 or Sat #2 and
Sat #5, both observing the same target. By positioning
two antennas tomeasure two swath bands, the system
effectively simulates a single large dish with a diame-
ter equal to the spacing between the antennas. The
spacing between these two nodes is equal to 660 cm.
This configuration enables a swath width of 18 km, a
resolution of 220 x 313 m, and a statistical height error
of 1.3 cm, meeting the mission’s stringent scientific ob-
jectives. An analysis study performed by [7] showed
that the roll stability (rotation around the flight-direction
axis) plays a critical roll in the height measurement er-
ror.

2.2. Ku-band Radar Interferometry
Radar is a widely used instrument since early 1900. Its main applications lies in detecting ships and
aircraft, laying the groundwork of today’s instruments. The radar technology relied on the principles of
reflected radio waves. To measure the position of an object (e.g. aircraft) using radar, a pulse of radio
waves (ranging from 1mm− 1m) is transmitted from the radar system. Radio waves that hit the object
will reflect these waves back towards the direction of the radar system. The receiver then detects the
reflected radio waves, computing the distance of that object depending how much time the wave took
between transmission and detection. As this principle is simple, it is an effective method utilized by
spacecraft for altimetry measurement. To effectively obtain high vertical precision measurements, this
instruments needs to be nadir-pointing and have its transmitted beam tightly focussed. As a result,
the swath width of this instrument is limited to the area direct under the satellite. Therefore temporal
resolution (revisit times) is favoured over spatial coverage [8]. Tomeasure the topography of the surface
using a larger swath width, a side-looking radar is needed. Synthetic Aperture Radar (SAR) is an
instrument that is able to measure the topography from roughly 20 degrees to 60 degrees away from
the nadir-point as seen in Figure 2.3.

Figure 2.3: swath and angle of incidence difference between an altimeter and a SAR [9]
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Figure 2.4: Alticube+

SAR can use multiple frequency bands ranging from
300 kHz − 47GHz to observe different aspects. The lower
frequencies are used for biomass and agriculture while
higher frequencies are used for oceanic and glaciology ap-
plications. The C-band, X-band and Ku-band, band clas-
sifications for radar frequencies are commonly used for
oceanic and inland water height measurements. The Ku-
band, which will be used by Alticube+, has a frequency
range of 12− 18GHz (wavelength of 1.7− 2.5 cm).
Now the measurement principles of SAR for oceanic ap-
plications will be explored. First some assumptions are
made. First assumption is that the SAR will only measure 1
point. While normally the instrument is able to measure be-
tween a range of angles, only one of these points is looked
into for simplicity. The second assumption is about the at-
mospheric effects, such as scattering and refraction of the
radar signal. For simplicity this effect is neglected.
Imagine a satellite that has a baseline length B measuring
a point with height h from the reference as seen in Figure
2.4. The two antenna’s placed at each end of the baseline,
need to be differentiated into the master antenna and slave
antenna. In Figure 2.4 the master antenna is on the right side and is defined by r1, which signifies
the absolute distance between the master antenna and measuring point. r2 is the absolute distance
between the slave antenna and measuring point. To calculate the height, the following equation is
used.

h = H − rcos(θ) (2.1)
WhereH is spacecraft altitude and r the distance from the midpoint of the baseline to the measurement
point. θ can be precisely estimated using the phase difference Φ of the signals between the master
and slave antenna [10], which is described using the following two equations.

∆r = r1 − r2 = Bsin(θ) ; ∆r =
λ

2π
Φ (2.2)

Here λ is the wave length of the radar signal. Φ asmentioned before, is the unwrapped phase difference.
This is different from the measured phase difference Φ′. Auxiliary data is needed to unwrap the phase
difference by determining the n in Φ = 2πn + Φ′ [9]. It is apparent from this measurement principle
that the accurate knowledge of θ is important to the accuracy of the height. accurateness of angle θ
could be influenced by the attitude instability of the spacecraft. A small change in theta would mean
a change in the calculated height. The change in height (δh = hmeasured − h0) can be derived from
equation 2.1. Expanding the cos(θ) to cos(θ0)− sin(θ0)δθ using the Taylor expansion and substituting

Figure 2.5: height error observed from the change in θ0 due to roll

this into equation 2.1 will give equation 2.3.

δh ≈ H sin(θ0)δθ ←→ δh ≈ Cδθ (2.3)

θ0 represents the true angle of the measur-
ing point and where δθ is defined as the roll
error. In this equation, it is assumed that
H ≈ r as the difference is negligible. The
range of θ0 can be derived from the mis-
sions specifics around the measurement ob-
jective. Alticube+ will use a swath width of
18 km over oceans where the closest mea-
surement point is 15 km away from nadir.
Based on the orbit height of 500 km the mea-
surement range lies within 1.7 ≤ θ0 ≤ 3.8
degrees. Figure 2.5 shows he range of
height errors as a function of δθ. A range of

±40 arcsec is taken as roll error. The calculated height error for this range has a maximum of ±6.4m.
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Figure 2.6: height error observed over the swath width with a
1mm boom length error

Another error lies within the length of the boom. A
small change in this boom length would also im-
pact the calculated height. Deriving this relation
starts with equation 2.2 and let ∆r be changed
due to both an error in θ and B. Using small an-
gle approximation, it is known that these changes
are proportional to each other (δθ ∝ δB), gener-
ating the same δ∆r. Thus the following equation
holds for small angles

sin(θ0)δB = B0δθ (2.4)

substituting equation 2.4 into 2.3 will give equa-
tion 2.5

δh =
H sin2(θ0)

B0
δB ←→ δh =

C2

B0H
δB (2.5)

Figure 2.6 plots this height error due to a 1mm boom length error. The swath width range of the
Alticube+’s SAR is taken. As seen from equation 2.5 and Figure 2.6, the height error has a quadratic
relationship with the cross-track distance from nadir. Compared to the roll error, the height error is
much smaller for a boom length error of 1mm.

Impact of micro-vibrations on height error
In addition to the errors discussed, semi-rigid spacecraft vibrate which can cause errors as well. [7]
covers a micro-vibrational analysis study on Alticube+ which will be briefly covered in this section. The
two elastic modes that are relevant to this height measurement error analysis can be described in Figure
2.7. The left figure describes a symmetric bending of the spacecraft, which will shorten the effective
baseline. The right figure shows an antisymmetric bending of the spacecraft which results in a roll
error in addition to the shortening of the baseline. The vibration analysis of [7] shows that Alticube+’s
aggregated system has a maximum deformation of 13.7 arcsec and 7.0 arcsec for the symmetric and
antisymmetric bending respectively. To calculate howmuch the baseline has shortened, a conservative
approach is taken. The new baseline is calculated using equation 2.6.

δB = B0

(
1− cos

(
δα

2

))
(2.6)

For the asymmetric case, equation 2.6 is substituted into equation 2.4, resulting is the equation below.

δθ = δα+
C

H

(
1− cos

(
δα

2

))
(2.7)

Now as the vibration are small angles, the small angle approximation is used (i.e. 1− cos (δα/2) ≈ 0),
the height error can be calculated using equations 2.3 and 2.5 - 2.7.

δhsym ≈ 0; δhasym ≈
Cδα

2
(2.8)

As derived from equation 2.8, vibration cause negligible reduction of the effective boom length. The
antisymmetric case, which causes a virtual roll of the boom, can create a maximum height error of 1.1m
in addition to the baseline roll error.

(a) Symmetric bending modus (b) Asymmetric bending modus

Figure 2.7: Alticube+ boom vibration modus
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Inteferometry Data Calibration
As noted in the previous sections, roll, boom length, and vibration introduce significant errors to the
height measurements. It is important to understand the scientific requirements on the height error. Altic-
ube+’s criteria on the scientific measurement accuracy focusses on the relative height error rather than
the absolute error. This means that the error between adjacent cells in the SAR instrument is closely
investigated. Following from the scientific requirements, the total instrument SD height error of 2 cm
needs to be satisfied [7]. The instrument is composed of two error terms, a statistical height error and
roll error of the baseline (σ2

instrument = σ2
statistical + σ2

roll). Knowing the instrument error and statistical
height error (refer to section 2.1), the height error due to roll is calculated: σroll =

√
22 − 1.32 = 1.52 cm.

Now comparing this to the height error analysis in section 2.2, it can be inferred that a SD roll error of
0.095 arcsec needs to be achieved. This roll error requirement is infeasible as even NASA’s SWOT satel-
lite is capable of reducing the roll error to 10 arcsec using the ADCS system [11]. In order to reduce
height errors, calibration techniques can be employed, increasing the height accuracy and therefore
relaxing the roll error requirements. This section will explore the auto-calibration technique and lay out
the implications this calibration technique has on the roll error.

Figure 2.8: Observed height by SAR (black line) as a
superposition of the true height (blue line) and height

error due to residual roll (red line)

The purpose of auto-calibration is to refine the mea-
surements by reducing residual roll error after an initial
calibration has been used. This first calibration layer
uses roll knowledge to eliminate large height errors as
a first step whereas the auto-calibration method uses
interferometric data to eliminate the residual roll error.
Imagine a ocean wave that has been measured. Let
the true height of the ocean surface that will be mea-
sured be expressed by the blue line in Figure 2.8. The
observed height is then a superposition of the true
height and the height error due to residual roll (black
line in Figure 2.8). The height error has a linear rela-
tionship with roll error (See Equation 2.3 and red line in
Figure 2.8). The difficulty in unravelling the true height
is that both slopes are not known over the cross-track.
The principle of the auto-calibration method is to use along-track data to observe the rate of change
in slope in the frequency domain and distinguish between the ocean slope and residual roll. Figure
2.9 visualizes the change in ocean height for the same cross-track position over time. This means that
as waves change in the along-track direction, the ocean slope along this cross-track will change over
time. It should be noted that the along-track evolution of the ocean height that is visualized in Figure
2.9 is not a realistic representation of the ocean wave dynamics and is purely for visual purposes. An
ocean wave spectrum study shows that waves have a period range between 0− 0.2Hz, meaning that
for every five seconds or more a wave will pass through [12]. Now distinguishing the height error slope
due to the residual roll error from the ocean height slope is only possible if the frequency at which the
residual error moves between ±δθresidual is higher than 0.3Hz.

Figure 2.9: Cross-track ocean wave height change during
along-track measurements

Figure 2.10: Another figure

The auto-calibration method does need to have a residual error less than 20 arcsec RMS to success-
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fully distinguish between the ocean slope and residual roll slope. If this requirement cannot be met, an
unfiltered roll calibration can be used to reduce the height errors. This method will flatten the entire
slope across the measurement track to zero, also filtering some of the finer ocean structures. Although
less desirable, this filter technique does fall within the height error requirements. The roll knowledge
requirement for this technique is 100 arcsec, less stringent than the auto-calibration method.

Roll Requirements
Using the information provided in this section the roll requirements based on scientific mission objec-
tives can be generated. One last requirements is still left to be defined. To ensure that all antenna’s
have good overlap for both swath sites, the spacecraft should orient with an error not greater than
0.1 − 0.2 deg [7]. Now all roll requirements have been generated and are summarised in Table 2.1
below.

Table 2.1: Roll requirements for Alticube+ derived from payload height error requirements

Requirement ID Requirement description Notes
Req-Roll-1 The aggregated system must have an APE of the

roll of 0.1-0.2 deg.
Pointing error re-
quirements

Req-Roll-2 The aggregated system must have a MKE of the roll
angle of 20 arcsec RMS over the whole measure-
ment track (up to 20 minutes), or max 100 arcsec if
req 3 cannot be achieved.

Pointing knowledge
requirements

Req-Roll-3 The aggregated system should keep a MKE on the
roll rate larger than 0.3 Hz.
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2.3. Alticube+ Platform
In the previous two sections, Alticube+’s aggregated system was outlined briefly. In this section a
more in-depth overview of the CubeSat platforms (nodes) which Alticube+ consists of is presented.
Figure 2.11 and Figure 2.12 shows the external and internal view of the Alticube+ CubeSat platform
respectively. Here, the +X side points parallel to the along-track vector, the +Z points to nadir and +Y
complements the other two vectors. The platform is a 16U CubeSat in a 2× 2× 4 configuration, having
a weight totalling 18 kg.

(a) View of -X/-Y/-Z side [7] (b) View of +X/+Y/-Z side

Figure 2.11: External view of Alticube+ platform [7]

(a) View of -X/-Y/-Z side [7] (b) View of +X/+Y/+Z side

Figure 2.12: Internal view of Alticube+ platform [7]

ADCS Hardware
Each CubeSat platform is equipped with an ADCS subsystem. A star tracker, sun sensor, gyroscope
and magnetometer boom encompasses the sensors. In Figure 2.12b, the location of the various sen-
sors can be seen. Four reaction wheels and a magnetotorquer give the CubeSat the ability to control
the attitude in all three axis. Two sets of RCS thrusters provides a 6-DOF capabilities. This section
covers each of the attitude sensors and control actuators.

Figure 2.13: Sodern Auriga star
tracker [13]

Star tracker
The star tracker used in Alticube+’s CubeSat platform is an Auriga
from Sodern (see Figure 2.13). This sensor is placed towards the -Z
axis seen in Figure 2.12. It can provide quick attitude acquisition with
arcsec level accuracy. This sensor can measure and output data at a
rate of 10Hz or 5Hz depending on the CPU load. A star tracker is gen-
erally a heavy sensor and Auriga weighs 770 g. The data obtained con-
tains some errors inherent to the instrument. A worst case sensor bias
of 0.017 deg and a worst case thermo-elastic error of < 1.5 arcsec/C◦

can create a worst case periodic bias of 106 arcsec. next to the biases,
there are uncertainties due to spatial and temporal noise which can
create an additional error of 94.6 arcsec@3σ. The star tracker is only capable of determining one axis
of reference for the spacecraft. To complete the three axis of reference, another sensor type or more
star trackers on other axis are required.
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Figure 2.14: Lens R&D MAUS sun
sensor [14]

Sun sensor
Three MAUS sun sensors from Lens R&D are used that pro-
vide a three axis reference frame for the CubeSat platform (see
Figure 2.14). One sensor is placed on each of the +X, -Y
and -Z side of the CubeSat, which can be seen in both Figure
2.11 and Figure 2.12. Weighing at just 15 grams and an out-
put rate of 2Hz, the sun sensors can give the full attitude of
the spacecraft, unlike the single star tracker. A disadvantage
is that the attitude error observed is larger than that of a star
tracker, giving attitude error of 3.5 deg@3σ without calibration ta-
bles up to 0.5 deg@3σ when calibrated. The data of these sen-
sors could be fused with the more accurate star tracker data to
give better estimations on the attitude of Alticube+’s CubeSat plat-
form.

Figure 2.15: Safran STIM277H
MEMS gyroscope [15]

Gyroscope
The gyroscope selected for Alticube+ is the STIM277H MEMS
gyroscope from Safran (see Figure 2.15). Placed in the
AOCS stack, this sensor has the capability to directly mea-
sure the rotational velocities of Alticube+’s CubeSat platform.
The sensor weighs 52 g and can output at a rate of 1000Hz.
Two types of errors are present in the instrument depend-
ing on the type of data that is being output from the sen-
sor. For angular measurements, the initial bias drift is 0.3 ◦/h.
For angular velocity measurements, the root Allan variance is
0.15 ◦/

√
h.

Magnetometer and magneto torquer
Themagnetometer and magneto torquer used are from ISISpace [16].
The sensor is placed on a boom on the -Y size of the spacecraft as seen in Figure 2.11 and 2.12. The
primary use for the magnetometer is to establish a reference frame relative to Earth’s magnetic field
and information source for the magneto torquer to correctly apply torque for the desired actuation. The
magneto torquer weighs 196 g and able to provide 0.2Am2. A feature of this magneto torquer is that it
has three axis actuation with an accuracy of < 3µT . An additional feature is the actuator’s capability
to de-saturate reaction wheels. The magnitude of angular momentum per orbit depends on Earth’s
magnetic field strength. [17] shows that at 500 km altitude the magnetic field strength varies from
20−50µT . The angular momentum generated by the magneto torquer for each orbit then lies between
0.034− 0.046Nms.

Figure 2.16: Astrofein RW25 reaction
wheels [18]

Reaction wheels
Astrofein’s RW25 is the chosen reaction wheel for Alticube+ (see
Figure 2.16). Four reaction wheels are used in a tetrahedral con-
figuration which can be located behind the avionics stack seen
in Figure 2.12b. The tetrahedral setup is capable of provid-
ing three axis attitude control using any three of the four reac-
tion wheels. This means that this configurations already has re-
dundancy in its setup, not needing any other redundant reac-
tion wheels. A drawback is the necessitation of vector trans-
formations through mathematical models to effectively utilise the
reaction wheels. Each of the reaction wheels can provide
2mNm. The maximum momentum storage each wheel can store is
0.03Nms@5000 rpm.
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2.4. State-of-the-Art Control Methods
Alticube+’s distributed control is relatively novel with respect to the history of control theory and space-
craft. Alticube+ is a spacecraft that has multiple sets of actuators along the aggregated system, which
necessitates addressing this control method. Attitude control for spacecraft started around 1960. Mis-
sions used Passive techniques to maintain spacecraft orientation. Spin stabilization involved rotating
the spacecraft around its axis, utilizing gyroscopic principles to maintain a consistent orientation. This
method was straightforward and reliable, making it suitable for early missions. Alternatively, gravity
gradient stabilization exploited Earth’s gravitational variations to align the spacecraft along a preferred
orientation.
As mission objectives grew more complex, the limitations of passive systems became evident, unable
to provide the precise control required for tasks such as Earth observation and astronomical studies.
This necessitated the development of active attitude control systems capable of three-axis stabiliza-
tion. These systems used actuators like reaction wheels, control moment gyroscopes, and thrusters to
adjust the spacecraft’s orientation dynamically. Three-axis stabilization allowed for precise pointing in
any direction, significantly enhancing the versatility and capability of spacecraft. From 2010 onwards,
micro-electromechanical systems (MEMS) started to become commercially available as Component of
the Shelf (COTS) capable of performing attitude tasks previously reserved for large monolithic space-
craft.
The optimization of attitude stability is critical for Earth observation missions. The increasingly complex
and high resolution criteria stretches the boundary for attitude stability optimization. Large monolithic
spacecraft that employ rigid-body attitude control laws generally do not perform within the require-
ments any more as vibrations from the large solar panels hamper the performance. Attitude control for
monolithic spacecraft is now generally simplified to rigid body with flexible appendages and has been
extensively researched [19, 20, 21]. To ensure attitude stability, several control paradigms are based
on adaptive control [22], H∞ control [23] and sliding mode control [24]. Although effective, it utilises a
centralized attitude control system requiring continues information on the attitude trajectory.

In the recent advancements of spacecraft miniaturization, in particular CubeSats purposed for assem-
bling into larger space structures, the option for a distributed attitude control system is researched. The
distributed control comes from the notion that these spacecraft are deployed individually into space and
each requires an attitude and orbit control system to rendezvous and dock with each other, assembling
into a single spacecraft. The attitude stability criteria is then formed into a optimization of the control
allocation problem and control algorithm problem. The control allocation problem is well defined and
researched for spacecraft, and several algorithms have been proposed [25]. The aforementioned algo-
rithms proposed by [25] uses a centralized node for computations of the control allocation. [26] notes
that such a centralized method is challenging for a cellularized spacecraft. The centralized method
requires the central node have enough data interfaces with all other nodes for adequate data transfer
from distributed sensors to the centralized computer and back to the distributed actuators. This was
supported with the research from [27] which gave a solution to this challenge using a distribution con-
trol allocation algorithm. Concluding, the allocation strategy used is dependent on the data interface
availability and speed of inter-node communication.
With limited data interface structures, decentralised control takes the advantage over centralised con-
trol. Decentralised control has been extensively researched for satellite formations. [28] and [29] used
Linear-Quadratic Gaussian control for formation flying successfully in numerical simulations. [30] re-
searched decentralised finite-time attitude synchronisation using a modified leader/follower formation
approach while [31] used local relativemeasurements only. Themain strength in applying decentralised
control techniques for formation flying is that each spacecraft is structurally decoupled and can follow
a pre-determined path (or imaginary hub). Assembled spacecraft like Alticube+ will have structurally
coupled control actuators, requiring more robust techniques accounting for the structural modes. [32]
successfully implemented decentralised control for vibration suppression of solar panels, although the
author did mention that control synchronization is needed for effective suppression of the structure.

