
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Space-Time Parallel Algo-
rithms for Boundary Ele-
ment Methods
An exploration of parallelization, preconditioning
and implementation for the heat equation in a space­
time setting

Thesis Msc. Applied Mathematics
Daniël Hoonhout

Space-Time Parallel
Algorithms for Boundary

Element Methods
An exploration of parallelization, preconditioning
and implementation for the heat equation in a

space­time setting

by

Daniël Hoonhout
Student Name Student Number
Daniël Hoonhout 4389565

Daily Supervisor: dr. Carolina Urzúa­Torres
Responsible Professor: Prof.dr.ir. Kees Vuik
Institution: Delft University of Technology
Place: Faculty of Applied Mathematics, Delft
Project Duration: January, 2021 ­ September, 2021

Cover Image: Physical space­time representation, unrelated. Retreived at:
https://wallpapercave.com/spacetime­wallpapers

Preface
In the past nine months, I worked on my master thesis, of which the result lies in front of you. In a way,
this thesis will show not only what I have been working on in the past months. Instead, it provides an
overview of the things I have learned in the two years of my masters degree Applied Mathematics at
the University of Delft. One could even take it a step further and regard it as work resulting from being
a student of the University of Delft for the past seven years.

I have performed research in parallelization of space­time boundary element methods, restricted to
the heat equation. Research in this matter was proposed nine months ago by dr. Carolina Urzúa­Torres
in collaboration with prof.dr.ir. Kees Vuik. This subject spoke tome for two reasons, which coincidentally
corresponds to the twomain subjects of this work: Space­time (boundary element) methods and parallel
computing. I found the concept of combining space and time immediately fascinating, and was curious
to the mathematics behind it. Conceptually, I had already heard of parallel programming, however, I
had no prior encounters with the subject. I wished to gain more knowledge of a concept with increasing
presence and effect in modern research, and, for that reason, was interested in this matter.

First of all, I want to thank dr. Carolina Urzúa­Torres, my daily supervisor, for managing to provide
me with an immense amount of knowledge by introducing me to a whole new challenging world of
mathematics. The accompanied enthusiasm to this introduction made me become infatuated with
numerical analysis, to such a high degree even, that I will pursue researching in this area in the future.

Secondly, want to thank prof.dr.ir. Kees Vuik, for quickly bringing me up to speed on the theoretical
and practical aspects of parallelization, and numerical methods in general. This passing of knowledge
transcends the past nine months. Regarding both supervisors, I would like to emphasise that all this
has been done without a single physical meeting; An unfortunate consequence of COVID­19, solved
very efficiently.

Furthermore, I want to thank my parents for regularly asking about the project and showing support
throughout, regardless of understanding everything I wrote.

Lastly, I would like to thank my roommates. With effort from your sides, we were able to create an
environment at home where studying was always possible, even in times of quarantine.

Equipped with the knowledge and experiences I acquired in my years at the University of Delft. I
am excited to apply this in the PhD track, which I plan to follow after graduation.

I hope you will enjoy reading this thesis as much as I enjoyed discovering this material myself for
the first time.

Daniël Hoonhout
Delft, September 2021

i

Abstract
In this thesis we revisit theoretical background for space­time boundary element methods for the heat
equation and its implementation. We restrict ourselves to solving the one­, and two dimensional Dirich­
let heat equation. A new approach is proposed to approximate the Galerkin matrix entries in a semi­
analytical fashion, requiring a reduced order of quadrature. This method can be applied to non­uniform
meshes, but is restricted to right­triangular meshes.

Using this approach, a system of Galerkin equations is created and solved iteratively with the use of
the Generalised Residual Method (GMRES). Operator preconditioners and preconditioners originating
from domain decomposition methods are summarised and implemented for a two dimensional Dirichlet
problem. In the case of operator preconditioning, a diagonal duality pairing proposed by Stevenson and
van Venetië [23] is used in the implementations. The Restricted Additive Schwarz method is considered
as both a preconditioner and a basic iterative method.

The Calderón preconditioner, an operator preconditioner, is used to test the efficiency of parallel
preconditioned GMRES implementations, as this preconditioner provides a dense matrix. For different
amount of processes, the parallel GMRES implementations are investigated. Using row­wise decom­
position, parallel GMRES becomes increasingly time­efficient, as the level of refinement increases.
However, the Induced Dimension Reduction method, a different non­symmetric solver, currently out­
performs the parallel GMRES implementation.

ii

Contents

Preface i

Abstract ii

List of Figures iv

List of Tables vi

1 Introduction 1

2 1D problem 3
2.1 1D Dirichlet problem . 3

2.1.1 Formulation as boundary integral equations . 3
2.1.2 Solution via boundary element method . 7
2.1.3 Numerical results . 10

3 2D problem 15
3.1 Space­time formulation. 15

3.1.1 Trace mapping properties . 16
3.1.2 Green’s theorem . 16
3.1.3 Representation formula . 18
3.1.4 Boundary integral equations . 18

3.2 Space­time BEM . 18
3.3 Triangulation . 19
3.4 Trial spaces . 20

3.4.1 Piecewise constant basis functions . 20
3.5 Computing the Galerkin Matrix. 24

3.5.1 Right triangular grid . 29
3.6 Numerical results . 37

3.6.1 Analytical expression of solution. 38
3.6.2 Discrete solution and error analysis . 39

4 Parallelization 41
4.1 Weakly singular matrix structure . 41
4.2 Generalised residual method . 44
4.3 Calderón preconditioning. 45

4.3.1 Dirichlet Boundary value problem . 47
4.3.2 Construction of the hypersingular matrix . 51

4.4 Domain Decomposition . 54
4.4.1 Multiplicative Schwarz . 55
4.4.2 Restricted Additive Schwarz . 56
4.4.3 Schwarz procedures as preconditioners . 56

4.5 Preconditioning results . 57
4.6 Parallel GMRES implementation . 59

4.6.1 Least squares problem . 59
4.6.2 Matrix vector multiplications . 63
4.6.3 Dot products and vector norms . 65
4.6.4 Numerical results . 65
4.6.5 IDR(s) . 69

5 Conclusion and Discussion 72

References 75

iii

List of Figures

2.1 Heat map of numerical solution with ht=0.01 and ∆x=0.01 12
2.2 Temperatures at different points in time over the domain. Figure 2.2b seems to be a

single line, this is because the solutions are nearly identical and the lines coincide. . . . 13
2.3 Temperatures at different points in time over the domain. Note that the solution in Figure

(a) is of such a small order, that the analytical approximation seems to falter due to
machine precision. Figure 2.2b seems to be a single line, this is because the solutions
are nearly identical and the lines coincide. 14

3.1 Type 1 abutting elements . 30
3.2 Type 2­a abutting elements, forming a parallelogram . 30
3.3 Type 2­b abutting elements, forming a triangle . 30
3.4 Type 2­c abutting elements, forming a triangle . 30
3.5 Type 3­a temporally abutting elements, forming a quadrilateral 33
3.6 Type 3­b temporally abutting elements, forming a triangle 34
3.7 Example abutting elements from different Σj . 35
3.8 Basis meshes used for Dirichlet problem . 38
3.9 Approximation of the solution at different positions in the domain (0, 1)2, given the mesh

in Figure 3.8 (a). The time interval (0,4) is evaluated at 100 different equidistant points. 39
3.10 Approximation of the solution at different positions in the domain (0, 1)2, given the mesh

in Figure 3.8 (b). The time interval (0,0.41) is evaluated at 100 different equidistant points. 39

4.1 Example of space time triangulation, with faces X and Y 41
4.2 Example of weakly singular matrix structure (128 elements), where the white spaces

denote zero entries . 42
4.3 Example triangulation with structured numbering by time­layer 42
4.4 Example of weakly singular matrix structure (32 elements) when numbering by time­layer,

where the white spaces denote zero entries . 42
4.5 ”Folded out” representation (32 elements) when numbering by face 43
4.6 Example of weakly singular matrix structure (32 elements) when numbering by face,

where the white spaces denote zero entries. 43
4.7 Matrix structures given a different assembly method . 44
4.8 Example of an element and corresponding notation. 52
4.9 Example of a 1D space­time decomposition . 54
4.10 Absolute values of the eigenvalues of the following matrices: The inverse of the weakly

singular matrix (V ^­1), The hypersingular matrix without the zero eigenvalue (W), the
regularized hypersingular matrix (WR) and the matrix­matrix product of the Calderón
preconditioner and the weakly singular matrix Cv(V h). 58

4.11 Spectra of hyper singular and preconditioned weakly singular matrices, given different
levels of refinement. 58

4.12 Spectra of the preconditioned weakly singular matrices, given different levels of refine­
ment. Note that the axis differ between graphs. 58

4.13 Spectra of the inverted weakly singular matrices, given different levels of refinement.
Note that the axis differ between graphs. 59

4.14 Example of row­wise decomposition of matrix A and vector x, given four processes. . . 64
4.15 Example of checkerboard decomposition of matrix A and vector x, given four processes. 64

iv

List of Figures v

4.16 Boxplot of run times, for different levels of refinement. The orange line represents the
median time. The lower and upper part of the ”box” represent the 25th (Q1) and 75th
(Q3) percentile respectively . The ”whiskers” are obtained,with the use of interquartile
range (IQR), as follows: Q1 − 1.5IQR and Q3 + 1.5IQR. Any measurement outside this
range is considered an outlier and represented by a circle. 66

4.17 Run time per iteration count, for various processes and a 95% bootstrapped confidence
interval (N = 10.000). Note that the mesh refinement consisting of 32 elements is not
able to perform 40 iterations. Figure (b) seems to contain two lines, this is because the
line of 1 process and 2 processes (nearly) coincides. 68

4.18 Mean convergence time versus mesh size, using checkerboard parallelization of matrix
vector products. The confidence interval of the mean is calculated with bootstrap method
(N = 10.000). 69

4.19 Mean convergence time versus mesh size, given different types of parallelization of the
matrix vector products and four processes. The confidence interval of the mean is cal­
culated with bootstrap method (N = 10.000). 69

4.20 Computation time until convergence, with relative error of 1E­5, given different mesh
sizes and amount of processes. 70

List of Tables

2.1 Relative and absolute error on time interval (0,1), at different points in the domain with
∆t = ∆x = 0.01. 13

2.2 Relative and absolute error on time interval (0,1), at different points close to the boundary,
with ∆t = 0.001 and ∆x = 0.01. 14

3.1 The relative (absolute) error for different levels of refinement given the mesh in Figure
(3.8) (a). The error is taken as with respect to the Euclidean norm. 40

3.2 The relative (absolute) error for different levels of refinement Figure (3.8) (b). The error
is taken as with respect to the Euclidean norm. 40

4.1 Table of iteration count given a preconditioner M−1. M−1 = I is equivalent to GMRES
without preconditioning. The meshes are ordered on their level of refinement. The ’s’
behind the refinement level refers to the ”scaled” mesh as presented in Figure 3.8(b).
RAS[n,m%] denotes the RAS preconditioner given a domain decomposed in n subdo­
mains and with m% overlap. No ’m’ implies no overlap. 57

4.2 Iteration count given a RAS[n,m] basic iterative method. RAS[n,m] represents a decom­
position in n equal­size sub­domains with m% overlap. The meshes are ordered on their
level of refinement. The ’s’ behind the refinement level refers to the ”scaled” mesh as
presented in Figure 3.8(b). 57

4.3 Spectral condition number for each level of refinement, for different operators. V^­1
denotes the inverse of the weakly singular matrix, W_R the regularised hypersingular
matrix and Cv(V) the preconditioned weakly singular. 59

4.4 Mean run time in seconds until convergence of row­wise parallelized GMRES method
with stopping criterion (Algorithm 7). The emphasised run times are the fastest times for
a given mesh. The relative error tolerance is set to 1E­5. 66

4.5 Mean run times per iteration count vs total processes for GMRES without stopping crite­
rion. Given a mesh of 32 elements and simulating the same experiment 100 times. The
speedup column shows the ratio between times of one process and four processes . . 67

4.6 Mean run times per iteration count vs total processes for GMRES without stopping cri­
terion. Given a mesh of 128 elements and simulating the same experiment 100 times.
The speedup column shows the ratio between times of one process and four processes 67

4.7 Mean run times per iteration count vs total processes for GMRES without stopping crite­
rion. Given a mesh of 512 elements and simulating the same experiment 100 times.The
speedup column shows the ratio between times of one process and four processes . . 67

4.8 Mean run times per iteration count vs total processes for GMRES without stopping cri­
terion. Given a mesh of 2048 elements and simulating the same experiment 100 times.
The speedup column shows the ratio between times of one process and four processes 67

4.9 Mean run time in seconds until convergence of checkerboard/column­wise parallelized
GMRES method with stopping criterion (Algorithm 7). The emphasised run times are
faster than the serial algorithm. The relative error tolerance is set to 1E­5. 68

vi

1
Introduction

Boundary value problems for partial differential equations are omnipresent in mathematically oriented
fields such as physics and a wide range of disciplines in engineering. A classical tool for the analysis
and solution of boundary value problems are the boundary integral equations (BIE). Any method that
provides an approximate numerical solution of these boundary integral equations, is categorised as a
boundary element method (BEM) [2]. In terms of computational cost, these methods are especially
useful when dealing with infinite domain problems or other problems where there is a large volume to
surface ratio.

In general, the numerical solution of the evolution of partial differential equations relies on semi­
discretizations, either in space or in time. In contrast, by treating the temporal dimension as another
spatial dimension, a space­time discretization is obtained. This allows for adaptivity and parallelization
in space and time simultaneously, without additional effort. Given today’s computing capabilities, this
feature is of great advantage, as it paves the way to develop algorithms that can use a large number
of cores more efficiently. For this reason, we pursue space­time BEM in this thesis.

Recent developments in coupling Finite Element Methods (FEM) with BEM, and new space­time
formulations for the wave equations, motivate us to conduct further research in space­time BEM par­
allelization. In contrast to the parallelization of space­time BEM studied by Dohr [3], these new for­
mulations use a modified Hilbert transform, which causes the system­matrices to be also dense in
time. Hence, we can no longer exploit the structure given by the fundamental solution in the choice of
parallel algorithms. Moreover, in the spirit of true space­time BEM, this thesis focuses on space­time
triangulations of the lateral boundary.

The space­time lateral boundary is discretized using triangular elements and the theory regarding
the trial spaces given such a triangulation is examined. This theory is an extension of the already
existing theory on error estimates given a tensor­product discretization [2, 15, 20, 3]. Furthermore,
certain entries of the Galerkin matrix have singular integrands, one needs a strategy to increase the
convergence rate of the quadrature in these cases.

Previous work mainly dealt with tensor­product meshes [15, 2, 3, 16], where Boundary Integral
Operators (BIO) were integrated with a semi­analytical approach; or, more recently, with a general
space­time triangulation [13]. This thesis offers, by restricting to right­triangles, a new semi­analytical
approach for the integration of the BIOs. At the moment, this approach is only proven to be viable for
space­time triangulations with an added constraint: the elements must be right­angled and two of the
edges must be parallel to either the temporal or spatial axis. However, the method is not restricted to
uniform­meshes.

For both the one­, and two dimensional case, the numerical approximation requires the solution of
a linear system. These systems are solved using the iterative Generalised Residual Method (GMRES).
In order to efficiently improve convergence rate of iterative solvers, one needs to use a preconditioner.
Operator preconditioning is a commonly used preconditioning strategy when it comes to BEM, [8, 1, 21,
3, 23]. A new diagonal duality pairing for operator preconditioning has been proposed by Stevenson
and van Venetië [23], which allows us to apply operator preconditioning more efficiently, given a general
triangulation. For such general triangulation, the standard approach of operator preconditioning using
a dual mesh has not yet been validated.

1

2

Apart from operator preconditioning, this thesis explores the possibility of using domain decompo­
sition methods as a preconditioner and as a stand­alone iterative method. This will allow us to com­
pare operator preconditioning, which is currently dominating in literature regarding space­time BEM, to
other techniques. Alongside comparisons, introducing domain decomposition methods will also give
us a broad impression of the effectiveness of inherently parallel preconditioners and iterative methods
in a space­time setting. Though not required, this thesis only presents uniform decompositions of the
space­time domain. In summary two forms of preconditioning are revisited: Calderón preconditioning
and Restricted Additive Schwarz (RAS) preconditioning. The latter is also considered as a stand­alone
iterative method.

As another comparison toGMRES, the InducedDimensionReduction (IDR)method, a non­symmetric
solver, is introduced. The efficiency of parallelization of this method on a basic level is explored.

The structure of this thesis is as follows: In Chapter 2, the theoretical framework regarding space­
time BEM is revisited, mainly based on the one­dimensional Dirichlet heat equation. An implementation,
using the tensor­product ansatz [15, 2, 3, 16] is presented.

A more general revision of the theoretical framework established in the second chapter is intro­
duced in Chapter 3. A new semi­analytical approach is derived, to efficiently approximate the entries of
the Galerkin matrix with lower order quadrature. Implementations of the two dimensional BEM, given
different levels of uniform refinement, are considered.

The implementations presented in Chapter 3 are used to test the effectiveness of preconditioning
and parallelization in Chapter 4. First, theory regarding different preconditioning strategies is sum­
marised. The effect of the preconditioners is compared, using iteration count as a benchmark. Since
the usage of Calderón preconditioning leads to a fully dense matrix, an implementation of this precondi­
tioner is considered for parallelization. Basic parallelization schemes, such as row­wise parallel matrix
vector products and parallel l2­norms are presented, and used to construct a parallel GMRES method.
From a computational­time perspective, the efficiency of parallel GMRES, given different degrees of
parallelism is investigated.

As a comparison to GMRES, the IDR(s) method is also revisited. Using similar parallelization tech­
niques as in the case of GMRES, the method is parallelized and, again tested for time­wise efficiency,
given different degrees of parallelism.

2
1D problem

2.1. 1D Dirichlet problem
We start by considering the following relatively simple heat equation in one dimensional domain Ω =
(0, 1) with boundary Γ = {0, 1}. This is

∂tu+ ∂xxu = 0, (2.1)

with Dirichlet boundary conditions:

u|Γ = g, (2.2)

and initial condition:
u(x, 0) = f(x) = 0. (2.3)

The goal is to solve these equations in a space­time setting up to time T, analogous to the multiple
dimensional case described in Noon’s thesis [15]. The space­time cylinder we are interested in is
denoted as Q := Ω × (0, T), and its lateral boundary as Σ := Γ × (0, T). The trace operators are
defined as an extension of the following continuous linear operators

γ0v := v|Σ, ∀v ∈ C(Q),

γ1v := ∂nv|Σ = (∇v|Σ) · n, ∀v ∈ C1(Q),

to the corresponding Sobolev spaces, which will be defined in the next section. With this, we can
rewrite the Dirichlet problem as: Given g : Σ→ R, find u : Q→ R such that

∂tu+ ∂xxu = 0, in Q,
u = 0, in Ω× {t = 0},
γ0u = g, in Σ.

(2.4)

2.1.1. Formulation as boundary integral equations
In order to write the formulation of (2.4) in terms of boundary integral equations, first the required
function spaces to solve this problem need to be established.

A d­tuple of non­negative integers α = (α1, . . . , αd) ∈ Nd is defined as a multi­index of dimension d.
Its order is given by

|α| := α1 + · · ·+ αd,

and, for a C∞­function f, we define
∂αf := ∂α1 . . . ∂αd

d f.

This leads to the following definition:

3

2.1. 1D Dirichlet problem 4

Definition 2.1 ([14, Defn.6.6, Prop.6.7]). The Sobolev space of functions with k­th weak derivative
and L2 integrability is denoted as

Hk(Ω) := {f ∈ L2(Ω) : ∂αu ∈ L2(Ω) ,∀α such that |α| < k},

with norm

‖f‖Hk(Ω) :=
∑
|α|≤k

‖∂αf‖L2(Ω).

Additionally, we define the Bochner space.

Definition 2.2 ([14, Ch.1]). Let (Ω,F , µ) be a measure space and let X be a Banach space. For
1 ≤ p ≤ ∞, we denote by the Bochner space Lp(Ω;X) the space of all equivalence classes of
strongly measurable functions f : Ω→ X, for which ω 7→ ‖f(ω)‖ belongs to Lp(Ω).

Remark. Lp(Ω;X) is a Banach space with respect to the norm

‖f‖p := ‖ω 7→ ‖f(ω)‖‖Lp(Ω) .

In this thesis we are solely interested in the case p = 2.

Subsequently, the anisotropic Sobolev space on the space time cylinder for all r, s > 0 is defined
as [15, 3, 16]:

Hr,s(Ω) := L2((0, T);Hr(Ω)) ∩Hs((0, T);L2(Ω)),

where

Hs((0, T);L2(Ω)) := {u ∈ L2(Q) : |u|Hs((0,T ;L2(Ω)) <∞},

with

|u|Hs((0,T);L2(Ω)) :=

∫
Ω

‖u(x, ·)‖2Hs(0,T) dx.

The norm corresponding to the anisotropic Sobolev space for r, s ∈ (0, 1) is given by

‖u‖2Hr,s = ‖u‖2L2((0,T);Hr(Ω)) + ‖u‖
2
Hs((0,T);L2(Ω)).

We can further restrict ourselves to spaces with zero initial condition [15, 3, 16]:

H̃r,s(Q) := {u ∈ H̃r,s(Q) : u(x, t) = 0, t < 0}.

We will look for solutions of (2.4) in the space H̃1, 12 (Q). Given second order operator L := ∂t + ∂xx, let
H̃1, 12 (Q;L) := {u ∈ H̃1, 12 (Q) : Lu ∈ L2(Q)}. It is worth noting that the trace operators for this space
are continuous linear mappings [1, Lem.2.4, Prop.2.18]

γ0 : H̃1, 12 (Q)→ H
1
2 ,

1
4 (Σ),

and,
γ1 : H̃1, 12 (Q;L)→ H− 1

2 ,−
1
4 (Σ),

with H 1
2 ,

1
4 (Σ) defined analogously to Hr,s, and H− 1

2 ,−
1
4 (Σ) the dual space of H 1

2 ,
1
4 (Σ). Then, by

Green’s second identity we have:

∫
Q

v(x, t− t0)Lu(x, t)− u(x, t− t0)Lv(x, t) dxdt (2.5)

=

∫
Σ

γ0u(x, t) · γ1v(x, t− t0) dxdt−
∫
Σ

γ1u(x, t) · γ0v(x, t− t0) dxdt,

for t0 ∈ R and u, v ∈ H̃
1
2 ,

1
4 (Q;L). The fundamental solution, G(x, t), of the d­dimensional heat

equation is given by

2.1. 1D Dirichlet problem 5

G(x, t) :=

{
1

(4πt)
d
2
e−|x|2/4t t ≥ 0

0 t < 0
. (2.6)

Substituting v with G(x− y, t− s) in (2.5), yields:

u(x, t) =

∫
Σ

(
G(x− y, t− s) ∂u

∂ny
(y, s)− ∂

∂ny
G(x− y, t− s)u(y, s)

)
dyds. (2.7)

Remark. The left hand­side of (2.7) follows from the fact that (2.1) implies that Lu = 0. And, as a
property of the fundamental solution, we have that L(G(x, t)) ∗ u(x, t) = u(x, t), where ∗ denotes the
convolution of the functions.

Equation (2.7) is the Representation formula for the heat equation, given that there is no source
function present. Using this representation, we can define the boundary layer potential operators. The
single layer potential operator [2, 15, 3, 16]

K1(φ)(x, t) :=

∫
Σ

φ(y, s)G(x− y, t− s) dyds, (x, t) ∈ Q, φ ∈ L1(Q),

and the double layer potential operator

K2(φ)(x, t) :=

∫
Σ

φ(y, s)
∂

∂ny
G(x− y, t− s) dyds, (x, t) ∈ Q, φ ∈ L1(Q).

By these definitions, we can rewrite (2.7) as

u(x, t) = K1(γ1u)−K2(γ0u), (x, t) ∈ Q. (2.8)

Now that the boundary layer potential operators are properly defined, we can define the boundary
integral operators.

The single layer potential operator is continuous across the boundary [2]. Hence we can define The
single layer operator

V ψ := γ0K1ψ, ψ ∈ H− 1
2 ,−

1
4 (Σ).

Given the domain Ω, let us denote the trace taken from inside Ω with γinti , i = {0, 1}. Similarly let us
denote the trace taken from Ω̄c := Rd\Ω, by γexti . We define a ”jump” across the boundary [·]Γ by [2]

[γiv]Γ := γexti v − γinti v, x ∈ Γ, i = 0, 1. (2.9)

Now, let us consider the following lemma:

Lemma 2.1 ([20, Ch.6], [3, Ch.5]). Let v ∈ C(Σ̄) and (x, t) ∈ Σ. The double layer potentialK2v satisfies
the following relations

γint0 (K2v)(x, t) = −
1

2
v(x, t) +

∫
Σ

φ(y, s)
∂

∂ny
G(x− y, t− s) dyds, (x, t) ∈ Σ,

γext0 (K2v)(x, t) =
1

2
v(x, t) +

∫
Σ

φ(y, s)
∂

∂ny
G(x− y, t− s) dyds, (x, t) ∈ Σ.

