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IV 

SUMMARY 

Plate-springs are construction elements with interesting properties which may be 
used to construct accurate guiding mechanisms. Good reproducibility of the 
relative motion of the parts of the mechanism may be obtained due to the lack of 
play and high stiffnesses in the direction of the "fixed" degrees of freedom. 
These high stiffnesses will generally depend upon the magnitude of the defor­
mations of the plate-springs and thus a limit to the maximum deflections will in 
many practical cases be imposed. 

Apart from the different advantages of plate-spring constructions one of the 
main drawbacks might be the absence of a "technical infrastructure" for their 
application. Practical experience in the design of plate-spring mechanisms is 
limited and has not been documented extensively. Also the information about the 
behaviour of the mechanisms under influence of different loading conditions is 
not available, or in some instances, not easily accessible. 

In this thesis additional Information about the behaviour of plate-spring 
mechanisms will be derived. In addition this information will be combined with 
information obtained in previous researches in three chapters In an attempt to 
make it accessible for designers of plate-spring mechanisms. 

To obtain additional information an elastic-line model for a plate-spring under 
three dimensional loading is developed in chapter 2. In chapter 3 and 4 an 
approximating analytical method Is described which may be used to obtain 
solutions for the equations found from the mathematical model. Comparison of 
calculated and measured results, obtained with experimental set-ups discussed In 
chapter 8, indicated that the elastic-line model had to be extended. Two 
additional effects had to be considered. The first effect has been noted earlier 
and is related with the transition from the stress distribution as found in 
bending of beams to the one found in the bending of plates. 
The second effect is related to the restrictions imposed by the clamped ends 
upon the torsional deformation of a plate-spring. This effect of the "con­
strained warping" of the cross-section has been incorporated Into the mathe­
matical model. 

In chapter 5 to 7 the main properties of different plate-spring mechanisms is 



discussed. In chapter 5 the most complete description of the effects encountered 
in the design of plate-spring mechanisms is given, as applied to the design of 
plate-spring parallel guidings. Chapter 6 contains additional information as 
might be used in the design of cross-spring pivots. A selection of different 
plate-spring applications is discussed in chapter 7. Also in this chapter a 
discussion about the possible advantages of the use of "reinforced" plate-spring 
elements in parallel guiding mechanisms. 

In a separate appendix to this thesis the hysteresis in plate-spring mechanisms 
is briefly discussed. Generally it is considered as an advantage of plate-spring 
mechanisms that "almost no" hysteresis is present. To quantify the magnitude of 
hysteresis to be expected in these mechanisms measurement of some of the factors 
influencing the hysteresis have been started. The preliminary results will be 
discussed in Appendix A. 
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INDEX OF GLOBAL SYMBOLS 

The main symbols used in this thesis will be defined here. Symbols used only in 
a single part of the text will be defined in the text. 

Decimal point, Multiplication sign. 

In the text the comma-sign, ", ", will be used to mark the decimal point in 
numbers. A dot at the middle of the character line will be used as 
multiplication sign. 

Symbol Definition Dimension 

E 
F 
G 
h 
1 = 1 , 

K , K , K X' y' z 

Cross-sectional area of plate-spring 
( b«h ) 
Geometrical parameter in cross-spring 
pivots (fig. 6.3) 
Width of plate-spring (fig. 1.1) 
Stiffness 
c , c , c , linear stiffness 
c^, Ci, CQ, rotation stiffness 
Young's modulus 
Force 
Shear modulus 
Plate-spring thickness (fig. 1.1) 
Moment of inertia of the cross-sectional 
area of the plate-spring around the z-axis 

1 3 
( = T j - b - h ) 
Moment of isertia of the cross-sectional 
area of the plate-spring around the x-axis 
( = ^ • h • b 3 ) 

Polar moment of inertia of the cross-
sectional area of the plate-spring around 
the y-axis 

1 3 ( for b > h follows J = — • b • h ) 
Compliance factors of the plate-spring 

3 .. 12 
cross-section 

(m2) 

(-) 

(m) 

(N/m) 

(Nm/rad) 
(N/m2) 
(N) 
(N/n 
(m) 
(N/m2) 

K 
E-h'bJ y G»b-hJ Z E'b'h" 

Length of reinforced plate-spring element 

(m4) 

(m4) 

(m4) 

(1/Nm2) 

(m) 
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Length of elastic part of plate-spring 

Mass 
Rate of reinforcement of reinforced plate-

fficient related with the effect of the 

(m) 
(kg) 

q 
spring element (fig. 7.11) (-) 

s Length coordinate measured along the axis 
of the plate-spring (fig. 2.1) (m) 

u, u(s), u(i) Displacements in the directions of the 
v, v(s), v(Jl) x, y and z-axis 
w, w(s), w(i) (fig. 2.2) (m) 

y Coordinate-axes of the plate-springs (-) 

z (fig. 2.1) 

4>,<Ks) ,<|»(A) Rotation around the x-axis 

9,9(s),9(A) Rotation around the y-axis 

$, <J)(s) , 0(A) Rotation around the z-axis 

(rad) 

(rad) 

(rad) 

Coe 
constrained warping, ( para. 4.5) (-) 

I , 24 
(for plate-springs with b > h p = rr ' i TTZ ) 

"Warping constant" for the plate-spring 

cross-section J_ ,3 J N fm6y 
144 ( for b > h follows r - 7TT * b"3-hJ ) (mu) 

Poisson's constant (-) 
(for steel v = 0,3 is used in this text) 
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Chapter 1 

Introduction 

1 General remarks, advantages and applications 

Plate-springs are construction elements with a number of interesting pro­
perties» Two parts connected to each end of a plate-spring, figure 1.1, are 
rigidly connected to each other In the direction of the three "in-plane" 
degrees of freedom. In the remaining three degrees of freedom small rela­
tive movements may be made without exceeding the elastic stress limits of 

4 6 the plate-spring material. The extremely large ratios, up to 10 - 10 , 
between the stiffnesses in the "in-plane" and "out-of-plane" directions 
yield interesting possibilities for the design of mechanisms. 

Different combinations of plate-springs may be used to construct mecha­
nisms. The most commonly known mechanisms are the plate-spring parallel 
guiding and the double symmetric orthogonal cross-spring pivot shown in 
figure 1.2. In these mechanisms two parts of the construction are connected 
by two plate-springs. Generally these two plate-springs will allow one of 
the two parts to move with one degree of freedom relatively to the other. 
As will be discussed later there will generally be one degree of freedom 
that is determined twice (see ch. 5). 

In the mechanisms shown in figure 1.2 two plate-springs are acting parallel 
and one degree of freedom remains "free". Another possibility Is to make 
constructions using two plate-springs in series. In that case only one 
degree of freedom is determined. Thus simple elastic shaft couplings and 
other mechanisms may be devised (see ch. 7). 

The advantage of plate-spring mechanisms have been discussed by different 
authors (Jl, HI, Bi, Yl, etc.). 
The main advantages noted are : 

* Relative motion is performed without any sliding or rolling contacts. 
This results in a lack of friction and wear. 



Figure 1.1 

A plate-spring fixes the relative motion of its two clamped ends in three 
of the degrees of freedom with relatively high stiffness. In the remaining 
three degrees of freedom limited displacements of the ends can be made. 
These displacements may be described as, 
(b) - Linear motion In the direction of the x-axis 
(c) - Rotation around an axis parallel to the z-axis and located in the 
plane of the plate-spring and 
(d) - Rotation around an axis parallel to the y-axis and located in the 
plane of the plate-spring. 

2 -

Figure 1.2 

Two of the most well known plate-spring mechanisms are the plate-spring 
parallel guiding (a) and the cross-spring pivot (b). In these mechanisms 
the deformation of the plate-springs is restricted to bending around axes 
parallel to the z-axis. Therefore every point of the mechanisms will move 
in a plane parallel to the x-y-planes of the plate-springs. The x-y-plane 
is therefore called "the plane-of-motlon". 

The two parts to be connected are solidly connected in the degrees of 
freedom which are to be fixed. This results in a total absence of 
"play" and high stiffnesses in these directions. Together these two 
facts lead to a highly reproducible movement of the two parts relative 
to each other. 

Plate-spring mechanisms are highly insensitive to the influence of 
dust, moisture, heat and other environmental conditions. 
To obtain a certain displacement a force should be applied and this 
opens the possibility to use the plate-springs both as a guiding and as 
a measuring element. 

Accurate guiding mechanisms may be produced without expensive parts or 
production processes. 

These advantages have been used extensively in the field of instrument 
design. The reproducible motion is used to guide elements, such as optical 
parts, relative to each other. The lack of friction and the small magnitude 
of the hysteresis is used to guide parts in measuring devices (weighing 
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scales, pneumatic instruments, etc.)■ Among others Haringx (HI) and 
Breitinger (Bl) have indicated that the advantages may be valuable in other 
disciplines of engineering design as well- The miniaturization of products 
and production machinery will enable, and even lead to, the application of 
plate-spring mechanisms, Recent examples of constructions using elastic 
elements are : 

* Guiding mechanisms for lenses in optical storage equipment such as 
Compact Disc (fig* 1°3), Laser Vision etc. 

* Guiding elements for miniature grippers used in mechanisation machines. 
* Guiding and driving elements in the design of micro-manipulators for 

the micrometer and sub-micrometer range * 

Figure 

lens 

An example of application of a plate-sprlng parallel guiding is found in 
Philips' Compact Disc player.Here plate-springs are used to connect the 
lens body with the track-following mechanism. 

4 -

* 

It is surprising to note that application is not as numerous as might be 
expected. This might be caused by the existence of a number of disadvan­
tages. When these disadvantages are not emphasized enough, disappointing 
experiences of designers of plate-spring mechanisms may result. This „ill 
lead to prejudgment and a resistance against the use of plate-spring 
elements. 

The most important disadvantages of plate-spring mechanisms are : 

* The allowable displacements, linear or rotation, are limited. Limits 
are given by the elastic limits of the plate-spring material and, more 
important and less well known, the reduction of the stiffness of the 
mechanism in the fixed directions. Typical values for the range of 
displacements are ± 0,2 rad for rotations and ± 10 rm» for translations. 

* To maintain a certain displacement a driving force should be applied. 
In some mechanisms such a force might be undesirable, in other cases 
the force may be considered to be an advantage. Different possibilities 
exist to reduce the magnitude of the driving force (Dl, El), but such 
solutions are only used in special applications (W2). 

* The relative movement prescribed by the Plate-sPrings „ill l n general 
not be a pure rotation or translation of the two parts. 

In plate-spring guiding mechanisms as shown in figure 1.2 one degree of 
freedom is overdetermined. Upon assembly or during the lifetime the two 
plate-springs may apply internal loads to each other. Due to these 
unknown and unpredictable stresses the behaviour of the mechanism may 
be unpredictable, or time and temperature dependent. 
Once the existence of this over-determination of the one degree of 
freedom is recognized relatively simple methods are available to avoid 
the internal stresses (see also ch. 5 and 6). 

For the design of plate-spring mechanisms there exists no "technical 
infra-structure". Therefore designers „ill first invent a solution to 
their problem, using conventional elements, that satisfies an assumed 
set of requirements. Attempts to introduce plate-spring elements after­
wards are generally in vain due to the different geometrical require­
ments. w^en the use of plate-springs would have been considered at an 
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early stage in the design process their application might have been an 

advantage. 
Another result of the lacking "infra-structure" is the limited expe­
rience and know-how about reliable and simple methods to connect plate-
spring to machine parts. The presence of dead-lines in the design pro­
cess will thus favour the use of conventional solutions. 

* The behaviour of plate-spring elements is not generally known. Diffe­
rent authors have studied the behaviour in different respects. The 
results are however not always easily accessible for designers. 

The first two disadvantages are elementary. The second one will be a draw­
back only in special cases. The existence of the remaining disadvantages 
may be considered as problems to be solved. Time and effort should be dedi­
cated to the development of a "technical infra-structure". The information 
about the behaviour of plate-spring mechanisms may be collected, additional 
information may be searched for and a translation of the information to a 
form easily accessible and easily used by designers may be made. 
In the following it will be attempted to contribute to the solution of 
these problems. Main attention will be given to the summarizing and the 
supplementing of the available information about the behaviour of plate-
spring mechanisms. This will be discussed in chapter 2, 3 and 4. In the 
chapter 5, 6 and 7 information for designers will be given. 

2 Aim and scope of present work 

Previous research about plate-spring mechanisms has been directed to the 
analysis of the behaviour of the plate-springs under loading in the x-y-
plane. For the mechanisms shown in figure 1.2 this plane is called the 
"plane-of motion". Every point of the mechanism moves in a plane parallel 
to the x-y-planes of the two plate-springs. The deformations considered in 
these researches are restricted to bending of the plate-springs around the 
z-axis. 

6 -

In first instance the results of such researches are : 

* The stiffness of the guiding mechanism in the desired direction of 
motion. 

* The maximum value of the bending stresses at a certain deflection in 
the mechanism. 

These results could be obtained with a linearized form of the differential 
equation which may be used to describe the bending of long and slender 
beams. They are only valid for relatively small displacements. 
The next parameter of interest is the loading capacity of the guiding 
mechanism. To estimate this the buckling load of long slender beams loaded 
in the plane-of-motion was calculated. 

As the guiding mechanisms were mainly used in measuring instruments the 
non-linearity of the force-displacement relation and the accurate descrip­
tion of the relative motion of the two parts of the mechanisms were impor­
tant characteristics. The linear theory had to be abandonned and different 
ways to solve the non-linear equations were developed (for a brief review, 
see para. 3.2). The results obtained from investigations with regard to a 
single plate-spring are , 

* Description of the geometrical non-linearity in the force-displacement 
characteristics at relatively large displacements. 

* Expressions for the stiffness of deformed plate-springs in the direc­
tion of the y-axis. 

With regard to the behaviour of mechanisms information about the relative 
movement of the two parts of the mechanism was obtained. 

These results were all derived using an "elastic-line" model for the plate-
springs. Basically this model is known from general theory about elastic 
deformation described by Love, Kirchhoff, Kelvin and others in the nine­
teenth century (lit. LI). Applications of these theories to plate-spring 
mechanisms were reported by, (among others), Eastman (1937, El), Young 
(1944, Yl), Haringx (1949, HI), Hasselmeler (1954, H2), Lotze (1964, L2) 
and Zenov (1970, Zl) . More recently Dijksman (1979, Dl) has developed a 
non-linear analysis of cross-spring pivots. 
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Apart from the theoretical observations about plate-spring mechanisms dif­
ferent authors have attempted to describe practical applications. An inte­
resting summary of possibilities to make practical and impractical mecha­
nisms was given by Breitinger (1976,151), His description is restricted to 
qualitative remarks only. 

Although information about relatively large deflections is derived by dif­
ferent authors the deflection in practical applications of plate-springs in 
guiding mechanisms is relatively small. Only for small deflections the 
advantages of plate-springs (reproducible motion, high stiffness) are fully 
utilized. This is illustrated in figure 1.4 where the ratio between the 
stiffness c and cx of a plate-spring used in a parallel guiding is shown 
as a function of the relative displacement of the guiding. In this thesis 
it will generally be assumed that the plate-spring deflections are relati­
vely small. 

It may be concluded that all previous publications are based upon obser­
vations about the "elastic-line" model for the plate-spring and are 
restricted to loading forces in the plane-of-motion. For practical appli­
cations this model may prove to be insufficient. 
Dijksman (Dl) for instance noted that a considerable contribution to the 
non-linearity in the force-displacement characteristics may be expected 
when the plate-spring is considered as a plate with a finite width. Unfor­
tunately he does not quantify this effect in his analysis and only 
describes the magnitude of the geometrical non-linearity. 

In applications of plate-spring mechanisms it Is also not practical to 
assume that loading forces are restricted to act in one plane. Loading 
forces and moments in the other directions will also Influence the beha­
viour of the mechanisms. In such cases other deformations in the plate-
springs, such as shear , bending around the x-axis and torsion around the 
y-axis should be taken into consideration. 

In this work it has been attempted to summarize the relevant information 
known from earlier research and to derive additional information that may 
be considered necessary for the design of mechanisms. Two separate parts in 
this work may therefore be distinguished, 

One part describes the development of a mathematical model describing 
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One of the advantages of plate-spring mechanisms is the large ratio between 
driving (c ) and guiding stiffnesses. The ratio between c and c for a 
plate-spring parallel guiding is given by 

c „2 
c Z 12 2 

h +7ÏÏÖ - u 
which relation is derived in chapter 5. From this expression it is clear 
that a large ratio, for instance more than 10 , is only obtainable for 
small deflections u of the mechanism. Therefore application of plate-sprin, 
mechanisms is restricted to relatively small displacements. 
In the graph the re] 
ness ratio is shown. 
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the deformations of plate-springs under three-dimensional loading con­
ditions This model is subsequently used to derive the desired infor­
mation, 

* The second part gives the information required to design plate-spring 
parallel guidings, cross-spring pivots and some miscellaneous mecha­
nisms. In this part both a review of earlier results and new results 
are presented. The general part of the information as presented in the 
paragraphs 5.2, 6.2 and 7.2 has not been a subject of research. The 
information is supplied as background information usefull for the 
design of plate-spring mechanisms. The expressions given in these parts 
may be just rough estimates. 

In chapter 2 of this thesis a mathematical model to analyse the deforma­
tions of a plate-spring under three dimensional loading conditions is 
derived. This model is based upon the concept of the "elastic-line". A 
short review of the methods used to determine the deformations under loads 
in the "plane-of-motion" is given in chapter 3. As none of the analytical 
methods appears to be easily used for the case of three-dimensional loading 
a new method, the "iterative-analytical" method, to obtain approximate 
analytical solutions is presented. A short description of a computer 
program to solve the derived equations using numerical integration techni­
ques is given. 

In chapter 4 the use of the "iterative-analytical" method for the case of a 
plate-spring loaded by forces Fx and Fz is discussed. From results of mea­
surements it proves that the elastic-line concept is not adequate to 
describe the main charasteristics of the plate-springs. An improved model 
taking into account the effects of the warping of the cross-section is 
developed in this chapter. 

Application of the results of this analysis to the case of plate-spring 
parallel guidings is described extensively in chapter 5. In the same chap­
ter relevant information about parallel guidings is given. In this chapter 
almost all theoretical aspects about the behaviour of plate-spring mecha­
nisms are discussed and, where needed, compared with results from measure­
ments. 

In chapter 6 the main characteristics of cross-spring pivots are discussed. 
The kinematic motion of the two parts of the mechanism relative to each 

- 10 -

other is described in second-order approximation using the equivalent model 
of a wheel rolling along a line. 

To indicate the multitude of possible applications of plate-springs a num­
ber of them are described in the first part of chapter 7. In the second 
half of this chapter the posibilities to improve the performance of paral­
lel guidings by partial reinforcement of the springs is discussed. 

A description of the experimental set-ups used to test the developed mathe­
matical models and of a number of important factors in the design of these 
set-ups is given in chapter 8. 

In a separate Appendix to this thesis the subject of static hysteresis in 
plate-spring mechanisms is briefly discussed. Sources of this hysteresis 
and an estimate of the magnitude of their effects will be indicated. 
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Chapter 2 

Derivation of a general set of equations. 

Introduction. 

To obtain a set of equations that determine the deformations of plate-
springs they may be treated as long thin rods. In this case it is assu­
med that only deformations due to bending and torsion need to be consi­
dered. It is assumed that the stress distribution in a cross-section is 
a superposition of the stress-distributions due to the pure bending of 
the central line about two axis and due to pure torsion about the cen­
tral-line. In this case the stress at the central-line will be equal to 
zero and the central-line is also referred to as "neutral-line". 

In this approach the plate-spring with its rectangular cross-section is 
represented only by its central-line having two bending and one torsion 
stiffness. Therefore this approach is also referred to as the "elastic-
line"- concept. 

The following assumptions will be made in this analysis. 
The center line is considered to be inextensible. Deformations due to 
transverse shear will not be taken into account. 
As a generalization of the "Bernoulli-hypothesis" it will be assumed 
that linear relations exist between the bending and torsion moments and 
the respective curvatures and twist of the plate-spring. 
The deformations will be restricted in order to avoid stress levels 
above the elastic limit of the material. 

These assumptions are justified in most applications of plate-spring 
mechanisms. In general they allow for a good approximation of the first 
order effects. However there will be deviations between theory and 
measurement due to a number of additional effects. Such effects, which 
will be discussed in more detail in following chapters, are, 

Non-linearities in the relations between the moments and curvature and 
twist which may occur due to transition from plane-strain to plane-
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stress bending or due to the constrained warping of the cross-section 

of the plate-spring. 
Additional stress components due to the influence of clamping and loa­
ding of the plate-spring. The assumption about the stress distribution 
is valid "at a distance" from points of clamping or loading. In the 
neighbourhood of such places a more detailed analysis may be required. 

As a result the equations developed in the rest of this chapter offer a 
good approximation of the deformations of loaded plate-springs when the 
loads remain sufficiently small and when the length of the plate spring 
is sufficiently large to allow for neglecting the end-effects. 

Selection of coordinate systems. 

To determine the deformations of a plate-spring clamped at one end and 
loaded at the other end a general set of equations will be developed. 
To describe the position of the plate-spring an orthogonal coordinate 
system with its origin at the clamped end and the y-axis along the 
center-line of the, originally straight, plate-spring will be used. The 
remaining axes are directed along the principal axes of the crost-sec-

tion. 
In figure 2.1 this coordinate-system and the line-coordinate s along 
the center-line are indicated. At the free end the plate-spring is 
loaded by a force and a torque which can be developed in components 
along the three coordinate-axes. The force components are F F , and 

x y* 
F respectively, while the torque components are M , M and M . 

When the plate-spring is deformed the position and orientation of a 
cross-section at a distance s from the clamped end can be described by 
six parameters. The position of the center of the cross-section is 
determined by the displacements u, v and w in the directions of the x, 
y and z-axis. For the orientation a set of three angular coordinates 
can be used to describe the rotations of a local orthogonal coordinate 
system. This local coordinate system has its origin at the center of 
the cross-section, the y-axis along the tangent to the center-line and 
x- and z-axis along the principal axes of the cross-section. 

Figure 2.1 Selection of the fixed coordinate system with the origin at the 
ciamped end. The y-axis coincides with the undeformed center-line and 
the x- and z-axes with the principal axes of the cross-section. The 
definitions of the positive directions of the loading components and 
the dimensions of the plate-spring are indicated. 

Different definitions of the angular coordinates have been proposed. 
For plate-spring mechanisms where angular deformations are moderately 
large (less than one radian) the modified angular coordinates as sug­
gested by Euler can be used. The definitions of the angular coordina­
tes, 4*1 6 a n a 0 are given in figure 2.2. 

The definitions of the angular coordinates allow for the transformation 
of a vector _r_ in the original coordinate system to a vector r_ in the 
new coordinate system. The total transformation matrix for the orien­
tation of the orthogonal axes is a result of multiplying the three 
transformation matrices for each rotation indicated in figure 2.2. This 
results In: 

y' 

= R 

1 0 0 
0 coscp sinip 
0 -sindj cos(p 

cos9 0 - s in f 
0 1 0 

s in9 0 cost" 

cos$ 
s in i ( ) 

0 

s i n if 
COSlf) 

0 

0 
0 
1 

(2 .1 ) 
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Figure 2.2 Definition of coordinates,determining the position and orientation of 
a cross-section in the deformed plate-spring. The position is 
determined by the three displacements u, v and w (fig.a) . The 
orientation of the cross-sect!on can be determined with the angular 
coordinates <\>, 9 and <J). The rotations of the cross-section are given 
by, 

1. A rotation <t> about the original z-axis (flg.b) . 
2. A rotation 9 about the new y-axis (fig.c) . 
3. A rotation <\> about the new x-axis . ( f ig .d ) . 

- 1 

2D3 Global curvatures and moments. 

As stated it will be assumed that a linear relation exists between the 
curvatures and twist and the respective moments. For a small part of 
the plate-spring of which the orientation of the center-line and prin­
cipal axes are given by the x' , y' and z' axes this can be expressed 

K 
X 

K 
y 

K 

■ M , 

y 

• M . 

(2.2) 

where K_ and are the curvatures about x' and 
y' is the 

twist about the center-line. Mx, , M , and Mz, are the applied moments 
about the axes x' , y' and z'. The coefficients IC,, K_ and K are the 
compliance factors which are determined by the dimensions of the cross-
section and the properties of the material. 

The expressions (2.2) relate the local curvatures and twist of the beam 
to the applied torque decomposed into components about the local axes. 
The shape of a deformed plate-spring will, however, be described with 
respect to the fixed, or global, system of coordinates. Similarly the 
loading forces will generally be specified with respect to the fixed 
system of coordinates as shown in figure 2.1. 

An expression relating global curvatures to global moments can be deri­
ved from equation (2.2). Therefore it is usefull to write (2.2) in the 
form of a matrix equation, 

V 
V 
*>-

= 
K 

X 
0 

0 

0 

K 

o' 

0 
0 
K 

• 
M r x ' 
M , 

y M , 
z 

(2,3) 

In this expression M' is the torque-vector with respect to the local 
system of coordinates. Transformation of this vector to the global 
system is easily achieved with the transformation expressions specified 



in equation (2.1). This yields, 

(2.4) 

iions containing the derlvati-
simple. The rotation axis for 

ot orthogonal and correct expressions can be obtained 

K • R 

Transformation of the vector K to expressi 
ves of the angular coordinates is not as simple. The rotation axis for 

(|i , 6 and $ are not 
mathematically (lit. B2, LI ) or can be taken from figure 2.3. From 

figure 2.3. follows 

y' 

0 - s i n 9 
cosc|) sindj.cosÊ 

-sind. cos<KcosE 

dj; 
ds 
d l 
ds 
dij> 

ds 

R' 
ds 
d_9 
ds 
d<j> 
ds 

(2.5) 

From (2.4) and (2.5) a set of equations relating the global curvatures 

and torques is obtained as 

d(|) 
ds 
de 
ds 
d* 
ds 

R' (2.6) 

With the known matrices R' , K and R solutions for t\> , 9 and <t as func­
tions of the coordinate s may be obtained by integration when the loa­
ding vector _M is known as function of s. 

2.4 Relation between end-loads and local moments. 

For an end-loaded plate-spring an expression for the three moments at a 
cross-section at s can be obtained with the help of the equilibrium 
equations for the part of the plate-spring between s and the end. From 
figures 2.1 and 2.2 the following expressions are obtained: 

18 -

,, ■ dO(s) 
y' ds cos8(s) >sin(i,(s) ,dKs) ds 

-sin^Cs) d3(s) cosG(s) 'cos(Ks) ds 

and K , .can be 
y 

Figure 2.3.The local curvatures and the twist, K , 
x' 

expressed In terms of the derivatives of the angular coordinates. 
These equations can be directly derived from the drawing or may be 
obtained along formal mathematical lines (lit.B2) 
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M (I) + F °(i + v(i) - s - v(s)) + F °(-w(JD + w(s)) 
x z y 

M (i) + F •( -u(I) + u(s)) + F •( w(A) - w(s)) (2.7) 

M (i) + F • ( - ! - v(i) + s + v(s)) + F °( u(I) - u(s)) 

Finally a set of expressions relating the displacements u, v and w to 
the angular coordinates can be derived. This yields 

u(s) = ƒ (-cos<l>(t) «sln^t) + sln<Kt) °sin9(t) °cos<t>(t)) °dt 

v(s) = JS {(cos<Kt) 'Cos<t>(t) + slncKt) °sin9(t) -siniKt)) - 1 }°dt 

w(s) = o/ S ( siniKt) °cos9(t) ) °dt (2.8) 

where t is a dummy parameter used for the integration. 

As a result combination of equations 2.6, 2.7 and 2.8 yields a set of 
three non-linear differential, or integro-differentlal, equations which 
determine the deformations of a plate-spring subjected to end loads. 

Conclusion. 

The analysis given in this chapter leads to a set of equations that 
describe the behaviour of a plate-spring under end-loads. Each of the 
three equations is a second-order non-linear differential equation. The 
boundary conditions needed to solve the equations are available at two 
different places and the three equations are strongly coupled. The 
total set of equations is shown in figure 2.4. For such a set of equa­
tions no general analytical solution has yet been obtained. 
A set of equations as shown in figure 2,A may be solved with numerical 
techniques for different combinations of loading forces. Due to the 
triple boundary value problem a rather complex computing program will 
be required while a thorough understanding of the behaviour of the 
plate-spring will be needed to devise a suitable iteration strategy. 
Examples of the use of numerical techniques to solve the equations will 

M ( s ) 

M ( s ) = 
y 

M ( s ) = 

ds ds 
= K *{ coe9-cosi(i«(M U ) 

X v 
• U + V ( J O - S - V ( S ) ) + F -(-wQ)+w(s))H 

y 
4- cosB-sinit>'(M (A) + F ' ( - u ( A)+u(s ) ) + F ' (w( J t ) -w( s ) ) )+ 

y z x 
- s i n 9 ' ( M (*) + F - ( - J l - v ( J D + s + v ( s ) ) + F «(u( J l ) - u ( s ) ) ) 1 

z x y 

COS(LT~- T sirKbocosö *-— * ds ds 
= K • I (-cos(|>-sIn<H-sintP'sln9«cos40 *(M (JL)+F ' ( J l + v ( X ) - S - v ( s ) ) + P • ( - » ( Jt)+w(s) ) H 

y x z y 
+(cos ( | ; «cos iH8in ( | f s in9«s ln4) - (M (X) + F » ( - u ( J D + u ( s ) ) + F ' ( w ( J D - w ( s ) ) ) + 

y z x 
+ sin(j>'cos9-(M (A) + F «(-Jt-vC H)+s+v(s)) + F - ( u ( l ) - u ( s ) ) ) 1 

z x y 

. . d6 , , Q dé 
- s in^^ r— + cos'L°cos9°—■* = ds ds 

= K °{ (sin<|,°sincH-cos<|>esine'cos<tO'(M ( Jt)+F •( A+v( i ) - s - v ( s ) )+F • f-w( Jl)+w( s ) ) )+ 
z x z y 
+(-sin(|>°cosA+cos<l;*sin9*sin<t>) »(M ( I) + F - ( - u ( Jt)+u( s ) )+F "(w( Jl)-w(s) ) ) + 

y z x 
+(co8<|)»cos0)«(M (I) + F -(-Jl-vCJl)+s+v(s)) + F »(u(l)-u(»))) 1 

z x y 

u(s) ■ ƒ (-cosi|j*sin* + sin^°sin9,cos(ti)'dt 

v(s) » ƒ (cos^'cos* + sin^*sin9*si.n4) - 1) *dt 
w(^s) ■ 0J (slnip«cos9) 'dt 

Figure 2.4 Total set of equations relating the angular coordinates and 
displacements to the end loads applied to the plate-spring. 
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be given in chapters 3 and 4. 

Another way to use the general equations is to attempt to simplify them 
in a way suitable for the loading case under investigation The simpli­
fied form that has been studied most intensively is the one where loads 
are only applied in a plane through the center-line and one of the 
principal axis» In such a case only pure bending around the z-axis 
occurs. The relevant equations for this case are: 

M = K . | M + F '(-X. -v(X) +s +v(s)) + F •( u(« -u(s)) } 
ds z l z x y 
u ( s ) . Js -8ln*(t).dt and v(s) = / (cos*(t) - l)Mt (2.9) 

These equations can be differentiated with respect to s yielding 

2 
d *(?' = K • { - F °cos<t> + F ° s i n * } 

, 2 z l x y 
ds 

w i t h ^ ^ - = K «M ( 2 . 1 0 ) 
ds z z 

These two forms of expressions for the deformation of a plate-spring 
loaded in its "plane of motion" have been used extensively. In chapter 
3 a glossary of analyzing methods and a new suggestion to obtain appro­
ximate solutions will be presented. 

In chapter 4 solutions of simplified forms of the general equations 
will be obtained. It will be shown that loading forces perpendicular to 
the "plane of motion" have considerable influence on the properties of 
plate-spring mechanisms. 

Finally it must be emphasized that the obtained equations are just 
approximations. Their derivation has been based upon the elastic line 
concept, a number of assumptions which restrict their applicability. In 
the following chapters some examples of additional effects will be 
discussed. It will be attempted to obtain additional expressions to 
incorporate such effects in the calculations. 

Chapter 3. 

Deformations in the plane of loading. 

Introduction. 
When a plate-spring, clamped at one end, is loaded at its free end by 
forces in the x-y-plane its deformation can be described with the fol­
lowing equations : 

ds Kz'( -Fx°(X + v(J0 - s - v(s)) + V(u(JQ - u(s)) + Hjl) 
d<f(s) 
— = & ^ -jH %Jt f VIXJ - S - V{S)) + _ 

u(s) = fS sin <Kt)°dt v(s) = j S (1 - cos <Kt))-dt (3.1) o O 

which were derived in chapter 2. In order to determine the behaviour of 
plate-spring mechanisms solutions for this equation have to be 
obtained. Many different methods to obtain solutions have been develo­
ped. In many cases equation (3.1) is differentiated with respect to the 
arc length s to obtain the following equations: 

• ( -F • cos <|>(s) + F • sin $(s) ) 

= K -M (3.2) 
z z 

Due to the absence of the displacements u and v these equations allow 
for somewhat simpler solutions. 

A review of different methods for solution will be given in the follo­
wing section. As most of the analytical methods do not enable simple 
application to the general case of three-dimensional loading another 
approach will be developed in section 3.3. 
All methods described are based upon the assumption that the compliance 
factor, Kz, is independent of the curvature of the plate-spring. The 
magnitude of Kz Is determined by the Young's modulus, E, of the mate­
rial and the dimensions of the cross-section, b and h. Two relations 
for Kz are in use. When the width, b, is much larger than the thick­
ness, h, the plate-spring Is treated as a plate. For smaller values of 
b the plate-spring is considered to be a narrow beam. This results in: 
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for b * tl 

for b > h 

where v is the Poisson's ratio of the material. Dijksman (Dl) and 
Schulier (S4) have indicated that the influence of contraction effects 
does not only depend upon the ratio b/h but also upon the radius of 
curvature. A range of transition between plane—stress and plane-strain 
bending has been described by these authors. This transition may have 
considerable effects upon the linearity of force-displacement characte­
ristics of plate-spring mechanisms. Therefore the equations described 
by Di jksman have been used in a numerical method to solve equations 
(3-1) or (3.2)- This method will be described in section 3.4. 
In section 3.5 the results of some of the methods of solutions wil be 
compared with each other and with results from measurements . From the 
comparison an indication of the range of validity of each method can be 
obtained. 

3.2 Review of methods to solve equation (3.1). 

-Exact analytical solution. 
Exact solutions of equations (3.1) or (3.2) may be obtained using the 
concept of elliptic integrals. Such solutions have been obtained by 
Frisch-Fay, Raringx and many others. 
Although it is attractive to obtain an exact solution it has occurred 
to different authors that the use of elliptic functions is extremely 
tedious. As a result different approximating analytical solutions were 
sought. 
A good description of the use of elliptic functions to describe the 
behaviour of plate-springs is given by Frisch-Fay (Fl). 