While decentralised control architectures offer clear advantages for formation flying spacecraft, their
applicability becomes more limited once individual spacecraft are mechanically assembled into a sin-
gle structure. After assembly, systems such as Alticube+ no longer behave as independent agents
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but instead form a structurally coupled spacecraft with shared inertia properties and flexible modes. In
such cases, the spacecraft dynamics are governed by a single global state, making local control laws
insufficient to fully capture the coupling between attitude motion and structural deformation.
The presence of structural flexibility in Alticube+’s aggregated system does not inherently invalidate
the use of centralised control. Instead, it motivates the inclusion of dominant flexible modes within
the system model. For many flexible spacecraft, only a limited number of low-frequency modes signifi-
cantly influence attitude dynamics, while higher-order modes remain sufficiently decoupled or naturally
damped [33, 34]. By incorporating these dominant modes into a centralised control framework, effec-
tive attitude regulation and vibration mitigation can be achieved without resorting to fully distributed
control architectures [35, 36]. This approach has been widely adopted in the control of large space
structures, flexible satellites, and spacecraft with deployable appendages.
In the specific case of Alticube+, the scientific operation phase assumes that the spacecraft has already
been assembled and operates as a single, physically connected system. During this phase, the primary
objective is to achieve high pointing accuracy and stability rather than autonomy of individual nodes. A
centralised control architecture enables direct utilisation of global attitude measurements, coordinated
reaction wheel actuation, and explicit handling of coupled flexible dynamics, all of which are critical to
meeting the stringent pointing requirements imposed by the scientific mission.
Furthermore, practical considerations support the selection of centralised control for Alticube+. The
availability of attitude sensors on the central node, combined with limited inter-node communication
bandwidth, makes real-time distributed state estimation challenging. A centralised controller avoids the
need for continuous high-rate data exchange between nodes and reduces implementation complexity
while maintaining high control performance. These considerations collectively motivate the adoption of
a centralised attitude control strategy for Alticube+ in this research.

Control Algorithm Selection and Motivation
In the context of a semi-rigid microsatellite such as Alticube+, which requires high pointing accuracy
(≤ 0.1◦), sub-arcsecond pointing knowledge, and operates under strict onboard computational and
sensing constraints, the selection of an appropriate attitude control algorithm needs to be decided on
to fit within the scope of the research. Rather than being driven purely by controller performance,
this selection must balance control authority, robustness, computational feasibility, and implementation
maturity.

Based on the mission characteristics and system architecture of Alticube+, the control algorithm is
required to satisfy the following criteria:

1. Low onboard computational load, compatible with microsatellite-class flight computers [37, 38].
2. Capability to handle multivariable, coupled attitude dynamics, including reaction wheel cross-

coupling [39].
3. Compatibility with noisy, low-rate attitude sensors such as gyroscopes, sun sensors, and a single

star tracker [40].
4. Ability to incorporate dominant flexible modes to enable modal damping and mitigate structural

vibrations [41, 37].
5. Strong analytical foundation and flight heritage to reduce implementation and verification risk [38].

A wide range of attitude control strategies have been proposed in the literature, ranging from classi-
cal linear controllers such as Proportional-Integral-Derivative (PID) control to advanced optimal and
nonlinear approaches including Model Predictive Control (MPC), H∞ control, adaptive control, and re-
inforcement learning. In practice, PID controllers remain widely used for spacecraft attitude control due
to their simplicity and intuitive tuning [42]. However, PID control lacks explicit model-based multivari-
able feedback and performs poorly when applied to strongly coupled systems or spacecraft with flexible
appendages, where structural modes interact with rigid-body dynamics [37]. Furthermore, PID tuning
becomes increasingly sensitive in the presence of parameter uncertainty and external disturbances,
limiting achievable pointing precision.
Advanced control strategies such as MPC offer the theoretical advantage of explicit constraint handling
and multi-objective optimization [43]. However, MPC generally requires the solution of constrained op-
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timization problems online, resulting in a computational burden that exceeds the capabilities of typical
microsatellite avionics unless significant model simplifications are applied [44, 45]. Similarly, H∞ and
other robust control techniques provide formal robustness guarantees but often lead to high-order con-
trollers whose performance is sensitive to uncertainty modelling and whose tuning complexity increases
rapidly when flexible modes are included [46, 37]. Adaptive and learning-based controllers, including re-
inforcement learning, have demonstrated promising results in simulation environments; however, their
limited flight heritage, need for persistent excitation, and challenges in formal verification currently limit
their applicability to risk-averse space missions [47, 48].
Within this context, Linear Quadratic Regulation (LQR) emerges as a particularly well-suited control
strategy for Alticube+. LQR provides optimal full-state feedback for linearized multivariable systems,
offering an explicit trade-off between control performance and actuator effort through the selection of
weighting matrices [39]. Once the gain matrix is computed offline, the online implementation reduces
to a simple matrix multiplication, resulting in an extremely low computational burden compatible with
real-time operation on microsatellite hardware [37]. Furthermore, LQR naturally accommodates aug-
mented state vectors, allowing dominant flexible modes to be included in the control design for active
modal damping, an approach that has been widely adopted in the control of flexible spacecraft and
large space structures [41, 49].
When combined with a Kalman filter, LQR forms control framework that enables optimal control perfor-
mance under stochastic disturbances and noisy sensor measurements [40]. This is particularly relevant
for Alticube+, where sensor quality and update rates are limited. Although LQR assumes linear dynam-
ics about an equilibrium point and lacks intrinsic constraint handling, these limitations are acceptable
within the scope of the scientific operation phase, which involves relatively small attitude deviations and
well-characterized actuator limits.

A qualitative comparison of candidate control algorithms against the selection criteria is summarized in
Table 2.2.

Table 2.2: Qualitative comparison of candidate attitude control algorithms for Alticube+.

Controller Low MIMO Flexible Constraint Flight
Comp. Load Handling Modes Handling Heritage

PID ✓✓ 7 7 7 ✓✓
MPC 7 ✓ ✓ ✓ 7
H∞ 7 ✓ ✓ 7 ✓
Adaptive / RL 7 ✓ ✓ ✓ 7
LQR ✓✓ ✓ ✓ 7 ✓✓

Based on this criteria-driven evaluation, LQR represents the most balanced and technically justified
control strategy for Alticube+. It uniquely satisfies the combined requirements of low computational
complexity, multivariable coupled dynamics, flexible mode damping capability, and strong analytical
foundation with extensive flight heritage. For these reasons, a centralized LQR controller, augmented
with Kalman filtering for state estimation, is selected as the baseline attitude control architecture for this
research.
Despite its advantages, the application of Linear Quadratic Regulation (LQR) to Alticube+ also entails
several inherent limitations. First, LQR is fundamentally a model-based control strategy that relies on
an accurate linearised state-space representation of the spacecraft dynamics. For flexible spacecraft,
uncertainties in mass properties, inertia tensors, and flexible mode characteristics can degrade control
performance, particularly when these parameters deviate from their nominal values [37, 39]. Second,
LQR is designed around a local linearisation of the dynamics about an equilibrium point, making its per-
formance optimal only for small attitude errors and angular rates. While this assumption is valid during
fine-pointing in the science operation phase, larger initial attitude offsets or transient disturbances may
result in reduced performance or prolonged convergence, unless gain scheduling or additional control
modes are introduced [37]. Third, standard LQR formulations do not explicitly account for actuator
constraints such as reaction wheel torque and angular momentum saturation. In practice, this limita-
tion can lead to periods of reduced or lost control authority when actuators saturate, as the controller
continues to demand infeasible control inputs [39, 42].
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2.5. Research Objective and Thesis Outline
In the previous sections the relevant literature on the scientific payload, calibration techniques, Altic-
ube+’s CubeSat platform ADCS hardware, its capabilities and state of the art for control algorithms
has been reviewed. After understanding the core aspects on Alticube+’s attitude control problem, a
research framework can be formed. To completely frame the research, a scope of research needs to
be outlined.
Firstly, the scientific requirements which are emphasised in the attitude control problem are only appli-
cable during the science operation phase (refer to Section 2.2). Alticube+ has a dedicated mode called
”Sci. Ops” in which the spacecraft will operate in during this phase. This mode will then have a certain
set of ADCS requirements to satisfy, which is different with respect to other modes. Therefore, the
scope of research will be the attitude control problem within the scientific operation phase. The ADCS
requirements that need to be satisfied in this research is then limited to the scientific operation mode
only. It means that during the phase that Alticube+ should satisfy the phase specific pointing control
and pointing knowledge requirements, assuming that the phase is executed without interruption (e.g.
changing to safe mode or nominal mode).
Secondly, the scope on the control method for Alticube+ needs to be worked out. Section 2.4 reviewed
the state of the art on control allocation problem. Alticube+ being an aggregated system of assembled
CubeSats gives it a distinct feature of having a distributed control system. It does not imply that dis-
tributed control is a necessity for Alticube+ during the scientific operation phase. Literature showed that
distributed attitude control was beneficial using a centralised attitude controller, given ample data inter-
faces and data transfer were present. Knowing Alticube+ has limited data interfaces with other nodes,
it cannot be guaranteed that there is enough data transfer between nodes for sensors and actuators to
work together in a decentralised or centralised configuration with distributed control. For this reason, it
is important to understand if Alticube+ can be controlled adequately with just the central node’s ADCS
system available such that all pointing control and knowledge requirements are met. In addition to the
control problem, the flexibility of Alticube+’s large baseline structure forms another key interest area.
From section 2.2, it is evident that the flexibility influences pointing direction of the baseline and brings
additional errors to the ocean height measurements. Alticube+ uses reaction wheel for the control actu-
ation. The jitter produced from these reaction wheels can have interactions with the flexible structure of
Alticube+, impacting the pointing control and height measurements. The effect of this interaction on the
pointing stability is unknown for a long baseline multi-linked CubeSat configuration such as Alticube+,
creating a need to analyse this. To address this key aspect of the control problem, this research will
investigate the interaction between reaction wheel jitter and Alticube+’s flexible structure, by analysing
the impact this interaction has on pointing stability.
With the research scope and framework outlined, the following research objective can be formed.

Research Objective

To Design a centralised attitude controller for Alticube+’s 2024 concept proposal during its
science operation phase and analyse the impact of reaction wheel jitter on the pointing

stability for a flexible structure

To achieve this research objective, the research is divided into four supporting research questions. The
aim of the supporting research questions is to break down the research objective into key aspects. This
creates a tractable research where all research questions can be answered using a clear methodology
and a set of deliverables. The first research question stems from the literature, covered by section 2.1
- 2.3. From these sections, it is clear how the scientific requirements translates into the roll require-
ments. But in order to address the research objective, criteria on pointing stability requirements need
to be specified. These criteria originate from the Attitude Determination and Control System (ADCS)
requirements, which are derived from the scientific mission objectives. With this, the first research
question can be defined.

The second research question focusses on the design of the centralised controller for Alticube+. To
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Research Question 1

RQ-1: What are the attitude determination and control system requirements that meet
Alticube+’s 2024 concept proposal scientific mission objectives during the scientific

operation phase?

first establish a baseline, it is necessary to design and evaluate a centralised attitude controller for
Alticube+ in the rigid-body case, prior to extending the analysis to the flexible structure. Based on
the literature presented in 2.4, a LQR controller is chosen for the centralised attitude controller. LQR
provides a systematic centralised control law for multi-axis spacecraft attitude dynamics, and balances
pointing performance against actuator effort. Moreover, LQR can be applied to a rigid spacecraft model
and possibly be extended to include flexible mode dynamics if needed. This research will limit its
scope to a general LQR controller without the inclusion of flexible modes. LQR is a full-state feedback
controller and including the flexible modes would mean that all flexible modes can be observed by the
spacecraft sensors. As the scope of the research objective is limited to a centralised attitude controller
with centralised sensor capabilities, a general LQR is used for this research. Next to the controller, a
Kalman Filter (KF) is adopted to address the pointing knowledge requirements. This KF will be able to
use the sensors available to estimate Alticube+’s attitude.
In addition to establishing a baseline performance, different tuning parameters of the LQR cost function
be investigated. This allows the assessment of control and estimation performance with respect to the
ADCS requirements and provides insight into the capabilities of the centralised controller design for
Alticube+. Now the second research question can be presented.

Research Question 2

RQ-2: How can a centralised LQR controller and Kalman filter be designed and tuned for
the rigid-body model of Alticube+, and how does this impact their performance to satisfy

the ADCS pointing control and knowledge requirements?

• RQ-2a (Controller design): How can an LQR controller be formulated for Alticube+ to
achieve centralised attitude regulation of all three axes in the rigid-body case?

• RQ-2b (Controller tuning): How do different weighting matrices in the LQR cost func-
tion influence the trade-off between pointing performance and actuator effort?

The third research question will address the interaction between reaction wheel jitter and the flexibility
of the spacecraft. The aim of this research question is extend the rigid body model to a flexible model
and analyse how reaction wheel jitter impacts pointing control and knowledge compared to the rigid
spacecraft model. In practice, only a few modes significantly affect spacecraft attitude response, as
high order modes are too fast and filtered out. next to this, including all modes will significantly in-
crease model complexity and is increases computations exponentially. For this reason, this research
is restricted to the most dominant flexible modes of Alticube+. Accordingly, research question 3 can
be formulated.

Research Question 3

RQ-3: How do the dominant flexible modes of Alticube+ interact with reaction wheel jitter
to affect pointing stability?
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Having established the ADCS requirements in RQ-1, designed and tuned a centralised LQR controller
with Kalman filter for the rigid-body case in RQ-2, and analysed the interaction of dominant flexible
modes with reaction wheel jitter in RQ-3, it is important to assess how the the centralised LQR controller
performs under uncertainties. In practice, actuator performance, sensor characteristics, and structural
properties are never perfectly known and may deviate from the nominal values assumed in the design
phase. These uncertainties can shift flexible mode frequencies, introduce bias or noise in attitude
measurements, or alter the effective torque output of reaction wheels, all of which can degrade pointing
performance. Reflecting on the research objective and the supporting research question RQ-1 to RQ-
3, this research will limit the scope to uncertainties in the CubeSat platform mass and inertia matrix.
Therefore, a final research question is formulated.

Research Question 4

RQ-4: What is the achievable envelope of pointing performance for Alticube+ under inertia
uncertainties?
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2.5.1. Thesis Outline
This section will briefly cover the thesis outline. Figure 2.17 shows a visual guide how the thesis is
structured. This chapter covered the literature review and expanded on the research objective and
its supporting research questions. The remaining chapters of this thesis are dedicated to achieve
the research objective and answer the research questions. Chapter 3 will answer the first research
question in finding the ADCS requirements. Chapter 4 covers the modelling framework and can be
divided into four parts. First a general orbital model is created which will serve as a model framework
bases for the satellite model(s). Then a rigid body spacecraft model is derived and expressed through
two methods, a non-linear model and a linearized state-space model. The third part will extend to the
flexible spacecraft model through the implementation of Kane’s equations. Lastly, a reaction wheel
model is created which can be integrated into the complete model framework. Chapter 5 creates a
controller design using LQR and a Kalman filter. The state-space model from chapter 4 is then used
to derive the LQR gain feedback and used in the Kalman filter for its internal prediction. Through the
design and tuning of the LQR controller, RQ-2 can be answered. The results from the simulations
are presented in chapter 6 using the flexible model and controller designed in chapter 3 and 4. RQ-3
and RQ-4 can then be answered by comparing the performance against the requirements derived in
chapter 2. Then having answered all research questions, conclusion on the research objective can be
made in chapter 7. Lastly, chapter 8 reflects on the research and proposes recommendations for future
research.

Figure 2.17: Thesis content overview to answer the research questions



3
ADCS Requirements

This chapter will cover the first research question RQ-1: What attitude determination and control sys-
tem requirements are derived from Alticube+’s scientific mission objectives? To address this research
question, the ADCS requirements will be derived from scientific requirements, payload requirements
and ADCS hardware utility. As pointed out in section 2.5, the scope of the research is limited to the
scientific operations phase. This will then limit the scope for the ADCS requirements derivation to just
the scientific operations phase.
Presenting the layout of this chapter, this chapter first covers a brief definition of the pointing errors.
Then the ADCS requirements are identified and derived for hardware usage, pointing control and point-
ing knowledge. Lastly, a summary of all the ADCS requirements is presented.

3.1. Pointing Error Definition
For a satellite in orbit during its lifetime or a certain observation period, different types of pointing errors
can be highlighted and defined through the ECSS-E-ST-60-10C standardisation of control performance
[50]. The characterisation of time-dependent pointing errors is illustrated in Figure 3.1.

Figure 3.1: Illustration of time dependent pointing errors [51]

Here the instantaneous time t defines a pointing error at any point in time during a defined observation
period. Thewindow time∆t is the pointing error during a time window, which can occur at any moment
in time within the defined observation period. The stability time ∆ts is the pointing error describing
stability (relative error) between pointing errors in two successive time-windows of length∆t. From this
framework, using the ECSS terms standard, the definitions of the relevant pointing errors are presented
in Table 3.1.

17
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Table 3.1: Pointing error index definition

Index Name Definition Formulation
AKE Absolute Knowl-

edge Error
Difference between actual atti-
tude and known (measured or
estimated) attitude

AKE(t) = eK(t)

APE Absolute Perfor-
mance Error

Difference between target atti-
tude and actual attitude

AKE(t) = eK(t)

MKE Mean Knowledge
Error

Mean value of AKE over time in-
terval ∆t

MKE(∆t) = ēK(∆t)
= 1

∆t

∫
∆t

eK(t)dt

MPE Mean Performance
Error

Mean value of APE over time in-
terval ∆t

MPE(∆t) = ēP (∆t)
= 1

∆t

∫
∆t

eP (t)dt

PDE Performance Drift
Error

Difference between two MPEs
taken over two time intervals
separated by a specified time
∆ts, within a single observation
period

PDE(∆t1,∆t2) =
ēP (∆t2)− ēP (∆t1)

KDE Knowledge Drift Er-
ror

Difference between two MKEs
taken over two time intervals
separated by a specified time
∆ts, within a single observation
period

PDE(∆t1,∆t2) =
ēK(∆t2)− ēK(∆t1)

3.2. Requirement Identification and Derivation
Having defined the pointing errors, identification and derivation of the requirements from literature,
payload requirements and ADCS hardware utility can be correctly indexed. The complete set of ADCS
requirements can be divided up into three categories.

• ADCS hardware usage requirements
• Pointing control (performance) requirements
• Pointing knowledge requirements

Pointing Control
The pointing control requirements for Alticube+ are derived from a combination of mission-level scien-
tific requirements reported in the Alticube+ 2024 concept study [7], hardware limitations of the attitude
control subsystem, and additional engineering analyses performed in this thesis. For clarity, the re-
quirements presented in this section are classified as either (i) directly adopted from literature, or (ii)
analytically derived within this research to ensure consistency with the mission objectives and system
constraints. The primary pointing control requirement is the absolute pointing error (APE), which de-
fines the maximum allowable deviation between the spacecraft attitude and the desired line-of-sight.
According to the scientific pointing requirements defined in the Alticube+ concept study [7], the space-
craft shall maintain an APE of no more than 0.2 deg during science operations. This requirement is
adopted directly from literature and is formalised as: ADCS-PC-REQ-1: The ADCS system shall have
an APE ≤ 0.2 deg.
In addition to absolute pointing accuracy, relative pointing errors between antennas forming the 6.6m
baseline must be constrained to ensure sufficient overlap of the illuminated areas. Guo et al. [7] report
that a minimum overlap of 90% requires the combined static and dynamic relative error in torsion and
bending to be less than 150 arcsec in the AT–ND plane and CT-ND plane. This requirement is directly
adopted from literature. Bending in the AT–CT plane introduces significantly smaller height errors and
is therefore neglected under the assumption of comparable deformation magnitudes. This then gener-
ated the following requirements. ADCS-PC-REQ-2: The ADCS system shall have a maximum relative
error of 150 arcsec between two antennas in the AT-ND plane. ADCS-PC-REQ-3: The ADCS system
shall have a maximum relative error of 150 arcsec between two antennas in the CT-ND plane.
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The pitch stability requirement is derived analytically in this thesis based on the sampling resolution of
the scientific payload. To avoid aliasing of the measured ground track, the pitch angle variation during a
single measurement period shall not exceed 10% of the spatial sample resolution [7]. For a sample res-
olution of 2 km and a measurement period of 0.25 s, this corresponds to a maximum allowable ground
displacement of 200m. Using the equation (δground = H tan θpitch) that translates this to a maximum
pitch rotation of 82.5 arcsec per 0.25 s measurement period. Now the requirement on pitch stability can
be formulated: ADCS-PC-REQ-4: The ADCS system shall have a maximum pitch PDE of 330 arcsec

s .