From Lemma 2.1 we obtain the following jump relation [20]

[γ0K2v]Σ = γext0 K2v(x)− γint0 K2v(x) = v(x). (2.10)

For the double layer potential and φ ∈ H 1
2 ,

1
4 (Σ), there also holds:

γint0 K2φ(x, t) = −
1

2
φ(x, t) +

∫
Σ

φ(y, s)
∂

∂ny
G(x− y, t− s) dyds, (x, t) ∈ Σ. (2.11)

From this we define the double layer operator

Kφ :=

∫
Σ

φ(y, s)
∂

∂ny
G(x− y, t− s) dyds.

2.1. 1D Dirichlet problem 6

The conormal derivative of the double layer potential, defines the hypersingular operator W, i.e.

Wφ := −γ1K2φ, (2.12)

which is a a bounded operator fromH
1
2 ,

1
4 (Σ) toH− 1

2 ,−
1
4 (Σ). From (2.8) and (2.11) it follows directly

that

γ0u = γ0K1(γ1u)− γ0K2(γ0u) = V γ1u−Kγ0u+
1

2
γ0u. (2.13)

Next, another useful lemma is introduced:

Lemma 2.2 ([20, Ch.6],[3, Ch.5]). Let w ∈ C(Σ̄), and (x, t) ∈ Σ. The single layer potential satisfies the
relation

γ1(K2w)(x) =
1

2
ψ(x, t) +

∫
Σ

ψ(y, s)
∂

∂nx
G(x− y, t− s) dyds.

From Lemma 2.2, we define the adjoint double layer operator K ′ as:

(K ′ψ)(x, t) +
1

2
ψ(x, t) = γ1(K1ψ)(x, t), (x, t) ∈ Σ, (2.14)

for ψ ∈ H− 1
2 ,−

1
4 (Σ). The adjoint double layer operator K ′ : H− 1

2 ,−
1
4 (Σ) → H− 1

2 ,−
1
4 (Σ) is a linear

and bounded operator [15, 3].
Using (2.8), (2.12) an (2.14), we have

γ1u = γ1K1(γ1u)− γ1K2(γ0u) =Wγ0u+
1

2
γ1u+K ′γ1u. (2.15)

Equation (2.13) and (2.15) give us the Calderón Projector C, defined as

~γu = C~γu =

(
1
2 −K V
W 1

2 +K ′

)(
γ0u
γ1u

)
, (2.16)

with
~γ :=

(
γ0
γ1

)
.

It is important to note that (2.16) does not hold in general, but only when no source function is
present. With the use of the Caldéron projector, one can directly obtain the boundary integral equa­
tions corresponding to the Dirichlet problem (2.4).

Direct method (Dirichlet): Find q ∈ H− 1
2 ,−

1
4 (Σ) such that either (i) or (ii) holds

(i) V q = (
1

2
+K)g, (first kind). (2.17)

(ii) (
1

2
−K ′)q =Wg, (second kind). (2.18)

Then the unique solution u ∈ H̃1, 12 (Q) of (2.1) is given by

u = K1q −K2g. (2.19)

The layer potentials satisfy the homogeneous equation [2, 3, 16], i.e.

(∂t + ∂xx)Kiφi = 0, for i ∈ {1, 2}, φi ∈

{
H− 1

2 ,−
1
4 (Σ) i = 1

H
1
2 ,

1
4 (Σ) i = 2

.

This implies that we can solve immediately for the Dirichlet problem (2.4) by substituting Kiφ for u,
which gives

γ0Kiφi = g for i ∈ {1, 2}, φi ∈

{
H− 1

2 ,−
1
4 (Σ) i = 1

H
1
2 ,

1
4 (Σ) i = 2

. (2.20)

2.1. 1D Dirichlet problem 7

With the previously defined boundary integral operators and (2.20) another method for solving the
Dirichlet problem (2.4) follows:

Indirect method (Dirichlet) Find q ∈ H− 1
2 ,−

1
4 (Σ) such that either (i) or (ii) holds

(i) V q = g, (first kind). (2.21)

(ii) (K − 1

2
)q = g, (second kind). (2.22)

Then the unique solution u ∈ H̃1, 12 (Q) of (2.1) is given by

(i) u = K1q (first kind) (2.23)
(ii) u = K2q (second kind) (2.24)

2.1.2. Solution via boundary element method
We consider the boundary integral equation determined by the indirect method of the first kind (2.21).
Hence, we need to take a closer look at the single layer integral operator. The solution to the boundary
integral equation is approximated using the Galerkin approach.

Let Xh be a closed subspace of H− 1
2 ,−

1
4 (Σ) and qh ∈ Xh the unique solution to the Galerkin

equations

〈ph, V qh〉Q = 〈ph, g〉Q ∀p ∈ Xh, (2.25)

where 〈·, ·〉Q denotes the L2(Q) duality pairing. The construction ofXh is done using tensor­product
ansatz. In other words we consider time basis functions χk(t), space basis functions να(x), such that
the doubly indexed set {να(x)χ(t)} forms a basis for Xh. In time we consider the basis functions

χk(t) :=

{
1, (k − 1)ht < t < kht

0, otherwise
, k = 1, . . . , Nt, (2.26)

where ht := T
Nt

and Nt is the total amount of time steps.
In space, we consider the discretization Γn of the surface boundary Γ into quadrilateral elements

τΓi , i.e.,

Γn := ∪Nx
i=0τ

Γ
i .

Remark. In one dimension, the ”quadrilateral” elements τΓi are just the boundary points.

The linear basis functions να are defined such that

να(x) := δτΓ
α
(x), (2.27)

where δτΓ
α
(x) represents the Dirac delta distribution with support τΓα (x).

As was the objective, the doubly indexed set {να(x)χk(t)} forms a basis of Xh. Using this basis,
we can rewrite the Galerkin equations

〈ναχn, V qh〉Q = 〈ναχn, g〉Q, α = 1, 2; n = 1, . . . , Nt. (2.28)

Since qh is an element of Xh, we can approximate qh in terms of basis functions

qh(x, t) ≈
Nt∑
k=1

2∑
β=1

qβ,kνβ(x)χk(t). (2.29)

This will be an equality, by definition of the basis functions, as Nt → ∞. The approximation (2.29)
is substituted into the Galerkin equations (2.28) which gives

Nt∑
k=1

2∑
β=1

〈ναχn, V νβχk〉Q qβ,k = 〈ναχn, g〉Q, α = 1, 2; n = 1, . . . , Nt. (2.30)

2.1. 1D Dirichlet problem 8

By definition of the (L2)­inner product, (2.30) can be written out into

Nt∑
k=1

2∑
β=1

qβ,k

∫
Γ

∫
Γ

να(x)νβ(y)Fn,k(x− y)dydx =

∫
Γ

να(x)

∫ nht

(n−1)ht

g(x, t)dtdx, (2.31)

with

Fn,k(x) :=

∫ nht

(n−1)ht

∫ kht

(k−1)ht

G(x− y, t− s) dsdt.

To keep things orderly, (2.31) is written in matrix form as the 2Nt × 2Nt system G1,1 . . . G1,Nt

...
. . .

...
GNt,1 . . . GNt,Nt


 ~q1

...
~qNt

 =


~F1

...
~FNt

 , (2.32)

with
~qn =

(
q1,n
q2,n

)
, n = 1, . . . , Nt,

Gn,k :=

(∫
Γ

∫
Γ
ν1(x)ν1(y)Fn,k(x− y)dydx

∫
Γ

∫
Γ
ν1(x)ν2(y)Fn,k(x− y)dydx∫

Γ

∫
Γ
ν2(x)ν1(y)Fn,k(x− y)dydx

∫
Γ

∫
Γ
ν2(x)ν2(y)Fn,k(x− y)dydx

)
∈ R2×2,

and
~Fn :=

(∫
Γ
ν1(x)

∫ nht

(n−1)ht
g(x, t)dtdx∫

Γ
ν2(x)

∫ nht

(n−1)ht
g(x, t)dtdx

)
.

By definition of the fundamental solution G, Fn,k(x) can be expressed as

Fn,k(x) =

∫ nht

(n−1)ht

∫ kht

(k−1)ht

1√
4π(t− s)

e−|x|2/4(t−s)
1(t≥s) dsdt.

If k > n, we have that s > t and the integration bounds are disjoint, which implies:

∀k > n : Fn,k = 0⇒ Gn,k = 0.

The matrix from (2.32) is thus of lower­triangular form.

In order to solve the system of equations (2.32), we need to determine the matrices Gn,k (for k ≤ n)
and the right­handside vector. Let l = n− k and consider Fn,k:

Fn,k(x) =

∫ nht

(n−1)ht

∫ kht

(k−1)ht

G(x− y, t− s) dsdt

= h2t

∫ 1

0

∫ 1

0

G(x− y, ht(σt − σs + l)) dσsdσt with: σs :=
s

ht
− k + 1;σt =

t

ht
− n+ 1

= −h2t
∫ 1

0

∫ σt+l−1

σt+l

G(x− y, htσl)dσldσt with: σl = σt − σs + l

= h2t

∫ 1

0

∫ σt+l

σt+l−1

G(x− y, htσl)dσldσt

= h2t

∫ l

l−1

∫ σl−l+1

0

G(x− y, htσl)dσtdσl + h2t

∫ l+1

l

∫ 1

s−l

G(x− y, htσl)dσtdσl

= h2t

∫ l

l−1

(σl − l + 1)G(x− y, htσl)dσl + h2t

∫ l+1

l

(l + 1− σl)G(x− y, htσl)dσl.

If l = 0, the first integral will be zero by definition of fundamental solution.

Next, we define the incomplete gamma functions:

2.1. 1D Dirichlet problem 9

G(s, x) :=

∫ ∞

x

ts−1e−t dt. (2.33)

By substitution, we have for all r > 0∫ a

0

1√
t
e−r2/4tdt =

r

2

∫ ∞

r2

4a

u−
3
2 e−udu =

r

2
G
(
−1

2
,
r2

4a

)
. (2.34)

if r = 0, ∫ a

0

1√
t
dt = lim

b→0
2
√
t|ab = 2

√
a− 0 = 2

√
a.

Similarly, by substitution we have for r > 0:∫ a

0

√
te

r2

4t dt =
r3

43/2

∫ ∞

r2

4a

u
−5
2 e−udu =

r3

43/2
G
(
−3

2
,
r2

4a

)
,

and, for r = 0: ∫ a

0

√
tdt =

2

3
a3/2.

For notational convenience, we denote

κ(x, a) :=
x2

4hta
. (2.35)

We also define the following functions:

f1(x, l) :=


∣∣∣ ht√

4π
x
2G(−1/2, κ(x, l + 1))

∣∣∣ x 6= 0, l ≥ 0

2h
3/2
t√
4π

√
l + 1 x = 0, l ≥ 0

0 l < 0

, (2.36)

and

f2(x, l) :=


∣∣∣ 1√

4π
x3

43/2
G(−3/2, κ(x, l + 1))

∣∣∣ x 6= 0, l ≥ 0

2h
3/2
t

3
√
4π

(l + 1)3/2 x = 0, l ≥ 0

0 l < 0

. (2.37)

These functions can be combined to give the matrices Gn,k for each n, k. Because we are consid­
ering the one dimensional problem, we have∫

Γ

∫
Γ

ν1(x)ν2(y)F(x− y)dydx = ν1(x)ν2(y)F(x− y)|y=1
y=0|x=1

x=0

= ν1(x)ν2(1)F(x− 1)− ν1(x)ν2(0)F(x)|x=1
x=0

= ν1(x)ν2(1)F(x− 1)|x=1
x=0

= ν1(1)ν2(1)F(0)− ν1(0)ν2(1)F(−1) = −F(−1).

Since Γ = {0, 1}, we can rewrite the general form of Gn,k to:

Gn,k =

(
Fn,k(0) −Fn,k(−1)
−Fn,k(1) Fn,k(0)

)
.

These matrices can be solved directly since by l = k − n we have

Fl(x) = (1− l)(f1(x, l − 1)− f1(x, l − 2)) + f2(x, l − 1)− f2(x, l − 2)+ (2.38)
+ (l + 1)(f1(x, l)− f1(x, l − 1))− f2(x, l) + f2(x, l − 1).

2.1. 1D Dirichlet problem 10

Now, (2.32) can be solved for ~q. As the matrix is lower triangular, solving requires relatively little
computational cost. As stated in the indirect method (2.23), by applying the first layer potential operator
to qh(x, t), we will obtain the discretization of the solution on the entire domain. We define

fk3 (z) :=

∫ kht

(k−1)ht

G(z, t− s)ds =
∫ t−(k−1)ht

t−kht

G(z, σ)dσ. (2.39)

From (2.34) and (2.39) we obtain

fk3 (z) =

{∣∣∣ x
2
√
4π

(
E(− 1

2 ,
z2

4(t−(k−1)ht)
)− E(− 1

2 ,
z2

4(t−kht)

)∣∣∣ x 6= 0

2
√
t− (k − 1)ht − 2

√
t− kht x = 0

,

and

uh(x, t) := K1qh(x, t) =

Nt∑
k=1

2∑
β=1

qβ,k

∫ T

0

χk(s)

∫
Γ

νβ(y)G(x− y, t− s)dyds

=

Nt∑
k=1

2∑
β=1

qβ,k

∫
Γ

νβ(y)

∫ T

0

χk(s)G(x− y, t− s)dsdy (Fubini)

=

Nt∑
k=1

2∑
β=1

qβ,k

∫
Γ

νβ(y)

∫ kht

(k−1)ht

G(x− y, t− s)dsdy (2.40)

=

Nt∑
k=1

2∑
β=1

qβ,k

∫
Γ

νβ(y)f
k
3 (x− y)dy

=

Nt∑
k=1

q2,kf
k
3 (x− 1)− q1,kfk3 (x).

2.1.3. Numerical results
We proceed to test our implementation with an example for which we know the solution. The Dirichlet
problem (2.4) is assumed to have time dependent boundary conditions, on interval (0,1), more specifi­
cally:

g(x, t) =

{
1− e−5t x = 0

1− e−10t x = 1
, ∀t ≥ 0, (2.41)

and zero initial condition. For convenience we define Bc(x, t) as

Bc(x, t) :=

∫
g(x, t) dt =

{
t+ 5e−5t x = 0

t+ 10e−10t x = 1
.

The right hand­side vector can be written in the 1D case and time dependent boundary conditions as

~Fn =

(∫
Γ
ν1(x)Bc(x, (n+ 1)ht)−Bc(x, nht)dx∫

Γ
ν2(x)Bc(x, (n+ 1)ht)−Bc(x, nht)dx

)
=

(
ν1(x)Bc(x, (n+ 1)ht)−Bc(x, nht)|x=1

x=0

ν2(x)Bc(x, (n+ 1)ht)−Bc(x, nht)|x=1
x=0

)
=

(
−Bc(0, (n+ 1)ht) +Bc(0, nht)
Bc(1, (n+ 1)ht)−Bc(1, nht)

)
, n = 1, . . . , Nt.

The numerical results of the previously stated problemwere obtained using an implementation in Python
and compared to the solution. In the case of the Dirichlet problem with boundary conditions g(x,t) as
given in (2.41), the exact solution u(x, t) can be found by decomposing the solution into two compo­
nents:

u(x, t) = w(x, t) + v(x, t). (2.42)

We define

2.1. 1D Dirichlet problem 11

w(x, t) := g(0, t) + x(g(1, t)− g(0, t)),

such that w(x, t) satisfies the same boundary conditions as u(x, t). Note that wxx = 0, and by (2.1)
we have

wt + vt = vxx⇒ vt = vxx− wt, (2.43)

with
v(0, t) = v(1, t) = 0, v(0, t) = 0. (2.44)

Hence we have to solve for v(x, t), a homogeneous boundary value problem with zero initial con­
dition and source term. v(x, t) can be done by eigenfunction expansion with associated eigenvalues
λn = nπ and eigenfunctions φn(x) = sin(nπx). We can therefore write

wt(x, t) =

∞∑
n=1

ŵn(t)φn(x),

v(x, t) =

∞∑
n=1

v̂n(t)φn(x).

Using this expression in combination with (2.43) implies
∞∑

n=1

(˙̂vn + λ2nv̂n − ŵn)φn(x) = 0. (2.45)

By the linear independency of the eigenfunctions, (2.45) implies

˙̂vn(t) + λ2nv̂n(t) = ŵn(t), (2.46)

which is a first order linear ordinary differential equation. This can be solved using an integration
factor and yields

v̂n(t) =

∫ t

0

eλ
2
n(t−τ)ŵn(τ)dτ + C1(t). (2.47)

Since the initial condition for v(x, t) equals zero, we have that C1(t) = 0. Since wt is a known
expression, it can be written as a Fourier sine series with known expression

ŵn(t) = 2

∫ 1

0

wt(x, t)φn(x) dx. (2.48)

Now, all the expressions are available and thus we have that the exact solution to 2.4 is given by

u(x, t) = w(x, t) +

∞∑
n=1

v̂n(t)φn(x). (2.49)

Both the exact and the numerical solution will be evaluated at the time interval (0,1). The infinite
sums present in the analytical expression of the solution are truncated at n = 1000. The time­step
difference ht is set to 1

100 and the steps in spatial direction, ∆x, are taken to be 1
100 as well. The

numerical result is visualised with the use of a two dimensional heat map given in Figure 2.1.

2.1. 1D Dirichlet problem 12

Figure 2.1: Heat map of numerical solution with ht=0.01 and ∆x=0.01

The numerical procedure described in Section 2.1.2, will leave us with the coefficient matrix uh,
constructed with the use of (2.40). With the use of interpolation functions, the solution can be expressed
on the entire space­time domain (0, 1)2. In this case, the solution û(x, t) is defined as

û(x, t) :=

Nt∑
i=1

Nx∑
j=1

uh(i, j)χi(t)νj(x). (2.50)

Typically, the numerical solution ûwill be compared to the exact solution with respect to the L2­norm.
However, since we are considering a uniform mesh, the Euclidean norm can also be used to quantify
the error. This is done as follows: we create a matrix whose entries consist of values of û(x, t), chosen
such that every basis function χi and νj in û(x, t) contains a single value in its support. For example,
the coefficient matrix uh itself satisfies this constraint. Next, we compare the created matrix, or vectors
of which the matrix is composed of, to the exact solution at the same points in time and space. This
will yield a comparison of matrices or vectors, which can be described by the Euclidean norm. Due to
the uniformity of the mesh, the norm will be equivalent to the L2­norm up to a constant of ∆x∆t.

The error over time is quantified with the use of the relative error

ε =
‖û− u‖2
‖u‖2

.

To get an idea of the relative error on the entire discretized domain and time interval, the Frobenius
norm is used, i.e. given approximation matrix Â and actual solution matrix A we have:

‖Â−A‖F
‖A‖F

,

2.1. 1D Dirichlet problem 13

with

‖A‖F :=

√∑
i,j

a2i.j , ai,j ∈ A. (2.51)

Given the discretisation we obtain a relative error with respect to the Frobenius norm of 1.3E­4. To
see where the error takes most effect, we look at the relative error over time in certain parts of the
domain, namely on x = 0, x = 0.25 and x = 0.5. The results are given in Table 2.1.

Table 2.1: Relative and absolute error on time interval (0,1), at different points in the domain with ∆t = ∆x = 0.01.

Position Relative error Absolute error
x=0.01 5.2E­4 5.4E­4

x=0.25 1.8E­5 1.5E­5

x=0.5 3.9E­6 2.6E­6
x=0.99 4.6E­4 2.5E­4

As expected, the error becomes larger when nearing the boundaries and becomes relatively small
in the centre of the domain. This is a consequence of the Gaussian quadrature used to approximate
uh(x, t) as defined in (2.40). Given uh(x, t), as x approaches the boundary, the regularity of the in­
tegrand in (2.40) reduces. The loss of the regularity yields a larger quadrature error, in the case of
Gaussian quadrature.

Similarly, we can look at the error over the domain at certain points in time. As can be seen in Figure
2.2

(a) Temperature at time t=0.01 (b) Temperature at time t=0.5

Figure 2.2: Temperatures at different points in time over the domain. Figure 2.2b seems to be a single line, this is because the
solutions are nearly identical and the lines coincide.

The error hence diminishes whenmoving away from the initial condition and boundaries. To obtain a
better approximation on the boundaries and initial condition, a smaller step­size in time is required. This
step­size is used in both the construction of the Galerkin equations (2.32) as in the construction of the
numerical solution uh described in (2.40). Taking a smaller ht improves the accuracy of the quadrature
for the single layer potential in (2.40). In the one­dimensional case we are currently reviewing, there
is no notion of hx in (2.32), only of ht. So, naturally, ht will thus affect the error estimate in (2.32), and
a reduction of ht will yield a reduced error estimate. To validate this, the errors close to the spatial
boundaries are given in Table 2.2, with a time step size of ∆t = 0.001.

2.1. 1D Dirichlet problem 14

Table 2.2: Relative and absolute error on time interval (0,1), at different points close to the boundary, with ∆t = 0.001 and
∆x = 0.01.

Position Relative error Absolute error
x=0.01 1.2E­5 3.9E­5

x=0.99 1.1E­5 1.9E­5

Also, as expected, the error over the domain close to the initial condition will reduce both relatively
(given a single timestep ∆t) and in absolute sense (∆t = 0.01). This is visualised in Figure 2.3

(a) Temperature at time t=0.001 (b) Temperature at time t=0.01

Figure 2.3: Temperatures at different points in time over the domain. Note that the solution in Figure (a) is of such a small
order, that the analytical approximation seems to falter due to machine precision. Figure 2.2b seems to be a single line, this is

because the solutions are nearly identical and the lines coincide.

3
2D problem

Considering a two dimensional bounded Lipschitz domain Ω and boundary Γ = ∂Ω, the Dirichlet prob­
lem can be formulated as 

∂tu−∆xu = f,

u|Γ = g,

u(·, 0) = u0.

(3.1)

3.1. Space­time formulation
To switch to a space time setting we define the space time cylinderQ := Ω×(0, T), the lateral boundary
Σ := Γ× (0, T), the initial region Ω0 := Ω× {0} and the final region ΩT := Ω× {T}. Let L := ∂t −∆x

and consider the following proposition by van Kan et al. [11], which states

Proposition 3.1 ([11, p.141]). If the linear operator L is of order 2s, then the corresponding weak
solution is of order s.

The operator, L, is first order in time and second order in space. By Proposition 3.1, the weak
solution of the heat equation is therefore in H1, 12 (Q).

For the first order (in time) operator L, u ∈ C(Q̄) and v ∈ C1(Q̄), the trace operators are defined as

γ0u := lim
(x̃,t̃)∈Q→(x,t)∈Σ

u(x̃, t̃), (3.2)

and
γ1v := lim

(x̃,t̃)∈Q→(x,t)∈Σ
~nx · γ0(∇v(x̃, t̃)). (3.3)

Where ~nx is the outward normal vector.
With the side­note that the Dirichlet problem in general can be rewritten into a Dirichlet problem with

zero initial condition, u0 is taken to be zero. Let us now introduce the following Sobolev spaces:

Hr,s(Σ)0; := {u ∈ Hr,s(Σ) : u|Γ = 0},
Hr,s(Σ);0, := {u ∈ Hr,s(Σ) : u(·, t) = 0, t ≤ 0},
Hr,s(Σ);,0 := {u ∈ Hr,s(Σ) : u(·, t) = 0, t ≥ T},
Hr.s(Q,L) := {u ∈ Hr,s(Q) : Lu ∈ L2(Q)}.

Combination of indices for these Sobolev space will be used throughout this thesis as well, inheriting
the properties of the previously defined spaces. For example:

Hr,s(Σ)0;,0 := {u ∈ Hr,s(Σ) : u|Γ = 0, u(·, t) = 0, t ≥ T}.

15

3.1. Space­time formulation 16

3.1.1. Trace mapping properties
The trace operators can be extended to the anisotropic Sobolev­spaces. This extension of the Dirichlet
trace operator can be proven with the use of the following theorems [12].

Theorem 3.2 (Trace Theorem, ([12, Thm.2.1]). Let u ∈ H(Q)r,s(Q) with r > 1
2 and s ≥ 0. Then there

exists a bounded linear operator γint0 : Hr,s(Q)→ Hα,β(Σ) with

‖γint0 u‖Hα,β(Σ) ≤ cT ‖u‖Hr,s(Q),

for all u ∈ Hr.s(Q). With α = r− 1
2 and β = s− s

2r . This bounded linear operator is an extension of
the Dirichlet trace operator γint0 u = u|Σ for C(Q̄).

Proof. For the proof, the reader is referred to the proof by Lions and Magenes ([12], Theorem 2.1).

Corollary 3.3. The interior lateral trace operator

γint0 : H1, 12 (Q)→ H
1
2 ,

1
4 (Σ),

is linear and bounded satisfying

‖γint0 v‖
H

1
2
, 1
4 (Σ)

≤ cT ‖v‖
H

1,1
2 (Q)

∀v ∈ H1, 12 (Q),

with cT a constant depending only on s and Q.

Proof. This corollary is a direct consqeuence of Theorem 3.2, with r = 1 and s = 1
2 .

Theorem 3.4 (Inverse Trace Theorem,[1, Ch.2], [3, Thm.2.4]). The interior lateral trace operator

γint0 : H1, 12 (Q)→ H
1
2 ,

1
4 (Σ)

has a continuous right inverse operator:

E : H
1
2 ,

1
4 (Σ)→ H1, 12 (Q),

satisfying γint0 Ew = w for all w ∈ H 1
2 ,

1
4 (Σ) as well as

‖Ew‖
H1, 1

2 (Q)
≤ cIT ‖w‖

H
1
2
, 1
4 (Σ)

, ∀w ∈ H 1
2 ,

1
4 (Σ),

with cIT a constant depending only on s and Ω.