-Linear beam theory. 
The first of a number of approximating methods for solution is the 
linear beam theory which is used widely to determine strength and 
stiffness of structures. When the deformations are very small the fol­
lowing simplifications and differential equations are used: 

12 

and 
E*b-h -
12°(1 - v') 

3 E»b*h 
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cos <f(s) - 1 sin <Ks) - 0 

^ ^ - - -K • F with l ^ 1 } , - K « (3.3) 
2 z x l ds 'S"Jt z z ' ' ' 

ds 
Although this method is not suitable to study all aspects of the beha­
viour of mechanisms the simple expressions which may be obtained can be 
used to study the main characteristics of different plate-spring mecha­
nisms . 

-Quasi-linear beam theory. 

In the linear beam theory the influence of the loading force F is 
neglected. When the approximation sin<|>(s) = <t>( s) is used a differential 
equation results which can be solved analytically and which allows to 
determine the behaviour of loaded plate-spring mechanisms. The estima-

2 ted errors in this method are of the order J *<Ks) and for technical 
applications angles upto about 0,3 radians might be allowable. 
The resulting expressions for the quasi-linear beam theory are: 

cos 4>(s) = 1 sin <Ks) - <t>(s) 

^V - V ( -', + ̂ y • «•> ) 1th ( *£* W - M2.Kz ds 

(3.4) 
For these equations solutions of the form: 

, . k°s -k°s K s ) = A • e + B • e + C 
with k = / F »K' 

>' z 

can be found. 

-Power-series development. 

The previous two approximative techniques were based upon the assump­
tion that 4>(s) << 1 and the first terms of the power series 
for cos K s ) and sin <KS) were used. Another way to use power series, 
as developed by Dijksman (Dl) and Zenov (Zl), is based upon the assump­
tion that the loading forces remain relatively small. This leads to the 
requirements: 

2 2 
F 'X 'K < 1 , F 'X 'K < 1 and M '1'K < 1 
x z y z z z 

In this case the solution for ij>(s) may be expressed as an expansion in 
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power series with terms of different degree of loading forces6 On this 
basis results for i|i(s) including third order terms in the loading for­
ces have been obtained (Dl, Z1). But in principal there are no problems 
in obtaining higher order solutions. 

With this method expressions describing the behaviour of plate-spring 
mechanisms for values of <$>( s) < 0,6 rad. under the mentioned restric­
tions for the loading forces can be obtained. For practical purposes 
this maximum angle is more than sufficient. However the restrictions to 
low loading conditions might be a disadvantage* 

-"lterative"-analytical solution. 
When u (s) and v (s) are estimates for the functions u(s) and v(s) for 
a particular case of loading of a plate-spring, an approximate value 
of <t>(s) can be found from 

^df1 = Kz°( V ( ~* - v*(1) + s +v"(s) > + Fy°( u*(i) - u*(s) 5 + «z ) 

This equation can be solved analytically provided that u (s) and v (s) 
can be directly integrated» This solution yields an estimated function 
<t> (s) which can be used to obtain new estimates for u(s) and v(s) using 
the relations 

u(s) = - ƒ sin 4»(t) • dt and v(s) = ƒ (cos <\>(t) - 1) ° dt 

Whith these new estimates the process of solving equation 3.1 can be 
restarted. When the differences between subsequent expressions for ij>(s) 
are small enough a solution for equation 3.1 has been obtained. 

The success of this iterative method depends upon the convergence of 
the process. This again depends strongly upon the suitability of the 
initial estimates, u (s) and v (s). When these functions are chosen 
with care it may be possible to obtain a solution for 4>(s) in only one 
iteration step. 
In the section 3.3 it will be shown that it is possible to create good 
estimates and that this process forms a powerfull tool in studying the 
behaviour of plate-springs. 
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-Numerical methods. 

With different methods for numerical integration solutions of equa­
tions (3.1) or (3.2) for a particular case can be obtained. Such a 
solution is comparable with the results from measurements of deforma­
tions of real plate-springs„ The advantage of the numerical method is 
that results are obtained easily and with a good accuracy. The disad­
vantage is that the "numerical experiment" can only describe the reac­
tions of the model assumed to derive the differential equations. Like 
the experimental approach the numerical technique is useful to estimate 
the validity of expressions obtained with analytical methods. In addi­
tion results of numerical solutions may be used to derive "empirical" 
expressions describing the behaviour of plate-spring mechanisms. 
As the numerical integration method is capable of treating any sort of 
differential equation it also allows to estimate the influence of the 
transition from plane-stress to plane-strain bending,, With the expres­
sions given by Dijksman (Dl) describing this transition the behaviour 
of real plate-spring may be estimated. This will be discussed further 
in section 3.4. 

The main difficulty in solving equation (3.1) numerically results from 
the boundary conditions which are specified in two different points of 
the plate-spring. At the clamped end the angle <KS) is equal to zero 
while values for u(j3.) and v(Jt) are needed to start an integration 
procedure. This problem can be solved by an iterative process. Esti­
mates of u(!) and v(l) are used and improved after every cycle. In this 
process it is also important to start with well estimated values to 
improve convergence of the iterative process. 

-Finite Element Method. 

Another method to perform numerical experiments on models of the phy­
sical plate-springs is the finite element method. In this method the 
plate-spring is considered as a system containing a number of smaller 
parts. For each snail part relatively simple relations between the 
relative motion of the ends and the forces applied at these ends can be 
obtained. Solutions for the complete plate-spring are obtained when the 
resulting set of linear algebraic equations Is solved. For larger 
deflections different iterations are required to arrive at sufficiently 
accurate solutions. 
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In this method the set of differential equations derived in chapter 2 
is not used. As this method will give results that are similar and 
equivalent to those obtainable with the numerical integration method it 
has not been used in this research. 
Examples of the application of the finite element method can be found 
in literature (Wl) and (W2). In the first report van der Werf f (Wl) 
describes calculations of the behaviour of the doubly symmetric cross-
spring pivot under different loading conditions.In the second report 
(W2) a finite element program is described that may be used to calcu­
late the main properties of different sorts of plate-spring mechanisms 
in the plane of motion. 
An advantage of the finite element method is that without further 
complications the calculations can be performed on complete mechanisms 
containing more than one or two plate-springs and rigid links. 
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3.3 Iterative analytical solution. 

As stated in the previous section equation (3.1) could be solved when 
suitable estimates for u(s) and v(s) are available. Such estimates can 
be found using the fact that a plate-spring, when considered in the 
plane of motion, has only two degrees of freedom. This indicates that 
the shape for a plate-spring is, to a high degree of accuracy, deter­
mined by two parameters. Suitable parameters are the displacement and 
angular deflection at the end of the plate-spring, u( Jl) and <K A) . 

This assumption about the plate-spring having only two degrees of free­
dom is correct when the deflections are not too large and no buckling 
occurs. As plate-springs are used in the design of mechanisms because 
they have only two degrees of freedom this assumption will not be a 
restriction to the field of application of this method. 

To illustrate the iterative analytical solution the case of a plate-
spring loaded only by the force Fx will be discussed here. The full 
solution of equation (3.1) will be given in Annex 3.1 to this chapter. 

For this particular case equation (3.1) reduces to 

ÉÈLsl m _K ,F . ( x + v ( 1 ) _ s _ v ( s ) ) 
ds z x 

with v(s) = j S ( cos 4>(t) - 1) • dt (3.5) 

To obtain estimates for u(s) and v(s) it is assumed that §(s) is des­
cribed by 

2 3 <t>(s) = a + a »s + a 's + a -s 

and that good estimates for u(s) and v(s) are obtained using the linea­
rized expressions 

u(s) = - o.fS <Kt)-dt and v(s) « - | • o/ S <f>(t)2-dt 

The values of the coefficients aQ to a^ are determined from the boun­
dary conditions 
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4(0) =■ O u(O) - O 
4(A) = 41(A) u(A) = u(A) 

As a result the following estimate for 4>(s) Is obtained. 

*(s) = ( -2°4(A) -6^f- )°(|) + O'KW +bJiiT *><J>2 

Putting 4(A) = 4. , . = u. and $ = -5 this expression becomes 

4(s) = ( -2'(tiA-6'UA)«5+ ( 3-4.^+ 6oUl)=52 (3.6) 

Expression (3.6), which is a general expression for the first estimate 
of the plate-spring shape as a function of 4(A) and u^, may be simpli­
fied for this particular case since Mz=0. This yields 

M -K = { m r > - } , - 0 and thus z z L ds Js=A 
4(s) = 2't,%'l - 4J,°52 (3.7) 

Using this expression to obtain an estimate for v(s) yields 

A = "*A I 3 ^ _ 2 5 + 10 5 ' 

, v*(A) _A . 2 and ^ . - 1 5 • ^ 

When these results are substituted in the differential equation (3.5) 

this yields 

* * ■ ! . -Kz.Fx.A.( 1 - ^ - 5 + */•( f-I3 - fC* + - f ^ 5 ) } 

Through direct integration this can be solved, leading to 

4(s) - -VFx.A2.{ I - W + */•( -if-C + W - 7 ^ + ë K > 1 
(3.8) 

Expression (3.8) gives a new estimate for the shape of the deformed 
plate-spring. To compare this shape with the original estimate in equa­
tion (3.7) the loading force Fx should be expressed in the angular 
deflection of the end of the plate-spring. 
This leads to 

and, after some rearringing, 

4(s) = ( 2»4X°5 - 4,'52 ) • (3.10) 

.{ 1 + ^ L ^ . ( i - = ll»S+10^3-6.SA
 + ̂ _) , 

( 1 - ^ • ♦ p 6 0 - 30=5 

The first factor in (3.10) is equivalent to expression (3=7). The dif­
ference between the two expressions can be easily estimated. When <|>(s) 
is smaller than 0,5 rad„ , the difference along the plate-spring is 
nowhere more than 0,005 rad. This indicates that, for most practical 
purposes, the result obtained after one iterative step is accurate 
enough. To illustrate this the relation between F and <t>0 as given in 
expression (3=9) is compared with similar results from other techniques 
in figure 3 .1 * 

The fact that the technique described above is sufficiently convergent 
in one step is due to the selection of <{> and u as parameters to esti­
mate the shape of the plate-spring. It would be equally possible to use 
the loading force Fx as parameter to describe the estimated shape. 
Using results from the linear beam theory the first estimate would be 

<Ks) « -K 'F •/•< I - j - i 2 ) 
Z X Z 

and along similar lines as described before the following expression 
relating A and Fv is obtained 

*A "-W* 2- ( 2 - ~M'( W * ' >2 > <3-U> 
A result that was also obtained by Dijksman (Dl), and can be used only 
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ative-analysis 

-OiVylM. 

Figure 3.2 Comparison of results from the iterative analytical method with 
exact results. It is clear that this first order estimate may only 
he used for relatively small values of the deflection u( £) . A 
better, second order, estimate of this effect will be obtained in 
paragraph 5.3. 

34 

3.4 Numerical integration. 

The expressions for u(s) and v(s) may be differentiated and equations 
3.1 may thus be written as 

dl>(s-> = K • ( -F ■( I + v(i) - s - v(s)) + F •( u(A) - u(s)) + M I ds z l x y z 

iatSi = sin *(s) (3.12) 
ds 

dv(s) x.1 \ i 
: = COS 4(S; - 1 
ds 

Equations (3.12) form a set of first-order differential equations. With 
standard methods for numerical integration solutions for such a set of 
equations can be obtained with sufficient accuracy. Examples of such 
standard methods are Eulers' method, Henri's method and, in different 
forms, Runge-Kutta methods. In the following the fourth-order Runge-
Kutta integration method will be used (see also Annex 3.II). 

When solving equations (3.12) the simultaneous numerical integration 
will be started from s=0. As can be seen from the first of equations 
(3.12) it will be necessary to know the value of u( A) and v( Jt) to 
determine —~j . However u( JO and v(l) are only known when the equa­
tions have been solved. 
As a result it will be necessary to perform an iterative process of 
estimating u(i) and v(i), solving equations 3.12, improving the esti­
mates for u(A) and v(l) etc., until they have been estimated with suf­
ficient accuracy. For this iterative process different strategies may 
be developed in order to assure convergence to the desired solution 
without excessive computing efforts. This is not trivial since for 
given end displacements expression (3.12) can have an indefinite number 
of solutions. 

The most straight-forward strategy appears to be the one described in 
figure 3.3. After choosing a first estimate for u(£) and v(A) the equa­
tions are integrated. The values of u( S.) and v(i) determined by the 
integration are directly used as new estimates and this continues 
untill the differences in the successive estimates are less than the 
allowed inaccuracy. 
This simple strategy is, however, not "globally convergent". For the 
loading cases, combined with initial estimates, where no convergence 
occurs more refined strategies to determine new estimates can be deve­
loped. 
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To start the Iteration process an estimate for the position of the 
loaded end ts made, point A. Upon Integration the shape of a loaded 
plate-spring Is determined. The newly calculated end position Is 
point B. The determined shape Is the correct solution for the 
loading case shown in c and d. 

^ ^ 

The magnitude of the extra bending moment, Merr, which is added to 
the desired loading M2, can be easily determined from the 
eqiilllbrum equations for the bar AB In figure c. 

Hgurc 3.3 Iterative "shooting" process used to determine the deformed shape 
of a loaded plate-spring through numerical Integration. 

36 

In the following step the new estimate for the position of the 
loaded end mi ght be point B. Upon Integra t ion a new posi t ion for 
the loaded end of the plate-spring is obtained. In order to find 
the desired solution it is hoped that after every step the 
mag nitude of M„ will decrease. 

The described process proves to be suitable for many practical 
loading situations. As shown In figures e and f there may occur 
difficulties. 

When point A is selected as estimate the point B will result. 
Us Ing point B will again generate point A and this will continue 
forever. In such cases the process as described here is not 
convergent. Other strategies to obtain new estimates can be chosen. 
A simple variation would be to select a point "somewhere" on the 
line connecting A and B as a new estimate. Variations of the 
distance from point A supplies a tool that may be used to make the 
process convergent. 

Figu 3.3. Continued 
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For most practical cases the strategies as described in figure 3.3 are 
sufficient. With these methods it turns out that even "exotic"-cases as 
the post-buckling of the Euler-strut and large deformations of C-shaped 
springs can be determined. For this last class of problems Watsong and 
Wang (W3) have used the "homotopy"-method to develop a globally-conver­
gent numerical process to solve equations (3.12). 

The computer program used to solve equations (3.12) as described in 
Annex 3.II, consists of the following sections : 

-Main program, controlling input and output and the "shooting"-stra-
tegy to determine new estimates. To perform integration this program 
calls to, 

-Subroutine RKSTEP, which performs one step of the integration process 
on an arbitrary number of first-order differential equations. This 
routine calls to, 

-Subroutine FUNK, which returns the values of the different deriva­
tives at the specified point of the plate-spring. This subroutine con­
tains the three differential equations (3.12). 

The numerical method to determine solutions for the differential equa­
tions has different applications in the analysis of plate-spring mecha­
nisms. Firstly it is possible to determine highly accurate solutions 
even for larger deflections. Such solutions can be used to test the 
validity of simple expressions obtained with approximative methods. 
Still the solutions can only describe the behaviour of the model used 
to describe the plate-springs and differences between calculated and 
measured values can be expected. 
This comparison of calculation and measurements, when both are suffi­
ciently reliable, may enable to improve the model describing the plate-
spring. 

When such improvements of the model are incorporated in the differen­
tial equations the numerical method enables solution of complex sets of 
equations which cannot be treated with exact or approximative tools. 

An interesting example of this second application is formed by the 
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analysis of the influence of the transition between plane-strain and 
plane-stress bending. To describe the relation between the bending 
compliance factor K_, the dimensions of the plate-springs and the 
curvature K Dijksman (lit. Dl) has presented the following equations 

V E.b.^3 ' ( ^v2.fl(,) + 1 - 2.v2>f2(n) 1 

where n = { 3*(l-v )°b " j 
h 

| •sinh(2°T|)-j °s in(2 °n)-2 °n°sinh( n) °sin( n)+cosh( n) 'Sin( n) -s inh( n) °cos( n) 
2 n"( s inh(n) + s in (n) ) 

cosh(n) - cos(n) 
Zy'w " n>( sinh(ti) + s in(n) ) ƒ, ( * ) ) = 

(E is Youngs modulus and v the Poisson ratio of the material). 
As can be seen the bending stiffness is a function of the curvature KZ. 
This is graphically represented, for different values of Poisson's 
ratio, in figure 3.4 . (See also Ashwell (Al) ) 

When these equations are incorporated in the FUNCTION-subroutine part 
of the computerprogram a new value of Kz will be calculated at every 
step in the integration process. A slight complication is that Kz is 
known as a function of the curvature. When only the applied torque is 
known Kz can be determined in a few iterative-steps. The nature of the 
curves as shown in figure 3.4 assures that a good estimate can be 
obtained, even when the curvature, <z, is replaced by, 

2 
K (s) ■ 12»M (s)« - 3 

E-b'h 
as a first estimate in the iterative process. 
The new FUNCTION-subroutine Is shown in Annex 3.II. This new model of 
the plate-spring can be used to determine whether observed differences 
between calculated and measured values are due to this effect of varia­
tion of the bending stiffness. This will be discussed further in the 
following section. 
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As discussed In section 3.3 for larger values of the loading force Fx 

the relations derived by the linear-beam theory are no longer valid. 
With the power-series method (Dijksman (Dl)/Zenov (Zl)) and the itera­
tive analytical method the following relations can be derived; 

1 , Linear beam , u. - -7° r 

1 4 2 Power series , u. = -T't •( 1 - TT°£ ) (Zenow.Zl) X J x JJ x 

Iterative analysis rr: r~~ = _°f •( 1 —^7°f ) 
., 324 2. 3 x 35 x 
(1_ 42Ö*UX5 

where f = F °K 'I and u. = "^ / . 
x x z JL Jt 

The result from the iterative-analysis contains the result from equa­
tion (3.11) and, in addition, an estimate of the third-order term in 
the approximation for sin <)>(s) ■ 

To make the differences between the different methods visible the mag­
nitude of the force F as predicted or measured is divided by FXQ, the 
force as calculated with the linear beam theory. The results are given 
in figure 3.6. 

In figure 3.6 two results from measurements are shown. For the relati­
vely "narrow" plate-spring the results agree well with these obtained 
through numerical calculation. The measured results for the "wide" 
plate-spring differ consiberally from the calculated results. 
These differences result from the fact that the wide plate-spring will 
experience a transition from plane-stress to plane-strain at the places 
that are most heavily loaded. With the numerical method the influence 
of this effect can be calculated and the results are shown in figure 
3.7. It is seen that a good agreement for both the narrow and the wide 
plate-spring is obtained with Poisson's ratio of 0,3. 
(Note: The actual value of the Poisson ratio for the material of the 
plate-spring has not been measured and the value of 0,3 is an estimate. 
Due to the anlsotropy in the thin sheet of rolled material the actual 
value might be slightly different. The Inaccuracy resulting from this 
uncertainty is considered to be negligible.) 
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Figure 3.6 Comparison of results from different methods to determine the 
relation between the force Fx and the deflection u(Jt) with results 
from measurements. The result from the numerical analysis was 
obtained without the consideration of the variation of the bending 
stiffness. The measured results were obtained through measurements 
at plate—spring parallel guldlngs with spring dImensIons 
80*2,5*0/) mm. and 80*20*0,25 mm. 
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Figure 3.7 To determine Che Influence of the transition from plane-stress to 
plane-straf n the effect of the variation of the bending stiffness 
can be Incorporated In the computer program for the numerical 
solution of the differential equation. With this Improved model the 
obtained results show a good agreement with the measured results. 
(For the calculations a Poisson's constant of 0,3 was used.) 
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When the plate-spring is loaded by a force F the stiffness in the 
direction of the x-axis will differ from the result obtained with the 
linear-beam theory. In this case the influence of Fy will also be 
noticed for small deflections. To analyse this influence it is suffi­
cient to consider only the linear terms of the force Fx and deflection 
u(J0. The relations between u( 5.) , F and F from the different methods 
are 
Linear-beam theory u0 = — • f 

I 3 x 
Power-series u. = ,«f •( 1 - T-f + ~^'f ) (litt.Zl) 

I 3 x 5 y 105 y 

i ( i + 9cT-y 
Iterative analysis (I) u = — "f • z * — 

Kl 12 y 240 y ; 

(II) u=|of 
1 3 X ( 1 + j-f ) 

where u = ^-f- , f » F «K 'X and f » F -K 'X . 
x X x x z y y z 

The first result of the iterative-analysis is derived from equations 
3.1.2 in Annex 3.1. The second result is obtained when the iterative-
analysis is performed with a first estimate of if(s) where, as in sec­
tion 3.3, the condition Mz=0 is used to eliminate 4> or u .This leads 
to the first estimate 

<Ks) = -3«uA-( I - yt2 ) 

These results are graphically represented in figure 3.8 where the 
normalized stiffness, the ratio between Fx and u as a function of F 
is plotted. It can be clearly seen that the stiffness as predicted by 
the power-series method is only valid for small values of Fy, as was 
indicated by Dijksman (Dl) whose power-series derivation required that 
fx- fy < !• 
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Conclusion: 
The examples of the application of the iterative analytical method to 
solve the differential equations (3,1) indicate that this method yields 
relatively simple expressions for the main characteristics of loaded 
plate-springs. The obtained results are sufficiently accurate for most 
practical applications and they are equivalent to the results obtained 
with other analytical methods,, In addition the iterative analysis may 
be used to study the behaviour of plate-springs under the influence of 
spatial loading» In the following chapters it will be shown that this 
method is efficient when the deformations of plate-spring mechanisms 
under various loading conditions must be determined^ 

Figure 3.8 Application of a force F to the plate-spring Influences the 
st1 f fness c .The magnitude of this Influence can be est tmated with 
different analytical methods. The obtained results are compared 
with results from measurements performed by Grentzlus (Gl). 

- 46 

3oI Annex» Calculation of general expressions for end-loaded plate-spring. 

The analysis of the deformation of the end-loaded plate-spring is based 
upon the following expressions 

d <^ 5 ) = K •{ -F ■( I + v(JD - s - v(s)) + F •( u(A) - u(s)) + M 1 ds z l x y z ' 

u(s) - ƒ -sin <t(t)s dt and v(s) - f "(cos *(t) - 1)« dt o o' 

For practical applications in plate-spring mechanisms it may be assumed 
that <J>(s) < 0.5. To simplify the given expressions the following 
definitions are introduced 

u U ) , „ u(s) 

and f = F °K 'S.2 , f = F -K • S? , m = M(Jt)«K 'S. x x z y y z z z 

Together with <Ks) < 0-5 the basic equations are reduced to 

d<t>q) 
d5 "fx*( : + V l " l + v(5) ) + V ' "f- " U(5) } + mz 

u(5) = J*> -♦(n)-da v(5) = J 5 (-|-<Ka)2)-d (3.1.1) 

Using these definitions the first estimate for 4>( £) and u( £) can be 
derived from (3.6), yielding: 
* U ) = *A'( -2-5+ 3-5Z) - Uj-( 6-5- 6^2) 

u(5) - V ( ^ " ̂ 3) + V ( 3'^ ' 2*^3) 

To obtain a first order solution which incorporates the influence of 
the loading force F equation (3.1.1) may be solved using these 
estimates and assuming v(£) to be equal to zero. 
This leads to 

dl - V ( 1 " 5 ) + mz+ fy 'Ux ' ( 1 - 3-52+ 2-53) - f y ' V < 52" 53) d<KO 
d5 

and, upon integration with <)>(0) = 0 and u(0) = 0, 

- 47 -



<K5) « -f •< 5 - yl2) + ™z°l + ty'"n'( 5 - 5 + jr*5 > + 
1 3 1 4 

- y v ( r« - i**) 
uco - vc f e2 - K> - K*s2 - W < W ' K + TÏÏ°55) + 

+ W < Ï 2 '5* " 20'*5) 

With these expressions the following relations between the loading 
forces and the deflections of the loaded end can be obtained,, 

»<*> = - K + m z + fy u *- iK^ 
1 1 7 i (3.1.2) 

These relations are similar to those obtained by the linear-beam theory 
when F equals zero. They form a basic set of equation for plate-
springs loaded by a tensile or compression force* 

In addition to . these expressions a relation for v( £) or v can be 
obtained using the third of equations (3.1.1). For vp this yields, 

1 ? 3 1 ? S ^Q 1Q 
VA " T l TF'fx + 3>raz - T2'fx*mz _ W ( T4Ö'uJl " 63Ö'V + 

c /■ 13 * A. ̂  J_ £ 2 i 367 2 , 1 2 1 , , , + mz.fy.( W u z - —.^J + fy •( — . U j l + 3^.^ - 35^-UJJ.^) | 

(3.1.3) 

These results are first order expressions which are good approximations 
as long as v( £) is negligibly small. This assumption is not satisfied 
for larger deflections or for compressive loads above the critical 
buckling force. A more accurate expression for moderately large 
deflections can be obtained when an estimated function for both u(£) 
and v(5) is substituted in the differential equation. Suggestions for 
such estimates are 

u(5) = <t>A'( -S 2 + 53) + uA-( 3-g2 - 2-53) 

and v < « - -*/•( §-53 - f-54+ yf-55) - u^.^-C 4-53- -1|.C4+ -if-S5) + 

-u/.( 6.5
3-9.5

4
+if.?

5) 

Solving the equations (3=1.1) with these estimates leads to expressions 
which allow to estimate non-linear effects in guiding mechanisms in a 
way similar to the one used in section 3.3. The shape of the plate-
spring resulting from this solution is determined by 

M) - -tx.{ i - T e + ♦/.<- ï}-e + K - T K + i-56) + 

2 , 3 3 „4 9 5 3 „6 . , , 
+ Uj[ •(- 5-5 + yl - j°i +yl ) } + 

3 1 4 1 3 1 4 

I*) - -fx ' ( i - ^ ' * / - "[§•"/) + mz + ffy-Oj, - iJ-fy-^ (3.1.4) 

With the approximation s in 4>(s) - <K®3 the de f l ec t ion un of the end i s 

determined a s , 

f r 1 ! ^ 2 1 A 3 2, 1 7 _ 1 
UA a V < I " 35 # *i ' W*X*X " Xk^X ) " F m z " 20* fy#uJl + 3Ö* fy"*i 

( 3 . 1 . 5 ) 

With these expressions it is possible to estimate a part of the non-
linearity in plate-spring mechanisms. The non-linearities are, in 
general, resulting from the non-linear geometry and from non-linear 
behaviour of the material. In expressions (3=1.4 and 5) the influence 
of the deflection v(s) is determined. However it has been assumed that 
4>(s) is small in order to calculate u(s) with the linearized expression 
for sin $(&)• This means that non-linear effects of the order 
1 3 — •<b(s) have been neglected. It is of course possible to derive better 6 

approximations for u(s). The resulting expressions are becoming rather 
complex. 
An illustration of the result obtained when a higher order 
approximation is used has been given in para.3.5. Here the relation 
between the deflection u and the driving force Fx for a plate-spring 
has been given. 
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Annex 3.II. 
Computer programs used for the numerical Integration of the 

differential equations 

The computer program consists of the following three sections 

Main program 

Integration subroutine 

Function subroutine with the 

differential equations 

VEER01 

RKSTEP 

FUNK 

Two versions of the last subroutine are presented. The first one Is not 

accounting for the effect of the anti-clastic curvature of the plate-

spring. In the second version a few statements have been added to take 

this effect into account. 

Main program 

Program 

This is 
Integra 

'*VEER01 " 
the ma in prog 

felon of 
behaviour of pi 
Here th 
spring 
perform 

e input 

d i f f e r 
a te-s p 
of the 

d imens ions may 
numer i ca1 int 

Th i s process is 
provi d 

values 
may spc 
intcqr 

continu 
d e f l e c t 
a c c u r a c 

ed inter 
for the 
cify whe 
a t i o n t y 
e u n t i 1 1 
ions h a\ 
y-

start 
ac t ive 
end de 
ther a 
c J e sh 

ram 
e n t i 
ring 
dat 
be 

egra 
ed ÜJ 
ly a 
f 1 ec 
ne'ii 

ou 1 d 
the user 

e been defc 

unit used for the numerical 
al equations describing the 
s loaded at the free end. 
a about the loading case and 
entered. The program will then 
tion of the equations. 
ith initial estimates 
nd after each cycle the new 
tions are returned. The user 

be started and this will 
indicates that the end 
ermined with sufficient 

PROGRAM VEEROl 
DIMENSION STOI100, 6),A(6>,AN(6 I 
COMMON /FUNV/XM, YM, ZM, FD, FN, FP. RKX, RKY 
COMMON /FUNV2/UL, VL, WL 
COMMON /EDEV/ LTR, LTW, LLP, LTX 
LOGICAL*l EDJA, LEXT 
DATA LTR/3/i LTW/7/, LLF/6X, LTXX4/ 
DATA STÜ/600'O / 

Input section for the relative compliances Kx 
and Ky< the magnitude of the normalised 
loading components, the number of integration 

intervals along the plate-spring and an estimate 
for the deflection u(l) of the loaded end. 

WRITECLTW,*) 'GEEF RKX EN RKY' 
READCLTR, 100) RKX. RKY 
WRIT£(LLF,102) RKX,RKY 
FORMAT( ' C0MPL1ANTIES ZIJN :',2F13. 5) 
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40 WRITE(LTW, «> 'GEEF MX, MY, MZ, D, N, P ' 
REAO(LTR, 100) XM, YM, ZM, FD, FN, FP 
WRITE U.LP, 103) 

103 FORMAT( ' BELASTINGEN ZIJN : (MX, MY, MZ, D, N, P) ') 
WRITECl.LP, 100) XM, YM, ZM, FD, FN, FP 
WRITECLTW,*) 'HOEVEEL STAPPEN? (INTEGER)' 
READU.TR, 101 ) NSTEF 

100 F0RMAT(6F12 5) 
101 FORMAT(218) 

WRITECLTW,*) 'GEEF SCHATTER VOOR U L : ' 
READ(LTR,100) UL 
VL=0 
WL=0. 
H«l. /FLOAT(NSTEP) 

SO DO 41 J»li 6 
A< J)^=0 

4 1 CONTINUE 
B«0. 
DO 200 K=l,NSTEP 

C 
C For each integration interval a standard 
C integration routine, "RKSTEP", is called 
C that will perform the integration 
C of the differential equations. 
C 

CALL RKSTEP (A, S, H, i, AN) 
DO 5 5 J2=l,6 
STO(K,J3)-AN(J2i 
A(J2)-AN(J2! 

55 CONTINUE 
C WRITE(LLP, 100) (AN<I I , I-1 , 6) 

B«S+H 
200 CONTINUE ' 

UL = AN< 4) 
VL = AN(5) 
WL=AN(6) 

C 
C The resulting values of the end deflections are presented at 
C the user—terminal and he is asked whether a new integration cycle 
C isdesired 
C 

WRITECLTW, 110) UL, VL, WL 
110 FORMAT ( ' NIEUWE WAARDEN ZIJN: ',3F1S. 5) 

WRITECLTW,*) 'NIEUWE ITERATIE? ' 
IF (EDJA<)) GOTO 50 
WRITE(LLP, 111) 

111 FORMAT!"" PSI THETA PHI 
1 DCS) V < 5 ) W ( S > ' > 

DO 300 K=l , NSTEP 
C 
C When the user is satisfied the results of the numerical 
C integration process are printed and the user may start to 
C specify a new loading case. 
C 

WRITE(LLP, 100) <1000. «STOCK, J),J»l, 6) 
300 CONTINUE 

WRITECLTW,*) 'NIEUWE WAARDEN '?' 
IF (EDJA()) GOTO 40 
CALL EXIT 
END 



Integration subroutine 

SUBROUTINE RKSTEP < A, S, H, NVER, AN) 
DIHENS I ON A(NVER),A1< 20). DA(20), AN(NVERI 
CALL FUNK (A, Si DA! 
DO 10 1=1.NVER 
Al(I)=A<I)+H*DA<I)/2. 
AN(I)«A(I)+H*DA<I>/6. 
CONTINUE 
CALL F U N M A 1 , S+H/2. , DA) 
DO 11 1=1.NVER 
Al(I!=A<I>+H*DA(I)/3. 
AN(I)=AN(I)+H*DA(I)/3. 
CONTINUE 
CALL FUNK(A1.S+H/2. , DA) 
DO 12 1=1,NVER 
Al ( I )=A( I >+Hi>DA< I ) 
AN(t)-AN(I>+H»DA(I)/3. 
CONTINUE 
CALL FUNK(A1, 5+H.DA) 
DO 13 1=1,NVER 
AN( I )«AN( I >+H*DA< I ) /(,. 
CONTINUE 
RETURN 
END 

Function subroutine (Version 1) 

SUBROUTINE FUNK(A,S,DA) 
DIMENSION A(6),DA(6) 
COMMON /FUNV/XM, YM, ZM, FD, FN, FP, RKX, RKY 
COMMON /FUNV2/UL, VL, WL 
COSPS=COS(A(t)) 
SINPS=SIN<A(I)) 
COSTH=COS<A(2)) 
SINTH=SIN(A(2)) 
C0SFH=COS(A(3)) 
SIMPH=SIN(A<3>) 
U=A(4) 
V=A(S) 
W=A<6> 
XMS=XM+FP*(1. +VL-S-V)+FN* <-WL+W> 
YMS=YM+FP» <-UL+U!+FD#(WL-W) 
ZMS=ZM+FD*(-1.-VL+S+V)+FN»(UL-U) 
RX=RKX»(COSTH»COSPH*XMS+COSTH*SINPH»YMS 

1 -SINTHflZMS) 
RY=RKY* <(~COSPS*SINPH+SINPS»SINTH*COSPH)»XMS 

1 +<COSPS*COSPH+SINPS»SINTH*SINPH)»YMS 
2 +SINPS»COSTH*ZMS> 

RZ=(S1NPS*SÏNPH+C0SPS*SINTH»C0SPH)*XMS 
1 +<-SINPS*C0SPH+C05PS*SINTH»SINPH)»YMS 
2 +COSPS»COSTH*ZMS 

DA(3)=(SINPS*RY+C0SPS»RZ)/COSTH 
DA(2>=(RY-DA(3>*SINPS»C0STH)/C0SPS 
DA(1>=RX+SINTH»DA<3) 
DA(4)=-C0SPS«SINPH+SINPS»SINTH»C0SPH 
DA(S)=C0SPS*C0SPH+SINFS*SINTH»SINPH-1. 
DA(6)=SINPS»C0STH 
RETURN 
END 

Function subroutine (Version 2) 

SUBROUTINE FUNK(A,S,DA> 
DIMENSION A(6),DA(6) 
COMMON /FUNV/XM, YM, ZM, FD, FN, FP, RKX, RKY 
COMMON /FUNV2/UL, VL, WL, B, H, PC 
SINH(X)=(EXP(X)-EXP(-X))». 3 
COSH(X)=(EXP(X)+EXP(-X))*. 5 
COSPS=COS(A<1)) 
SINPS=SIN(A<1)) 
C0STH=C0S(A(2)) 
SINTH=SIN(A(2)) 
C0SPH=C0S(A(3)) 
SINPH=SIN<A(3)) 
U=A<«) 
V=A(3> 
W=A(6) 
XMS=XM+FP* <1. +VL-S-V)+ FN*(-WL+W) 
YHS=YM+FP* < -UL+U ) +FD» (WL-W) 
ZMS=ZM+FD»(-1.-VL+S+V)+FN*(UL-U) 
RX=RKX*(COSTH*C0SPH»XMS+C0STH"SINPH»YMS 

1 -SINTHltZMS) 
RY=RKY<t< <-COSPStSINPH+SINPS»SINTH*COSPH)*XMS 

1 + (COSPS-»COSPH+SINPS-»SINTH*SINPH)*YMS 
2 +SINPSoCOSTH*ZMS) 

RZ=(SINPS*SINPH+COSPS-»SINTH*COSPH)*XMS 
1 +(-SINPS«COSPH+COSPS*SINTH*SINPH)»YMS 
2 + COSPS-»COSTH-»ZMS 

C 
IF (ABS(RZ). EQ. 0 ) GOTO SO 

C 
PU=B»(H/ABS(RZ) )**(-. 5)»(3«<l-PC-»»2> )■»■». 25 
Fl = (. 5*SINH<2. *PU>-, 3»SIN(2. *PU>-

1 2. »PU*SINH(PU)*SIN(PU>+COSH(PU>«SIN(PU>-
2 SINH(PU)*COSCFU!)/ 
3 (PU*(SINH(PU)+SIN(PU))<*2) 

F2=(COSH(PU>-COS(FU))/ 
1 (PUMSINH(PU) + SIN(PU) ) ) 

RZ=RZ*<l-PC**2)/(l+PC*»2*(Fl/2. -2. #F2)) 
C 
SO DA(3)=<SINPS*RY+C0SPS*RZ) /COSTH 

DA(2)«(RY-DA(3)*SINPS#C0STH)/C0SPS 
DA(1)=RX+SINTH#DA(3) 
DA(4)=-C0SPS*SINPH+SINPS»SINTH*C0SPH 
DA<5)=C0SFS*C0SPH+SINPS*SINTH*SINPH-1. 
DA(6)=SINPS*C0STH 
RETURN 
END 



Chapter 4. 