Pointing Knowledge
The second category of attitude determination and control system (ADCS) requirements concerns point-
ing knowledge, which defines the accuracy with which the spacecraft attitude must be estimated. Point-
ing knowledge requirements are derived from a combination of mission-level scientific observability
constraints reported in the Alticube+ concept study [7] and established ADCS design practices. Where
requirements are not explicitly specified in the literature, conservative engineering assumptions are
adopted and clearly identified.
The most stringent pointing knowledge requirement applies to the roll axis, which directly influences
the synthetic aperture radar (SAR) observation geometry and the along-track phase coherence of the
measurement. As discussed in Section 2.2, accurate roll attitude knowledge is essential to ensure
proper geolocation and scientific data quality. Based on the SAR performance analysis presented in
[7], the aggregated spacecraft system shall achieve a roll mean knowledge error (MKE) of 20 arcsec
RMS over the full measurement track, with an allowable maximum MKE of 100 arcsec RMS. This leads
to the following requirement: ADCS-PK-REQ-1: The aggregated system shall have a roll angle MKE
of 20 arcsec RMS over the measurement track, or a maximum MKE of 100 arcsec RMS.
For the pitch and yaw axes, the literature does not provide explicit mission-level pointing knowledge
requirements. However, accurate knowledge in these axes remains necessary to support stable closed-
loop attitude control and post-processing of scientific data. In spacecraft ADCS design, it is common
practice to require attitude knowledge accuracy to be significantly tighter than pointing control accuracy,
typically by a factor of two to ten, in order to maintain sufficient observability margin and estimator ro-
bustness.In this research, a conservative and symmetric approach is adopted by setting the pitch and
yaw knowledge requirements equal to the maximum allowable roll knowledge error defined in ADCS-
PK-REQ-1. This assumption ensures that attitude estimation errors do not become a limiting factor
for control performance or scientific data quality. Accordingly, the following requirements are defined:
ADCS-PK-REQ-2: The aggregated system shall have a maximum pitch angle MKE of 100 arcsec RMS.
ADCS-PK-REQ-3: The aggregated system shall have a maximum yaw angle MKE of 100 arcsec RMS.
In addition to absolute attitude knowledge, the relative pointing knowledge between two antennas form-
ing a single baseline must be sufficiently accurate to enable correct reconstruction of the interferometric
geometry. According to the Alticube+ concept study [7], the relative pointing knowledge error between
antennas shall not exceed 100 arcsec RMS. This results in the final pointing knowledge requirement:
ADCS-PK-REQ-4: The aggregated system shall have a maximum relative pointing knowledge error of
100 arcsec RMS between two antennas forming a baseline.

Hardware Usage
This subsection defines the hardware usage requirements adopted in this research. Unlike the point-
ing control and pointing knowledge requirements, which are primarily derived from scientific mission
objectives and literature, the hardware usage requirements are defined explicitly within the scope of
this master’s thesis. Their purpose is to constrain the modelling and control design to a realistic and
tractable configuration that is consistent with the Alticube+ concept study [7], while avoiding unneces-
sary complexity beyond the research objectives. As presented in Section 2.3, the ADCS architecture
of Alticube+ consists of reaction wheels and magnetorquers as actuators, and a combination of star
trackers, gyroscopes, and sun sensors for attitude determination. During the scientific operation phase,
precise and continuous attitude control is required, while orbital control and momentum dumping activ-
ities are not expected to be active. The main purpose of the reaction wheels is to point Alticube+ in the
correct direction. The other actuator, magneto torquer, is used for de-saturation of the reaction wheels.
This leads to the following hardware usage requirement: ADCS-HW-REQ-1: The ADCS system shall
utilize reaction wheels as the sole actuators for attitude control during the scientific operation phase.
Another important consideration is the available power budget. According to the Alticube+ concept
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study [7], the average allocated power for the Attitude and Orbit Control System (AOCS) over an or-
bital period is 5.3W. During the scientific operation phase considered in this research, it is assumed
that orbit control functions are inactive, allowing the full allocated AOCS power budget to be used by
the ADCS. Furthermore, the central node of the aggregated Alticube+ system does not host scientific
payloads, leaving an additional estimated 22W of available power margin. Given that this research
focuses on a centralised ADCS architecture rather than detailed power management, the available
power margin is considered sufficient and non-limiting. As a result, no explicit power usage require-
ment is imposed within the scope of this thesis. For attitude determination, each CubeSat platform is
equipped with a star tracker, gyroscope, and three sun sensors. However, due to limited inter-satellite
data interfaces and the adoption of a centralised control architecture, it is not feasible to fuse sensor
data from all nodes in real time during scientific operations. To maintain a realistic and implementable
control framework, attitude estimation is therefore restricted to the sensors located on the central node.
This results in the final hardware usage requirement: ADCS-HW-REQ-2: Attitude estimation of Altic-
ube+ shall be limited to the attitude sensors located on the central node during the scientific operation
phase.

3.3. ADCS Requirements Table
With all relevant requirements identified, a table summarising the ADCS requirements can be seen in
3.2.

Table 3.2: List of ADCS requirements applicable to the scientific operation phase

Requirement ID Description Notes
ADCS-PC-REQ-1 The ADCS system shall have an APE ≤ 0.2 deg. Pointing control
ADCS-PC-REQ-2 The ADCS system shall have a maximum relative

error of 150 arcsec between two antennas in the AT-
ND plane.

Pointing control

ADCS-PC-REQ-3 The ADCS system shall have a maximum relative
error of 150 arcsec between two antennas in the CT-
ND plane.

Pointing control

ADCS-PC-REQ-4 The ADCS system shall have a maximum pitch PDE
of 330 arcsec

s .
Pointing control

ADCS-PK-REQ-1 The aggregated system shall have a roll angle MKE
of 20 arcsecRMS over the wholemeasurement track,
or a maximum MKE of 100 arcsec RMS.

pointing knowledge

ADCS-PK-REQ-2 The aggregated system shall have a maximum pitch
angle MKE of 100 arcsec RMS.

pointing knowledge

ADCS-PK-REQ-3 The aggregated system shall have a maximum yaw
angle MKE of 100 arcsec RMS.

pointing knowledge

ADCS-PK-REQ-4 The aggregated system shall have a maximum rela-
tive error between two antenna’s that make up one
baseline of 100 arcsec RMS.

pointing knowledge

ADCS-HW-REQ-1 The ADCS system shall only utilize reaction wheels
during the scientific operation phase.

ADCS hardware

ADCS-HW-REQ-2 Attitude estimation of Alticube+ shall be limited to the
attitude sensors from the central node.

ADCS hardware
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Modelling Framework

Answering the remaining research questions will require a modelling framework. This framework con-
sists of three model frameworks: orbit model, spacecraft model and reaction wheel model. The orbital
model defines the orbital reference frame during the scientific operation phase and provides a base-
line for the spacecraft’s payload pointing. The spacecraft model defines the dynamics and kinematics
of Alticube+ for both rigid space model and flexible model. Lastly, the reaction wheel model ensures
realistic behaviour of the actuator, including hardware limitations and jitter.

4.1. Orbital Model

Figure 4.1: Reference Frame convention for an Earth
centred inertial reference frame

The orbit of Alticube+ has already been defined
in section 2.1. To fully define the orbital model
framework, several relevant reference frames need
to be defined first. The first relevant refer-
ence frame is the Earth centred inertial refer-
ence frame (ECI), which forms the basis of all
reference frames that are used in the complete
modelling framework and defined as FI ∈ R3.
Here, Îx and Îz are defined as unit vectors point-
ing towards the vernal equinox and celestial pole
from the mean J2000 respectively, completed by
Îy = Îz × Îx. Within this inertial reference
frame, the sun vector ê⊙ moves around the eclip-
tic plane as seen in Figure 4.1. The ecliptic
plane is defined by the normal vector êω⊙ that is
rotated around the the Îx axis by i⊙ = 23.5
degrees from the Îz axis. Then the sun vec-
tor rotates around this plane. The sun vec-
tor ê⊙ can be mathematically defined by equation
4.1.

ê⊙ = T⊙
I Îx ; T⊙

I =

 cos θ⊙ − sin θ⊙ 0
cos i⊙ sin θ⊙ cos i⊙ cos θ⊙ − sin i⊙
sin i⊙ sin θ⊙ sin i⊙ cos θ⊙ cos i⊙

 (4.1)

Here, the rotating motion of the sun vector can be expressed by equation 4.2.

θ⊙(t) = ω⊙(t− t0) + θ⊙(t0) ; ω⊙ ≈ 7.292 · 10−5 rad

s
(4.2)

The second relevant reference frame is the Orbit-Fixed Reference Frame (OFRF). This reference frame
is defined by several properties as presented in Figure 4.1. Obtaining the rotation matrix requires the

21
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transformation matrix seen in Equation 4.3 where two consecutive rotations are performed, first around
the Îx axis and then the Îz axis.

TOF
I =

cosΩRAAN − sinΩRAAN cos i sinΩRAAN sin i
sinΩRAAN cosΩRAAN cos i − cosΩRAAN sin i

0 sin i cos i

 (4.3)

The inclination defined for Alticube is i = 78 deg and is a Sun Synchronous orbit (SSO) with the Right
Ascension of the Ascending Node (RAAN) at 10 AM. This means that ΩRAAN moves along the equator
following the sun vector with the same speed, meaning that equation 4.2 can be used, including an
offset that keeps the 10 AM RAAN ΩRAAN (t) = θ⊙(t)− π

6 .

Figure 4.2: Example of nadir orbital path
reference frame in orbit

The last reference frame within the orbital model is the Or-
bital Path Reference Frame (OPRF) defined as Fa ∈ R3.
This reference frame defines the reference frame of orbital
path at the position of the satellite relative to the OFRF. The
three OPRF axis are defined as âx, ây and âz, where each
are pointing along track, cross track and nadir respectively
(See Figure 4.2 for reference). Achieving this reference
frame requires two transformations. First an eigenaxis ro-
tation around the normal vector of the orbital plane is per-
formed. The rotation matrix is defined as the directional co-
sine matrix based on the eigenaxis rotation as described in
equation 4.4.

TOP
OF =

cos θp − sin θp 0
sin θp cos θp 0
0 0 1

0 0 −1
1 0 0
0 −1 0

 (4.4)

In equation 4.4, the first reference rotation puts the âx, ây
and âz axis towards the correct orientation for an orbit in the
Îx− Îy plane. Then the second matrix rotates the reference

frame according with an angle θp according to the current orbit path and is dependent on the orbit
properties. For a circular orbit, this equation would be:

θp(t) = n(t− t0) + θp(t0) ; n =

√
µ⊕

(R⊕ +H)3
(4.5)

Where µ⊕ is the gravitational constant of Earth, R⊕ is the Earth’s radius and H is the orbital height.
After this transformation, the last matrix from equation 4.3 is applied to reform is into the correct orbit
using the following product convention: TOP

I = TOF
I TOP

OF

External Disturbance Torques
Disturbance torques are unavoidable external driven forces that perturb a spacecraft from its desired
attitude and must be counteracted by the attitude control system to maintain stable pointing. These
torques arise from a variety of sources. Effects such as gravity-gradient, aerodynamic drag, solar radia-
tion pressure, and Earth’s magnetic field. Although often small in magnitude, disturbance torques can
accumulate over time, leading to attitude deviations if not properly mitigated. Therefore, the inclusion of
disturbance torques is necessary to determine the attitude controller’s capability in satisfying the ADCS
requirements while dealing with quasi- real life disturbance torque scenario’s (i.e. simplified model of
disturbance torques) . The total disturbance torque is the sum of contributing disturbance torques as
seen in equation 4.6.

τ̄d = τ̄gg + τ̄drag + τ̄mag + τ̄solar (4.6)

Gravity Gradient Torque
Earth’s gravity is radially a non-homogeneous field, which can induce torques for spacecraft with non-
symmetrical structure. Spacecraft structures which lie below the centre of mass will experience a
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greater force of attraction to Earth than structures that lie farther away than the centre of mass. This very
small differential in gravity introduces a rotational force, called gravity gradient torque. The derivation
of this torque has been mathematically done before and is the resulting equation is given by [52].

τ̄gg = 3n2âz × J âz (4.7)

Here, J is the inertial matrix of the spacecraft in the inertial reference frame FI .

Aerodynamic Torque
Although very small, the atmosphere is present in Low Earth Orbit (LEO) and impacts the spacecraft in
the form of atmospheric drag. The drag formula can be written in the standard form as seen in equation
4.8.

f̄D = −1

2
ρ

µ

R⊕ +H
CDAeff âx (4.8)

Here, ρ is the atmospheric density. For an orbit at 500 km, the exosphere has a mean density is roughly
ρ ≈ 4.76 ·10−13 kg

m3 and a maximum density of ρ ≈ 2.82 ·10−12 kg
m3 [53]. CD is the drag coefficient, which

is assumed to be 2.2 for general cubesats in LEO. Lastly, Aeff is the effective area of the spacecraft
in the along track (âx) direction. Then the torque can be obtain by applying the cross product between
the drag force and lever distance from the centre of mass to the centre of pressure.

τ̄drag = r̄cp × f̄D (4.9)

Solar Pressure
The solar pressure that is experienced by the spacecraft during orbit generates a small force. This
force can be expressed by equation 4.10.

f̄solar = −SAS

c
ê⊙ (4.10)

Here, S is the solar constant in W
m2 , c is the speed of light and AS is the area exposed to the solar

pressure. From equation 4.10, it can be observed that the vector is driven by the sun vector, pointing in
the opposite direction relative to the inertial reference frame FI . For this research, the solar constant
is assumed to be 1400 W

m2 , over estimating the solar pressure slightly. To obtain the resulting solar
pressure torque, just like in equation 4.9, the cross product is taken with the centre of pressure arm.

τ̄solar = r̄cp × f̄solar (4.11)

Magnetic Torque
For LEO satellites, Earth’s magnetic field influences spacecraft through a residual dipole that is present
for all satellites containing electrical wires or solar panels. The torque generated by the magnetic field
and residual pole is described by equation 4.12.

τ̄mag = m̄× B̄⊕ (4.12)

Here, m̄ is the residual dipole moment and B̄⊕ is the magnetic field of Earth. Modelling Earth’s magnetic
field will be simplified with respect to the integral version of the geomagnetic model from the National
Oceanic and Atmospheric Administration (NOAA). It will be assumed that the magnetic field vector will
be in line with true north and orthogonal with respect to nadir. The magnetic field strength between
latitudes 75◦ S − 75◦ N assumed to have a mean magnitude of 35µT . The residual dipole moment
of Alticube is based on [54] which states that the 3U Dart CubeSat had a measured residual dipole
moment of 9.0 · 10−3Am. Taking in to account that Alticube+ has five Cubesats, the residual dipole
moment is assumed to be 0.05Am.
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4.2. Rigid Spacecraft Model
Section 4.1 presented the orbital model framework, where the various reference frames from the inertial
reference frame to the orbital path reference frame was defined. This section will cover the framework
of the spacecraft model, specifically the rigid spacecraft model. First, the definition on Alticube+’s
spacecraft reference frame is defined. Then the mathematical convention that couples the orbital path
reference frame to the spacecraft reference frame is derived for both Euler angels and quaternions.
Then the relevant rigid body dynamics and kinematics are derived which will provide the mathematical
basis of the spacecraft model framework. Lastly, the non-linear dynamics are linearised into a linear
state-space model.

4.2.1. Spacecraft Reference Frame
Relating the Spacecraft body reference frame to the orbital reference frame is essential for spacecraft
kinematics. This can be done in two ways, using Euler angles and quaternions. Euler angles are
used to validate the performance of the spacecraft related to the requirements discussed in chapter 3.
Quaternions are utilised for the spacecraft model to describe the dynamics and kinematics. But first,
the basis of the reference frame needs to be defined. The body reference frame using the vector basis
{b̂x, b̂y, b̂z} ∈ R3 is related relative to the OPRF with the vector basis {âx, ây, âz} ∈ R3. Transformation
between these reference frames can be done using a Directional Cosine Matrix (DCM) as seen in
equation 4.13. b̂xb̂y

b̂z

 =

C11 C12 C13

C21 C22 C23

C31 C32 C33

âxây
âz

 (4.13)

The DCM in terms of the Euler angle rotations θ̄ =
[
θ1 θ2 θ3

]T can be expressed by three individual
rotation matrix around each individual OPRF axis.

b̂xb̂y
b̂z

 = Cz(θ3)Cx(θ1)Cy(θ2)

âxây
âz

 (4.14)

Where,

Cx(θ1) =

1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1

 Cy(θ2) =

 cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2

 Cz(θ3) =

cos θ3 − sin θ3 0
sin θ3 cos θ3 0
0 0 1


The DCM can also be used to compute the Euler angles if both orbital path and body reference frame
vector basis are known: θ̄ =

[
arcsin (C32) arctan

(
−C31

C33

)
arctan

(
−C12

C22

)]T
With the Euler angle

method defined, the quaternion method will be defined next. First a definition of the quaterion vector
and its constraint is given as follows.

q̄ =
[
q1 q2 q3 q4

]T
; q̄T q̄ = 1 (4.15)

For the quaternions, a DCM using the quaternions is given by equation 4.16 [55].

b̂xb̂y
b̂z

 = Cb
a

âxây
âz

 ; Cb
a =

(
q24 − q̄T q̄)I + 2q̄q̄T − 2q4q̄

×) (4.16)

Expanding both sides to its matrix form will give the following equationC11 C12 C13

C21 C22 C23

C31 C32 C33

 =

1− 2(q22 + q23) 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) 1− 2(q21 + q23) 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) 1− 2(q21 + q22)

 (4.17)
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4.2.2. Rigid Body Dynamics and Kinematics
In this section, the rigid body dynamics for spacecraft is discussed along with the associated kinematics.
As presented in section 4.2.1, the kinematics between two reference frames can be expressed by Euler
angles or quaternions through the DCM. For the remainder of this section, quaternions will be used
to express the spacecraft kinematics of this spacecraft. Starting with the kinematics, a relationship
between the the rotation rate for the body reference frame Fb relative to the OPRF Fa is derived to
fully describe the kinematics for a rigid spacecraft. Let the angular rate of the body reference frame Fb

relative to OPRF Fa be described as ω̄Fb/Fa . For equation 4.18 until equation 4.20, the notation for the
angular rate will be simplified to: ω̄ = ω̄Fb/Fa . The first order derivative of the body reference frame
vectors

[
b̂x b̂y b̂z

]T can be expressed by equation 4.18. ˙̄bx˙̄by
˙̄bz

 =

ω̄ × b̂x
ω̄ × b̂y
ω̄ × b̂z

 ; ω̄ = ω1b̂x + ω2b̂y + ω3b̂z (4.18)

Remembering equation 4.13, inverting the DCM to the other side of the equation and taking the deriva-
tive will give equation 4.19.âxây
âz

 = C−1

b̂xb̂y
b̂z

 = CT

b̂xb̂y
b̂z

 =⇒

0̄0̄
0̄

 = Ċ
T

b̂xb̂y
b̂z

+CT

ω̄ × b̂x
ω̄ × b̂y
ω̄ × b̂z

 = Ċ
T

b̂xb̂y
b̂z

−CT

 0 −ω3 ω2

ω3 0 ω1

−ω2 ω1 0

b̂xb̂y
b̂z


By reducing this to the matrix form, collecting terms and transposing the equation simplifies the equa-
tion.

03×3 = (Ċ
T−CTΩ)

b̂xb̂y
b̂z

 =⇒ Ċ
T
= CTΩ =⇒ Ċ = ΩTC =⇒ Ċ−ΩTC = 0 ; Ċ =

Ċ11 Ċ12 Ċ13

Ċ21 Ċ22 Ċ23

Ċ31 Ċ32 Ċ33



Ċ +ΩC = 0 ; ΩT = −Ω ; Ω =

 0 −ω3 ω2

ω3 0 ω1

−ω2 ω1 0

 (4.19)

Computing the derivative of equation 4.17 and substituting equation 4.17 and its derivative into equation
4.19, ˙̄q can be computed.

˙̄q = Λq


ω1

ω2

ω3

0

 = Λω q̄ ⇐⇒


ω1

ω2

ω3

0

 = Λ−1
q

˙̄q (4.20)

Where

Λq =


q4 −q3 q2 q1
q3 q4 −q1 q2
−q2 q1 q4 q3
−q1 −q2 −q3 q4

 ; Λω =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0


Rotating OPRF Kinematics
The kinematics described above relate the angular rates of the body with respect to Fa. To describe
the dynamics in the Inertial frame FI , the total angular rate of the spacecraft relative to the inertial
reference frame ω̄Fb/FI needs to be explored. For Alticube+, as described in section 4.1, the spacecraft
will enter a circular orbit, where the OPRF (Fa) points along-track, cross-track and nadir (See Figure
4.2). Knowing this information, the angular rate of the body relative to the inertial reference frame can
be described by.

ω̄Fb/FI = ω̄Fb/Fa + ω̄Fa/FI (4.21)
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The angular rate of the OPFR with respect to FI is a clockwise rotation around the ây with a magnitude
of n. Equation 4.22 then describes the full angular rate of the body.

