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Abstract
As Machine Learning (ML) continues to shape ad-
vancements in academia and industry, ensuring ef-
fective ML education is essential. This study exam-
ines the retention of four core ML concepts - Princi-
pal Component Analysis, Gradient Descent, Bayes’
Theorem, and Hierarchical Clustering - two years af-
ter students completed a university-level ML course.
Using a survey-based methodology, it explores how
prior mathematical knowledge, perceived difficulty,
and confidence influence long-term retention. Re-
sults reveal a significant positive correlation between
Calculus knowledge and Gradient Descent retention,
with weaker correlations for Linear Algebra with
PCA and Probability with Bayes’ Theorem. Per-
ceived difficulty and confidence also shape retention
outcomes. The findings emphasize the need for
targeted mathematical refreshers in ML courses to
strengthen foundational knowledge and improve re-
tention. This research provides actionable insights
for curriculum design, aiming to bridge mathemat-
ical gaps, enhance learning outcomes, and sustain
student engagement with advanced ML concepts.

1 Introduction
Machine Learning (ML) has become a cornerstone of tech-

nological innovation, with applications ranging from data sci-
ence and artificial intelligence to healthcare, engineering, and
social sciences. Defined as “an artificial intelligence technol-
ogy that enables computer systems to learn from experience
and make predictions” [1], ML demonstrates its adaptable
potential in addressing complex challenges across diverse in-
dustries. Its growing significance and expanding applications
[2] underscore the importance of integrating ML education
into academic curricula to prepare students for the evolving
demands of a technologically driven workforce.

At the core of ML education is mathematics [3], serving as
the formal language through which ML concepts are under-
stood and applied [4]. Foundational areas like linear algebra,
calculus, and probability underpin ML algorithms and meth-
ods [5], enabling computational thinking and problem-solving.
As Ralston and Shaw [6] note, “for any science or any en-
gineering discipline, the fundamental principles and theories
can only be understood through the medium of mathemat-
ics”. Despite its importance, mathematics remains widely
perceived as difficult [7], contributing to lower retention rates
in fields requiring substantial mathematical expertise [8]. This
“Mathematics Problem”, identified by Rylands and Coady [9],
highlights gaps in students’ preparedness for quantitative sub-
jects [10], including ML.

1.1 Literature Context and Research Gaps
The challenge, therefore, extends beyond teaching ML con-

cepts to ensuring their long-term retention. Knowledge reten-
tion, defined as the ability to preserve learned material over
time [11], is vital in STEM (Science, Technology, Engineer-
ing, and Mathematics) education, where cumulative learning

often determines students’ success. However, retention is
influenced by various factors, including prior knowledge, con-
fidence, and perceived task difficulty [12]. Prior studies have
shown that new information is best retained when linked to
existing knowledge [13], enhancing comprehension and re-
call [14]. This is especially relevant in ML education, where
mathematical foundations not only provide frameworks for un-
derstanding complex concepts, but also significantly increase
students’ likelihood of success in computer science [15].

Gaps remain in understanding how prior mathematical
knowledge influences the long-term retention of ML concepts.
While knowledge retention research emphasizes the natural
decline of memory over time [11], most studies focus on short-
term periods, typically within a year of course completion [16].
Although actively practicing retrieval enhances long-term re-
call [17], knowledge decay occurs without reinforcement [18].
This highlights the need for extended assessments to under-
stand retention patterns, particularly in the mathematical foun-
dations underpinning ML, whose long-term impacts remain
under-explored. This study addresses this gap by investigating
how specific mathematical knowledge influences ML concept
retention over a two-year period − an under-examined time
frame in current literature.

Additionally, the interplay between perceived difficulty, con-
fidence, and long-term learning outcomes has received limited
attention. Wall and Knapp [12] suggest that perceived diffi-
culty significantly influences engagement and performance in
technical computing courses, yet its specific impact on knowl-
edge retention in ML education remains unclear. Mangos and
Steele-Johnson [19] note that task difficulty perception can
be as influential as its actual complexity, particularly with
unfamiliar material. This is especially relevant in ML, where
abstract mathematical concepts often create barriers to under-
standing [10], as highlighted by Ralston and Shaw [6], who
critique curricula that underemphasize mathematics and its
role in overcoming challenges in computational fields.

1.2 Research Question and Hypotheses
Building on these insights, this study investigates the

intersection of mathematical foundations, perceived difficulty,
and long-term retention of ML concepts. The central research
question guiding this study is:

“To what extent do students who have completed the
Machine Learning course (CSE2510) retain core concepts
within two years, and how does prior knowledge of specific
mathematical topics influence this retention?”.

To explore this question, the following hypotheses are pro-
posed:
H0: Prior knowledge in specific mathematical topics has no

significant correlation with the retention of corresponding
ML concepts.

H1: Stronger prior knowledge in specific mathematical topics
is positively correlated with better retention of corre-
sponding ML concepts.

H2: ML topics that rely on advanced mathematical concepts
show lower retention scores compared to topics with
minimal math prerequisites.
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These hypotheses form the analytical framework for exam-
ining the role of mathematics in ML education. This research
contributes empirical evidence on how prior mathematical
knowledge influences long-term retention of ML concepts
and explores how perceived difficulty and confidence interact
with mathematical foundations to shape learning outcomes.
By addressing gaps in existing literature, this study provides
actionable insights for curriculum design, emphasizing tai-
lored instructional strategies to effectively transition students’
short-term understanding into long-term retention [11].

This paper is structured as follows: Section 2 offers a de-
tailed background, presenting relevant literature and theoret-
ical frameworks that form the basis for this research. The
methodology employed is described in Section 3, followed
by the experimental setup in Section 4. The results are pre-
sented in Section 5, with their implications and significance
in Section 6, reflecting on connections to existing research
and limitations. Section 7 discusses responsible research prac-
tices, and finally, Section 8 concludes with a summary of key
contributions and recommendations for future research.

2 Background
This section provides the background for understanding

key themes and frameworks in ML education, including the
role of mathematical foundations, knowledge retention, and
perceived difficulty in shaping student engagement and suc-
cess. It begins with an overview of the main research themes,
emphasizing the multidisciplinary nature of ML and the impor-
tance of reinforcing mathematical knowledge for long-term
retention and student readiness. It further explores theoretical
perspectives on prior knowledge, conceptual understanding,
perceived difficulty, and confidence, highlighting their impact
on learning outcomes and influence on this study.

2.1 Overview of Main Research Themes
ML education lies at the intersection of computer science,

mathematics, and statistics, requiring students to develop a
multidisciplinary skill set [6]. Deisenroth et al. [4, p. 2] note
that ML formalizes intuitive concepts through mathematical
frameworks, making mathematical preparation essential for
understanding its principles. They further emphasize that ML
provides a clear reason for students to engage with mathe-
matics, addressing common concerns about its perceived lack
of practical relevance [20]. The challenge thus lies in rein-
forcing foundational knowledge, as long-term retention of
mathematical concepts is crucial for ML mastery. Valderama
and Oligo [11] highlight that retention diminishes over time,
particularly for concepts requiring higher-order thinking, un-
derscoring the need for refreshers to bridge knowledge gaps
and equip students to tackle advanced ML topics effectively.

Furthermore, mathematics is not only foundational to ML,
but also integral to broader STEM disciplines [21, 7]. Alnaimi
et al. [22] describe mathematics as “one of the fundamental
pillars of any scientific progress”, essential for logical think-
ing, problem-solving, and reasoning. Similarly, Ralston and
Shaw [6] highlight the importance of mathematical readiness
for success in computational fields. Moreover, mathematical
cognition, encompassing the mental ability to grasp and apply

mathematical concepts, is critical for STEM success [3]. As
such, addressing gaps in students’ mathematical foundations
is vital to enhancing their engagement with ML concepts [5].

2.2 Theoretical and Conceptual Frameworks
This research draws on interconnected educational frame-

works [23] to explore the relationship between mathematical
foundations, perceived difficulty, and long-term retention of
ML notions. Conceptual knowledge, defined by Crooks and
Alibali [24] as an understanding of principles that structure
a domain, provides a foundation for problem-solving and ap-
plication. In ML, it involves grasping the theoretical under-
pinnings of algorithms and is crucial for deep understanding,
competence, and solving complex problems [25]. Wankhede
and Kiwelekar [26] further emphasize that knowledge involves
recalling and applying learned material, from particular facts
to comprehensive theories, underscoring its role in educational
success.