Plate spring deformation under three-dimensional loading. 

4.1 Introduction 

In chapter 2 a mathematical model has been derived which may be used to 
determine the shape of a plate-spring under three-dimensional loading 
of the free end» This derivation resulted in the set of "integro-diffe-
rential" equations of figure 2.4 (which are also given in figure 4.1) . 
To find solutions for these equations two independent methods are avai­
lable. The first method is based upon numerical integration and an 
iterative process which yields solutions for the complete set of equa­
tions. The other method is based on the "iterative-analytical" method 
for solving the simplified differential equations which was introduced 
in chapter 3. 

At first it will be demonstrated how this method is used to solve the 
equations as derived in chapter 2 which were based upon the concept of 
the elastic line. This model is only valid for long and slender beams 
and the results are only first estimates for the behaviour of plate-
springs when the length is not large compared to the width. (This dis­
cussion is nevertheless presented here as it clearly illustrates the 
mathematical operations used in the iterative analytical method.) 
The theoretical results will be compared with those from numerical 
methods and with experimental results. It will be shown that the analy­
tical and numerical results are in good agreement. However the experi­
mental results indicate that the torsional compliance of plate-springs 
is smaller than expected. 
In the final part of this chapter the mathematical model will be fur­
ther developed to account for the effect of the constrained warping of 
the cross-section at the clamped ends of the plate-spring. It will be 
shown that better agreement between experimental and theoretical 
results is obtained with this extended mathematical model. 

- 55 -



— - s ine -3— ■ ds ds 
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x x z y 
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y z x 
- s i n 9 ' ( M (JO + F • ( -A-v( l ) + s + v ( s ) ) + F »(u( J l ) - u ( s ) ) ) 1 

z x y 

dG „ dé 
c o s t l y 1- sin(|)ecos9°—— = 

ds * ds 
= K °{ ( -cos^°s in( t r l - s in^ ' s in9 'cos( t ) ) -CM C *)+F - ( B v ( i ) - s - v ( s ) ) + F - ( - v ( £ ) + w ( s ) ) ) + 

y x z y 
+Ccos^«coS(Hsin() . 's in90sIn(t)) B(M ( A) + F ° ( - u ( £ ) + u ( s ) ) + F »(w( Jl)-w( s ) ) )+ 

y z x 
+ sin4,°cose°(M CD + F - ( - J t -v ( J l )+s+v(s ) ) + F •( u( J t ) - u ( s ) ) ) | 

d 9 , , „ d é 
- s i n d ; 0 ^ - + cos(|'0cos90—-L ■ 

ds ds 
- K •{ (sint|;Dsin(tn-cos4'esin9*cos'J>) *(M ( Jt)+P •( A+v( A ) - s - v ( s ) )+F -(-w( JD+w(s) ) )+ t x z y 

+ C-sIn(J J-cos<Hcos( | )°sineosIn'f) *(M ( X) + F »(-u( JO+u( s) )+F »(w( Jl)-w(s) ) )+ 
y z x 

+ (cosc|»»cose)«(M U ) + F -(-A-v(,f>)+s+v(s)) + F •( u( * ) -u ( s ) ) ) 1 
z x y 

u ( s ) = n J (-cos<jj°sin<t> + sirKjj'sinG'cosiJi) *dt 

v ( s ) " n J (cos<|>*COS$ + s in( | j ' s in9 0 s in( t ) - l ) ° d t 

w(s) - ƒ (s in( i - -cos9) »dt 

Figure 4.1 The relations between the deformations of the plate-spring and the 
load applied to the end can be determined with a mathematical 
model consisting of a set of "integro-differential" equations. 
This model has been derived in chapter 2 (figure 2.4). 

4„2 Linearization and simplification of the differential equations. 

Exact analytical solutions of the three differential equations given in 
figure 4=1 are not available. To determine the behaviour of plate-
spring mechanisms it is however sufficient to find solutions for the 
range of technically possible or desired deformations. Moreover it is 
sufficient to obtain "close estimates" of the actual behaviour. As the 
mathematical model is itself an approximation there is no strict need 
to find exact solutions for the mathematical model. 
In this section it will be attempted to use the information available 
about the physical plate-spring to reduce the differential equations to 
a set of simplified, approximating equations. 

The first step in this process is to assume that angular deflections in 
"sound" plate—spring mechanisms wil1 remain small. As upper limit angu­
lar deflections of 0.3 radians might be used. For the functions sina 
and cosa the following power series may be used 

1 3 -L sin a - a. - ~ ° rx + . . . 0 
cos a - 1 - ~ 8 a + 

When sina is approximated by sin a - a the maximum relative error will 
be less than 1.5 % for a< 0 = 3 rad. With cosa - 1 the relative error 
will then be less than 4 = 5 %, This magnitude of relative errors is for 
many applications acceptable and the equations of figure 4.1 may be 
simplified accordingly.This should however be done carefully. For the 
expression for v(s) for instance 

v(s) - n ƒ' (COS(JJ*COS(J) + sin<J;*sinG"sin4) - 1) • dt (4.1) 

this would result in 

v(s) - 0/ S ( 1 + <|>-9*4> - 1 ) • dt - Q/ S <l-6°4>° dt (4.2) 

which is incorrect.Substitution of the first two terms of the power-
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series for cos a yields 

v ( s ) = 0 / s ( i - l°<i>2 - !°<i>2 + i°<$,2°^2 + <|.-e-t - i ) ° d t = 

This indicates that the substitution of power-series and the successive 
approximation should be performed carefully. Following this method the 
equations of figure 4.1 will result in the set of equations given in 
figure A.2. 
These results are applicable for long slender beams without restriction 
to the shape of the cross-section. For plate-springs however the 
compliance factors Kz and It, are much larger than the compliance factor 

3 A K . Typically the ratio between K ,K and Kx will be from 10 to 10 . 
As a result only the angular deflection $ en 6 and the displacement u 
may have a significant magnitude. The angular deflection <|i and displa­
cements v and w can be considered as disturbances which are relatively 
small. 

To obtain approximating expressions for the main deformations a first 
estimate in the iterative-analytical process would be to assume that 
<|j ,v and w are equal to zero. This leads to the following expressions 
for 6, 9 and u 

~ = K • | -<t>-(M (A) + F -(A-s)) + M (A) + F "(-u(A) + u(s)) } ds y L x z y z 

ii = K • { 8°(M (A) + F °(A-s)) + 9»<KM (A) + F '(-u(A) + u(s))) + ds z L x z y z 
+ (M (A) + F -(-A + s) + F •( u(A) - u(s))) } z x y 

u(s) = „fS -* • dt (4.A) 

When the main deformations have been determined the magnitude of the 
d i s tu rbances <\> ,v and w can be es t imated with s impl i f ied forms of the 
remaining equat ions 

4 * ~- 6 • T 4 + K • { M (A) + F -(A-s) ( ds ds x l x z 
v(s ) = 0 J - | • <(> • dt 

w(s) = 0 / % • dt (A.5) 

ii . 0.d* 
ds ds (M (JO + F - ( J + v U ) - s - v ( s ) ) + F • ( - w ( i ) + w ( s ) ) ) + 

♦ •(M (A) + F • ( - u ( A ) + u ( s ) ) + F • ( w ( i ) - w ( s ) ) ) + 
y 7. X 

-6-(M (A) + F - ( - i - v ( ï ) + s + v ( s ) ) + F • ( u ( A ) - u ( s ) ) ) ) 
z x y 

d9 d * 
ds ds 

K •[ (-<(>+4.-6) -(M (A)+F •(A+v(A)-s-v(s))+F -(-w( i)+w(s) ))+ 
y x z y 
-t-C l+*-e-<|>) -<M (A) + F • ( - u ( A ) + u ( s ) ) + F • ( w ( A ) - w ( s ) ) ) + y z x 
+ dr«(M (A) + F •(-A-v(A)+S+v(B>) + F - ( u ( A ) - u ( s ) ) ) | 

z x y 

d9 d^ 
"*"dï + ds = 

= K •( (4.-(H6)-(M ( « + F • ( A + v ( A ) - s - v ( s ) ) + F • ( -» ( « + w ( s ) ) ) + 
z x z y 

+(-cH-6-<t>)-(M ( » + F • ( - u ( A ) + u ( s ) ) + F •(«( J . ) -w(s ) ) )+ 
y z x 

+ (M (A) + F - ( - J l - v U H s + v C s ) ) + F - ( u ( i ) - u ( s ) ) ) 
z x y 

u ( s ) » n!' ( - * + <i>-0) -dt 

v(s) - 0 / (-yi 

w ( s ) = ƒ ((i - d t 

v(s) - jG (-r*<fr - «■•+ + tC'Ö-* )*dt 

F i g u r e 4 . 2 . R e s u l t of the f i r s t s t e p of s i m p l i f i c a t i o n of the d i f f e r e n c i a l 

e q u a t i o n s from f i g . 4 . 1 used to app rox ima te the behav iour of a 

p l a t e - s p r i n g under t h r e e - d i m e n s i o n a l l o a d i n g . The a n g u l a r 

d e f l e c t i o n s d>, 0 and 41 a r e a f u n c t i o n of the pa ramete r s . 



A further simplification of the second of equations (4*4) is possible 
with respect to the part containing the product <J>*6 . In this part the 
influence of F can be neglected as it is small compared with the 
influence of Fz in the first term. This leads to 

? = K • ( 6°(M (I) + F °(X-s)) + 8*4>»M (JO + 
ds z l x z y 

M (A) + F °(-JH-s) + F •(u(Jt)-uCs)) ) (4.6) 
z x y 

This expression still contains one term which is quadratic in the angu­
lar deflections , <j> and 0 . This term can only be neglected when the 
couple My(JÏ.) has the same order of magnitude as one of the other loa­
ding components. This will be true for plate-spring mechanisms which 
are mainly based upon bending of the plate-springs, such as parallel 
guides and cross-spring pivots. 
For plate-spring mechanisms where torsion of the plate-springs is the 
main deformation it will in many cases be allowable to neglect this 
terra as the deflection <J>(s) will be very small0 It is therefore sugges­
ted to neglect the term 9-0.M (JO in equation (4.6) and to verify at 
the end of the analysis whether this is justified on the basis of the 
obtained results. 

The result of this process of linearization and approximation is the 
set of equations presented in figure 4.3. In using these expressions it 
is necessary to be aware of the assumptions made in this section. 
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Main deformations: 

d6(s) 
ds 

d»(s) 

- K •{-♦■ (M U ) +F -(J-s)) +M U ) +F >(-uQ) + u(s))) 
ob y x z y i. 

ds K ■ ( 9- (M (I) +F -U-s)) +M (X) +F •(-Jt+a) 

fF •( u(I) - u(s) ) ) 

u(s) • f -♦• dt 

Disturbances: 

ds = 9 ds K • j M (« + F -(J-s) } 

v(s) • <)i • d t 

w(s) • r ♦ • dc 

Figure 4.3. Simplified set of differential equations which can 
be used to determine the behaviour of plate-spring mechanisms. 
Derived using the following additional assumptions : 
- Angular deflections will remain small (< 0,5 rad) 
- K » K,,K 
- My(0 is not large compared to all other loading components. 
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4.3 Application of the iterative-analytical method. 

Solutions for the set of simplified equations may be obtained with the 
iterative-analytical method described in chapter 3. To illustrate how 
this method is used for cases of three-dimensional loading a simple 
case of a plate-spring loaded by two forces Fx and Fz will be discussed 
(see figure 4.A). 

As a first step initial estimates for the main deformations, 6,<)> and u, 
as a function of s are made, based on the shape of the plate-spring 
under influence of only the force Fx. In this case the angular deflec­
tion 0 is equal to zero and the estimates for $ and u are 

* (s) » <ft-{-Z'l + 3-5 ) ^f •( 6-5 - 6-12 ) 
u (s) »( r - 1 ) + uOi •( 3 »r - 2 -c) 
where £ = 

Figure 4.4 Plate-spring loaded by the end forces F and F . 
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Using the information that M_(A) equals zero these estimates can be 
simplified and expressed in either u( 9.) or A . Selecting the expres­
sion containing u(X) yields 

* (s) = - — - ( 3'g - 2 5 J 

u (s) __ u(JQ . 1 
A " 9. ' { 2 53) (4.7) 

Substitution of these estimates in the first differential equation of 
figure 4.3 with M and M equal to zero leads to 

f *Ky.{^-(3.£-f52).VU-s) + 
Fz'uU)'( -l + |'52 - y-53 ) I 

which can be integrated to estimate the angular deflection 6 as 

6*(s) = K -F -u(9)'9- ( -I + ~-Z2 - E3 + f-f4 ) (4.8) 
y z z H 

Substitution of this estimate in the second equation of figure 4.3 and 
subsequent integration leads to improved estimates of the angular 
deflection *(s) and displacement u(s) 

** 2 2 
* (s) = -K «F 'I •( S - *•£ ) + 

Z X 
Kz-Ky-F^-u(£)-Jl3-H-52 + }»53 - |-54 + i'55 24 

** 3 1 2 1 3 , 
u (s) . Kz-Fx-lJ.( y l - \ ' £ ) + 

2 , ■ 4 , 1 ,3 5 4 1 5 1 6 1 7 -Kz-Ky-F2-u(«.A -i-g--e + ^ - 5 -J-5 + ^'5 --JgfS 
(4.9) 

For the relation between the deflection u(X) of the end of the plate-
spring and the loading forces Fx and ?z the following estimate is thus 
obtained 

u(i) 
4- -K • F • i3 3 z x 

1 2 4 „ 
21 z y z 

(4.10) 
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This is Che first result of the iterative-analytical analysis giving a 
f I rst-order estimate of the influence of the loading force Fz on the 
s f f ness of the plate-spring in the direction of the X-axis. This 
e: imate is valid only for relatively small values of F . For large 
v; ies the difference between the two successive estimates for the 
si >e of the plate-spring becomes to large and further iterative steps 
si Id be made for such cases. 
Ir ^rder to estimate the difference between the two expressions for the 
de ection u(s) ,(4*9) and (4,7) , the relative magnitude of the diffe-

2 , -1 
re e for loading with a force F ■ ( X • / K »K') is shown in figure 

z z y 
4. A linear relation exists between the magnitude of the difference 2 an ? . It is clear that the difference will be less than 5% of u( X) 

z 2 4 
fo values of F »K °K *X upto 10 and for such cases the estimate of z z y 
(4 I) appears to be sufficiently accurate for most practical cases. 

ire 4.5 During the iterative analytical analysis the shape of the deformed 
plate-spring is estimated in the subsequent steps. This figure shows 
the relative difference between the first and second estimate of the 
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An interesting aspect of expression (4.10) is that it gives a first-
order estimate of the magnitude of the load F for which the stiffness 
c of the plate-spring becomes equal to zero. From (4.10) the following 
expression for F is obtained 

2 
F * I * / K . K = 4,6 
z z y 

This is a first-order estimate and better estimates may be obtained 
through further steps in the iterative analytical process. From the 
second step the following estimate for F2 would be obtained 

F -Jl • / K *K' s 4,134 z z y 

These results obtained from the relatively simple expressions in the 
mathematical model may be compared with the result from exact analy­
tical analysis (lit. Tl»Pl), which yields 

F *J?.2- /~K ^1T ■ 4,013 z z y 

This indicates that the iterative analytical method yields reasonably 
good estimates. 

The next step in the analysis is the determination of the angle C(J(S) 
and deflection w(s).The relation between F2 and w(s) determines the 
stiffness of the plate-spring mechanisms perpendicular to the plane of 
motion. For many applications it will be sufficient to obtain a first 
order estimate of this stiffness. 

Using the fourth of the equations from figure 4.3, the initial esti­
mates for if (s) a n d u (s) anc* expression (4.8) the following result for 
<KS) is obtained 

+ Fz-Kx-!3-( I - }-52) (4.11) 

where the first part is due to torsion of the plate-spring and the 
second part results from bending about the x-axis where the compliance 
K, is very small. 
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Integration of (4.11) yields the following estimate for w(s) 

„(s) = Fz°Ky = u(«2»X»{ f 53 " f °54 + f °55 " } ^ 6 + -^"l1 } + 

+ F »K °13° ( V?,2 - X°53 ) (*-12) 
z x 2 o 

For the deflection w(1) of the loaded end this yields 

„(A) =Fz°!3. { K / ( ^ f ) 2 4 + K J } (4.13) 
From this expression it is clear that the deflection due to bending 
about the x-axis will be dominant for small values of u(A). For values 
of K = 10 »K the two effects are equal in magnitude for — - — = 0,05. 
For larger deflections the influence of the torsional deformation 
becomes more important. 
(Note: This result does not contain the contribution from the shear 
deformation of the plate-spring which may become relatively important 
for wide plate-springs, I < 2°b .) 

This analysis of the simple case of loading of the plate-spring illu­
strates that simple expressions estimating the main properties of the 
plate-spring are easily obtained with the iterative-analytical method. 
The derived expressions for the influence of Fz upon the stiffness in 
the direction of motion ,x-axis direction, and for the stiffness of the 
deformed plate-spring in the z-direction are first-order estimates 
which may be used for deflections upto 0,2 'i in x-direction and loa-

2 -1 ding forces Fz upto 1'( / K «K ' • I ) . Depending upon the required 
z y 

accuracy the difference between the estimates and exact solutions of 
the differential equations may become too large for larger deflections 
or loading forces. 
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4.4 Evaluation of experimental and theoretical results. 

To investigate whether the iterative-analytical and numerical solutions 
are acceptable predictions of the actual behaviour of the plate-springs 
they should be compared with results from reliable experiments.As it is 
not easily realized to apply two forces to the free end of the spring 
as described in the preceding paragraph, measurements were carried out 
with a plate-spring fixed as shown in figure 4,6. The plate-spring is 
clamped at the two ends. The "free"-end clamping piece is mounted on 
three steel wires which fix its position in x, $ and 6 direction. The 
loading force Fz is applied so as to act along a line through the cen­
ter of the spring. In this case the loading conditions for each half of 
the spring will be as discussed in the preceding paragraph (as in 
figure 4.4 ). With this measurement the deflection w(1) of the free end 
can be determined.The angular deflection dj of the free end will be 
equal to zero. 

Figure 4.6 In order Co realize the loading conditions of a plate-spring shown 
in figure 4.4 measurements were performed on springs clamped at both 
ends. Using considerations of the symmetry of the loading when the 
force F is applied at the middle of the plate-spring It can be 
proved that, apart from a minor effect, each half of the plate-
spring is loaded as assumed In the theoretical analysis. 
The plate-spring used in measurements thus has a length 2'X . 
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Similarly it is possible to determine the influence of the loading 
force F upon the relation between F and u(£). In this case the stiff­
ness of a plate-spring parallel guide loaded by the force F at the 
center of the guide has been measured» (For more details about the 
equipment used in measurements see chapter 8) 

The measurements were performed with steel plate-springs with the fol­
lowing dimensions, 2°X = 80 mm= 

b = 20 mm. 
h - 0.25 mm. 

The magnitude of the compliances were calculated with the expressions, 

IV — _ j IX — ~ , R, — „ 
X E.b .h y G.b.h FJtb.h 

where E and G are Young's modulus and shear modulus respectively. 

In figure 4.7 the results from measurements are compared with the pre­
dicted values from expressions (4.10) and (4.13), and with results from 
direct numerical integration of the differential equations. In figure 
4.7A and B the influence of the shear deformations have been taken into 
account as well. For the numerical solution an adapted version of the 
computer program described in chapter 3 was used. As can be seen from 
figure 4.7 the theoretical results from both methods are in good agree­
ment. This is obvious when the deflections of the plate-springs are 
small and the approximations made are acceptable. But also for larger 
values of Fz and u( 9.) both theoretical solutions yield about the same 
results.There is however a remarkable difference between results from 
the theory and those from the experiments. These differences could not 
be attributed to the influence of inaccuracies in the experiments. 
This comparison of measured and calculated deformations leads to the 
conclusion that the mathematical model used to describe the behaviour 
of the plate-spring is not complete. The differences are expected to be 
maynly due to the influence of the constrained warping of the cross-
section at the clamped ends of the plate-spring.In the following para­
graph this will be discussed and the mathematical model will be adjus­
ted accordingly. 
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Figure 4.7 Comparison of measured and calculated deformations of a plate-spring 
loaded by forces F and F . 

A. Measured and calculated deflection w( S.) as a function of the loading 
force F for displacements u( Jt) of zero and four millimeters. 

B. With increasing deflection u< Jt) the stiffness c„ of the plate-spring 
in the direction of the z-axis decreases. 
For these comparisons the influence of the additional deforma t ion of 
the plate-springs due to the shear deformation has been taken into 
account. 

69 -



1 

0 

4 - -

X " ^KT" 

* \ 

n u r a e r i c n l ' ^ ' 

red 

1 
1 -v 

y—itera t ive malysi 

(C) 

Figure 4.7 Cont. 
C. DUG to the Influence of the force Fz the stiffness of the plate-

spring in the direction of the x-axis is reduced. The results from 
numerical-integration, iterative-analysis and from measurements are 
shown. 
Although results from actual measurements are presented here the 
measured values have been scaled so as to obtain a dimensionlcss 
presentation enabling a direct comparison with theoretical results. 

(Note: u(£) Is the deflection at the end of the plate-spring as 
shown in figure 4.4. In the measurements this is the deflection of 
the middle of the plate-spring (figure A.6).) 

(Plate-spring dimensions: 2'l= 80 mm. 
b = 20 mm. 
h » 0,25 mm. 

405 Reconsideration of the mathematical model,, 

The mathematical model derived in chapter 2 to describe the behaviour 
of plate-springs under three-dimensional loading is based upon the 
theory for long, slender beams. This assumption has been used in all 
known previous research on the behaviour of plate-spring mechanisms. 
For the case where the plate-spring deformations are strictly confined 
to bending about the z-axis this model has proven to be adequate. This 
is a result of the fact that the plate-spring length is large compared 
to its thickness„Therefore the deviations from the theoretical stress 
and strain distributions resulting from the conditions at the clamped 
ends will extend over a short distance, estimated at a few times the 
plate thickness» The effect upon the total deflections could be incor­
porated by increasing the length of the spring with about half its 
thickness at each clamped end (lltt. SI). 

These considerations are not applicable for loading and deformations in 
other directions. The width of the plate-spring will, in general, not 
be small compared to the length. The length to width ratio is usually 
from 2 to 10. As a result the influence of the clamped ends will extend 
over a noticeable part of the spring. As the deformations due to ben­
ding about the x-axis are very small and do not influence the main 
deformations 8,<t> and u it is not necessary to change the equations used 
to determine them. The influence of the clamped ends upon the torsional 
deformations however directly influences the main deformations of the 
plate-spring. In the following it will be shown how the mathematical 
model can be adjusted to account for these effects. 

When a plate-spring is loaded by a torque M„ shear-stresses will occur 
in the cross-sections. Therefore the cross-sections will be deformed. 
Points that were initially in one plane of the cross-section will per­
form a relative displacement perpendicular to this plane. The original­
ly flat cross-section will be deformed as shown in figure 4.8. This 
deformation is called the "warping" of the cross-section. 
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At the clamping of the plate-spring this warping can not occur. This is 
due to the fact that a cross-section slightly inside the clamping 
should then be rotated about the y-axis. As the clamping will inhibit 
this relative rotation the cross-section located at the edge of the 
clamping pieces can not be warped. 

The torsional deformation of clamped beams can be calculated with a 
method described among others by Koiter (lit. Kl) . At first it is 
necessary to determine the "warping-constant" , f , for the cross-
section of the beam. This constant indicates the magnitude of the "out-
of-plane" motion of points of the ,initially flat , cross-section. 
Using the expressions given in lit.(Kl) for plate-springs, with rect­
angular cross-sections with a large ratio of width to thickness, this 
constant can be estimated as 

1 3 3 
F " 144 ' b ' h (4.14) 

From the method described by Koiter it is concluded that the twisting 
torque, M , at a given point of the plate-spring will cause both twist 
and warping. Whenever the warping is constrained, for instance at the 
clamped ends, this will mean that an increased torque is required to 
obtain a certain twist. 
This is formalized in the following equation for the curvature 

d2tc (s) 
K (s) = K • M + K • T • E • ^ — (4.15) 

ds y" ' y y y .2 

This expression should replace the second of the equations for the 
curvatures in chapter 2, the Euler-Bernoulli hypothesis. Also in the 
final set of equations of chapter 2, figure 2.4, the second differen­
tial equation should be adjusted. 

To determine the magnitude of the second derivative of the curvature < 
the expression given in figure 2.3 

dB(s) , , , . d$(s) 
y 
K„(s) = cos <|,(s) • S ^ L + sin (Ks)« sin 8(s) • i L ^ (4.17) 

2 2 can be used.The resulting expression for d K /ds will be containing 
the first and second derivative of <J>( s) and first to third derivative 
of <t>(s) and 9(s).As the expressions used to calculate the deformations, 
(figure 4.3), are obtained by simplification and linearization the 

2 2 expression for d K /ds can also be simplified. This leads to the fol-
y 

lowing result 

2 
d K (s) j3 n / v 

y _ =
 d 9 < s ) ( 4 . i 8 ) 

ds ds 
With this result the new mathematical model for the plate-spring is 
formed by the set of equations given in figure 4.9. It is clear that 
the first equation is now a third-order differential equation. To find 
solutions for this new mathematical model two additional boundary con­
ditions are required. These conditions are resulting from the situation 
at the ends of the plate-spring. At a clamped end the warping of the 
cross-section is inhibited and therefore the first derivative of 9(s) 
will be equal to zero.At a free end there are no restrictions imposed 
upon the deformation of the cross-section. As a result the second deri­
vative of 8(s) will be equal to zero. 
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Main deformations: 

dO(s) K -E-r y , 3 
d 9(s) 

ds3 

« K •{-♦• (M U ) +F "(A-a)) +M (1) +F "(-u(X) + u(s))j 

i t o l « K . I 9- (M < JR.) +F '(i-s)) +M (JQ +F ■(-X+s) + 
ds z x z z x 

+F ■( u(« - u(s) ) 1 

u(s) « ƒ" -*• dt 

Disturbances: 

di|.(s) 
ds ds I HJU + F '(ir») } 

v(s) =
 0J " 2 * * 

w(s) = j S ij> • dt 

Figure 4.9 Simplified set of dif ferential equations derived to account for 
the effect of the warping of the cross-section; this can be used 
to determine the influence of the constrained warping upon the 
behaviour of plate-spring mechanisms. 
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Resuming 
d Af s ~) -Clamped end + j — » 0 (A. 19) 
2 d S . 

-Free end * jÜLSl „ 0 (4.20) 
ds 

This mathematical model can be used to determine the deformations of 
the plate-spring under the influence of forces F and F (fig. A.4). 
Solutions can be obtained with the iterative analytical method. As in 
paragraph 4.3 an initial estimate for the deformed shape is used to 
start calculations. In Annex 4.1 this analysis is performed, leading to 
the following expressions for u(I) and w(I) 

l_ 3 , 1 i 
u(A) = , ' K 'V 'X •{ 2 4 1 1 7 4 8 12 12 '2 ' 

z y z 21 3 ° !l
 r 2 3 4 D O / 

5 • |J u p V- V |i 
( A . 2 1 ) 

w(A) = — • F -K •)?. + 3 z x 
, „ . 2 „ , 1 1 21 12 24 36 36 , 36 •K 'u(Jl) • ! • ! - - - + - — + — - —- + — + — 

y L 7 u _ 2 3 4 5 6 7 5 • p p. u |i u p. 

( A . 2 2 ) 
2 Jl 

where p. = ~ ~ ~" and with the assumption that X > 2°b 
y 

The magnitude of the influence of the constrained warping depends upon 
the parameter p. . For long and slender plate-spring this parameter will 
become very large and expressions (4.21) and (4.22) will give the same 
results as the earlier results (4.11) and (4.13). For plate-springs 
with a rectangular cross-section and b > h the parameter p may he esti­
mated as, 

I / 24"" 
» * b * 7 TH! 

These results could be compared with the results from experiments and 
the earlier results as were shown in figure A.7. in figure 4.10 the 
results are shown and it is clear that the analytical results with the 
new mathematical model are better predictions of the experimental 
results than before. The effect of the constrained warping clearly 
forms an important factor in the behaviour of plate-spring mechanisms. 
Still the remaining differences between theoretical and experimental 
results indicate that other factors are influencing the behaviour of 
the plate-springs. Possible causes of the remaining differences may be 
the inaccuracy of the actual dimensions of the plate-springs and the 
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Figure 4.10Resuits from calculations based on the new mathematical model 
compared with the previous results, (fig. 4.7). 

A. Measured and calculated deflections w( 9.) as a function of the 
loading force F? for displacements u(JD=0 mm and u(l)-U mm. 
It is clear that the calculated deflection w( A) obtained with the 
new mathematical model (iterative analysis II) is a better estimate 
for the measured deflections for u( X) - 4 mm. 

B. The results from calculations with the adjusted mathematical model 
for the variations of the stiffness cz of the plate-spring as a 
function of the deflection of the loaded end compared with the 
earlier results and Lhe measured values. For practical applications 
it appears that the new mathematical model yields sufficiently 
accurate predictions of this variation. 

In these comparisons the additional deformation of the plate-spring 
due to shear has been accounted for. 
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lysis (II) 

2 analysis (I) 

Figure 4.10 Cont. 
C. Due to the application of the force Fz the stiffness cx of the 

plate-spring decreases. Results from different theoretical methods 
estimating this effect are shown together with the results from 
measurements Here a remarkably good agreement between the result 
obtained with the new mathematical model and the measurement Is 
noticed. 
(Note: u(J0 is the deflection of the end of the plate-spring as 
shown in figure 4. 4. In the measurements this is the deflection of 
the middle of the plate-spring as shown In figure 4.6) 

(Dimensions of the plate-spring, 2*X = 80 mm 
b ■ 20 mm 
h = 0,23 mm. ) 
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an-isotropy of the plate-spring material. In addition other phenomena 
may be caused by the presence of the clamped ends. These effects may be 
of interest when smaller inaccuracies will be desired in future prac­
tical applications. For most practical applications it will be suffi­
cient to predict the dependency of the stiffness upon the deflections 
of the plate-spring with inaccuracies as found in the presented 
results. 

To obtain more information about the influence of the constrained war­
ping the magnitude of the torslonal deformation 9(s) of the plate-
spring loaded as in figure 4.6 has been measured by Kruit (K2). In 
figure 4.11 one of the results is compared with the theoretical results 
from the iterative analytical method. It is clear that a large diffe­
rence is obtained close to the clamped ends. (Due to the method used in 

-3 
the measurements inaccuracies of about 0,2"10 rad. have to be accoun­
ted for.) 

In the following chapters this new mathematical model, given in figure 
4.9, will be used to calculate the main properties of different plate-
spring mechanisms. 

0 0 ,2 0,4 0 , 6 0 , 8 1 

Figure 4.11 Comparison of calculated and measured angular deformations around 
the y-axls of the plate-spring (as In f ig .4.7) under influence of 
the force F , . Values given for u - 0,05 • Jt and F, = 2 N. 

Annex 4 . I .De te rmina t ion of the deformations of a p l a t e - s p r i n g due to the 

forces F and F , under cons idera t ion of the e f fec t of the "con­

s t r a i n e d " warping. 

The i t e r a t i v e - a n a l y t i c a l method can be used to obta in est imated so lu t ions 

for the set of d i f f e r e n t i a l equat ions given in f igure 4 .10 . Applicat ion 

of t h i s method for the p l a t e - s p r i n g loaded by the forces F and F , see 

f igure 4 .4 , i s s imi la r to the a p p l i c a t i o n described in paragraph 4 . 3 . The 

a n a l y s i s s t a r t s with an i n i t i a l es t imate of the shape of the deformed 

p l a t e - s p r i n g as given by equations (4 .7) 

<t> ( s ) 

u (s) 
I 

( 3'l~ 

3 2 ( »•£ 

.2 

W) (4.7) 2 "» 2' 

where £» 8/X . 
These estimates are substituted in the first differential equation of 
figure 4.10. As M,x and M are equal to zero this leads to the following 
equation 

d9(s) 
ds - K -E-r 

y 
d 9(s) 

ds3 

( 3-5 1 , 5
2 ) . F .(A-s) + F «u(A)'( -1 

2 z z 

. 2„c2 1 3 , 

(4.1.1) 
The solution of this third-order differential equation can be determined 
as the sum of a particular solution for the complete equation and a gene­
ral solution for the reduced equation. In this case the solution will 
have the following form 

9(s) * K -F 'u(ll)-!l' 
y z 

+ A + B.e 

2 

-H.C 
•( aj.5 + a2.5 + HyZ, + a^.Z + 

+ C e " * 5 ) 

(particular solution) 

(general solution) 
(4.1.2) 

where p -,--., .—■===, which may be estimated as u - ~r~ / K *E'T b for plate-

springs with small thickness compared to the width. 

- 79 -



The coefficients apa, in the particular solution are determined so as to 
satisfy equation (4,1.1). The coefficients A, B and C are determined 
using the boundary conditions for the total solution for 9(s)* For the 
loading case as shown in figure 4 = 4 the boundary conditions are 

B - 0 ♦ 9(0) = 0 , ^ = 0 
ds 

. - * ♦ £*£ = o 

(Note: These boundary conditions are not correct when the plate-spring as 
used in the measurements, figure 4.7, is analysed. In that case the boun-

d6(X) dary condition for s + X should be , ; = 0 . This case will be con-ds 
sidered in Annex 5.1 and the results show no relevant differences for the 
dimensions of the plate-spring as used in the measurements.) 