3.1.2. Green’s theorem
Using integration by parts, the weak formulation of the Dirichlet problem can be expressed as the
domain­variational problem

Variational problem: Find u ∈ H1, 12
;0, (Q) (as defined in Section 3.1) such that

α(u, v) = l(v), ∀v ∈ H1, 12
0;,0(Q), (3.4)

with
α(u, v) := 〈∂tu, v〉Q + 〈∇xu,∇xv〉Q,

and
l(v) := 〈f, v〉Q.

The choice of these Sobolev spaces can be regarded as a result of reverse engineering, since it will
give desired vanishing properties in Green’s second identity (which will be discussed in this section).
In order to arrive at the boundary integral equations and corresponding representation formula, we use
the following lemmas [14, 1, 3]:

3.1. Space­time formulation 17

Lemma 3.5 ([14, Prop 4.7]). Suppose X is a normed space and Y is a Banach space, and let X0 be a
dense subspace of X. If T0 : X0 → Y is a bounded operator, there exists a unique bounded operator
T : X → Y extending T0. The norm of this extension satisfies ‖T‖ = ‖T0‖.

Lemma 3.6 ([1, Lem.2.22], [3, Lem.3.6]). Let C∞
0 (Ω× (0, T]) denote the space of functions in C∞

0 (R×
(0,∞) restricted to Q. Then C∞

0 (Ω × (0, T]) is dense in the anisotropic Sobolev spaces H1, 12
;0, (Q) and

H
1, 12
;0, (Q;L).

Analogously, by defining C∞
0 (Ω × [0, T)) as the space of functions C∞

0 (R × (−∞, T)) restricted to
Q, we arrive a the Corollary 3.7 [3]

Corollary 3.7 ([3, Cor.3.7]). The space C∞
0 (Ω × [0, T)) is dense in H1, 12

;,0 (Q) and H1, 12
;,0 (Q;L∗). Where

L∗ denotes the adjoint of L

These results allow us to extend the classical Green’s identities to the anisotropic Sobolev spaces.
We obtain

Theorem 3.8 (Green’s first identity, [16, Thm.2.2.1]). For u ∈ H
1, 12
;0, (Q;L) and v ∈ H

1, 12
;,0 (Q) there

holds

α(u, v) = 〈γint1 u, γint0 v〉∂Q + 〈Lu, v〉Q.

Proof. Though this theorem itself is not a new result, a new variation of the proof is added to this
thesis and shown for sake of completeness. Let u ∈ C∞

0 (Ω× (0, T]) and v ∈ C∞
0 (Ω× [0, T)). Then the

classical Green’s first identity holds, i.e.

α(u, v) = 〈γint1 u, γint0 v〉∂Q + 〈Lu, v〉Q.
We will denote this bilinear mapping u, v 7→ α(u, v) as the operator

T0 : C∞
0 (Ω× (0, T])× C∞

0 (Ω× [0, T))→ R.
The operator T0 is bounded in u and v in their respective Sobolev norms. Also, R clearly is a Banach

space. By Lemma 3.6 and Corollary 3.7 it follows that the space
C∞

0 (Ω × (0, T]) × C∞
0 (Ω × [0, T)) is a dense subspace of H1, 12

;0, (Q;L) × H1, 12
;,0 (Q). Hence, according

to Lemma 3.5, there exists a norm­preserving extension of T0 to the Sobolev spaces, which yields the
desired result.

In a similar fashion we can extend Green’s second identity to the desired Sobolev spaces.

Theorem 3.9 (Green’s second identity, [16, Thm.2.2.1]). For u ∈ H1, 12
;0, (Q;L) and v ∈ H1, 12

;,0 (Q;L∗)
there holds

〈Lu, v〉Q − 〈u, L∗v〉Q = 〈γint0 u, γint1 v〉Σ − 〈γint1 u, γint0 v〉Σ.

Proof. The extension follows again by a density argument analogous to the proof Theorem 3.8.
However, note that the resulting duality pairing is no longer restricted to ∂Q but to Σ. Since ∂Q =
Ω0 ∪ Σ ∪ ΩT , we can rewrite the result of Green’s second identity to

〈Lu, v〉Q − 〈u, L∗v〉Q = 〈u(·, 0), γ1v〉Ω0
− 〈γ1u, v(·, 0)〉Ω0

+ 〈γ0u, γ1v〉Σ − 〈γ1u, γ0v〉Σ
+ 〈u(·, T), γ1v〉ΩT

− 〈γ1, v(·, T)〉ΩT
.

By definition of the trace operator γ1, this reduces to

〈Lu, v〉Q − 〈u, L∗v〉Q = 〈u(·, 0), v(·, 0)〉Ω0 + 〈γ0u, γ1v〉Σ − 〈γ1u, γ0v〉Σ − 〈u(·, T), v(·, T)〉ΩT
.

Since we assumed u ∈ H1, 12
;0, (Q;L) and v ∈ H1, 12

;,0 (Q;L∗), the initial and final time terms vanish and
the statement is proven.

3.2. Space­time BEM 18

3.1.3. Representation formula
In Chapter 2, the representation formula has been given in (2.7). A slight generalisation is added in
this section. Given the linear differential operator L, the representation formula follows by applying the
two dimensional fundamental solution, G(x− y, t− s) of L. For notational convenience we abbreviate
G(x− y, t− s) in the upcoming equations by G. For u ∈ H1, 12 (Q;L) and v ∈ H1, 12

;,0 (Q;L∗) we obtain

〈Lu,G〉Q − 〈u, L∗G〉Q = 〈u(·, 0), G〉Ω0
+ 〈γint0 u, γint1 G〉Σ − 〈γint1 u, γint0 G〉Σ.

By definition of the fundamental solution, we have

〈u, L∗G〉Q =

∫
Q

u(y, s)δQ(x− y, t− s) dQ = u(x, t).

By (3.1), we have Lu = f , and thus we obtain the general representation formula

u(x, t) = 〈u(·, 0), G〉Ω0
+ 〈f,G〉Q + 〈γint1 u, γint0 G〉Σ − 〈γint0 u, γint1 G〉Σ. (3.5)

As shown in (3.5), the possibility of a source function and initial condition in (3.1) is now included
into the representation formula.

3.1.4. Boundary integral equations
Given no source functions and a zero initial condition, the boundary integral equations are based on
(2.16) introduced in Chapter 2. For sake of completeness, the Calderon system is generalised to the
case where we have source function f and initial condition u0, as stated in (3.1). Let us define the initial
potential operators

Miu0(x, t) := γinti

∫
Ω

G(x− y, t)u0(y)dy, i = 1, 2,

and the Newton potential operators

Nif(x, t) := γinti

∫
Q

G(x− y, t− s)f(y, s)dyds, i = 1, 2.

The by taking traces on (3.5) we obtain the general form

~γu = C~γu =

(
1
2 −K V
W 1

2 +K ′

)(
γ0u
γ1u

)
+

(
M0u0
M1u0

)
+

(
N0f
N1f

)
, (3.6)

with

~γ :=

(
γ0
γ1

)
.

From (3.6) the construction of the generalised boundary integral equations is straightforward.

3.2. Space­time BEM
There are several ways to tackle the variational Dirichlet problem (3.4). Since the layer potentials solve
the homogeneous problem Dirichlet problem, we can write:

u(x, t) = K1q +

∫
Ω

G(x− y, t)u0(y)dydt+
∫
Q

G(x− y, t− s)f(y, s)dyds. (3.7)

By taking the Dirichlet trace over (3.7) we obtain the indirect formulation of the first kind:
Find q ∈ H− 1

2 ,−
1
4 (Σ) such that

V q = g −M0u0 −N0f, on Σ, (3.8)

which will yield the unique solution u ∈ H1, 12
;0, (Q) given by

3.3. Triangulation 19

u(x, t) = K1q +M0u0 +N0f.

This corresponds to the variational formula

〈V q, v〉Σ = 〈g −M0u0 −N0f, v〉Σ, ∀v ∈ H− 1
2 ,−

1
4 (Σ). (3.9)

3.3. Triangulation
To approximate the solution to the variational formula, triangulation is performed on the space­time
lateral boundary Σ. We follow the cue from [15, 3, 16]. We assume that the spatial boundary Γ is
Lipschitz, and can be divided into M closed subsets Γm such that

(i) Γ =

M⋃
m=1

Γm,

(ii) µ(Γm1
∩ Γm2

) = 0, ∀m1 6= m2, (3.10)
(iii) ~n|Γm1

· ~n|Γm2
6= 1, ∀m1 6= m2.

where µ(·) denotes the Lesbesgue measure. Now, we can divide the lateral boundary Σ into J
closed subsets Σj := Γj × (0, T) with

Σ =

J⋃
j=1

Σj . (3.11)

Consider the family of admissible non­curved triangulations T , of the lateral boundary. Then every
triangulation τ ∈ T can be decomposed into a finite union of boundary elements el ∈ Σ, i.e.

Σh ∈ T ⇐⇒ Σh =

Nh⋃
l=1

el, Nh <∞.

We define the volume of the elements by

∆l :=

∫
el

ds,

its local mesh size by

hl := ∆
1

d−1

l , (3.12)

and the global mesh size as
h := max

l=1,...,Nh

hl, (3.13)

with d the dimensions of the element. Let us consider such an admissible triangulation composed
non­curved triangles, Σh ∈ T .

Then, we can decompose Σh in such a way that for all elements el, there exists exactly one j ∈
(1, . . . , J) such that el ⊂ Σhj

.
As stated by Reinarz [16], in two dimensions, the boundary Γ (of a simply connected domain) can

be parameterized by a single periodic function:

κ : [0, 1]→ Γ. (3.14)

This function can be assumed to be analytic. Before the boundary elements in (x,y,t) can be trans­
formed to a two dimensional reference element, the elements must be mapped to the two dimensional
plane, in this case, [0, 1] × (0, T) with the mapping (x, y, t) 7→ (κ−1(x, y), t). For convenience, we will

3.4. Trial spaces 20

denote κ−1(x, y) as z(x, y). Now, the elements can be mapped to the reference element in the (ξ, η)­
plane. Piecewise linear basis functions φi must satisfy φi(ξj , ηj) = δij on the reference triangle with
vertices (0, 0), (0, 1), (1, 0). This yields:

φ1(ξ, η) = 1− ξ − η,
φ2(ξ, η) = ξ,

φ3(ξ, η) = η.

Let the coordinates of the vertices of a (triangular) spatially parameterized element el be denoted
by x1,x2,x3 ∈ R2.

Remark. The original elements will have vertices in R3. Consider, the example element with vertices
(x1, y1, t1), (x2, y2, t2) and (x3, y3, t3). After parameterization we can denote its vertices as (z(x1, y1), t1),
(z(x2, y2), t2) and (z(x3, y3), t3) ∈ R2. For notational convenience, we will denote z(xi, yi) by zi, i ∈ N.

Then the linear transformation from the element to the reference triangle is given by

x1 7→ (0, 0), x2 7→ (1, 0), x3 7→ (0, 1),

and hence

z = z1 + (z2 − z1)ξ + (z3 − z1)η, (3.15)
t = t1 + (t2 − t1)ξ + (t3 − t1)η. (3.16)

3.4. Trial spaces
For a general domain X, we define the trial spaces of local polynomials. We will denote the trial space
of piecewise constant functions as S0

h(X), and the trial space of piecewise linear continuous functions
as S1

h(X). First, the approximation properties for S0
h(Σh) are presented with the use of Steinbach’s and

Dohr’s work [20, 3]. Then, in a similar fashion, the properties of S1
h(Σh) summarised.

3.4.1. Piecewise constant basis functions
Tensor­product discretization
By viewing the the space­time lateral boundary Σ as a tensor product of time and space, we are able
to derive the approximation properties of S0

h(Σh) by first treating time and space separately. These
approximation properties can in turn be extended to the desired space S0

h(Σh).

The spatial boundary Γ, as stated in section 3.3, is assumed to be Lipschitz, piecewise smooth and
(3.10) holds. By letting {ΓNx

}Nx∈N denote the the family of admissible triangulations on Γ, we have

ΓNx =

Nx⋃
k=1

e
(x)
k , (3.17)

with e(x)k the elements discretizing Γ. Similarly, the boundary with respect to the time, I := (0, T) can
be decomposed into line segments by considering the family of admissible decompositions {INt

}Nt∈N
satisfying

INt =

Nt⋃
k=1

e
(t)
k . (3.18)

given e(t)k the elements discretizing I. The trial space of piecewise constant functions for the spatial
and temporal triangulations respectively can now formally be defined as

S0
hx
(ΓNx

) := span{φΓ,0k }
Nx

k=1,

and

3.4. Trial spaces 21

S0
ht
(INt

) := span{ψI,0
k }

Nt

k=1.

The piecewise constant functions φΓ,0 and ψI,0 are given by

φΓ,0k (x) :=

{
1, x ∈ e(x)k ,

0, otherwise,
, for k = 1, . . . , Nx

and

ψI,0
k (t) :=

{
1, t ∈ e(t)k ,

0, otherwise.
, for k = 1, . . . , Nt.

Next, let us define the L2 projection operator and a contraction.

Definition 3.1. LetX be an arbitrary function space defined over (Lipschitz) domain Q. The L2 projec­
tion Pu ∈ V of a function u ∈ L2(Q) is defined by

〈u− Pu, v〉Q = 0, ∀v ∈ X.

Remark. Clearly, the L2 projection operator is an orthogonal projection.

Consider the L2 projections Pxu ∈ S0
hx
(ΓNx) and Ptu ∈ S0

ht
(INt). Then the following theorem holds

[20]:

Theorem 3.10 ([20, Thm.10.2]). Let Y be either ΓNx
or INt

, with respective L2 projections Py being
either Px or Pt. Let u ∈ Hs(Y), for some s ∈ [0, 1]. Then, there holds the error estimates

‖u− Pyu‖2L2(Y) ≤ c
Ny∑
k=1

h2sk |u|2Hs(e
(y)
l)

, (3.19)

and
‖u− Pyu‖L2(Y) ≤ chs|u|Hs(Y). (3.20)

Proof. For completeness, a part of the proof is added to the thesis. The proof is divided in three
cases: s = 0, s ∈ (0, 1), s = 1. For the latter two cases, the reader is referred to to Theorem 10.2 by
Steinbach [20]. The case s = 0 follows rather quickly and will now be proven. Since u ∈ L2(Y), we
have Pyu ∈ S0

h(Y). As a consequence of this fact and Definition 3.1 we have

〈u− Pyu, v − Pyv〉L2(Y) = 〈u− Pyu, v〉L2(Y) − 〈u− Pyu, Pyv〉L2(Y) = 〈u− Pyu, v〉L2(Y). (3.21)

Hence,

‖u− Pyu‖2L2(Y) = 〈u− Pyu, u〉L2(Y) ≤ ‖u− Pyy‖L2(Y)‖u‖L2(Y).

Which gives the desired estimate for s = 0.

As a consequence of Theorem 3.10, we obtain Corollary 3.11 [20].

Corollary 3.11 ([20, Cor.10.3]). Let Y and Py be defined as in Theorem 3.10. Let u ∈ Hs(Y) be given
for some s ∈ [0, 1]. For σ ∈ [−1, 0), the following error estimates hold

‖u− Pyu‖2Hσ(Y) ≤ ch
−2σ

Ny∑
k=1

h2k|u|2Hs(e
(y)
l)

,

and
‖u− Pyu‖Hσ(Y) ≤ chs−σ|u|Hs(Y).

3.4. Trial spaces 22

Proof. For the sake of completeness a summary of the proof by Steinbach is given. Some trivial
parts of the proof are left out while other steps are given more attention. SinceHσ(Y) is the dual space
of H−σ we obtain the dual norm

‖u− Pyu‖2Hσ(Y) = sup
0 ̸=v∈H−σ(Y)

〈u− Pyu, v〉L2(Y)

‖v‖H−σ(Y)
. (3.22)

By combining the fact that v ∈ H−σ(Y) ⊂ L2(Y), implies Pyv ∈ S0
h(Y), and (3.21) we obtain

‖u− Pyu‖2Hσ(Y) = sup
0 ̸=v∈H−σ(Y)

〈u− Pyu, v − Pyv〉L2(Y)

‖v‖H−σ(Y)

≤ ‖u− Pyu‖L2(Y) sup
0 ̸=v∈H−σ(Y)

‖v − Py‖L2(Y)

‖v‖H−σ(Y)
(Cauchy­Schwarz).

By using the error estimates (3.19) and (3.20) for ‖u − Pyy‖L2(Y) and ‖v − Pyv‖L2(Y) respectively,
the assertion follows.

Theorem 3.10 and Corollary 3.11 lead to the final approximation property of the trial space(s) Σ0
hy
(Y)

[20].

Theorem 3.12 ([20, Thm.10.4]). Let σ ∈ [−1, 0]. For u ∈ Hs(Y) with some s ∈ [σ, 1] there holds the
approximation property of S0

hy
(Y)

inf
vh∈S0

hy
(Y)
‖u− vh‖Hσ(Y) ≤ chs−σ|u|Hs(Y). (3.23)

Remark. For σ ∈ [−1, 0) and s ∈ (0, 1], Theorem 3.12 is not a direct consequence of Theorem 3.10 and
Corollary 3.11. The approximation property still holds and is proven in Steinbach Theorem 10.4 [20].

Let us now consider the space­time tensor product space of piecewise constant basis functions
S0,0
hx,ht

(Σ) defined as

S0,0
hx,ht

(Σ) := S0
hx
(ΓNx

)⊗ S0
ht
(INt

). (3.24)

The goal is to derive the approximation properties for the L2 projection with respect to the tensor
product space S0,0

hx,ht
(Σ), which will be denoted as Px,t. To find an expression for this L2 projection Px,t,

we make use of a well known proposition about projection operators [14].

Proposition 3.13 ([14, Prop.8.8]). For a projection P on Hilbert space H, the following assertions are
equivalent

(i) P is orthogonal,
(ii) P is self­adjoint.

Now, we define the following projections for u ∈ L2(Σ)

PΣ
x u(x, t) := (Pxu(·, t))(x),
PΣ
t u(x, t) := (Ptu(·, t))(t).

Our aim is to obtain error estimates in the anisotropic Sobolev spaces. We will slightly deviate
from the original method introduced by Dohr [3] and will make use of the self­adjointness obtained by
Proposition 3.13, to show how to obtain these estimates. Consider

〈PΣ
x P

Σ
t u− Px,tu, v〉L2(Σ) = 〈PΣ

x P
Σ
t u, v〉L2(Σ) + 〈Px,tu, v〉L2(Σ) = 〈PΣ

x u, P
Σ
t v〉L2(Σ) + 〈Px,tu, v〉L2(Σ)

= 〈u− Pt,x, v〉L2(Σ) = 0 ∀v ∈ S0,0
hx,ht

(Σ).

3.4. Trial spaces 23

By taking v = PΣ
x P

Σ
t u− Px,tu ∈ S0,0

hx,ht
(Σ) we obtain

‖PΣ
x P

Σ
t u− Px,tu‖L2(Σ) = 0.

Hence, we define Px,t as PΣ
x P

Σ
t , and use the previously obtained approximation results. As a

consequence, for r, s ∈ [0, 1] and u ∈ Hr,s(Σ) ⊂ L2(Σ) , we can apply Theorem 3.10 and the triangle
inequality to arrive at

‖u− Px,tu‖L2(Σ) = ‖u− PΣ
x P

Σ
t u‖L2(Σ)‖L2(Σ) = ‖u− PΣ

x u− PΣ
x (u− PΣ

t u)‖L2(Σ)

≤ ‖u− PΣ
x u‖L2(Σ) + ‖PΣ

x (u− Pσ
t u)‖L2(Σ) (3.25)

≤ ‖u− PΣ
x u‖L2(Σ) + ‖PΣ

x ‖L2(Σ)‖u− Pσ
t u‖L2(Σ)

≤ ‖u− PΣ
x u‖L2(Σ) + ‖u− Pσ

t u‖L2(Σ) ≤ c(hrx + hst)|u|Hr,s(Σ).

In this derivation the contraction property of the projections is used i.e. ‖PΣ
x ‖ ≤ 1. Also, the Slo­

bodeckii norm on the anisotropic Sobolev space is defined as

| · |2Hr,s(Σ) := | · |
2
L2(I;Hr(Γ)) + | · |

2
Hs(I;L2(Γ)).

In a similar fashion, Corollary 3.11 can be extended to S0,0
ht,hx

(Σh). Analogous to the proof of Corol­
lary 3.11, if we let u ∈ Hr,s with r, s ∈ [0, 1], we obtain the following error estimate for σ, µ ∈ (−1, 0]

‖u− Px,tu‖Hσ,µ(Σ) ≤ c(hrx + hst)(h
−σ
x + h−µ

t)|u|Hr,s(Σ). (3.26)

The approximation properties for on S0,0
ht,hx

(Σh) are henceforth derived and given by (3.25) and
(3.26).

Space­time triangulation
Let S0

h(Σh) be the space of piecewise constant functions on the triangulation Σh such that

S0
h(Σh) := span{φΣ,0

k }
N
k=1, (3.27)

with

φΣ,0
k (z, t) :=

{
1 (z, t) ∈ ek
0 otherwise

. (3.28)

Remark. z can either be a value received after parameterization of the boundary Γ, or a vector (x, y) ∈
R2.

We now consider the approximation properties of using space­time boundary elements on Σh. We
denote the L2 projection on S0

h(Σh) with P0. To find estimates on this operator, we make use of the
following lemma [3]:

Lemma 3.14 ([3, Lem.2.1]). For r, s ∈ [0, 1], the continuous embedding

Hmax(r,s)(Σ) ↪→ Hr,s(Σ) ↪→ Hmin(r,s),

holds.

With the use of Theorem 3.10 and Lemma 3.14, the following theorem arises [3]:

Theorem 3.15 ([3, Thm.6.14]). Let u ∈ Hr,s(Σ) for some r, s ∈ [0, 1]. Then the error estimates:

‖u− P0u‖L2(Σ) ≤ ‖u‖L2(Σ),

‖u− P0u‖L2(Σ) ≤ chmin(r,s)‖u‖Hr,s(Σ),

hold.

3.5. Computing the Galerkin Matrix 24

Proof: The proof, which is mainly based on the proof Dohr has proposed for discretization using
the tensor product ansatz, is added to this thesis. At the moment of writing this thesis, a proof of
Theorem 3.15 was not available in the consulted literature. The first inequality can be proven following
the same steps as in the proof of Theorem 3.10. For the second inequality, let m := min(r, s). Using
Theorem 3.10 we obtain the inequality

‖u− P0u‖L2(Σ) ≤ chm‖u‖Hm(Σ).

As a result of Lemma 3.14, ‖u‖Hm(Σ) ≤ ‖u‖Hr,s(Σ), proving the second assertion.

3.5. Computing the Galerkin Matrix
Now, that the approximation properties are properly defined, we can apply the apply the Galerkin­
Bubnov formulation on (3.9). As we are mainly concerned in the structure of the matrix in the left
hand­side, the initial condition and source function is set to zero. Consider S0(Σh) ⊂ H− 1

2 ,−
1
4 (Σh).

The Galerkin­Bubnov variational formula reads: Find qh ∈ S0(Σh) such that

〈V qh, vh〉Σ = 〈g, vh〉Σ, ∀vh ∈ S0
h(Σh). (3.29)

Since qh ∈ S0
h(Σh), we have

qh :=

N∑
k=1

qkφ
Σ,0
k (z, t).

Therefore (3.29) can be rewritten as

N∑
k=1

qk〈V φΣ,0
k , φΣ,0

l 〉Σ = 〈g, φl〉Σ, l = 1, . . . , N. (3.30)

This system of linear equations can be written into matrix form as〈V φ
Σ,0
1 , φΣ,0

1 〉Σ . . . 〈V φΣ,0
N , φΣ,0

1 〉Σ
...

. . .
...

〈V φΣ,0
1 , φΣ,0

N 〉Σ . . . 〈V φΣ,0
N , φΣ,0

N 〉Σ


 q1

...
qN

 =

〈g, φ
Σ,0
1 〉Σ
...

〈g, φΣ,0
N 〉Σ

 . (3.31)

For i, j ∈ [1, N], the elements of the matrix are given by

〈V φΣ,0
i , φΣ,0

j 〉Σ =

∫
Σ

(∫
Σ

φΣ,0
i (y, s)G(z − y, t− s) dyds

)
φΣ,0
j (x, t) dzdt.

Which, by definition of the piecewise constant functions φΣ,0
i , the inner product can be reduced to

〈V φΣ,0
i , φΣ,0

j 〉Σ =

∫
ej

∫
ei

G(z − y, t− s) dy ds dz dt. (3.32)

The reference triangle will from now on be denoted as Kref , and is defined as a triangle in R2 with
vertices (0, 0), (0, 1), (1, 0).