Prior knowledge has a pivotal role in shaping how students
acquire and retain new concepts. Bransford and Johnson [27]
and Shapiro [14] show that relevant prior knowledge enhances
comprehension and recall by providing a framework for in-
tegrating new information. This is particularly relevant in
STEM, where mathematical readiness underpins success in
mastering complex topics like ML [6]. Hosein and Harle [28]
further explore how prior attainment in mathematical courses
impact confidence, performance, and self-assessment, linking
prior knowledge to academic outcomes. Deisenroth et al. [4,
p. 2] reinforce the importance of prior preparation, empha-
sizing the role of mathematical frameworks in formalizing
abstract ML concepts.

Furthermore, perceived difficulty and confidence are crit-
ical factors in learning outcomes and retention. Wall and
Knapp [12] note that perceptions of difficulty strongly in-
fluence engagement and performance in technical comput-
ing courses. Additionally, confidence, described as belief in
one’s ability to succeed [22], correlates positively with aca-
demic outcomes, especially in mathematics [29]. For instance,
Bandura [30] emphasizes that self-efficacy − the belief in
one’s capacity to complete tasks − drives the effort and persis-
tence needed for mastering challenging material. Riboroso et
al. [31] further highlight how self-efficacy and anxiety shape
mathematical performance, underscoring the psychological
dimensions of learning.

Educational research increasingly highlights the interplay
of these factors in fostering meaningful learning and retention.
Andrews et al. [13] argue that connecting new material to exist-
ing knowledge enhances long-term understanding, a principle
central to cognitive science. Liaw et al. [32] emphasize that
effective knowledge retention must be intentionally integrated
into learning activities, rather than assumed to occur naturally.
This is supported by Custers and Ten Cate [33], who describe
knowledge retention as following a “negatively accelerated
forgetting curve”, with longer intervals between acquisition
and retrieval leading to diminished retention [34]. These find-
ings underscore the need for educational interventions that
not only teach core concepts effectively but also ensure their
retention over time.
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Integrating these frameworks is essential for understanding
how students internalize and apply ML concepts. By exam-
ining the role of prior knowledge, conceptual understanding,
perceived difficulty, and confidence, this study aims to un-
cover actionable insights to address gaps in ML education. It
also contributes to the broader discourse on STEM education,
where the focus is shifting from factual recall to developing
scientific reasoning and transferable skills [35].

3 Methodology
This section outlines the methodological approach for in-

vestigating the retention of ML concepts and the role of math-
ematical foundations. It details the study’s participants and
selection criteria, along with the design and development of
the survey instrument, including its structure, question types,
and rationale for assessing knowledge retention, perceived
difficulty, and confidence. The data collection process and
measures to ensure response authenticity are also described.

3.1 Participants and Selection Criteria
The target group for this study comprised students who

had successfully completed the Machine Learning course
(CSE2510) at Delft University of Technology in the past two
academic years, ensuring they had sufficient exposure to core
ML concepts. This aligns with prior studies using course
completion as a selection criterion [36]. Recruitment was
conducted through personal networks and snowball sampling.
Most participants were master’s students at TU Delft, many
of whom had taken advanced ML courses that revisited some
of the topics assessed in this study. Although this additional
exposure was not explicitly controlled for, participants self-
reported their engagement with ML topics since completing
the bachelor’s course using a five-point Likert scale to account
for potential influences.

Ethical approval for the study was obtained from TU Delft’s
Ethics Committee to ensure adherence to ethical research prac-
tices [37]. Participants were informed about the study’s pur-
pose, their rights, and the option to withdraw at any time with-
out penalty. To protect privacy and maintain anonymity, no
personally identifiable information was collected, and demo-
graphic data such as gender and age were excluded as deemed
irrelevant to the research. Measures to ensure response in-
tegrity included clear instructions emphasizing independent
completion without external assistance.

3.2 Survey Development
The survey was designed to assess the retention of core

ML concepts and the influence of prior mathematical knowl-
edge, drawing on established research in knowledge retention,
perceived difficulty, and confidence in educational contexts.
Development involved a literature review, creation of item
pools and initial draft of the instrument, pilot testing, and it-
erative refinements, reflecting best practices in survey design
and validation [38]. The finalized survey included six sections:
an opening statement, demographics, and sections for each
of the four ML concepts − Principal Component Analysis,
Gradient Descent, Bayes’ Theorem, and Hierarchical Clus-
tering. To mitigate participant fatigue affecting responses to

any specific topic, the order of the ML concept sections was
randomized, ensuring each topic appeared last in one of the
four permutations considered.

Assessing Demographics
The demographic section collected information on partici-

pant’s academic year of ML course completion, grades in key
mathematical courses (Linear Algebra, Calculus, and Proba-
bility & Statistics), and chosen specialization tracks during
their bachelor’s studies. The rationale for including grades as
a metric was to capture prior mathematical attainment, similar
to approaches in previous studies that measured grades in na-
tional examinations as a proxy for mathematical ability [28].
Additional questions assessed participants’ engagement with
ML concepts since completing the course, aligning with re-
search on the role of prior exposure in long-term retention [39].
Higher scores on these items indicated stronger mathematical
ability and greater familiarity with ML-related content.

Design of Multiple Choice Questions
The multiple-choice questions (MCQs) assessing core ML

concepts were designed to span Bloom’s Taxonomy cogni-
tive levels, from recall and understanding to application and
analysis [40]. Each section included five MCQs, with the
first one assessing recall, the second understanding, the third
application, the fourth analysis, and the fifth revisiting under-
standing. A checklist based on Bloom’s Taxonomy guided the
categorization, ensuring alignment with its revised framework
[41, 42, 43]. The specific mapping between these cognitive
levels and the questions is detailed in Table 1. Initially, more
questions were created, but a final set of five per topic was
chosen to balance survey length, cognitive breadth, and min-
imize participant fatigue. Most questions were designed by
the author, and some were adapted from TU Delft ML course
exams1 or inspired by educational resources such as Medium2

and Quizizz3. This ensured the inclusion of both original items
and validated question formats. To mitigate recall of past exam
questions, the one- or two-year interval since course comple-
tion was deemed sufficient [39]. A “Don’t remember” option,
informed by Levin-Banchik [44], was included to discourage
guessing and ensure validity in assessing retention.

Table 1: Mapping MCQs to Bloom’s Taxonomy Cognitive Levels

Cognitive
Level

Keywords for Question
Design

Question
Mapping

Remember Recognize, Recall Q1

Understand Explain, Infer, Compare,
Interpret, Classify

Q2, Q5

Apply Execute Q3

Analyze Differentiate, Attribute Q4

1https://studiegids.tudelft.nl/a101 displayCourse.do?course id=
67579& NotifyTextSearch

2https://kawsar34.medium.com/principal-component-analysis-
pca-part-2-ml-interview-question-bank-15-bb2b517f0719

3https://quizizz.com/admin/quiz/592ea9414e2f3e1000be3dc9/
bayes-theorem

3

https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=67579&_NotifyTextSearch_
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=67579&_NotifyTextSearch_
https://quizizz.com/admin/quiz/592ea9414e2f3e1000be3dc9/bayes-theorem
https://quizizz.com/admin/quiz/592ea9414e2f3e1000be3dc9/bayes-theorem


Rationale for Likert-Scale Questions
Likert-scale questions accompanied each MCQ section to

assess perceived difficulty, confidence, and the impact of prior
mathematical knowledge. A single-item approach was adopted
for each dimension, following evidence that such designs
can effectively capture key insights without overburdening
respondents [45, 46]. Perceived difficulty item creation was
inspired by the Perceived Difficulty Assessment Questionnaire
(PDAQ), which has demonstrated relevance in similar educa-
tional contexts [47]. Similarly, confidence items were influ-
enced by insights from the Instructional Materials Motivation
Survey (IMMS) [48, pp. 282–284, 49, 50] and the Mathe-
matics Self-Efficacy and Anxiety Questionnaire (MSEAQ)4,
though these tools were not entirely utilized due to their gen-
eralized scope and length. Instead, specific elements were
adapted to align with the study’s goals, ensuring relevance
to ML knowledge while maintaining brevity and clarity. To
enrich the data, each ML section included two additional items
asking participants whether a refresher on mathematical topics
would have improved their understanding, with open-ended
responses providing qualitative insights. This combination of
quantitative and qualitative approaches offered a comprehen-
sive perspective on participant experiences.