This leads to the following expressions for the coefficients a,-a/ and A, 
B and C 

6 

n 
a 2 = 2 + 2 } 

V-

v -1 
i 

V 4 6 , |a 6 ( 1 + — )-(i.e' + — 
B - =-K Ü — 

p2° ( e^ + e ^ ) 

( 1 + — ) ■ \i'e - — j 
c = Ë ü 

u •( e r + e ) 
A = -B -C (4.1.3) 

Having determined this solution for 9(s), which is a first order esti­
mate, it may be substituted in the second of the equations of figure 
4.10. This yields the following equation 

i|ili » K • { F •*.( 1 - O- 6(s) + F -X' ( -1 + I ) } (4.1.4) 
ds z z x 

where 9(s) is given by equation (4.1.2). This differential equation can 

be integrated and leads to the following solution for $(s) 
( with 4>C0) = 0 ) 

»(s) - K ^ i y F ^ - u U ) - { ar({.F,2- \>ii) + a,.(i. 3 ■» 
, 1 4 1 5 , , 1 5 1 6 , a3-<4-ï "J-S ) +a4.(j.? - ?-5 ) + 

'2 v3 

+ B» -• ( 1 - - + e ~ ^ « ( I + - - 1 ) ) + 
u u H 

+ c- -• ( -1 - - + e1*"5^ 1 + - - g) ) + I» U P-
+ A' ( I - \ - ^ ) | + K -F -X2» ( -I + 7-F,2 ) (4.1.5) 

This result may be used in the third of equations of figure 4.10 and the 
following expression for u(s) may be obtained through integration 
(with u(0) = 0 ) i i , r 

' 4 F3 F4 F4 F5 
u(s) . -K -K -F -X .„(«. { a , - ( - - fr ) + a, .( fr - fr ) + z y z 

"5 F6 

20 30 
ê rJ 

4 v 30 42 

2 " 12 20 

r- f-) + 

p. *̂ u 2 p. n 2 n ' 

+ O 1 ^ -F, 

2 3 
+ K -F -X3. ( -^r- -^r ) 

z x 2 6 

u „ 2̂ 2̂ „ „ 

(4.1.6) 

The relation between the forces Fx and F and the displacement u( X) of 
the plate-spring end can thus be obtained by substitution of expressions 
(4.1.3) and evaluation of (4.1.6) for s = X • 
Thus the following expression is obtained 

u(X) * u(X)'K -K -F2-X4.{ ( -7 + —~ + -~ + ~ - ~ - ) + z y z ' 21 r 2 4 6 7 5»u u u p 
1 4 12 ^ - e"11 

- ( T~ + "4 + ~ )•( ^- ) + 
3 -p 3 5 p. -p p p e + e r 

2 3 24 - 24 '|i + 12-ii - 4'p , 
( p7-( e ^ + e ^ ) } 

+ K 'F »X z x (4.1.7) 
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For most practical cases the value of p will be large enough to allow for 
simplification of this expression.This will yield the result as given in 
expression (4.21). For relatively short plate-springs the complete solu­
tion may be used. It should however be noted that it Is doubtfull whether 
the mathematical model is adequate for short plate-springs where A < b. 
In that case other factors may have a relatively large influence upon the 
deformations of the plate-spring. 

Following the process described in paragraph 4.3 the solution for 8(s), 
expression (4.1.2) can be used to determine the angular deformation , 
<Ks), and the deflection w(s) of the plate-spring. This results in the 
following expressions 

2 
<Ks) » Fz-Kx-Jt2. ( % - -^ ) + 

+ Fz°Ky°u(«2-{ a^( -\-£ + 53) + a2«( -I3 +f°54) + 

a3-( -|-54 + f-Ü5) + a4»( -f°ü5 + |°56) 
+ A-( -3-5 + |'52) + 

B-1 •( -3 + - + e ^*5.( 3 -3'5 - - ) ) + 

1 , , , 1 , H«C / , - , 3 + C--( 3 + - + e^'M 3-5 -3 - - ) ) } (4.1.8) p p p ' 

and 

w(s) = F 'K 'i3'( &T - fr ) + z x 2 6 
3 4 4 5 

Fz.Ky.uU)2.A.{ a r ( -% + "̂  ) + a2.< -f- + "3
2f- ) + 

3 2 1 3 + A-( - | < + J'l ) + 

+ B^.( _3.5 + ill + 3 _ 6 e-p-E > £ _i _ 3 
p p p 2 P 2 |i ' ' 

p p 
+ C.I.( 3-5 + 3X + 2 + _L + e^.( 1* . _i _ 2 } 

p p p 2 p 2 p ' 
(4.1.9) 
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These expressions may be used to obtain the following estimates for the 
deflections of the end of the plate-spring 

■K» - i - FZ •K 

+ F °K °u(i) z y 
21 
4-p2 

.18.18 3 12 18 e" 
+ 4 + 6 " ( 2 - p + 3 + 5 )o( -

and 
w(i) - ~ "F 3 z 

36 + 18-p 
p •( e +e ) 

•Jf3+ 

z x ' 7 ^ 2 4 6 
5°p p p 

_ , 1 + 12 36 _ 3i . 
"- p. 3 T 5 7 ; 

p p p 
2 72 + 12-p' 

•( ^ + e^) 

(4.1.10) 

) + 

(4.1.11) 

For most practical cases where the length of the plate-spring is large 
compared to the width these expressions may be simplified leading to the 
results presented in expressions (4.21) and (4.22). 

With the iterative-analytical method it is possible to derive relatively 
simple expressions to estimate the main deformations of the plate-spring. 
Application of this method is based upon a number of elementary mathema­
tical operations. The most important are multiplication and integration 
of polynomials which may contain exponential parts. Allthough the opera­
tions are elementary the multitude of them renders the analysis tedious 
and time-consuming. Fortunately computer programs exist that can perform 
the analytical operations on the expressions that were described here. 
The derivation of the expressions in this annex was performed with the 
"MUSIMP" program installed on a micro-computer at the Department of 
Mathematics of the Delft University of Technology. 
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Chapter 5. 

Plate-spring parallel guldings. 

Introduction„ 

The most widely used plate-spring mechanism is the plate-spring parallel 
guiding (see figure 5a1)„ In this mechanism two plate-springs are connec­
ting the slide with the surrounding environment. As each plate- spring 
determines the position of the slide in respect of three degrees of free­
dom the two plate-springs together are determining the position of the 
slide in six degrees of freedom. The plate-springs however are mounted 
with their planes parallel and so both plate-springs allow motion of the 
slide in the direction of the x-axis. Thus allowing a parallel motion of 
the slide, the plate-springs are twice determining the rotation of the 
slide about the x-axis. The influence of this over-determination of the 
slide position will be discussed later in this chapter, 

There are two distinct types of construction of plate-spring parallel 
guides as shown in figure 5.1» In the construction I two plate—springs are 
used. To obtain a reasonable stiffness of the mechanism with respect to 
displacement in the direction of the z-axis and rotations about the x- and 
y-axis the width of the springs has to be relatively large (typically from 
\ to 1- of the length) =. 
In construction II four plate-springs are used and are supporting the 
slide as the four legs of a table» This construction has a relatively high 
stiffness against rotation about the x-axis. To avoid problems due to the 
over-determination of the slide position, (twelve degrees of freedom 
fixed), the width of the plate-spring will in this case generally be small 
with respect to the length (from 1/5 to 1/10 of the length), 

Applications of the plate-spring parallel guidings are found in different 
fields, 
- Conversion of force-d isplacement or displacement-force in measurement 

systems. 
- Accurate and reproducible generation of parallel motion, applied in 

optical systems where loading forces are small. 
- Guiding of parts of machines over small displacements while the posi­

tion of the slide should not be disturbed by relatively high, possibly 
dynamic, loading forces. 
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Figure 5.1 The two most common types of plate-spring parallel guiding 
mechsnIsms. 

Different characteristic properties are making application advantageous in 
each field» In the first the integration of the guiding mechanism and the 
linear transducing element combined with the absence of friction are im­
portant. For the second the possibility to obtain a very good reproduci-
bility and high quality parallel motion with cheap and simple parts is 
important. And in the last field of application the absence of "play" and 
friction together with a reliable operation under even extreme environmen­
tal conditions are important properties. 

In this chapter many of the properties of plate-spring mechanisms will be 
discussed. This discussion is started with a description of the "nominal" 
behavicur of the plate-spring parallel guide. Nominal in this case inclu­
des the basic properties such as stiffness in direction of motion, motion 
in unloaded cases, stresses, allowable loading forces in respect of plate-
spring instabilities, deviations from the ideal motion due to production 
Inaccuracies and the dynamic stability of the plate-spring. Most of this 
information has been obtained in previous research at different places. 
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The following section will focus on the relation between driving force and 
displacement„ Due to the deformation of the plate-spring deviations from 
the linear relation will occur. Different factors influencing the lineari­
ty will be discussed- Also the effect of loading forces and moments ap­
plied on the slide on this relation will be indicated. Most of the infor— 
mat ion in this and the following sect ion is derived with the ma thema tleal 
model and the iterative analytical method as presented in chapter 4 . 

In the next section the deviation from the desired position resulting from 
loading forces and moments wil be determined. An equivalent physical model 
of the plate-spring consisting of a combination of three springs will be 
introduced. With this model and the expressions supplied to determine the 
its parameters the behaviour of the slide under static and dynamic loading 
may be determined„ 
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5.2 Nominal behaviour. 

When a driving force, Fx> is exerted upon the slide of a plate-spring 
parallel guiding a certain displacement, u, of the slide will result. In 
figure 5.2 it is shown that this force should be applied at the center of 
the construction to arrive at a symmetrical loading of the plate-springs. 
As indicated in figure 5.2 the relation between F.,. and u can most easily 
be determined through calculations of the deformations of one half of the 
plate-spring. For each plate-spring this yields: 

F .K «i2 - 12 • SLn. (5.1) 
X 2 X 

The total force needed for the parallel guide displacement, u,' should be 
obtained by addition of the forces for each plate-spring (two springs for 
construction I and four in construction II). 

This relation may be used to predict the stiffness of the parallel guide. 
This prediction will in general not be very accurate. As the thickness of 
the plate-spring becomes smaller the uncertainty in the determination of 
the compliance factor Kz becomes larger. Apart from the uncertainty about 
the Young's modulus of the material, (about 5-10%), the influence of inho-
mogenities in the material and small differences between the measured 
thickness and the actual, active thickness renders the prediction of the 
stiffness rather inaccurate. Another inaccuracy is due to the uncertainty 
about the stress-distribution at the clamped-ends. As suggested by diffe­
rent authors, (see lit. SI), a correction for deformation of the clamping 
can be made by Increasing the length by a certain amount, for instance by 
half the thickness, for each clamped end. 
These considerations lead to the conclusion that the uncertainty of the 
prediction ranges from about 25% for thin plate-springs, (0,1 mm thick­
ness), to about 5% for thick plate-springs, (0,6 mm). Another factor that 
might Influence the stiffness of the plate-springs is the orientation of 
the y-axis to the direction of rolling of the plates. To obtain an impres­
sion of this influence different plate-springs with dimensions of 100x20x-
0,18 mm were cut from one sheet of material under different orientations. 
The stiffness of plate-spring parallel guldings made with these springs 
was measured and the result is shown in figure 5.3. 
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Figure 5.2 To avoid the occurence of extra loading components on the plate-
sprlngs the driving force should preferably be applied at the 
point of symmetry of the mechanism. In this chapter it is assumed 
that driving and loading forces are applied at this point, P, of 
the slide. 
In this case the loading of one plate-spring is as shown In (b) 
and, on the basis of symmetry calculations may be performed on one 
half of the plate-spring loaded only by the driving force, Fx (c). 

Angle (degrees) 
Measured (A) 

values (N). (B) 

0 
9't,9 

94,7 

22,5 
95,5 
95,9 

45 
95,3 
95,1 

67,5 
95,1 
95, 4 

90 
96,8 
95,9 

112,5 
94,3 
92,7 

135 
94,7 
94,9 

157 
95,1 
95,8 

Figure 5."ï In order to determine the Influence of the orientation of the 
plate-spring with respect to the direction of rolling of the sheet 
material measurements of guiding stiffnesses for parallel guidings 
were performed. With the nominal dimensions of 80x20x0,18 mm a 
guiding stiffness of about 96 N/m would be expected. 
From the table it may be concluded that no noticeable influence of 
the orientation upon the plate-spring stiffness is found. 
In the table results from two series of measurements are given to 
Indicate the reproducibllity of the mounting and measurement 
process. 
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Connected with the displacement u the slide will move in the direction of 
the y-axis due to the deformation of the plate-springs. The magnitude of 
this displacement, v(i) , is only determined by the length of the plate -
springs and the displacement u( Z) 

2 
v(A) - " f « ^j1- (5-2) 

As a result the kinematical motion of each part of the slide follows a 
parabola as shown in figure 5-Aa* 

The same kinematic behaviour is obtained with the four-bar mechanism of 
figure 5.4b, although only for small displacements ,( r— < 0,1 ), and as 
a first-order approximation. The length of the bars should be equal 

5 

Deviations from the parallel motion may occur due to geometrical inaccura­
cies. When the length of the plate-springs differs by an amount AA a rota­
tion of the slide around the z-axis will occur as a function of the dis­
placement u(1) „ For the magnitude of the rotation can be derived 

A* « - • ( j-\ • a (5.3) 

where a is the distance between the plate-springs (fig- 5.A). 

Similar undesired rotations occur when the distance, a, between the plate-
spring differs at the two ends. When a difference of Aa occurs the magni­
tude of the rotation is estimated as 

6 U(JQ Aa 
A* - j •—f ' T (5*4) 

In order to avoid this effect different authors (HI, Jl) have suggested to 
minimize the geometrical inaccuracies by simultaneous machining of the 
surfaces used to clamp the plate-springs. When the plate-springs are sub­
sequently mounted with care accurate guiding mechanisms can be obtained. 
An example of such a mechanism is discussed by van der Hoek (H3). In this 
construction both AJL and Aa are adjustable and consequently both the first 
and the second order deviations of $ may be eliminated. 

Another example of a geometrical error is shown in figure 5.5. Here the 
surfaces used to mount the plate-springs are not parallel, a relative 
rotation of the slide around the y-axis will occur upon displacement in 
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Figure 5 J\ When the slide of the parallel gu.ldlng is displaced every point of 
the slide will move along a parabola. A motion with the same 
curvature is obtained with the four-bar link mechanism (b) where 
the two bars have a length ,Jt , equal to /*•*• 

Figure 5.5 Due to manufacturing Inaccuracies the two planes of the undeformed 
plate-springs may intersect each other. As a result the motion of 
the slide will be a rotation about the section line. The magnitude 
of the rotation at a given slide displacement depends upon the 
angle Aft. 
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the x-axis direction. When the angle between the mounting surfaces is Act , 
the mechanism can be treated as a torsion-hinge with the center of rota­
tion far from the mechanism in the direction of the z-axis. The magnitude 
of the rotation of the slide about the y-axis as a function of the displa­
cement is estimated as 

A6 - Aa • -^p- (5.5) 
From these remarks It may be concluded that it is advisable to minimize 
the deflections of the slide, in relation to the other dimensions, when a 
good parallel mot ion is required. 

Another reason to reduce the ratio from displacement to length is, in 
many cases, the magnitude of the bending stress in the material of the 
springs. The magnitude of the maximum bending moment and thus of the 
bending stress is easily determined from figure 5.2 as 

X 2 X K..J12 

12 
and with K - J 

z E-b«h this results in 

Hill 
I (5.6) 

where a is the maximum bending stress. 
max 

This expression gives an es timate of the maximum bend ing stress in the 
plate-springs under nominal conditions. The actual maximum stress level 
will be depending upon stress-concentration effects in the clamped ends. 
The magnitude of such effects is not easily estimated and a certain "coef­
ficient of ignorance" should be applied to ascertain that the allowable 
stress-levels are not surpassed. (Very often it will not be clear what is 
"allowable", rendering the estimates of allowable deflections even more 
uncertain). 

The magnitude of stresses in the plate-springs will also be influenced by 
the loading of the plate-springs. As will be shown the magnitude of the 
loading forces is limited in order to avoid instability of the plate— 
springs. Therefore the maximum bending stress due to the desired displace­
ments will in most cases be the most Important stress-component. 
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Figure 5.6 Due to loading forces applied to Che slide Instability of the 
mechanism may occur. The first form of instability occurs when the 
driving stiffness c of the mechanism becomes equal to zero (a). 
When the displacements of the slide in the direction of the x-axis 
are somehow limited the force F nay be further increased. The 
next limit is imposed by the occurrence of instability of the 
plate-spring (buckling) where the guiding stiffness c of the 
plate-spring becomes equal to zero ( b ) . 

Limits to the loading capacity of plate-spring mechanisms are imposed by 
the possible occurrence of instability of the mechanism. When a force F 
is applied to the slide the driving stiffness c_, will be influenced. Nega­
tive values for F , as in figure 5.6a, will lead to a decrease of the 
driving stiffness, and at a certain value this stiffness will become equal 
to zero. In some cases this may be an advantage as was used in lit. (T2) 
and (E2). 

When the force in the negative direction of the y-axis exceeds this value 
the stiffness cx will become negative. When the displacement of the slide 
in the direction of the x-axis is not somehow controlled very large 
deflections, leading to plastic deformation of the plate-springs, will 
theoretically occur in this case. 

When the displacement of the slide is controlled, for instance by a cam-
mechanism, servoed actuator, end-stops etc., the negative value of F may 
be further increased without damage to the operation of the mechanism. 
This will be allowable upto the limit of instability of the individual 
plate-springs. For a certain magnitude of the force the stiffness of the 
plate-spring in the direction of the y-axis will be equal to zero and a 
small increase of the force will lead to large deflections. 
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The limit values for the loading force F for these two cases can be esti­
mated as 

a. c ■* zero : 

b. c * zero 
y 

2 2 F °K °i - - % 
y z 

2 2 F 'K 'SL * - 4 'it 
(5.8) 

(Values for loads applied to one plate-spring.) 

Similar effects will be noticed when loading forces in the direction of 
the z-axis are applied. In this case the stiffness cx of the mechanism and 
the stiffness cz of the plate-spring may become equal to zero. 
When the force F is applied to the slide at the center of the mechanism 
(point P in fig. 5.2) the following estimate for the force at which the 
driving stiffness c>; will be equal to zero can be used ( lit.LI) 

F 'I -/"K "K ' = ± 16 z z y 

(value for one plate-spring) 

As discussed in chapter 4 such results are applicable only for long and 
slender beams. For plate-springs where the width is not small compared to 
the length the influence of the "constrained warping" at the clamped ends 
will have a considerable influence. Expressions which describe the magni­
tude of this influence are not readily available. The influence of the 
constrained warping may be accounted for by including a multiplication 
factor ;v in the corresponding expressions which have been derived for long 
and slender beams. Thus the following expressions are obtained 

a. c ■* zero 
x 

b. c ■* zero 

F •! •/ K -K = ± 16 z z y 
F -1 •/ K -K ' = ± 28 z z y (5.9) 

(values for one plate-spring) 

The coefficients, 16 and 28, have been derived by Prandtl (PI). Expres­
sions for the factors X and \ are not available. For a plate-spring 
Loaded at its free end (see fig.A.4) Timoshenko (Tl) has derived an 
expression for X . His result may be used to obtain the following table of 

(for a plate-spring material with Poisson's approximations for X 

constant equal to 0,3) 
b 
k = 

1 

20 

1,05 

10 

1,10 

8 

1,12 

6 

1,16 

4 

1,29 

2 

1,6 
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Application of the loading torque t-L may also lead to Instability in the 
mechanism. In this case the stiffnesses cx and c will both become equal 
to zero at the same value of the loading torque. The folowing expression 
may be derived for this case 

M •*•• K «K = ± 2'1C\, (5.10) 
x z y J 

(values given for one plate-spring) 

No expressions for the factor k are known. It may be assumed that the 
order of magnitude of the Influence of the constrained warping is similar 
to the one observed for application of the force Fz. Derivation of more 
accurate expressions for the magnitudes of the critical loads may be an 
interesting subject for further research. 
As was mentioned it may in some cases be desirable to obtain mechanisms 
with driving stiffness c equal to zero. This may be realized by loading 
of the slide. When a force F is used the required load is only 25% of the 
load at which the mechanism will collapse (c equal to zero). In case of 
application of F about 55% of the critical load should be applied and 
when application of the torque Mx is used the load will also lead to 
instability in rotation of the slide around the x-axis. 
To obtain an impression of the influence of combined application of a 
force Fz and a moment M, the occurrence of plate-spring instability, limit 
case b., has been measured at a plate-spring clamped at the two ends. The 
results of these measurements are shown in figure 5.7. 

When the slide is loaded by a moment around the z-axis the plate-springs 
will be loaded by a tensile and a compressive force respectively. In this 
case plate-spring instability may occur when the compressive force exceeds 
the limit stated in expression (5.8b). Similarly around the y-axis will 
cause loading forces inth direction of the z-axis and instability in the 
mechanism may be estimated using expression (5.9). 

In many cases the loading capacity of the parallel guiding will not be 
governed by considerations about the plate-spring instability. They are in 
most cases relevant only as a safety limit. During operation the allowable 
loading of the slide will be determined by considerations about the influ­
ence on the relation between driving force (Fx) and displacement, u, or 
about the deviations from the desired motion or position. Such influences 
of the loading forces will be studied in the following sections. 
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Figure 3.7 Application of a force F to the plate-spring at a distance a from 
the centre is equivalent to a force F and a moment M " a °F 
applied at the centre. Buckling loads F have been measured as a 
function of a for a plate-spring with dimensions 80x20x0,25 mm. 
The results may be compared with calculated results from 
expressions (5.9) and (5.10). 
When the force is applied close to the center the magnitude of the 
limit load is best predicted by expression (5.9b). At large 
distances from the center the moment YL^ will become most important 
and the limit load may be estimated as, 

F 

When the guiding mechanism is subject to varying loading forces or vibra­
tions from the surrounding structure resonance may occur. Resonance of the 
slide of the mechanism on the supporting plate-springs can be estimated 
when the stiffnesses of the plate-springs in the supporting directions can 
be determined. A separate resonance problem occurs for the plate-spring 
itself. A plate-spring clamped at two ends can exhibit a vibration in the 
shape as indicated in figure 5.8. A range of higher order resonance mode-
shapes will exist at higher frequencies. The lowest resonance frequency, 
with the shape of vibration of figure 5.8, can be calculated as (lit.T3) 

U = 22,4- I / 3' 1 1 / K •m-Jt ' z 

where m is the mass of the plate-spring. 

(5.11) 
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Figure 5.8 Under Influence of dynamic loading forces vibrations of Che 
clamped plate-spring may occur. Using the expressions for the 
lowest natural frequency, mode shape as in (a), and the maximum 
stress in the plate-spring of a parallel guiding an expression 
relating the maximum deflection of the slide and the resulting 
natural frequeucy can he obtaIned. From this expression, see f'g. 
(b), it may be concluded that application of plate-spring parallel 
guicl ings will in general be restricted to small deflections. 

Combination of this expression with the result for the maximum bending 
stress in the plate-spring mechanism leads to the following relation 

2,1 
uU) (5.12) 

/ H>p' 

where p is the density of the plate-spring material. 

When it Is desired that this resonance frequency is above a certain value 
the maximum allowable deflection of a plate-spring, independent of the 
dimensions is determined by the three material properties, allowable 
stress, Young's modulus and density. 
In figure 5.8 the resulting maximum deflection for a certain combination 
of material properties is shown as a function of the desired frequency 
limit. 
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Force-displacement characteristic ; -linearity. 

It may be expected that the linear relation between the driving force, F , 
and the deflection of the parallel guiding is valid only for very small 
deflections. The following three factors responsible for noticeable devia­
tions from the linear relation will be discussed, 

- Geometrical effect. 
Anticlastic curvature. 

- Internal stresses in unloaded state. 

For small deflections the relation between the driving force and the dis­
placement is described by a linear relation as given in (5.1). This 
expression is obtained with the linear beam theory where the displacement 
v of the end of the spring is neglected» Wben the displacement of the 
slide increases this movement of the end of the spring is given by expres­
sion (5.2). 

This "shortening" of the plate-spring is the first factor that causes a 
deviation from the linear force-displacement relation. To estimate the 
magnitude of the non-linearity the deformation of one half of the spring 
loaded by a force Fx may be determined. Due to symmetry of the construc­
tion the other half will deform in a similar way. This case of loading has 
already been discussed in chapter 3. The equation governing the bending of 
the spring is 

^ d T " = " W ( X ' S + V ( J° " v ( s ) } (5.13) 

When the first estimate for v(s) is v(s)= 0 the shape of the plate-spring 
can be determined. This will yield the linear-beam result and the follo­
wing expression for <J>(s) is found 

4>(s) = - ^f- •( 3-5 - f-52) (5.14) 
s where E, = — 

With this expression a new estimate for the displacement v(s) can be 
obtained 

Substitution of this estimate in (5.13) and subsequent Integration leads 
to the following expression for <J> (s) 

• A., - -VV*M i - W - 3.(̂ f)2.( I.e - f<* + ̂  - &fr ) 
(5.15) 

To obtain a relation between the displacement u(l) and the force F , u(X) 
can be determined with 

u(A) = - ƒ sin <t>(s) ■ ds = - ƒ ( <J(s) - T'Ks) + •••••'•) • ds 
(5.16) 

To obtain only the terms upto the third power of u(£) this expression may 
be replaced by 

u(JU - - ƒ* ( A s ) - T-*(s)3 ) • ds (5.17) 

where the first estimate of the shape of the plate-spring, expression 
(5.14), is used to estimate the higher order term for (f(s). Substitution 
of (5.14) and (5.15) and integration leads to the following result 

u U ) . K z . V * 3 . ( i - ^ ( ^ f ) 2 ) - 3!*(^) 2-u(!) (5.18) 

which can be written as 

. F „laiLIl. ( — 
x K -Z3 

9 n(l) 2 
35°( 1 ' 

_ 27 ,u(JQ-2 
3 5 ° V 1 ' 

(5.19) 

which expression can be used also for the complete plate-spring when the 
factor 3 is replaced by 12. Apparently there are two factors contributing 
to this geometrical non-linearity. The largest factor, due to the displa­
cement v of the point of application of the force F is represented in 
the denominator of (5.19). The other factor contributes one quarter of the 
non-linear effects, for small deflections, and is due to the third order 
term in expression (5.17). This factor is present in the numerator of 
(5.19). 
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This result is graphically represented in figure 5-9. It can be seen that 
the procentual increase of the required driving force is almost equal 
to 100.( SLS. )2 . 

1,15 

1 

/ 

Figure 5.9 

c 

0,2 jna 
Due to the geometrical non-linear effect the driving force F 
required to obtain a certain deflection u(£) is larger than 
predicted by the linear-beam theory. Expression 5.19 can be 
written as, 

F - 6 12-u») 

K «r 
z 

u(JD 
In the graph the magnitude of 6 as a function of — is shown. 

The second factor influencing the linearity of the relation between the 
driving force and the deflection is caused by the influence of the con­
traction in the plate-spring material as was discussed also in chapter 3. 
When an element of the plate-spring is loaded by a bending moment this 
will result in tensile and compressive stresses» Due to the contraction 
effects the width of the spring will be reduced at the surface where 
tensile stresses are present and increased due to the compressive 
stresses. As a result the shape of the cross-section will change as indi­
cated in figure 5.10. 

Such contraction effects, the magnitude of which is depending on Poisson's 
constant, may develop fully in beams with cross-sections as shown in 
figure 5.10. In plates however where the width b is large compared to the 
thickness, h, the full development of this effect would cause a large 
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Figure 5.10 When a rectangular beam is bended Co a curvature with radius R 
tensile and compressive stresses will be present in the upper and 
lower half of the cross-section. Due to the occurence of the 
transverse strains the cross-sect!on will be deformed and the, 
originally straight, upper and lower boundary will be curved with 

R a radius — , where v is Polsson s constant. 

change in the shape of the cross-section. Consequently the bending stiff­
ness of the cross-section would increase considerably. As described by 
different authors and summarized by Dijksman (Dl) this large deformation 
of the cross-section will not occur and the increase of the bending stiff-

2 -L ness is limited to a factor (1-v ) , where v is Poisson's constant. 
Dijksman describes the variation of the bending stiffness in the transi­
tion region from bending of beams to the bending of plates. It appears 
that the bending stiffness should be multiplied by a factor ranging from 1 

2 -1 to (1-v ) .This factor is a function of the parameter 

MJLL 
ds (5.20) 

For different values of Poisson's constant the magnitude of the multipli­
cation factor as a function of p is shown in figure 5-11. 
From the graphs it is clear that even very wide plates will have a bending 

1 3 stiffness equal to ~j~y eb»h for very small curvatures. For the plate— 
spring mechanisms this will result in a low stiffness for small deflec­
tions and an increasing stiffness when the plate-springs will become more 
curved. 

For the plate-spring parallel guiding the following relation between the 
maximum curvature and the deflection u(X) can be derived 

( dtffii. ) . 6. 
ds max 

u(JQ 
„2 (5.21) 
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Figure 5.11 Due to the transverse stresses In bended plate-springs the 
magnitude of the bending stiffness B will be a function of the 
dimensions of the cross-section and the local curvature of the 
beam. The magnitude of the bending stiffness may be determined as, 

- Q„ • E i . „ . H3 

In the graph the factor QR i s shown as a function of the parameter 
p for three values of Polsson's constant. 
(Note : The ver t ica l scale s t a r t s at Qg = 1 ) 
(This effect has also been discussed In para.3*4, f ig .3 ,4) 

The magnitude of the influence of the increase of the bending st i ffness 

related to the maximum value of the parameter p given by 

p - 6 
max 

b 
h-A 

u(JQ (5 .22 ) 

The magnitude of the parameter p will be varying along the length of the 
plate-spring. The compliance factor Kz will thus be a function of the 
parameter s. This function will be governed by the complex expressions 
given in chapter 3 which are graphically represented in figure 5.11. The 
resulting differential equations will be difficult to solve analytically. 
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With numerical methods however It Is possible to find solutions for the 
differential equations and to estimate the influence of the contraction on 
the force-displacement characteristics. 

Result's of such numerical analysis are shown in figure 5.12. As in figure 
5.9 the Increase of the required driving force relative to the magnitude 
predicted by the linear beam theory is shown. Results are shown for diffe-

2 1 u( I) 
rent values of the geometrical factor b -r r as a function of ——y~ . Here 
the result from the iterative-analytical method, express!on 5.19, is also 

w? 

Figure 5 The occurence of transverse stresses In the plate-springs of a 
parallel guiding will give rise to an Increase of the required 
driving force F . 
As 111 figure 5.9 the magnitude of F is determined as, 

, _ * . 12»u(i) 
K 'I 

For different plate-spring geometries the magnitude of the 
factor Ö as a function of u{I)/I Is shown. For very narrow plate-
springs the non-linearity wilt approach to the effect of the 
geometrical non-linearity (curve A ), as in figure 5.9. 
(The indicated results were obtained by way of numerical 
integration techniques, the calculated points have been 
indicated) . 
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given and it is seen that for narrow beams tills gives a reasonable 
approximation. For wider beams however the non-linearity of the relation 
between F„ and u(Jt) is mainly determined by the influence of the contrac­
tion effect. 

The third factor influencing the linearity of the relation between the 
driving force and the displacement results from Internal stresses in the 
construction when no external loads are applied. In the design shown in 
figure 5.1.1 the two plate-springs are together determining the position 
of the slide in respect of six degrees of freedom. Still there exists a 
freedom of the slide to move in the direction of the x-axis» This means 
that one degree of freedom is determined twice. For the parallel guiding 
it can be seen that the rotation of the slide about the x-axis is fixed by 
each plate-spring. Upon assembly or during operation, due to thermal 
effects or plastic deformation, this over-determination of the position 
may lead to internal stresses in the construction. 

Due to these internal stresses a certain amount of deformation energy will 
be stored in the different elements of the plate-spring parallel guiding. 
As the stiffness of the plate-spring against rotation about the x-axis 
will vary upon displacement of the slide the magnitude of the stored ener­
gy will change. This variation of the elastic energy in the construction 
will Influence the relation between the driving force and the slide dis­
placement . 

When an angular misalignment of magnitude A([> is present in the plate-
spring parallel guiding the stored elastic energy, W , can be estimated as 

1 2 W = - • c • ( A^ ) o 2 tot 
1 2 1 ( 5* 2 A ) 

where = — + — c c , cr tot <|> f 

Here c is the stiffness of the plate-spring against rotation about the x-
axis and Cc Is the stiffness of the slide and foundation against this 
rotation. When the slide is moved along the x-axis the required driving 
force is changed by an amount, AF , due to the variation of W as a func­
tion of u. This variation can be calculated as 

dW _ dc 
AT- O 1 / A , \ 2 t O t . .- _ _ , 
AFx = d < J ö = 2 ■ ( 4 * } • ̂ n r (5-25) 
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The stiffness cf of the slide and foundation can be assumed to be indepen­
dent of the displacement. The stiffness of the plate-spring will be redu­
ced when the displacement increases and therefore AF will be negative. 
For the parallel guiding of figure 5.1.1 the stiffness, c , of a plate-
spring will be determined in paragraph 5.5. The result obtained there is 

E 1 
b 2 u( JO 9 (5.26) 

l 3 (1+ v) where I * ~TT •h»b and a - z • C\ is a constant depending upon the X 12 2 4 ö v 

geometry of the plate-spring (see expression (5.47)). 

Using this expression leads to 
1 

A K x = - 2 . ( A W 2 . u ( « . a . ( ^ ) 2 ^ . ( 2 + ,.£ „ _ _. ,b 2 
'hi 

1>I 
cf.l 

(5.27) 

Combined with the linear beam theory estimate for the driving force this 
results in the following expression for F for the plate-spring guiding 
with two springs 

1 
1 , a 7 h k 

V 
E-I 

x-Kz.A3=. 24-u(«.{l -^.(A^) 2.^) 4- 2.a.(b 2 u U 1 2 + r ^ ) 2 
vh' "f 

(5.28) 
In tills case the stiffness c of the slide is reduced most when u(Jl)=0. 
For general designs the stiffness c^ of the foundation will be large 
compared to the stiffness of the plate-spring. In that case the relative 
decrease of the stiffness c„ for u = 0 can be estimated as 

Ac = ( Ai). £>*) (5.29) 

For a plate-spring with length of 80 mm, width of 20 mm and thickness of 
0,25 mm, the value of a is about 0,1 and a 4 percent decrease of the 
Stiffness cx will occur when A<1 equals about 0,7*10 rad., which is ahnut 
equivalent to an Internal torque of 140 Nmm. When assembly of the guide is 
not done carefully such values of the torque are certainly to be expected. 
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When the slide-displacement increases the influence of this effect will 
decrease rapidly which causes a marked non-linear city of the force-displa­
cement relation» As in figure 5.12 the effect can be shown graphically. 
This is done in figure 5.13 where the relative magnitude of AF compared 
to the driving force according to the linear-beam theory is given for the 
plate-spring described above. From the graph it is clear that serious non-
linearity may be expected in this case. 
The influence of this effect can be reduced in two ways. When the ratio 

of width to thickness is reduced, from wide to narrow plate-springs, the 
influence of an angular error A<]< is decreased. 
Decreasing the width of the plate-spring from 20 to 5 mm reduces the maxi­
mum influence from ten percent to about one-tenth of a percent. Unfortuna­
tely this will simultaneously reduce the ratio between guiding stiffness, 
c , and the support stiffnesses c_ and C , 
X 6 Of 

Another way to reduce the influence of the over-determination of the slide 
position is to decrease the stiffness of the slide and foundation, c^° 
From expression (5.28) it is clear that the decrease of the stiffness and 
the non-linearity will become very small when c^ << EIX . This can be 
achieved by Incorporating an elastic element between the clamping pieces 
in the slide or the foundation. Different examples of possible construc­
tions are shown in figure 5.14. In this case the over-determination of the 
slide position is avoided and non-linear effects can be reduced. 