Given an element e ∈ Σh, with vertices (xi, yi, ti) ∈ R3, i = {1, 2, 3}, we consider the parameteriza­
tion of the vertices to the two dimensional plane. The vertices after parameterization will be denoted
as (zi, ti) ∈ R2, zi = κ−1(xi, yi), with κ the parameterization defined in (3.14). Now, we can define the
Jacobian matrix obtained from the transformation of the element to the reference triangle described by
(3.15),

J :=

(
∂z
∂ξ

∂z
∂η

∂t
∂ξ

∂t
∂η

)
=

(
z2 − z1 z3 − z1
t2 − t1 t3 − t1

)
. (3.33)

With the use of (3.33), the integral (3.32) can be rewritten into

3.5. Computing the Galerkin Matrix 25

∫
ej(z,t)

∫
ei(y,s)

G(z − y, t− s) dy ds dz dt =

= |det Ji||det Jj |
∫
Kref

∫
Kref

G(z(ξ1)− z(ξ2), t(η1)− t(η2)) dξ2 dη2 dξ1 dη1, (3.34)

with

Kref ×Kref :=

{[z(ξ1), t(η1), z(ξ2), t(η2)]T ∈ R4 : z(ξ1), t(η1), z(ξ2), t(η2) > 0; z(ξ1) + t(η1) < 1; z(ξ2) + t(η2) < 1}.

When the original elements ei, ej have coinciding vertices or edges, singularities might occur. There­
fore, we take a closer look at the behaviour of the functionG(z−y, t−s) at its limits. We define r := z−y
and τ := t− s. Note that G(r, τ) = 0 if τ < 0. Thus, for a non­zero fundamental solution, we have

G(z − y, t− s) = G(r, τ) =
1

4π|τ |er2/(4|τ |)
=

C

F (r, τ)
,

with
F (r, τ) := |τ |er

2/(4|τ |).

and C := 1
4π . We can rewrite this with the definition of an exponential expansion as

F (r, τ) = |τ |
∞∑

n=0

1

n!

(
r2

4τ

)n

= |τ |
(
1 +

r2

8τ
+

r4

96τ2
+O

(
r6

τ3

))
. (3.35)

From this expansion, the following limits become clearly visible

• if r 6= 0, limτ→0 F (r, τ) =∞.
• if τ 6= 0, limr→0 F (r, τ) = τ .
• lim(r,τ)→(0,0) F (r, τ) = 0.

As G(r, τ) is some constant divided by F (r, τ), we have a singularity at the origin. In the case of a O(1τ)
problem, i.e. the Taylor expansion of F (r, τ) is of order 1

τ , this singularity can be suppressed with the
use of gamma functions. At the moment of writing this thesis, this procedure was not reported in the
literature, which is the reason why we proceed to derive the required formulas. As shown in (3.35), the
two dimensional problem is of O(1τ).

For notational simplicity, consider, the following integral on the unit triangle Kref∫
Kref

G(x, t)dtdx =

∫ 1

0

∫ 1−x

0

G(x, t)dtdx.

Note that the inner integral can be rewritten into∫ 1−x

0

G(x, t)dt =
1

4π

∫ ∞

x2

4(1−x)

σ−1e−σdσ = G
(
0,

x2

4(1− x)

)
, (3.36)

where G denotes the incomplete Gamma function, defined in Chapter 2. We are left with∫ 1

0

G
(
0,

x2

4(1− x)

)
dx,

which can be approximated with the use of quadrature rules. In the case of the integration over the
tensor product of the unit triangles, we make use of the following identity∫

G
(
0,

a

4(b+ x)

)
dx =

(a
4
+ b+ x

)
G
(
0,

a

4(b+ x)

)
− (b+ x)e−

a
4(b+x) + C. (3.37)

We can write the tensor product integral as

3.5. Computing the Galerkin Matrix 26

∫
Kref

∫
Kref

G(x− y, t− s) dydsdxdt =
∫ 1

0

∫ 1

0

∫ 1−x

0

∫ 1−y

0

G(x− y, t− s) dsdtdydx. (3.38)

Next, the integral (3.38) is evaluated step by step with the use of gamma functions, starting with the
inner­most integral ∫ 1−y

0

G(x− y, t− s) ds = 1

4π

∫ 1−y

0

1

t− s
e−

(x−y)2

4(t−s) ds. (3.39)

By letting σ := (x−y)2

4(t−s) we have

∂σ

∂s
=

(x− y)2

4(s− t)2
=

σ

(t− s)
.

So by substitution of σ in (3.39), we obtain

∫ 1−y

0

G(x− y, t− s) ds = 1

4π

∫ β(x,y,t)

α(x,y,t)

1

σ
e−σ dσ =

1

4π
(G(0, α(x, y, t))−G(0, β(x, y, t))) , (3.40)

with
α(x, y, t) :=

(x− y)2

4t
, β(x, y, t) :=

(x− y)2

4(t+ y − 1)
.

The incomplete Gamma function G(0, x) is well defined for all x ∈ R+, with G(0, x) = 0 as x → ∞
and R+ := {x ∈ R, x > 0}. When taking a closer look at the anti­derivative of the incomplete Gamma
function (3.37), terms of the form xG(0, 1x) arise. Terms of this form have the distinctive property that
their right hand­side limit is well defined, more specifically

lim
x→0+

xG
(
0,

1

x

)
= 0.

Hence, (3.40) is integrable with respect to t, for any domain in R+. Using (3.37) and the fact that
(by definition of a unit triangle) x − 1 ≥ 0, the result of (3.40) can be integrated and evaluated as well.
We obtain

1

4π

∫ 1−x

0

G(0, α(x, y, t))−G(0, β(x, y, t)) dt =

1

4π

[(
(x− y)2

4
+ 1− x

)
G
(
0,

(x− y)2

4(1− x)

)
− (1− x)e−

(x−y)2

4(1−x) −
∫ 1−x

0

G
(
0,

(x− y)2

4(t+ y − 1)

)
dt

]
=

1

4π

[(
(x− y)2

4
+ 1− x

)
G
(
0,

(x− y)2

4(1− x)

)
− (1− x)e−

(x−y)2

4(1−x) + (y − x)e
−(x−y)2

4(y−x) + (3.41)(
(x− y)2

4
+ y − 1

)
G
(
0,

(x− y)2

4(y − 1)

)
− (y − 1)e

(x−y)2

4(y−1) −
(
(x− y)2

4
+ y − x

)
G
(
0,

(x− y)2

4(y − x)

)]
.

The expression (3.41) and all prior calculations can be summarised by

4π

∫ 1−x

0

∫ 1−y

0

G(x− y, t− s) dsdt = I1(x, y) + I2(x, y) + I3(x, y), (3.42)

with

I1 :=

(
(x− y)2

4
+ 1− x

)
G
(
0,

(x− y)2

4(1− x)

)
− (1− x)e−

(x−y)2

4(1−x) ,

I2 := (y − x)e
−(x−y)2

4(y−x) −
(
(x− y)2

4
+ y − x

)
G
(
0,

(x− y)2

4(y − x)

)
,

I3 :=

(
(x− y)2

4
+ y − 1

)
G
(
0,

(x− y)2

4(y − 1)

)
− (y − 1)e

(x−y)2

4(y−1) .

3.5. Computing the Galerkin Matrix 27

Remark. Since the fundamental solution is zero for s > t, the expression (3.42) holds only on the
domain where t > s. Indirectly, the spatial variables x and y in (3.42) are dependent on t and s.

As stated in the remark, the result (3.42) will not yield a complete description of an arbitrary triangu­
lation of the space­time lateral trace, as we did not yet take in account the behaviour of the fundamental
solution. To see why this matters, we will take a closer look at the integration bounds in (3.42). For
the two given reference triangles, for example the point x = 0.8 and y = 0.1 is within the integration
domain of (3.38). However, when looking at (3.42), or more specifically I2, this would yield a negative
entry in the gamma function, which in turn will result in a complex value. Since the described integrals
should not result in complex values, we need to add constraints to (3.42).

In order to obtain the complete description of (3.38), we reconsider the first two inner integrals:

∫ 1−x

0

∫ 1−y

0

G(x− y, t− s)dsdt =
∫ 1−x

0

∫ 1−y

0

G(x− y, t− s)1{0≤s<t<∞}dsdt

=

∫ 1−y

0

∫ 1−x

s

G(x− y, t− s)1{0≤s<t<∞} dtds.

Similar to (3.39), with σ = (x−y)2

4(t−s) we obtain∫ 1−y

0

∫ 1−x

s

G(x− y, t− s) dtds = 1

4π

∫ 1−y

0

∫ ∞

(x−y)2

4(1−x−s)

1

σ
e−σ dσds =

1

4π

∫ 1−y

0

G
(
0,

(x− y)2

4(1− x− s)

)
ds.

(3.43)
Where we used the fact that t > 0 for a non zero integral, so we take the limit from the right when
calculating the bounds, i.e.

lim
t→s+

(x− y)2

4(t− s)
=∞,∀x 6= y.

If x = y, both the upper and lower bound of the integral will become zero, and therefore this oc­
curence can be neglected. Using (3.37), we get∫ 1−y

0

∫ 1−x

s

G(x− y, t− s) dtds =

1

4π
1{0≤s<1−x<∞}

(
s+ x− 1− (x− y)2

4

)
G
(
0,

(x− y)2

4(1− x− s)

)
− (s+ x− 1)e−

(x−y)2

4(1−x−s

∣∣∣∣1−y

0

.

Which yields the complete result

4π

∫ 1−x

0

∫ 1−y

0

G(x− y, t− s)dsdt = Ig1 (x, y) + I
g
2 (x, y), (3.44)

with
Ig1 (x, y) := 1{y>x}

[(
x− y − (x− y)2

4

)
G
(
0,

(x− y)2

4(y − x)

)
− (x− y)e−

(x−y)2

4(y−x)

]
and

Ig2 (x, y) := −
(
x− 1− (x− y)2

4

)
G
(
0,

(x− y)2

4(1− x)

)
+ (x− 1)e−

(x−y)2

4(1−x) .

With the use of quadrature rules on (3.44), we are able to approximate the final integral

1

4π

∫ 1

0

∫ 1

0

Ig1 + Ig2 dxdy. (3.45)

When taking a closer look at Ig1 , ignoring the indicator function, it becomes clear by definition of the
incomplete gamma functions, that

Im(Ig1) 6= 0 ⇐⇒ x > y.

3.5. Computing the Galerkin Matrix 28

The relation x > y would imply, however, that one of the lower bounds in (3.43) is strictly negative.
This, in turn, implies that there exists a domain in which σ < 0, i.e. (x−y)2

4(t−s) < 0. This can only occur
when s > t, which corresponds to a zero fundamental solution. Ig2 will not yield imaginary parts, as
0 < x < 1. Hence, the final solution will look like∫ 1

0

∫ 1−x

0

∫ 1

0

∫ 1−y

0

G(x− y, t− s) dsdydtdx =
1

4π

∫ 1

0

∫ 1

y

Ig1 dxdy +
1

4π

∫ 1

0

∫ 1

0

Ig2 dxdy.

To complete the calculations, the required mappings from a parameterized domain in R2, to the unit
triangles need to be included. Let us consider two arbitrary triangles e1 and e2 with vertices xi = (xi, ti)
and yi = (yi, si), i=1,2,3, respectively. Let us denote the linear transformation to the reference triangle
by Φ1 for e1 and Φ2 for e2, i.e.:

Φi : ei → K, for i = 1, 2.

We define the pullback operator as the inverse of this linear transformation

Φ∗
i := Φ−1

i : K → ei, for i = 1, 2.

The Jacobian matrices Ji are defined in the same fashion as (3.33) for both elements ei and their
respective determinant by ∆i. The operator Φ∗

i maps to two variables, we will make a distinction
between the mapping to spatial coordinates

Φ
(1∗)
i : (ξ, η) 7→ Xi, Xi := {x, y},

and the temporal coordinates
Φ

(2∗)
i : (ξ, η) 7→ Ti, Ti := {t, s}.

To further simplify notation, we write 
x̂
t̂
ŷ
ŝ

 :=


Φ

(1∗)
1 (ξ1, η1)

Φ
(2∗)
1 (ξ1, η1)

Φ
(1∗)
2 (ξ2, η2)

Φ
(2∗)
2 (ξ2, η2)

 .

The transformed integrals, to calculate the Galerkin matrix, are then given by

|∆i||∆j |
∫ 1

0

∫ 1

0

∫ 1−ξ1

0

∫ 1−ξ2

0

G(x̂− ŷ, t̂− ŝ) dη2dη1dξ2dξ1. (3.46)

Again, the focus lies on the two inner integrals. We write∫ 1−ξ1

0

∫ 1−ξ2

0

G(x̂− ŷ, t̂− ŝ) dη2dη1 =

∫ 1−ξ2

0

∫ 1−ξ1

ŝ

G(x̂− ŷ, t̂− ŝ) dη1dη2.

Interestingly, both arguments in the fundamental solutionmay be depending on the same variable(s).
It might be possible that the inner integrals are not possible to evaluate analytically, and this is indeed
the case as will be shown now. First, we define a special function, the exponential integral :

Definition 3.2 ([16, Defn.4.4.2]). The generalised exponential integral is given by

En(x) :=

∫ x

−∞

et

tn
dt.

In the case n = 1, for positive real x we have

−E1(−x) = G(0, x),

where G denotes the incomplete gamma function.

An important property of the exponential integral is the following.

3.5. Computing the Galerkin Matrix 29

Proposition 3.16 ([16, Lem.7.1.5],[6]). Let En(x) be the generalised exponential integral defined in
Definition 3.2. The derivative of En(x) with respect to x is given by

E′
n(x) = −En−1(x).

This is an useful property due to the fact E0(x) :=
e−x

x . Now, let us define σ(ξ1, η1, ξ2, η2) := (x̂−ŷ)2

4(t̂−ŝ)
.

We will take a look at the inner most integral∫ 1−ξ2

0

G(x̂−ŷ, t̂−ŝ) dη2 =
1

4π

∫ 1−ξ2

0

1

t̂− ŝ
e−σdη2 =

1

4π

∫ 1−ξ2

0

1

t̂− ŝ
e−σdη2 =

1

π

∫ 1−ξ2

0

σ2

(x̂− ŷ)2
E0(σ)dη2.

(3.47)
Next (3.47) is rewritten as

1

4π

∫ 1−ξ2

0

σ2

(x̂− ŷ)2
E0(σ)dη2 =

1

π

∫ 1−ξ2

0

σ2

(x̂− ŷ)2
1
∂σ
∂v

∂

∂v
(−E1(σ))dη2 = A(η2, ·)

∂

∂v
(−E1(σ))dη2,

with
A(η2, ·) :=

σ2

(x̂− ŷ)2
1
∂σ
∂v

.

Using integration by parts, (3.47) thus equals

∫ 1−ξ2

0

G(x̂− ŷ, t̂− ŝ) dη2 = −A(η2, ·)E1(σ(η2, ·))

∣∣∣∣∣
1−ξ2

0

+

∫ 1−ξ2

0

A(η2, ·)E1(σ) dη2. (3.48)

At the moment of writing this thesis, no analytical form of the integral on the right­hand side of (3.48),
has been found in the literature (see for example the list of integrals in [6]). At this moment, the problem
can thus not be solved with the using the proposed semi­analytical approach, when given an arbitrary
triangulation.

3.5.1. Right triangular grid
When looking at a more specific grid, consisting of right­angled triangles with one side parallel to the
spatial direction and one side parallel to the temporal direction, a semi­analytical solution exists for
each element. To be clear, this form of triangulation does not require all the elements to be of the same
size or same shape. Let ei and ej , be elements of such a triangulation.

Same elements
We proceed to derive the matrix entries from a space­time triangulation of Σ. First we will look at the
case when ei = ej , i.e., i = j. We denote the length of the leg of the element in spatial direction by
X. Similarly, in time the length of the leg is denoted by T . Mirroring the element along the hypotenuse
will yield the same results when integrating, because the distances between the (same) triangles is
preserved. We can therefore always find a transformation in time to the reference triangle of the form

t̂(t) := a+ bt, b ∈ R+. (3.49)

The positivity of b is of importance, as the fundamental solution is in general not symmetric in time.
However due to the positivity of b, the integral (3.32) with same elements will be symmetric in time.
Since the fundamental solution is symmetric in spatial direction, we can (if needed) mirror the triangle
along the temporal axis to obtain an integral of the form∫ X

0

∫ X

0

∫ T− T
X y

0

∫ T− T
X x

s

G(x− y, t− s) dtdsdydx. (3.50)

Using previous calculations, (3.50) can be rewritten as:

1

4π

(∫ X

0

∫ X

x

Î

(
x, y, T − T

X
y

)
dydx−

∫ X

0

∫ X

0

Î (x, y, 0) dydx

)
, (3.51)

3.5. Computing the Galerkin Matrix 30

with

Î(x, y, s) :=

(
−x2 − y2 + 2xy − 4T + 4s+ 4 T

X x
)
G
(
0, (x−y)2

4(T− T
X x−s)

)
4

+e
− (x−y)2

4(T− T
X

x−4s) (T− T

X
−s). (3.52)

This expression can be approximated using quadrature rules, like Gauss­Legendre.

Spatially abutting elements
There are several cases in which elements can share a common edge. For each of these cases, the
analytically solved part of the solution differs. As stated before, the fundamental solution symmetric in
space, and therefore each case holds as well for the mirrored case in space.

The visual representation of each case is given in the Figures 3.1­3.4.

Figure 3.1: Type 1 abutting elements

Figure 3.2: Type 2­a abutting elements, forming a parallelogram

Figure 3.3: Type 2­b abutting elements, forming a triangle

Figure 3.4: Type 2­c abutting elements, forming a triangle

3.5. Computing the Galerkin Matrix 31

Type 1:
Elements sharing a common hypotenuse will be regarded as the first type of abutting elements. Let
e1 and e2 represent the elements denoted by ”1” and ”2” in Figure 3.1, respectively. Integrating over
the tensor product space e1 × e2 will in general not yield the same result as integrating over e2 × e1.
First, we will look at e1× e2. Again, X denotes the length of the leg in spatial direction and T the length
in temporal direction. As we are dealing with distances between elements, we can perform a volume
preserving mapping to the origin, which will give the same result. This fact will be used throughout the
rest of the derivations. The integral (3.32) can be written as∫ X

0

∫ X

0

∫ T

T− T
X y

∫ T− T
X x

s

G(x− y, t− s) dtdsdydx. (3.53)

This expression (3.53) can be rewritten, using the same substitution as in (3.36) into

1

4π

∫ X

0

∫ X

0

∫ T

T− T
X y

G

(
0,

(x− y)2

4(T − T
X x− s)

)
dsdydx. (3.54)

The indefinite form of the inner­most integral can be determined with the use of (3.37). By definition of
the fundamental solution, s < T − T

X x. Also, the integral tells us that T −
T
X y < s < T . As T − T

X x ≤ T ,
the inner­most integral in (3.54) will vanish when s approaches T . From the same inequalities it also
follows that y > x. Combining these facts, we arrive at the final solution for this case:

− 1

4π

∫ X

0

∫ X

x

Î

(
x, y, T − T

X
y

)
dydx. (3.55)

Which again can be well approximated with the use of quadrature.
Let Q denote the area composed of e1 and e2. For the reverse case, e2 × e1, we will use the fact

that e2 × e1 = Q × Q − e1 × e1 − e2 × e2 − e1 × e2. The integrals on tensor product spaces between
elements are already derived in this section. All that is left is Q × Q. The integral on this domain has
already been derived in Section 2.1.2, but, for the sake of completeness will again be given:∫ X

0

∫ X

0

∫ T

0

∫ T

s

G(x− y, t− s) dtdsdydx =

∫ X

0

∫ X

0

ÎQ(x, y, 0) dydx, (3.56)

with

ÎQ(x, y, s) :=
(−x2 − y2 + 2xy − 4T + 4s)G

(
0, (x−y)2

4(T−s)

)
4

+ e−
(x−y)2

4(T−s) (T − s).

Type 2­a:
Another type of abutting elements which can occur, is the type in which the elements share a common
leg perpendicular to the spatial direction. Within the collection of elements of this type, there are two
possible scenarios: elements which form together a parallelogram or elements which will result in
another triangle when combined. The first case is given in Figure 3.2

We denote again e1 and e2 in a similar fashion as before. This time, we start with the case e2 × e1.
Let Xi denote the leg in spatial direction for ei and T the shared leg length in temporal direction. The
integral (3.32) is then given by:∫ X1+X2

X1

∫ X1

0

∫ T

T− T
X1

y

∫ T
(
1+

X1
X2

)
− T

X2
x

s

G(x− y, t− s) dtdsdydx. (3.57)

This gives

∫ X1+X2

X1

∫ X1

0

∫ T

T− T
X1

y

G

0,
(x− y)2

4(T
(
1 + X1

X2

)
− T

X2
x− s)

 dsdydx. (3.58)

This time, we have that T − T
X1
y < s < T and s < T (1 + X1

X2
)− T

X2
x. Given X1 < x < X2, this implies

again that the inner integral vanishes as s goes to T . Also, the inequalities result in the requirement
that y > X1

X2
x− X2

1

X2
. The final solution becomes

3.5. Computing the Galerkin Matrix 32

−
∫ X1+X2

X1

∫ X1

X1
X2

x−X2
1

X2

Î2

(
x, y, T − T

X1
y

)
dydx, (3.59)

in which Î2(x, y, s) is a generalised version of Î(x, y, s), given by

Î2(x, y, s) :=

∫
G

0,
(x− y)2

4(T
(
1 + X1

X2

)
− T

X2
x− s)

 ds.

For notational convenience, the expression Î2(x, y, s) is not written out in its entirety.
For the case e1 × e2, it is a bit more complicated to find an analytical expression of the solution. In

this case (3.32) becomes:∫ X1

0

∫ X1+X2

X1

∫ T
(
1+

X1
X2

)
− T

X2
y

0

∫ T

T− T
X1

x

G(x− y, t− s) dtdsdydx. (3.60)

The difficulty for solving this integral lies within the lower bound of the inner­most integral. In the
previous cases, we were able to change this bound to s since s ≥ 0. In this case, however, T − T

X1
x < s

does not hold for all x. Instead, the inner­most integral can be expressed as∫ T

T− T
X1

x

G(x− y, t− s) dt :=
∫ T

max(T− T
X1

x,s)

G(x− y, t− s) dt.

When using substitution similar to (3.36), the lower bound will not necessarily become infinitely large.
Instead, we obtain the expression

∫ X1

0

∫ X1+X2

X1

∫ T
(
1+

X1
X2

)
− T

X2
y

0

G
(
0,

(x− y)2

4(T − s)

)
−G

(
0,

(x− y)2

4(max(T − T
X1
x, s)− s)

)
dsdydx.

The solution is divided up into two parts. First consider the inner integral

∫ T
(
1+

X1
X2

)
− T

X2
y

0

G
(
0,

(x− y)2

4(T − s)

)
ds.

In this case, there will be no extra constraints on x or y, so the solution will become∫ X1

0

∫ X1+X2

X1

ÎQ

(
x, y, T (1 +

X1

X2
)− T

X2
y

)
− IQ (x, y, 0) dydx. (3.61)

The other part is a bit more tricky, consider∫ T
(
1+

X1
X2

)
− T

X2
y

0

G

(
0,

(x− y)2

4(max(T − T
X1
x, s)− s)

)
ds. (3.62)

The solution to this integral will only exist when max(T− T
X1x, s) > s. Which is the case if T− T

X1x >

s. This in turn implies T − T
X1
x > T (1 + X1

X2
) − T

X1
y ⇒ y > X2

X1
x +X1. By setting X to X1, we obtain

the final solution

∫ X1

0

∫ X1+X2

X1+
X2
X1

x

Î

(
x, y, T (1 +

X1

X2
)− T

X2
y

)
dydx−

∫ X1

0

∫ X1+X2

X1

ÎQ(x, y, 0) dydx. (3.63)

Substracting (3.63) from (3.62) will yield the true final solution.

3.5. Computing the Galerkin Matrix 33

Type 2­b:
The last form of (horizontally) abutting panels can once again be divided into two possibilities. The first
possible scenario is given in Figure 3.3.

The integral, over the domain e2 × e1 reads∫ X1+X2

X1

∫ X1

0

∫ T
X1

y

0

∫ T (1+
X1
X2

− x
X2

)

s

G(x− y, t− s) dtdsdydx.

Using similar steps as the previous cases, one can quickly observe that the final solution consist of
Î2

(
x, y, T

X2
y
)
− Î2(x, y, 0). In the case of Î2

(
x, y, T

X2
y
)
, the following inequality should hold:

T
X1
y < T (1 + X1

X2
− x

X2
)⇒ y < X1(1 +

X1

X2
− x

X2
). This yields the final solution∫ X1+X2

X1

∫ X1(1+
X1
X2

− x
X2

)

0

Î2(x, y,
T

X1
y) dydx−

∫ X1+X2

X1

∫ X1

0

Î2(x, y, 0) dydx. (3.64)

Type 2­c:
The other possible scenario, given a type 2­c abutting panel, is represented in Figure 3.4.

The integral corresponding to abutting elements of this type, given e2 × e1, can be represented in
integral form as: ∫ X1+X2

X1

∫ X1

0

∫ T

T− T
X1

y

∫ T

T
X2

x−X1T
X2

G(x− y, t− s) dtdsdydx.

This gives∫ X1+X2

X1

∫ X1

0

∫ T

T− T
X1

y

G
(
0,

(x− y)2

4(T − s)

)
−G

(
0,

(x− y)2

4(max(T
X2
x− X1T

X2
, s)− s)

)
dsdydx.

Both gamma functions will vanish at the upper bound T. For the gamma functionG
(
0, (x−y)2

4(max(T
X2

x−X1T
X2

,s)−s)

)
,

the following inequality must hold: T − T
X1
y < T

X2
x− X1T

X2
⇒ y > X1 +

X2
1

X2
− X1

X2
x. This gives the final

solution for this type of abutting elements:

∫ X1+X2

X1

∫ X1

X1+
X2

1
X2

−X1
X2

x

Î3

(
x, y, T − T

X1
y

)
dydx−

∫ X1+X2

X1

∫ X1

0

ÎQ

(
x, y, T − T

X1
y

)
dydx, (3.65)

with

Î3(x, y, s) :=

∫
G

(
0,

(x− y)2

4(T
X2
x− X1T

X2
− s)

)
.