ω̄Fb/FI = Λ−1
q

˙̄q − n

[
ây
0

]
(4.22)

Here, ây = C12b̂x + C22b̂y + C32b̂zNow isolating ˙̄q to the left side and substituting the DCM elements
from equation 4.17, equation 4.23 can be described.

˙̄q =
1

2
Λqω̄ +

n

2
Λq


2(q1q2 + q3q4)
1− 2(q21 + q23
2(q2q3 − q1q4)

0

 (4.23)

Reducing the second term of the right hand-side of the equation will give the following. Derivation of
equation 4.24 can be found in Appendix A.

˙̄q =
1

2
Λqω̄ +N q q̄ ; N q =

n

2

[
02×2 I2×2

−I2×2 02×2

]
(4.24)

Dynamics
Now that the full kinematics for Alticube+ in a circular orbit is described, rigid body dynamics is looked
at. The equation of motion of a satellite that rotates in space is presented in equation 4.25 [55].

J ˙̄ω +ΩJ ω̄ = τ̄ (4.25)

Where ω̄ = ω̄Fb/FI , J is the inertia matrix of Alticube+ and τ̄ is the torque. Isolating ˙̄ω to the left side,
equation 4.26 is obtained.

˙̄ω = J−1τ̄ − J−1ΩJ ω̄ (4.26)

4.2.3. Non-linear Plant
With both kinematics and spacecraft dynamics described, they can be merged into a non-linear differ-
ential equation as described in equation 4.27.

˙̄x = f(x̄) + g(ū) (4.27)

Here, f(x̄) represents the dynamics function with x̄ =
[
q̄ ω̄

]T being the state vector of the spacecraft.
g(ū) represents the input function for the torque input ū =

[
τ̄c τ̄d

]T which consists of both control and
disturbance torques. The functions f(x̄) and g(ū) are defined by using the derived equations 4.24 and
4.26.

f(x̄) =

[
1
2Λqω̄ +N q q̄

−J−1ΩJ ω̄

]
; g(ū) =

[
0 0

J−1 J−1

]
ū

The function of the non-linear plant is to model the spacecraft dynamics and kinematics accurately.
Figure 4.3 is a schematic of the block digram for the non-linear model in Simulink.

Figure 4.3: Simulink block diagram of non-linear plant model.
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4.2.4. Linearised State-Space Model
Although the non-linear model accurately represents the dynamics and kinematics of Alticube, a lin-
earised model simplifies the spacecraft dynamics and allows for LQR control. The other function of
a linearised state-space model is that the Kalman filter can use this to perform predictions of the true
attitude modelled by the non-linear dynamics. Before linearising the state space, a couple of changes
and assumptions should be clarified. Firstly, a change in the input function from equation 4.27 is made.
The linearised model cannot directly model disturbance torques as LQR and the Klaman filter cannot
directly influence and predict disturbance torques. This means that the input function from 4.27 is
changed to g(ū) = J−1ū where ū = τ̄c. Secondly, an assumption is made on the linearisation. The
state-space will balance around the Fa reference frame. It then follows from equation 4.14 that the
state-space model needs to be linearised around θ̄ℓ,0 =

[
0 0 0

]T . The angular rate then needs to be
linearised around ω̄ℓ,0 =

[
0 −n 0

]T to account for the orbital rotation around the ây axis. Although
the linearisation point is obtained in terms of Euler angles, it is required to be transformed in terms
of quaternions in order to apply this to the non-linear plant. Starting from the transformation between
linearised Euler angles and quaternions.

δq̄ =
δθ̄

2
(4.28)

To linearise the non-linear plant, a Taylor expansion is taken around the linearisation point, which is
x̄ℓ,0 =

[
θ̄Tℓ,0 ω̄T

ℓ,0

]T . For a more neat derivation, the non-linear plant, from equation 4.27 can be
separated again, and a Taylor expansion can be done for equation 4.24 and equation 4.26 and will be
represented in the following manner.

˙̄q = f(q̄, ω̄) ; ˙̄ω = g(ω̄, ū)

Starting with the linearisation of ˙̄q, equation 4.29 shows the Taylor expansion of this function.

˙̄qℓ = f(q̄ℓ,0, ω̄ℓ,0) +
∂f

∂q̄
(q̄ℓ,0, ω̄ℓ,0)δq̄ +

∂f

∂ω̄
(q̄ℓ,0, ω̄ℓ,0)δω̄ +O(δq̄2) +O(δω̄2) (4.29)

Here, the second order terms will be neglected. Now first the derivation of the first order derivative with
respect to q̄ is done.

∂f

∂q̄
=

1

2

∂(Λqω̄)

∂q̄
+

∂(N q q̄)

∂q̄
(4.30)

Remembering equation 4.20, the first term of equation 4.30 can be changed: Λqω̄ ↔ Λω q̄. Applying
this to the first term will give:

∂f

∂q̄
=

1

2
Λω +Nq (4.31)

Now filling in the values of the linearisation point x̄ℓ,0 into equation 4.31 gives equation 4.32.

∂f

∂q̄
(q̄ℓ,0, ω̄0) =

1

2


0 0 n 0
0 0 0 −n
−n 0 0 0
0 n 0 0

+
n

2


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 =


0 0 n 0
0 0 0 0
−n 0 0 0
0 0 0 0

 (4.32)

It is interesting to note that the fourth row and colum are zero valued. This is a logical consequence
from the linearisation of the quaternions where q4 is a constant, as seen from equation 4.15. Equation
4.32 can ben by simplified to a 3× 3 matrix.

∂f

∂q̄
(q̄ℓ,0, ω̄ℓ,0) =

 0 0 n
0 0 0
−n 0 0

 (4.33)
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Looking at the linearisation of f(q̄, ω̄) with respect to ω̄ gives the following.

∂f

∂ω̄
=

1

2
Λq ⇒

∂f

∂ω̄
(q̄ℓ,0, ω̄ℓ,0) =

1

2
I3×3 (4.34)

Again, because q4 is constant, this matrix can be reduced to a 3× 3 matrix. The last part is to fill in the
first term of equation 4.29. For this, as q4 is constant, the resulting vector of f(q̄ℓ,0, ω̄ℓ,0) should give
a 3 × 3 matrix. For this reason, the Λq will be reduced to a 3 × 3 matrix by removing the fourth row
and column as done in equation 4.33. In addition to this, the fourth row of N q is also removed as q4 is
already known, which makes the fourth row redundant. Now filling in f(q̄ℓ,0, ω̄ℓ,0) gives.

f(q̄ℓ,0, ω̄ℓ,0) =
1

2

1 0 0
0 1 0
0 0 1

 0
−n
0

+
n

2

 0 0 1 0
0 0 0 1
−1 0 0 0



0
0
0
1

 =

 0
−n

2
0

+

0n
2
0

 = 0̄ (4.35)

With both first order derivatives known, equation 4.29 can be finalised by filling in the values for all
terms.

˙̄qℓ =

 0 0 n
0 0 0
−n 0 0

 δq̄ +
1

2
I3×3δω̄ (4.36)

Now with the first equation linearised, ˙̄ω can also be linearised as is expanded using the Taylor expan-
sion as seen here below.

˙̄ωℓ = g(ω̄ℓ,0, ū) +
∂g

∂ω̄
(ω̄ℓ,0, ū)δω̄ +O(δω̄2) (4.37)

Here, the second order term is neglected and ū =
[
0 0 0

]T . The first term from equation 4.37 is
then computed.

g(ω̄ℓ,0, ū) = J−1ū− J−1

0 0 −n
0 0 0
n 0 0

J

 0
−n
0

 = J−1ū (4.38)

Now deriving the first order derivative term of equation 4.37.

∂g

∂ω̄
=

∂J−1ū

∂ω̄
− ∂(J−1Ω(ω̄)J ω̄)

∂ω̄
= −J−1 ∂(Ω(ω̄)J ω̄)

∂ω̄
(4.39)

The term −Ω(ω̄)J ω̄ needs to be simplified into one vector in order to compute the derivative.

−Ω(ω̄)J ω̄ = −

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

J11 0 0
0 J22 0
0 0 J33

ω1

ω2

ω3

 =

(J22 − J33)ω2ω3

(J33 − J11)ω1ω3

(J11 − J22)ω1ω2


Now computing the derivative of this vector will give the following matrix.

∂(Ω(ω̄)J ω̄)

∂ω̄
=

 0 (J22 − J33)ω3 (J22 − J33)ω2

(J33 − J11)ω3 0 (J33 − J11)ω1

(J11 − J22)ω2 (J11 − J22)ω1 0


Putting this result back into equation 4.39 will give the following equation.
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∂g

∂ω̄
=

 0 J22−J33

J11
ω3

J22−J33

J11
ω2

J33−J11

J22
ω3 0 J33−J11

J22
ω1

J11−J22

J33
ω2

J11−J22

J33
ω1 0

 (4.40)

With all terms defined, equation 4.37 can be completed and simplified, which results in equation 4.41.

˙̄ωℓ =

 0 0 J33−J22

J11
n

0 0 0
J22−J11

J33
n

 δω̄ + J−1ū (4.41)

Equation 4.36 and 4.41 described the spacecraft dynamics for a linearised state. Now these two equa-
tion can be transformed into a state-space model described by equation 4.42.

˙̄xℓ = Ax̄ℓ +Bū ; z̄ = Hx̄ℓ +Dū (4.42)

WhereA is the state-matrix,B is the input matrix,H is the observation matrix andD is the throughput
matrix. For this state-space model, the state vector here can be described as x̄ℓ =

[
δq̄T δω̄T

]T and
input vector as ū = τ̄c. The respective matrices are constructed based on equation 4.36 and 4.41.

A =



0 0 n 1
2 0 0

0 0 0 0 1
2 0

−n 0 0 0 0 1
2

0 0 0 0 0 nJ33−J22

J11

0 0 0 0 0 0
0 0 0 nJ22−J11

J33
0 0

 ;

B =

[
I3×3

J−1

]
H = I6×6

D = 06×3

The state space model can then be transformed into an open-loop block diagram as seen in Figure 4.4.
This model then has the torque τ̄ as input and ten propagates the state to the next step, which is then
outputted.

Figure 4.4: Open-loop state space block diagram
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4.3. Flexible Model
The rigid body dynamics used in section 4.2 were sufficient for the Rigid body case of Alticube+. It is
not sufficient to describe the flexible dynamics of Alticube+ due to the nature of the problem. Alticube+
can be identified as multiple rigid bodies (the five CubeSats) which are constraint by the booms linking
the five CubeSats. Kane’s equations is a great and simple method to implement, completely defining a
framework for the flexible dynamics problem. [56] brings an effective implementation of Kane’s equa-
tions for a set of rigid body satellites which closely relates to configuration of Alticube+. This section
will adapt this implementation used by [56] to suit the structural setup of Alticube+. The derivation of
the flexible dynamics can be divided into three parts. The first part will define the dynamics between
two rigid bodies connected by a torsional joint that represents the boom. The second part constructs
the full dynamics of all five cubesats through matrix representation relative to the central CubeSat’s mo-
tion. Lastly, the full dynamics of the entire spacecraft, including the central cubesat is outlined through
Kane’s equations.

4.3.1. Two Rigid Body Case
In order to create the complete framework of flexible dynamics for Alticube, the fundamental basis of
the implementation of Kane’s equation is presented. This dynamcis entails two rigid body spacecraft
which are connected by a boom. This boom can be represented by a torional spring that is able to
rotate around all three axis (roll, yaw and pitch). Figure 4.5 gives a graphical representation of the two
linked spacecraft.

Figure 4.5: Two rigid body spacecraft dynamics linked by torsional spring

During the derivation of the dynamics, the two spacecraft can be separated through the notion of an
inner and outer spacecraft. Here, the inner spacecraft (labelled SCi) motion can be identified with
the translational motion v̄i and angular motion ω̄i, while the outer spacecraft (Labelled SCo) has the
motion variables v̄o and ω̄o. The torsional joint linking the two spacecraft is labelled as Gk and has the
angular displacement θ̄k. The dynamics is derived in the inertial space, meaning that both translational
and angular motion is represented in the inertial reference frame similar to the rigid body dynamics
derived in section 4.2. But as the angular rates for a specific spacecraft are best described in the body
reference frame of that spacecraft, the motion can also be described in the form of a partial velocities
as seen in equation 4.43.

ω̄FI = u1b̂x + u2b̂y + u3b̂z (4.43)

Here, u1, u2 and u3 represent the angular rates with respect to the spacecraft reference frame with as
basis the spacecraft body reference frameFb as the basis vectors. Similarly, the velocity of a spacecraft
can be expressed using equation 4.44.
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v̄FI = u4n̂x + u5n̂y + u6n̂z (4.44)

Where u4, u5 and u6 represent the translational velocities with respect to the inertial reference frame
FI. This notation can be reduced to a more convenient form with the use of dyads.

ω̄ = B
[
u1 u2 u3

]T
; B =

[
b̂x b̂y b̂z

]
v̄ = N

[
u4 u5 u6

]T
; N =

[
n̂x n̂y n̂z

]
The dyads are essentially a matrix of the basis vectors which construct a particular reference frame.
For example, the angular velocity dyad B is created from the body reference frame basis vectors.

Letting ū =
[
u1 u2 u3 u4 u5 u6

]T be the vector that represents all partial velocities, then the
translational and angular velocities can be expressed by equation 4.45 and 4.46.

ω̄ = Ωū ; Ω =
[
B 03×3

]
(4.45)

v̄ = V ū ; V =
[
03×3 N

]
(4.46)

Single Link Formulation
Now that all mathematical notations have been expressed, derivation of the two rigid body dynamics
can be done. Starting with the inner spacecraft, where the translational and angular velocity can be
expressed similar to equation 4.43 and 4.44.

ω̄FI
i = Biω̄i ; v̄FI

i = Nv̄i (4.47)

Where, Bi is the dyad of the inner body reference frame. ω̄i is the angular velocities with respect to the
inner body reference frame. The angular velocity of the outer spacecraft can be described as the sum
of angular velocities as seen in equation 4.48

ω̄FI
o = ω̄FI

i + ω̄Fo/Fi (4.48)

This equation is similar to equation 4.21, where the angular velocity of the joint can be related to the
kinematics using the Euler angle approach. Then the relative angular velocity between the outer and
inner spacecraft can be described by equation 4.49

ω̄Fo/Fi = BoΛk
˙̄θk ; Λk =

1 − sin θk3 0
0 cos θk1 cos θ

k
3 − sin θk1

0 sin θk1 cos θ
k
3 cos θk3

 (4.49)

Having derived all components needed to described the angular velocity of the outer spacecraft, equa-
tion 4.50 can be generated.

ω̄FI
o = Biω̄i +BoΛk

˙̄θk (4.50)

The translational velocity of the outer spacecraft can be defined by adding the angular velocity contribu-
tion of the inner spacecraft and the joint together with the translational velocity of the inner spacecraft.
By careful examination of the arm directions in Figure 4.5, equation 4.51 is obtained.

v̄FI
o = v̄FI

i + ω̄FI
i × r̄ik − ω̄FI

o × r̄ok (4.51)
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substituting equation 4.48 into 4.51 and rearranging terms by the velocity components and using the
dyads for each of the velocity components will give the following.

v̄Fi/FI = Nv̄i + (Biω̄i)× (Nr̄ik −Nr̄ok)− (BoΛk
˙̄θk)×Nr̄ok (4.52)

Now that all velocity components are defined for the two spacecraft, the system of equations can be
transformed into amatrix form, which will then depend on the partial velocity vector ū =

[
ω̄T
i

˙̄θTk v̄Ti

]T
.

[
ω̄FI
i

ω̄FI
o

]
=

Bi 0 0

Bi BoΛk 0

ω̄i

˙̄θk
v̄i

 ; {ω̄FI} = Ωū (4.53)

[
v̄FI
i

v̄FI
o

]
=

[
0 0 N

Nβ̄×
oiBi Nr̄×okBoΛ1 N

]ω̄i

˙̄θk
v̄i

 ; {v̄FI} = V ū (4.54)

Where β̄oi = r̄ok − r̄ik. The last step is to eliminate the dyad notation. This can be achieved through
using the following basis vector transformation matrix notation seen in equation 4.55.

Bo
TBi = T o

i ; Bi
TBi = Bo

TBo = I ; NTBi = TN
i ; NTBo = TN

o (4.55)

Multiplying the ω̄i row with Bi
T , ω̄o row with Bo

T and v̄ rows with NT will give equation 4.56 and 4.57
which can be described in pure matrix notation.

[
ω̄i

ω̄o

]
=

[
I 0 0
I T o

i Λk 0

]ω̄i

˙̄θk
v̄i

 ; {ω̄} = Ωū (4.56)

[
v̄i
v̄o

]
=

[
0 0 I

β̄×
oiT

N
i r̄×okT

N
o Λk I

]ω̄i

˙̄θk
v̄i

 ; {v̄} = V ū (4.57)

4.3.2. Assembly of Constrained Multi-rigid Spacecraft Dynamics
Section 4.3.1 has described the dynamics of a single link with respect to the centre spacecraft’s motion
(ω̄ and v̄) and joint motion ˙̄θ. This serves as a core component to assemble the full state motion for all
five CubeSats based on the centre spacecraft’s motion and joint motion. First an additional derivation
is made that connects three spacecraft together to outline a pattern. Then the full matrix in the form of
equation 4.56 and 4.57 can be derived for both translational and angular velocity.
Let the notation SCi, SCm, SCo be an identification for the inner, middle and outer spacecraft. The
middle spacecraft is linked to the inner spacecraft by joint Gk. Then the outer spacecraft is linked to
the middle spacecraft by joint Gk+1. The goal is to describe the motion of all spacecraft based on the

partial velocity vector u =
[
ω̄T
i

˙̄θTk
˙̄θTk+1 v̄Ti

]T
. The motion of the outer spacecraft can be described

by the motion of the middle spacecraft through equations 4.47 - 4.52. Starting with the angular velocity:

ω̄FI
o = ω̄FI

m +BoΛk+1
˙̄θk+1 (4.58)

Similarly for the middle spacecraft, equation 4.48 and 4.49 can be used to describe the angular velocity
with respect to the inner spacecraft.

ω̄FI
m = ω̄FI

i +BmΛk
˙̄θk (4.59)
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Now substituting equation 4.59 into equation 4.58 gives equation 4.60.

ω̄FI
o = ω̄FI

i +BmΛk
˙̄θk +BoΛk+1

˙̄θk+1 (4.60)

The pattern here is that the angular velocity is the summation of contributing joint motions plus the inner
spacecraft’s angular velocity. The same method is used for the translational velocities, starting with the
translational velocity of the outer spacecraft with respect to the middle spacecraft.

v̄FI
o = v̄FI

m + ω̄FI
m × r̄m,k+1 − ω̄FI

o × r̄o,k+1 (4.61)

v̄FI
m = v̄FI

i + ω̄FI
i × r̄ik − ω̄FI

m × r̄mk (4.62)

Substituting equations 4.62, 4.59 and 4.60 into equation 4.61 gives equation 4.63.

v̄FI
o = v̄FI

i +ω̄FI
i ×r̄ik−ω̄

FI
m ×r̄mk+

(
ω̄FI
i +BmΛk

˙̄θk

)
×r̄m,k+1−

(
ω̄FI
i +BmΛk

˙̄θk +BoΛk+1
˙̄θk+1

)
×r̄o,k+1

(4.63)

Regrouping terms under the partial velocities and substituting equation 4.59 gives:

v̄FI
o = v̄FI

i +(r̄o,k+1−r̄m,k+1+r̄mk−r̄ik)×ω̄FI
i +(r̄o,k+1−r̄m,k+1+r̄mk)×BmΛk

˙̄θk+r̄o,k+1×BoΛk+1
˙̄θk+1

(4.64)

Similar as before, this can be put into the matrix form and a patterns can be observed.

 ω̄i

ω̄m

ω̄o

 =


Bi 0 0 0 0 0

Bi BmΛk 0 0 0 0

Bi BmΛk BoΛk+1 0 0 0




ω̄i

˙̄θk
˙̄θk+1

v̄i

 (4.65)

 v̄i
v̄m
v̄k

 =


0 0 0 0 0 N

Nβ̄×
miBi Nr̄×miBmΛk 0 0 0 N

Nβ̄×
oiBi Nγ̄×

okBmΛ1 Nr̄×omBoΛk+1 0 0 N




ω̄i

˙̄θk
˙̄θk+1

v̄i

 (4.66)

In order to fully describe the dynamics of all five CubeSats, a new notation is introduced, supported by
Figure 4.6. Starting with the spacecraft identification, let the central spacecraft be described as SC1.
Then following from the body frame reference Fb of SC1, the spacecraft in the positive b̂1y direction are
noted as SC2 and SC3 ordered from closest to farthest. The spacecraft in the negative b̂1y direction are
identified as SC4 and SC5 ordered from closest to farthest from SC1. Next, the joints that represent
the booms are numbered from one to four, where G1 is the joint connecting spacecraft SC1 and SC2.
G2 connects SC2 with SC3, G3 connects SC1 with SC4 and G4 connects SC4 with SC5. Lastly, like in
Figure 4.5, the vector going from the spacecraft’s centre of mass to the joint location Gk is defined as
r̄ik, where i is the spacecraft number and k is the joint number. This means that the vector pointing
to joint one from spacecraft one is defined as r̄11, while the vector going from spacecraft four to joint
three is described as r̄43.