The influence of the over-determination of the slide position will be even 
more noticable in the construction of the parallel guiding shown in figure 
5.1.11. Here four plate-springs are used to guide the slide. Consequently 
twelve degrees of freedom of the slide are fixed which leads to a seven­
fold over-determination. Such mechanisms will be hard to assemble without 
internal stresses. To reduce this problem the four plate-springs will 
generally have a relatively small width. Therefore each plate-spring will 
only have a large stiffness in the direction of its axis, the y-axis 
direction. With the four plate-springs four degrees of freedom of the 
slide are thus determined with a large stiffness. Unfortunately these four 
degrees are not independent and in this construction the rotation of the 
slide around the x-axis is determined twice. Such parallel guidings will 
generally have a relatively low stiffness in the direction of the z-axis 
and against rotation around the y-axis. 
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Figure 5.13 Three different factors are Influencing the nnn-linearity In the 
force-displacement: characteristic of a plate-spring parallel 
guiding. In addition to the geometrical non-lineartty internal 
stresses In the overdetermlned cons truetion may have a large 
Influence. For a guiding with two springs, 80x20x0,25 mm, and an 
Internal torque of 140 Nmm at the neutral position the driving 
force as calculated by the linear-beam theory should be multiplied 
by a factor 6 as shown (see fig. 5.9). It can be seen that this 
effect decreases the stiffness of the parallel guiding. 
In combination with the result from calculations with numerical 
Integration techniques, (see fig.5.12), the line with the -t—marks, 
a large range of variation and non-linearity results for these 
dimensions. 
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plate-spring 

Figure 5.14 The over-determlnat Ion of the position of the slide In a parallel 
guiding can be removed by adding an extra Internal degree of 
freedom in the slide or foundation. This degree of freedom could 
he realized using a torsion hinge (a) or as a slide with a shape 
that has n low stiffness against rotation about the x-axis (b). 

As in this case the rotation of the slide, about the x-axis is over-deter­
mined the force-displacement characteristic will be influenced by the 
Internal stresses in the construction. Calculation of the influence of an 
angular error A<b can be done as described for the plate-spring parallel 
guiding with two plate-springs. 
Instead of expression (5.26) for the stiffness of one plate-spring against 
rotation about the x—axis the stiffness of a pair of plate-springs should 
be used. When a is the distance between the axis of the two plate-springs 
in the direction of the z-axis and c the stiffness of a plate-spring in 
the direction of the y-axis, this results in 

2 I 
z y 2 

E »A 
K l 700 V h } } 

(5.30) 
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Following the same analysis as before leads to the following relation for 
F for the parallel guiding with four springs 

a .* ! 
V V * 2 * 4 8 ° V f J- " 732~o(A^^V )2°( (2 + -&-( JStil ^ U o 2 ) } 
x z x in hz u + 700 \ h ; +-— ) 

where c is the stiffness of one pair of plate-springs when u(J£.) = 0. to 
Also in this case the stiffness of the parallel guiding is reduced around 
the undeflected postion. The stiffness will increase with increasing 
deflection, which causes a non-linearity in the force-displacement charac­
teristic» This effect is reduced when the stiffness Cf of the slide and 
foundation is very small compared to the stiffness Cj-Q of one pair of 
plate—springs when the deflection is equal to zero. 

Conclusion,, 

In this paragraph three effects causing deviations from the linear rela­
tionship between the driving force and the displacement of a parallel 
guiding have been discussed» The resulting estimates of the additional 
driving force, AF , for each effect are shown in figure 5.13. The calcu­
lations were performed for a plate-spring with the following dimensions, 

length: 80 mm, width: 20 mm, thickness: 0,25 mm. 

For the contraction effects Poisson's constant was estimated to be 0,3 and 
to calculate the influence of the internal stresses it was assumed that 
the slide and foundation have a large stiffness compared to the plate-
spring. The internal torque was estimated at about 140 Nmm which Is about 
20 percent of the buckling load for the plate-springs. 
When the three effects are combined it is clear that a noticeable non-
linearity exists even for small displacements of the slide. The non-linea­
rity is much larger than expected from the geometrical effect alone. This 
example may appear to give an extremely bad impression. It is of course 
possible to reduce the contraction effect when more narrow plate-springs 
are used. And similarly carefull assembly and handling will allow to 
reduce the influence of internal stresses. In such cases the resulting 
non-linearity may be about equal to the geometrical effect alone. Such 
narrow plate-springs will however not be desirable when a high stiffness 
of the guiding mechanism is required and it may be concluded that the 
combination of a stiff guiding mechanism and a linear transducing element 
is not easily achieved. 
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5.4 Force-displacement characteristic ; -influence of loading forces. 

When the slide of the plate-spring parallel guiding is subjected to diffe­
rent loading components the relation between the driving force and the 
displacement u(X) may be influenced, in this paragraph the nature and 
magnitude of these influences will be discussed. 

Each plate-spring is suited to determine three degrees of freedom of the 
slide position. Therefore each plate-spring will be able to support the 
slide with respect to three loading components. For each plate-spring 
these loading components will be the forces Fy and Fz and the torque M^. 
To determine the magnitude of these components for each spring when the 
slide is loaded the equations for static equilibrium of the slide can be 
used. A loading torque >1 acting upon the slide will thus cause loading 
forces F- on each spring. Due to the over-determination of the slide posi­
tion however some of the loading components cannot be distributed in this 
way. For the construction of figure 5.1.1 (two plate-springs) it is not 
directly possible to distribute the loading torque K^ over the two 
springs. For the construction of figure 5.1.II with its seven-fold over-
determination this problem occurs for every loading component. Using con­
siderations about the symmetry of the construction and the fact that all 
plate-springs are having the same stiffnesses it will be possible to 
estimate the magnitude of the different loading components for each plate-
spring. 

In this paragraph the behaviour of one plate-spring under influence of the 
three loading components F Fz and t^ will be discussed. The free end of 
this plate-spring will be displaced in the direction of the x-axis while 
the angular deformations of the end, <K JO and 9(1) , will be equal to 
zero. To describe the loading of the slide all forces and torques will be 
calculated as being applied at the point of symmetry of the mechanism as 
indicated in figure 5.2. Forces applied at other points are decomposed 
into torques about the axis of the coordinate-system with the origin In 
the point of symmetry. 

The force F will be the loading component having the most influence on 
the stiffness c x of the plate-spring. Due to the kinematic behaviour of 
the mechanism the free-end of the plate-spring will move in the direction 
of the y-axis as a function of the displacement u(Jt) . This relation has 
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been given in expression (5.2) as 

v(« - u(l) 

When variations of v(£) are occuring energy will be supplied to the mecha­
nism by the force F . In first order approximation the displacement of the 
slide will not be influenced by the force F and thus the magnitude of the 
energy supplied equals 

W = F -v(I) u(l) 

Due to the variations of this energy a variation of the driving force 
needed to cause a deflection u(Z) will occur. 
This variation is determined as 

AF dW 6 
5 ° Fy 

u(A) 
x du(£) 

And this will lead to the following relation between F and u(I) 

F =K -i2 = 12 • ^ - ° ( 1 + -i-F -K -l2 ) x z SL 10 y z (5.32) 

For the stiffness c for each plate-spring this yields 

12 
K 'l 

( l+7i°FyW ) (5.33) 

(Note: The force F„ is the force applied to one plate-spring.) 
This result derived using considerations about the energy contained in the 
plate-spring, may also be derived using equation (3.1). With the following 
estimates for u(s) and v(s) 

v*(s) = 0 
* 2 3 
u (s) = ty( 3'S - 2-5 ) 
where u = u(l) and % = -

This leads to the following differential equation 

ÈÈ^L = Kz-{ - FX'A'( 1 - I ) + Mz + Fy.u(«-( 1 - 3-52 + 2-t3 ) ) 

(5.34) 

This equation can be integrated yielding an expression for <t>(s). Using the 
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boundary condition ${JL) = 0 the torque Mz can be eliminated and the follo­
wing expression for u(s) can be obtained through integration of the 
expression for -<J)(s) 

u(s) 
■ " V l r x " ^ "v 4""» 6""» ' *y ~ "x~' N * ' * " 

(5.35) 

i « V { Fx.!2.( f c 2 - ^ ) - Fy.A.u(A).{ i . ^ - i . ^ - j i . ^ ) ) 

And with this expression the result given in (5=32) is again obtained by 

substitution of E, = 1 = 

To determine the influence of a force F„ applied to the slide of the 
parallel guiding this expression is sufficient. Different measurements, 
see for instance lit» Gl, have been performed and a good agreement has 
been found» When the slide is however loaded by a torque Mz each plate-
spring will be loaded by equal but opposing forces F„« The linear 
influence of F on the stiffness cx of each plate-spring will be equal but 
opposite. Together their influence will be equal to zero and it is inte­
resting to determine the second-order effect of the loading force F on 
the stiffness c . Therefore the result (5 = 35) can be used to obtain new 
estimates for v(s) and u(s) 

v (s) = 0 ** 
- (s) - i 

2 rfhere f = F «K '1 y y z 

^ ( 3 . 5 W ) + V(^2-K-K + i K > ) 

This leads to the following relation between Fx and u(1) 

F .K -Jt2 . 12 • ̂ P " *( 1 + 7 7 T f -Ïï7r^° f 2 ) (5.36) 
x z A l 10 y 8400 y 

As the magnitude of F should be limited to avoid the occurence of insta­
bility of the plate-springs the second-order term will generally be very 

2 2 small.( F -K 'I < 4«1t ) y z 

The two remaining loading components, Fz and M , will not have a linear 
effect upon the stiffness cx as no displacement or rotation in these 
directions are occurring due to the deflection of the slide. These loading 
components will however cause torsional deformations of the plate-spring 
and this will result in additional deflections of the plate-spring. In 
chapter 4 it has been described how the torsional deformation can be 
determined. Due to the effect of the constrained warping of the cross-
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section the influence of this loading components will be depending upon 
the length to width ratio of the spring. Using the iterative analytical 
method the following relation between Fx and u(Jt) can be derived 

x z X 
2 4 1 - K -K »F 'Ü -C. 

z y z 1 (5.37) 

spring and Foisson's constant for the material. The full expressions for 
this coefficient are presented in annex 5.1. In these expressions it 
appears that Cj is a function of the parameter |i defined as 

»2 

E-r°K which may be written as 

r ~IT 
( 1 + v ) (5.38) 

for plate-springs with b>h. 

0 5 10 15 20, 

Figure 5.15 The two factors C, and Cj which determine the Influence of the 
loading components F and M upon the driving stiffness c of the 
parallel guiding, given in expressions (5.37) and (5.39), as a 
function of the parameter u and the length to width ratio for a 
material with Poisson's constant equal to 0,3. 
For extremely long plate-springs C, and C? will be equal to ■■ 
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In figure 5.15 the relation between this parameter and the coefficient Cj 
is shown. In this figure the relation between C, and the length to width 
ratio for a material with Poisson's constant equal to 0.3 can also be 
determined. It should be noted that for this loading case the force Fz is 
not applied at the end of the plate-spring but halfway the length of the 
plate spring. 

When the plate-spring is loaded by a torque M^ similar results can be 
derived. For the relation between the driving force and the resulting 
displacement, for one plate-spring, it holds 

F .JC 'X2 = 12 ■ -^Hr " { 1 - K 'K «M 2°lZ°C 1 (5.39) 
x z I l z y x 2 ' 

Where the coefficient C2 is equivalent to Cj in (5.37) and can be determi­
ned using the expressions given in annex 5.1. This factor can be determi-
ned, as a function of U or /, , from figure 5.15. 

b 

As the force F and torque M„ are applied at the middle of the plate-
spring, the point of symmetry, their influences may be simply added when a 
combination of the two loading components is applied. For such cases the 
following relation can be derived, 

F -K 'I2 * 12-^4M 1 - K -K °12°( F2 °i2°C, + H 2°C.) ) (5.40) x z i L z y z 1 x 2 ' 

When the loading force F is applied to the end of the plate-spring, as 
shown in figure 5.16, the relation between the driving force and the dis­
placement can be obtained from expression (5.40). 
In figure 5.16 the resulting expression is given and represented graphi­
cally. Also in figure 5.16 this result is compared with results from mea­
surements of the stiffness of a plate-spring parallel guiding. As in chap­
ter 4, figure 4.11.C a reasonably good agreement between both results is 
obtained. At larger values of the force Fz increasing differences are 
observed. This may be due to the contribution of higher order effects or 
may result from the presence of internal stresses in the over-determined 
construction of the guiding. 
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Figure 5.16 When the loading force ?z is applied to the slide at the end of 
the plate-spring the following relation between F. and u( JO is 
found, 

.2 uU) 2 4 
7. y z -, + K 2)). 

Measurements of this effect have been performed on a guiding with 
spring dimensions 80*20*0,18 mm. 
The obtained results are presented together with the expected 
theoretical result. 
The differences found for larger values of the force Fz may be due 
to higher order effects which were not accounted for in the 
derivation or may be resulting from Internal stresses in the 
plate-springs as no steps were taken to remove the over-
determination in the mechanism. 
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From the express ions , presented in t h i s paragraph, i t i s c l ea r that v a r i a ­

t ions of the loading of the s l i d e wi l l cause v a r i a t i o n s in the r e l a t i o n 

between the dr iv ing force and the r e s u l t i n g displacement . From expression 

(5.36) i t can be concluded that a p p l i c a t i o n of the dr iv ing force a t the 

s l i d e as in f igure 5.17 wi l l not r e s u l t in a la rge n o n - l i n e a r i t y when the 

d i s tance between the p l a t e - s p r i n g s in the x - d l r e c t i o n i s of the order of 

the p l a t e - s p r i n g l eng th . Applicat ion of the dr iv ing force under an angle 

with the x-ax is wi l l not have a no t i ceab le inf luence on the l i n e a r i t y of 

the r e l a t i o n between force and displacement when t h i s angle i s l e s s than 

0,1 radian ( 5 ° ) . 

( I t might even be considered to vary the angle a as a function of the 

de f l ec t ion of the s l i d e . When the dr iv ing force i s always applied along 

the tangent to the t r a j e c t o r y of the point of a p p l i c a t i o n the geometr ical 

n o n - l i n e a r i t y as predicted by expression (5.19) wi l l be reduced.) 

Figure 5.17 To avoid addit ional loading components on the plate-springs the 
driving force F should preferably be applied at the point of 
symmetry, P, of the mechanism. With the expressions given in th i s 
chapter the effects of application of Fx as shown here may be 
calculated. In most cases the resul t ing effects are negl ig ib le , 
even when the force is applied under a cer ta in angle a with the x-
ax l s . 
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Guiding stiffnesses. 

When the slide of a plate-spring parallel guiding is subjected to loa­
ding forces and torques two effects will be noticed. At first the 
stiffness of the guiding in the direction of motion, cv, will be 
changed. When a certain driving force is applied the deflection will 
change upon application of the loading forces and torques. This effect 
was discussed in the previous paragraph. 

The second influence of the loading of the slide is that other deflec­
tions of the slide, not along the desired track, will occur. In accu­
rate guiding mechanisms it will be desired that such deflections will 
not exceed certain limits. Therefore requirements about the stiffness 
of the guiding mechanism in directions other than the direction of 
motion must be satisfied. Also when resonance of parts of the guiding 
might occur, under the influence of varying loading forces or torques, 
it will be desirable to be able to determine the different "guiding" 
stiffnesses of the mechanism. 

One degree of freedom of the slide in the parallel guiding is Intended 
to be free. So there are five degrees of freedom which are fixed with a 
relatively high stiffness. There are five different stiffnesses of the 
guiding to be determined. These stiffnesses are obtained through combi­
nations of the three stiffnesses of the three degrees of freedom that 
are fixed by one plate-spring. In this paragraph these three stiffnes­
ses of one plate-spring, deformed as in the plate-spring parallel gui­
ding, will be derived. Through combination of these stiffnesses for the 
two or more plate-springs the five guiding stiffnesses of the mechanism 
may be obtained. 

Of the free end of a clamped plate-spring the deflections in y- and z— 

axis direct ion and the rotation around the x-axis are fixed with a 
relatively high stiffness. The behaviour of the plate-spring in these 
directions Is similar to that of a combination of three supports with a 
certain stiffness. These three supports, shown in figure 5.18, are 
fixing the same degrees of freedom. To describe the behaviour of the 
plate-spring it is therefore sufficient to obtain expressions for the 
magnitudes of the three stiffnesses c c and c as a function of the 

y z cj> 
plate-spring dimensions and the deflection of the slide of the parallel 
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pu id ing. The two stiffnesses c„ and c may then be combined to deter­ft O Z (J, 
mine the stiffnesses and the positions of the two supports z, and z? in 
figure 5.18. 

Figure 5.18 To determine the behaviour of a plate-spring parallel guiding 
under influence of different loading forces each plate-spring (a) 
may be replaced by an equivalent mechanism (b) containing three 
helical springs (b). The two springs z, and 22 have the same 
stiffness and are placed at equal distances from the middle of the 
place-spring. The three stiffnesses and the distance a may be 
determined with the expressions derived in this paragraph. 

m 

Determination of the stiffness c can be done using the differential 
equations given in expression (3.1). Using the iterative-analytical 
method solutions for these equations may be obtained. With suitable 
first estimates for u(s) and v(s), as in expression (5.34), an estimate 
of the angular deformation is obtained. A new estimate of the deflec­
tion of the end of the plate-spring in the direction of the y—axis is 
than obtained with 

v(l) * \ • \ l («s))2-ds z o 

When only linear terms in the force F are considered this leads to 

l 5 v SL ' y z 7nn (5.41) 

Tlie first part of this expression is the ki.nema tical deflect ion ac 
given in expression (5.2). This part is not a function of the loading 
force Fy. The first order estimate for the stiffness c would thus be 

700 
( K -l*u(Jt)2) (5.42) 

In addition to the deflection calculated here, which is due to small 
variations of the bending shape of the plate-spring, a deflection due 
to pure tension will occur» This effect will not always be negligible. 
When the deflection of the slide is equal to zero the stiffness of the 
guiding mechanism is fully determined by the influence of the tensile 
stresses as the deflection v( Z) predicted by expression (5.41) will 
also be equal to zero. Thus expression (5.41) should be replaced by 

v(« l.(JïCJtt.,2H 
1 5 k I ' V E«b-h u(l) 

700 (5.43) 

12 
In this case the compliance -Kz can be estimated as / 
following expression for c is obtained 

E.b.h 3 and the 

E»b»h 
Jt ( 1 + 12 

700 (^)2) (5.44) 

It is clear that for small deflections this stiffness is determined by 
the tensile stiffness as determined with Hooke's law. For deflections 
of about seven times the plate-spring thickness the bending effect will 
contribute an equal part to the total stiffness. 
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-Av(t) (ym) 

Figure 5.19 Results of measurements of the deflection v( S.) due to the loading 
force F applied to a plate-spring with dimensions 80*20*0,25 mm. 
Results are shown for different values of the deflection u( A) of 
the p la te-spr ing. 
I t can be seen that var ia t ions of th i s deflection does not 
d i rec t ly influence the magnitude of the second-order buckling 
force.The s t i f fness cy however decreases with increasing 
deflection u(£) . (The theore t ica l value of the second-order 
buckling force for th is spring is -33,7 N.) 

This express ion for the s t i f f n e s s has heen ohtained with d i f f e r e n t 
methods. The r e s u l t has been exper imenta l ly v e r i f i e d by Grentzius ( G l ) . 
To perform measurements of the d e f l e c t i o n v( 1) for l a rge r values of the 
force F a spec ia l measuring se t -up has been developed. This s e t -up 
w i l l be descr ibed in chapter 8. A r e s u l t i n g graph of the d e f l e c t i o n 
v ( i ) as a function of Fy i s shown in f igure 5 .19 . From t h i s graph i t i s 
c l e a r tha t expression (5.44) only gives information about the tangent 
to the curve for Fy equal to ze ro . This was to be expected as only 
l i n e a r terms in the loading force were cons idered . Depending upon the 
required accuracy expression (5.44) may be used to a c e r t a i n magnitude 
of F y . 

Higher order express ions for v ( I ) can be obtained by subsequent i t e r a ­

t i v e s t eps in the i t e r a t i v e a n a l y t i c a l method. Using terms quadra t ic in 
the loading force F wi l l r e s u l t in 

liAl . _2.(üUK2 . _J__ + K _ HO! _ 2. U(JQ 
5 l i > + 'y ( E°b°h r Kz 700 } (Fy Kz W 42000 

This result is compared with a result from measurements in figure 5.20. 
In this figure the result from the quasi-linear beam theory for this 
case is also given. Expressions for this case were derived in litt.(Nl) 
and (E2). As discussed in chapter 3 the result from the quasi-linear 
beam theory is a rather complicated expression and application of this 
result is done with the help of graphs or tables. The expression (5.45) 
will in many cases be suitable to obtain an estimate of the stiffness 
cy of a plate-spring in a parallel guiding. 

The guiding stiffness c can best be determined about the x-axis indi-
* 

cated in figure 5.2 passing through the center of the plate-spring. 
When a force Fz is applied at the point of symmetry of the construction 
(figure 5.2) the symmetry of the loading of the plate-spring will 
assure that the rotation of the free end about the x-axis will be equal 
to zero. Thus the force Fz will cause only a deflection w(JQ of the 
slide and a torque M^ only a rotation, <|>(J0 .about the x-axis. Determi­
nation of the stiffnesses c_ and c can be done with the iterative-

z <[• 
analytical method. Due to the symmetry the analysis could be performed 
on one half of the plate-spring as in chapter 4. Analysis of the beha­
viour of the complete spring will yield equivalent results. 
Using the methods described in Annex 4.1 the following relations 
between ?z and w( I) and between the torque M and the 
rotation dj( A) have been derived 

K 
„2 . „. will F «K -Ü = 12' ̂ ^ ^ •( Ü7Ï) 2 \ z z l* I l ( K + 12- K . c - i ^ 1 ) 1 I x„ y 3 I 

z (5.46) 
V V * * *U) • I ( K + K -C -(^f)2) ) x y h I ' ' 

where Cj and C^ are coefficients which are a function of the length to 
width ratio of the plate-spring and the Poisson's constant for the 
material. With the elementary estimates for the compliances 
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Figure 5.20 Comparison of results from measurements of the stiffness c„ of a 
plate-spring with different calculated results. Two graphs, for 
u(Z)=0 and 3 mm., from figure 5.19 are shown. -For u( J?)=0 mm. the 
measured deflection can be compared with the deflection according 
to Hooke's law. The measured result for u(j0 = 3 mm. is compared 
with the first and second order iterative results and with the 
result from the quasi-linear beam theory. 
For small loading forces the first order iterative result gives a 
reasonable estimate of the stiffness c . The result from the 
quasi-linear beam theory yields an excellent agreement with the 
measured result. 

K I L - „ _ 6-( 1 + v) 1 2 _ 
X E-h-b E-b'h Z E-b«h 

the stifnesses c and c are determined as z (J, 
12 1 

(5.47) 
! 1 

% = y l , ( ( i + (^)-(^f)2-(^)2-c4) 1 

J 
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When the deflection u(X) of the slide is small these stiffnesses are 
mainly determined by the bending deformation of the plate-spring about 
the x-axis. For larger deflections the stiffnesses will be reduced due 
to the Increasing influence of the torsional deformations. As for the 
tensile stiffness In the expression for c the effect of the shear 
deformation of the plate-spring may be added in this expression. For 
relatively short plate—springs,{,% < 4°b) , and small deflections this 
effect may become dominant and the add 11lonal deflection may be calcu­
lated with 

AwC A) G'b'h 

Expressions for the constants Cn and C, are given in Annex 5.1. To 
obtain an impression of the magnitude of these constants they are pre­
sented graphically In figure 5.21. For different shapes of the plate-
springs the magnitude of the stifnesses c and c as a function of u( $.) 

is shown in figure 5.22. 

0 17,2 34,4 51,6 68,8 " 86 

1 f 1 

V 

c« 

/ s 

Figure 5.21 The magnitude of the factors C-, and C/ as a function of the 
parameter \i and the length to width ratio for springs of a 
material with Poisson's constant equal to 0,3. 
For extremely long plate-springs C-j and C^ will be equal to 
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Figure 5.22 Due to variation of the slide deflection the stiffnesses c and cz 

of each plate-spring will decrease relative to these stiffnesses 
for the undeformed plate-springs. The ratio between the actual 
stiffnesses and those for u(J?)=0 mm. is shown as a function 
of -^T~ for different length to width ratios of the plate-spring. 

Ü (For plate-springs with — ■ 2 the influence of shear deformations 
will have a noticeable effect and should not be neglected.) 

v y 
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The expressions derived for the guiding stifnesses of the plate-spring, 
when deformed as in a plate-spring parallel guiding, can be used to 
determine the properties and the position of the three helical springs 
in the equivalent mechanism shown in figure 5.18. It will be clear that 
the stiffness of spring Y should be equal to cy as given in expressions 
(5.42) or (5.45). For the springs Zl and Z2 the sum of their stiffnes­
ses should be equal to c„« Due to the symmetry they should be posi­
tioned at equal distances along the y-axis from the point P at the 
middle of the plate-spring. The total distance, ay, between the springs 
Zl and Z2 can be determined from 

To obtain an Impression of the magnitude of a the resulting values for 
different plate-springs and as a function of the deflection u( Jt) are 
shown in figure 5.23. It is seen that the distance ay does not change 
much for different situations. 

With the expressions presented in this paragraph it is possible to 
determine the guiding stiffnesses of plate-spring parallel guidings. It 
may be usefull to apply the equivalent supporting mechanism as shown in 
figure 5.23 to replace each plate-spring. As a result it will be seen 
that the slide is supported by a system of helical springs, 6 for the 
mechanism with two plate-springs and twelve when four plate-springs are 
used. This representation will be usefull to obtain a qualitative 
understanding of the behaviour of the parallel guiding when different 
loads are applied. 
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Conclusion 

On the basis of the characteristics of the plate-spring parallel gui­
ding discussed in this chapter some remarks about its suitability in 
the different fields of application can be made. For application as a 
transducing element (either force displacement or displacement-force) 
the aspects of reproducibility and linearity may be of importance. As a 
first remark it can be stated that it is not possible to predict the 
stiffness cx of the plate-spring guiding with a high accuracy. The 
linearity of the relation between the driving force and the slide 
deflection is subject to different influences. The non-linearity due to 
the geometrical effect is relatively small, less than 1% for 
u(Jl) < 0,1 *JL . The use of relatively narrow plate-springs and carefull 

treatment and assembly may yield guidings with such non-linearity. In 
most guiding mechanisms however more non—linear!ty, due to the anti— 
clastic curvature and the presence of internal stresses, should be 
anticipated. 

With modern techniques for data-handling the non-linearity of the 
force-displacement relation might be acceptable. The second important 
factor is the reproducibility. In paragraph 5.k it was indicated that 
loading forces acting upon the slide may have a noticeable influence on 
the force-displacement relation. When good reproducibility is required 
care should thus be taken to avoid variations of the magnitude of the 
loading forces. Another factor influencing the reproducibility may be 
the occurence of hysteresis in the plate-spring material or in the 
interface between clamping and plate-spring. This effect will be 
briefly discussed in Appendix A. There it will be concluded that a 
hysteris, or uncertainty range for the position of the slide, of about 
0,3% of the maximum deflection can be expected due to the internal 
hysteresis in the plate-spring material. 

These remarks are giving some indications about the posibilities of the 
use of the plate-spring parallel guiding as a measuring element. In 
such constructions the plate-spring mechanism is both a guiding and a 
transducing element. 

The second field of application is the generation of a motion that is 
reproducible and well defined. In optical systems it is common that 
components need to be displaced over a certain distance while no para-
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sitic displacements and rotations are allowed. The motion of the slide 
of the parallel guiding is a combination of two displacements, yielding 
the curve indicated in figure 5-4« The deflection in the direction of 
the y-axis is in many cases acceptable. When this is not allowable a 
combination of two identical guiding mechanisms may be used. In these 
cases the quality of the resulting kinematic motion, the absence of 
parasitic displacements, is mainly determined by the accuracy of the 
production of the parts of the mechanism. Machining the different parts 
together and suitable jigs for mounting are helpfull in this case. With 
proper care it will be possible to produce high-quality guiding mecha­
nisms , especially when the required deflection is small. An interesting 
example of such a mechanism is described in lit» (H2). 

The kinematic motion of the unloaded slide may be good, the influence 
of loading forces on the slide position may cause untolerable deflec­
tions . 
For such cases the quality of the guiding mechanism could be evaluated 
with the expressions for the different guiding stiffnesses. To obtain 
an impression of the quality of a guiding a suitable method is to 
determine the ratio between the stiffness c and the stiffnesses c and 

X y 
c of the guiding. Due to the stiffness c certain forces have to be 
applied to the slide and when equivalent forces are applied in the y-
and z-axis direction the deflections should preferably be very small. 
As an arbitrary suggestion for the ratio between guiding and driving 
stiffness the value of 1000 could be used. A much lower ratio will mean 
that the guiding stiffnesses are very low. A higher ratio will lead to 
a mechanism that will show less deviations from the kinematical motion. 
With expressions given in this chapter the following relation between 
cx and c and c can be obtained 

The dimensions of the plate-spring will generally allow to obtain the 
desired ratio, 1000, for u( l) = 0. With increasing deflection this 
ratio will decrease. For a steel plate-spring with I = 4-b this limit 
is reached for c :c for u( H) - 0,24 'i. and for c :c when 
u(l) » 0,09-A . 
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This indicates that in most cases the stiffness cy will be most criti­
cal. For accurate guiding mechanisms it is therefore suggested to mini­
mize the deflection relative to the plate-spring length. From this 
consideration it can be concluded that the restriction in the different 
analytical methods to relatively small deflections does not interfere 
with reality when accurate guiding mechanisms are to be designed. 

Resuming it can be stated that the plate-spring parallel guiding is a 
useful construction element when small relative displacements of parts 
are required. For small displacement a guiding mechanism with high 
guiding stiffnesses and a reproducible behaviour can be obtained with 
simple elements and without high production costs. 
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Annex 5.1. Analysis of plate-spring deformations. 

The Influence of the loading components F and M upon the driving and 
guiding stiffnesses is due to the torsional deformation of the plate-
springs. This influence can be determined with the iterative analytical 
solution as was demonstrated in Annex 4.1. For the complete plate-spring 
of a parallel guiding the following initial estimates can be used 

A s ) - -6 - uA o ( I - I2 ) 
u*(s) * u A • ( 3°e2 " 2»S3 ) (5.1.1) 

s. u(Jt). 
where t = / and u = / . 

When the loading force and moment are applied with respect to the middle 
of the plate-spring ( s = |°1 ) the two loading cases may be analysed 
independently and the results may be directly combined afterwards. The 
force F2 will in this case only cause a translation of the free end of 
the plate-spring in the direction of the z-axis. The moment M„ will only 
cause a rotation of this end around the x-axis passing through the 
middle of the plate—spring. 

- Influence of force F 

The initial estimates for 4>(s) and u(s) may be substituted in the first 
differential equation of figure 4.9. ,yielding 

4e _ K .E.r. &LÜ. = 
d s y ds3 (5.I.2) 

= K •{ -$ (s)-Fz-( -•! - s) + Fz-( - --u (A) + u (s) } 

For this equation a solution 9(s) may be found of the following form 

9(s) = Fz«K 'u(.i)'l'{ a 't + a 2-? 2 + a^'t? + a •£ + 
+ A + B-e"^' + C-e^'1 .] (5.1.3) 

s 2 1 where £ = —" and [I = — — z — r . For plate-spring with a rectangular cross-

section and b>h this may be approximated as p. 
I / u ' 
b ' (1+v) 
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The boundary conditions for the solution for equation (5.1.2) are 

s = 0 * 9(s) = 0 and È3&L . n 
ds 

s = X * 6(s) = 0 and ±QLël „ n (5.1.4) 

Using these boundary conditions the following expressions for the coef­
ficients a i - a, and A,B and C may be derived 

11 
2 

12 

1 1 
|1«( 1 ") !»•( 1 - e ^ 

-B -C , 

(5.1.5) 

With these expressions the solution for 9(s) is determined as a function 
of F7. The influence of the torsional deformation upon the bending 
deformation, (f(s) ,can be determined with the second equation of figure 
4.9, yielding the following expression 

= Kz«{ 9(s) ■Fz'( ~ - s) + Mz + Fx-( s - | ) } (5.1.6) ds 

where it is assumed that the forces are applied halfway the length of 
the plate-spring. 

This expression may be integrated to find the solution for <t*(s) . With 
the boundary condition at the ends of the plate-spring the magnitude of 
M can be expressed in the other loading components. Subsequent integra­
tion will lead to an estimated expression for u(s) that contains the 
influence F_ 

.2 
u(« •F •Z 

12 

+ Ky-Kz-F2
z.u(l) -A3-(- YJ-A - -^■a1 - ̂ -a., - j^-a^ - ^ - a ^ + 

+ 1.(1._1_1+ e-|., 
|l \i 2 4 e 

1' 
+ c.(I + I + _ | + e n . ( l 

C 4 M ^ % 2 )) ) (5.1.7) 

Substitution of the expressions (5.1.5) will lead to the following 
result 

u£JJ 
1 li-w*2 + vvFz-u(« -*3- ^ (5.1.8) 
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The coefficient Ci is only a function of the length to width ratio of 
the plate-spring and the Poisson constant for the material. The follo­
wing expression for Ci may be obtained 

1 7 8 48 Cl = ̂ 6 + 7~2 + T + "6 + 20°u u u 

_1^J-C_1„{ ^ + 1- + If} (5.1.9) 
( 1 - .-*) 2 4 ° ^ u3 u5 

For large values of the length to width ratio this can be approximated 
as 

(5,1.10) 

The expression for 0(s) can also be used to determine the deflection 
Aw(Jl) of the slide resulting from the torsional deformation. According 
to the equations in figure 4.9 this may be determined with 

A+U) - f 6 ( s ) . ^ • ds 
Aw(i) s ƒ A(|)(s) • ds 

Using the estimates for the deformed shape , expressions (5.1.1), and 
the solution for 9(s) , expression (5.1.3), the following expressions 
for the additional rotation and deflection A<|J( i) and Aw( i) due to the 
torsional deformation of the plate-spring may be derived 

AcjO) = K y.F z°ua) 2°{ & 1 + a 2 + ^|.a 3 + J-a4 + 

+ B , - ^ + i f - e - ^ + i|)) + 

+ C ( ^ + - ^ + e".( ~ - ~ ) ) } (5.1.11) 
u u 

and 

Aw(i) = K y . F z . u ( « 2 . ^ { T ^ + T ^ + ^ . a 4 - A + 

6 18 24 -u , 6 24 „ , + B.( - - + — - — + e ".( - + - ) ) + 
u u u u 

+ c'(! + if + 1 i + e " - ( i - 1 j ) ) ) (5-x-12) 
u p . p [i. 
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The loading force Fz will only cause a deflection of the slide which can 
be determined as 

Aw (JO - F »K °u(£)2°A-C^ 2 y 3 
-1 ■ -21 , 96 , 576 , J_ , 24 , 288 , , l_-fe" ■p-

where Cq = l± + - ^ + — + — - ( — + ~ + ^ f ) •( 3 28 c 2 4 6 2 °p 3 5 . —u 5"[i p. p p. p 1-e 
and for large length to width ratio 

C3 ^ 28 2 * p * 2 ~ 3 + 4 5 + 6 5-p p p p p 

This result may be compared with the result obtained in Annex 4.1. In 
Annex 4.1 the parameter p. is related to the length of half the plate-
spring and thus the following substitutions in the expression for 
Aw(Jt) should be made for this comparison 

\i = 2 °p and u(£) = 2 -u( I) . 