Temporally abutting elements
When dealing with temporally abutting elements, basic quadrature rules will result in faster convergence
than the horizontal case. This is a consequence of the fact that the abutting leg in this case needs to be
approached from a single side only (from top to bottom). Which is a continuous process. It is still worth
the effort to come up with semi analytical expressions of the solutions since it reduces the approximation
from a fourth order quadrature to a second order quadrature. We make again a distinction between
two types of elements which can occur. First, consider the case represented by Figure 3.5

Figure 3.5: Type 3­a temporally abutting elements, forming a quadrilateral

3.5. Computing the Galerkin Matrix 34

Only e1 × e2 type of domains are relevant, because otherwise the solution will be zero. Now the
legs parallel to time are denoted as T1 and T2, we also have X1 = X2 and we obtain the integral∫ X1

0

∫ X1

0

∫ T2

T2− T2
X1

y

∫ T1+T2− T1
X1

x

T2

G(x− y, t− s) dtdsdydx.

We need not to worry about s > t, which becomes even more clear from the integration bounds.
We thus obtain∫ X1

0

∫ X1

0

∫ T2

T2− T2
X1

y

G

(
0,

(x− y)2

4(T1 + T2 − T1

X1
x− s)

)
−G

(
0,

(x− y)2

4(T2 − s)

)
dsdydx.

The only possible restriction follows from T2− T2

X1
y < T1+T2− T1

X1
x⇒ y > T1

T2
x− T1X1

T2
, which is only

present in the lower bound of G
(
0, (x−y)2

4(T1+T2− T1
X1

x−s)

)
and always true. The solution thus becomes:∫ X1

0

∫ X1

0

Îh1
(x, y, T2)− Îh1

(
x, y, T2 −

T2
X1

y

)
+ Îh2

(
x, y, T2 −

T2
X1

y

)
dydx,

with

Îh1
(x, y, s) :=

∫
G

(
0,

(x− y)2

4(T1 + T2 − T1

X1
x− s)

)
ds,

and

Îh2(x, y, s) :=

∫
G
(
0,

(x− y)2

4(T2 − s)

)
ds.

The final form of abutting elements in vertical direction is represented in Figure 3.6

Figure 3.6: Type 3­b temporally abutting elements, forming a triangle

The corresponding integral is in this case∫ X1

0

∫ X1

0

∫ T2

T2
X1

y

∫ T1+T2− T1
X1

x

T2

G(x− y, t− s) dtdsdydx.

One can observe the similarities to a type 3­a problem, and use the fact that y < T1X1

T2
+X1 − T1

T2
x

holds for all 0 < x, y < X1, to quickly obtain the result:∫ X1

0

∫ X1

0

Îh1(x, y, T2)− Îh1

(
x, y,

T2
X1

y

)
+ Îh2

(
x, y,

T2
X1

y

)
dydx.

Non co­planar elements generalisation
So far we have analyzed situation in which elements are co­planar. We now would like to turn our
attention to the cases where elements are abutting and have different unit normal vectors. When
dealing with a two dimensional spatial domain, a slightly modified fundamental solution, compared to
(2.6), is given by

G(x, t) := 1

4πt
e−

∥x∥2
4t .

3.5. Computing the Galerkin Matrix 35

where ‖ · ‖ denotes the Euclidean norm. As stated in (3.11), the space­time lateral boundary Σ,
which is described with coordinates in R3, can be written as the union of closed subsets Σj . As each
of these subsets is considered piecewise smooth, there exists a (continuous) bijective mapping of Σj

in R3 to R2. This suggests there exists an invertible mapping from every element in the space­time
lateral boundary to a given reference element in R2. Hence, every element of Σh of which its vertices
are described in R3, can be identified by a reference element in R2 with vertices: x1 = (0, 0), x2 = (1, 0)
and x3 = (1, 1). We will denote this reference element by K̂. Let τ be an element of Σ with vertices
τi ∈ R3, i = 1, 2, 3. Then the mapping Φ : K̂ → τ is given by

Φ(ξ, η) := τ1 +M
(
ξ
η

)
, (3.66)

with the 3× 2 matrix M

M :=
(
τ2 − τ1 τ3 − τ2

)
. (3.67)

When dealing with elements which do not intersect in any way, using quadrature to obtain the matrix
entries will yield relatively fast convergence. However, a new type of abutting elements arise, namely
elements from different Σj which share an edge. By way of example, we will first show why these types
of elements still can be expressed semi­analytically. Next, we will generalise the weakly singular matrix
entries given any two elements with the use of reference mapping.

Consider the abutting elements represented in Figure 3.7.

Figure 3.7: Example abutting elements from different Σj

Consider the matrix entry of the weakly singular matrix, given by the domain e1 × e2, as shown in
Figure 3.7, written into integral form:∫ 1

0

∫ 1

0

∫ 1−y

0

∫ x

s

G

((
x
0

)
−
(
1
y

)
, t− s

)
dtdsdydx.

Using the properties of Gamma functions we get

1

4π

∫ 1

0

∫ 1

0

∫ 1−y

0

G
(
0,
‖(x− 1,−y)T ‖2

4(x− s)

)
dsdydx.

Since the next task is to integrate over s, the expression inside the norm will not affect the outcome.
We can therefore find an exact analytical term

I2D(x, y, s) :=

∫
G
(
0,
‖(x− 1,−y)T ‖2

4(x− s)

)
ds.

The only requirement is given by the inequality, x > 1− y ⇒ y > 1− x. We thus obtain the expression

1

4π

[∫ 1

0

∫ 1

1−x

I2D(x, y, 1− y) dydx−
∫ 1

0

∫ 1

0

I2D(x, y, 0) dydx

]
≈ 0.0367 . . .

The above example motivates us to find a general semi­analytical expression to (3.32). This gen­
eralisation is based on the following proposition:

3.5. Computing the Galerkin Matrix 36

Proposition 3.17. For each triangular element τ in Σj satisfying the following conditions

(i) one edge is perpendicular to spatial boundary Γj .
(ii) one edge is parallel to the spatial boundary Γj .

the following holds: There exists a mapping Φ : K̂ → τ given by (3.66), such that M is of the form

M :=

a 0
b 0
0 c

 , a, b ∈ R, max(|a|, |b|) 6= 0, c ∈ R\{0}.

Proof. We denote the vertices of the element τ by τi, i = 1, 2, 3. Each vertex can be written into
vector form (xi, yi, ti)

T . Since one edge of τ is perpendicular to Γj , we have:

∃! i1, i2 ∈ {1, 2, 3} : ti1 − ti2 = 0 and ‖(xi1 , yi1)T − (xi2 , yi2)
T ‖ 6= 0. (3.68)

Similarly, due to the parallel edge, we have

∃! k1, k2 ∈ {1, 2, 3} : ‖(xi1 , yi1)T − (xk2 , yk2)
T ‖ = 0 and tk1 − tk2 6= 0. (3.69)

Without loss of generality, we can denote τ1 and τ2 as the elements satisfying (3.68). By uniqueness
of the pair (up to symmetry), τ3 cannot satisfy (3.68). Also, τ1 and τ2 cannot satisfy (3.68) and (3.69)
simultaneously, which implies that τ3 must satisfy (3.69) in combination with either τ1 or τ2. Without
loss of generality, we are now able to assume that τ2 and τ3 satisfy (3.69). Given this choice of vertices,
the matrix M will become

M =

x2 − x1 0
y2 − y1 0

0 t3 − t2

 =

a 0
b 0
0 c

 .

We have by (3.68) that ‖(a, b)T ‖ 6= 0 ⇒ max(|a|, |b|) 6= 0, and by (3.69) that c 6= 0, proving the
proposition.

From now on for each element, we will assume that the reference element mapping is described as
in Proposition 3.17. We denote the Gram matrix corresponding to a certain element,e, by Jg(e), with
Jgram defined as the 3× 2 matrix

Jg =
(

∂Φ(ξ,η)
∂ξ

Φ(ξ,η)
∂η

)
.

Remark. By our assumption onM, the Grammatrix will be equal toM, given the correspondingmapping
function of an element.

Next, we denote:
|∆Jg |(e) :=

√
Jg(e)T · Jg(e).

Now, consider the integral (3.32), given elements e1, e2 and corresponding mappings Φ1(ξ1, η1) and
Φ2(ξ2, η2). For notational convenience, we denote:

x̂(ξ1)
ŷ(ξ2)
t̂(η1)
ŝ(η2)

 :=


Φ1|ξ1
Φ2|ξ2
Φ1|η1

Φ2|η2

 . (3.70)

The integral hence becomes

|∆Jg
|(e1)|∆Jg

|(e2)
∫ 1

0

∫ 1

0

∫ ξ2

0

∫ ξ1

0

G(x̂− ŷ, t̂− ŝ) dη1dη2dξ2dξ1. (3.71)

Let t̂−1 denote the inverse of t̂. If dealing with the same elements, by definition of the fundamental
solution, we can rewrite (3.71) into

|∆Jg
|(e1)|∆Jg

|(e2)
∫ 1

0

∫ 1

0

∫ ξ2

0

∫ ξ1

t̂−1(ŝ(η2))

G(x̂− ŷ, t̂− ŝ) dη1dη2dξ2dξ1.

3.6. Numerical results 37

First changing the variable η1 by u by σ := ∥x̂−ŷ∥2

4(t̂−ŝ)
yields a slightly different result as in the previous

cases, as we have to account for t̂
η1

as well. We therefore get the following expression, in terms of
gamma functions:

|∆Jg |(e1)|∆Jg |(e2)
∂t̂
∂η1

∫ 1

0

∫ 1

0

∫ ξ2

0

G
(
0,
‖x̂− ŷ‖2

4(t̂(ξ1)− ŝ)

)
dη2dξ2dξ1.

This in turn can be expressed as

|∆Jg
|(e1)|∆Jg

|(e2)
4π ∂t̂

∂η1

∂ŝ
∂η2

(∫ 1

0

∫ 1

0

IG(ξ1, ξ2, ξ2)− IG(ξ1, ξ2, 0) dξ1dξ2
)
, (3.72)

with

IG(ξ1, ξ2, η2) :=

{
0 t̂(ξ1) ≤ ŝ(η2)∫
G
(
0, ∥x̂−ŷ∥2

4(t̂(ξ1)−ŝ)

)
dη2 otherwise

.

If the elements are not equal, the corresponding integrals can also be generalised to a semi­analytical
form. We define the following function:

IG2
(x, y, t, s) :=

{
0 t > s
1
4π

∫
G
(
0, ∥x−y∥2

4(t−s)

)
ds otherwise

. (3.73)

Following a similar procedure as in the case of abutting elements, we obtain the following semi
analytical expression:

∣∣∣∣∫ 1

0

∫ 1

0

IG2(x̂(x), ŷ(y), t̂(0), ŝ(y))− IG2(x̂(x), ŷ(y), t̂(0), ŝ(0)) dy dx−∫ 1

0

∫ 1

0

IG2
(x̂(x), ŷ(y), t̂(x), ŝ(y))− IG2

(x̂(x), ŷ(y), t̂(x), ŝ(0)) dy dx

∣∣∣∣ . (3.74)

Where x̂, ŷ, t̂, ŝ depend on the elements of choice and are set up as in (3.70).

Remark. As can be seen in (3.74), the determinants of the gram matrices corresponding to two given
elements, is not present in the final expression. This is a consequence of the application of the chain
rule, which cancels out these determinants (given our right­triangular grid). Taking the absolute value
corrects the potential sign difference when using the chain rule.

3.6. Numerical results
We consider a Dirichlet problem (3.1) with homogeneous boundary conditions, no source terms and
a non­zero initial condition, on the domain Ω = (0, 1)2. More specifically, we will base our numerical
results on the following Dirichlet problem

∂tu−∆xu = 0,

u|Γ = 0,

u(·, 0) = 1.

(3.75)

The corresponding variational formulation of this problem reads: find q ∈ H− 1
2 ,−

1
4 (Σ) such that

〈V q, v〉Σ = −〈M0(1), v〉Σ, ∀v ∈ H− 1
2 ,−

1
4 (Σ). (3.76)

Let us define ~x =

(
x1
x2

)
and ~y =

(
y1
y2

)
. The initial potential operatorM0 can be expressed analyti­

cally:

3.6. Numerical results 38

M0(1)(~x, t) =

∫ 1

0

∫ 1

0

G(~x− ~y, t) d~y =

(
erf x2

2
√
t
− erf x2−1

2
√
t

)(
erf x1

2
√
t
− erf x1−1

2
√
t

)
4

, (3.77)

where erf denotes the (Gauss) error function.
Now, we consider two basis meshes, consisting of 32 right triangular elements of equal size. The

first basis mesh corresponds to the Dirichlet problem on the time interval (0,4) in seconds, whilst the
second mesh considers the smaller time interval (0, 0.41). Even though the step­size in temporal
direction differs between the meshes, the spatial is taken to be equal for both meshes. The basis
meshes are given in Figure 3.8.

(a) Basis mesh on time
interval (0,4)

(b) Basis mesh on time interval
(0,0.41)

Figure 3.8: Basis meshes used for Dirichlet problem

From these basis meshes, two levels of refinement are created: one refinement consisting of 128
elements and one consisting of 512 elements.

The Dirichlet problem is solved on these different meshes with the use of the Galerkin­Bubnov
variational formula, with the space of piecewise constants as a test and trial space, similar to (3.29)­
(3.31). The left hand­side of the variational formula is approximated using the procedure described in
Section 3.5. The right hand­side is approximated directly by the use of (Gaussian) quadrature. Solving
the Dirichlet system as described in (3.31), will yield a vector ~q, which does not equal the numerical
approximation of the solution uh(x, y, t). To obtain this approximation we make use of the general
representation formula (3.5) to obtain uh(x, t):

uh(~x, t) := K1q(~x, t) +M0(1)(~x, t) =

N∑
k=1

qkK1φ
Σ,0
k (~x, t) +M0(1)(x, t), (~x, t) ∈ Q, (3.78)

with φΣ,0
k (x, y, t) given in (3.28), N the total amount of elements in the mesh and K1 the weakly

singular operator.

3.6.1. Analytical expression of solution
The solution of the Dirichlet problem described by (3.75) can be expressed analytically. With the use
of the ”separation of variables” procedure, we obtain the general solution:

u(x, y, t) = (C1 sin(λx) + C2 cos(λx)) (D1 sin(µy) +D2 cos(µy)) e−(λ2+µ2)t, (3.79)

with the coefficientsC1,C2,D1,D2 and λ, µ unknown (for now). By applying the boundary conditions
(3.75), we have that C2 = D2 = 0. Thus we obtain

u(x, y, t) = C1D1 sin(λx) sin(µy)e(λ
2+µ2)t. (3.80)

3.6. Numerical results 39

Again, looking at the boundary conditions and assuming the solution is non­trivial, we see that
λ = nπ and µ = mπ, n,m ∈ N. By the superposition principle, we have

u(x, y, t) =

∞∑
n=1

∞∑
m=1

Anm sin(λnx) sin(µmy)e
−(λ2

n+µ2
m)t, (3.81)

with Anm unknown. The initial condition (3.75) and the use of Fourier series theory implies:

1 =

∞∑
n=1

∞∑
m=1

Anm sin(λnx) sin(µmy)⇒ Anm = 4

∫ 1

0

∫ 1

0

sin(λnx) sin(µmy) dxdy. (3.82)

The integral in (3.82) can be expressed analytically and hence we have

Anm =
4(cos(µm)− 1)(cos(λn − 1)

nmπ2
,

which yields the solution when combined with (3.81).

3.6.2. Discrete solution and error analysis
The discrete approximation is compared to the analytical expression of the solution in a similar fashion
to the one dimensional case. The space­time domain is discretized into quadrilaterals and the discrete
approximation uh(~x, t) is evaluated at the centre of each of these quadrilaterals. In a similar fashion,
the exact solution is evaluated at the same points. Since the different meshes are all uniform, the
relative Euclidean norm of the error is equivalent to the L2­norm up to a constant h, (the global mesh
size defined in (3.13)). Due to the equivalence and convenience, the (relative) Euclidean norm is used
in the error analysis.

The (double) infinite summation present in (3.81) is truncated atN = 100. The visual representation
for both the mesh corresponding to Q = (0, 1)2 × (0, 4) and the mesh corresponding to Q = (0, 1)2 ×
(0, 0.41) and their refinements are given in Figure 3.9 and Figure 3.10 respectively.

(a) (b) (c)

Figure 3.9: Approximation of the solution at different positions in the domain (0, 1)2, given the mesh in Figure 3.8 (a). The time
interval (0,4) is evaluated at 100 different equidistant points.

(a) (b) (c)

Figure 3.10: Approximation of the solution at different positions in the domain (0, 1)2, given the mesh in Figure 3.8 (b). The
time interval (0,0.41) is evaluated at 100 different equidistant points.

3.6. Numerical results 40

In all cases, higher refinement seems to increase the accuracy of the approximation, as expected.
Both models perform better when the distance between the point of evaluation and the closest bound­
aries becomes larger. Analogous to the one dimensional problem, this is a consequence of the Gaus­
sian quadrature error becoming larger as the regularity of the integrand reduces.

Decreasing the temporal step­size seems to improve the overall accuracy of the approximation.
Similar to the one dimensional case, the reduction of the temporal step­size ht improves the accuracy
of the quadrature for the single layer potential in (3.78). Given the approximation properties derived by
[2, p. 20], which are also summarised in (3.25) and (3.26), one can see that a reduction of ht will lead
to a reduction of the error estimate in (3.31). As ht (and hx) are taken to be the same for both (3.31)
and (3.78), the error estimate hence reduces.

The actual errors, given hundred equidistant evaluation points are given in the tables below.

Table 3.1: The relative (absolute) error for different levels of refinement given the mesh in Figure (3.8) (a). The error is taken
as with respect to the Euclidean norm.

Relative Error (Absolute Error)
Evaluation point x=0.5, y =0.5 x=0.1, y =0.1 x=0.3, y =0.9
32 elements 0.420 (0.505) 1.980 (0.552) 1.006 (0.534)

128 elements 0.266 (0.320) 1.456 (0.406) 0.721 (0.383)

512 elements 0.125 (0.150) 1.074 (0.299) 0.468 (0.249)

As shown in 3.1, the approximations are relatively inaccurate. When looking at the solutions, this
makes sense as the solution becomes zero in approximately half a second whilst the temporal step­
size of the space time boundary is one second. Since the approximation in each element is given by a
piecewise constant, it will not be possible to properly approximate the solution in that case. As shown
in Table 3.2, the error becomes significantly smaller when decreasing the temporal step­size.

Table 3.2: The relative (absolute) error for different levels of refinement Figure (3.8) (b). The error is taken as with respect to
the Euclidean norm.

Relative Error (Absolute Error)
Evaluation point x=0.5, y =0.5 x=0.1, y =0.1 x=0.3, y =0.9
32 elements 0.072 (0.224) 1.122 (0.535) 0.377 (0.392)

128 elements 0.029 (0.091) 0.495 (0.236) 0.136 (0.142)

512 elements 0.011 (0.035) 0.158 (0.075) 0.067 (0.070)

Comparing Table 3.1 and Table 3.2, one can observe that the error reduces more promptly when
dealing with larger meshes. This is consistent with the estimate (3.25), as the temporal step­size has
an O(h

1
2
t) effect on the error, whilst the spatial step­size affect the magnitude of the error by O(hx). For

small mesh sizes, and therefore relatively large hx, the error is dominated by hx. For increasing level
of refinement however, the influence of ht becomes more visible. This is especially true at (x, y) =
(0.5, 0.5), where the accuracy of the numerical solution is not affected by proximity to the boundaries.

4
Parallelization

In this chapter, we will consider parallelization techniques to improve the efficiency of solving a system
of linear equations, based on the Galerkin­Bubnov variational formula. First, we consider the weakly
singular matrix (given N elements)

Vh :=

〈V φ
Σ,0
1 , φΣ,0

1 〉Σ . . . 〈V φΣ,0
N , φΣ,0

1 〉Σ
...

. . .
...

〈V φΣ,0
1 , φΣ,0

N 〉Σ . . . 〈V φΣ,0
N , φΣ,0

N 〉Σ

 ,

with V the single layer operator and φΣ,0
i the basis function given a triangulationΣ. If the triangulation

consists of right angled triangles with one edge parallel to the time domain and one parallel to the
boundary, we can evaluate the entries of Vh with the expression (3.72). The right hand side vector F
is defined as

F :=

〈g, φ
Σ,0
1 〉Σ
...

〈g, φΣ,0
N 〉Σ

 ,

with g, the spatial boundary condition. This gives the following system of linear equations with
unknown vector q of length N

Vhq = F. (4.1)

4.1. Weakly singular matrix structure
The structure of the matrix may affect the parallelization algorithms, and therefore is worth looking into.
We consider a right­angled triangulation of the space­time boundary with a rectangular spatial domain.
An example of such a triangulation is given in Figure 4.1.

Figure 4.1: Example of space time triangulation, with faces X and Y

41

4.1. Weakly singular matrix structure 42

When we do not specifically look into the way the elements are numbered, this structure of the
weakly singular matrix could, for example, look as denoted in Figure 4.2.

Figure 4.2: Example of weakly singular matrix structure (128 elements), where the white spaces denote zero entries

The structure of the weakly singular matrix changes when the numbering changes. We can, for
example number the elements along each ”layer” in time, as presented in Figure 4.3.

(a) 3D representation (b) ”Folded out” representation

Figure 4.3: Example triangulation with structured numbering by time­layer

This results in the following weakly singular matrix structure:

Figure 4.4: Example of weakly singular matrix structure (32 elements) when numbering by time­layer, where the white spaces
denote zero entries

The matrix has a lower triangular block form. We can also choose to number by face instead of
time layer. This results in the following ”folded out” representation.

4.1. Weakly singular matrix structure 43

Figure 4.5: ”Folded out” representation (32 elements) when numbering by face
.

This gives the following structure on Vh

Figure 4.6: Example of weakly singular matrix structure (32 elements) when numbering by face, where the white spaces
denote zero entries.

As can be seen in Figure 4.6, the matrix consists of blocks of lower triangular block matrices.
Another way to change the matrix structure, is by changing the way the matrix is assembled, instead

of changing the way the elements are numbered. For example, we could create a sequence k defined
as

k := {N − 1, N − 3, . . . , 3, 1, 0, 2, . . . , N − 2, N}.

This time, we define the entries of the matrix as

Vh[i, j] := 〈V φΣ,0
i , φΣ,0

kj
〉Σ.

Depending on the way of (structured) numbering the elements, this can give different results, as
shown in Figure 4.7.

4.2. Generalised residual method 44

(a) Example matrix structure with
numbering by time layer

(b) Example matrix structure with
numbering by faces

Figure 4.7: Matrix structures given a different assembly method

These figures are examples of the broad scala of matrix structures which can be obtained by either
changing the numbering of the elements or the way the matrix is assembled.

4.2. Generalised residual method
The system of linear equations arising from the weakly singular matrix and corresponding right­hand
side can either be solved directly or with the use of an iterative method. In this thesis the (iterative)
Krylov subspace method ”Generalised residual method” (GMRES) will be used to solve the linear sys­
tem. To properly grasp the possibilities of parallelization, we need to take a closer look at the operations
performed by this algorithm.

As already mentioned, GMRES is a Krylov subspace method, i.e. qk, the approximation of the
solution q in (4.1), at the k­th iteration, is an element of k­dimensional Krylov subspaceKk(Vh; r0) [25],
with

Kk(Vh; r0) := q0 + span{r0,Vhr0, . . . ,Vk−1
h r0},

and
rk := F− Vhqk.

Within this increasingly expanding subspace, we search for an approximate solution of the form

qk = q0 + zk, (4.2)

with zk ∈ Kk(Vh; r0), such that

‖rk‖2 = min
z∈Kk(Vh;r0)

‖F− Vhz‖2. (4.3)

The GMRES algorithm is based on solving the minimisation problem (4.3) efficiently with the use of
an orthonormal basis of the corresponding Krylov subspace. Various methods for finding the orthonor­
mal basis of the Krylov subspace, such as Arnoldi’s method and Modified Gram­Schmidt method [25],
are available and will not be discussed in detail in this thesis.

By left­preconditioning, we transform the system of linear equations (4.1) into the following system:

M−1Vhq = M−1F, (4.4)

whereM, a non­singular square matrix of equal dimensions as Vh, represents an arbitrary precondi­
tioner. Given such a preconditioner, the GMRES algorithm for k iterations can be described as follows
[17]:

4.3. Calderón preconditioning 45

Algorithm 1: Left­preconditioned GMRES
Result: qk, approximation of the solution M−1Vhq = M−1F
Define initial guess q0;
Compute r0 = M−1(F− Vhq0), β = ‖r0‖2 and v1 = r0

β ;
for j=1,…,k do

Compute w := M−1Vhvj ;
for i = 1,…,j do

hi,j := (w, vi);
w := w − hi.jvi;

end
Compute hj+1,j = ‖w‖2 and vj+1 = w

hj+1,j
;

end
Define Vk := [v1, . . . , vk], H̄k = {hi,j}1≤i≤j;1≤j≤k;
Compute yk = argminy‖βe1 − H̄ky‖2, and qk = q0 + Vkyk;
if Satisfied then

Stop
else

Set q0 := qk;
Repeat algorithm;

end

Remark. The vector e1 is the canonical vector (1, 0, . . . , 0)T .