With all variables being defined, equations 4.47 to 4.66 can be used to construct the full matrix in the
form of 4.53 and 4.54.
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Figure 4.6: Flexible model representation of Alticube+


ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

 =



B1 0 0 0 0 0

B1 B2Λ1 0 0 0 0

B1 B2Λ1 B3Λ2 0 0 0

B1 0 0 B4Λ3 0 0

B1 0 0 B4Λ3 B5Λ4 0





ω̄1

˙̄θ1
˙̄θ2
˙̄θ3
˙̄θ4
˙̄θ5
v̄1


(4.67)


v̄1
v̄2
v̄3
v̄4
v̄5

 =



0 0 0 0 0 N

Nβ̄×
21B1 Nr̄×21B2Λ1 0 0 0 N

Nβ̄×
31B1 Nγ̄×

31B2Λ1 Nr̄×32B3Λ2 0 0 N

Nβ̄×
41B1 0 0 Nr̄×41B4Λ3 0 N

Nβ̄×
51B1 0 0 Nγ̄×

51B4Λ1 Nr̄×54B5Λ4 N





ω̄1

˙̄θ1
˙̄θ2
˙̄θ3
˙̄θ4
˙̄θ5
v̄1


(4.68)

Converting this to the matrix form using the same method as with the derivation of the single link, the
following matrix equations can be constructed for both angular and translational velocities.


ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

 =


I3×3 0 0 0 0 0

T 2
1 Λ1 0 0 0 0

T 3
1 T 3

2Λ1 Λ2 0 0 0

T 4
1 0 0 Λ3 0 0

T 5
1 0 0 T 5

4Λ3 Λ4 0





ω̄1

˙̄θ1
˙̄θ2
˙̄θ3
˙̄θ4
˙̄θ5
v̄1


(4.69)


v̄1
v̄2
v̄3
v̄4
v̄5

 =


0 0 0 0 0 I3×3

β̄×
21T

N
1 r̄×21T

N
2 Λ1 0 0 0 I3×3

β̄×
31T

N
1 γ̄×

31T
N
2 Λ1 r̄×32T

N
3 Λ2 0 0 I3×3

β̄×
41T

N
1 0 0 r̄×41T

N
4 Λ3 0 I3×3

β̄×
51T

N
1 0 0 γ̄×

51T
N
4 Λ1 r̄×54T

N
5 Λ4 I3×3





ω̄1

˙̄θ1
˙̄θ2
˙̄θ3
˙̄θ4
˙̄θ5
v̄1


(4.70)

This can then be reduced to the simplified form.
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{ω̄} = Ωū (4.71)

{v̄} = V ū (4.72)

Reference Frame Rotation Matrix convention
Multiple reference frame rotation matrices can be observed in equation 4.69 and 4.70 which takes the
form of either TN

i or T j
i where i and j refer to the spacecraft reference. For TN

i , i = 1, 2, ..., 5. For T j
i ,

i = 1, 2, ..., 4 and j = 2, 3, ..., 5 constrained by j > i.

T j
i =

j−i∏
k=1

T
Bj−k+1

Bj−k
(4.73)

TFI
j =

(
T j

FI

)T
=
(
T j

1T
1
FI

)T
=
(
TB1

FI

)T ( j∏
i=1

T
Bi+1

Bi

)T

(4.74)

4.3.3. Implementation of Kane's Equations
Kane’s equations provide an efficient framework for deriving equations of motion for complex, multi-
body spacecraft systems. Starting from Newton–Euler equations, Kane’s method projects the trans-
lational and rotational dynamics into the subspace spanned by the generalized speeds using partial
velocities [56]. In matrix form, the governing equation can be expressed as

V T {F̄}+ΩT {τ̄} = V TM{ā}+ΩT
(
J{ᾱ}+ {ω̄}×J{ω̄}

)
(4.75)

where V and Ω are the linear and angular partial velocity matrices, M and J represent the mass
and inertia matrices, {F̄} and {τ̄} are external forces and torques, and {ā} and {ᾱ} are the linear
and angular accelerations of each body. This formulation naturally incorporates both translational and
rotational dynamics while avoiding the explicit calculation of constraint forces and Lagrange multipli-
ers. For flexible spacecraft, the method is particularly advantageous because it allows the coupling of
rigid-body hub dynamics with flexible appendages modelled as interconnected rigid links with torsional
springs and dampers. The partial velocity formulation enables efficient construction of minimum-order
dynamic equations suitable for onboard computation and control design, facilitating adaptive estima-
tion of unknown flexible parameters during operation. For the Alticube+ system, which consists of five
identical CubeSats, the inertia matrix J in Kane’s equations naturally takes a block diagonal form,
since each spacecraft’s rotational dynamics can be described independently in its body frame. The
structure of the total inertia matrix is

J =


J1 0 0 0 0
0 J2 0 0 0
0 0 J3 0 0
0 0 0 J4 0
0 0 0 0 J5

 (4.76)

where each (J i ∈ R3×3) represents the inertia matrix of the (i)-th CubeSat about its body-fixed principal
axes.

Since all five CubeSats are identical, we have

J1 = J2 = J3 = J4 = J5 = J∗ (4.77)

which simplifies computation and system modelling, and also ensures symmetry in the dynamic equa-
tions.
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For a single CubeSat modelled as a uniform solid cuboid with mass (m), length (L), width (W), and
height (H), the mass moment of inertia about the principal axes through the centre of mass is given by
the standard rigid body formulation:

Jxx =
1

12
m
(
W 2 +H2

)
, Jyy =

1

12
m
(
L2 +H2

)
, Jzz =

1

12
m
(
L2 +W 2

)
. (4.78)

Thus, the inertia matrix of a single CubeSat is

J∗ =

Jxx 0 0
0 Jyy 0
0 0 Jzz

 (4.79)

Similarly, the mass matrix (M ) in Kane’s formulation, which accounts for the translational dynamics
of each body, is also block diagonal:

M =


m1I3×3 0 0 0 0

0 m2I3×3 0 0 0
0 0 m3I3×3 0 0
0 0 0 m4I3×3 0
0 0 0 0 m5I3×3

 (4.80)

with each (mi = m∗).

Another notation that needs to be described is the cross-product term in equation 4.75. To create the
matrix form of this cross product, a block diagram is formed of five individual skew matrices for each of
the angular velocities as seen below.

{ω̄}× =


ω̄×
1 0 0 0 0
0 ω̄×

2 0 0 0
0 0 ω̄×

3 0 0
0 0 0 ω̄×

4 0
0 0 0 0 ω̄×

5

 (4.81)

Derivations of Acceleration Terms in Kane's Equations
Starting from the kinematic relations that define the system’s angular and linear velocities in terms of
the partial velocity matrices and generalized speeds, we have

{ω̄} = Ωū (4.82)

{v̄} = V ū (4.83)

where Ω and V are the angular and linear partial velocity matrices, respectively, and ū is the vector
of generalized speeds. It is important to note that both Ω and V are functions of the generalized co-
ordinates and therefore are time-varying. To obtain the angular and linear accelerations, the above
relations are differentiated with respect to time. Applying the product rule to the angular velocity ex-
pression yields

d

dt
{ω̄} = d

dt

(
Ωū
)
= Ω̇ū+Ω ˙̄u (4.84)

Rearranging terms gives the expression for the angular acceleration,

{ᾱ} = Ω ˙̄u+ Ω̇ū (4.85)

For convenience, the second term can be expressed using a compact notation as ({f̄(Ω̇ū)} = Ω̇ū)
leading to the final form

ᾱ = Ω ˙̄u+ {f̄(Ω̇ū)} (4.86)
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A similar procedure is followed for the linear velocity. Differentiating with respect to time gives

d

dt
{v̄} = d

dt

(
V ū
)
= V̇ ū+ V ˙̄u (4.87)

Rewriting, the linear acceleration is expressed as

{ā} = V ˙̄u+ V̇ ū (4.88)

Introducing the shorthand ({ḡV̇ ū)} = V̇ ū), we obtain

{ā} = V ˙̄u+ {ḡ(V̇ ū)} (4.89)

These two equations represent the decomposition of the angular and linear accelerations into terms
dependent on the generalized accelerations ( ˙̄u) and configuration-dependent terms Ω̇ū and V̇ ū. The
first terms, Ω ˙̄u and V ˙̄u, contribute directly to the inertia-related components of the equations of motion,
while the latter terms, Ω̇ū and V̇ ū, account for the configuration and velocity-dependent effects such
as gyroscopic and Coriolis terms. These expressions form the kinematic foundation used to construct
the final dynamic equations in Kane’s formulation.

The algebraic derivation of the acceleration terms starts from the kinematic relations defining the an-
gular and translational velocities of the inner and outer spacecraft with respect to the inertial frame FI .
The goal is to obtain the corresponding acceleration expressions and to separate the results into the
generalized acceleration dependent part, Ω ˙̄u, and the remainder terms f̄ and ḡ.

Inner Angular Acceleration
The inner angular velocity in the inertial frame is expressed as

ω̄FI
i = Bi ω̄i (4.90)

Taking the time derivative gives
˙̄ωFI
i = Ḃi ω̄i +Bi ˙̄ωi (4.91)

The time derivative of a direction cosine dyadic Bi acting on a vector can be written as a cross product

with the angular velocity, such that Ḃi x̄ = ω̄FI
i ×Bi x̄. Applying this to x̄ = ω̄i yields

Ḃi ω̄i = ω̄FI
i ×Bi ω̄i (4.92)

Since any vector crossed with itself is zero, the term Bi ω̄i × Bi ω̄i = 0. Thus, the inner angular accel-
eration in the inertial frame becomes

ᾱFI
i = Bi ˙̄ωi (4.93)

This shows that the inner body has no remainder term and its angular acceleration depends solely on
˙̄ωi.

Outer Angular Acceleration
The angular velocity of the outer spacecraft is given by

ω̄FI
o = ω̄FI

i +Bo Λk
˙̄θk (4.94)

Taking the time derivative and applying the product rule results in

˙̄ωFI
o = ˙̄ωFI

i + Ḃo Λk
˙̄θk +Bo Λ̇k

˙̄θk +Bo Λk
¨̄θk
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Each Ḃ term can be expressed as a cross product with the corresponding angular velocity, for example

Ḃo x̄ = ω̄FI
o ×Bo x̄. Substituting and rearranging terms gives

ᾱFI
o = Bi ˙̄ωi +Bo Λk

¨̄θk + ᾱr (4.95)

where the remainder term ᾱr collects all velocity-dependent components,

ᾱr = Bo ω̄o ×Bo Λk
˙̄θk +Bo Λ̇k

˙̄θk (4.96)

Using the compact notation T o
i for Bi expressed in the outer frame, the above can be rewritten as

ᾱo = T o
i
˙̄ωi +Λk

¨̄θk + ᾱr (4.97)

ᾱr = ω̄o ×Λk
˙̄θk + Λ̇k

˙̄θk (4.98)

Stacking the remainder angular accelerations of all spacecraft gives

{f̄(Ω̇ ū)} =


0̄

ω̄×
2 Λ1

˙̄θ1 + Λ̇1
˙̄θ1

ω̄×
2 Λ1

˙̄θ1 + Λ̇1
˙̄θ1 + ω̄×

3 Λ2
˙̄θ2 + Λ̇2

˙̄θ2

ω̄×
4 Λ3

˙̄θ3 + Λ̇3
˙̄θ3

ω̄×
4 Λ3

˙̄θ3 + Λ̇3
˙̄θ3 + ω̄×

5 Λ4
˙̄θ4 + Λ̇4

˙̄θ4

 (4.99)

Inner Translational Acceleration
The translational velocity of the inner spacecraft is

v̄FI
i = N v̄i (4.100)

Taking the time derivative yields
˙̄vFI
i = Ṅ v̄i +N ˙̄vi (4.101)

Since N represents the fixed inertial frame, its derivative is zero, Ṅ = 0. The inner translational
acceleration then becomes

āFI
i = N ˙̄vi (4.102)

Outer Translational Acceleration
The outer translational velocity is defined by

v̄FI
o = v̄FI

i + ω̄FI
i × r̄ik − ω̄FI

o × r̄ok (4.103)

Differentiating and applying the product rule gives

˙̄vFI
o = ˙̄vFI

i + ˙̄ωFI
i × r̄ik + ω̄FI

i × ˙̄rik − ˙̄ωFI
o × r̄ok − ω̄FI

o × ˙̄rok

For a rigid connection, ˙̄r = ω̄ × r̄, leading to double cross-product terms. Substituting the angular
acceleration expressions gives

āFI
o = N ˙̄vi +N β̄oi ×Bi ˙̄ωi +N r̄ok ×Bo Λk

¨̄θk + ār (4.104)

where the remainder term is

ār = Bi ω̄i ×
(
Bi ω̄i ×N r̄ik

)
+Bo ω̄o ×

(
Bo ω̄o ×N r̄ok

)
+ ᾱr ×N r̄ok (4.105)
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Stacking all remainder translational terms leads to

{ḡ(V̇ ū)} =


0̄

TN
1 ω̄×

1 TN
1 ω̄×

1 r̄11 + TN
2 ω̄×

2 TN
2 ω̄×

2 r̄21 − r̄×21 ᾱ
2
r

TN
1 ω̄×

1 TN
1 ω̄×

1 r̄11 + TN
2 ω̄×

2 TN
2 ω̄×

2 r̄21 − r̄×21 ᾱ
2
r + TN

2 ω̄×
2 TN

2 ω̄×
2 r̄22 + TN

3 ω̄×
3 TN

3 ω̄×
3 r̄32 − r̄×32 ᾱ

3
r

TN
1 ω̄×

1 TN
1 ω̄×

1 r̄13 + TN
4 ω̄×

4 TN
4 ω̄×

4 r̄43 − r̄×43 ᾱ
4
r

TN
1 ω̄×

1 TN
1 ω̄×

1 r̄13 + TN
4 ω̄×

4 TN
4 ω̄×

4 r̄43 − r̄×43 ᾱ
4
r + TN

4 ω̄×
4 TN

4 ω̄×
4 r̄44 + TN

5 ω̄×
5 TN

5 ω̄×
5 r̄54 − r̄×54 ᾱ

5
r


(4.106)

Substitution into Kane's Equations
Finally, substituting the kinematic acceleration decompositions

{ᾱ} = Ω ˙̄u+ {f̄} {ā} = V ˙̄u+ {ḡ}

into Kane’s matrix equation

V T {F̄}+ΩT {τ̄} = V TM{ā}+ΩT
(
J{ᾱ}+ {ω̄}×J{ω̄}

)
yields the expanded form

V T {F̄}+ΩT {τ̄} = (V TMV +ΩTJΩ) ˙̄u+ V TM{ḡ}+ΩTJ{f̄}+ΩT {ω̄}×J{ω̄}

Defining

W = V TMV +ΩTJΩ and RHS = V TM{ḡ}+ΩTJ{f̄}+ΩT {ω̄}×J{ω̄}

the final first-order system is obtained:

W ˙̄u = V T {F̄}+ΩT {τ̄} −RHS (4.107)

This completes the derivation, clearly showing the separation between the Ω ˙̄u and V ˙̄u components
and the remainder terms {f̄} and {ḡ} that capture gyroscopic, Coriolis, and configuration-dependent
effects in Kane’s equations.

4.3.4. Application of Kane's Equations with Internal Torques
In the present system, it is assumed that no direct external forces act on the spacecraft structure.
Therefore, the generalized force vector corresponding to translational motion is zero,

{F̄} = 0̄ (4.108)

Under this assumption, the motion of the multi-body system is governed solely by the control torques
acting about the centralised node and the internal joint torques. Each joint torque is modelled using
a linear torsional spring–damper representation to capture the elastic and dissipative behaviour of the
joint:

τ̄j,k = −Kk θ̄k − Ck
˙̄θk (4.109)

Here,Kk is the torsional stiffness coefficient of the k-th joint, and Ck is the torsional damping coefficient.
The vector θ̄k represents the relative angular displacement between the connected bodies, while ˙̄θk is
the relative angular velocity across the same joint. The negative sign indicates that the generated torque
opposes the relative rotation, providing a restoring moment proportional to the angular displacement
(spring term) and an energy-dissipating moment proportional to the relative angular velocity (damping
term). This formulation enables realistic modelling of structural flexibility and joint dynamics within the
multi-body system. The torques present can be described as a toque vector defined as

τ̄SC =
[
τ̄Tc τ̄Tj,1 τ̄Tj,2 τ̄Tj,3 τ̄Tj,4

]T (4.110)

where τ̄c represents the control torque applied to the central (node) CubeSat, and where each term
τ̄j,k corresponds to the torque acting about the k-th joint connecting two spacecraft bodies (or links).
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While the control torque only affects the central node, the joint torques both inner and outer node. The
outer node will receive a positive torque feedback from the joint torque. The inner node will receive a
negative feedback torque fro the joint torque because of the free rotation for both inner and outer nodes.
A matrix Ξ can be used to map the torques such that each nodes experiences the correct torque in the
correct sign. This mapping matrix for Alticube+ can be designed as the following.

Ξ =


I3×3 −I3×3 03×3 −I3×3 03×3

03×3 I3×3 −I3×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3 −I3×3

03×3 03×3 03×3 03×3 I3×3

 (4.111)

Using this mapping matrix, equation 4.112 then computes the torque vector that can be applied in
Kane’s equation.

{τ̄} = Ξτ̄SC (4.112)

Finally Substituting {F̄} = 0̄ and the above torque vector into equation 4.107 gives the final dynamics
equation.

W ˙̄u = ΩTΞτ̄SC −RHS (4.113)

Equation 4.113 defines the system dynamics as driven purely by control torques and internal joint
torques. The first term on the right-hand side represents the direct contributions from commanded
actuator torques and internal joint torques, while the second term captures the remaining effects from
the motion of each nodes.
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4.4. Reaction Wheel Model
As mentioned in section 2.3, the reaction wheels from Astrofein are used in Alticube+. Four of these
reaction wheels are configured in a tetrahedral formation (see Figure 4.7). A tetrahedral configuration
ensures three-axis pointing control while providing redundancy. The orientation of the reaction wheel
assembly is provided in Figure 4.7, where the normal vector of the baseplate is pointed towards the
positive Y-axis of the spacecraft reference frame (see Figure 2.12 for reference).

Figure 4.7: Tetrahedral configuration of reaction wheels

The assembly is located in the geometric centre along the Y-axis, but is shifted in both X and Z-axis.
Knowing that the reaction wheel assembly is located in the centre of the +X and +Z cells, the shift is
100mm in both directions.

4.4.1. Reaction Wheel Control Logic
As the reaction wheels take an important role in controlling the spacecraft, a sub-model of the reaction
wheel assembly is needed to ensure that certain hardware limitations are not exceeded. The first
hardware limitation is derived from the maximum torque that can be delivered. Using the assumption
that all reaction wheels are operable, the maximum torque for for each axis is described implicitly by
first converting the requested torque to the right combination of reaction wheel activations. Then for
each individual reaction wheel it is checked whether the maximum torque threshold is exceeded. The
basic framework starts with equation 4.114.

τ̄cmd = ARW τ̄RW (4.114)

Here, τ̄cmd is the vector of commanded torques, τ̄RW the vector of the four reaction wheel torques
and ARW a 3 × 4 matrix that translates the applied torque by the reaction wheels to the spacecraft
body reference frame. The columns represent the unit torque vector for each of the reaction wheels.
With this matrix having a Rank(ARW ) = 3, inverting this matrix is done through the Moore-Penrose
Pseudo-inverse. The allocated torques are then obtained by inverting equation 4.114. Equation 4.115
gives the allocated torques based on the requested torques.