Pilot testing with three representative students assessed the
survey’s readability, clarity, and completion time. Feedback
resulted in minor phrasing adjustments to enhance clarity and
flow. Appendix A presents the finalized survey instrument,
including all demographic questions, MCQs, and Likert-scale
items. Questions sourced from prior ML course exams are
marked with a “#”, while those adapted from educational
resources are marked with an “&”.

3.3 Data Collection Procedure
The survey was deployed via Microsoft Forms5 and dis-

tributed electronically. Participants were given ample time to
complete the questionnaire and encouraged to provide hon-
est, unbiased responses. A brief study summary and survey
link were shared through online platforms to reach eligible
participants. Instructions emphasized avoiding preparation or
external resources to maintain response authenticity.

4 Experimental Setup
This section outlines the experimental setup designed to ex-

amine the relationship between prior mathematical knowledge
and retention of core ML concepts. It describes the rationale
for selecting specific ML topics based on their mathematical
prerequisites, the justification for the sample size, the tools
and platforms used for survey deployment and data analysis,
as well as the steps taken to ensure methodological rigor.

4.1 Experiment Design
The study examined the relationship between prior math-

ematical knowledge and retention of four core ML concepts,

4The MSEAQ is described in May’s PhD thesis (Appendix B,
pp. 70–71). See May [51]. Mathematics self-efficacy and anxiety
questionnaire. University of Georgia, Athens, GA.

5https://www.microsoft.com/en-us/microsoft-365/online-
surveys-polls-quizzes

selected for their distinct mathematical prerequisites. PCA
requires linear algebra, Gradient Descent relies on calculus,
Bayes’ Theorem is rooted in probability & statistics, and Hier-
archical Clustering represents a concept with minimal mathe-
matical requirements. The design followed best practices in
educational research, categorizing topics by cognitive com-
plexity and linking them to specific learning objectives [52].

Furthermore, in this study, prior mathematical knowledge
was the independent variable, serving as the predictor, while
retained knowledge of core ML concepts was the dependent
variable. Control variables, including perceived difficulty and
confidence, were accounted for to isolate the relationship be-
tween mathematical knowledge and ML concept retention,
minimizing the influence of external factors.

4.2 Sample Size
The sample size was influenced by the study’s objectives

and practical constraints. In educational research with volun-
tary participation and limited resources, smaller sample sizes
are often observed. For example, Sauro and Dumas [53] had
26 participants in a usability questionnaire comparison, while
Schrenzel (2015)6 studied 23 participants in an experimental
group. Similarly, in an educational study on knowledge reten-
tion after a medical course, Cheifetz and Phang [55] presented
results from 18 surgeons at the one-year measurement point.
These cases show that meaningful insights can be obtained
even from modest sample sizes. While Creswell [56, p. 146]
recommends about 30 participants for correlational studies,
time constraints and voluntary participation often result in
smaller-than-ideal sample sizes, affecting the generalizability
of findings. Strategies such as extended recruitment or offering
incentives were considered but limited by available resources.
Within these constraints, the study aimed to maximize partici-
pation and achieved a final sample size of N = 28.

4.3 Survey Platform and Analysis Tools
The survey was hosted on Microsoft Forms7, chosen for its

accessibility and user-friendly interface. Data analysis was
conducted using Microsoft Excel8 and Python programming
language, enabling detailed exploration of the relationships
between prior mathematical knowledge and ML concept re-
tention. For result analysis, raw MCQ scores (0− 5) for each
topic were averaged and normalized to provide standardized
retention scores for each ML concept.

4.4 Validation and Reliability
Inspired by Shih and Chuang [57], the survey validation

process included a review of related literature, identification
of the four ML categories to be assessed, drafting and revising
items, expert consultation for content validity, and iterative
refinement based on pilot feedback. Additional procedures,
such as those outlined by Erdogan et al. [38], were consid-
ered but adapted to fit the study’s scope and time constraints.

6Knowledge retention over a two year period following comple-
tion of an online course on the science of energy balance. University
of Vermont Honors College, Senior Theses. See Schrenzel [54]

7https://www.microsoft.com/en-us/microsoft-365/online-
surveys-polls-quizzes

8https://www.microsoft.com/en-us/microsoft-365/excel
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While efforts ensured methodological rigor, the validation pro-
cess was limited by the lack of advanced procedures, such as
large-scale testing, as seen in studies like those by Fiorella et
al. [58] and Schau et al. [59]. These constraints reflect project
limitations rather than a disregard for validation practices.

5 Results
This section presents the study’s results, focusing on how

prior mathematical knowledge, perceived difficulty, and confi-
dence relate to long-term retention of the four ML concepts.
It examines correlations between grades in foundational math-
ematics courses and retention, investigates the predictive roles
of perceived difficulty and confidence, and provides a com-
parative analysis across topics. Additionally, performance
on math-linked questions is analyzed, and thematic insights
from open-ended responses illustrate students’ perspectives
on retaining ML concepts.

5.1 Correlation Analysis Between Prior Math
Knowledge and ML Topic Retention

At the beginning of the results analysis phase, the relation-
ships between students’ prior mathematical knowledge and
their retention of ML concepts were explored. This was done
by analyzing the correlations between grades in foundational
mathematics courses (Linear algebra, Calculus, Probability &
Statistics) and retention scores for their corresponding math-
intensive ML topics (Principal Component Analysis - PCA,
Gradient Descent - GD, Bayes’ Theorem - BT). Hierarchi-
cal Clustering (HC) was excluded for this analysis due to its
minimal mathematical prerequisites.

Key findings are illustrated in a targeted heatmap (Figure
1) showing positive Pearson correlation coefficients between
math grades and ML topic retention. Linear algebra grades
modestly correlate with PCA retention (r = 0.33), calculus
grades show a moderate correlation with GD retention (r =
0.52), and probability grades have a weak correlation with
BT retention (r = 0.11). Notably, no negative correlations
were observed, indicating higher math grades do not adversely
affect retention. The complete correlation matrix is provided
in Appendix B.1.

Figure 1: Targeted Correla-
tions Heatmap

Figure 2: P-Values for Correlations by
ML Topic

The statistical significance of these correlations was as-
sessed using Pearson’s p-values (Figure 2). Only the calculus-
GD correlation was statistically significant (p = 0.005), rein-
forcing the observed relationship, while linear algebra-PCA
(p = 0.087) and probability-BT (p = 0.585) were not signifi-
cant at the 5% threshold. Scatter plots with regression lines

provide a more detailed visualization of these trends (Figure 3).
While PCA retention shows a weak positive trend with linear
algebra grades, GD retention demonstrates a stronger upward
trend with calculus grades, reflecting the higher correlation.
BT retention displays negligible variation with probability
grades, consistent with its weak correlation.

Figure 3: Scatter Plots of Grades vs Retention Scores by ML Topic

Spearman’s rank correlation coefficients were calculated
to explore potential non-linear but monotonic relationships.
The results aligned closely with Pearson’s, showing ρ = 0.29
(linear algebra-PCA), ρ = 0.54 (calculus-GD), and ρ = 0.18
(probability-BT).

The findings show that calculus has the strongest and most
significant impact on retention of its related ML topic, GD. In
contrast, PCA and BT retention are more weakly influenced by
their respective math foundations, suggesting other factors like
practical applications, perceived difficulty, or confidence may
play a role. These results highlight the potential of pedagogical
strategies emphasizing mathematical foundations to enhance
retention of related ML concepts, while also underscoring the
need for further analysis of variables influencing retention.