The main operations in Algorithm 1 can be distinguished by 5 different types of operations [17]:

1. Preconditioner setup.
2. Matrix vector multiplications.
3. Vector updates.
4. Dot products.
5. Preconditioning operations.

For parallel machines, the potential bottlenecks in the above list are (1) and (5). Matrix vector multi­
plications and dot products are relatively easy to implement on high performance computers. Also, vec­
tor updates will not cause significant difficulties in general on parallel machines [17]. We can henceforth
conclude that the choice of preconditioner can significantly affect the efficiency of the parallelization.

4.3. Calderón preconditioning
The reduction of the condition number ofVh, by applying a preconditionerM−1Vh,might result in desired
convergence properties. It should be noted, however, that a small condition number is by no means
a necessary and sufficient condition for GMRES. Given a diagonalizable matrix A, roughly speaking,
the GMRES algorithm converges quickly if A is not too far from normal in the sense that the condition
number is not too large, and, if properly normalised degree n­polynommials can be found whose size on
the spectrum of A quickly decreases with n ([24], Thm. 35.2). Although not sufficient from a theoretical
perspective, Calderón preconditioning, which is a particular form of operator preconditioning, usually
provides a good preconditioner when used with GMRES.

Operator preconditioning makes use of the following idea. If we are given a continuous bijective
linear operator A : V → W and an isomorphism B : W → V , on function spaces V and W , then
AB will provide an endomorphism on V . Discretisation of such an endomorphism often gives rise to
well­conditioned matrices [8].

In order to quantify how operator preconditioning affects the condition number, we will make use of
the following theory by Hiptmair [8]. On two reflexive Banach spaces A, B, we consider two continuous
sesquilinear forms a ∈ L(A×A,C) and b ∈ L(B×B.C), where L(X,Y) denotes the the set of bounded

4.3. Calderón preconditioning 46

linear operators from space X into Y . Let Ah := span{φk}N1 ⊂ A and Bh := span{ψj}N1 ⊂ B be finite
dimensional subspaces on which the following conditions hold:

sup
0 ̸=vh∈Ah

|a(uh, vh)|
‖vh‖A

≥ c1‖uh‖A ∀uh ∈ A, (4.5)

sup
0 ̸=wh∈Bh

|b(zh, wh)|
‖wh‖B

≥ c2‖zh‖B ∀zh ∈ B. (4.6)

Further we assume there exists a sesquilinear form d ∈ L(A×B,R) satisfying

sup
0 ̸=wh∈Bh

|d(vh, wh)|
‖wh‖B

≥ c3‖vh‖A ∀vh ∈ A. (4.7)

This results in the following Galerkin matrices

A[i, j] := a(φi, φj), B[i, j] := b(ψi, ψj), D[i, j] := d(φi, ψj), i, j = 1, . . . N.

The following result is obtained:

Theorem 4.1 ([8, Thm. 2.1]). Assume (4.5) ­ (4.7) hold and dimAh = dimBh, then

κ(D−1BD−TA) ≤ ‖a‖‖b‖‖d‖
2

c1c2c23
,

where κ(·) denotes the spectral condition number.

Proof. The proof is added for the sake of completeness. It goes along the lines oft he proof intro­
duced by Hiptmair [8] with some added intermediate steps for elaboration. From now on, we denote
the dual of a Banach space X by X∗. Let JA : Ah → A∗

h, JB : Bh → B∗
h and JD : Ah → B∗

h be
bounded linear operators associated with the sesquilinear forms a, b and d respectively. We can define
an element τh ∈ A∗

h by the function τ : Ah → K, such that for any t ∈ Ah we have τh : t 7→ a(t, h), for a
given h ∈ Ah. This can be done in a similar fashion in the other dual spaces. Note that this implies

‖JA‖ = sup
∥x∥Ah

=1

‖JAx‖A∗
h
= sup

∥x∥Ah
=1

sup
∥y∥Ah

=1

, |a(vh, x)| = ‖a‖. (4.8)

Taking a closer look at (4.5) will show us that, ∀y ∈ Ah : ‖y‖A∗
h
= 1⇒ ‖y‖Ah

≤ 1
c1
, we also have

‖J−1
A ‖ = sup

∥y∥A∗
h
=1

‖J−1
A y‖Ah

≤ 1

c1
.

Next, we denote the adjoint operator of JD by J∗
D. Using similar steps as in the case of JA, and

recalling that J∗
D := DT , we can conclude

‖J−1
D JBJ

−∗
D JA‖ ≤

1

c32
‖a‖‖b‖, ‖J−1

A J∗
DJ

−1
B JD‖ ≤ ‖d‖2

1

c1c2
.

Equipping Cn with the same norm as the Banach space A, we obtain the final inequalities

|λmax(D−1BD−TA)| ≤ ‖D−1BD−TA‖ ≤ 1

c23
‖a‖‖b‖, (4.9)

|λmax(D−1BD−TA)−1| ≤ ‖A−1DTB−1D‖ ≤ 1

c1c2
‖d‖2, (4.10)

where λmax(X) := {maxx ∈ σ(X)}, λmin(X) := {minx ∈ σ(X)} and σ(X) defines the spectrum
of X. The product of the norms in (4.9) and (4.10) equals the spectral condition number, and hence
the statement is proven.

If we use a left preconditioner

C−1
v := D−1BD−T ,

applied by C−1
v A, we obtain a preconditioned form of matrix A with bounded condition number,

which is the desired result.

4.3. Calderón preconditioning 47

4.3.1. Dirichlet Boundary value problem
Consider the Dirichlet domain variational problem (3.4) which leads to the indirect formulation of the
first kind given by (3.8). As stated by Noon, the single layer integral operator V : H− 1

2 ,−
1
4 (Σ) →

H
1
2 ,

1
4 (Σ) and the hypersingular integral operatorW : H

1
2 ,

1
4 (Σ)→ H− 1

2 ,−
1
4 (Σ) are both elliptic and their

composition WV : H− 1
2 ,−

1
4 (Σ) → H− 1

2 ,−
1
4 (Σ) defines an operator of order zero [15]. The stability

assumptions (4.5) and (4.6) are therefore satisfied, which in turn implies that we can find a suitable
preconditioner of Vh in (4.1) by using the Galerkin matrix corresponding to the hypersingular operator.
The single layer operator is discretized with respect to either Xh := S0

h(Σh) or Xh := S0,0
hx,ht

(Σh),
which are defined by (3.27) and (3.24) respectively. We can hence write Xh := span{φ0i }N1 . For the
hypersingular operator however, we need to use a trial space Yh := span{ψi}N1 ⊂ H

1
2 ,

1
4 (Σ). As a

corollary of Theorem 4.1 we have [3]:

Corollary 4.2 ([8, Thm.2.1],[3, Thm.8.2]). Assume the stability condition

sup
0 ̸=vh∈Yh

〈uh, vh〉Σ
‖vh‖

H
1
2
, 1
4 (Σ)

≥ CM‖uh‖
H− 1

2
,− 1

4 (Σ)
, ∀uh ∈ Xh, (4.11)

holds. Then there exists a constant cκ such that

κ(D−1
h WhD

−T
h Vh) ≤ cκ,

with

Vh[i, j] = 〈V φ0j , φ0i 〉Σ, Wh[i.j] = 〈Wψj , ψi〉Σ, Dh[i, j] = 〈φ0j , ψi〉Σ, i, j = 1 . . . , N.

Proof. The proof is a direct application of Theorem 4.1, with

a(u, v) = 〈V u,w〉Σ, b(q, z) = 〈Wq, z〉Σ, d(v, z) = 〈v, z〉Σ, u, v ∈ H 1
2 ,

1
4 (Σ) and q, z ∈ H− 1

2 ,−
1
4 (Σ).

If we can find a boundary element space Yh, such that the stability condition (4.11) is satisfied, then
C−1

v := D−1
h WhD

−T
h can be used as a preconditioner of Vh.

Dual mesh approach
One of the challenges of operator preconditioning is finding subspace Yh such that Theorem 4.1 can be
applied. When Xh := S0,0

hx,ht
(Σh), Steinbach and Dohr [21, 3] have shown that there are several viable

candidates for Yh satisfying the stability condition (4.11), by using the notion of dual meshes.

Definition 4.1. If the vertex­edge and edge­cell incidence matrices of one mesh (the primal mesh),
agree with the cell­edge and edge­vertex of another mesh (the dual mesh), the meshes are called the
dual of each other [8].

Examples of finding a dual to a mesh are described in the work of Steinbach [21]. The possible
candidates for Yh are given in the following proposition.

Proposition 4.3 ([3, Ch.8]). GivenXh := S0,0
hx,ht

(Σh), the following candidates for Yh satisfy the stability
condition (4.11).

• Yh=S1
hx
(Γ̃Nx

)⊗ S0(INt
)

• Yh=S1
hx
(Γ̃Nx

)⊗ S1(ĨNt
)

Where Γ̃Nx is the dual mesh of ΓNx , and ĨNt the dual mesh of INt

In the following, we analyse the situation for a general space­time discretization. In other words,
we consider a triangulation Σh of Σ and denote its dual mesh by Σ̃h. When dealing with the more
general formXh := S0

h(Σh), we make use of the embedding property of Sobolev spaces in Lemma 3.14.
In the two dimensional case, we have that S0

h(Σh) and S1
h(Σ̃h) are proper subspaces of H 1

4 (Σ) and

4.3. Calderón preconditioning 48

H
1
2 (Σ̃) respectively. Next, we define the generalised L2­projection operators P 0

Σ : L2(Σ) → S0(Σh)
and P 1

Σ : L2(Σ)→ S1(Σ̃h), i.e., they are the solution to the respective variational problem

〈P 0
Σu, τ〉Σ = 〈u, τ〉Σ, ∀τ ∈ S0

h(Σh), (4.12)

and
〈P 1

Σu, τ〉Σ = 〈u, τ〉Σ, ∀τ ∈ S0
h(Σh). (4.13)

We will use the following theorem by Dohr [3]:

Theorem 4.4 ([3, Thm.8.3]). Let Xh and Yh be given boundary element spaces satisfying

sup
0 ̸=τ∈Xh

〈v, τ〉Σ
‖τ‖Σ

≥ c‖v‖Σ, ∀v ∈ Yh, (4.14)

where the constant c is independent of h. Moreover let the L2 projection operator PΣ defined by either
(4.12) or (4.13) be H 1

2 ,
1
4 ­stable, i.e., there exists a constant c > 0, such that

‖PΣu‖
H

1
2
, 1
4 (Σ)

≤ c‖u‖
H

1
2
, 1
4 (Σ)

, ∀u ∈ H 1
2 ,

1
4 (Σ). (4.15)

Then the stability condition (4.11) holds.

Remark. For a globally quasi­uniform mesh, (4.15) holds due to appropriate error estimates and the
use of the inverse inequality [22, Ch.2].

Since (4.12) and (4.13) are a Galerkin­Bubnov and Galerkin­Petrov variational formulations respec­
tively, the formulations are uniquely solvable and their trial and test spaces satisfy (4.14) when dealing
with a locally quasi­uniform mesh ([21], Lemma 3.1). However, if this is not the case, the stability
assumption (4.14) needs to be verified when creating the mesh.

To verify the H 1
2 ,

1
4 ­stability of the projections, consider an element τl of the (locally quasi­uniform)

mesh. Let Nl := dimXh(τl) = dimXh|τh . As mentioned before, we can define the test and trial spaces
by their respective bases, i.e., Xh := span{φi}N1 and Yh := span{ψj}N1 . For each k­th basis function
we denote its support by ωk. Let Nvertex and Nelements denote the total amount of nodes and elements
of mesh Σh, respectively. Next, we define two index sets as follows [22]:

I(k) := {l ∈ N : τl ∩ ωk 6= ∅}, k = 1, . . . , Nvertex,

J(l) := {k ∈ N : τl ∩ ωk 6= ∅}, l = 1, . . . , Nelements.

Now, we define the local Gram matrices

Gl[j, i] := 〈φJ(l)i , ψJ(l)j 〉L2(τl), i, j = 1, . . . , Nl.

We define the nodal mesh size ĥ as

ĥk :=
1

|I(k)|
∑

l∈I(k)

hl, k = 1, . . . , N,

where |I(k)| denotes the cardinality of I(k), and hl is defined as in (3.12). Consider

Hl := diag(ĥJ(l)i)
Nl
i=1,

and

Dl := diagGl.

To satisfy the stability, we will assume all elements τl satisfy the following condition [22, 21, 3]:

∃C > 0 : (HlGlH
−1
l xl, xl) ≥ C(Dlxl, xl), ∀xl ∈ RNl . (4.16)

To link this assumption to the required stability, we make use of the following theorem by Steinbach
[21]:

4.3. Calderón preconditioning 49

Theorem 4.5 ([21, Thm.4.2]). Assume (4.16) holds. Then for all s ∈ (0, 1]

‖PΣu‖Hs(Σ) ≤ cs‖u‖Hs(Σ), (4.17)

holds.

Proof. The proof is given in Theorem 4.2 in [21].
Assuming (4.16) for the given meshes, hence results in the bound given by (4.17). By Lemma 3.14,

with using 1
4 := min(12 ,

1
4) we have

‖PΣu‖
H

1
4 (Σ)

≤ c1‖u‖
H

1
2
, 1
4 (Σ)

, ∀u ∈ H 1
2 ,

1
4 (Σ). (4.18)

The inequality (4.18) does not coincide with the stability condition (4.11). Next, we will use the
inverse inequality, given in the following theorem [18].

Theorem 4.6 ([18, Thm.4.4.2]). Consider the surface of a polyhedron Γ. Assume the triangulation T
on Ω, consists of plane panels with straight edges with mesh width h > 0. We have for 0 ≤ m ≤ l, all
τ ∈ T and all v ∈ Pτ

k, (the space of polynomials of degree k and support τ):

‖v‖Hl(τ) ≤ Chm−l
τ ‖v‖Hm(τ). (4.19)

The constant C only depends on hmax, l, k and the shape regularity of the mesh.

As stated in Section 3.3, we assume a triangulation with straight edges, as required in Theorem 4.6.
So with the use Theorem 4.6 and setting m = 1

4 , l =
1
2 , we have for all τ ∈ T

‖PΣu‖
H

1
2 (τ)
≤ Ch−

1
4

τ ‖PΣu‖
H

1
4 (τ)

. (4.20)

For notational convenience Ch
− 1

4
τ will be denoted as C(h). By using the embedding property

Lemma 3.14 again, with 1
2 = max(12 ,

1
4), we obtain the the bound

‖PΣu‖
H

1
2
, 1
4 (Σ)

≤ c2‖PΣu‖
H

1
2 (Σ)

, ∀u ∈ H 1
2 ,

1
4 (Σ). (4.21)

Combining (4.18) with (4.20) and (4.21) implies the inequality (4.15) holds:

‖PΣu‖
H

1
2
, 1
4 (Σ)

≤ c2c1C(h)‖u‖
H

1
2
, 1
4 (Σ)

, ∀u ∈ H 1
2 ,

1
4 (Σ). (4.22)

Since the bound obtained in (4.22) depends on h, we are currently not able to show Yh is a viable
candidate such that the preconditioner C−1

v can be used. Hence, at the moment of writing this thesis,
this remains an open problem. Note that, if we were able to proof the missing case, to obtain a Galerkin
matrix for the hypersingular operatorW that leads to a suitable preconditioner in 2D, we can only choose
S1
h(Σ̃h).

Diagonal duality pairing
In 2018, Stevenson and Venetië proposed another approach to the duality pairing d(·, ·) for operator
preconditioning [23]. The appealing part of their proposal is the fact that the discrete form of the duality
pairing operators are diagonal matrices. The way this is achieved will be described in this section. For
the mathematical theory behind this method, however, the reader is referred to the paper by Stevenson
and Venetië [23].

The weakly singular operator is assumed to be discretized by piecewise constants throughout this
section. Recall that our preconditioner system will read as M−1

h WhMT
hVh. We denote the basis of Vh,

originating from the space of piecewise constant functions, as Ξ. Similarly, we denote the basis of the
hypersingular matrixWh, consisting of piecewise linear functions, as Φ. It is clear that in this case, the
bases are not bi­orthogonal, i.e. the Matrix Dh := 〈Ξ,Φ〉Σ need not be diagonal. In order to achieve
bi­orthogonality we thus need to find another discrete version of the hypersingular operator with basis
Ψ, which still satisfies the stability condition (4.11), and has diagonal duality pairing Dh := 〈Ξ,Ψ〉Σ.

Consider the triangulation Σh, of the lateral space­time boundary Σ. Given Σ := Γ × (0, T), the
boundaries of Σ are Γ × {0} and Γ × {T} and are denoted by ∂Σ. For a triangulation Σh, let V(Σh)
denote the set of vertices of Σh and define

4.3. Calderón preconditioning 50

N0
Σh

:= {v ∈ V(Σh) : v /∈ ∂Σ}.

Now, we can define the valence of each vertex as

dv := |{τ ∈ Σh : v ∈ τ̄}| ,

where | · | denotes the cardinality of the set. For the basis of the preconditioner we will make use of
the space of piecewise linear functions which vanish on ∂Σ, i.e.

S1
∂Σ(Σh) := {ψv(v

′) ∈ S1
h(Σ) : ψv(v

′) = 0, ∀v, v′ ∈ V(Σh) \N0
Σh
}.

Similar as proposed by Stevenson, the construction of the basis Ψ builds on two collections, Θ and
Υ, of locally supported functions in H 1

2 ,
1
4 (Σ) whose cardinalities equal Ξ, one of which is bi­orthogonal

to Ξ and one is inside S1
∂Σ(Σ) and satisfies the approximation property.

Definition 4.2 (Approximation property,[10, Ch.3]). Given a Banach space X, if every compact op­
erator is a limit of finite rank operators, X is said to be satisfying the approximation property.

Consider Θ := {θτ : τ ∈ Σh}, such that θτ ≥ 0, supp θτ ⊂ τ̄ and, for convenience,

〈θτ , ξτ 〉Σ = |τ |, ξτ ∈ Ξ, ∀τ ∈ Σh.

One possible construction Θ is with the use of ’bubble functions’, however the emphasis lies not on
the actual construction of Θ, but on its existence.

The other collection of locally supported functions Υ is defined as Υ := {υτ : τ ∈ Σh} ⊂ S1
∂Σ(Σh)

with

υτ :=
∑

v∈N0
Σh

∩V(Σh)

d−1
v ψv.

Finally, we can define Ψ := {ψτ : τ ∈ Σh} ⊂ S1
∂Σ(Σh)⊕ span Θ, with

ψτ := υτ +
〈1− στ , ξτ 〉Σ
〈θτ , ξτ 〉Σ

θτ −
∑

τ ′∈Σh\τ

〈στ , ξτ ′〉Σ
〈θτ ′ , ξτ ′〉Σ

θτ ′ . (4.23)

It can be verified that 〈ξτ , ψτ 〉Σ = |τ |, ∀τ ∈ Σh. As a candidate duality pairing we will therefore
define

Dh := 〈Ξ,Ψ〉Σ, (4.24)

with Ξ and Ψ described above. Another interesting property of the duality pairing is given in the
following theorem [23]

Theorem 4.7 ([23, Cor.3.3]). Let T denote the collection of triangulations on Σ. Let Dh : S0
h(Σh) →

(span Ψ)′. It holds that Dh is an invertible operator whose inverse is in L((span Ψ)′, S0
h(Σh)), with

‖Dh‖L(S0
h(Σh),(span Ψ)′) ≤ 1,

and

sup
T ∈T
‖D−1

h ‖L((span .Ψ)′,S0
h(Σh)) <∞

Due to the uniform boundedness implied by Theorem 4.7, the results are thus valid without any
additional assumptions on the mesh grading.

Having established an uniformly bounded duality pairing, all that remains is to find an discrete ver­
sion of the operator W : H

1
2 ,

1
4 (Σ) → H− 1

2 ,−
1
4 (Σ), denoted as Wh. To obtain a uniform preconditioner,

Wh and its inverse needs to be uniformly bounded with respect to the triangulations. The span of the
collection Θ will be referred to as B := span Θ. Given the direct sum decomposition S1

∂Σ(Σ) ⊕ B, we
consider to projections PS , PB on this domain whose ranges are defined by S1

∂Σ(Σh) and B, respectively.
Next, we define

4.3. Calderón preconditioning 51

BS⊕Bv(w) := BS(PSv)(PSw) +BB(PBv)(PBw),

with BS ∈ L(S1
∂Σ(Σh), (S

1
∂Σ(Σh))

′) and BB ∈ L(B,B′). As a choice of BS , the hypersingular op­
erator can be used. Using the same construction proposed by Stevenson, we can make sure BB is
uniformly bounded (and its inverse as well).

Remark. Two assumptions on the space of bubble functions B are actually required to complete the
construction of BB. These assumptions are stated in (3.24) and (3.25) in the work of Stevenson [23].

Setting

(Whv)(w) := BS⊕Bv(w), (4.25)

will now give rise to a well­defined uniformly bounded discretized version of W . In turn, this leads
to the resulting preconditioner:

Cv := D−1
h WhD

−T
h , (4.26)

with Dh andWh defined by (4.24) and (4.25) respectively. More specifically we obtain:

Wh := pTBSp+ qTBBq, (4.27)

with

BB := βD
1− 2s

d

h , (4.28)

pvT :=

{
d−1
v , v ∈ N0 ∩ V(T),

0, otherwise.
(4.29)

qT ′T := δT ′T −
1

d+ 1

∑
v∈N0∩V(T) capV(T ′)

d−1
v . (4.30)

In the above definitions, β is a real scalar valued constant, d denotes the dimension of the domain
and s is defined as a scalar depending on the Sobolev spaceHs such thatW : Hs → (Hs)′. Since in a
space­time setting, we are dealing with anisotropic Sobolev spaces, s is taken to be min(12 ,

1
4) =

1
4 . BS

is taken to be the discretisation of the hypersingular operator with respect to piecewise linear functions
in S0

∂Σ(Σ).

4.3.2. Construction of the hypersingular matrix
Both the dual mesh approach and the approach proposed by Stevenson, requires the construction of
the hypersingular matrix. Recall from Chapter 2 that the hypersingular operator W : H

1
2 ,

1
4 → H− 1

2 ,−
1
4

is defined as

Wφ := −γ1K2φ.

The bilinear form induced by the hypersingular operator is given by [2]:

〈Wu, v〉Σ =

∫
Σ

v(x, t)∂nx

∫
Σ

∂ny
G(x− y, t− s)u(y, s) dσydsdtdσx. (4.31)

With the use of integration by parts this can be written into [1]:

〈Wu, v〉Σ = 〈V curl u, curl v〉Σ − 〈
∂

∂t
V (u~nΣ), v~nΣ〉Σ, ∀u, v ∈ H 1

2 ,
1
4 , (4.32)

where

curl v(x, t) := nΣ1 (x)
∂

∂x2
v(x, t)− nΣ2 (x)

∂

∂x1
v(x, t),

4.3. Calderón preconditioning 52

in two dimensions and
curl v(x, t) := ~nΣ ×∇xv(x, t), x, t ∈ Σ,

in three dimensions. In these expressions ~nΣ denotes the outward normal vector with respect to the
space­time boundary. Note that the hypersingular integrals can hence be reduced to weakly singular
ones. The curl operators can be defined with the use of piecewise constant basis functions. Therefore,
the Galerkin­Bubnov variational formula corresponding to the bilinear form 〈V curl u, curl v〉Σ can be
solved using the methods already described in Chapter 3 as will be shown more explicitly. The other
inner product 〈 ∂∂tV (u~n), v~n〉Σ however, requires some further consideration and can not be solved with
the previous findings.

Let us subdivide (4.32) into two parts, the first part being 〈V curl u, curl v〉Σ and the second 〈 ∂∂tV (u~n), v~n〉Σ.
For the first part we will define an element matrix, given two elements e1 and e2, originating from a trian­
gulation satisfying the right­angled triangulation specified in Section 3.5.1. The vertices of the element
ei are represented by vi1, vi2, vi3, and corresponding barycentric (linear) basis functions λi1, λi2, λi3, sat­
isfying λij(vk) = δj,k and λij(x) ≥ 0, ∀j, ∀x ∈ ei. Let Ek be the edge of the element such that vk /∈ Ek.
Let nk denote the outward normal vector at edge Ek. Then, for a general mesh, the barycentric basis
functions are given in (4.33)­(4.35).

Figure 4.8: Example of an element and corresponding notation.

Every element lies in a two dimensional plane in the space­time lateral boundary. Given a rectangu­
lar domain we can assume without loss of generality that the barycentric basis functions are depending
on only two variables: one spatial and one temporal direction. Every vertex can in that case thus be
written as vij := (vij(x), v

i
j(t))

T , j = 1, 2, 3. The resulting basis functions are presented in the second
part of (4.33)­(4.35).