τ̄RW = AT
RW

(
ARWAT

RW

)−1

τ̄cmd ; τRW,i ≤ 2mNm (4.115)
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Figure 4.8: Torque unit vector decomposition of
reaction wheel

After allocation of the torques for each of the reaction
wheels, a boundary condition on the maximum torque is
placed as seen in equation 4.115. To define matrix ARW ,
each of the unit torque vectors needs to be identified. For
the tetrahedral configuration seen in Figure 4.7, it can be
seen that two of the four reaction wheels have their unit
torque vector pointed in the X-Y plane. The remaining two
reaction wheels have their unit torque vector pointed in the
Z-Y plane. Another property of this configuration is that the
angle from the Y-axis is equal for all reaction wheels. Fig-
ure 4.8 shows how the reaction wheel unit torque vector can
be described by their angle from the y-axis. Assuming an
angle αRW = 15 deg gives the following matrix.

ARW =


√
3
2 0 −

√
3
2 0

1
2

1
2

1
2

1
2

0
√
3
2 0 −

√
3
2



Figure 4.9: Flow chart for reaction wheel control logic

The reason for this specific angle is it closely
matches the angle seen in Figure 4.7. Next to
this, the torque outputted in the X or Z direction
is around 97% of the maximum torque available,
which is needed to maximize the torque in these
two directions.
The second hardware limitation is the maximum
angular momentum storage for each of the re-
action wheels. The increase in angular momen-
tum of the reaction wheel can be calculated using
equation 4.116.

Li,k+1 = Li,k +∆Li (4.116)

∆Li = τi,k∆t ; |Li,k+1| ≤ 0.03Nms

Here, Li is the angular momentum for one of four
reaction wheels. So this calculation of the an-
gular momentum storage is done for each reac-
tion wheel separately. If the angular momentum
storage of a specific reaction wheel is exceeded,
then the reaction wheel will not be able to give the
commanded torques. Only torques that decrease
its angular momentum storage can be given by
the reaction wheel. A flow chart for this reaction
wheel control logic can be seen in Figure 4.9. Af-
ter computing the resulting torque output for each
of the reaction wheels, this is then transformed back into an control torque τ̄c using equation 4.114.
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4.4.2. Reaction Wheel Jitter
A key aspect of answering RQ-3 is the reaction wheel jitter. This section will develop a jitter model that
describes the jitter behaviour of the reaction wheel system, starting with a definition of what reaction
wheel jitter is. Jitter is a product from the mass imbalance of a reaction wheel during manufacturing. In
theory, the mass of a reaction wheel is homogenous and will provide a pure torque. In practice, due to
slight inconsistencies, the centre of mass is slightly off from the theoretical centre of mass. Figure 4.10
shows the two possible mass imbalances for a reaction wheel.

Figure 4.10: Reaction wheel Static imbalance (left) and Dynamic imbalance (right) [57]

The left figure shows the static imbalance for a reaction wheel, where the distribution of mass is not
equal in all directions. This causes the centre of mass for the reaction wheel to be off-centre from the
rotational axis, producing a jitter force. The magnitude of this force can be calculated using equation
4.117.

Fs = usω
2
RW (4.117)

Where us is the static imbalance constant for a reaction wheel. For a Cubesat which utilised reaction
wheels, this value lies between 0.1 − 1.2 g ·mm with an average of 0.25 g ·mm [58]. The right figure
shows a dynamic imbalance, where the distribution of mass is different along the rotation axis. When
the reaction wheel rotates around the axis, the mass imbalance causes the reaction wheel to want to
tilt, producing a jitter torque. This torque can be expressed by equation 4.118.

Td = udω
2
RW (4.118)

Here, ud is the dynamic imbalance constant for the reaction wheel. For a Cubesat this value lies
between 1− 10 g ·mm2 with an average of 2.5 g ·mm2 [58]. With these two equations, the magnitude
of these forces and torques can be calculated for a range of reaction wheel speeds. Since the reaction
wheel can wind up to a speed of 5000 rpm, figure 4.11 shows the produced jitter forces and torques up
until this speed for the entire range of static and dynamic imbalance constants.

From the figure, it can be observed that the jitter force can reach up to 0.33N in magnitude. On the
other hand, the jitter torque produced due to the dynamics imbalance is significantly lower and reaches
a maximum of 2.7 · 10−3 Nm. For the remainder of this study, only the static imbalance is investigated
as the dynamic imbalance of the reaction wheel is at least an order of magnitude lower.
To complete the reaction wheel model framework, the produced jitter by a single reaction wheel needs
to be transformed from the local frame to the body reference frame Fb. First, the force vector for the
reaction wheel jitter can be expressed by equation 4.119.

F̄flat(t) =

usω
2
RW cos (ωRW t+ ϕ)

0
usω

2
RW sin (ωRW t+ ϕ)

 (4.119)

The force vector here simulates a reaction wheel that lays flat on the X-Z plane, resulting in a force that
rotates around the Y axis (See Figure 4.7 for reference on the axis direction) with the same rotational
speed as the reaction wheel. Furthermore, in the sine and cosine is a phase ϕ which represents the
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Figure 4.11: Produced jitter force from static imbalance and jitter torque from dynamic imbalance

offset of the mass distribution. From figure 4.7, each of the reaction wheels just has to be rotated with
respect to either X or Z axis by±αRW . The transformation of the jitter force to the body reference frame
can be done using either equation 4.120 or equation 4.121 depending on which reaction wheel.

F̄jitter,z(t) =

cos±αRW − sin±αRW 0
sin±αRW cos±αRW 0

0 0 1

 F̄flat(t) (4.120)

F̄jitter,x(t) =

1 0 0
0 cos±αRW − sin±αRW

0 sin±αRW cos±αRW

 F̄flat(t) (4.121)

The framework of the reaction wheel jitter model can be put into a block diagram which shows how the
jitter is calculated from the angular momentum of a individual reaction wheel (see Figure 4.12). Here,
the angular momentum for the reaction wheels can be defined as L̄RW =

[
L1 L2 L3 L4

]T . As
seen from the arrow at the top, this block diagram goes through all reaction wheels individually. Then
the resulting force can be computed by summing the produced jitters together into one vector.
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Figure 4.12: Block diagram for the reaction wheel jitter vector

Finally, the force needs to be translated into torques and can be written as.

τ̄jitter(t) = r̄RW × F̄jitter(t) (4.122)

Where r̄RW =
[
0.1 0 0.1

]T is the arm between the centre of mass and the centre of the reaction
wheel system.



5
Controller Design

Chapter 3 answered RQ-1 and presented the ADCS requirements for Alticube+’s scientific operations
phase. Chapter 4 defined a modelling framework and derived the spacecraft dynamics for the rigid
body case. This chapter will aim to answer RQ-2 by exploring the controller design using LQR and a
Kalman filter. Answering RQ-2 will be done by using two smaller sub-questions. First, a formulation
for a centralised attitude controller is made that can control all three axis for the rigid body case. Then
various weighting matrices for the cost function are explored to analyse the trade-off between pointing
performance and actuator effort. Lastly, then a Kalman filter for attitude estimation is explored and the
mathematical steps are presented.

5.1. Linear Quadratic Regulator
The linear Quadratic Regulator (LQR) is a widely used optimal full-state feedback controller for space-
craft attitude control. LQR balances regulation performance against actuation effort in a tunable quadratic-
cost sense. For small attitude errors around a nominal pointing, the non-linear rotational dynamics can
be linearized and transformed into a standard linear time-invariant (LTI) state-space, after which the
LQR computes a constant gain matrix K which will minimise the quadratic cost function seen in equa-
tion 5.1.

J =

∫ ∞

0

(x̄TQx̄+ ūRū)dt ; Q = QT ⪰ 0 , R = RT ≻ 0 (5.1)

Where x̄ is the state vector of Alticube+ and ū the input vector of the reaction wheel system. The
matricesQ andR are user-chosen positive semi-/definite weighting matrices. The goal for this problem
is to find the optimal cost function J∗(x̄) that satisfies the Hamilton-Jacobi-Bellman (HJB) equation.

∀x̄, 0 = min
ū

[
x̄TQx̄+ ūTRū+

∂J∗

∂x̄
(Ax̄+Bū)

]
(5.2)

Now let the optimal cost function be in the form of

J∗(x̄) = x̄TSx̄ ; S = ST ⪰ 0 (5.3)

Where S is a positive semi-definite matrix. The gradient of equation 5.2 is

∂J∗

∂x̄
= 2x̄TS (5.4)

Substituting equation 5.4 into equation 5.2 and solving for ū gives equation 5.5

∂

∂ū
= 2ūTR+ 2x̄TSB = 0

46
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ū∗ = −R−1BTSx̄ = −Kx̄ (5.5)

Equation 5.5 shows how the the optimal input can be achieved, by using the feedback gain matrix K.
To find the solution for K, equation 5.5 is substituted back into equation 5.2.

0 = x̄T
[
Q− SBR−1BTS + SA+ATS

]
x̄ (5.6)

Because this equation needs to hold for all x̄, the part inside the brackets just needs to be solved for S.
After solving S, the feedback gain matrix K can then be computed using equation 5.5 in a MATLAB
solver.

Transfer Function
With the method to compute the LQR gain feedback matrix, the cost functions Q and R can shape
the response of the LQR controller for Alticube+. As stated in section 2.5, the tuning of the LQR cost
functions is done using the rigid spacecraft model. Figure 5.1 shows the block diagram of the closed-
loop LQR controller for the state space model.

Figure 5.1: Closed-loop state space control block diagram with LQR feedback gain

To perform proper analysis of the cost tuning process, this closed-loop block diagram is transformed
into a transfer function. The first step is to use the Laplace transform on equation 4.42, resulting in
equation 5.7

sX(s) = AX(s) +BU(s) (5.7)

Where X(s) is the Laplace transform of x̄ and U(s) the Laplace transform of τ̄ . substituting U(s) with
Xref (s)−KX(s), the transfer function can be derived.

sX(s) = AX(s) +B(Xref (s)−KX(s))→ X(s) = (sI − (A−BK))−1BXref (s)

X(s)

Xref (s)
= (sI − (A−BK))−1B (5.8)

5.2. Q Matrix Tuning
Having formulated a centralised LQR controller for Alticube+ that can perform attitude regulation for all
three axis, it is an important aspect to research how the Rigid-body dynamics system reacts to different
cost functions. The first objective is to find a set of cost functions that produce a stable system for
Alticube+. The second objective is to assess the pointing control performance against the actuator
effort. Several methods can be utilised to obtain a good tuned feedback controller. One of these
methods which will be utilised in this tuning process is the Q matrix tuning process, where the actuator
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cost matrix R is set to a constant value. While tuning the state cost matrix Q, the weights in matrix R
will be set to one.

R = RuI3×3 ; Ru = 1 (5.9)

As an initial tuning process, matrix Q is split up into the attitude weights and angular rate weights.

Q =

[
QqI3×3 03×3

03×3 QωI3×3

]
(5.10)

Here, Qq is the weight factor for the attitude part of the state and Qω is the weight factor for the angular
rate part of the state. By changing these factors, a different feedback gain K is calculated which will
influence the closed-loop behaviour of the spacecraft.

Qq Tuning, Qω = 1
To analyse the stability of the closed-loop LQR system, a wide range of tuning parameters is taken for
Qq. The range can be defined as follows.

Qq = 10βq ; βq = −8,−7, ..., 0, ...7, 8 (5.11)

Taking a large range of values for Qq will show how the system reacts to for extremely small costs to
extremely large costs. Plotting the response in a bode plot gives great insight into the close-loop stability
and gain/phase margins. Figure 5.2 shows the bode diagram of θ1 (roll) response. The remaining bode
plots for the other states can be seen in Appendix B.

Figure 5.2: Bode diagram of θ1 (roll) for various tuning values of Qq

From this figure, it can be observed that low values ofQq increases the magnitude and high values give
very small magnitudes which are below the zero dB line. To keep a stable system for a particular axis,
the magnitude needs to have a cross-over, requiring a positive magnitude for the lower frequencies.
From this bode plot, the weighting values Qq < 1 ensure a positive magnitude in the lower frequencies.
The same goes for the bode plots that look at θ2 (pitch) and θ3 (yaw) which also require the Qq to be
smaller than one (See Figures in Appendix B.1).
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Another property of the bode plots is that the gain and phase margin can be computed, which will give
an idea on the robustness to uncertainty.

Figure 5.3: Phase margin of all axis for various values of Qq

Figure 5.3 plots the Phase margin of all three attitudes. From this graph, it can be seen that the
phase margin increases as the weighting factor increases to Qq = 1. In order to have a stable system
with sufficient margin for uncertainties, a phase margin greater than 30 deg would be required. The
weighting factor range that can satisfy the phase margin together with the gain requirement from above
lies between 10−1.8 ≤ Qq < 1. Specifically, having a weighting factor of Qq = 10−0.8 ≈ 0.15 would give
a smooth damped response for both roll and yaw. Figure 5.3 shows that the phase margin for pitch is
greater with respect to roll and yaw for all weighting factors. Using the same weighting factor for pitch
will result in a phase margin of > 80 deg. Having such larger phase margin for this axis creates a slow
and unresponsive system and limits performance of the pointing control in this direction. To limit the
phase margin above 60 deg as much as possible, a lower weighting factor than Qq = 0.15 would benefit
the controllability of the pitch axis. This weighting factor would then be towards the 10−3 ≤ Qq2 ≤ 10−2

which will give a phase margin of 75 deg.

Qω Tuning, Qq = 0.15
In the previous section, the tuning of Qq was performed, and the resulting response from the system
was explored. This section looks into how tuning the Qω weighting factor influences the response of
the system. The range of weighting factors taken for Qq can be defined as.

Qω = 10βω ; βω = −8,−7, ..., 0, ...7, 8 (5.12)

Taking a large range of weighting factors will highlight the effect of the relative cost between the angular
rates and attitudes. The response is plotted in figure 5.4a for θ1 and figure 5.4b plots the response for
ω1.

From the response of θ1, it can be observed that higher order values for Qω negatively impact the
magnitude. However, it can also be observed that lower order values for Qω have negligible impact
on the entire response for roll. The same can also be observed for pitch and yaw (See Figures in
B.2). Similar effects can be observed in figure 5.4b, where higher order weighting factors lower the
magnitude response, while low order weighting factors present little impact. Another observation is
that the magnitude in figure 5.4b are below the 0 dB line. This means that the angular rates are harder
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(a) Bode diagram of θ1 (roll) for various tuning values of Qω (b) Bode diagram of ω1 (roll rate) for various tuning values of Qω

Figure 5.4: Spacecraft state of Alticube+’s central node

to control. it also means that the weights in the feedback gain matrix K do not change much for the
angular rates when tuning the cost function weights Qω.
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5.3. Kalman Filter
Remembering the dynamics equation from equation 4.42, the derivation of the Kalman procedure starts
with an slightly altered version of this.

˙̄x(t) = Aℓx̄(t) +Bℓū(t) +Gw̄(t) (5.13)

In addition to equation 4.42, w̄(t) represents the system noise withG being the system noise input ma-
trix. As the Kalman filter uses measurements for attitude estimation, the measurement vector equation
can be written.

z̄(t) = Hx̄(t) +Dū(t) + v̄(t) (5.14)

Here, z̄(t) is the measurement vector observed from the sensors. H is the observation matrix, repre-
senting which states can be observed. v̄(t) is the measurement noise. Equation 5.13 and 5.14 make
up a continuous set of equations. As this Kalman filter is used for onboard computer estimation, the
system of equations needs to be discretised. Equation 5.15 and 5.16 present the discretised versions.

x̄k+1 = Φk+1,kx̄k +Ψk+1,k τ̄k + Γk+1,kw̄k ; w̄k ∼ N (0,Σ) (5.15)

z̄k+1 = Hk+1x̄k+1 +Dk+1ūk+1 + v̄k+1 ; v̄k ∼ N (0,Π) (5.16)

Where x̄k is the current state at step k and x̄k+1 is the next state for the step k + 1. Φk+1,k is the
system transition matrix, whileΨk+1,k is the input distribution matrix. MatricesHk+1 andDk+1 remain
the same compared to 4.42. For equation 5.15 and 5.16, both system- and sensor noise can be
represented by white noise. Then this means that the following assumptions hold true.

E[w̄k] = 0 ; E[w̄kw̄
T
k ] = Σij

E[v̄k+1] = 0 ; E[v̄k+1v̄
T
k+1] = Πij ; E[w̄kv̄

T
k+1] = 0

How defining the mean and covariance of the state vector x̄k+1 as

E[x̄k+1] = x̂k+1,k ; E[(x̄k+1 − x̂k+1,k)(x̄k+1 − x̂k+1,k)
T ] = P k+1,k (5.17)

By defining the error vector as the error between the estimated state and the true state for step k + 1,
the covariance definition can be simplified.

ϵ̂k+1,k = x̂k+1,k − x̄k+1 ; E[ϵ̂k+1,k ϵ̂
T
k+1,k] = P k+1,k (5.18)

In order to obtain a good estimate of x̄, a cost function J can be created based on the quadratic weighted
least squares estimate.

J =
1

2
ϵ̂Tk+1,kP

−1
k+1,k ϵ̂k+1,k +

1

2
(z̄k+1 −Hk+1x̂k+1)

TR−1
k+1(z̄k+1 −Hk+1x̂k+1) (5.19)

Then by minimising the cost of this quadratic equation leads to the first order derivative of equation
5.19 which can be seen in equation 5.20.

∂J

∂x̄k+1
= ϵ̂Tk+1,kP

−1
k+1,k − (z̄k+1 −Hk+1x̂k+1)

TRk+1Hk+1 = 0 (5.20)

then by rearranging the terms, an update rule for the next predicted state based on the information up
until k + 1 [59].
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x̂k+1,k+1 = x̂k+1,k +Kk+1(z̄k+1 −Hk+1x̂k+1,k) (5.21)

Here, Kk+1 is the Kalman filter gain matrix which updates the the predicted state x̂k+1,k to obtain the
corrected state x̂k+1,k+1. [59] Showed how a set of five equations can be used to update the Kalman
filter, which are outlined here below.

Step 1: From the previous state x̄k,k, predict the next step using the discretized state space from equation
5.15.

x̂k+1,k = Φk+1,kx̂k,k +Ψk+1,k τ̄k; x̄0,0 = x̄0

Step 2: Compute the covariance matrix P k+1,k

P k+1,k = Φk+1,kP k,kΦ
T
k+1,k +Σ; P 0,0 = P 0

Step 3: Determine the Kalman Gain Kk+1 which will be used to correct the predicted state form step 1.

Kk+1 = P k+1,kH
T
k+1

(
Hk+1P k+1,kH

T
k+1 +Πk+1

)
Step 4: Update the predicted state

x̂k+1,k+1 = x̂k+1,k +Kk+1 (z̄k+1 −Hk+1x̂k+1,k)

Step 5: Update the covariance matrix based on the Kalman gain

P k+1,k+1 = (I6×6 −Kk+1Hk+1)P k+1,k(I6×6 −Kk+1Hk+1)
T +Kk+1Πk+1KT

k+1



6
Simulation Results

Chapter 6 represents the culmination of the previous chapters which will answer the research ques-
tions RQ-3 and RQ-4. To answer the research questions, the flexible model framework of Alticube+
presented in section 4.3 is used to investigate the interaction between the reaction wheel jitter and the
effect this has on the pointing performance, thereby answering RQ-3. To answer RQ-4, a quantitive
analysis is performed under the effect of an uncertain inertia matrix. This Chapter can be divided in
the following sections. First the simulation setup is outlined. The second part discusses the verification
methods used for the modelling simulation setup and spacecraft model. Thereafter, the results from
the simulation cases are discussed.

6.1. Simulation Setup
All simulations of the Alticube+ spacecraft, conducted to address the research questions of this study,
are implemented within the Simulink/MATLAB environment. The developed simulation framework al-
lows both the rigid and flexible spacecraft models to be executed under the same environment, with
minor modifications applied to the latter to account for the flexible modes, as described later in this
section.

The overall simulation framework is organized as a single integrated environment composed of several
interconnected sub-models. The top-level simulation loop, shown in Figure 6.1, consists of five main
components. The first component is the LQR feedback gain block, which provides the control law
based on the cost matrices defined in Section 5.1. The second component is the reaction wheel model,
detailed in Section 4.4, which incorporates the physical limitations of the reaction wheel assembly, such
as the maximum torque and angular momentum capacity.

The generated control torques are then combined with the external disturbance torques to form the total
torque acting on the spacecraft. This total torque is passed to the spacecraft dynamics model, the core
of the simulation loop, which can represent either the rigid-body or flexible-body dynamics depending
on the simulation case. Using the applied torque, the model computes and propagates the spacecraft
state vector x̄.

Subsequently, the sensor model simulates the measurement process of the on-board sensors defined
in this framework, introducing realistic sensor noise (See section 2.3 for reference on the sensor noise
magnitudes). The final component of the loop is the Kalman filter, which estimates the spacecraft state
based on the noisy sensor measurements. Each loop simulates 0.1 s in real time, where the model
propagates the state by this time increment. Each time increment, the sensors, Kalman Filter and
control feedback gain are computed.