5.2 Relationships Between Retention, Perceived
Difficulty, and Confidence

In addition to prior math knowledge, perceived difficulty
and confidence in understanding were analyzed as potential
predictors of ML topic retention. Perceived difficulty was
expected to correlate negatively with retention, but showed
mixed relationships. GD and HC had negative Pearson correla-
tions (r = −0.29, r = −0.23), suggesting higher difficulty re-
duced retention, while PCA and BT showed weak positive cor-
relations (r = 0.13, r = 0.18), indicating that difficulty may
have motivated deeper engagement. Confidence positively
correlated with retention across topics, especially for GD and
HC (r = 0.64 for both), while PCA and BT showed weaker
correlations (r = 0.31, r = 0.25), suggesting additional
factors might influence retention. Comprehensive heatmaps
and scatter plots for each ML topic, provided in Appendix
B.2, illustrate these correlations. GD and HC show steep
positive confidence-retention slopes and negative difficulty-
retention slopes, while PCA and BT exhibit subtler trends.
Negative difficulty-retention relations align with expectations
that greater difficulty hinders recall and comprehension.

These findings emphasize the importance of confidence-
building strategies for improving retention, while the mixed
effects of perceived difficulty underscore the need to address
challenges without discouraging engagement. Following these,
a comparative analysis across the four ML topics explored
whether retention differences reveal deeper patterns.
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5.3 Comparative Analysis of Retention Across ML
Topics

Paired t-tests and one-way ANOVA were conducted to com-
pare retention across ML topics. Paired t-tests revealed no
significant differences only among PCA, GD, and BT reten-
tion scores (p − values > 0.05), but HC retention scores
were significantly lower. A one-way ANOVA confirmed these
contrasts across topics when HC was included in the anal-
ysis (p = 0.0025). Descriptive statistics showed consistent
mean scores for PCA and GD ( 0.53), though their standard
deviations differed (PCA: 0.23, GD: 0.32), indicating greater
variability in GD retention. BT had the highest mean (0.58)
and a moderate standard deviation (0.28), reflecting slightly
better overall retention. In contrast, HC had the lowest mean
(0.31) and a standard deviation of 0.26, signifying consistently
lower retention. These differences highlight varying retention
patterns across topics, with GD retention showing the widest
variation, potentially due to its calculus-based complexity.

Contrary to expectations, HC, a topic with minimal mathe-
matical prerequisites, showed the lowest retention. This may
be due to factors such as HC concepts being rarely revisited in
subsequent courses, especially for Data track students at TU
Delft, who formed the majority of the sample (67.86%). In
contrast, PCA and GD are regularly reinforced in advanced
courses, aiding retention. Moreover, HC’s perceived simplicity
may have led to superficial understanding during the course,
undermining retention despite lower reported difficulty. Ad-
ditional visualizations comparing retention across topics are
provided in Appendix B.3.

Figure 4: “Don’t Remember” Response Percentages by ML Topic

5.4 Math-Linked Question Performance and
Retention Implications

HC’s surprisingly low retention prompted a deeper analy-
sis of question-specific performance, highlighting the role of
mathematical foundations in retaining ML concepts. Ques-
tion three (Q3), assessing math knowledge for each ML topic,
consistently showed the lowest correct response rates for math-
intensive topics. This stark contrast underscores the challenges
students may face when applying mathematical principles to
ML concepts. Similarly, “Don’t Remember” responses were
highest for Q3 in PCA (71%), GD and BT (43% each), further
reflecting the difficulty of applying math principles. In con-
trast, HC’s Q3 had the lowest “Don’t Remember” rate (32%).

Figure 4 illustrates this pronounced gap for math-intensive
topics, with further visualizations reinforcing this trend in Ap-
pendix B.4. All these findings suggest foundational math gaps
hinder retention and support the need for targeted refreshers
to bridge these gaps and improve ML concept understanding.

5.5 Thematic Analysis of Open-Ended Responses
Following the high “Don’t Remember” rates for math-

intensive questions, students’ open-ended responses were the-
matically analyzed. This provided valuable insights into stu-
dents’ perspectives on the need for mathematical refreshers to
enhance ML comprehension, identifying recurring challenges
and opportunities for improvement.

For PCA, 78.6% of participants indicated the need for a
refresher (Figure 5). Key challenges included eigenvalues,
eigenvectors, and covariance matrices, with comments like
“Eigenvector and eigenvalue calculation could be a nice re-
fresher”. Participants frequently noted the time gap between
linear algebra and the ML course, citing difficulty recalling
concepts. Suggestions included step-by-step demonstrations
and practical examples to improve understanding.

Figure 5: Need for Math Refresher: Yes/No Responses by ML Topic

Similarly, for GD, 75% of participants supported a cal-
culus refresher. Derivatives were a key challenge, as noted
in comments like, “Calculating the gradient via a derivative
[...] having a refresher on that would be useful”. Partici-
pants highlighted the lack of mathematical reasoning in the
ML course (“The mathematical reasoning behind Gradient
Descent was overlooked”) and the time gap between calculus
and the ML course (“Calculus course was 3 quarters before
the ML course”). Respondents emphasized the need for both
conceptual clarity and practical refreshers.

For BT, 71.4% of participants supported a refresher. Prob-
ability terminology was a common challenge, as one partici-
pant noted, “I forgot the meaning of a lot of specialty terms”.
However, some found the concept straightforward and felt
a refresher unnecessary, reflecting diverse prior knowledge
levels, with stronger foundations reducing the need for review.

In contrast, only 42.9% opted for the need of a refresher
for HC, citing its intuitive and accessible nature. However, a
minority highlighted the potential value of reinforcing distance
metrics to improve comprehension.
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To support these findings, supplementary bar charts in Ap-
pendix B.5 illustrate the importance students placed on prior
mathematical knowledge and the perceived value of a stronger
background, especially for math-intensive ML topics. Addi-
tionally, tables with key quotes from the thematic analysis are
provided in Appendix B.6. These findings strongly support
integrating targeted math refreshers before introducing ML
topics, which would enable students to focus on ML concepts
rather than struggle with underlying mathematics.

6 Discussion
This study highlights the complex relationship between

prior mathematical knowledge, perceived difficulty, and confi-
dence in shaping students’ long-term retention of ML concepts.
By analyzing four representative ML topics − Principal Com-
ponent Analysis (PCA), Gradient Descent (GD), Bayes’ Theo-
rem (BT), and Hierarchical Clustering (HC) − the findings re-
veal distinct performance patterns that collectively emphasize
the need for targeted educational interventions. This chapter
explores the significance of these results, proposes a solution
to address identified gaps, and discusses key limitations.

6.1 Interpreting the Results and Implications
A central outcome of this research is the significant corre-

lation between calculus grades and GD retention, suggesting
that understanding derivatives and optimization strongly im-
pacts students’ ability to recall and apply GD concepts. While
PCA and BT also depend on mathematical foundations − lin-
ear algebra and probability, respectively − their correlations
with math grades were positive but not statistically significant.
This discrepancy suggests that retention for PCA and BT may
be influenced by additional factors such as repeated exposure
in later coursework or practical applications in projects and
internships.

A closer look at question-level performance highlights stu-
dents’ struggles with math-intensive ML topics. In particular,
question three, which assessed specific mathematical concepts
underpinning each ML technique, had the highest “Don’t Re-
member” response rates for PCA, GD, and BT, indicating
difficulty when applying foundational math in an ML context.
Open-ended responses confirmed this, with students noting
challenges in recalling or mastering linear algebra steps for
PCA and derivatives for GD. These findings align with studies
reporting declines in knowledge retention over time [18].

Hierarchical Clustering and Overall Performance
Contrary to expectations, HC, the least math-intensive topic,

had the lowest retention scores. While considered more in-
tuitive, participants reported rarely revisiting it in advanced
modules compared to the other topics included in this study.
This superficial understanding during the course, or “moti-
vated forgetting” [11], may have hindered long-term recall of
HC algorithms and distance metrics. These outcomes high-
light that retention declines when topics are perceived as less
relevant or are infrequently revisited [60].

Despite the comparatively higher averages for PCA, GD,
and BT (around 2.5 out of 5), a 50% correctness rate should
not be considered satisfactory, especially given ML’s growing
importance in industries [2]. This raises concerns that even

topics reinforced in later courses can lose rigor if foundational
elements are not revisited or properly understood from the
beginning. While forgetting is a natural part of the learning
process [60], the extent of memory decay highlights the need
for significant curricular improvements in ML education.