With these substitutions it shows that the two results are only slightly 
different. This difference is due to the difference in the boundary 
conditions used for the two derivations. 

Influence of moment M . 

The determination of the influence of the moment R. applied to the 
plate-spring upon the deformations will be done in a similar way as for 
the force F». The Initial estimates given in expression (5-1.1) will be 
used to obtain the differential equation for 9(s) 

^ ^ - K -ET- - ^ | 1 „ K . ( _/(a).M + M ) (5.1.13) ds y ,3 y x y ds J 

In this case the moment M applied at the end of the plate-spring is not 
equal to zero and Its magnitude will be obtained using the boundary 
condlt ions. 
The solution for this equation will be of the form 

9(s) . M x . y u < « . { a r c + a 2- 5
2 + 3j -5

3 + ^ + 

+ A + B-e s + Oe^ s } (5.1.14) 
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The boundary conditions for this case are identical to those given in 
expression (5.1.4) and using these the following expressions for the 
coeffients a,-a, and A,B and C may be derived 

a = - Q , a
2

= 3 > a3 = ~ 2 ' a4 = ° ' A - - B - 'C 

- Q, Qj 
C= ! (5.1.15) (!•( e ^ + 1 ) u»( e11 + 1 ) 

1 ± e^ where Q, = ^ 
l + e + — ° ( e p - l ) 

The magnitude of the moment M may be determined from 

M = M 'u(Z)'( a. - —z ' a. ) (5.1.16) 

With this solution for 9(s) the influence of the moment M upon the 
deformation of the plate-spring in the x-axis direction can now be 
determined. The second equation of figure 4.9 yields 

i * & 1 - V 1 e ( s ).M x +M z + Fx.(s-f ) } 

Upon integration and subsequent elimination of the moment M an expres­
sion for the deformation cj>(s) is obtained containing the influence of Fx 
and M-,. This expression may be integrated to obtain the following 
expression for the deflection u(JO of the end of the plate-spring 

cm K -F 'A2 
u( 1) z x 

I " 12 
+ Ky.Kz.Mx-u(«.i •{ ( Ti.a1 + yi^ 2 + ̂  + ̂  + 

+ -•(-< 1 - e'») -}.( 1 + e-») ) + 

+ -•( ̂ «( 1 - e* ) + •*••( 1 + e1* ) ) } (5.1.17) 

Substitution of the expressions given In (5.1.15) will lead to the 
following result 

-^T" = rk -K 'F 'A2 + K 'K 'M2 'uOD'Jl-C, (5.I.18) 
1 12 z x y z x 2 

where the coefficient Co may be determined as 
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°2 10 + 2 12 Qa 

and for large values of the length to width ratio this can be approxi­
mated as 

1 1 
2 60 6°u - 12 

1 

Due to the application of the moment M the free end of the plate-spring 
will be rotated around the x-axis passing through the middle of the 
plate-spring. The contribution from the torsional deformation of the 
plate-spring to this rotation, 4(|i(A) ,may be determined using the esti­
mates (5.1.5) and the solution for 9(s) , (5.1.15). This leads to the 
following result 

2 
Ad/A) = K -M • JjLjp- • { a, y x X. [ 1 + a2 + TO 'a3 + 5 'a4 + 

+ B.(-i + if 
n 
) ) ; 

( p + "f> ) + 

(5.1.19) 

Substitution of the expressions given in (5.1.14) will lead to 
2 

A*(A) - Mx-Ky. ^f- -CA (5.1.20) 
• v. r, 6 I2 

with C4 - - + — - Qj 

for relatively long plate-springs this may be approximated by 

1 C4 = < 5 - 2 2 ' n 
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Chapter 6. 

Cross-spring Pivots 

6 • 1 Introduction. 

Cross-spring pivots are plate-spring mechanisms that determine the posit ion 
of a body in respect of five degrees of freedom and allow for a limited 
motion in the remaining degree of freedom. In this sense the plate-spring 
parallel guiding, allowing for the parallel motion of the slide, may be 
considered as a special case of the group of cross-spring pivots. 
The two plate-springs of a cross-spring pivot are positioned such that 
their x-y-planes are parallel or coinciding. As a result the motion of the 
body will, in first-order approximation, be a rotation around an axis 
parallel to the z-axes of the springs. Under nominal operation the deforma­
tion of the plate springs Is confined to bending about the z—axis, in the 
d irect ion with larges t compliance * 

Two examples of possible constructions of cross-spring pivots are shown in 
figure 6.1. 

In figure 6.2 the principle of operation of the cross-spring pivots is 
explained. When observed in the direction of the z-axis each plate-spring 
will fix the position of the body, or rotor, in the x-y-plane in the direc­
tion of its y-axis. This situation is similar to the one found in bar-
linkage mechanisms and the observed motion of the rotor will be a rotation 
around the pole, P. The relative position, length and other dimensions of 
the plate-springs may be varied, the first order approximation of the 
motion of the rotor will be a rotation around the point where the two cen­
tral lines of the undeformed plate-springs intersect. 

As the plate-spring parallel guiding may be considered to be a special kind 
of cross-spring pivot many of the effects reviewed in chapter 5 will also 
affect the behaviour of the cross-spring pivots. The linearity in the rela­
tion between the driving torque M7 and the rotation <j>( X) will be changed 
due to geometrical non-linear effects, the influence of the anti-clastic 
curvature and the presence of the internal stresses due to the over-deter­
mination of the rotor position. Different loading forces will both influ­
ence the stiffness c and generate deflections of the rotor from the 
"nominal" track. 
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Figure 6*1 
Two examples of the construction of cross-spring pivots. 
For most general applications the planes of the two plate-springs will be 
perpendicular as in these two constructions. Such mechanisms are called 
"orthogonal cross-spring pivots". In most cases the two plate-springs will be 
equal in dimensions and properties and the initial axis of rotation will be 
positioned at equal distances from both the clamped ends of the plate-springs 
(a). These mechanisms are refered to as "symmetric orthogonal cross-spring 
pivots". When the initial axis of rotation, or the line falling in both of the 
planes of the plate-springs, divides the two plate-springs in two parts with 
equal length (b) the mechanism is called, "doubly symmetric orthogonal cross-
spring pivot". It Is this mechanism that is of most practical interest and 
which has received most of the attention In earlier research, 
(Figure taken from litt. (Dl). 
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figure 6.2 
Each plate—spring will determine the position of its free end In the direction 
of its y-axis (yj and y2 in (a)) when only the x-y-plane is considered. This 
situation is similar to the case of the four-bar linkage mechanism shown in 
(b). The motion of the botli mechanisms is in first-order approximation a 
rotation around the z-cixis through the pole, P. In both mechanisms the pole 
will be displaced when rotations occur. 

In this chapter a number of the main properties of the cross-spring pivots 
will be discussed, 
This discussion will begin with a derivation of the "nominal" behaviour of 
the cross-spring pivots. This derivation will be based upon the assumption 
that the cross-spring pivot is a mechanism with one degree of freedom of 
which the motion can, in first-order, be considered as a rotation about a 
known axis» Where other researches, lit, (Dl) and (HI), use the equations 
for static equilibrium of the rotor to determine the deformations of the 
two plate-springs, the derivation given in paragraph 6.2 will calculate the 
deformation of each plate-spring separately. 
Finally the combination of the deformations of the two plate-springs will 
yield a second-order approximation for the resulting motion of the rotor. 

At the end of this chapter the influence of loading forces F and torques 
M and M^ upon the behaviour of cross-spring pivots will be analysed. 
The emphasis will be placed upon the determination of the resulting guiding 
stiffnesses of the mechanism and no detailed analysis of the occurring non­
linear effects will be given. As was concluded In paragraph 5.4 the combi­
nation of plate-spring guiding and the linear transducing element for 
measuring intsruments does not appear to be very succesfull. 
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Figure 6.3 
The first-order estimate of the relative motion prescribed by a cross-spring 
pivot is a rotation around an axis through the pole P.(a), 
To calculate the contribution of each spring to the moment Mz required to 
obtain a rotation $ the deformation of one plate-epring may be estimated using 
the equivalent mechanism shown in (b)„ 

6.2 Nominal behaviour of cross-spring pivots. 

The first property of interest in the study of cross-spring pivots is the 
stiffness c against rotation about the axis through the pole P. Both 
plate-springs will contribute to the stiffness. As the motion of the rotor 
is considered to be a rotation around the pole the contribution of each 
spring can be estimated with the equivalent mechanism of figure 6.3b. When 
the distance from the fixed end of the plate-spring to the pole is a. lJ 

where a is positive in the direction of the positive y-axis, the relation 
between the angle of rotation <J>( A) and the end deflection u(Z) will be 

u(X) = (a-1) sin <t>(A) (6.1) 

The equivalent mechanism will only be applicable for small values of Che 
angle of rotation and the following approximation can be made 

u U ) = (a-1) • A • <KX) (6.2) 
The relation between the driving torque Mz applied to the rotor and the 
resulting rotation can be derived through estimation of the stored elastic 
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energy in the plate-spring. For the shape of the deformed plate-spring with 
certain values of $(£) and u(JQ a general expression satisfying the end 
conditions was derived in chapter 3, expression (3.6). Substitution of the 
relation (6.2) into expression (3.6) yields 

<|>(s) « i)>(A) • { ( 4 - 6°a)-C+ ( -3 + 6-a)-£2 } (6.3) 

, s where £ = ~ , 

The energy stored in the plate-spring at a certain rotation $( I) can be 
estimated as 

2 
w
el. = i , „ / V " i i " d s * 2" ,«*> 2*K4Ï , 4*< l-3-a+3.a2) (6.4) z ds z 

Where Kz is the compliance factor for the plate-spring (cf. 2.1). 
As dW = M •d$(&) the following first-order estimate for the driving 
torque M due to one plate-spring can be derived 

M . K . 1 = 4 . »(i) . (l-3a+3a2) (6.5) 

The total stiffness of the cross-spring pivot will contain the contribution 
from both plate-springs. Using the indexes 1 and 2 for each plate-spring 
the total stiffness of the cross-spring pivot will be 

c+ - 4- { F-^r-.( 1 -3-a, +3.ai
2) +iT^r-( 1 -3-2 «-a/) } 

zl 1 z2 2 
(6.6) 

This relation is valid for all geometries of cross-spring pivots, including 
the parallel guiding, provided that no buckling of the plate-spring will 
occur due to the application of the torque. It will be shown that for all 
possible geometries a suitable way of application of the torque can be 
found. 

The deformation of a plate-spring in a cross-spring pivot, the 
rotation ((>(£) and deflection u(A), can be obtained through application of a 
force Fx and a torque M at the end of the plate-spring. The magnitudes of 
these loading components can easily be estimated as 

M z = 4 f ^ f . ( - i + f . ) and F „ l i * l i . ( - 1 + 2.a) (6.7) 
z K -l 
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For each of the plate-springs of the cross-spring pivots these "nominal" 
loading components can be determined. When the external, driving force or 
torque is applied to the rotor in such a way that the equations of static 
equilibrium for the rotor are satisfied, each of the plate-springs will be 
loaded according the expression (6=7). In figure 6 = 4 this is explained 
graphically. On the basis of this analysis the nominal loading condition 
for arbitrarily shaped mechanisms can be obtained. For symmetrical cross-
spring pivots this is further illustrated in figure 6*5-

Figure 6.4 
According to expressions (6.7) each plate-spr ing in a cross-spring pivot may 
be deformed into the shape resul t ing from the f i r s t -o rde r description of the 
prescribed re la t ive motion by a force Fx and moment M,.(a) . The two sets of 
loading can be combined and is s t a t i c a l l y equivalent with one force applied at 
a distance from the pole P. (b) . 

Under inf luence of the nominal loading forces no t e n s i l e fo rces , F , w i l l 

be present in the s p r i n g s . For these cases the maximum value of the i n t e r ­

nal bending moment in the p l a t e - s p r i n g wi l l occur a t one of the clamped 

ends. The magnitude of the maximum bending moment can be es t imated , using 

express ions ( 6 . 7 ) , as 

M £ § • ( -2 +6-a) for a > \ and 

* £ . ( 4 -6 - a ) for a < ± ( 6 . 8 ) 
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Figure 6.5 
A simple expression may be obtained, using expressions (6.7) to determine the 
place where the nominal driving force Fn should be applied for symmetric 
cross-sprtng pivots. In such mechanisms two plate-springs have the same 
properties and the parameter a is the same for each spring. 
For such mechanisms the distance a_ (figure a) is related to the height h of 
the mechanism by, 

For the doubly-symmetric cross-spring pivot ,a = j, the force F should be 
applied at an infinite distance. This implicates that loading by a moment M 
is the nominal loading for such mechanisms. 
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With these estimates the maximum bending stress occurring in the plate-
spring is determined by 

O ■ *(!) • -r • E ■ ( -2 +6 =a) for a > ~ and max x z 

a - Ml) • T • E • ( 4 -6«a) for a < } . (6.9) 
max * z 

As the bending deformation of the plate-spring does not directly depend 
upon extra loading components applied to the rotor, these estimates will 
for most practical cases be sufficient to estimate the stresses in the 
plate-springs.Only for cases where large loading components perpendicular 
to the x-y-plane ( a force Fz or a torque M^) are applied it is necessary 
to determine the shear stresses due to the torque My occurring in the clam­
ped ends. The magnitude of this torque can be determined from Annex 6.1. 
The other loading components will generate other stresses in the mechanism 
which will not depend upon the angle of rotation of the pivot and can be 
determined with usual methods. 

These considerations are based upon the first-order approximation where it 
is assumed that the rotor rotates around the pole P. For small angular 
deflections the following approximate relations are found for u( x) and v(x) 

u(x) = (a-1) • x • <Kx) , v(x) * | '(a-n-x-Hx) 2 (6.10) 

According to expression (6.3) the shape of the deformed plate-spring, how­
ever, is fully determined when <(>( x) and u( x) are known. Therefore expres-
sion (6.3) can be used to determine an estimate for the magnitude of v ( x) 
belonging to the rotation <Kx) and deflection u(x). 
From expression 6.3 the following expression for v (x) is obtained 

v*(x) = ƒ* ( 1 - cos *(s) )-ds * ~ \ ' 0! <t>(s) 'ds • 

= -x- *(x) 2 • ( f • a2 - ji -a + -g } (6.11) 

The two express ions (6.10) and (6.11) for v(x) a re equivalent only for 

values of a given by 
i ± r r 

" 2 * 6 

0 , 1 2 7 and a = 0 , 8 7 3 
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Figure 6.6 
Three possible constructions of cross-spring pivots where the parameter a 3 
1/8 or a 2 7/8. The second order approximation of the motion of such 
mechanisms ts a rotation around the pole P. 

The motion obtained with such cross-spring pivots, shown in figure 6.6, 
will in second-order approximation be a rotation around the axis through 
the pole P. 

For all other cross-spring pivots the equivalent mechanism of a pure rota­
tion will be only a first-order approximation. A better description of the 
resulting motion of the end of the plate-spring is given by expressions 
(6.2) and (6.11) for u(x) and v(x). An infinite number of mechanisms exists 
which will satisfy these two expressions. One of the simple mechanisms is 
the motion of a circle roiling along a line (see also lit. (L2)). In the 
undeformed state the circle, attached to the rotor, will touch the line in 
the point P. To describe the mechanism two parameters are available, the 
radius of the circle and the angle between the line and the axis of the 
undeformed spring. Analysis of the motion of this mechanism proves that 
expressions (6.2) and (6.11) will be satisfied for all mechanisms where the 
middle of the circle, in the undeformed state, lies on a line, AB, perpen­
dicular to the plate-spring axis at a distance c.x from the clamping in the 
foundation. The distance c.x depends only upon the parameter a and is 
determined by 

c'X ■ -2'x« 3 2 io a + IT (6.12) 
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Figure 6.7 
One of Che mechanisms giving a second order approximation of the motion 
prescribed by one spring in a cross-spring pivot . The c i r c l e with radius R i s 
connected to the rotor and is ro l l ing along a l i n e , Lj , L2, connected with the 
s t a t o r . The diameter of the c i r c l e and the angle ff may be varied, but the 
center of the c i r c l e should f a l l on the l ine AB in the undeformed position of 
the p la te-spr ing. 

This equivalent model, i l l u s t r a t e d in f igure 6 .7 , gives an adequate second 

order de sc r ip t i on of the motion of one point of the r o t o r , the end of one 

p l a t e - s p r i n g . In the c r o s s - s p r i n g pivot two p l a t e - s p r i n g s are present and 

the motions of two points are thus p r e sc r ibed . As an i n f i n i t e number of 

mechanisms as sketched in f i g . 6.7 can be obtained through v a r i a t i o n of the 

angle fs i t may be poss ib le to obta in one mechanism tha t s a t i s f i e s the 

requirements of both p l a t e - s p r i n g s . In f igure 6.8 i t i s seen that such a 

mechanism, a c i r c l e r o l l i n g along a l i n e , can be found. The cen te r of t h i s 

c i r c l e i s the point where the two l i n e s AJBJ and A2B, i n t e r s e c t , the rad ius 

of the c i r c l e i s equal to the d i s t ance MP and the l i n e i s perpendicular to 

the l i n e MP. In t h i s way one equiva lent mechanism giving a second order 

d e s c r i p t i o n of the motion of the ro to r of a c ro s s - sp r ing pivot can be 

obta ined . Some examples of such mechanisms are given in f igure 6 .8 . For 

symmetrical cons t ruc t ions as in f igure 6.8 b and c the l i n e wi l l be p a r a l ­

l e l to the l i n e connecting the clamped ends of the spr ings and the rad ius 

of the c i r c l e can be determined a s , 

2 'X 

cos( / ) 

2 ^ 3 
15 (6 .13) 
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Figure 6.6 
Three possible constructions of cross-spring pivots where the parameter a 3 
1/8 or a 2 7/8= The second order approximation of the motion of such 
mechanisms Is a rotation around the pole P. 

The motion obtained with such cross-spring pivots, shown in figure 6.6, 
will in second-order approximation be a rotation around the axis through 
the pole P. 

For all other cross-spring pivots the equivalent mechanism of a pure rota­
tion will be only a first-order approximation. A better description of the 
resulting motion of the end of the plate-spring is given by expressions 
(6.2) and (6.11) for u(A) and v(I). An infinite number of mechanisms exists 
which will satisfy these two expressions. One of the simple mechanisms is 
the motion of a circle rolling along a line (see also lit. (L2)). In the 
undeformed state the circle, attached to the rotor, will touch the line in 
the point P. To describe the mechanism two parameters are available, the 
radius of the circle and the angle between the line and the axis of the 
undeformed spring. Analysis of the motion of this mechanism proves that 
expressions (6.2) and (6.11) will be satisfied for all mechanisms where the 
middle of the circle, In the undeformed state, lies on a line, AB, perpen­
dicular to the plate-spring axis at a distance c.Ji from the clamping In the 
foundation. The distance c. JL depends only upon the parameter a and is 
determined by 

c l = -2-1-
3 2 -U, _c I 

10 a + l 5 
(6.12) 
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Figure 6.7 
One of the mechanisms giving a second order approximation of the motion 
prescribed by one spring in a cross-spring pivot. The circle with radius R is 
connected to the rotor and is rolling along a line, Lj, 1^, connected with the 
sta tor. The diameter of the circle and the angle p may be varied, but the 
center of the circle should fall on the line AB in the undeformed position of 
the plate-spring. 

This equivalent model, illustrated in figure 6.7, gives an adequate second 
order description of the motion of one point of the rotor, the end of one 
plate-spring. In the cross-spring pivot two plate-springs are present and 
the motions of two points are thus prescribed. As an infinite number of 
mechanisms as sketched in fig. 6.7 can be obtained through variation of the 
angle p it may be possible to obtain one mechanism that satisfies the 
requirements of both plate-springs. In figure 6.8 it is seen that such a 
mechanism, a circle rolling along a line, can be found. The center of this 
circle is the point where the two lines A1B1 and ^^2 ^Xit^rsect^ the radius 
of the circle is equal to the distance MP and the line is perpendicular to 
the line MP. In this way one equivalent mechanism giving a second order 
description of the motion of the rotor of a cross-spring pivot can be 
obtained. Some examples of such mechanisms are given in figure 6.8. For 
symmetrical constructions as in figure 6.8 b and c the line will be paral­
lel to the line connecting the clamped ends of the springs and the radius 
of the circle can be determined as, 

W ~ 

^ isssy 

~^^ 

Figure 6.8 
The two groups of equivalent mechanisms from figure 6.7 for the two plate-
springs have one mechanism in common. This mechanism with one circle of a 
certain diameter connected to the rotor and rolling along a certain line 
through the pole P is one of the possible second-order descriptions of the 
motion prescribed by the cross-spring pivot. 
For symmetric cross-spring pivots the line is parallel to the line connecting 
the two clamping points in the stator. 
For negative values of R determined from expression (6.13) the center of the 
circle is located on the opposite side of the line (c). 
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where a is the angle between the axis of the two springs. 
For negative values of the radius the circle, attached to the rotor, is 
touching the stationary line at the side of the stator (see figure 6.8b), 
This improved model for the nominal motion of the rotor of the cross-spring 
pivot may be used in further analysis» It can be used to estimate a part of 
the magnitude of non-linearity due to geometrical effects and to determine 
the influence of loading forces on the stiffness c, of the cross-spring 
pivot» 

Apart from these considerations about the torsional stiffness of the cross-
spring pivots and the kinematical motion of the rotor some remarks about 
its loading capacity and dynamic behaviour should be made. 
As for the parallel guiding mechanism the stiffness of a cross-spring pivot 
will be influenced by loads applied to the rotor- At certain values of the 
loading forces this stiffness will become equal to zero» Some remarks about 
the magnitude of these loading forces will be made in the next paragraph» 
When the angular position of the rotor is prescribed the loading forces may 
cause instability of the Individual plate-springs» These loading forces may 
be calculated with the expressions given in chapter 5. 

The behaviour of the mechanism under influence of dynamic loading forces 
will mainly be governed by the stiffness of the guiding in the different 
directions. These stiffnesses will be derived in para. 6.A» Just like for 
the parallel guiding mechanism internal vibrations of the separate plate-
springs may occur. The lowest frequency at which this resonance will occur 
can be determined with expression (5*11). 
This expression may be combined with expression (6=9) for the maximum 
stress in the plate-spring. For a cross-spring pivot with a * -J the follo­
wing relation for the lowest natural frequency results, 

P I.03 max , v 
f = T^T" / è ( Hz ) (6.14) 

<t)"X / p°E 
For a steel plate-spring with a length of 10 mm and for a maximum angle of 
0,3 rad this frequency will be about 2500 Hz. 

3 Stiffness of the cross-spring pivot 

The relation between a driving torque M applied to the rotor and the 
resulting rotation <K 1) will, as a first-order estimate, be governed by 
expression (6.6)» 
For larger values of the angle of rotation second-order effects will result 
in additional, non-linear contributions to this relation. Due to different 
combinations of loading forces applied to the rotor the stiffness of the 
cross-spring pivot will be influenced. In this paragraph the nature and the 
order of magnitude of these factors will be discussed. 

The following three effects will contribute to the non-linearity in the 
relation between Mz and $>(Jl) , 

- Geometrical non-11neari ty. 
- Anti-clastic curvature. 

Internal stresses, due to the over-determination of the slide position. 

As the motion of the rotor will only be in first-order approximation a 

rotation around an axis through the pole the relation (6.6) derived on the 

basis of this assumption will only be adequate for small values of the 

angle if>(J0 • For larger deformations the improved model described in para­

graph 6.2 may be used to obtain an estimate of the non-linear effects. 

As described for the parallel guiding mechanism the geometrical non-linea­

rity will not be the only or the largest non-linear effect» Due to the 

transition from plane-stress to plane-strain bending, the effect of the 

anti-clastic curvature, an important non-linear contribution may be obser­

ved for relatively wide plate-springs. Also the internal stresses in the 

cross-spring pivot may cause a noticeable change in the relation between 

the torque M z and the angle <K X) . Due to the internal stresses the stiff­

ness e. will be reduced for small values of <J>{A) . The magnitude and the 

influence of the internal stresses decrease with increasing angle of rota-

11 o n . 

The first estimate for the stiffness of the cross-spring pivot, expression 

(6.6) , has been derived using the assumption that the rotor performs a 

pure rotation around the axis through the pole P. The shape of the deformed 
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plate-spring was determined using the conditions at the end estimated with 
this model of the relative motion. The actual shape will in general differ 
from this shape due to the following effects, 

-Due to the improved, second-order model for the motion of the rotor des­
cribed in the previous paragraph the relation between the two conditions at 
the end of the plate-spring, as given in (6=10) should be supplemented 

-^P" - ( 1 - a) •£•*(*) + r-tU)2 (6.15) 

where the magnitude of r depends upon the radius of the circle, R, and the 
angle between the plate-spring and the line in the equivalent model as 
presented in figure 6.8» (See figure 6.9) 

-The expression (3.6) relating the shape of the deformed plate-spring to 
the end displacements $(1) and u( A) is a first order estimate. This expres­
sion thus neglects the influence of the tensile force F . In the cross-
spring pivot such tensile forces will be present when only a driving torque 
M is applied and therefore their influence will be noticeable in the 
second order part of the expressions for the stiffness c , 

Figure 6.9 
To obtain a second-order estimate of the stiffness of a cross-spring pivot the 
relation between the deflection u(A) and rotation <(>( J£) of the plate-spring 
must be determined using a second-order mechanism describing its motion. From 
this figure an estimate of this relation can be obtained. 
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The first effect may be calculated for mechanisms where the second effect 
is absent. This will be the case for mechanisms where the pole P is located 
at the middle of both plate-springs. In that case the geometrical parameter 
a is equal to | for both plate-springs and the tensile forces will be equal 
to zero. 

Using expression (6.15) the elastic energy stored in the deformed plate-
spring is in that case estimated as 

Wel - ~~ • { W U ) 2 + 6°r2°<KJOA } (6.16) 
z 

The contribution of one plate-spring to the driving torque M will then be 

Mzl " -j—1 ' { 1 + 24-r2-*(I)2 } (6.17) 
z 

To estimate the magnitude of this non-linear effect, only for mechanisms 
with a=l, it is necessary to derive an expression for the parameter r. From 
figure 6.9 the following relation is obtained 

r * i-R=cos(P) (6.18) 

Combination of the expressions (6.17) and (6.18) will allow to estimate the 
magnitude of the geometrical non-linearity for these cross-spring mecha­
nisms. For the group of symmetric cross-spring pivots, where each plate-
spring has the same dimensions and properties the following expression for 
the driving torque is thus obtained 

\ = 1 ^ • Il + i • * ( 1 ) 2 ° t a n 2 ( f } i (6-19) 
z 

For usual constructions of cross-spring pivots the geometrical non-linea­
rity will be relatively small. For (J> S 0,3 rad the magnitude of the second 
term between the brackets is only 0.015 for the standard doubly-symmetric, 
orthogonal cross-spring pivot (a = 1 ) . It is however important to note that 
unexpected effects may occur when other geometries are considered. For a 
symmetric cross-spring pivot with a = \ but with increased angle a the non-
linearity increases rapidly. This is shown in figure 6.10. 
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Figure 6.10 
The geometrical non-l ineari ty for cross-spring pivots depends upon the angle a 
between the p la te-spr ings . For a rotation of 0,3 rad the non-l ineari ty for the 
mechanism shown In (a) i s about 1,5% while th is is increased to about 13% for 
the mechanism shown in ( b ) . 

For c ross - sp r ing p ivots with other values for the geometrical parameter a 
the influence of the t e n s i l e forces in the p l a t e - s p r i n g s should be accoun­
ted for . This might be done using the i t e r a t i v e a n a l y t i c a l method in combi­
na t ion with the equations for the s t a t i c equi l ibr ium of the r o t o r . This 
e f fec t has however been s tudied in d e t a i l by Dijksman (Dl) and h i s r e s u l t s 
may be used to i nd i ca t e the magnitude of the n o n - l i n e a r i t y for the group of 
or thogonal , symmetric c ros s - sp r ing p i v o t s . 

In general the r e l a t i o n between the torque Mz and the angle <K A) may be 

wr i t t en as 

M 
<t>U) = •( 1 + Q • (M «K 'X ) 2 ) (6 .20 ) 

In this expression the magnitude of c is obtained from expression (6.6). 
Using the expressions derived by Dijksman the parameter Q as a function of 
the geometrical parameter a has been calculated for the orthogonal, symme­
tric cross-spring pivots. The results of these calculations are shown in 
figure 6.11. Similar results have been obtained using the finite element 
method by van der Werf (lit. W2). 
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Fluure 6.11 
For symmetric, orthogonal cross-spring pivots the second-order estimate for 
the relat ion between the angle $(JU and the torque M is given by re la t ion 
6.20. The magnitude of the factor Q as a function of the geometrical parameter 
a has been obtained using the resul t s of Dijksman (Dl) . 

The geometrical n o n - l i n e a r i t y i s only one of the non- l inear e f fec t s obser­
ved in p l a t e - sp r ing mechanisms. In most p r a c t i c a l cases the con t r ibu t ion of 
the geometrical e f f ec t s wi l l be r e l a t i v e l y small . A more important c o n t r i ­
bution may be given by the increase of the bending s t i f f n e s s due to the 
t r a n s i t i o n from the s t r e s s d i s t r i b u t i o n found in the bending of beams to 
the one present in the bending of p l a t e s . With the information given in 
chapter 5 ( f igure 5.11) the magnitude of t h i s e f f ec t s may be es t imated . I t 
can be seen tha t r e l a t i v e l y wide p l a t e - s p r i n g s used to allow for a l a rge 
angle of r o t a t i o n , and thus having a small t h i cknes s , show a la rge non-
l i n e a r i t y . For a doubly-symmetric orthogonal c ros s - sp r ing pivot with b = 
\ . Ü. and h = 1/75 the inc rease of the torque Mz for a r o t a t i o n of 0,3 rad 
wi l l be about 4% (for a ma te r i a l with Po l sson ' s constant of about 0 , 3 ) . 

For cons t ruc t ions with other values for the geometr ical parameter a t h i s 
inf luence cannot be d i r e c t l y c a l c u l a t e d . An impression of the n o n - l i n e a r i t y 
to be expected can be obtained when the maximum curvature of the p l a t e -
spr ing i s determined as in express ion ( 6 . 8 ) . This maximum curvature may be 
used to es t imate the magnitude of the parameter p in f igure 5 . 1 1 . This 
parameter w i l l allow to es t imate the magnitude of the inf luence of the 
inc reas ing bending s t i f f n e s s . 

As the maximum curvature inc reases when the parameter a i s changed the 
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allowable thickness of the plate-spring will be reduced. Therefore the non-
linearity due to the increasing bending stiffness will be more pronounced 
when a £ \ . 
For a cross-spring pivot with a-1, b S \X and h = J±: , which will allow 
rotation of 0,3 rad, the 4% increase in the driving torque will be expexted 
at a rotation of only 0,03 rad. At the full rotation of 0,3 rad the 
increase will be about 8%. 

The third effect influencing the relation between Mz and cj>(l) is due to the 
presence of internal stresses. As each plate-spring determines the position 
of the rotor with respect to three of the degrees of freedom, the rotor-
position is over-determined. The displacement that is determined twice, is 
the motion of the rotor in the direction of the z-axis of the two plate-
springs. Due to this over-determination internal stresses may be present in 
the mechanism as shown in figure 6.12 and thus an amount of elastic energy 
is stored in the construction. When the angle of rotation, $(1), is varied 
the amount of this energy will vary and thus the relation between Mz and 
<|>(A) will be influenced. As for the parallel guiding discussed in chapter 5 
the stiffness c4 will be reduced around c|>( I) = 0 and with increasing angle 
of rotation the effect decreases. The magnitude of this effect can be 
calculated using the method described in chapter 5. 

The influence of the internal stresses can be eliminated by careful assem­
bly of the plate-spring mechanism and proper care during the use of the 
mechanism to avoid stresses due to temperature changes or excessive loading 
forces. A more effective way to avoid the occurence of internal stresses is 
the addition of an internal degree of freedom in the mechanism. This extra 
degree of freedom, created in the rotor or foundation, will eliminate the 
over-determination of the rotor position. In this respect it is important 
to create a combination of rotor and foundation that yields a low stiffness 
in respect of loading forces applied along the axis of rotation of the 
cross-spring pivot. In figure 6.13 this is illustrated. To reduce the 
influence of the internal stresses it is important that the stiffness, Cf, 
is small relative to the stiffness of the plate-springs in the undeformed 
position, given by 

* Ï 
c = v o3 t 2 x i ^ (6.21) z K * Jt • ( a - a + ~ ) z J 

An example of such a construction is shown in figure 6.13- Here the addi-
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Figure 6.12 
In a cross-epring mechanism each plate-
spring is avoiding the motion of the 
rotor along the Initial axis of 
rotation. Thus this degree of freedom 
is determined twice. 

Figure 6.13 
As two plate-springs In a cross-spring 
pivot are determine twice the relative 
motion In the direction of their z-
axls, an extra internal degree of 
freedom must be created when Internal 
stresses should be avoided. Here the 
stator has been modified to allow for a 
rotation around the line AA. As a 
result the relative position of the 
rotor along his axis of rotation is 
determined by the horizontal plate-
spring only, 
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Figure 6.1^ 
Any set of loading components applied to a cross-spring pivot can be 
transformed, apart from M into a set of five loading components as shown 
here. The x -axis is chosen along the stationary line in the equivalent 
mechanism with its origin in the point P, the pole, of the unde formed 
mechanism. 

tional degree of freedom is the relative rotation of each plate-spring 
clamping around the axis A-A-

The relation between the driving torque, M2, and the angle of rotation $(I) 

will also be influenced by the loading forces applied to the rotor. The 
loading forces can in all cases be replaced by an equivalent system of the 

A A A A A 

loading components F , F , F , M and M as indicated in figure 6.14. 
These components are specified with respect to the point P, the point where 
the initial axis of rotation intersects the plane of symmetry of the cross-
spring mechanism. 