For the rigid spacecraft model, the simulation loop can be left as is, but an additional change in the
simulation loop is required to implement the flexible model. The first difference between the two models
is the additional flexible modes present in the dynamics. A time increment of 0.1 s is not sufficient to
effectively model the flexible dynamics of the spacecraft. In addition to the flexible modes, reaction
wheel jitter needs to be modelled up to a frequency of 10Hz. Then to accurately simulate the sinu-
soidal wave, a smaller ∆t = 0.01 is required. However, sensor and control frequency is still limited to
10Hz, still needing the 0.1 s time increment. To satisfy both time increment criteria, a time increment
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Figure 6.1: Block diagram of the rigid spacecraft simulation

conversion block is added in two places. The first block is added between the feedback gain block
and the reaction wheel model, changing the time increment from 0.1 s to 0.01 s. The second block is
added after the spacecraft dynamics block, converting the simulation time back to 0.1 s in preparation
for the sensor model. Figure 6.2 gives a visual representation of this conversion in the form of a block
diagram.

Figure 6.2: Modified part of the block diagram with time conversion blocks

Simulation Configuration
The simulation timeline is designed to emulate the operational sequence of the Alticube+ spacecraft
under realistic mission conditions. The total simulation duration is set to 1200 s, corresponding to
the maximum time window available for the scientific operation phase. Out of this period, 750 s are
allocated for active payload operations. Consequently, the first 450 s of the simulation are reserved
for the attitude control system to transition the spacecraft from its initial state to the desired operational
attitude, in accordance with the performance requirements defined in Chapter 3.

To initiate each simulation, the spacecraft must be assigned a defined set of initial conditions. Through-
out this study, multiple simulation cases are presented, each using distinct initial states to evaluate the
performance of the attitude determination and control system (ADCS). Due to time constraints, it was
not feasible to explore the complete range of possible initial conditions. Therefore, this work focuses
on a limited but representative subset of parameters.

The primary configurable initial condition in this framework is the central node state vector, denoted as
x̄0. By varying x̄0, the simulations assess how the ADCS responds to different initial states and inves-
tigate the range of initial conditions over which the system can achieve the required attitude accuracy
and stability.

Other parameters in the flexible spacecraft model are treated as either constrained or quasi-constrained
initial conditions. The constrained parameters―which remain fixed across all simulation cases―in-
clude the initial joint angles (θj), initial joint angular rates (θ̇j), and the initial partial velocity vector u.
Additionally, the initial state vector of the internal Kalman filter model is initialized as the central node
state vector x̄0, but with an added estimation error sampled from a normal distribution N(µ̄,Σ), rep-
resenting realistic initialization uncertainty in the state estimation process. For the normal distribution,
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the mean is equal to the initial state vector (µ̄ = x̄0) and the uncertainty is 10% of the initial state
(Σ = diag(0.1x0,1, 0.1x0,2, 0.1x0,3, 0.1x0,4, 0.1x0,5, 0.1x0,6)).These constraints ensure consistency in the
simulation setup while maintaining a realistic representation of sensor and estimation uncertainties.

The quasi-constrained parameters are held constant unless explicitly stated otherwise. These include
the inertia matrix J, the flexible model stiffness coefficient k, and the stored angular momentum H.
While these parameters influence the system dynamics, they are only adjusted in dedicated simulation
cases aimed at sensitivity analysis or model validation.

Finally, the LQR cost matrices are fixed to the nominal values Qi and Ri for all baseline simulations,
unless specified otherwise in dedicated test cases. This ensures consistent control performance across
simulations and isolates the effects of other varying parameters on system behaviour. The cost matrices
used are expressed here below.

Q =


0.15 0 0 0 0 0
0 10−4 0 0 0 0
0 0 0.15 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1

 ; R = I3×3

This configuration strategy ensures that the simulations remain focused on evaluating the ADCS perfor-
mance under representative and physically consistent conditions, while maintaining sufficient flexibility
for targeted investigations when required.

6.2. Verification
To ensure the accuracy and reliability of the developed simulation framework and the models imple-
mented within it, a comprehensive verification process was carried out. The verification consisted of
three main stages: sanity checks, unit tests, and model-level analysis. These steps were applied to
both the rigid and flexible spacecraft models to confirm the correct implementation of their respective
dynamics and interactions within the overall simulation environment.
Initial sanity checks were performed to confirm the basic functionality and consistency of the simulation
framework. These checks included verifying the correct flow of signals between sub-models, confirm-
ing physical consistency (e.g., conservation of angular momentum under torque-free conditions), and
ensuring that the simulation responded logically to input perturbations.
Subsequently, unit tests were conducted on individual subsystems, such as the attitude control law,
reaction wheel model, and sensor models. Each subsystem was tested independently to verify its ex-
pected behaviour under controlled conditions, allowing potential implementation errors to be identified
and corrected before integration.
Verification of the Kalman filter focused on assessing its estimation performance under controlled con-
ditions that reflect the expected operational behavior of the spacecraft. The filter was first tested using
idealized sensor data without noise to confirm that it converged exactly to the true state, ensuring that
the implementation of the prediction and update equations was correct. Subsequently, sensor noise
was introduced to evaluate the filter’s convergence. The estimated states were compared against
the true simulated states to verify that the estimation errors remained within the theoretical bounds
predicted by the covariance matrices. These tests confirmed that the Kalman filter provides stable and
accurate state estimates consistent with theoretical expectations across a range of operating condi-
tions.

For the rigid spacecraft model, a detailed comparison was made between the simulation results and
corresponding analytical solutions derived from rigid-body dynamics equations. This step ensured
that the numerical integration and attitude kinematics were implemented correctly and that the model
produced physically accurate responses under various torque inputs.

Validation of the flexible spacecraft model was carried out through a detailed comparison with an in-
dependent finite element model (FEM) developed by COMET. First, a modal frequency comparison
was performed to ensure that the implemented lumped-parameter model reproduced the correct flexi-
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(a) Roll/yaw vibration spectrum (b) Pitch vibration spectrum

Figure 6.3: Vibration response spectrum from reaction wheel jitter applied on node #1

ble mode frequencies in roll, pitch, and yaw. From the FEM frequency analysis, the dominant flexible
mode frequencies were 0.08Hz, 0.41Hz and 0.47Hz for pitch, roll and yaw respectively [2]. In order
to accurately compare the two models, a simulation environment was created in MATLAB. Alticube+’s
flexible model was excited using sinusoidal torques swept across a frequency range of 0.01 − 10Hz.
The applied torque magnitude was set to (0.9 × 10−4 ·

√
2Nm), matching the excitation used in the

COMET study to enable a direct comparison of frequency-domain characteristics. Figure 6.3 shows
two vibration spectra for roll/yaw (left figure) and pitch (right figure). The reason behind combining the
results for roll and yaw is due to the flexile model having a symmetry between those two planes, mean-
ing that both roll and yaw will produce the same results giving the same inputs. The roll/yaw vibration
spectrum shows two large peaks. The largest peak measured is at the output frequency of 0.48Hz,
comparable to the yaw resonance frequency of 0.47Hz. However, this frequency is approximately
15% higher compared to the roll frequency of 0.41Hz from the FEM model. Another smaller peak in
the roll/yaw spectrum can be observed at 0.21Hz. From analysis, this peak represents the rigid body
resonance with the reaction wheel jitter as a change in torsional stiffness parameters did not shift the
peak which was the case for the structural resonance peak at 0.48Hz.
The pitch vibration spectrum shows that the largest peak is at 0.08Hz, which aligns with COMET’s
model. A second validation step evaluated the maximum displacement of the flexible endpoints rela-

Table 6.1: Maximum absolute pointing errors [2]

Response point Load point COMET FEM
(arcsec)

Lumped parame-
ter (arcsec)

Error between
models

CubeSat #1 CubeSat #1 7.02 8.07 16.4%
CubeSat #5 CubeSat #1 7.00 7.12 1.71%

tive to their nominal orientation under jitter excitation. The same torquemagnitude and a jitter frequency
of 3.75Hz was used, consistent with the conditions in COMET’s FEM analysis. Table 6.1 presents the
maximum pointing errors for COMET’s FEM model and the lumped-parameter model. From the table,
the lumped-parameter model shows larger maximum pointing errors compared to COMET’s FEM
model. This discrepancy is expected to some extent, as lumped-parameter models typically approxi-
mate distributed structural behaviour using fewer degrees of freedom and therefore tend to overesti-
mate deflections when higher-order modes or local stiffness effects are not fully captured. Additionally,
the simplifications in modelling the reaction wheel interface and the reduced geometric fidelity may
contribute to higher predicted tip deflections. Another discrepancy is the inclusion of rigid body modes,
together with the application of the torque during this simulation. Furthermore, the present model in-
cludes rigid-body modes in addition to flexible dynamics whereas COMET’s FEM-based model only
looks at the flexible deformation. The coupling between rigid-body motion and the flexible degrees of
freedom can introduce small asymmetries in the predicted pointing errors, particularly when the exci-
tation frequency lies near a combined rigid–flexible resonance. This coupling may therefore amplify
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certain axis responses beyond what is observed in a flexible isolated deformation results by COMET.
Despite these differences, the lumped model preserves the correct qualitative behaviour and the mag-
nitude of the errors remains within the same order. This indicates that while the lumped-parameter
approach is conservative in estimating maximum pointing errors, it remains sufficiently accurate for
controller design, performance analysis, and jitter-propagation studies.

6.3. Alticube+ Manoeuvrer Simulation
Using the simulation environment described in section 6.1, research question RQ-3 can addressed
in this section. The aim is to explore the effects Alticube+’s reaction wheel system has on the flexi-
ble structure and its attitude stability. This research question is answered by comparing the flexible
spacecraft model against the rigid spacecraft model, where the rigid model will be the baseline. Two
simulations cases are compared. The first case is an angle manoeuvrer in the roll direction (1 deg). The
second case is a manoeuvrer in all directions. Lastly, initial condition parameters are varied to address
the performance of the ADCS systems in performing manoeuvrers.

6.3.1. Case: Roll Manoeuvrer
The first case is a pure roll manoeuvrer. The spacecraft starts from the initial conditions θ̄0 =

[
1 0 0

]T
and ω̄0 = 0̄. This simulation will explore how the tuned LQR controller controls Alticube+ and how pitch
and yaw are affected to this manoeuvrer for both rigid and flexible model.

(a) Roll manoeuvrer case for Rigid (dashed line) and flexible model
(solid line)

(b) State difference of Alticube+’s central node between rigid and
flexible model

Figure 6.4: Spacecraft attitude of the roll case for rigid and flexible model

Figure 6.4 presents the results from the roll manoeuvre simulation for both the rigid and flexible space-
craft models. As shown, the rigid-body model converges more quickly to the desired reference attitude
compared to the flexible model. This difference arises from the fundamental characteristics of the two
models: in the rigid case, the entire spacecraft responds instantaneously to the applied torque, whereas
in the flexible model, the torque is applied at the central node and only directly affects the central node’s
rotation. The rotational motion must propagate through the flexible joints to affect other nodes. As a
result, energy is first stored as elastic deformation within the boom joint before the motion is transmitted
to the rest of the structure, introducing a clear dynamic lag in the overall response.

This lag is illustrated in the right-hand plot of Figure 6.4, which shows the difference in angular displace-
ment between the flexible and rigid models, expressed as ∆θ = θFlex− θRigid. The maximum lag in the
roll direction reaches approximately 0.3° around 190 s into the simulation. A similar delay is observed
in the yaw angle, where both models exhibit an increase in magnitude, but the flexible model again
shows a phase lag relative to the rigid one.

The deviation of the yaw response from the nominal zero offset can be attributed to the closed-loop
system dynamics. Analysis of the system roots in the yaw direction reveals the presence of a right-half-
plane zero in the Single-Input Single-Output (SISO) root locus between the roll torque input and the
yaw angular rate output. Although the system remains stable, this non-minimum-phase zero introduces
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an initial response opposite to the commanded direction, explaining the transient deviation observed
in yaw.

Overall, the simulation clearly demonstrates the delay in system response introduced by the flexible dy-
namics. Nevertheless, both spacecraft models successfully achieve the attitude control requirements
within the allocated 450 s manoeuvre period. A final noteworthy observation is that the flexible model
exhibits a smaller overshoot in the roll response compared to the rigid model, indicating that the struc-
tural flexibility introduces a damping effect that slightly reduces the system’s transient peak.

6.3.2. Case: Full Manoeuvrer
This second case follows from the first simulation case. The difference is that now different initial
conditions are used for the manoeuvrer. The initial conditions use are θ̄0 =

[
1 1 −0.7

]T and ω̄0 = 0̄.
The aim here is to observe how the LQR controller performs when tasked with a multi-axis manoeuvrer.

(a) Full state manoeuvrer case for Rigid (dashed line) and flexible
model (solid line)

(b) State difference of Alticube+’s central node between rigid and
flexible model

Figure 6.5: Spacecraft Attitude of the full case for rigid and flexible model

Figure 6.5 presents the results from the full manoeuvre simulation, where the performance of the rigid
and flexible spacecraft models is compared. The roll and yaw responses, shown in the left plot, exhibit
similar qualitative behavior to that observed in the roll manoeuvre case (Figure 6.4). However, the pitch
response in Figure 6.5 demonstrates a markedly different behavior from that seen previously.

After approximately 30 s, the pitch motion, initially offset by 1°, is partially corrected and stabilizes
around 0.5° from the reference attitude. The spacecraft remains at this pitch attitude until around
160 s, when it resumes convergence toward the reference pitch attitude. This unexpected delay in
pitch convergence warrants further investigation. Supporting plots for the flexible model simulation are
provided in Appendix C.2 for reference.

Upon closer examination, this behaviour can be attributed to the angular momentum storage limits and
torque coupling effects of the reaction wheel system. Figure 6.6 zooms in on the time interval during
which the reaction wheels reach their nominal momentum storage capacity. It can be observed that
the +X reaction wheel reaches its limit earlier than the –X wheel, and a similar trend occurs between
the +Z and –Z wheels. This asymmetry directly influences the pitch dynamics through coupled torques
generated by the wheel configuration.

Each reaction wheel primarily produces torque in the roll or yaw direction but also contributes secondary
components in the pitch axis due to geometric coupling. Given the initial condition on the pitch axis, all
four reaction wheels collectively exert a net torque in the pitch direction during the initial phase of the
manoeuvre. Consequently, the +X and +Z wheels accelerate slightly more (assuming the maximum
torque is not yet saturated), while the –X and –Z wheels decelerate correspondingly. Once the +X
wheel reaches its maximum momentum capacity, it ceases to generate torque, whereas the –X wheel
continues producing torque in both roll and pitch directions.

The subsequent deceleration of the pitch motion can be explained through the characteristics of the
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Figure 6.6: Reaction wheel system angular momentum capacity and torque produced in the pitch direction

LQR feedback gain matrix, K. The controller places higher priority on correcting roll errors than pitch
errors, resulting in a stronger control action in the roll axis. When a positive torque command is applied
to the –X reaction wheel (accelerating the wheel), it produces the desired negative roll torque, but also
induces a positive pitch torque due to coupling. A similar effect occurs between the +Z and –Z wheels,
collectively acting to reduce the spacecraft’s pitch motion.

This analysis shows that the pitch deceleration is a coupled by-product of both the reaction wheel
momentum saturation and the axis interaction defined by the LQR gain structure. While the behaviour
is non-ideal, it remains consistent with the system’s dynamic characteristics and control prioritization
strategy.

6.3.3. Variation in Initial State Conditions
Next to singular cases, it is important to obtain a broader view on how different variations in initial
conditions changes the controlled states of Alticube+. In this case, the initial states are varied using
a normal distribution N (µ̄,Σ). Here the normal distribution used for the initial attitude is N (0̄, σ2

θI3×3)
where σθ = 1 deg. The normal distribution used for the initial angular rates is N (0̄, σ2

ωI3×3) where
σω = 4 arcsec, where 3σω < 12.8 arcsec is required because of reaction wheel angular momentum
capacity.

Figures 6.7 present the roll, pitch, and yaw responses from the Monte-Carlo analysis. For each axis,
a colour scheme is used to indicate whether the pointing control requirement ADCS-PC-REQ-1 is
satisfied at t = 450 s. Red traces denote simulations in which the requirement is not met, orange traces
indicate cases where the requirement is met but not to the desired level, and green traces reflect
cases achieving the target pointing accuracy of Across all Monte-Carlo runs, approximately 14% of the
simulations fail to meet the requirement in at least one axis, while the remaining 86% satisfy ADCS-
PC-REQ-1. Importantly, in all simulations―successful or not―the LQR controller ultimately drives
Alticube+ to the desired attitude. This confirms the closed-loop stability of the spacecraft’s attitude
control system.

The 14% failure cases arise not from instability, but from the inability of the ADCS to bring the spacecraft
into the required attitude within the available 450 s window. The dominant limiting factor is reaction
wheel saturation. In all unsuccessful cases, at least two of the four reaction wheels reach full angular-
momentum capacity, and in some cases all four wheels saturate. When saturation occurs, the control
system can no longer generate corrective torque, leaving Alticube+ in an uncontrolled rotational state
until the wheel speeds naturally evolve to values where corrective torque becomes possible again.

Reaction wheel saturation is not limited to the unsuccessful runs. Indeed, Figure 6.8 shows the average
angular momentum of the reaction wheel system across all simulations. Red traces correspond to runs
that fail the requirement. Yellow traces represent simulations that ultimately succeed but experience
at least one interval of full system saturation―this accounts for approximately 28% of the successful
80%. Even cases meeting the requirement - 45% of the total simulations - temporary reach saturation
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Figure 6.7: Alticube+ roll (θ1), yaw (θ2) and yaw (θ3) states for N = 200 simulations

Figure 6.8: Average reaction wheel angular momentum of the entire reaction wheel system

limits and reduces the rate at which the spacecraft can reorient.

A saturated reaction wheel system poses two critical challenges:

1. Slower attitude transitions - the spacecraft cannot respond quickly to reference changes when
torque authority is reduced or momentarily unavailable.

2. Increased vulnerability to disturbances - when fully saturated, the spacecraft cannot counter ex-
ternal torques, posing a risk to pointing performance and stability.

Mitigating these issues requires a design trade-off involving:

• increasing the total angular momentum storage of the reaction wheel assembly,
• increasing the allowed manoeuvre time, or
• reducing the allowable initial attitude offset.

One possible way to expand angular momentum capacity within the current system architecture is to
employ multiple reaction-wheel assemblies. Besides providing additional stored momentum, this also
increases the available control torque through simultaneous actuation. However, distributing reaction
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wheels across multiple modules may introduce additional challenges, such as increased reaction wheel
jitter transmitted through the flexible structure, possibly amplifying structural vibrations.

6.4. Jitter Induced Pointing Errors
In section 6.3, the results on the pointing control of Alticube+ using LQR and a Kalman filter was
presented and discussed. Now in this section a close look is taken at the impact the reaction wheel
system has on the pointing control and attitude stability of the baseline.

Figure 6.9: Jitter induced aggregated system tip disappointment.

Figure 6.9 shows the tip disappointment from the reaction wheel jitter at different modelled frequencies
(0 − 10Hz). From this figure, the RMS value and the maximum value are covered. At the lower
frequencies, multiple peaks can be observed at 0.1Hz, 0.5Hz and 0.7Hz. The largest spike vibrates at
a frequency of 0.7Hz and has a maximum disappointment of 4 arcseconds. For frequencies ≥ 2.3Hz,
no spikes can be observed. This absence of structural resonance could be from the fact that the
lumped parameter model is not able to model higher-order modes. Nevertheless, due to the increase
in jitter torque, the tip disappointment does creep up slightly to around 2 arcsec at 10Hz. From this
graph, it shows that the dominant flexible modes react to low frequency jitter inputs, even though the
torque magnitude of the jitter is significantly smaller (2 orders or magnitude). These results stresses
the importance of reaction wheel jitter mitigations for lower frequencies through angular momentum
storage management.

Figure 6.10: Alticube+ pitch without jitter (black line), average expected jitter (blue line) and maximum expected jitter (orange
line).

Figure 6.10 presents the pitch of Alticube+ during the payload operation phase (i.e. after t = 450 s).
The black line represents the pitch for the flexible model without jitter. The blue line is the pitch for the
flexible model using the average static imbalance as stated in section 4.4. The orange line represents
the pitch where the reaction wheels has the maximum expected static imbalance. From this figure, it
can be observed that the reaction wheels affect pitch through the flexible modes. The rigid model does
feel the influence by the reaction wheel system, but can be easily compensated by the the controller.
next to this, the reaction wheel jitter in the rigid body case needs to rotate all five satellites - with a larger
massmoment of inertia in the pitch axis than for a single spacecraft - instead of just the central node. For
the flexible model, the central node is able to rotate more freely than for the rigid spacecraft model. This
can be observed as the pitch deviates from the reference with a mean value of 0.01 deg RMS. Although
this is just 10% of the desired 0.1 deg pointing control bandwidth, Alticube+ does reach a maximum
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deviation of 0.05 deg, which leaves a 50% margin. Increasing the static imbalance also increases the
pitch instability as now Alticube+ deviates from the reference with a mean value of 0.04 deg RMS and
a maximum of 0.11 deg.