Perceived Difficulty, Confidence, and Student Engagement
The interplay between perceived difficulty and retention

was more nuanced. For GD and HC, higher difficulty cor-
related with lower retention, suggesting conceptual barriers.
In contrast, PCA and BT showed small positive correlations,
indicating that managing challenging content effectively can
motivate deeper study and enhance learning outcomes [46,
12]. Confidence positively correlated with retention across
all topics, consistent with prior findings on the importance of
self-belief in learning outcomes [30, 61]. However, across
math-intensive ML concepts, open-ended responses revealed
a recurring desire for structured ways to revisit critical math
skills, underscoring the need for robust scaffolding to mitigate
forgetting and sustain confidence over time.

Collectively, these results emphasize that (1) targeted math-
ematical preparation is essential for mastering ML algorithms,
(2) periodic reinforcement can help mitigate memory decay
over time [60], and (3) confidence-building measures, such
as practice assignments or interactive tutorials, may further
enhance retention [17]. Above all, the thematic analysis and
question-level outcomes strongly advocate integrating rein-
forcement strategies for the mathematical foundations of each
ML technique.

6.2 Proposed Solution: A Targeted Mathematical
Refresher

To address challenges in long-term ML retention, this study
proposes a concise, topic-specific mathematical refresher pre-
ceding ML lectures on math-intensive concepts. These refresh-
ers would serve as a scaffold, reinforcing key mathematical
concepts tied to the upcoming topic. For example, a module
reviewing eigenvalues, eigenvectors, and covariance matrices
could precede PCA, while a recap on derivatives and gradient
calculations could accompany GD. These materials could be
distributed as Jupyter Notebooks or presented as lecture slides.

Structure and Delivery
A practical way to implement this refresher is through mod-

ular Jupyter Notebooks or short interactive videos. Each mod-
ule could include concise concept explanations (e.g., tutorials
on targeted math topics), worked examples (e.g., computing
derivatives or step-by-step eigen-decomposition), low-stakes
practice problems to check understanding and recall, and auto-
mated feedback to reinforce correct methods and clarify errors.
A more detailed structure for such a refresher is provided in
Appendix C.

Evaluation Plan
Evaluating the efficacy of these refreshers could use a

mixed-method approach, combining quantitative and qualita-
tive measures. Pre- and post-tests on key math skills and ML
outcomes are one option, though introducing control groups
that do not receive a refresher raises ethical concerns. Instruc-
tors might opt for alternative strategies, including delaying the
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refresher for a subset of participants or offering different but
equivalent intervention formats, similarly to how Grabarnik et
al. [5] evaluated the effectiveness of a linear algebra refresher
by distributing it in two different formats to students taking an
ML course. Surveys or interviews could further capture stu-
dents’ perceptions of clarity, motivation, and usefulness, while
longer-term follow-ups could assess whether the refresher’s
benefits persist beyond the immediate learning interval.

By aligning the refreshers’ content with the specific math-
ematical demands of each ML topic, instructors can address
foundational gaps, while streamlining their teaching. This
adaptable approach allows instructors to tailor the depth and
difficulty of the refresher to fit their course goals, making it a
valuable addition to existing curricula.

6.3 Limitations
Despite the promising outcomes and the applicability of the

proposed refresher, the study is constrained by several limi-
tations that should be acknowledged. First, the small sample
size (N = 28), as seen in prior studies, may hinder the detec-
tion of significant changes and amplify the effects of outliers
[53]. Recruitment time constraints and voluntary participation
influenced the final sample, limiting the generalizability to
larger student populations.

Second, the survey included only five questions to assess
retention for each ML topic. While this minimized respon-
dent fatigue, it limited the depth of the assessment. A larger
question bank with more detailed questions could provide
finer-grained insights. Similarly, only four ML concepts were
analyzed. Although PCA, GD, BT, and HC represent a diverse
range of mathematical prerequisites, many other techniques in
ML remain unexplored.

Another limitation is the use of course grades in founda-
tional mathematics as proxies for prior knowledge. While
consistent with prior research [28], these grades may conflate
unrelated subtopics. Embedding more targeted math diagnos-
tics in the survey could improve accuracy but might increase
completion time, discouraging engagement and reducing data
quality due to survey fatigue [49].

Lastly, the constrained timeline prevented collecting reten-
tion data at multiple time points, such as immediately after
course completion, six months later, and one year later, as
done in other longitudinal studies [36, 55]. Such data would
have allowed for a more comprehensive analysis of retention
decay over time. While an approach using separate student
samples, such as those who recently completed the ML course
versus those who completed it two years ago, could have been
an alternative for comparing retention, it lacks the precision
of tracking retention within the same cohort. This limitation
underscores the need for external longitudinal studies to better
understand knowledge retention in ML education.

Overall, these limitations highlight areas for refinement
in measurement and methodology. Nonetheless, the results
demonstrate that strengthening mathematical foundations and
fostering confidence can meaningfully enhance retention of
core ML concepts. The proposed refresher offers a practical
solution to address knowledge gaps. Future research can build
on this framework by testing the refresher’s efficacy at scale
and applying similar methodologies to other ML techniques.

7 Responsible Research
This research adheres to the ethical standards outlined by

Delft University of Technology and the Netherlands Code of
Conduct for Research Integrity. Approval was granted by TU
Delft Human Research Ethics Committee (HREC) following
a submission of the ethics checklist, data management plan,
and informed consent procedure. Key ethical considerations
include participant privacy, data protection, and ensuring repro-
ducibility and data integrity throughout the research process.

7.1 Privacy and Data Protection Considerations
To ensure participant privacy and data security, the survey

collected only anonymized responses, with no personally iden-
tifiable information like names or contact details. Indirectly
identifiable data, such as prior academic grades, was carefully
handled to prevent re-identification. Clear communication was
provided to participants through an opening statement at the
start of the survey, outlining the study’s purpose, voluntary
nature, participant rights, and data protection measures. By
clicking “Next” in this introductory section, respondents gave
their informed consent to participate in the study.

Participants were informed that their responses would be
used solely for this research and could not be withdrawn af-
ter anonymization. Data was securely stored on a password-
protected device, in compliance with TU Delft’s data manage-
ment policies, with access restricted to the researcher and, if
necessary, supervising staff.

7.2 Reproducibility and Data Integrity
The methods and procedures in this study were designed to

ensure transparency and reproducibility. Detailed documen-
tation of the survey design, participant recruitment, and data
analysis techniques is provided in the Methodology and Ex-
perimental Setup sections. Comprehensive descriptions of the
survey questions, Likert scales, and MCQ mapping to Bloom’s
taxonomy enable replication by other researchers.

To ensure data integrity, strict anonymization protocols were
followed during processing. The aggregated, anonymized
data will be retained temporarily for potential reproducibility
checks but not shared publicly to protect participant privacy.
The methodology and key findings will be published in the TU
Delft Library Repository, ensuring accessibility for academic
and educational purposes.

7.3 Reflection on Ethical Research Practices
The principles of honesty, scrupulousness, transparency, in-

dependence, and responsibility were upheld throughout the
research. Efforts were made to avoid biases, such as recruit-
ment bias from reliance on personal networks, by including
a diverse participant pool. Moreover, all participants were
treated with respect and fairness.

Furthermore, generative AI tools, including ChatGPT and
Grammarly, supported the research process by assisting with
grammar, formatting LaTeX data and tables, and generating
some Pyhton visualizations. Outputs were modified to ensure
accuracy, relevance, and compliance with academic integrity
standards. Example prompts used are listed in Appendix D.

8



By following these ethical guidelines and ensuring method-
ological rigor, this research contributes to the broader dis-
course on ML education while maintaining the highest stan-
dards of research integrity.

8 Conclusions and Future Work
This research examined the retention of four core Machine

Learning concepts − Principal Component Analysis (PCA),
Gradient Descent (GD), Bayes’ Theorem (BT), and Hierarchi-
cal Clustering (HC) − within two years of course completion,
focusing on how prior mathematical knowledge influenced
retention. The findings revealed a statistically significant posi-
tive relationship between calculus grades and retention of GD,
while correlations for linear algebra with PCA, and probability
with BT were positive but did not reach statistical signifi-
cance. Perceived difficulty and confidence levels also played
key roles, with higher confidence generally correlating with
stronger retention.

The study highlights how foundational mathematics, per-
ceived difficulty, and confidence collectively shape retention,
emphasizing the importance of periodic reinforcement to sus-
tain knowledge. This underscores the value of concise math-
ematical refreshers linked directly to each ML topic. The
distinct patterns of PCA, GD, BT, and HC, along with the
qualitative insights from participants, affirm the need for in-
tegrating more tailored approaches into curricula to bridge
knowledge gaps and enhance long-term retention.