The influence of the loading forces in the x-y-plane, the plane of sym­
metry, has been studied extensively (Dl, HI, Wl). Their influence may be 
directly understood when the equivalent kinematical model is used. In 
figure 6.15 a cross-spring pivot with a certain angle of rotation, $( JQ, 
together with the equivalent model is shown. The forces Fx and F„ are 
applied at the point P and in directions along and perpendicular to the 
stationary line in the equivalent mechanism. The instantaneous point of 

A rotation for the rotor is the point P and it can be seen that the total 
* 

moment a r o u n d P w i l l be 

M * = M + F "R-Cs in * ( £ ) ) - F «R-( 1 - c o s d>(JO ) 
T z y x 

( 6 . 2 2 ) 

Thus a force perpendicular to the line along which the equivalent circle is 
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Figure 6.15 
When a rotation of the rotor of the cross-spring pivot occurs its momentary 
point of rotation will move, to point P , as predicted by the equivalent 
mechanism. Thus the loading forces applied at the point P, the original axis 
of rotation, will exert a torque around the momentary axis of rotation through 
* * * 
P . It is clear that the force Fy has a large influence and Fx yields only a 
second order contribution to the torque. 

rolling, here F„ has a linear contribution to the L , u»» ^ ^^I^Ü^ ^UULI.IUULJ.ULI i-vj ..he moment about the point 

P and thus directly influences the stiffness c^ of the cross-spring pivot. 
The magnitude of the effect can be directly calculated when the radius R of 
the circle is known. The torque Mz needed to obtain a certain rotation $(I) 
is calculated with 

ML a M„ Fy .R.cKI) (6.23) 

where M Z Q is the torque needed for the unloaded mechanism, calculated 
according to expression (6.5). For the orthogonal, symmetric cross-spring 
pivots, where F = F this results in 

M «K 'X = <t>(J0 • 1 8 •( l-3-a+3-a ) •K 'X ' -f' 
z 5 

1 •(-3-a +3-a-
(6.24) 

) } 

From this expression the value of F at which the stiffness c, of the 
cross-spring mechanism becomes equal to zero can be determined.For a 
doubly-symmetric cross-spring pivot, a = $, the magnitude of this load will 
be 

yi 
2 (6.25) 
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The load Fx'' or Fy at which instability of the individual plate-springs in 
such a cross-spring pivot is given by 

F * = F * = -i^- (6.26) 
z 

Loading forces applied in the x-y-plane of the cross-spring mechanism 
influence the stiffness due to the kinematical behaviour of the mechanism. 

* * * 
The remaining loading forces, force Fz and torques M̂ . and My , will 
influence the stiffness cj due to the occurence of torsional deformations 
of the plate-springs. They will generate a second-order effect which is 
independent upon the direction of application. To estimate the magnitude of 
this influence the components of loading applied to each plate-spring 
should be determined on the basis of the equations for static-equilibrium 
for the rotor. In this analysis it may be assumed that each plate-spring is 
loaded by a force Fz and a torque M̂ .. As the stiffness of the plate-spring 
with respect to rotation about its y-axis is low no torque My will be 
absorbed by the plate-springs. 
Difficulties will arise due to the over-determination of the position of 

•k 

the rotor. The distribution of the force Fz over the two springs is unde­
termined and considerations about the symmetry or about the relative stiff­
ness in the direction of the z-axis should be used to estimate the magni­
tude of F for each plate-spring. 

Once the two loading components for each plate-spring have been determined 
their influence upon the stiffness c /. can be determined with the methods 
described in the previous chapters. The loading forces are applied to the 
plate-spring as shown in figure 6.16. The analysis is performed with an 
estimated shape of the deformed plate-spring based upon the following end-
conditions 

4>U) = 4\j 
u « ) = (a-l)'i-*A 

9(A) * 0 
It is assumed that the other plate-spring will prevent the rotor to rotate 
around the y-axis and therefore it is assumed that 0(1) will be almost 
equal to zero. Due to the loading forces HA and Fz a torsional deformation 
along the plate-spring will occur. This deformation in combination with the 
loading forces will then cause a variation of the stiffness c^ of the 
cross-spring mechanism. 
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Figure 6.16 
In the analysis of Che influence of the loading components Fz and M„ upon the 
behaviour of a plate-spring in a cross-spring mechanisms i t will be assumed 
that these components are applied at the rotor as shown here. 
This selection is a rb i t r a ry , following from the general system of loading 
components applied to the rotor shown in figure 6.14. 

In t h i s a n a l y s i s t h e i n f l u e n c e of t h e l e n g t h t o w i d t h r a t i o of t h e p l a t e -

s p r i n g s , c a u s e d by t h e e f f e c t of t h e c o n s t r a i n e d w a r p i n g , w i l l be a c c o u n t e d 

f o r . In Annex 6 . 1 t h e f o l l o w i n g r e l a t i o n b e t w e e n t h e t o r q u e Mz , f o r one 

p l a t e - s p r i n g , and t h e r e s u l t i n g a n g l e of r o t a t i o n tp^ i s d e r i v e d 

M 'K ■£ = { 4 - ( l - 3 - a + 3 - a ~ ) + 

2 2 2 
K -K 'X ' ( F 'SL «P. + F >A-M - P . + M z y z 5 z x 6 x -•V I 

( 6 .27 ) 

where the factors Pr P. and P7 are functions of both the parameter a and 
the length to width ratio of the plate-spring. From this result a point on 
the y-axis can be determined where the application of the force Fz and the 
torque &L yield independent effects.lt will be shown in the following para­
graph that this is the point where application of a force Fz will not cause 
a relative rotation <|j of the two clamped ends. This point is located at a 
distance g"Jt from the stationary clamped end as shown in figure 6.17. The 
parameter g is a function of the geometrical parameter a and the dimensions 
of the plate-spring. When the loading components are applied at this point 
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expression (6.27) can be written as 

K F "!2°K „ M °i°K „ , „. r , __y r . z z , 2 , x z . 2 
7 

2S (6.2£ W 1 - 3°a + 3°a ) "here CQ - j r ^ 

In figure 6.17 the parameter g and the coefficients Q5 and Qy are given as 
a function of the parameter a and the length to width ratio of the plate-
spring. 

This expression gives a first-order estimate of the stiffness of one plate-
spring under influence of the loading components F^ and M x 0 It may be used 
to estimate the order of magnitude of the loading components that reduce 
the stiffness to zero. The actual first-order buckling loads will be smal­
ler ( about 20 % ) . This difference is also seen between the expressions 
(5.9) and (5.10) and the expressions (5.37) and (5.39). 

Before using this result it will be necessary to determine the loading 
situation for each plate-spring in the cross-spring pivot. 
With expression 6.28 the magnitude of M z for each plate-spring may be 
determined and thus the stiffness of the cross-spring pivot is obtained. 

1 -i, 

Figure 6.17 
When loading components Fz and M are applied to a plate-spring in a cross-
spring pivot the contribution of that spring to the stiffness c is changed as 
indicated by expression (6.28). To determine the inf 1 uence of the loading 
components it is advisable to apply them at a distance g *H from the stationary 
clamping. Application of a force Fz at this point does not cause a rotation 
arounxl the x-axis of the end of the plate-spring and in this case the 
influences of ?z and M^ are independent. 
The distance g"J£ , shown in (a), is a function of the geometrical parameter a 
and the properties of the plate-spring. The presented results are calculated 
for plate-spring materials with Poisson's constant equal to 0,3 and for 
different length to width ratios. 
The figures (b) and (c) show the magnitude of the coefficients Q5 and Q7 as a 
function of a. 
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Summarizing the contents of this paragraph the following remarks could be 
made, 

- A cross-spring mechanism may be used as a linear transducing element 
when the magnitude of the parameter a is about 0,1 or 0,9, the plate-
springs are relatively narrow and care is taken to avoid the occurence 
of Internal stresses in the mechanism* 
In other applications a certain non-linearity will be noticed but the 
behaviour will be reproducing when the Internal stresses are suffi­
ciently small or remain unchanged. 
Variation of the loading forces applied to the mechanism will cause a 
change of the stiffness c* of the cross-spring pivot. In measuring 
elements such loading forces, and in particular their variations, 
should be small. 
When used as a construction element large variations of the stiffness 
Ci may occur due to the loading forces applied to the rotor. As the 
stiffness might even become negative it is advisable to control the 
angular position of the rotor by other elements in the construction. 
For construction elements the orthogonal doubly-symmetric cross-spring 
pivot allows for the most wide range of applications. A large angle of 
rotation at low stiffness combined with good bearing qualities will 
often lead to the selection of this mechanism. 
For mechanisms used to define a "pure" rotation orthogonal symmetric 
mechanisms with a geometrical parameter a of /g or /g will be most 
favourable. 
The most linear transducing element is a cross-spring mechanism with 
symmetric and orthogonal springs with values of a around 0,1 or 0,9 as 
can be concluded from figure 6.11. For such cases attention should be 
paid to the other effects introducing non-linearity. 
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k Guiding stiffnesses 

The cross-spring mechanism is used to determine the position of the rotor 
in respect of five of its degrees of freedom. In the directions of these 
degrees of freedom the position will be determined with a certain stiff­
ness. These guiding stiffnesses are of importance when dynamic loading 
forces are applied or when a well defined motion under varying loading 
forces is required. The stiffnesses in the five directions are determined 
by three stiffnesses of each separate plate-spring. As mentioned before the 
plate-springs have a relatively high stiffness in three directions. 

In order to visiualize the guiding stiffnesses of the cross-spring mecha­
nism it is useful, as was done for the parallel-guiding, to replace each 
plate-spring by a system containing three helical springs. One helical 
spring represents the stiffness in the y-axis direction and the other two 
are together generating the stiffnesses cz and c^ . In figure 6.18 such an 
equivalent model is shown. When both plate-springs are thus replaced the 
rotor is supported by six helical springs while it is still free to rotate 
around the x-axis through the point P. It should be reminded that the 
stiffnesses of the helical springs will be a function of the rotation of 
the cross-spring pivot. 

To describe the behaviour of the plate-spring, or the equivalent model, in 
the three directions it is necessary to determine the stiffnesses of the 
springs y, Z, and z,, the distance between the springs Zj and z2 and the 
position of these springs (see figure 6.18). 

The spring y is connecting the rotor and stator while its working line 
coincides with the originally straight undeformed centerline of the plate-
spring. The springs Zj and z2 have their working lines in the original y-z 
plane parallel to the z-axis. 
Their distance along the original y-axis, ay, depends upon the relation 
between c and c of the plate-spring. Halfway between these helical 
springs is the point where application of a force Fz will cause only a 
displacement of the end of the plate-spring in the direction of the z-axis 
and no rotation about the x-axis. 
For symmetric constructions, as in the parallel-guide and the doubly-sym­
metric cross-spring mechanism, this point will be at the middle of the 
plate-spring. For other mechanism, and other values of the geometrical 
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Figure 6.18. 
Each place-spring in a cross-spring pivot is determining three degrees of 
freedom with a high stiffness. To determine the properties of each place-
spring in these "bearing" directions it may be replaced by the equivalent 
mechanism (b), containing three helical springs. 
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parameter a, this point will be located at a distance g.I from the clamping 
in the foundation. 

The five parameters mentioned, three stiffnesses, a position and a dis­
tance, may be derived using the iterative analytical method described 
before. They will be depending upon the dimensions and material properties 
of the plate-springs, the geometrical parameter a and, to the largest 
extent, the angular position of the rotor. For the undeformed plate-springs 
relatively simple expressions may be directly obtained from the linear beam 
theory, yielding 

6 E'A = r 
Cy I ' Czl Cz2 K °I 
' x 

g = i and a = -r'/T - Ü 

When the angle of the rotation, ty(X), of the rotor is not equal to zero, 
the stiffnesses will decrease. In addition to the deformation due to com­
pression in the y-axis-direction a displacement due to variations of the 
bending shape will occur. In the z-axis direction extra displacements due 
to torsional deformations will occur. Just like for the parallel guiding 
the total stiffness is determined by combination of two stiffnesses in 
series. 

The magnitude of the deflections in these three directions under influence 
of the loading forces being a function of the angle of rotation <KW, the 
geometrical parameter a and the length to width ratio of the plate-springs 
can be determined using the iterative analytical method. For the stiffness 
c of one plate-spring is thus obtained 

E «A c * ^ ' . . . A 2 ,JL2 , 12 , 12 , ,.2 . (6.29) y I ( 1 + ^ • (.p ■ ( y ^ + Too -(a-|) ) 
This expression may be used for small values of <]>(!) as it is derived with 
linearized expressions for sin <f(s) and cos 4>(s). In addition this expres­
sion will only yield the value of the stiffness for small values of the 
force F . These considerations are explained in more detail in chapter 5. 
Expression (6.29) is equal to the result obtained by Dijksman (Dl) for 
orthogonal cross-spring mechanism (a = I rad.) . 

The analysis of the deformations due to torsion in the plate-springs caused 
by the force F and the torque M is described in Annex 6.1. Using the 
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expressions derived there the extra deflection w(!) and angular deformation 
<\i(l') may be calculated. Combination of the results from the linear beam 

theory, the bending deformations, and these results could give a combined 
equivalent model according to figure 6.18. The number of variables influen­
cing such a mechanism leads to a rather complex result and therefore a 
separate equivalent mechanism to calculate the deformations due to torsion 
will be described. The total deflections ((i(Jt) and w(i) will thus be the sum 
of the contributions from the two equivalent mechanisms and, in some cases, 
the contribution due to the shear stresses in the plate-spring. 

The equivalent mechanism for the calculation of the deformations due to the 
torsion is described by three parameters, 
" 2;;, the distance from the clamped end which was presented before, figure 

6.17. 
- ayt,the distance between the two helical springs in the mechanism. 
- czt,the stiffness of the two helical springs in the equivalent mechanism. 

This stiffness is calculated as 
2 P P oh c a 13 _ J>A 1 , 113 ,2 

«t K .A3 ( 1 )2 l 2.(l+v) * l *.*U) ' 
y (6.30) 

The magnitude of the parameter a and the coefficient P,3 have been calcu­
lated and the results are shown in figure 6.19. 

It is clear that the stiffness czt is a function of the angle of 
rotation <(>(A) . For larger angles of rotation the stiffness may decrease 
strongly. And when a mechanism is designed to allow for larger rotations 
the thickness to length ratio will be smaller, leading to a further 
decrease of the stiffness czt. 

For the stiffness of a plate-spring in the direction of the z-axis three 
stiffnesses in series are to be considered 

., , , E'A 1 
Shear deformation zs 1 2«(l+v) 

E "A b 2 Bending deformation c , = • 2 • ( — ) zb X y I ' 
P • h F #A 1 13 9 - Torsion deformation c = • • ( ) 

zt I 1+v <(>U) •$. 
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Figure 6.19 
To determine the behaviour of the cross-spring pivot each plate-spring may be 
replaced by an equivalent mechanism as in figure 6.18. To calculate the 
deflections due to torsion in the plate-spring the parameter a can be 
determined from fig. (a). The stiffness of both helical springs may then be 
determined with expression (6.13) and the magnitude of P^-^ c a n be taken from 
fig. (b). 
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From these expressions Che relative order of 
be estimated. The shear defo 
the plate-spring is more than half the length. 
be in 

agnitude of each effect can 
rmation will be noticeable when the width of 

ngth. The torsion deformation will 
mportant for larger angles of rotation or for larger deflections of the 

end of the plate-spring» For mechanisms with value 
contribution of the torsion defc 

jes of a equal to \ the 
formation will be noticeable for mechanisms 

designed for angular deformations of about 0,15 rad. 
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Annex 6.I 
Deformation of a plate-spring b> the loading components Fz and M^ 

When a plate-spring in a cross-spring pivot is subjected to the loading 
forces F and Mr a torsional deformation will occur when the angle of rota­
tion, iK-^), °f the mechanism is unequal to zero. Due to these torsional 
deformation the relation between the driving torque K^ and the rotation 
4>(!) will be influenced and displacements w(X) and fy(JL) of the end of the 
plate-spring will occur. In this Annex these effects will be calculated 
using the iterative analytical method and the mathematical model for a 
plate-spring obtained in chapter 4 (figure 4.9). For the calculations it is 
assumed that the force Fz is applied along the initial axis of rotation of 
the cross-spring mechanism, thus at a distance a. H from the fixed end of 
the plate-spring, see figure 6.1.1. 

It is assumed that the plate-spring is a part of a mechanism and that the 
angular deformation 6(1) of the end (rotation around the y-axis) may be 
neglected in solving the equations. This rotation will be small as the 
other plate-spring in the mechanism determines this degree of freedom with 
a relatively high stiffness. 

Thus the following displacements of the free end of the plate-spring are 
used as initial estimates 

<KP) = <KA) 
u(Jt) = - (l-a)«(KJD'Jl 
B(l) = 0 
y(« - o 
v(l) = 0 
w(JQ = 0 

With these end conditions the initial estimates for the shape of the defor­
med plate-springs will be 
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Figure 6.1.1. 
To calculate Che deformations of one plate-spring of a cross-spring pivot It 
Is assumed that the different loading components are applied relative to the 
point P, the point where the initial axis of rotation intersects the y-axis. 
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<Ks) * (frU) • { (4 - 6°a) •% - <3 - 6»a) •£ ) 
and 

u(s) ■ - K « • { (2 - 3 - a ) < - (1 -2-a).£3 } (6.1.2) 

where 5 = /» • 

These first estimates can be substituted into the differential equation for 
the angular deformation 8(s), the first equation of figure 4.9, which thus 
becomes 

d « s > v .F.r. d 3 ^ s > . -
--^T' V r , 3 - (6.1.3) 

CIS 
= K • I H (i) + F »u(s) - *(s)-( M + F •( a-H - s) ) 

y y 2 x z 
This equation is not the same as given in figure 4.9 because of the fact 
that the force F2 is not applied at the end of the plate-spring but at a 
distance a'X from the stator. Here M (A) refers to the value of the 
internal torsion moment at s = X. 

Substitution of expressions (6.1.1) leads to 

M 2 i - K . E T . ^ -
d s y d s 3 

K •{ M (?.) + M ■♦(*)*{ (-4 + 6' a) -5 + (3 - 6-a) '5 } + 
+ F •!•*(«•{ (-4-a +6-a2) •? + (2 - 6»a2) -r2 + (-2 + 4-a) -E;3 } } 

(6.1.4) 

As in Annex 5.1 a solution for 8(s) in the following form may be found 

6(s) = <t>(X) • { a1 'I + a2 -C + a3 •£, + a^ •? + 

+ A + B-e^" 5 + C-e^'5 } (6.1.5) 

The four coefficients a, - a, describe the particular solution for the 
differential equation and depend on M (H), M_ and F . The other coeffi­
cients, A, B and C, and the unknown torque My(J0 can be determined from the 
four boundary conditions 

9(0) = 0 , 9(1) - 0 
d9(0) _ d9(A) = Q 

ds ds 
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On this basis all the coefficients may be determined and can be writte 

a - f •( a - i ) 
4 z 

a, - m •( 1 - 2'a) + f •( ~ - 2>a2) 3 X z 1 
a? = m •( 3-a - 2 ) + f •( 3-a - 2 «a ) + ~ • a. 
- x z 2 4 

H 
w i t h a

5= ( a 2
 + a

3 + a4) and a& = ( 2-a, + 3-a + 4.a ) it follows that 

( a,. - ~ 4 M e 1 1 - 1) + 5 J L 

c -

l)-(eU - 1) + ii-ie11 - e~ 

I *5 +•*)•<•'*■ O + a6 
2-(e >*- D K e " - 1) + n-(e^- e •*) 

A » -B -C 
a = (i»B - u-C 
m - *(X).{aj - 6 

, (6.1.6) 
where f = F •! -K , m = M -1'K and m - M (Jl) »1«K . 

z z y x x y y y y 

From these expressions the magnitude of the torque M (JQ applied at the 
ends of the deflected plate-springs may be calculated. Results of this 
calculation for different values of u and as a function of a are presented 
in figure 6.1.2 

To proceed expression (6.1.5) for the angular deformation 9(s), in combi­
nation with expressions (6.1.6) are substituted in the remaining equations 
of figure 4.9. The second differential equation of figure 4.9 delivers the 
base to estimate the influence of Fz and M^ upon the stiffness c*. In the 
calculation it will be assumed that the loading force F is equal to zero. 
As it is the relation between the torque Mz and the angle $(JO that is of 
interest, it is assumed that the force F and torque M are applied as in 
figure 6.1.1. Thus the modified version of the equation for d<t>(s)/ds reads 

^ ° - = K •{ 6(s)-(M„ + F •( a'X - s) ) + M + F •( -a.-l + a ) } 
US Z X 'Z. Z JC 

(6.1.7) 

A solution for 4>(s) may be obtained by direct integration and can be used 
to obtain an expression for u(s). The resulting expressions for the angle 
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Figure 6.1.2. 
In the undeflected situation the internal torsional moment M (H) is equal to 
zero. Upon deflection this torque, due to the loading components F and M 
increases. The value of M (1) is given by 

M (A) « ( q. «M + q 'F ) * <fr( I) y 1 x I z 

The coefficients q, and q2 are functions of the plate-spring properties and 
the geometrical parameter a. For a material with Poisson's constant equal to 
0,3 these coefficients are shown as a function of a for different length to 
width ratios. 
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<KJt) and the deflection u(£) are 

K 
*(A) * o - f «a +~-f + ( — ) *<Kl)°{(m + a°f ) «PI f -P2 1 

Z X 2 X K l X z 2 J y 

u(X) = -|-(mz - fx-a) ~ f ' V ( K >'*(J0 ' f0"* + a ° f
z
) , P 3 h f

z' M ) 
y 
, (6.1.9) 

where m » M «K 'X and f = F «K «X 
Z Z Z X X Z 

P1-P4 are expressions containing the coefficients a, - a, an. A, B, C from 
the solution for 9(s) 

PI = A + i«a, + i«a„+ -f°a,+ -j-a, + - • ( ! - e_|1) + -♦( e^ - ) 1 3 2 4 3 5 4 |i n 

P2 = i .A + i . a , + f . a .+ £ . . , + i - a . + ■*.< J- - i - e " ^ - e ^ ) + 
2 3 1 4 2 5 3 6 4 u. |j u 

C . 1 1 u u , 
U (i (1 

P3 = f A + f a1 + ^ a 2 + ^ 3 + 3 ^ + \< 1 - ^-(1 - e ^ ) ) + 

+ £ . ( - i - ± . » - ."> , 

P4 = f A + ^ t ^ - a 2 + 3 ^ 3 + ^ % + ~j .< e " ^ ( l + * ) + 1 - ; ) + 

+ -£ . ( e^ .d - 2 ) + 1 + 1 

(6.1.9) 

To obtain an expression relating <f( Jt) to Mz it is possible to eliminate the 
force Fx using the relation between u(£) and $(£) 

u(« - ( a - 1) • *(1) 

This will yield the following expressions 

, K 
m = $(l)-{ (4-12-a+12>a ) - m ■£* •( Pl'(6-a-2) -2-P3-(6-a-3) ) + 

y 
K 

-f '■—•(. Pl'(6-a -2«a) -2-P3«(6«a -3»a) - P2 .(6 -a-2) .(6«a-3)) } 
Z K 

y (6.1.10) 

As the factors P1-P4 contain terms with M^ and Fz the expression may be 
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written as 
, K 

= *(*)•{ (4-12°a+12»a") - (-*• ) •( P5 in + P6 °m .f + P7 »f ) ( 
K x x z z y (6.1.11) 

r^ anu ry 
properties of the plate-spring. Using the expressions given in this chapter 
they can be calculated. Results of such calculations are presented in 
figure 6.17. 

To determine the guiding stiffnesses c_ and c of the cross-spring mecha-
nism the solution for 9(s) (6.1.5) can be used in the equations from figure 
4.9. The deformations resulting from the torsion in the plate-spring may be 
added to those due to bending about the x-axis for which the stiffnesses 
were described in expression (6.28). For the additional angular deforma­
tion, A(jj(s), can be written 

dA(Ks) „, , d<Ks) 
— ^ = e(s)—-^-

Substitution of 8(s) and (J>(s) from expressions (6.1.5) and (6.1.2) and 
subsequent integration leads to the following result for the angle A<K£) at 
the end of the plate-spring 

AcRJD * *(!)2° ( P8 + a-P9 ) (6.1.12) 

where 

u p 
P9 = a: + a2 + — .«3 + j.a4 + 

+ ~ •( -6 -6-e"11 + — •( 1 - e_|i) ) + [i p 

+ - •( 6 + ö-e^H-— •( 1 - e1* ) ) 
|i p 

A similar result is obtained for the additional displacement, Aw(JO, of the 
end of the plate-spring, yielding 
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Aw(Jl) , ,2 
— ^ - ♦«) • ( P10 + a-Pll ) (6.1.13) 

where P10 = A + ~'a, + -—-a - — « a + 6 1 30 2 105 4 

+ -J •( 12 -10'n +4-p2 -e~^( 12 + 2»n) ) + 

+ ~y -( -12 -10'u -4-p2 + e*Vl2 - 2-pJ ) 
|i 

and P"--A + Tf« 2 + IA.. 3 +3f.. 4 + 
B 2 -n 

+ 3 *( -24 + 18«u - 6-u + e p°( 24 + 6 ■ p ) ) + 
V-
_ £ , . , . . „ . 2 
3 

- r .< 24 + 18-p+ 6»p + e 1^ -24 + 6-p) ) 

The factors P8 to Pll are functions of the geometrical parameter a, the 
loading components ^ and Fz and the properties of the plate-spring. 
These expressions determine the parameters describing the behaviour of the 
equivalent spring mechanism discussed in paragraph 6.4. The results of such 
a calculation have been given in figure 6.19 for different values of the 
length to width ratio of the plate-spring. 
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Chapter 7. 

Different plate-spring applications, 
"reinforced" plate-spring elements. 

Introduction 
In the previous two chapters the two most common applications of plate-
spring mechanisms have been discussed. Both the parallel guiding and the 
cross-spring pivot are guiding mechanisms using two plate-springs, "acting 
parallel" to each other, to determine five of the six degrees of freedom 
of the moving part. Also in both mechanisms the only deformation of the 
plate-spring in the desired motion is the bending of the plate-spring 
around the x-axis. 

Many other usefull constructions could be made with plate-spring mecha­
nisms. In such mechanisms either the torsional deformation of the plate-
spring, plate-springs "acting in series", or special properties of plate-
springs may be used. In lit. (Bl) Breitinger has attempted to give a 
"morfological table" of the possibilities to construct mechanisms with 
plate-springs. Such a table will never be fully completed and will often 
contain many solutions which are of limited value. It illustrates, how­
ever, the vast variety of possibilities of application of plate-springs. 

In the following paragraph a selection of plate-spring mechanisms will be 
briefly discussed. Some of these mechanisms are used to improve the 
properties of the parallel guiding or cross-spring pivot. Others are 
examples of totally different constructions. 

One of the most interesting ways to improve the guiding properties, 
stiffness and loading capacities, of the plate-spring parallel guiding is 
the use of "partially reinforced" plate-spring elements. In this case one 
plate-spring in the parallel guiding is replaced by an element having one 
part with high bending stiffness and two short plate-springs at the ends 
(see figure 7.1). 
Such mechanisms are suggested due to the fact that the central part of 
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uOt) 

n 

Figure 7.1 
In a conventional para l le l guiding (a) the central part of the p la te-
spring is not noticeably deformed. To increase the guiding st i ffnesses 
and loading capacit ies i t might therefore be helpfull to replace that 
part by a re la t ive ly s t i f f part (b). 

p l a t e - s p r i n g s in conventional p a r a l l e l guidings remains almost undeformeri 

during normal ope ra t ion . When loaded in other d i r e c t i o n s however the 

c e n t r a l pa r t w i l l be deformed and thus play a par t in the guiding s t i f f ­

ness and the maximum loading capac i t y . 

Different authors have suggested t h i s change in the design of the p l a t e -

spr ing mechanism. To evalua te t h e i r p o t e n t i a l advantages these mechanisms 

w i l l be s tudied and compared with the conventional mechanism in paragraph 

7 . 3 . 
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2 A selection of plate-spring applications 

2.1 Torsion hinges. 
Probably the largest number of guiding mechanisms based on the elastic 
deformation is the tension strip hinge used in numerous indicating 
electric measuring devices (galvanometers etc.). In this mechanism two 
pieces of narrow, relatively long metal strip are connecting the rotor 
with the stator as in figure 7.2.a. A tensile force is applied to both the 
strips and the rotation of the rotor causes torsion of the two strips. 
As the driving torques in the measuring devices are applied carefully, 
avoiding other loading components, the relatively low stiffnesses in the 
x, z, (p and ij> directions are acceptable disadvantages in this application. 

Another, more important, disadvantage of using the torsional deformation 
of the strips is the relatively large non-linearity in the relation 
between driving torque and the angle of rotation. This non-linearity is 
due to the occurence of tensile and compressive stresses in the plate-
spring cross-section. For a plate-spring as shown in figure 7.2.b the 
relation between the torque M and the angle of rotation 9(1) may, in 
third order approximation, be written as (litt. Tl) 

K .x- e(i).{i + T § Ö • (|) • (J)" • e(A)2} (?-D s2) M : y y 

where it is assumed that b > h. 
This means that for the plate-spring with dimensions 80x20x0,25 mm the 
influence of the non-linearity at an angular deformation of 0,2 rad. 

o 
(= 10 ) will be about 13%, due to this effect. 

This relation was derived while neglecting the influence of the con­
strained warping of the cross-section at the end of the plate-spring. Due 
to this effect the nominal stiffness for plate-springs will depend upon 
the length to width ratio and the Poisson constant for the material. For a 
plate-spring clamped at both ends the stiffness may be calculated as 

M i!^ (7.2) K -1 3 1 
y 

(under the assumption that b >h). 
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The magnitude of Qt as a function of the parameter p, = —- © / - or the 
length to width ratio Jt/b for Poisson constant equal to 0,3 may be taken 
from figure 7„2Dc„ This factor is calculated using the method described in 
chapter 40 

Measurements indicate that this method may be used for values of \i greater 
than 4 ( A > b) „ For shorter plate-springs the conditions in the clampings 
are becoming relatively important and a smaller stiffness is measured» 

Another group of guiding mechanisms where the torsional deformation of the 
plate-springs is used are the angle-strip hinges which were discussed, 
among others, by Jones (litt. J2). In these mechanisms two plate-springs 
connect the rotor to the stator as shown in figure 702<,do In addition to 
the effects described above such mechanisms will cause undesired rotations 
of the rotor around an axis in the x-z-plane. For the mechanism of figure 
702odo this rotation may be calculated as, 

a -1 ■ rr . i . ea)2 (7.3) 

This effect may be avoided when a symmetric construction of the angle-
strip hinge is used. Different constructions may be made. One of them is 
shown in figure 7.2.e. Here the two plate-springs are each divided into 
two parts placed at equal distances from the axis of rotation. When the 
distance from the axis of rotation is increased and the plate-springs are 
tilted around their x-axis the vibrating bowl mechanism for parts-feeding 
in production automation is obtained. 
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Figure 7.2 Torsion hinges. 
a. Torsion hinges use two spring strips under tension to guide moving 

coils in measuring instruments. 
b<, Definition of dimensions and coordinate-system for plate-springs in 

torsion-hinges. 
c. Due to the influence of the "constrained warping" the stiffness c 

is a function of the length to width ratio. When both ends are clam­
ped this influence may be estimated using the factor Qt in expression 
(7.2). 

d. Angle-strip hinge using two plate-springs with their planes perpen­
dicular to each other. 

e. Symmetrical design of an angle-strip hinge which will avoid the occu-
rence of undesired parasitic rotations. 
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7.2.2. Plate-spring with negative and zero stiffness. 

To maintain a certain displacement of plate-spring guiding mechanisms it 
is generally necessary to apply driving forces. In some cases the energy 
needed to deform the plate-springs is a limitation to their application. 
In such instances it would be helpfull to use a mechanism with a constant 
negative stiffness which is placed parallel to the positive stiffness of 
the guiding mechanism. 

Such a mechanism for application with parallel guiding mechanisms has been 
described in lit. Dl and E2. The principle of operation is indicated in 
figure 7.3.a. An originally straight plate-spring is clamped at both ends 
and in the center. The two ends are moved in the direction of the y-axis 
toward the center, thus buckling the plate-spring. During this buckling a 
certain amount of energy is stored in the plate-spring and part of this 
energy is released when the center of the plate-spring moves in the 
direction of the x-axis. While moving in the positive x-direction the 
plate-spring exerts a linearly increasing force driving the center in this 
direction (fig. 7.3.b). When connected to a parallel guiding mechanism as 
in figure 7.3.C the total stiffness of the guiding may be considerably 
reduced. 

The following relations have been derived to describe this plate-spring 
with constant negative stiffness, (Dl). 

Total length of undeformed plate-spring : 2*1 
Displacement in y-axis direction of each end: A! 

2 E °I Negative stiffness: c = - 8 «it . IT 
X 1J 

2 E "I Buckling forces: F » — 4#n *■—77 
y i 2 

r. h / Ai Maximum bending stress: a = 2°TtBE°~— •• -7— 

Working range: u = + !•!' / -r-r 

In theory the first-order expressions for the stiffness of the parallel 
guiding and the spring with negative stiffness allow for a total compen-
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sation of the positive stiffness of the guiding mechanism. 
Due to non-linear effects such a reduction will only be obtained over a 
small range of deflections. For practical purposes a reduction of 90 to 
95% may be reached. 
Another interesting factor is the occurence of increased hysteresis in 
these mechanisms. Due to internal damping a small part (about 0,2%) of 
the deformation energy in a plate-spring is lost during each cycle. In 
the compensated mechanism of figure 7.3.C energy is transferred from the 
guiding plate-springs to the compensating spring. The energy loss during 
one cycle is a small part of the total energy transferred internally, but 
may be considerable when compared to the energy supplied to the mechanism 
by the driving forces. Thus the hysteresis of the compensated mechanism 
will be about 4% when a reduction of 90% in driving forces is obtained. 

To obtain a certain rate of reduction of driving force the dimensions of 
the plate-springs have to be calculated beforehand. In this case it is 
important to predict the stiffnesses of the plate-springs rather accura­
tely. In practice this is not possible with uncertainty ranges of about 
10% due to the undefined active plate-spring thickness, clamping condi­
tions, internal stresses, Young's modulus and the influence of the struc­
ture of the material. A better solution to adjust the total stiffness of 
the mechanism afterwards is making it possible to rotate the center 
clamping piece around the z-axis of the plate-springs. In this case the 
plate-springs should be buckled as shown in figure 7.3.d. For such 
mechanisms a torque Mz should be applied to the center clamping with 
magnitude 

When the central clamping piece is rotated around the z-axis, positive as 
indicated in figure 7.3.d, the negative stiffness will be 

c = - 80 *-~ . (1 + 0,24«*« / ~ ) 
x 3 A! 

(Note: In the mechanism shown in figure 7.3d the angle 4> is negative.) 

From this expression the amplitude of the rotation <J> needed to correct an 
uncertainty range of 10% may be estimated. For Ü - 9"M a rotation of ± 

o 
0,12 rad. (= 7 ) would be required. 
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Figure 7 .3.e . 
Example of a construction using the low stiffnesses of elastic elements 
when loaded just over their buckling load. 
(The length of the plate-springs is 100 mm. The mass carried at the upper 
table is about 15 kg.) 
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7=2=3 Plate-spring transmission mechanisms. 

Transmissions with large transmission ratios over limited strokes may be 
created with different plate-spri rig configurations» The advantages of such 
mechanisms, the absense of play, high stiffnesses and good reprodu-
cibility, are of especial importance in manipulators for precision 
engineering applications. 

The most straight forward construction is the cross-spring pivot used as a 
pivot for a lever. More interesting are the constructions where very high 
transmission ratios may be obtained. A first example is the mechanism 
sketched in figure 7.4a. Here a body A is connected by a parallel guiding 
mechanism to a body B which is connected by a similar parallel guiding to 
the foundation. The displacement of A relative to the foundation, u , is 
fixed by, for instance, a steel wire. The non-linear shortening of the 
plate-springs in y-directions can be used to generate parallel 
displacements of body A when body B is moved in the x-direction. For the 
transmission ratio may be derived 

Thus the transmission ratio may be adjusted by adjusting u and large 
transmission ratio's (> 50) may be realized. 