λi1(x) := −
|Ei

1|
2|ei|

(x− vi2)ni1
2D
=

1

2|ei|
(x− vi2) ·

(
vi2(t)− vi3(t)
vi3(x)− vi2(x)

)
1ei , (4.33)

λi2(x) := −
|Ei

2|
2|ei|

(x− vi3)ni2
2D
=

1

2|ei|
(x− vi3) ·

(
vi3(t)− vi2(t)
vi1(x)− vi3(x)

)
1ei , (4.34)

λi3(x) := −
|Ei

3|
2|ei|

(x− vi1)ni3
2D
=

1

2|ei|
(x− vi1) ·

(
vi1(t)− vi2(t)
vi2(x)− vi1(x)

)
1ei . (4.35)

The gradient of each of these basis functions can be directly deduced from (4.33)­(4.35) and are
given by:

∇λi1 = − |E
i
1|

2|ei|
ni1

2D
=

1

2|ei|

(
vi2(t)− vi3(t)
vi3(x)− vi2(x)

)
1ei , (4.36)

∇λi2 = − |E
i
2|

2|ei|
ni2

2D
=

1

2|ei|

(
vi3(t)− vi2(t)
vi1(x)− vi3(x)

)
1ei , (4.37)

∇λi3 = − |E
i
3|

2|ei|
ni3

2D
=

1

2|ei|

(
vi1(t)− vi2(t)
vi2(x)− vi1(x)

)
1ei . (4.38)

4.3. Calderón preconditioning 53

Now, as we use S1
h(Σh) as the test and trial space of the Galerkin­Bubnov approximation of the

variational problem, the barycentric basis functions will be elements of the test and trial space. When
dealing with a rectangular domain Ω, the outward normal vector in the curl operator will be zero for one
of the variables. In general we can write:

curl λij =
(
nΣ1
(
1 0 0

)
· ∇λij − nΣ2

(
0 1 0

)
· ∇λij

)
1ei =: αi

j1ei , (4.39)

which equals a piecewise constant function, as normal vectors are scalars in the two dimensional
plane. We therefore obtain the local 3× 3 element matrix Rn,m for en, em:

Rn,m[i, j] = αn
i α

m
j 〈Vh1en ,1em〉Σ. (4.40)

The inner product in (4.40) can be approximated by following the procedure described in Section
3.5.

For the second part of (4.32), we make use of the distributional identity [1]:

〈 ∂
∂t
V (u~nΣ), v~nΣ〉Σ = 〈V (u~n),

∂

∂t
v~n〉Σ. (4.41)

Given the previously defined basis functions, we can directly obtain an expression for the derivative
of λ with respect to time

∂λij
∂t

=
(
0 0 1

)
∇λij .

Again, the outward normal vectors for each element are constant within the element, we can there­
fore define the constant

βi
j := ~nΣi

(
0 0 1

)
∇λij ,

where ~nΣi denotes the outward normal vector in element ei. The local 3 element matrix of the second
part, R2nm, given elements en, em, now reads

R2nm[i, j] := ~nΣn · βm〈V λni ,1em〉Σ. (4.42)

The inner product in (4.42) is approximated with the use of Gaussian quadrature.

Regularisation
Consider the bilinear form of the hypersingular operator as stated in (4.31). Let f, g be some non­zero
constants with supp f = supp g = Σ. We have that f, g ∈ H 1

2 ,
1
4 (Σ). Inserting these functions into the

bilinear form (4.31) yields

〈Wf, g〉Σ = fg

∫
Σ

∂nx

∫
Σ

∂ny
G(x− y, t− s) dσydsdtdσx.

We consider the following theoretical result regarding coercivity of the hypersingular operator [1,
16].

Theorem 4.8 ([1, Thm.4.16], [16, Thm.2.2.8]). The hypersingular operatorW : H
1
2 ,

1
4 (Σ)→ H− 1

2 ,−
1
4 (Σ)

defined in (2.12) is an isomorphism and

∃c > 0, 〈Wφ,φ〉Σ ≥ c‖φ‖2
H

1
2
, 1
4 (Σ)

, ∀φ ∈ H 1
2 ,

1
4 (Σ).

From Theorem 4.8, we directly see that 〈Wf, f〉Σ > 0, since f 6= 0 almost everywhere (a.e). This
is expected behaviour as, it is intuitively clear that some examples exist of the heat kernel with respect
to the normal derivative which will not be zero almost a.e. nor additively invertible along the temporal
axis.

If we were, however, to insert these functions into the right hand­side of the integration by parts
formula (4.32), we obtain the following

〈V curl f, curl f〉Σ − 〈
∂

∂t
V (f~nΣ), f~nΣ〉Σ

(4.41)
= 〈V curl f, curl f〉Σ − 〈V (f~nΣ),

∂

∂t
f~nΣ〉Σ = 0. (4.43)

4.4. Domain Decomposition 54

So the bilinear form of the hypersingular operator, described by the integration by parts formula
has a one dimensional kernel due to the presence of constant functions in H 1

2 ,
1
4 (Σ). Regularisation

is thus required. We denote bilinear forms b(u, v) := 〈Wu, v〉Σ and b̃(u, v) := 〈V curl u, curl v〉Σ −
〈V (u~nΣ), ∂

∂tv~n
Σ〉Σ. The ”analytical” regularisation is then given by

b(u, v)req := b̃(u, v) + b(1Σ,1Σ). (4.44)

In practice however, for the Calderon preconditioner, the following heuristic regularisation suffices
[9]:

b(u, v)reqh := b̃(u, v) + C〈u,1Σ〉Σ〈v,1Σ〉Σ, (4.45)

with C ∈ R. The regularising term in the heuristic regularisation can be rewritten as Cr · rT with
r :=Mmass · 1 andMmass the mass matrix corresponding to a piecewise linear test­, and trial space.

4.4. Domain Decomposition
We now turn our attention to another mathematical tool that will be relevant for the parallelization of
the system of linear equations (4.1) arising from the Dirichlet problem given by (3.1) on domain Q :=
Ω× [0, T]. By decomposing this domain into Nd sub­domains Qi := Ωi × [ti1 , ti2], such that

Nd⋃
i=1

Qi = Q,

and Ωi is a Lipschitz domain for all i = [1, . . . Nd], we obtainNd boundary value sub­problems which
we strive to solve in parallel.

Remark. Note that it is not a necessary condition for the decomposition to be disjoint in its sub­domains,
i.e, to be a partition of the domain Q. The necessity of this assumption varies between choice of solver.

Schwarz came up with an iterative method to solve the Dirichlet problem in the union of its sub­
domains, called Schwarz alternating method [17]. In the space time setting, the algorithm is described
with the use of the a simple example decomposition of the two dimensional space­time domain Q :=
(x1, x2)× (t0, t1). The decomposition is represented in Figure 4.9.

Figure 4.9: Example of a 1D space­time decomposition

As is clear from the Figure, the domain is decomposed in overlapping regions. The alternating
Schwarz algorithm given this decomposition now reads:

4.4. Domain Decomposition 55

Algorithm 2: Schwarz alternating method
Result: uk, approximation of the solution u, of the Dirichlet problem (3.1)
Define initial guess u0;
while No convergence do

for i=1,2 do
Solve ∂u

∂t + ∂2u
∂x2 = f on Qi, with u = ui,j in Γi,j ;

Update u values on Γj,i∀, j
end

end

Note that the decomposition Q = ∪Nd
i=1Qi induces a decomposition of the lateral boundary Σ =

∪Nd
i Σi, with Σi = ∂Qi \ Γi,j , j = 1, . . . , Nd. The algorithm is not stated in discrete form, which is

actually required because the original algorithm was developed for elliptic boundary value problems.
When transferring to space­time boundary element setting, the weakly singular operator, for the heat
equation, is elliptic [15, 3].

4.4.1. Multiplicative Schwarz
Consider the weakly singular matrices V(1)

h and V(2)
h arising from the Dirichlet problem (3.1), restricted to

Σ1 and Σ2 respectively. Depending on how the space­time domain is decomposed, either an unknown
boundary condition is added, or a unknown initial condition. Figure 4.9 represents a decomposition in
which a unknown initial condition arises. By switching for each sub­problem to the indirect formulation
of the first kind (3.8), and by assuming no forcing is present, we obtain

V qi = gi −M0u
i
0, qi ∈ H− 1

2 ,−
1
4 (Σi), (4.46)

which will yield the system of linear equations

V(i)
h qi = Fi −Mi, i = 1, . . . , N. (4.47)

In (4.47), Mi is the vector arising from 〈M0u
1
0, φ

Σ,0
i 〉Σ. Note that, if the decompositions follows along

the lines of Figure 4.9, M0u
1
0 is known; the influence of the unknown boundary Γ1,2 vanishes on this

domain by choosing the test and trial function such that this is true. M0u
2
0, however, is not known, and

depends on the value u20 = u|Γ2,1
. If we were to make an initial guess of q on the entire domain Σ, which

we denote as q0, we immediately obtain a guess on the unknown boundary as well by the identity

u = K1q
0.

Let us denoteVh as the weakly singular Galerkin matrix on the lateral boundaryΣ. TheMultiplicative
Schwarz procedure in space time setting is now given by Algorithm 3.
Algorithm 3: Schwarz Multiplicative method in space time setting
Result: uk, approximation of the solution q, of the system of linear equations (4.1).
Define initial guess q0;
while No convergence do

qk+ 1
2 = qk +

(
(V(1)

h)−1 0
0 0

)(
F− Vhqk

)
;

qk+1 = qk+ 1
2 +

(
0 0

0 (V(2)
h)−1

)(
F− Vhq

k+ 1
2

)
;

end

Remark. This algorithm can be extended to a decomposition of Nd multiple sub­domains, where the
vector q will be updated Nd times each loop.

4.4. Domain Decomposition 56

It is clear that the steps in the loop of the algorithm are serial and therefore, the multiplicative
Schwarz method has a low degree of parallelism. For that reason, we move to another algorithm
called the Restricted Additive Schwarz method (RAS).

4.4.2. Restricted Additive Schwarz
To improve parallelism we strive to solve for the different sub­domains simultaneously. The Restricted
Additive Schwarz procedure is an convergence­wise optimised version of the original Additive Schwarz
procedure. The original Schwarz method makes use of the so­called Restriction operators Ri, which
restrict a matrix to its sub­domain Σi by

V(i)
h = RiVhRT

i .

We thus have (Vi
h)

−1 = (RiVhR
T
i)

−1. This results in the following algorithm [17]:
Algorithm 4: Additive Schwarz procedure in space time setting iterations
Result: uk, approximation of the solution q, of the system of linear equations (4.1).
Define initial guess q0;
for Amount of iterations do

for i=1,…Nd do
δi = RT

i (V
(i)
h)−1Ri(F− Vhqk);

end
qk+1 = qk +

∑N
i=1 δi;

end

Now, the procedure in the for loop can be performed in parallel. However, this procedure does not
need to converge in general, and is therefore mainly used as a preconditioner [17]. By considering
the approximation of q in each subdomain to be of a different entity, we finally arrive at the Restricted
Additive Schwarz method. Let us denote the non­overlapping part of a sub­domain Σi, by Σ̃i and their
corresponding matrices by Ṽi

h. Next we can define the non overlapping restriction operators R̃i by

Ṽ(i)
h = R̃iVhR̃T

i .

Now we define the Restricted Additive Schwarz algorithm by [5]:
Algorithm 5: Restricted Additive Schwarz procedure in space time setting iterations
Result: uk, approximation of the solution q, of the system of linear equations (4.1).
Define initial guess q0;
for Amount of iterations do

for i=1,…N do
δi = R̃T

i (Ṽ
(i)
h)−1Ri(F− Vhqk);

end
qk+1 = qk +

∑N
i=1 δi;

end

This procedure does converge as an iterative method [5] and is therefore an interesting candidate
to use for parallel implementations.

4.4.3. Schwarz procedures as preconditioners
Apart from being a stand­alone basic iterative method, RAS can also be applied as a preconditioner
for GMRES. Since the preconditioner is not symmetric, it is sub­optimal for CG. Given Nd subdomains,
the preconditioner is defined as [4]

M−1
ras :=

Nd∑
i=1

R̃T
i (Ṽ

(i)
h)−1Ri.

The efficiency of the preconditioner depends on the choice of sub­domains. The preconditioner is
tested for a few example domain decompositions in the next section.

4.5. Preconditioning results 57

4.5. Preconditioning results
The Dirichlet problem (3.1) is solved using the meshes defined in Section 3.6. Note that these meshes
are uniform and results might differ for quasi­uniform meshes. Two preconditioning techniques for GM­
RES are compared, Calderon preconditioning and Restrictive Additive Schwarz (RAS) preconditioning.
Also, RAS is considered as a Basic Iterative Method (BIM). Each iteration of RAS as BIM is highly par­
allelizable and, for that reason, comparisons of iteration counts between (the Krylov subspace method)
GMRES and RAS should be dealt with cautiously.

In the case of the Calderon preconditioner, the approach proposed by Stevenson and van Venetië
[23] is used. In this approach, choice of constant β is required, as stated in (4.28). They use β = 1.25
as a (near) optimal choice, which consequently will be the choice in this thesis as well.

The hypersingular matrix is obtained following the procedure described in Section 4.3.2. The hy­
persingular matrix is regularised heuristically, which also requires the choice of a scalar C as can be
seen in (4.45). In this case, C is taken to be 0.1. In the numerical experiments, this value provided a
reduction of iteration count, but need not be the optimal choice of C.

In the case of RAS, both as preconditioner and BIM, the domain is decomposed in (near) equal
parts. When using overlap, the overlap between two domains is given as a percentage of area of the
overlapping part compared to the total area of the sub­domains.

The right hand­side of 4.1 is taken at random. The numerical tests are done in Python with a seed
of 10. The initial guess of the solution u0 is taken to be the zero vector. The tolerance is set to 1E­5.
The results are presented in Table 4.1.

Table 4.1: Table of iteration count given a preconditioner M−1. M−1 = I is equivalent to GMRES without preconditioning. The
meshes are ordered on their level of refinement. The ’s’ behind the refinement level refers to the ”scaled” mesh as presented in
Figure 3.8(b). RAS[n,m%] denotes the RAS preconditioner given a domain decomposed in n subdomains and with m% overlap.

No ’m’ implies no overlap.

Preconditioner M^­1Mesh\Iteration count I Cv RAS[2] RAS[2,5%] RAS[2,10%] RAS[4] RAS[8]
32 13 11 2 2 2 4 12
32s 14 12 2 2 2 4 10
128 20 18 16 16 16 19 17
128s 19 15 10 10 10 13 12
512 38 20 18 18 17 20 19
512s 29 16 12 12 13 13 14

The results of the RAS method as BIM are given in Table 4.2.

Table 4.2: Iteration count given a RAS[n,m] basic iterative method. RAS[n,m] represents a decomposition in n equal­size
sub­domains with m% overlap. The meshes are ordered on their level of refinement. The ’s’ behind the refinement level refers

to the ”scaled” mesh as presented in Figure 3.8(b).

DecompositionMesh\Iteration count RAS[2] RAS[2,5%] RAS[2,10%] RAS[4] RAS[8]
32 2 2 2 4 25
32s 2 2 2 4 12
128 25 22 22 81 92
128s 13 13 13 17 20
512 30 29 28 126 139
512s 18 18 18 22 25

Both Table 4.1 and 4.2 seem to indicate that the contribution of implementing overlap is negligible.
As overlap increases matrix size, it seems to be not an effective method. To get a better insight at
the behaviour of the Calderon preconditioner, we take a look at the spectra of several matrices related
to the preconditioning process. First, we take a look at the absolute values of the eigenvalues of the
matrices, given different levels of refinement. This is visually presented in Figure 4.10.

4.5. Preconditioning results 58

Figure 4.10: Absolute values of the eigenvalues of the following matrices: The inverse of the weakly singular matrix (V ^­1),
The hypersingular matrix without the zero eigenvalue (W), the regularized hypersingular matrix (WR) and the matrix­matrix

product of the Calderón preconditioner and the weakly singular matrix Cv(V h).

As expected, the clusters with regard to the weakly singular shift and grows with the refinement
level. The behaviour of the spectrum of the hypersingular and preconditioned weakly singular is a bit
more puzzling. Therefore, we take a closer look at the eigenvalues of these matrices as shown in
Figure 4.11.

(a) Spectrum of Regularised hypersingular
matrix

(b) Spectrum of preconditioned weakly
singular

Figure 4.11: Spectra of hyper singular and preconditioned weakly singular matrices, given different levels of refinement.

The spectra seem to converge to some point near zero. As this is still unexpected behaviour we
take another closer look at the preconditioned weakly singular.

(a) 32 elements (b) 128 elements (c) 512 elements

Figure 4.12: Spectra of the preconditioned weakly singular matrices, given different levels of refinement. Note that the axis
differ between graphs.

Figure 4.12 reveals that the clustering of the spectra is as expected. This explains why the iteration

4.6. Parallel GMRES implementation 59

count is low, in spite of the fact that the eigenvalues of Cv(Vh) shift. In order to assess if we are in a
pre­asymptotic region, we take a look at the spectral condition number of each refinement.

For reference, we present the spectra of the inverse weakly singular matrices as well in Figure 4.13.

(a) 32 elements (b) 128 elements (c) 512 elements

Figure 4.13: Spectra of the inverted weakly singular matrices, given different levels of refinement. Note that the axis differ
between graphs.

Table 4.3: Spectral condition number for each level of refinement, for different operators. V^­1 denotes the inverse of the
weakly singular matrix, W_R the regularised hypersingular matrix and Cv(V) the preconditioned weakly singular.

Spectral condition numberOperator\Mesh size 32 128 512
V^­1 107 335 924
W_R 139.000 84.188 187.072
Cv(V) 58 224 283

As can be seen in the last row of Table 4.3, the rate of growth of the condition number of precondi­
tioned weakly singular seems to decrease, which suggests asymptotic behaviour.

4.6. Parallel GMRES implementation
After obtaining several preconditioning strategies, the next step is to solve the (preconditioned) sys­
tem of linear equations (4.4) in parallel. The matrix structure and density might change when applying
preconditioning compared to the structures obtained in Section 4.1. In the case of Calderón precondi­
tioning, the matrix becomes fully dense. When applying Restricted Additive Schwarz preconditioning,
the matrix­matrix product structure more or less remains the same compared to the original matrix. Es­
pecially in the case of dense matrices, parallelization can cause significant reduction of computational
time [17]. For that reason, we will use Calderon preconditioning and its structure as a basis of our
parallelization strategy. Message Passing Interface (MPI) software is used as a means to parallelize
the GMRES method. Python is used as a wrapper for MPI using the package ”mpi4py”.

4.6.1. Least squares problem
One of the practical implementation issues of Algorithm 1 lies in the fact it does not provide an explicit
approximate solution of qk at each step. As a result the algorithm will not stop when the approximation
qm satisfies a sufficiently small relative error, with m < k. We will define the relative error as

rk =
‖Vhqk − f‖2
‖f‖2

. (4.48)

There is an elegant way proposed by Saad ([17], Prop. 6.9) to solve this practical issue, which is
related to the way the least squares problem miny ‖βe1 − H̄ky‖2 is solved. For sake of completeness,
the method proposed by Saad is now presented.

Let us consider the Hessenberg matrix H̄m obtained at step m ≤ k of the GMRES method. The
matrix will have the following structure:

4.6. Parallel GMRES implementation 60

H̄m =


h1,1 h1,2 . . . h1,m
h2,1 h2,2 . . . h2,m
0 h3,2 . . . h3,m
...

.
...

0 . . . 0 hm+1,m

 . (4.49)

We will transform this matrix into upper triangular form by premultiplying the matrix with rotation
matrices of size (m+ 1)× (m+ 1), Ri, defined as [17]:

Ri =



1
. . .

1
ci si
−si ci

1
. . .

1


,

where Ri[i, i] = Ri[i + 1, i + 1] = ci and Ri[i, i + 1] = −Ri[i + 1, i] = si. Before we give the
expression of ci and si, we define

Qj := RjRj−1 . . .R1, 1 ≤ j ≤ m,

H̄j
m := QjH̄m.

and

ḡm := Qm(βe1) = (g(1), g(2), . . . , g(m+1))T .

Let us denote the element of matrix H̄j
m at row r and column s by h(j)r,s. Now we can define si and ci

as

si :=
hi+1,i√

(h
(i−1)
i,i)2 + h2i+1,i

,

and

ci :=
h
(i−1)
i,i√

(h
(i−1)
i,i)2 + h2i+1,i

.

Using these definitions we have that c2i +s2i = 1 and H̄m
m becomes an upper triangular matrix. Since

Qm is unitary [17], we have

min
y
‖βe1 − H̄y‖2 = min

y
‖ḡm − H̄m

my‖2. (4.50)

This leads to the following useful proposition [17]:

Proposition 4.9 ([17, Prop.6.9]). Let Hm
m be the m ×m matrix obtained by removing the last row of

H̄m
m . Similarly let gm be the m­dimensional vector obtained by deleting the last element of ḡm. Then,

the following holds

(i) The vector ym which minimises ‖βe1 − H̄my‖2 is given by

ym = (Hm
m)−1gm.

4.6. Parallel GMRES implementation 61

(ii) The residual vector at step m satisfies

M−1(F− Vhqm) = Vm+1(β(e1)− H̄my = Vm+1QT
m(g(m+1)em+1),

and as a result,
‖M−1(F− Vhqm)‖2 = |g(m+1)|.

Proof: The proof will follows for a large part the proof given by Saad in proposition 6.9 [17]. Some
parts are deliberately left out as they do not contribute much to this thesis and other parts are elaborated.

To prove (i), we make use of the fact that Qm is a unitary operator and therefore isometric. We
hence have

‖βe1 − H̄my‖22 = ‖Qm(βe1 − H̄my)‖22 = ‖ḡm − H̄m
my‖22 (4.51)

= |g(m+1)|2 + ‖gm − Hm
my‖22.

This norm (4.51) is minimised if the second term in the last equality vanishes. This is achieved if
Hm

my = gm ⇒ y = (Hm
m)−1gm, proving the first statement.

As for the second statement (ii), we take a closer look at the inner­loop of the GMRES algorithm
(Algorithm 1). It can be quickly seen that we have

M−1Vhvj −
j∑

i=1

hi,jvi = w = vj+1hj+1,j . (4.52)

From (4.52) we can deduce that

M−1Vhvj =

j+1∑
i=1

hi,jvi ⇒ M−1VhVm = Vm+1H̄m, (4.53)

with Vm defined as in Algorithm 1. Since the approximate solution qm is defined as qm = q0+Vmy,
we have

M−1F−M−1Vhqm = M−1F−M−1Vh(q0 + Vmy) = r0 − Vm+1H̄my (4.54)
= βv1 − Vm+1H̄my = Vm+1(β(e1)− H̄my),

proving the first equality in (ii). The second equality quickly follows from the definition of ḡm and the
fact that Qm is unitary:

Vm+1(β(e1)− H̄my) = Vm+1QT
mQm(β(e1)− H̄my) = Vm+1QT

m(ḡm − H̄m
my).

As seen in (4.51), ḡm− H̄m
my is minimised with respect to the 2­norm if y annihilates all elements of

ḡm except for the last term. Hence

Vm+1QT
m(ḡm − H̄m

my) = Vm+1QT
m(g(m+1)em+1), (4.55)

proving the second equality. As thematrix product of two orthonormal matrices remains orthonormal,
we have

‖Vm+1QT
m(ḡm − H̄m

my)‖2 = ‖Vm+1QT
m(g(m+1)em+1)‖2 = ‖g(m+1)em+1‖ = |g(m+1)|,

which yields the desired result.

The results described in Proposition 4.9 show us that with using this routine, we can come up with
a norm of the residual at each step of the GMRES algorithm and find a minimizer when a satisying

4.6. Parallel GMRES implementation 62

norm of residual is reached. The routine described in this section is therefore added to the GMRES
algorithm. This results in the following algorithm
Algorithm 6: Left­preconditioned GMRES with stopping criterion
Result: qk, approximation of the solution M−1Vhq = M−1F
Define initial guess q0;
Compute r0 = M−1(F− Vhq0), β = ‖r0‖2 and v1 = r0

β ;
for k=1,…restart do

for j=1,…,k do
Compute w := M−1Vhvj ← Inner­loop 1;
for i = 1,…,j do

hi,j := (w, vi);
w := w − hi.jvi;

end
Compute hj+1,j = ‖w‖2 and vj+1 = w

hj+1,j
;

end
Define Vk := [v1, . . . , vk], H̄k = H̄0

k = {hi,j}1≤i≤j;1≤j≤k;
for m=1,…,k do

define Rm ← Inner­loop 2;
H̄m

k = RmH̄m−1
k ;

end
Define Qm := Rm . . .Ri, ḡm = Qm(βe1)
if |ḡmem+1| < tol then

(Hk
k)

T := (H̄k
k)

T (e1, . . . , ek);
gk := (ḡk)

T (I,0)T ;
yk := (Hk

k)
−1gk;

qk := q0 + Vkyk;
else

Set q0 := qrestart;
Repeat algorithm;

end
end

By storing the matrices Vm, H̄m
m and Qm, the inner loops denoted by 1 and 2, will not be neces­

sary. Instead only a single update of each matrix is required in that case. This speeds up the process
significantly at the cost of needing extra memory. For the parallel implementations described in the
upcoming sections, the matrices are assumed to be stored and overwritten at each step of Algorithm
6. This results in the final algorithm, Algorithm 7.