Possible improvements and questions for further investi-
gation include developing and evaluating mini-modules or
tutorials to revisit mathematical concepts prior to present-
ing advanced ML concepts, as well as testing whether such
interventions reduce the frequency of “Don’t Remember” re-
sponses. Longitudinal studies tracking retention at multiple
time intervals could also reveal more precise patterns of learn-
ing decay, while expanding the study to assess other ML tech-
niques might provide deeper insights into the interplay be-
tween foundational knowledge and retention. Additionally,
future research would benefit from larger participant sample
sizes and more rigorous math diagnostics to identify which
subtopics students find most difficult to recall. Finally, ex-
ploring different refresher formats, such as interactive quizzes,
short videos, or collaborative workshops, could clarify how to
foster continuous engagement and build self-confidence.

In conclusion, combining periodic reviews of foundational
mathematics with thoughtfully designed pedagogical tools that
emphasize real-world relevance enables educators to foster
deeper understanding and transform academic achievements
into lasting expertise. This study offers actionable insights to
address foundational gaps and equip students to confidently
navigate the evolving challenges of Machine Learning.
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Appendix A: Final Survey Instrument

Figure 6: Opening Statement of Survey
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Demographic Information
All your information is highly confidential and for internal use only.

2021-2022

2022-2023

2023-2024

2024-2025

If you took the course multiple times, only the year in which you passed the course should be stated.

In what academic year did you take the Machine Learning course (CSE2510)?  * 

Number must be between 1 ~ 10

What was your final grade (not rounded) for the Machine Learning (CSE2510) course? * 

Number must be between 1 ~ 10

What was your final grade (not rounded) for the Linear Algebra (CSE1205) course? * 

Number must be between 1 ~ 10

What was your final grade (not rounded) for the Calculus (CSE1200) course? * 

Number must be between 1 ~ 10

What was your final grade (not rounded) for the Probability and Statistics (CSE1210) 
course? * 

The value must be a number

How many hours of mathematical lectures per week did you have in High School? * 

Data

Multimedia

Systems

I have not chosen a variant yet

What variant did you choose during your Bachelor? * 

If you are still pursuing your Minor, you can still mention it.

What Minor did you do during your Bachelor? * 

To what extent have you engaged with or encountered ML concepts or applications in your 
studies or career since completing the course? * 

Not at all Rarely Occasionally Frequently Very Frequently

1

2

3

4

Pick a number for a customized experience. * 

Principal Component Analysis
The following questions will assess your retention of PCA concepts, as well as you perceived difficulty during the course and 
your perceived importance of Linear Algebra in learning PCA.

If you are unsure of the answer to a question, please choose the "Don't remember" option instead of guessing. For the 
purpose of this research, it is better to acknowledge uncertainty than to select an answer that might only be correct 
by chance.

It clusters data points and eliminates outliers.

It projects data onto new orthogonal axes ordered by variance.

Don't remember.

It eliminates correlated features from the dataset.

It compresses high-variance features while discarding low-variance ones.

Which of the following best describes how PCA reduces dimensionality? * (1 Point)

Don't remember.

Reduced interpretability of the original features.

Dependence on feature scaling for effective results.

Increased computational complexity due to eigenvalue calculation.

Loss of 5% variance, which may exclude some important information.

Suppose you apply PCA to reduce a dataset to 2 dimensions for visualization. The first two 
components explain 95% of the variance. What is the primary trade-off of using PCA in this 
case? * (1 Point)

Don't remember.

The first step in performing dimensionality reduction with PCA is to calculate the covariance 
matrix of the data. Select the correct covariance matrix calculated by the maximum likelihood 
estimator for the given dataset (rows are samples, columns are features): * (1 Point)

[ ]4

8

10

6

[ ]4

4

4

4

[ ]8

−8

−8

8

[ ]4

−4

−4

4

[ ]4

8

8

4

The first two principal components eliminate all redundancy in the dataset.

The dataset contains significant variance in all 10 dimensions.

Don't remember.

Most of the dataset's information can be represented in two dimensions.

The dataset cannot be reduced without significant information loss.

A dataset contains 10 highly correlated features. After applying PCA, the first principal 
component explains 70% of the variance, while the second explains 20%. What does this 
imply about the dataset's dimensionality? * (1 Point)

When you want to remove outliers.

When you suspect multicollinearity among features.

When you want to increase the number of features.

Don't remember.

PCA should never be used as a preprocessing step.

When should you use PCA as a preprocessing step in a machine learning pipeline? * (1 Point)

#

&
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For the following statements, please try to recall and answer as accurately as possible. Think of all the methods,
concepts, and mathematical formulas taught during the course.

Understanding of PCA during the ML course * 

Strongly disagree Disagree Neutral Agree Strongly agree

Yes

No

Do you think a refresher of Linear Algebra concepts at the time of learning PCA would have 
made it easier to understand? * 

Please provide a short motivation for your answer to the previous question.

Why? / Why not?

PCA was very
difficult to
understand
during the
course.

My prior
knowledge of
Linear Algebra
helped me
understand PCA
better.

A stronger
background in
Linear Algebra
would have
made PCA
easier to
understand.

I am confident I
understood the
core principles
and concepts
underlying PCA.

I am confident I
can apply PCA
in practical
scenarios.

Gradient Descent
The following questions will assess your retention of Gradient Descent concepts, as well as you perceived difficulty during the 
course and your perceived importance of Calculus in learning Gradient Descent.

If you are unsure of the answer to a question, please choose the "Don't remember" option instead of guessing. For the 
purpose of this research, it is better to acknowledge uncertainty than to select an answer that might only be correct 
by chance.

Given enough steps, gradient descent converges to the global minimum.

For linear regression, we typically do not need gradient descent, because there is a closed-form (analytic)
solution to the empirical risk minimization problem.

Stochastic gradient descent uses fewer computations per step, so it will always converge faster than batch (non-
stochastic) gradient descent.

Don't remember.

Larger step sizes lead to faster convergence.

Which of these claims is true for Gradient Descent? * (1 Point)

A constant learning rate ensures steady convergence.

An increasing learning rate improves gradient accuracy.

A decreasing learning rate allows for finer convergence near the minimum.

Don't remember.

A dynamic learning rate prevents local minima.

Gradient Descent is applied to optimize a quadratic loss function. The learning rate is 
adjusted dynamically during training. Which of the following best describes the advantage of 
this approach? * (1 Point)

0.3

1.2

0.6

Don't remember.

0.9

The loss function for a model is given by L(w) = (w - 3)², where w is the weight. Using 
Gradient Descent with a learning rate of η=0.1, what will the value of w be after one iteration 
starting from w0 = 0? * (1 Point)

The dataset is not normalized, affecting gradient calculations.

Don't remember.

The regularization parameter is too large, altering the loss function.

The learning rate is too high, causing the algorithm to overshoot the minimum.

The learning rate is too low, leading to slow convergence.

A Machine Learning model using Gradient Descent fails to converge during training. Upon 
investigation, the loss function oscillates instead of reducing steadily. What could be the 
most likely cause? * (1 Point)

It makes Gradient Descent slower.

It changes the loss function to discourage large coefficients.

Don't remember.

It prevents the algorithm from reaching a minimum.

It forces the learning rate to decrease.

You are training a linear regression model using Gradient Descent. How does adding 
regularization terms (e.g., L1 or L2) affect the optimization? * (1 Point)

For the following statements, please try to recall and answer as accurately as possible. Think of all the methods,
concepts, and mathematical formulas taught during the course.

Understanding of Gradient Descent during the ML course * 

Strongly disagree Disagree Neutral Agree Strongly agree

Yes

No

Do you think a refresher of Calculus concepts at the time of learning Gradient Descent would 
have made it easier to understand? * 

Please provide a short motivation for your answer to the previous question.

Why? / Why not?

Gradient
Descent was
very difficult to
understand
during the
course.

My prior
knowledge of
Calculus helped
me understand
Gradient
Descent better.

A stronger
background in
Calculus would
have made
Gradient
Descent easier
to understand.

I am confident I
understood the
core principles
and concepts
underlying
Gradient
Descent.