Figure 6.11: Alticube+ pitch rate for average jitter (blue line) and maximum jitter (orange line).

Figure 6.11 shows the pitch rate for the same three cases presented in Figure 6.10. The top figure
shows how the pitch rate of the flexible model with an average static imbalance compares with the rigid
body. For this case, it can be observed that the pitch rate is significantly increased, which is expected
from the results in Figure 6.10. The mean pitch rate for this case is 14.1 arcsec

sec RMS with a maximum of
54.0 arcsec

s . These values are still within requirement ADCS-PC-REQ-4. The case with the maximum
static instability gives also increased pitch rate instability, resulting in a 37.8 arcsec

sec RMS pitch rate with
a maximum of 120.4 arcsec

s . Comparing the two flexible cases, increasing the static imbalance by four
times causes the pitch instability to increase by approximately two times. Although the mean pitch rate
still falls within requirement ADCS-PC-REQ-4, the maximum does exceed this requirement. Looking
at the applied torque by the LQR controller, it can be said that jitter is not the sole contributor to the
instability. The controller reacts to the reaction wheel jitter by compensating wit a counter torque. But
as the jitter torque is oscillatory, the LQR couples with the jitter torque to increase the pitch instability.

Figure 6.12: Antenna dynamic pointing misalignment during payload operation.

Figure 6.12 presents how jitter and the control torques together influence the alignment between two
antennas that make up a baseline. The misalignment seen in the graph is a combination of the mis-
alignments in the AT-ND plane and the CT-ND plane. From the graph, the antenna misalignment peaks
at around 60 arcsec and stabilises to around 10 arcsec. This misalignment falls below the requirements
of 150 arcsec in both planes (see requirements ADCS-PC-REQ-2 and ADCS-PC-REQ-3).

Lastly, information on the baseline AKE is analysed to verify wether the Kalman filter is able to satisfy
requirement ADCS-PK-REQ-1. Figure 6.13 shows the baseline AKE of Alticube+ between CubeSat
node #1 and #4. From this graphs, the maximum AKE remains below 45 arcsec and computing the
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Figure 6.13: Baseline pointing knowledge error between node #1 and #4.

mean knowledge error over the measurement track is equal to MKE = 12.7 arcsec, satisfying the
requirement.

6.4.1. Worst-case: Jitter and control
The worst jitter case is a follow up from section 6.3, where jitter from multiple reaction wheels could
amplify structural vibrations. Researching this explores the worst case possibility that Alticube+ can
experience during payload operations. Here, all five reaction wheel systems are active and the maxi-
mum expected static imbalance is used. Then remaining setup is similar to section 6.3 with identical
initial conditions compared to the full case manoeuvrer, enabling quantitive comparison between the
two cases.

Figure 6.14: Alticube+ attitude states for worst-case jitter.

Figure 6.14 shows Alticube+’s attitude. It can be observed that the roll and yaw are not much affected
by the increase in jitter caused by the five reaction wheel systems. however, pitch is majorly affected by
this increase in jitter as the spacecraft is oscillating with peaks greater than 0.2 deg from the reference
attitude. This pitch instability does not satisfy multiple pointing control requirements on APE and PDE
for the pitch direction. With the instability in pitch, an increase in antenna misalignment can be seen
with low order oscillating peaks between 30 arcsec and 60 arcsec. The baseline roll knowledge error has
not increased, as the baseline oscillation amplitude does not increase with the increase in jitter across
the five reaction wheel systems. Similar to the normal case, as the knowledge error is driven by the
sensor accuracy and Kalman Filter effectiveness, the error on the baseline remains the same. Overall,
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jitter does influence the pointing stability of the antenna’s and will introduce relative pointing errors.
The threat to Alticube+ lies in the pitch stability as jitter together with the LQR controller significantly
influences the pitch stability.

6.5. Alticube+ Model Uncertainties Simulation
The last simulation done is regarding the model uncertainties, specifically, uncertainty in the inertia
matrix. To simulate this effect, the internal controller assumed intertia matrix is changed according to
the normal distributionN (µ, σ2). Here, the mean is taken around the true inertia used by the spacecraft
model framework (µi = J ii) where i is either x, y or z). The variance can be expressed as a standard
deviation from the mean, which is taken to be 15% for all axis (σi = 0.15µi).

Figure 6.15: Alticube+ roll (θ1), pitch (θ2) ans yaw (θ3) with uncertain inertia matrices for N = 40 simulations.

Figure 6.15 presents the attitude response of Alticube+ for the 40 Monte-Carlo simulations conducted
with an uncertain inertia matrix. The results show that inertia uncertainty does influence the spacecraft
attitude during the manoeuvre, but the magnitude and nature of this influence vary across the three
axes.

For both roll and yaw, the attitude trajectories exhibit noticeable deviations when compared to the
nominal case shown in Figure 6.5. However, these deviations remain small enough that the pointing
control requirements are still satisfied across all simulations. The relatively modest impact on roll and
yaw is primarily due to the fact that uncertainty in the mode masses―the primary contributors to roll
and yaw inertia―dominates the variation in these axes. Since roll and yaw have comparatively large
inertia moments, the spacecraft responds more slowly to external torques and dynamic disturbances.
This slower response gives the Kalman filter sufficient time to correct prediction errors and maintain
stable control performance.

In contrast, the pitch axis shows a broader spread in the attitude response and exhibits a higher level
of dynamic instability. During the operational window, the pitch deviation reaches a maximum of ap-
proximately 0.15 deg, which is roughly 50% larger than the pitch instability observed under maximum
reaction-wheel jitter conditions. This increased deviation is driven by uncertainty in the central node
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inertia, which is the dominant contributor to the pitch inertia of Alticube+. Because the pitch axis has a
significantly smaller inertia moment than roll and yaw, the spacecraft responds much more quickly to
reaction-wheel torques and jitter. As a result, even relatively small variations in the pitch inertia cause
noticeable differences in the dynamics, leading to a wider spread in the pitch attitude.

Overall, the simulation results indicate that while inertia uncertainty introduces measurable deviations
in all three axes, the system remains within the pointing control requirements. The pitch axis is the
most sensitive to these uncertainties due to its low inertia moment, whereas roll and yaw remain com-
paratively robust due to their higher inertia and slower dynamic response.



7
Conclusion

The objective of this research is to design a centralised attitude controller for Alticube+ during its sci-
ence operation phase and analyse the impact of reaction wheel jitter on pointing stability for a flexible
structure. Guided by this objective, four supporting research questions are formulated to support this
research objective. Conclusions based on the research and simulations results are presented here.

7.1. RQ-1: ADCS Requirements
The first research question -What are the attitude determination and control system requirements
that meet Alticube+’s 2024 concept proposal scientific mission objectives during the scientific
operation phase? - aims to create a foundation where subsequent research questions can build upon
by identifying and deriving the ADCS requirements. Recent literature on the Alticube+ 2024 concept
proposal has been consulted, from which scientific mission objectives, pointing control requirements
and pointing knowledge requirements are derived. The key pointing control requirements derived are
that Alticube+ requires a desired APE ≤ 0.1 deg with a maximum of APE ≤ 0.2 deg for all three axis.
Further pointing control requirements on the maximum relative error between two antennas needs to
be less than 150 arcsec to prevent data loss during payload operation. Pointing knowledge require-
ments on the Alticube+’s attitude should be less than 100 arcsec to enable calibration techniques for
height measurement data extraction within the mission height error budget of 2 cm. Additional hard-
ware requirements have been added, tailored to the scope of this research to ensure tractability and
transparency. The key requirements limited the ADCS system to only use the central node sensors
and reaction wheel system for pointing control and pointing knowledge.

7.2. RQ-2: Controller Design
The second research question - How can a centralised LQR controller and Kalman filter be de-
signed and tuned for the rigid-body model of Alticube+, and how does this impact their perfor-
mance to satisfy the ADCS pointing control and knowledge requirements? - aimed to design
a controller for Alticube+. A centralised LQR controller combined with a Kalman filter was designed
for the rigid-body spacecraft model to address the second research question. The LQR formulation
provides a systematic multi-axis control law capable of achieving stable attitude control. Trade-offs be-
tween pointing performance and actuator effort is tuned through the cost matrices. After Formulation
of the LQR controller, an integral cost matrix tuning is performed. This research uses Bode plots to
analyse Controller stability over a wide spectrum of tuning parameter configurations. Analysis shows
that values forQ < 1 result in a stable control system with positive margins. To determine a cost config-
uration that ensures a stable convergence to the reference attitude within the 450 smanoeuvrer window,
a deeper refinement on the range of possible cost configurations is needed. Separating the cost matrix
Q into attitude and angular rate cost weighting parameters shows that lowering weights of the attitude
cost weights leaves no margin for the control system to work with. It is found that the weighting val-
ues of 10−1.8 − 0.15 for the attitude cost weights provides a phase margins between 30 deg − 60 deg.
Pitch however shows marginal stability which can results in oscillatory behaviour of the system in the

66
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pitch axis. Lowering the cost weight for pitch to a value between 10−3 − 10−2 results in a stable pitch
control with sufficient margin. The tuning configuration was then validated using the rigid body model
in a simulation environment, where it showed that the LQR control system together with the Kalman
filter is able to converge to the desired attitude within the required 450 s operation window for attitude
manoeuvrers of 2 deg in any axis. However, analysing the control loop shows that the reaction wheels
quickly saturate for manoeuvrers larger than 1 deg in both roll and yaw simultaneously. Although the
spacecraft satisfies pointing control requirements below 0.2 deg for combined roll and yawmanoeuvrers
of 1.5 deg, larger initial offsets result in a delayed convergence to the reference attitude, not complying
with ADCS pointing control requirement of 0.2 deg within the manoeuvrer time window. In addition to
this, sudden impulse disturbance torques with relative large magnitude could threaten the stability of
Alticube+. Preventing this issue would require either an increase in angular momentum storage or pos-
sibly a form of distributed control.

7.3. RQ-3: Reaction Wheel Jitter Interaction
With the design of the attitude controller finished, the third research question - How do the dominant
flexible modes of Alticube+ interact with reaction wheel jitter to affect pointing stability? - can
be addressed by expanding the rigid body model to a flexible model with reaction wheel jitter. The
flexible model is developed using Kane’s equations method for describing dynamics. Implementing
Kane’s equations allows for a customized model together with the lumped parameter method to de-
scribe five rigid body CubeSats, each linked through a torsional joint, configured to model Alticube+’s
flexible baseline structure. The jitter of the reaction wheel system is modelled using the static imbal-
ance of the reaction wheel, which generates a jitter force that rotates around the spinning axis in the
local reaction wheel reference frame. The interaction between the reaction wheel jitter and the flexible
structure is analysed through varying initial conditions and changing static imbalance values within the
expected range. Simulation results show that the presence of flexible joints introduces dynamic lag in
attitude tracking, particularly visible in roll and yaw, and small oscillatory behaviour. Despite this, the
LQR controller maintains stable convergence within the required 450 s operational window. However,
the analysis also reveals the sensitivity of the flexible structure to reaction wheel jitter. Pitch stability is
most affected by the reaction wheel jitter. Pointing errors up to 0.11 deg in the pitch direction and angular
rates up to 120 arcsec/s are observed as static imbalance increases. In addition to this, a worst-case
jitter simulation where all five reaction wheel systems produced reaction wheel jitter is explored to un-
derstand the pointing control under maximum jitter possible by Alticube+. This simulation showed pitch
pointing errors of 0.3 deg, going above the maximum pointing error of 0.2 deg.
Internal antenna pointingmisalignment due to reaction wheel jitter stays within the requirements through-
out the payload operation window. Pointing knowledge on the baseline roll is mainly driven by the sen-
sor noise and the Kalman filter’s performance to estimate the spacecraft attitude. Results show that
the knowledge error also is within the requirement.

7.4. RQ-4: Pointing Performance under Inertia Uncertainty
Lastly, the fourth research question - What is the achievable envelope of pointing stability perfor-
mance for Alticube+ under inertia uncertainties? - explores how uncertainty in the known inertia
matrix affects the pointing performance in combination with reaction wheel jitter. Through variations in
the inertia matrix, the simulations revealed axis-dependent sensitivity. Roll and yaw matrix uncertainty
is mainly driven by the uncertainty in the mass of each CubeSat platform, due to the long baseline
structure. Root cause for uncertainty in mass can originate from the expenditure or RCS propellant.
If CubeSats expend different amounts of propellant during the rendezvous and docking procedure,
imbalance in mass between the CubeSat nodes can be observed which deviate from the predicted
mass. Effects of the this uncertainty remained limited due to their large inertia moments, allowing the
Kalman filter adequate time to correct state prediction errors. In contrast, pitch deviations are governed
primarily by the inertia uncertainty of CubeSat platforms. This uncertainty has an effect on the pitch er-
ror which reached magnitudes up to 0.15 deg, approximately 50% greater than the instability observed
under maximum static imbalance conditions. This underlines the amplified impact of uncertainties on
pitch stability.
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7.5. Overall Conclusions
In conclusion, this research successfully achieved its objective of designing a centralised attitude con-
troller for Alticube+ using LQR during its science operation phase and assessing the impact of reaction
wheel jitter on pointing stability for a flexible structure. By systematically addressing the four support-
ing research questions, a complete and traceable analysis path was established―from defining ADCS
requirements, to designing and tuning a centralised LQR-KF architecture, to extending the dynamics
to a flexible multi-body system, and finally evaluating pointing stability under mass/inertia uncertainties.
The results show that a centralised LQR controller, supported by a Kalman filter for state estimation, is
capable of regulating the attitude of Alticube+ within the operational constraints and achieving conver-
gence within the required manoeuvre window for both rigid and flexible configurations. In addition to
this, antenna pointing misalignment and baseline knowledge errors caused by reaction wheel jitter are
within the allowable range, enabling Alticube+ to achieve its scientific mission objectives. However, the
research also highlights several important limitations. Firstly, the reaction wheel saturation fundamen-
tally constrains the range of feasible initial conditions where Alticube has full control over all axis during
this phase. Future research mitigating these issues will require a trade-off between increasing angular
momentum storage for the central node, increasing allowed time for the manoeuvrer, limiting manoeu-
vrer range or addressing the possibility for distributed control. Secondly, reaction wheel jitter from static
imbalances interacts proportionally the with flexible modes, mainly affecting pitch stability. Future re-
search can investigate more advanced controller strategies that limits jitter-controller resonance with
the flexible modes. Lastly, mass and inertia uncertainties further amplify pitch pointing errors, empha-
sising the pitch sensitivity of the spacecraft. Future research expanding the inertia matrix fidelity could
allow for better assessment of the inertia matrix, creating more accurate understanding of the pointing
control impact.



8
Recommendations

In Chapter 7, conclusions on the research objective and the supporting research question have been
presented. From these conclusions, several recommendations can be highlighted for future research.
The recommendations are divided into two parts. The first part discusses improvements on the mod-
elling approach. The second part expands on the controller design for Alticube+ and proposes further
recommendations on possible control allocation problem for long-baseline spacecraft.

8.1. Model-Related Recommendations
• Refine structural flexibility modelling. Although the flexible spacecraft model presented in this
thesis captures the primary dynamic coupling between the central node and connected nodes,
first order mode shapes resulted in an overestimation of the tip pointing error, compared to a high
order FEM model. Future work should consider including higher-order mode shapes, comparing
the impact on pointing errors against the findings of this research.

• Improve CubeSat inertia matrix. This research captured the largest dynamics of the spacecraft
using a simplified inerti matrix model of Alticube+ in the stowed configurations. But in reality, its
deployed configurations alters the inertia matrices through shifts in mass distribution, impacting
dynamics. Improving the inertia matrix allows for a more detailed understanding on Alticube+’s
dynamics, leading to better controller designs.

• Expand on boom joint flexibility and thermal effects. Additional refinement to flexibility of the
structure, specifically for multi-linked CubeSat structures like Alticube+, includes boom joint flex-
ibility and thermal effects. These effects could have static and dynamics impact on the baseline
pointing of the spacecraft. This research has not included these effects, which could lead into not
fully capturing the antenna pointing error during the payload operations. Including these effects
will create better understanding on pointing errors for general long-baseline structures.

• Integrate environmental disturbance models. While disturbances such as gravity-gradient
torque, aerodynamic drag, and solar radiation pressure were considered at a high level, mission-
specific disturbance characterisation may improve accuracy, particularly for low-altitude missions.

• Addition of reaction wheel system structural transfer function. To research the effects of
reaction wheel jitter on the flexible structure, a reaction wheel model that included static imbalance
was created. This research, however, only looked at direct pure jitter torques to the center of
mass of the central node. In reality, structural interfaces with the reaction wheel to the spacecraft
introduce transfer functions, which can resonate or dampen certain frequencies. The addition of a
structural transfer function between the jitter torques and the experienced vibrations by the central
node could further analyse the effects of reaction wheel jitter on Alticube+ pointing performance.

8.2. Controller Design Recommendations
• Investigate LQR improvements for pitch-axis sensitivity. The results show that pitch control
performance is more sensitive to inertia uncertainty and reaction wheel jitter due to the axis’s
smaller inertia moment. Future designs should consider adjusting control gains, implementing
adaptive filtering or add additional control constraints resonance with the reaction wheel jitter.
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• Analyse operational constraints related to wheel jitter. Since reaction wheel jitter plays a
significant role in pointing stability, especially during fine-pointing operations, it is recommended
to examine potential wheel desaturation and scheduling strategies to optimally avoid jitter.

• Investigation of distributed control methods. Although LQR is able to control Alticube+ within
the requirements, pitch axis sensitivity to reaction wheel jitter does lead to small margins in space-
craft pointing control. Distributed control could utilise multiple sets of reaction wheels in the five
CubeSat nodes. Researching and investigating these control methods could allow for a more
effective utilisation of control actuators and reduce the pitch sensitivity.

• Investigation of post-sensor data state estimation In this research, the central node was used
to determine the spacecraft’s state. For in-orbit pointing control of Alticube+, using a Kalman
filter is sufficient for this task. However, four sets of sensors are not utilised. Future research on
post-sensor data estimation strategies is of interest to further understand the pointing knowledge
capabilities of Alticube+.
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A
Mathamatical Derivations of

Quaternion Kinematics Inversion

Let the following relationship of the quaternion kinematics be described by equation (A2.1)

[
˙̄q
q̇4

]
=

1

2

[
q4I3×3 + q̄×
−q̄T

]
ω̄ = Λqω̄ (A2.1)

The inverse of this equation will result in

ω̄ = (ΛT
q Λq)

−1ΛT
q

[
˙̄q
q̇4

]
(A2.2)

Because all quaternions are unit vectors:

(ΛT
q Λq)

−1 = 4I3×3

This will then result in the following relationship seen in equation (A2.3).
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The following identities can be used:
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Now the inversion of equation (A2.3) can be completed.
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From the identity of Λ∗

q can be seen that (Λ∗T
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q = Λq. Further, the relationship can be fully
derived.
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Using the relationship q21 + q22 + q23 + q24 = 1, the vector can be reduced further.
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Bode diagrams

B.1. Bode Plots Tuning Qq
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C
Simulation Results; Support Figures

C.1. Simulation Figures Case: Full Manoeuvrer

(a) Attitude angles (b) Angular rates

Figure C.1: Spacecraft state of Alticube+’s central node

(a) Attitude angles (b) Angular rates

Figure C.2: Estimated state of Alticube+’s central node
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C.2. Simulation Figures Case: Worst Case 83

(a) State error (b) Angular rate error

Figure C.3: Estimated state error ϵAKE of Alticube+’s central node

(a) Applied torque in the roll/pitch/yaw direction (b) Angular momentum storage of central node reaction wheel system

Figure C.4: Reaction wheel system torque output and angular momentum storage

C.2. Simulation Figures Case: Worst Case

(a) Attitude angles (b) Angular rates

Figure C.5: Spacecraft state of Alticube+’s central node
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(a) Attitude angles (b) Angular rates

Figure C.6: Estimated state of Alticube+’s central node

(a) State error (b) Angular rate error

Figure C.7: Estimated state error ϵAKE of Alticube+’s central node

(a) Applied torque in the roll/pitch/yaw direction (b) Angular momentum storage of central node reaction wheel system

Figure C.8: Reaction wheel system torque output and angular momentum storage
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