4.6. Parallel GMRES implementation 63

Algorithm 7: Left­preconditioned GMRES with stopping criterion with saved matrices
Result: qk, approximation of the solution M−1Vhq = M−1F
Define initial guess q0;
Compute r0 = M−1(F− Vhq0), β = ‖r0‖2 and v1 = r0

β ;
for k=1,…restart do

Compute w := M−1Vhvk−1;
for i = 1,…,k do

hi,j := (w, vi);
w := w − hi.jvi;

end
Compute hj+1,j = ‖w‖2 and vj+1 = w

hj+1,j
;

Define Vk := [v1, . . . , vk], H̄k = H̄0
k = {hi,j}1≤i≤j;1≤j≤k;

Define Rk;
if k=1 then
Q=Rk;

else
Q= RkQ;

end
H̄k

k = QkH̄k;
ḡm = Qk(βe1);
if |ḡmem+1| < tol then

(Hk
k)

T := (H̄k
k)

T (e1, . . . , ek);
gk := (ḡk)

T (I,0)T ;
yk := (Hk

k)
−1gk;

qk := q0 + Vkyk;
else

Set q0 := qrestart;
Repeat algorithm;

end
end

4.6.2. Matrix vector multiplications
As stated in Section 4.2, one of the main operations in Algorithm 1, 6 and 7 are the matrix vector
multiplications. At the start of each iteration step a vector w is defined as a matrix vector product.
Also, the calculation of the residual and approximate solution, using rotation matrices, requires solving
both matrix vector­, and matrix matrix multiplications. The latter multiplications will not be solved in
parallel, as the dimensions of these matrices are relatively small, which in turn reduces the efficiency
of parallelization and can even increase computation time.

Since the matrices are assumed to be dense, balanced load distribution among processes is rela­
tively straightforward. Two popular parallel (Dense) matrix vector product procedures are introduced
and tested: Row­wise data decomposition and checkerboard partitioning [7, 17].

Given p processes, a n×nmatrix A and n×1 vector x, in the case of row­wise data decomposition,
A is decomposed in p stripes of dimensions n/p× n. Each process is assigned such a stripe and row­
corresponding vector, of dimension n×1. An example of such a decomposition with p = 4 is visualised
in Figure 4.14

4.6. Parallel GMRES implementation 64

Figure 4.14: Example of row­wise decomposition of matrix A and vector x, given four processes.

Given such a decomposition, each process simultaneously calculates the reduced matrix vector
product on its given domain. When the calculations are done, the processes either broadcast their
result among the other processes, or send their result to an assigned root­process. When vertically
concatenated, the gathered information equals the result of the matrix vector product. The algorithm
looks as follows:

Algorithm 8: Parallel matrix vector using row­wise decomposition, given p processes
Result: Solution y for y = Ax
Partition matrix A and x row­wise in stripes Ai and x of equal length among each process;
for i=1:p do

yi:= Aix
end
Gather yi

Another approach to load balancing is with use of so­called checkerboard partitioning. Given p
processes, the n×nmatrix is this time decomposed into blocks of size n/√p×n/√p. The corresponding
vector is partitioned in vectors of size n/√p× 1. Each process is assigned to the vector with matching
matrix columns to vector rows. For p = 4, an example decomposition is shown in Figure 4.15

Figure 4.15: Example of checkerboard decomposition of matrix A and vector x, given four processes.

The checkerboard decomposition requires more communication between processes than in the
case of row­wise partitioning. Every process computes the matrix­vector product on its given domain.
Next, the processes which are on the same row, are added to each other. This requires communication
between processes. As an optional step, the summed vectors can be vertically concatenated to obtain
the original solution. Again, this requires communication between processes. When dealing with two

4.6. Parallel GMRES implementation 65

processes, the checkerboard decomposition coincided with either the row­wise decomposition or the
column­wise decomposition. In these cases, column­wise decomposition is used, i.e. the matrix is
divided into sections of size n × n/p with corresponding partioned vector of size n/p. The above
partitioning (for n 6= 2), leads to the following algorithm:

Algorithm 9: Parallel matrix vector using checkerboard decomposition, given p processes
Result: Solution y for y = Ax
Partition matrix A and x in blocks Ai and xi of size n/

√
p× n/√p and n/√p× 1 respectively;

for i=1:p do
ci:= Aixi;
k=
⌊

1√
p

⌋
mod √p;

yk+= ci
end
Gather yk

Note that, as was also not the case for p = 2, it is assumed that √p ∈ N.

4.6.3. Dot products and vector norms
Parallelization of dot products and vector l2­norms is relatively straightforward. Their algorithms are
given below, given p processes.

Algorithm 10: Parallel dot product, given p processes
Result: Solution y for y = (w, v)
Partition vector w and v in vectors wi and vi of size n/p× 1;
for i=1:p do

yi:= (wi, vi);
end
y =

∑p
i=1 yi

Algorithm 11: Parallel l2­norm, given p processes
Result: Norm ‖v‖2
Partition vector and v in vectors vi of size n/p× 1;
for i=1:p do

yi:=
∑n/p

j=1 vi(j)
2;

end
‖v‖2 =

√∑p
i=1 yi

When considering algorithm 7, with using row­wise parallel matrix vector products for computing w,
the inner product can be done directly in parallel as well, as the same partitioning can be used. This
way, less communication between processes is required, which in turn implies a lower computation time.
When applying a checkerboard decomposition for the construction of w, computing yk in Algorithm 9,
will suffice. Communication between processed will thus still remain necessary in this case. In the case
of p = 2, a column­wise decomposition is used, in which case yk equals the final solution vector.

4.6.4. Numerical results
The solvers coded using MPI software with a Python wrapper. The code is run using an Intel®Core™i7­
7700HQ CPU @ 2.80GHz (4 core). The solution process is timed at the startup of the GMRES proce­
dure, i.e. setup of preconditioners and the initial residual are not taken into account. The right­handside
vector is created by pseudo­random generating an array in Python with seed set to 10. The initial guess
for all solutions is set to zero. Every solution procedure is run 100 times for each different case, and the
100 different run times are gathered. To get a better understanding of the effect of the parallelization,
another mesh refinement, consisting of 2048 elements, is added. Due to the increasing computational
time of the weakly and hyper singular matrices for finer meshes, the order of quadrature for the 2048­

4.6. Parallel GMRES implementation 66

element mesh is lowered during assembly. The upcoming results for this mesh however, will remain
relevant, as the overall structure of the matrices is preserved, and, use of (Calderon) preconditioning
still decreases the iteration count significantly. The relative error is set to 1E­5. Given this error, the
2048­mesh converges in 42 and 23 iterations given no preconditioning and Calderon preconditioning
respectively.

The obtained run­times can slightly vary when repeating the solution process given the same pa­
rameters. The mean run­time for each case is given in Table 4.4. The parallelization is performed with
the use of row­wise decomposition.

Table 4.4: Mean run time in seconds until convergence of row­wise parallelized GMRES method with stopping criterion
(Algorithm 7). The emphasised run times are the fastest times for a given mesh. The relative error tolerance is set to 1E­5.

Preconditioner No preconditioner Calderon preconditioner
Mesh size/ no. of processes 1 2 4 1 2 4

32 0.0074 0.0101 0.0118 0.0056 0.0077 0.0095
128 0.0239 0.0229 0.031 0.015 0.015 0.0186
512 0.1139 0.0818 0.0948 0.0579 0.0415 0.0499
2048 0.9596 0.7549 0.5689 0.3266 0.2587 0.2168

From Table 4.4, we observe an overall better performance when using preconditioning. As the level
of refinement (and the dimensions of the weakly­, and hyper singular matrices) increases, the efficiency
of using multiple processes increases.

To get a better insight in the margin of errors in the obtained run times, for each level of refinement
the preconditioned are visualised using a boxplot.

(a) (b)

(c) (d)

Figure 4.16: Boxplot of run times, for different levels of refinement. The orange line represents the median time. The lower
and upper part of the ”box” represent the 25th (Q1) and 75th (Q3) percentile respectively . The ”whiskers” are obtained,with the

use of interquartile range (IQR), as follows: Q1− 1.5IQR and Q3 + 1.5IQR. Any measurement outside this range is
considered an outlier and represented by a circle.

4.6. Parallel GMRES implementation 67

As can be seen in Figure 4.16, given amesh of 2048 elements, near all registered run times with four
parallel processes are lower than the run times obtained with less than four processes. This suggests
parallelization becomes an increasingly important tool when the size of the matrices increases.

In Table 4.4, the run time until convergence is denoted, given an predefined error tolerance. In order
to see the effect of each iteration on the run time, we take a look at the parallel version of Algorithm
1, i.e. without stopping criterion. With the use of row wise decomposition, the run time of each mesh
refinement is measured. The mean results are summarised in Table 4.5 ­ 4.8. The results are only
obtained for Calderon preconditioned problems, as they are more relevant run time­wise than the non­
preconditioned cases.

Table 4.5: Mean run times per iteration count vs total processes for GMRES without stopping criterion. Given a mesh of 32
elements and simulating the same experiment 100 times. The speedup column shows the ratio between times of one process

and four processes

iterations/ no. of processes 1 2 4 Speedup
10 0.0040 0.0058 0.0072 0.56
20 0.0117 0.0169 0.0231 0.51
30 0.0252 0.0339 0.0510 0.49
40 ­ ­ ­ ­

Table 4.6: Mean run times per iteration count vs total processes for GMRES without stopping criterion. Given a mesh of 128
elements and simulating the same experiment 100 times. The speedup column shows the ratio between times of one process

and four processes

iterations/ no. of processes 1 2 4 Speedup
10 0.0065 0.0069 0.0089 0.73
20 0.0215 0.0209 0.0292 0.74
30 0.0443 0.0440 0.0592 0.75
40 0.0738 0.0730 0.1093 0.67

Table 4.7: Mean run times per iteration count vs total processes for GMRES without stopping criterion. Given a mesh of 512
elements and simulating the same experiment 100 times.The speedup column shows the ratio between times of one process

and four processes

iterations/ no. of processes 1 2 4 Speedup
10 0.0193 0.0144 0.0150 1.29
20 0.0575 0.0415 0.0430 1.34
30 0.1122 0.0796 0.0919 1.22
40 0.1926 0.1331 0.1520 1.26

Table 4.8: Mean run times per iteration count vs total processes for GMRES without stopping criterion. Given a mesh of 2048
elements and simulating the same experiment 100 times. The speedup column shows the ratio between times of one process

and four processes

iterations/ no. of processes 1 2 4 Speedup
10 0.0856 0.0523 0.0457 1.87
20 0.2327 0.1411 0.1185 1.96
30 0.4440 0.2809 0.2246 1.98
40 0.7312 0.4337 0.3742 1.95

As stated in the description of the aforementioned tables, the denoted run times are the mean of
repeating the same experiment a hundred times. With the use of (Monte­Carlo) bootstrapping (N =
10.000) a 95% confidence interval is created around the mean run times. In Figure 4.17, the iteration
count versus time, given 95% confidence, are visualised.

4.6. Parallel GMRES implementation 68

(a) (b)

(c) (d)

Figure 4.17: Run time per iteration count, for various processes and a 95% bootstrapped confidence interval (N = 10.000).
Note that the mesh refinement consisting of 32 elements is not able to perform 40 iterations. Figure (b) seems to contain two

lines, this is because the line of 1 process and 2 processes (nearly) coincides.

Not only does Figure 4.17 properly visualises the effectiveness of parallelization, it also seems to
show non­linear behaviour between computation time and iteration count. This behaviour is typical for
the GMRES method, since as the iteration count increases, the orthogonalisation procedure (Arnoldi
or modified Gram­Schmidt) will become increasingly dominant. In contrast to the (linear) matrix vector
products present in the algorithm, the orthogonalisation procedure behaves quadratic.

In the previous results, matrix vector parallelization was performed with the use of row­wise de­
compositions. Now, we will compare this parallelization procedure with checkerboard partitioning. We
maintain an error tolerance of 1E­5, and consider the mean run times until convergence using checker­
board partitioning in Table 4.9. Given a single process, the two algorithms coincide and for that reason,
columns with one process are purposely left out of the table.

Table 4.9: Mean run time in seconds until convergence of checkerboard/column­wise parallelized GMRES method with
stopping criterion (Algorithm 7). The emphasised run times are faster than the serial algorithm. The relative error tolerance is

set to 1E­5.

Preconditioner No preconditioner Calderon preconditioner
Mesh size/ no. of processes 2 4 2 4

32 0.0109 0.017 0.0083 0.0122
128 0.0294 0.0433 0.0186 0.0262
512 0.1100 0.1276 0.0634 0.0664
2048 0.8804 0.7650 0.3368 0.3063

As is clear from Table 4.9, parallelization using this method will only become efficient for large size
meshes. This is also visualised in Figure 4.18. This was expected for the columnwise (2 processes
parallelization, as the work distribution among processes is the same as with row wise decomposition,
whilst the amount of communication between processes increases.

4.6. Parallel GMRES implementation 69

Figure 4.18: Mean convergence time versus mesh size, using checkerboard parallelization of matrix vector products. The
confidence interval of the mean is calculated with bootstrap method (N = 10.000).

It could be the case that the efficiency of checkerboard parallelisation versus mesh size increases
faster than rowwise parallelisation. However, as can be seen in Figure 4.19, for the case of 4 processes,
this is not the case.

Figure 4.19: Mean convergence time versus mesh size, given different types of parallelization of the matrix vector products
and four processes. The confidence interval of the mean is calculated with bootstrap method (N = 10.000).

4.6.5. IDR(s)
A non­symmetric solver introduced by Sonneveld in 1997 has been reconsidered and generalized re­
cently by Sonneveld and van Gijzen: the Induced Dimension Reduction method (IDR). The algorithm
for the solver, given a choice of s ∈ N, is given in Algorithm 12 [19]. This is a mathematical algo­
rithm and its main purpose is to show in a broad sense with which types of potentially parallelizable
operations we are dealing. The theory behind this algorithm will not be discusses as the main goal of
this section is to provide a comparison between the parallel GMRES method and other non symmetric
solvers.

Increasing s will lead to faster convergence, however also to a higher computational cost per itera­
tion. An optimal choice for s, obtained from literature, is s = 4. As stated by Sonneveld and van Gijzen,
the operation count for the main operations to perform a full cycle of s+ 1 IDR(s) steps yields: (s+ 1)
matrix­vector products, s2 + s + 2 inner products and 2s2 + 7

2s +
5
2 vector updates [19]. All of these

operations can potentially be parallelized.

4.6. Parallel GMRES implementation 70

Algorithm 12: Mathematical IDR(s) algorithm
Result: qk, approximation of the solution M−1Vhq = M−1F
Define initial guess q0;
Compute r0 = M−1(F− Vhq0) Let P ∈ RN×s Compute w := M−1Vhvk−1;
for n = 0,…,s­1 do

v = M−1Vhrn, ω = (vT rn)/(vT v);
dqn = ωrn, drn = −ωv ;
rn+1 = rn + drn, qn+1 = qn + dqn;

end
dRn+1 = (drn . . . dr0), dXn+1 = (dxn . . . dx0);
while ‖rn‖2 > TOL do

for k = 0, . . . s do
solve c from PT dRnc = PT rn;
v = rn − dRnc;
if k = 0 then

t = M−1Vhv;
ω = (tT v)/(tT t);
drn = −dRnc− ωt;
dxn = −dXnc+ ωtv;

else
dxn = −dXnc+ ωv;
drn = −M−1Vhdxn

end
rn+1 = rn + drn;
xn+1 = xn + dxn;
n = n+ 1;
dRn = (drn−1 . . . drn−s);
dXn = (dxn−1 . . . dxn−s);

end
end

Using row­wise partitioning, the matrix­vector products are parallelized. At first hand, also the vec­
tor updates and inner products are parallelized, however, it turns out to be less efficient (computational
time­wise) compared to the parallel algorithm where these operations are done in serial. One possi­
ble explanation is that the increase of communication time dominates the time ”won” by decreasing
the computational cost per process. Another closely related reason could of course be sub­optimal
programming.

An open source python implementation of IDR(s) is used as a starting point for parallelization. Given
several meshes, the result of parallelization is represented visually in Figure 4.20

(a)With mesh size ranging from 32 to 2048
elements.

(b)With mesh size ranging from 512 to 2048
elements.

Figure 4.20: Computation time until convergence, with relative error of 1E­5, given different mesh sizes and amount of
processes.

For any mesh size IDR(s) performs better time­wise compared to (parallel) GMRES. The paralleli­
sation seems, however, to be inefficient, and not becoming more efficient as mesh size increases. As

4.6. Parallel GMRES implementation 71

to why the IDR(s) method seems to perform better time­wise, a possible explanation could be that the
implementation is coded more efficiently compared to the GMRES implementation, for which reaching
code­wise efficiency was not the main goal. Another possibility is that the GMRES requires a higher
amount of floating point operations until convergence. When using stored matrices, only one matrix
vector product per iteration is required (except when convergence is achieved), as can be seen in Al­
gorithm 7. However, the amount of flops per iteration for the orthogonalisation procedure at step m
is of order O(m2). It could thus be the case that GMRES has a higher computational cost in general
until convergence. The inefficiency of the parallelization can be explained again due to sub­optimal
programming and/or dominating communication­time between processes. Further research in these
matters is required and encouraged.

5
Conclusion and Discussion

In this work, the theoretical background for space­time boundary element methods for the heat equa­
tion and its implementation were revisited. The discussion was restricted to solving the one and two
dimensional Dirichlet heat equation.

Numerical experiments indicated that both the introduced one­, and two dimensional implementa­
tions converged to the exact solution of their respective problems. Regarding the numerical experi­
ments of the two dimensional problem, a more general overview of the Dirichlet problem was consid­
ered, as the initial condition is taken to be non­zero. The reported new semi­analytical approach for
approximating the Galerkin matrix entries, restricted to a triangulation consisting of right­triangular el­
ements, was only considered for the two dimensional case. A similar approach for Dirichlet problems
in different dimensions was not investigated in this thesis. The proposed approach was used for the
Galerkin discretization of the related boundary integral equations, on which the presented precondition­
ing and parallelization techniques are based.

Two types of preconditioning techniqueswere investigated: Calderón preconditioning andRestricted
Additive Schwarz (RAS) preconditioning. For the two dimensional problem, these preconditioners were
implemented. For the duality pairing of the Calderón preconditioner, an approach introduced by Steven­
son and van Venetië was presented, and used in the two dimensional implementations.

The influence of the two aforementioned preconditioning techniques on the iteration count was
compared. Additionally, the RAS method was considered as a stand­alone iterative method.

A two dimensional Calderón preconditioned system was used in testing the efficiency of the parallel
GMRES implementations. After revisiting different parallelization schemes, parallel implementations of
the GMRES method were compared to each other and to a different non­symmetric solver, the Induced
Dimension Reduction (IDR) method. Possible parallelization of the IDR method was also explored.

The convergence of the numerical implementations to the exact solutions were described with re­
spect to the Euclidean norm. This is rather unconventional in a (space­time) BEM setting. However,
as the purpose of the numerical experiments regarded validation of the implementation, the Euclidean
norm sufficed.

The proposed semi­analytical approach regarding the approximation of the Galerkin matrix entries,
significantly increases the accuracy of the estimate. Even though only uniform grids are considered
in the numerical experiments, this approach remains valid for non­uniform meshes. A downside to
this method is that the imposed restrictions on the triangulation entail a significant loss of generality.
It is recommended to investigate the potential gain in computational efficiency versus the imposed
restrictions of this approach, against more general approaches, such as proposed by Manson and
Tausch [13].

Both Calderón preconditioning and RAS preconditioning reduced the iteration count of the GMRES
method until convergence significantly. The spectral condition number of the Calderón preconditioned
weakly singular matrix, compared to its non­preconditioned counterpart, suggests asymptotic conver­
gent behaviour. The RAS preconditioning is observed to be the most efficient preconditioner, when the
domain is decomposed in two uniform domains. However, it should be noted that this type of precon­
ditioning requires computing the inverse of two potentially large matrices, which is a computationally
heavy procedure. The contribution of implementing overlap is negligible.

72

73

As a basic iterative method, RAS converges. The difference in iteration count between precondi­
tioned GMRES and RAS increases as the mesh size increases, in favour of GMRES (lower iteration
count). We believe that, apart from looking at iteration counts, future research should also look at the
computation­time (e.g. until convergence) of the methods and their parallel counterparts.

Parallelizing matrix vector products using the row­wise decomposition algorithm, results into a more
efficient parallel GMRES implementation, compared to using checkerboard decompositions. Note how­
ever that, given 2 processes, checkerboard decomposition actually coincides with a column­wise de­
composition. The implementation of parallel GMRES shows an increasing computational­time related
efficiency regarding degree of parallelism, for higher levels of refinement. However, the implementation
is outperformed by IDR(s) in all cases. This could be due to higher computational cost of GMRES until
convergence, or due to sub­optimal programming of the parallel GMRES implementation. Additionally,
parallelisation of the IDR(s) method does not lead to a speedup, which suggests further research is
required regarding the IDR(s) method.

All time­related measurements are done on a personal computer (4­core). Naturally, an attempt
was made to create a stable environment for running the measurements. However, this way remains
error prone. For qualitatively better results, it is recommended to run similar experiments in a truly
isolated environment.

References
[1] M. Costabel. “Boundary Integral Operators for the Heat Equation”. In: Integral Equations and

Operator Theory 13 (1990), pp. 498–552.
[2] M. Costabel. Principles of Boundary Element Methods. Technische Hochschule Darmstadt. 1986.
[3] S. Dohr. “Distributed and Preconditioned Space–Time Boundary Element Methods for the Heat

Equation”. PhD thesis. Technischen Universität Graz, 2019.
[4] V. Dolean. An Introduction to Schwarz Methods. University Lecture slides. Université de Nice and

University of Geneva, 2011.
[5] E. Efstathiou. “Why Restricted Schwarz Converges Faster than Additive Schwarz”. In: BIT Nu­

merical mathematics 52 (2003), pp. 949–959.
[6] M. Geller and E.W. Ng. “A Table of Integrals of the Exponential Integral”. In: Mathematics and

Mathematical Science 73B.3 (1969).
[7] V. P. Gergel. Introduction to Parallel Programming. University Lecture slides. University of Nizhni

Novgorod, 2005.
[8] R. Hiptmair. “Operator Preconditioning”. In: An international Journal computers & mathematics

with applications 52 (2006), pp. 699–706.
[9] R. Hiptmair, C. Jerez­Hanckes, and C. Urzua. Optimal Operator Preconditioning for Boundary

Elements and Open Curves. Eigenössische Technische Hochschule, 2013.
[10] W. B. Johnson and J. Lindenstrauss. Basic concepts of Geometry in Banach spaces. Vol. 1.

Elsevier, 2001.
[11] J. van Kan, G. Segal, and F. Vermolen. Numerical methods in Scientific Computing. 2nd ed. Delft

Academic Press / VSSD, 2014.
[12] J. L. Lions and E. Magenes. Non­Homogeneous Boundary Value Problems and Applications.

Vol. 2. Springer­Verlag Berlin Heidelberg New York, 1972.
[13] N. Manson and J. Tausch. “Quadrature for parabolic Galerkin BEM with moving surfaces”. In:

Computers and Mathematics with Applications 77 (2019), pp. 1–14.
[14] J. van Neerven. An Introduction to Functional Analysis. University lecture notes. University of

Delft. 2020.
[15] P. J. Noon. “The Single Layer Heat Potential and Galerkin Boundary Element Methods for the

Heat Equation”. PhD thesis. University of Maryland, 1988.
[16] A. Reinarz. “Sparse Space­time Boundary Element Methods for the Heat Equation”. University

of Reading, 2015.
[17] Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd ed. Society for Industrial and Applied

Mathematics, 2003.
[18] S. A. Sauter and C. Schwab. Boundary element methods. Springer series in Computational Math­

ematics 39. Springer, 2011.
[19] P. Sonneveld and M. van Gijzen. IDR(s): A Family of Simple and Fast Algorithms for Solving

Large Linear Nonsymmetric Systems. University of Delft, 2007.
[20] O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value Problems. 1st ed.

Springer, 2003.
[21] O. Steinbach. “On a generalized L2 projection and some related stability estimates in Sobolev

spaces”. In: Numerische Mathematik 52 (2000), pp. 775–786.
[22] O. Steinbach. Stability Estimates for Hybrid Coupled Domain Decomposition Methods. Springer,

2003.
[23] R. Stevenson and R. van Venetië.Uniform Preconditioners for Problems of Negative Order. Haus­

dorff Research Institute for Mathematics, 2018.

74

References 75

[24] L. N. Trefethen and D. Bau. Numerical Linear Algebra. Society of Industrial Applied Mathematics,
1997.

[25] C. Vuik and D.J.P. Lahaye. Scientific Computing (wi4201). University lecture notes. University of
Delft. 2019.

	Preface
	Abstract
	List of Figures
	List of Tables
	Introduction
	1D problem
	1D Dirichlet problem
	Formulation as boundary integral equations
	Solution via boundary element method
	Numerical results

	2D problem
	Space-time formulation
	Trace mapping properties
	Green's theorem
	Representation formula
	Boundary integral equations

	Space-time BEM
	Triangulation
	Trial spaces
	Piecewise constant basis functions

	Computing the Galerkin Matrix
	Right triangular grid

	Numerical results
	Analytical expression of solution
	Discrete solution and error analysis

	Parallelization
	Weakly singular matrix structure
	Generalised residual method
	Calderón preconditioning
	Dirichlet Boundary value problem
	Construction of the hypersingular matrix

	Domain Decomposition
	Multiplicative Schwarz
	Restricted Additive Schwarz
	Schwarz procedures as preconditioners

	Preconditioning results
	Parallel GMRES implementation
	Least squares problem
	Matrix vector multiplications
	Dot products and vector norms
	Numerical results
	IDR(s)

	Conclusion and Discussion
	References