I am confident I
can apply
Gradient
Descent in
practical
scenarios.

#
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Bayes' Theorem
The following questions will assess your retention of Bayes' Theorem concepts, as well as you perceived difficulty during the 
course and your perceived importance of Probability and Statistics in learning Bayes' Theorem.

If you are unsure of the answer to a question, please choose the "Don't remember" option instead of guessing. For the 
purpose of this research, it is better to acknowledge uncertainty than to select an answer that might only be correct 
by chance.

It calculates the probability of a hypothesis given new evidence.

It minimizes classification errors using posterior probabilities.

It maximizes the likelihood of observed data.

Don't remember.

It predicts future outcomes based on historical data.

Which statement best describes Bayes' Theorem? * (1 Point)

The likelihood ratio replaces the prior probabilities in determining the posterior probabilities.

The likelihood ratio is added to the prior probabilities to produce the posterior probabilities.

Don't remember.

The likelihood ratio has no influence if the prior probabilities are equal.

The likelihood ratio adjusts the prior probabilities to produce the posterior probabilities.

How does the likelihood ratio interact with prior probabilities to determine the posterior 
ratios and posterior probabilities? * (1 Point)

34%

Don't remember.

63%

66%

37%

A virus has infected 1.8% of a population. A test detects this virus 95% of the time when it is 
actually present, but it returns a false positive 3% of the time when the virus is not present. If 
a person selected at random from this population tests positive for the virus, what is the 
probability that this person is actually infected? You can round the answer to the nearest 
percent. * (1 Point)

The posterior probability will adjust the prior probability automatically.

The posterior probability will be uniformly distributed.

The posterior probability will reflect the incorrect prior's influence, leading to biased results.

Don't remember.

The posterior probability will remain unaffected as likelihood dominates.

Suppose a classifier has high confidence in a prediction based on an incorrect prior 
probability. How will this affect the posterior probability automatically? * (1 Point)

Don't remember.

The posterior depends only on the prior.

The posterior is equally split between hypotheses.

Likelihoods cancel out when priors are equal.

The posterior is higher for the hypothesis with greater likelihood.

If the prior probabilities are equal, and likelihood values differ, which statement best explain 
the posterior? * (1 Point)

For the following statements, please try to recall and answer as accurately as possible. Think of all the methods,
concepts, and mathematical formulas taught during the course.

Understanding of Bayes' Theorem during the ML course * 

Strongly disagree Disagree Neutral Agree Strongly agree

Yes

No

Do you think a refresher of Probability & Statistics concepts at the time of learning Bayes' 
Theorem would have made it easier to understand? * 

Please provide a short motivation for your answer to the previous question.

Why? / Why not?

Bayes' Theorem
was very
difficult to
understand
during the
course.

My prior
knowledge of
Probability &
Statistics helped
me understand
Bayes' Theorem
better.

A stronger
background in
Probability &
Statistics can
make Bayes'
Theorem easier
to understand.

I am confident I
understood the
core principles
and concepts
underlying
Bayes'
Theorem.

I am confident I
can apply
Bayes' Theorem
in practical
scenarios.

Hierarchical Clustering
The following questions will assess your retention of Hierarchical Clustering concepts, as well as you perceived difficulty during 
the course and your perceived importance of general mathematics in learning Hierarchical Clustering.

If you are unsure of the answer to a question, please choose the "Don't remember" option instead of guessing. For the 
purpose of this research, it is better to acknowledge uncertainty than to select an answer that might only be correct 
by chance.

Complete-linkage creates more compact clusters, reducing overlap.

Don't remember.

Single linkage creates more compact clusters, reducing overlap.

Single linkage and complete-linkage yield identical results.

Complete-linkage creates elongated clusters to preserve data separation.

How does switching from single-linkage to complete-linkage affect the resulting clusters in a 
dataset with overlapping points? * (1 Point)

The number of clusters equals the height of the tallest branch.

The number of clusters depends on the linkage method used.

The number of clusters is determined by the total number of data points.

The number of clusters equals the number of distinct branches at that height.

Don't remember.

A dendogram produced by hierarchical clustering shows several distinct branches at a 
specific height. What does this indicate about the number of clusters at that level? * (1 Point)

&
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Don't remember.

Cluster of B.

Forms its own cluster.

Randomly assigned to either cluster.

Cluster of A.

Two points A = (1, 2) and B = (4, 6) belong to different clusters. A third point C = (2, 4) is 
being merged into one of the clusters. Using single-linkage clustering, which cluster will C 
join first? * (1 Point)

Don't remember.

By the average distance between all pairs of points.

By the minimum distance between any two points in the clusters.

By the maximum distance between any two points in the clusters.

By the centroid distance of the clusters.

When using single-linkage in agglomerative clustering, how is the distance between two 
clusters determined? * (1 Point)

None of the answers are correct.

All of the answers are correct.

Complete linkage seeks more internal cohesion, so the sum of distances between points of the first cluster using
complete linkage will be smaller.

Single linkage seeks more isolated groups, so the sum of distances measured between points of the first cluster
using complete linkage will be larger.

Don't remember.

The first cluster created might not be the same when using different merging rules.

Agglomerative hierarchical clustering is used for clustering a dataset of non overlapping 
points. The following parameters were used in the setup:
Merging rule: single-linkage
Distance measure: Euclidean
In each iteration of the hierarchical clustering, a new cluster is created. If the merging 
changes to complete linkage, how would that affect the creation of a cluster after the very 
first iteration of the algorithm? * (1 Point)

For the following 3 statements, please try to recall and answer as accurately as possible. Think of all the methods,
concepts, and mathematical formulas taught during the course.

Understanding of Hierarchical Clustering during the ML course * 

Strongly Disagree Disagree Neutral Agree Strongly agree

Yes

No

Do you think a refresher of general mathematical concepts at the time of learning 
Hierarchical Clustering would have made it easier to understand? * 

Hierarchical
Clustering was
very difficult to
understand
during the
course

My prior
knowledge of
general
mathematics
helped me
understand
Hierarchical
Clustering
better

A stronger
background in
mathematics
would have
made
Hierarchical
Clustering
easier to
understand.

I am confident I
understood the
core principles
and concepts
underlying
Hierarchical
Clustering.

I am confident I
can apply
Hierarchical
Clustering in
practical
scenarios.

#
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Appendix B: Additional Plots and Visualizations for Result Analysis
B.1: Correlation Analysis Between Prior Math Knowledge and ML Topic Retention

Figure 7: Correlation Heatmap Between Foundational Math Grades and ML Topic Retention Scores
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B.2: Relationships Between Retention, Perceived Difficulty, and Confidence

Figure 8: Correlation Matrix Between Retention, Difficulty, and Confidence Across All ML Topics

Figure 9: Correlation Heatmaps for Retention, Difficulty, and Confidence Across Individual ML Topics
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(a) PCA: Relationship Between Difficulty and Retention (b) PCA: Relationship Between Confidence and Retention

(c) GD: Relationship Between Difficulty and Retention (d) GD: Relationship Between Confidence and Retention

(e) BT: Relationship Between Difficulty and Retention (f) BT: Relationship Between Confidence and Retention

(g) HC: Relationship Between Difficulty and Retention (h) HC: Relationship Between Confidence and Retention

Figure 10: Scatter Plots Showing the Relationships Between Retention, Difficulty, and Confidence for Each ML Topic (PCA, GD, BT, HC)
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B.3: Comparative Analysis of Retention Across ML Topics

Figure 11: Average Retention Scores Across ML Topics

Figure 12: Percentages of Correct Answers Per Question Across ML Topics
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B.4: Math-Linked Question Performance and Retention Implications

Figure 13: Percentage of “Don’t Remember” Responses for Question 3 Across ML Topics

Figure 14: Percentage of Response Types (Correct, Incorrect, Don’t Remember) for Question 3 by ML Topic
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B.5: Thematic Analysis of Open-Ended Responses − Additional Plots

Figure 15: Responses on the Importance of a Stronger Mathematical Background by ML Topic

Figure 16: Responses on the Importance of Prior Mathematical Knowledge by ML Topic
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B.6: Thematic Analysis of Open-Ended Responses − Additional Participant Responses for Identified Themes

Table 2: Key Themes and Representative Responses for Principal Component Analysis

Theme Example Response

Need for Linear Algebra Re-
fresher

“Eigenvector and eigenvalue calculation could be a nice refresher.”
“Would be nice to recap eigenvalues and their properties before this
lecture.”
“As I was first learning it, I for sure needed a recap of how eigenvalues
are calculated to understand how PCA works”
“The calculation of eigenvalues and other linear algebra concepts used
in the PCA algorithm are important to understand when learning about
PCA. A refresher would be crucial.”
“A refresher of how to calculate covariance matrices, eigenvectors, and
eigenvalues is needed.”

Conceptual Understanding “Since matrix multiplication is at the core of PCA, properly understand-
ing what the math is actually doing helps a lot in conceptually under-
standing PCA.”
“I had to recap Linear Algebra to really understand the concept.”

Practical Applications “Maybe a practical rehearsal would be needed in order for an easier focus
on proper concepts rather than the difficulty of calculations.”
“It is difficult to understand how to apply PCA in practical scenarios.”

Table 3: Key Themes and Representative Responses for Gradient Descent

Theme Example Response

Need for Calculus Refresher “Calculating the gradient (via a derivative) and understanding that it is
the slope was an essential part of understanding gradient descent, so
having a refresher on that would be useful.”
“I believe GD is on the side of the harder topics we learned in the ML
course, and I believe a Calculus refresher of partial derivatives would
have made it easier to understand the calculations required.”
“Distance between Calculus and ML is 1 year, so a lot is forgotten.”
“Recapping the derivatives would have been useful.”
“A refresher in multi-variable/vector calculus would have been nice.”

Insufficient Course Coverage “The mathematical reasoning behind Gradient Descent was overlooked
[...] I think a refresher on Calculus would have been useful at that point.”

Practical Demonstrations “An example of how it works helps students understand the concept.”
“A brief demonstration of the formula, showing how parameters are
updated in the direction of the steepest decrease, can help clarify the
intuition behind gradient descent and how the formula works.”

23



Table 4: Key Themes and Representative Responses for Bayes’ Theorem

Theme Example Response

Need for
Probability
Refresher

“Bayes’ equation is one of the most important equations when it comes to understanding
the way ML works. If this is not understood by a student, it will definitely be reflected
in the future understandings of ML concepts, leading to a snowball effect and lack
in understanding. I believe that, although not a complex concept, it is important to
mention it again.”
“Definitely a refresher is needed.”
“A small recap with a more emphasis on things required specifically in the context of
machine learning would have been great.”
“I think a refresher would have helped since Bayes’ Theorem is strongly tied to
Probability and Statistics”

Forgetfulness
of Concepts

“Probabilities can sometimes get a bit foggy as a concept, and a small refresher helps
indeed.”
“I forgot the meaning of a lot of terms like likelihood and prior probabilities.”

Practical and
Conceptual
Challenges

“A practical refresh would be a key aspect to get used to the calculations.”
“Also, more practical exercises would be more helpful than just stating the equation
again. For me, even though I had a good understanding of it, in the beginning I
struggled to see the applicability of it.”

Terminology
Confusion

“Getting a better grasp on the influence of posterior, prior probabilities in relation with
likelihood.”
“What could be refreshed is the terminology around it: ”posterior“, ”likelihood ra-
tio“ etc.”

Simplicity of
Formula

“Bayes’ rule doesn’t deal with any advanced statistical topics, so no refresher needed.”
“It is a simple formula - a refresher seems kinda useless.”
“The amount of probability theory used in Bayes’ Theorem is very small, thus only
basic concepts are needed. ”

Table 5: Key Themes and Representative Responses for Hierarchical Clustering

Theme Example Response

Simplicity of
Mathematics

“The math behind hierarchical clustering was one of the easiest to understand.”
“The mathematical concepts used in clustering are not advanced, thus I see no refresher
is needed.”
“Mathematically it’s not complicated. For these clustering methods it is important to
get the intuition right.”

No Need for
Refresher

“No advanced mathematical concepts are used in hierarchical clustering, so no recap
needed.”
“A refresher will not improve the learning experience because no complex mathematical
concepts are needed for this topic.”
“I do not think a refresher would have made it even easier to grasp.”

Visualization
and Logic

“A good spatial and logical thinking that can be achieved by having a good mathematical
foundation helps visualize the concept better.”
“Being familiar with geometry helps in creating a visual image of the clustering process,
making it easier to understand.”

Subtler Mathe-
matical Topics
Needing a Re-
fresher

“Placing more focus on the mathematical concepts used in hierarchical clustering [...]
would help clarify linkage methods.”
“Yes, because the actual meaning behind measurements for within cluster points would
have been more intuitive.”
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Appendix C: Template for a Topic-Specific Mathematical Refresher
The following structure outlines a flexible refresher module that instructors can adapt to their specific ML-related needs. It
provides a comprehensive road-map for reinforcing essential mathematical concepts prior to introducing a given ML technique.
While instructors should tailor the depth, examples, and exercises to suit their course objectives, the overall framework remains
broadly applicable to any math-intensive ML topic.

1. Overview and Learning Objectives
• Title: Clearly indicate the specific topic (e.g., “Refresher on Eigenvalues and Eigenvectors”).
• Objective:

– Explain the purpose of the refresher.
– Briefly state why this refresher is necessary and how it ties into the upcoming ML topic (e.g., “Eigenvalue and

eigenvector concepts are integral to PCA. Understanding these will ease your grasp of dimensionality reduction.”)
• Learning Goals: List a short set of specific, measurable objectives for the refresher.

2. Conceptual Overview
• Provide a concise explanation of the topic.
• Include:

– Key Terminology: List the essential terms that students must understand (e.g., covariance matrix, eigenvalues,
eigenvectors).

– Definitions (e.g., eigenvalues and eigenvectors, their properties).
– Intuition and Relevance (e.g., how eigenvalues relate to PCA in ML).

• If applicable, use diagrams or visual aids for better comprehension.

3. Step-by-Step Guide
• Breakdown of Core Techniques:

– Divide the topic into manageable subtopics.
– Example for Linear Algebra with PCA:

* Step 1: Setting up the eigenvalue equation (Ax = λx).
* Step 2: Solving the characteristic equation (|A− λI| = 0).
* Step 3: Computing eigenvectors.

• Include worked examples with detailed explanations.
• Highlight common mistakes or tricky steps (e.g., forgetting to check matrix dimensions).

4. Practical Applications
• Demonstration of Use in ML:

– Provide a real-world application of the topic in ML.
– Example: “Applying eigenvalues to reduce dimensionality in PCA”.

• Encourage platforms like Jupyter Notebooks to provide immediate feedback or hints.
• Include a simple Python implementation to illustrate concepts (e.g., numpy for matrix decomposition).

5. Practice Problems
• Objective: Allow students to reinforce learning.
• Include:

– Basic Problems: Focused on fundamental calculations.
– Intermediate Problems: Introduce context or combine subtopics.
– Applied Problems: Tie the math back to an ML scenario.

• Provide solutions with detailed steps.

6. Summary and Key Takeaways
• Highlight:

– Key formulas and properties (e.g., the eigenvalue equation).
– Core insights (e.g., “Eigenvalues indicate the magnitude of principal directions”).
– Reinforce why a grasp of this math is pivotal for deeper understanding and better performance in the ML topic.
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7. Final Assessment
• Objective: Measure improvement and readiness to apply concepts in ML.
• Methods could include:

– A quiz containing a combination of multiple-choice, fill-in-the-blank, and short essay questions.
– Coding exercises that incorporate both the math and its ML application.

8. Supplementary Resources
• Suggested readings, videos, or tools for further learning (e.g., links to tutorials on matrix algebra).

Appendix D: Generative AI Prompts
• Grammar and Style:

– Can you please check this paragraph for grammar mistakes?
• Formatting in LaTeX:

– Please format this table in LaTeX: ⟨data⟩.

– How can I improve the layout of ⟨data⟩ in LaTeX?

– Please help me format the position of these 2 images in LaTeX so that they appear next to each other: ⟨images⟩.

– How can I fix this ⟨error⟩ in LaTeX?
• Visualizations in Python:

– I want to visualize this ⟨data⟩ with a heatmap. Can you please provide the necessary code in Python to create the
visualization?

– How can I make the font of the labels on the x and y axes of my plots bigger?
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