In this mechanism non-linear effects are combined to obtain a constant 
transmission ratio over a relatively large stroke. For micro-manipulators 
the required displacements are often very limited. In such cases non­
linear effects may be used (see fig 7.4b). Here a second plate-spring is 
connected to the rotor B, of a cross-spring pivot such that the distance 
of the neutral planes of plate-springs 1 and 2 equals h. By displacement x 
a rotation $ of body B will result and thus the body A will move over the 
distance v - $*h . 
Unfortunately the plate-springs 1 and 2 will shorten over a distance 

1 2 
AJt « - ~r ' § "1 each and this will influence the displacement v for 

larger angles of rotation. 

A similar construction using the distance between neutral planes as part 
of a lever is shown in figure 7.4c. The body A is at one end connected to 
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the foundation by the two membranes 1 and 2, the part B is connected to 
these two membranes. A displacement x at the input causes a rotation of 
part B around point PI. This will cause a displacement of the end of part 
A, thus creating a small rotation a at the other end where part A is 
connected with another membrane to the foundation and rotates around point 
P2. 

Another transmission mechanism has been used in the design of a small 
coining press. Such presses are in many cases using a knuckle-joint 
mechanism. These mechanisms have a very small stroke with large loading 
forces at the end of the stroke. This loading force is transmitted through 
the three bearings in the mechanism. The driving force is applied at the 
middle joint and a large transmission ratio is obtained at the end of the 
stroke. 

The three heavily loaded joints may be replaced by one plate-spring, thus 
avoiding all wear and play in the mechanism. The construction shown 
schematically in figure 7.4d. will be able to generate compressive loads 
of the order of magnitude of the buckling load 

2 4°7t °E°I 
Fcl " ,2 

Larger magnitudes of the load may be obtained when high order buckling 
shapes are prescribed. More than one plate-spring may be used to increase 
the loading forces derived from a limited volume of the construction. A 
single steel plate-spring with length of 400 mm., width 100 mm. and 
thickness of 1,5 mm. will yield a force of about 700 N. The guiding of the 
slide of the press might for such cases (a small stroke) be a plate-spring 
parallel guiding. For a good positioning of the two parts of the tool the 
plane of one of these plate-springs should in such cases be coinciding 
with the plane where the two tools meet and accuracy is most important. 
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(a) 

Figure 7.4 Plate-spring transmission mechanisms. 
When the displacement, uQ, of the slide of a doubly parallel guiding 
mechanism is fixed in the direction of the x-axis a displacement, x, 
of the intermediate slide will lead to a deflection, v, of the slide 
in the y-axis direction. The magnitude of the linear transmission 
ratio may be adjusted by varying the deflection u . 

b. For small displacements the distance between neutral lines in bended 
plate-springs (1) and (2) may be used as part of a lever mechanism 
with a large transmission ratio. 
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(b) 

Figure 7.3 PlaCe-springs with constant negative stiffness. 
a. The elastic energy stored in the buckled plate-spring is released 

when the central part moves in the direction of the x-axis. To main­
tain a certain positive displacement a negative force F should be 
applied to the central part. 

b. In the region between the two maximum displacement a constant linear 
relation between a displacement In x-direction and the force F 
exists. 

c. Combination of a plate-spring parallel guiding with its positive 
stiffness with a plate-spring with constant negative stiffness may 
result in a total stiffness which is small compared to the stiffness 
of the guiding. 

d. Adjustment of the "negative spring constant" may be achieved by a 
rotation of the central part around th* r-axls. 
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The special properties of the buckled plate-springs may also be used to 
obtain mechanisms with a very low resonance frequency» From figure 5.19 it 
may be seen that a plate-spring will have a very low stiffness in 
direction of the y-axis when it is buckled» At this point the plate-spring 
may carry a considerable load and the combination of low stiffness and 
high load allows to design mechanisms with low resonance frequency. 
Similarly very low stiffness in x-direction will result when a parallel 
guiding is loaded to the first-order buckling load. 

Using these two principles a table with low resonance frequencies in all 
its six degrees of freedom has been constructed (figure 7.3.e). The top 
plate is supported by three plate-springs which are all buckled in the y— 
direction (second order buckling mode). Proper positioning of the center 
of gravity of the masses allowed the top plate to move with low stiffness 
in y-axis direction and in rotations around any axis in its plane. The 
three plate-springs are connected to a subframe which is connected to the 
foundation by three steel wires which are all loaded to their first-crder 
buckling load and thus allow the subframe with the top plate to move in x 
and z-directions and to rotate around the y-axis. 

It is possible to reach resonance frequencies below 1 Hz in all direc­
tions. It should however be noted that due to vibrations of the springs 
(wave propagation) a transmission of vibrations from foundation to the top 
plate in the range above 20 Hz may be expected. 
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(d) 

Figure 7.4. Continued, 
c. The distance between the neutral planes of the rings, (1) and (2), is 

used to generate a lever mechanism with a large transmission ratio. 
d. In the knuckle-joint mechanism as used in coining presses the three 

joints are heavily loaded. The same mechanism to obtain a high force 
and a small displacement can be made with a plate-spring to replace 
the three joints. 

- 192 -

7=2=4 General four-bar linkage mechanisms using plate-springs, 

The kinematical behaviour of the cross-spring pivot and the parallel 
guiding is similar to that of the similarly shaped four-bar linkage 
mechanisms• This similarity can be extended to the complete range of four-
bar mechanisms or even to mechanisms containing more linkages. Therefore 
it may be possible to construct an equivalent plate-spring mechanism for 
any bar linkage mechanism■ The range of deflections or rotations of the 
plate-spring mechanisms will however be restricted and their application 
may only be considered for cases where small rotations and deflections are 
required. 

Two interesting and classical examples of four bar linkage mechanisms are 
the Watts' and Roberts' mechanisms» Both mechanisms cause a linear motion 
of one point of the slide together with a rotation» 
For Watt's mechanism (figure 7.5a) the equivalent plate-spring mechanism 
is shown in figure 7„5c» In first order approximation the calculation of 
stresses and stiffnesses is similar to the calculation for the parallel 
guiding- The small rotation § of the slide can be calculated using the 
expressions for the displacement v(£) of each plate-spring. 

In theory any other point on the slide may be forced to move along a line 
in x-direction by variation of the lengths of the two plate-springs. In 
the mechanism shown in figure 7.5d a simple relation between the lengths 
£j_, ^2 anc* distances a and b may be derived. Substitution of b = --ja leads 
to In = - IT and thus Watt's mechanism is a special case of this 
mechanism» 

These two mechanisms are examples of plate-spring mechanisms with the 
kinematical properties of special four-bar linkages. Whenever four-bar 
mechanisms are designed for only limited strokes it may be advantageous to 
consider the application of plate-springs. In such cases the special 
advantages of plate-spring mechanisms may prove to be valuable. 
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Figure 7.5 Four-bar linkage mechanisms. 
a,b Different four-bar linkage mechanisms have been designed to obtain an 

approximated linear displacement of a point. Examples are Vtatts' 
mechanism (a), Roberts' mechanisms and the mechanism shown In (b). 

c. Watts' mechanism may be made with plate-springs replacing two bars 
and four joints. 

d. The mechanism shown in (b) may also be constructed with plate-springs 
to obtain an approximated linear motion for email displacements. 
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7=2-5 Mechanisms with five degrees of freedom ; coupling elements» 

Plate-spring mechanisms discussed so far all have only one degree of 
freedom» Two piste-springs are used acting parallel to connect a body with 
the environment. Another class of mechanisms which may be of interest is 
formed by mechanisms with two plate-springs acting in series. In this case 
only one degree of freedom is fixed while the remaining five are free 
(i0e0 having a relatively low stiffness)» 

An example of such a mechanism is the elastic shaft coupling shown in 
figure 706a and b0 Here two plate-springs with their y-z-planes parallel 
are connecting part A through B with part C. Each plate-spring is deter­
mining the rotation of part R around the x-axis to either part A or part 
C. Thus the two plate-springs and part B are forming a shaft coupling 
between part A and C.A11 remaining degrees of freedom from part A to C are 
not fixed and thus this mechanism is an interesting elastic shaft coupling 
element that will allow for limited angular and lateral misalignments of 
the two shafts,, 

This mechanism is very similar to a plate-spring parallel guiding where 
the foundation is divided into the two separate parts A and C. The one 
degree of freedom that is determined twice in the parallel guiding is the 
rotation of part A with respect to part C around the x-axis. In this 
mechanism part B is free to move in the direction of the x-axis relative 
to parts A and C. This means that one internal degree of freedom remains 
undetermined in this mechanism. 
(Note: The torque is transmitted by a pure torsional moment in part B. No 
extra loading forces are introduced to the bearings of the two shafts.) 

Along similar lines other mechanisms with two plate-springs in series may 
be designed. When the z-axis of the two plate-springs are parallel such 
mechanisms will be resembling the cross-spring pivots discussed in chapter 
6o In cross-spring pivots the translation of the rotor along its axis of 
rotation is determined twice. In the mechanism shown in figure 7.6c it is 
this translation of part A relative to part C that is fixed. In all other 
directions the relative motion of part A with respect to part C is, in 
first order approximation, free. 

Such mechanisms are useful elements to couple two translating bodies. To 
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drive a slide guided by an accurate mechanism,, for instance in optical 
instrumentst it is desired to avoid the introduction of unknown loading 
forces through the driving element. The mechanism shown in figure 7 „6c 
will allow to connect the driving element with a high stiffness in the 
direction of motion and low stiffnesses in all other directions The same 
function is obtained with a long rod with a small diameter as is also used 
in the measuring system described in figure 804„ 
(Note: It is advisable not to restrict the use of this sort of mechanisms 
only to instrument design.,) 

An extremely simple form of the mechanism is obtained when a plate-spring 
is folded over an angle of 90 with as small a radius as possible (see 
figure 7 .ód)„Through combination of different coupling elements, from both 
types, it is possible to selectively control the different degrees of 
freedom of a body0 Van der Hoek (H3) has described some examples of such 
combined constructions. 

The most interesting properties of these coupling elements will be their 
stiffnesses in the different directions. In figure 7 „7 and 7.8* expres­
sions for these stiffnesses are given» 
These elements may be compared with equivalent elastic elements performing 
the same function. The shaft-coupling (figure b) may be compared with the 
coupling using two membranes instead of the plate-springs. Such a membrane 
coupling will have a higher coupling stiffness relative to the stiffnesses 
in the other directions. However the allowable misalignment of such 
membrane couplings is much (about 10 times) smaller than in the case of 
the coupling in figure b. 

The construction of figure d. may be compared to a single rod or wire. In 
this case the single rod will allow for smaller and simpler constructions. 
A disadvantage of the single rod is the kinematical displacement of the 
end of the rod due to rotations and deflections (similar to the kinematic 
deflection v(JO of parallel guidings)„ The construction of figure d0 does 
not have this disadvantage. In addition the freedom of dimensioning the 
plate-springs will allow to obtain larger stiffnesses cz and larger 
loading capacities. 

The different properties of these mechanisms have not yet been investi­
gated in detail. Many engineering problems might however be solved when 
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more experience in their application is obtained. In future it may be 
expected that more useful mechanisms can be invented using the large ratio 
between in-plane and out-of-plane stiffnesses of plate-springs. 
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Figure 7.6 Mechanisms with five degrees of freedom. 
a. The well known para]lei guiding is easily transformed into a 

mechanisms fixing only one degree of freedom from part C relative to 
part A. 

b. Schematic representation (bl) of an elastic shaft coupling. Against 
rotation around the axis a high stiffness is obtained while in all 
other directions relative motions are allowed for. Such a coupling 
may be made by the cutting of slots in a tube as indicated in (b2). 

c. Based upon the geometry of cross-spring pivots a coupling element 
determining only one degree of freedom may be obtained. 

d. The function of the cross-spring pivot shown in (c) may be performed 
by a single plate-spring bended over as sharp a radius as possible. 
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In the undeformed position the stiffnesses of part C relative to part A 
with respect to the pure displacements and rotations indicated are, 

E-A 
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The first five stiffnesses are small of the order h while the last, 
coupling stiffness, is large. This stiffness will in practical cases be so 
large that the stiffnesses of flanges and connecting parts become more 
important in determining the total stiffness. When the two parts A and C 
are not exactly aligned the plate-springs are deformed and the 
stiffness c will decrease. From the earlier analysis (chapter 5 and 6) 
it may be concluded that the decrease will be limited (to about a factor 
two) when plate-spring deflections are less than 5(10) times the plate-
spring thickness and angular deformations are smaller than 5(10) times the 
ratio of /,,, 
The magnitude of the driving torque leading to Instability, buckling of 
plate-springs, may in first-order be estimated as, 

was discussed in chapter 5. For relatively long plate-springs X = 1. 

Figure 7.7. Main characteristics of elastic shaft coupling. 

199 



The different loading components will be applied to part C with respect to 
point P. The relations between the loading components and the deflections 
are, 

M 'I 
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The ratio between the stiffness c_ and the stiffness c and 
2 2 X 

order b /h which will in practical cases be more than 1000. 

is of the 

The value of the critical value for Fz at which plate-spring instability 
may occur is estimated (no rigorous derivation being available) at: 

10'E-rj =b*h3 

Upon deformation of the plate-spring the stiffness c will be reduced. 
When displacements x and y remain small (less than 5(10) times the plate 
spring thickness) and rotations are limited (less than 5(10) times h/^) 
the reduction is estimated to be not more than about 60%. 

Figure 7. Alternative elastic wire support. 
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7.2.6 Two or more parallel guidings or cross-spring mechanisms placed in series. 

The parallel guiding and cross-spring pivot discussed in chapters 5 and 6 
have a number of advantages which make them attractive for machine and 
instrument design. One of the most important drawbacks for both mechanisms 
is the kinematic motion described by rotor or slide. The movement of the 
parallel guiding is not along a line but along the top of a parabola. The 
movement of the rotor of a cross-spring pivot is in general not a pure 
rotation but the axis of rotation moves during deformation of the plate-
springs. In some cases the possible solutions of Watts' or Roberts' 
mechanisms and cross-spring pivots with a = 1/8 or a S 7/8 (figure 6.6) 
will be a solution. 

A more general way to avoid the unwanted parasitic deflections is the use 
of two mechanisms in series (figure 7.9a and b). 
The construction for the parallel guiding is rather common and easily 
understood (figure a). When the slide C is moved, quasi-statically, the 
part B will travel over half the deflection of C and the vertical movement 
of C becomes equal to zero. (More information about possible inaccuracies 
are given in lit. (H3).) 
The same principle may be used for the cross-spring pivot (fig. b). Part B 
rotates over half the angle of rotation of the rotor C. As a result the 
axis of rotation of part C relative to the foundation A will be stationary 
and pass through the initial axis of rotation. 

This method of placing two mechanisms in series appears to be rather 
attractive. However the proper operation is only assured when the proper 
ratio of motion of the parts C and B is obtained. In the basic design this 
may be statically assured by the fact that the stiffnesses of both 
mechanisms are equal. The accuracy of this method may be sufficient, but 
for general purposes the relative motion should also be assured during 
dynamic operation and thus the superfluous internal degree of freedom 
should be eliminated. This will be even more important when the mechanisms 
are loaded in other directions and the main stiffnesses of the two 
parallel mechanisms are affected differently. A possible way to eliminate 
the internal degree of freedom and to assure the proper ratio of movement 
is shown in figure c. Similar solutions might be found for constructions 
with two cross-spring pivots in series. 
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7.3 "Reinforced" plate-springs in parallel guiding mechanisms. 

7.3.0 When analyzing the shape of a deformed plate-spring in a parallel guiding 
it becomes evident that the middle part of the plate-spring remains almost 
undeformed. The operation of the mechanism will thus change only very 
slightly when this middle part of the plate-spring is made much thicker to 
obtain higher stiffnesses locally. Such a mechanism, shown in figure 7.10, 
will behave similar to a usual parallel guiding but a relative improvement 
in different properties might be achieved. In this paragraph a number of 
these properties will be determined. With the results obtained it may be 
possible to indicate over what length the plate-spring should be made 
stiffer and whether the achieved improvements will be sufficient to 
justify the increased constructive complexity. 

Figure 7.10 
When the middle part of the plate-springs of a normal plate-spring paral ­
l e l guiding (a) is reinforced to give them higher s t i ffnesses a pa ra l l e l 
guiding mechanism as shown in (b) wil l result . 

To discuss the p rope r t i e s of such p l a t e - s p r i n g elements the element with a 

t o t a l length L i s divided in to two pa r t s with a low s t i f f n e s s and length I 

and the remaining par t with length 2»q°A . Thus the following r e l a t i o n 

between t o t a l length L and the dimension I r e s u l t s 

2»( 1 + q ) • £ ( 7 . 3 . 1 ) 

For the plain plate-spring q=0 and for the mechanism shown in figure 7.10b 
q is about 3. 
In Annex 7.1 a description of the calculation of different properties of 
reinforced plate-spring elements is given. The results of this analysis 
will be discussed here. 

7.3.1 The stiffness cx of one plate-spring element is determined as 

12°E°I 

°( !" < iV 3 ) 
(7.3.2) 

7.3.2 The maximum bending stress in the plate-spring a^ is 

1 
o, ~ 3-E-b 

u(L) 
L — •( a 3 ) 

L ( 1 - (^) ) 
(7.3.3) 

To compare the properties of parallel guiding mechanisms with and without 
reinforced part it is useful to distinguish two cases. In the first case 
mechanisms with equal stiffnesses cx are compared. In this case the 

2-q-S. 

£ " 

I 

Figure 7.11 
Definition of parameters used in calculation of the properties of paral­
lel guiding mechanisms with reinforced plate-spring elements. 
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thickness h of the elastic part in the reinforced elements can be deter­
mined from the thickness h^ of the basic plate-spring from 

c is constant ■+ h = / ( 1 - T7~ ) • h (7=3.4) 
x 1+q o 

In the other case the maximum value of the bending stress in the plate-
spring element will be maintained. This will yield 

O. is constant ■+■ h = ( 1 - -7?— ) ■ h (7=3 = 5) 
b 1-rq o 

From these expressions it is clear that the plate-spring thickness must be 
reduced in both cases when a large part of the length has been reinforced. 
When 90% of the length of the plate-spring has been reinforced the thick­
ness has to be chosen at about 65% of the original thickness to maintain 
the stiffness c at the same value- In order to allow the same value of 
the maximum bending stresses the thickness must be reduced to only 27% of 
the original value» 
The large reduction of the thickness in this last case will cause a 
deterioration of some of the properties of the plate-spring guiding,. When 
it is attemped to maintain the stiffness cx most of the important proper­
ties of the parallel guiding will be improved» 

7.3.3 Kinematical deflection, v(L). 
The partial reinforcing of the plate-spring will influence the magnitude 
of the kinematical deflection. For a four-bar linkage parallel guiding 

2 v(L) was calculated as 0,6°u(L) /L . For a pure parallel guiding mechanism 
2 with pivots at a distance L, v(L) is 0,5 °u(L) /L . For mechanisms with 

plate-springs with different values for q the following expression is 
obtained 

V(L) = * * $ £ - • (l+q)°(l^q3
+20-q2

+10.q+ 2) ^ ^ 
1 U" L ( 1 + 3-q + 3-q^ ) Z 

7.3.4 Influence of loading force F on stiffness c . 
The expression derived for the kinematical deflection v(L) may be directly 
used to estimate the influence of a force F applied to the slide of the 
parallel guiding. 
Using considerations of the conservation of energy the expression for the 
driving stiffness c x is estimated as, 
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2°F >v(L) 
cx = cxo •( 1 + — ^ ) (7.3.7) 

u(L) °c 
xo 

where c _ is the stiffness of the guiding mechanism when F = 0 determined 
by expression (7 = 32) ■> 
As the relative magnitude of the kinematical deflection v(L) does not 
depend strongly upon the parameter q no noticeable change of the influence 
of F,, upon c will be found. Only when the nominal magnitude of c y r x J ° xo 
decreases the influence of forces F will increase. 

7=3=5 Buckling loads of the guiding element, 

To obtain an impression of the changes of the buckling loads for the 
parallel guiding with reinforced plate-springs the two loading cases shown 
in figure 7.12 will be analysed. 
The buckling load F for the loading case of figure 7.12a will be a force 
comparable with the second order buckling load given in chapter 5. For 
this buckling load may be derived 

F = - J L ^ l . _ W ^ I I ^ E ^ ( 7 > 3 > g ) 
7 I L 

As the thickness h will be a function of the rate of reinforcing the 
plate-spring (q) either expression (7.3.4) or (7.3.5) should be substitu­
ted to make a comparison. Thus the buckling load may be compared with the 
magnitude for a plate-spring with q = 0 by 

2 1 3 F = F •[ (1+q) •( 1 - ( T — ) ) ] (c is constant) y yo 1+q x 

F = F •[ (l+q)2-( 1 - (-j^-)3)3 J (% is constant) (7.3.9) 

For c constant the buckling load is increased by about a factor 27 when q 
= 9 (90% reinforced). When o^ is kept constant the increase is only about 
a factor 2. The best value for the buckling load is in this case obtained 
when about 70% of the plate-spring length is reinforced (q 2 2,5). 

A calculation for the second order buckling load Fz for the loading case 
shown in figure 7.12b can be made using the energy method as used also in 
chapter 5. To obtain an impression of the relation between the buckling 
load and the parameter q this calculation has been made while neglecting 
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< a ) (b) 
Figure 7.12 

Two cases of Instability (buckling) of reinforced plate-spring elements 
have been analysed. The first case (a) is considering an element under a 
compressive load, -Fy> while the "free-end" is only free to move in the 
direction of the y-axls. In the second case a loading force F is applied 
to the center of the element and only motion of the "free-end" In the z— 
axis direction is possible. 
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the effect of the constrained warping (influence of the clamping condi­
tions upon the torsional deformation). It should be noted that the effect 
of the constrained warping will lead to an increase of the critical loads 
when the elastic part is becoming short relative to its width. 
This leads to the following expression, 

F 

2 1 2 A + A °A + — ° A 2 E - I - G - J , 1 1 2 3 2 
4 ' 1 2 1 4 1 2 1 1 2 

1 T"Ao + T*A/ + T*Ac + V"A-> °A / + T ' A , ' A . + T-A-, *A-
3 3 5 4 7 5 2 3 4 3 4 5 5 3 j 

( 7 . 3 . 1 0 ) 

where Aj = - 2 - 6 . q 

A2 = 6 + 12 .q 

2 + 8 .q + 6 . q 2 

- 4 - 1 2 . q - 6 . q 2 

2 + 4 . q 

In the calculation of this expression a deformed shape of the plate-spring 
is estimated and the elastic energy in the material is then compared with 
the energy supplied by Fz. As the estimate for the shape is made under the 
assumption that a reinforced middle part is present it may not be expected 
that a good value is obtained for q = 0. 

The result of this calculation is presented in figure 7.13. 
In this graph is shown the factor AQ which may be used to calculate the 
buckling load. Also shown are the curves that indicate how the buckling 
load is varied if the magnitude of q increases while either the stiffness 
c or the maximum bending stress ou are kept at constant values by adap­
tation of the thickness h. It may be concluded that no noticeable effect 
is obtained in the case where cx is kept constant. In this case only the 
influence of the constrained warping will lead to an increase of the 
buckling load as the length to width ratio of the flexible part decreases. 

When it is attemped to maintain the magnitude of the maximum bending 
stress it is seen that a drastic decrease of the buckling load is caused. 
In cases where the buckling load Fz may be of critical importance and o^ 
should not increase it is therefore advisable not to use reinforced plate-
spring elements. 
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Figure 7.13 
The buckling load, F», for the loading case of figure 7.12b, may be 
calculated using the expression 

where An is a function of the parameter q and may be taken from this 
figure. 
Also presented are lines indicating the magnitude of Fz as a function of 
q relative to the buckling load, Fzo, for q=0 while the plate-spring 
thicknesses are adjusted to maintain either cx or o^ constant. 
In this analysis the influence of the constrained warping of the cross-
section has not been taken into account. This effect will lead to higher 
values of the force Fz when q increases. 
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7=3=6 Dynamic behaviour of plate-spring elements, 
In chapter 5 some remarks were made with respect to the natural frequen­
cies of the plate-spring elements. When the plate-spring element is parti­
ally reinforced three natural modes of vibration with relative low 
frequencies may be expected for the relatively heavy middle part-, 
These modes will be a translation in the x-direction, a rotation about the 
y-axis and a rotation around a z-axis through the middle of the reinforced 
part. 
When the mass of the reinforced part is equal to m the natural frequency 
for the first mode may be estimated as 

/ 24«E»I ,rad, 
cox - / - j - ( / s e c ) (7.3.11) 

The value of the natural frequencies will depend strongly upon the design 
of the reinforced part of the plate-spring, 
When the mass of the reinforced part is of the same order of magnitude as 
the part of the original plate-spring it replaces, an increase of the 
lowest natural frequency will be obtained. This increase will be small 
when the maximum value of the bending stress is kept constant, the para­
meter q being variedB But when the stiffness cx is maintained a noticeable 
increase, of factors from 5 to 10, in the magnitude of the natural 
frequency may be obtained, 

703<>7 Guiding stiffness, c . 
As for the normal plate-springs the stiffness of a reinforced plate-spring 
element can be considered as a series of two stiffnesses, the compressive 
stiffness according to Hooke's law and the contribution of the varying 
bending shape<> 
The compressive stiffness is independent of the deflection, u(L) , of the 
end of the plate-spring element. The contribution of the elastic part of 
the reinforced element can be calculated using the expressions for the 
plate-spring thickness (7.3.4) and (7 *3,5)* From these expressions it 
follows that an increase in the compressive stiffness of the elastic parts 
with a factor of about 6 and 2,7 respectively for cx and cfu constant may 
be obtained for q = 9 ( 90% reinforced). 
The contribution of the reinforced part depends upon the design of this 
part. In this respect it is advisable to design a symmetrical construction 
of the reinforced part. In the a-symmetric construction as is shown in 
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Figure 7.14 
When the reinforced pare of the plate-spring element Is not designed 
symmetrically (as in (a)) a loading force Fy applied through the f lexible 
part will cause bending deformation in the reinforced par t . This will 
reduce the s t i f fness of th i s part in the direct ion of the y-axis . 

f igure 7.14a the compressive s t i f f n e s s of the re inforced par t i s four 

times l e s s than for the cons t ruc t ion shown in f igure 7.14b. 

For the c a l c u l a t i o n of the inf luence of v a r i a t i o n of the deformed bending 
shape on the s t i f f n e s s c again the c o n t r i b u t i o n of both the e l a s t i c and 
the re inforced par t should be cons idered . In order to keep the inf luence 
of the re inforced par t small i t should have a high bending s t i f f n e s s 
around the z - a x i s . When making the re in forced par t out of a massive par t 
with the same width and ma te r i a l as the e l a s t i c par t the t h i cknes s , h r , 
should be about (1+q) times the th ickness in the e l a s t i c p a r t s . In tha t 
case the con t r ibu t ion of the change in the shape of the e l a s t i c par t w i l l 
be dominant. 
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Figure 7.15 
The re la t ive increase of the part of the s t i f fness cy which i s due to the 
variat ion of the deformed bending shape of 'plate-spring elements with 
increasing rate of reinforcement (q) for the two different cases, cx i s 
constant or OL is constant. 

For the con t r ibu t ion of the bending deformation of the e l a s t i c pa r t s upon 

the s t i f f n e s s the following f i r s t order es t imate i s derived in Annex 7.1 

: . = 700- ~ -(-77T)2-yb 3 u(L) 
(1+q) • ( ! + 3'q + 3-q~ ) 

1 + 10-q + 45-q2+ 105»q3+ 105 -q4 
(7.3.12) 

For the two cases of interest, cx or o^ constant, this result may be 
compared with the result for the normal plate-spring (q = 0 ) . The result 
of this comparison is shown in figure 7.15. When ov is constant the 
increase in stiffness c„u is limited to about a factor 5. When c. is con­
stant the increase may well be over a factor 50. 
Especially when a plate-spring element is designed for a relatively large 
deflection u(L) the use of reinforced plate-springs will allow for an 
increase of the total stiffness of the guiding in the direction of the y-
axls. 

'A3 



Guiding stiffnesses cz and c.B 

In the undeformed position the stiffness c and c. are determined by the 
stiffness of the elastic and reinforced part against bending around the x-
axis. The contribution of the elastic part to these stiffnesses may be 
directly calculated using results from the linear beam theory- This leads 
to the following expressions 

E-I 
* 12» a+q>" 

4̂0 

LJ 1 + 3°q + 3'q 
E'l V 1 • <1+^ 

2 

(7.3.13) 

These expressions give the relation between force F and torque K^ and the 
deflections of the end of the plate-spring in the direction of the z-axis 
and rotation around the x-axis when the load is applied as shown in figure 
7.16. The given expressions may be used to determine the stiffnesses of 
the two helical springs and their distance in the equivalent model shown 
in figure 5.18. In that case the two springs have a stiffness 

Cl+qV 
1 + 3 »q +3 »q 

(7.3.14) 

and their distance a is given by 

L 
Jy ° 1+q 

2 1 
q + q + ^ 

(7 .3 .15) 

Figu re 7.16 

Az 

To determine the stiffnesses cz and c of reinforced plate-spring ele­
ments the deformations due to a loading force F and a torque M^ have 
been analysed (Annex 7.1). 

u -

When the stiffnesses are compared to those for normal plate-springs it 
shows that the stiffness c remains almost unchanged when ÖV is kept con­
stant,. When the stiffness c is kept constant an increase of about a fac­
tor 2 to 3 for c may be obtained for q = 9, For very large values of q a 
larger increase might even be obtained in this case» 
The stiffness c will in both cases (a or c constant) increase» For o, c|>a o X b̂ 
is constant a maximum increase of about a factor 3 will be obtained,. For 
cx is constant an increase with a factor 6 to 7 results for q = 9. For 
larger values of q an even larger increase in c may be obtained. 

(JjO 

The contribution of the reinforced part of the plate-spring to the stiff­
nesses depends upon Its construction» To obtain full benefit of possible 
improvements in the guiding stiffnesses it should be designed to have high 
stiffnesses in all directions., To obtain a relatively high stiffness 
against rotation around the x-axis it may be necessary to enlarge the 
width (b) of the reinforced part. 

For the plate-spring element with a certain end deflection u(L) the defor­
mations under influence of a force F and a torque ML have been calculated 
in Annex 7.1. It should be noted that for these calculations it is assumed 
that the reinforced part is infinitely stiff which should be considered as 
the normal situation and in actual constructions should be assured by a 
carefull design of this part, 

With the results of the calculations in Annex 7.1 the magnitude c2t of the 
two springs in the equivalent model in figure 5.18 for this case may be 
derived» This yields 

c z t = 7 f -<ïïay>2 '^ (7 '3 '16) 

L z 
The magnitude of the factor Qz may be estimated from the graph in figure 
7.17 where results of calculations for different length to width ratios 
have been given. It must be realized that the calculations are taking into 
account the influence of the warping of the cross-section as discussed in 
chapter 4. Therefore the results are only estimates when the ratio of the 
length of the elastic part to its width is less than one. In the graph the 
curves are dotted in this region. 

With the same remarks the influence of the parameter q upon the distance 
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a t between the two helical springs is shown in figure 7 018 0 The distance 
between the springs is growing with increasing q and thus the stiffness 
c, is increasing relative to the stiffness c_*.« 

To illustrate the possible increase of the stiffness c z t for the reinfor­
ced plate-spring two graphs are presented in figure 7„190 Here the calcu­
lated stiffness czt is compared with the same stiffness for the normal 
plate-spring for the two cases, c = constant and ov = constant. 
From 7ol9a it is clear that some increase in c t may be obtained when c 
is constant, This increase is mainly due to the increasing influence of 
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Figure 7.17 
Application of a force Fz to a reinforced plate-spring element as shown 
in figure 7.16 will lead to torslonal deformations of the elastic parts. 
These deformations will cause a deflection of the end of the plate-spring 
in the z-axis direction. The magnitude of this deflection may be calcula­
ted using the equivalent mechanism, figure 5.18, where the stiffnesses 
c_£ of the helical springs are calculated using expression (7.3.16). The 
magnitude of the parameter Qz as a function of the parameter q, is shown 
here for different length to width ratio's (L/b) of the plate-spring 
element. 
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the "constrained warping" in the relatively short and wide elastic parts 
of the plate-spring elements,. When o^ is constant, 7,19b, it shows that 
the increasing influence of this effect does not compensate for the 
decreasing plate-spring thickness- In this case no noticeable increase in 
c z t is found, for relatively large values of the length to width ratio a 
decrease in stiffness will even result» 

One remark should be made about these calculations. When the total stiff­
ness of a reinforced plate-spring element in the deflected position must 
be determined the contributions of the two equivalent models, with czo and 
c z t respectively, should both be taken into account» This may be done by 
adding the deflections and rotations determined by each model= They may in 
fact be considered as two spring constructions acting in series as was 
also suggested in chapter 6= for the cross-spring pivots, 

[ Figure 7.18 
Application of a torque Mj. as in figure 7.27 to a reinforced plate-spring 
element will lead to torslonal deformations of the elastic parts. The 
magnitude of the resulting rotation, <Kt), of the end of the plate-spring 
may be estimated using the equivalent model (fig. 5.18) where the dis­
tance between the two helical springs is equal to ay(-»L. The magnitude of 
a t is shown as a function of the parameter q, and for different length 
to width ratios of the plate-spring elements. 
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Comparison of the stiffness e,*. obtained with a reinforced plate-spring 
element and the stiffness c

2 C o of a plain plate-spring when the two 
elements have the same general dimensions. 
In figure a the thickness of the elastic part is chosen in such a way 
that, while q is changed, the stiffness c„ remains unchanged. 
In figure b the thickness is varied in such a way that the maximum value 
of the bending stress, â » is constant. 
The ratio between the stiffnesses is shown as a function of q for diffe 
rent length to width ratios. 
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7.3-9 Magnitude of loading stresses 

In the discussion so far only the magnitude of the bending stress o-u due 
to the deflection u(L) of the end of the plate-spring element has been 
considered. When loading forces are applied to the slide they will also 
cause other stresses in the elastic parts and as their cross-sectional 
area reduces with increasing values of q (larger part reinforced) the 
magnitudes of the stresses due to loading forces will increase. In many 
cases this will be taken into account by reducing the magnitude- of the 
allowable bending stress a-̂ . In that case higher stresses due to loading 
forces could be allowed. 

This will however result in even smaller thicknesses of the elastic part 
than was predicted by expression (7,3.5). And therefore many of the 
properties discussed will have smaller values than suggested here. 
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7.3.10Conclusion 

In this paragraph a number of the properties of the reinforced plate-
spring element have been discussed. Summarizing figure 7.20 gives an over­
view indicating whether a property is improved or not when a normal plate-
spring is replaced by a reinforced plate-spring. From this figure it is 
clear that reinforced elements may be very useful when the bending stres­
ses are not yet important in the normal plate-spring. In that case rein­
forcement will improve about all the relevant properties. Only the magni­
tude of other stress components due to loading forces will increase. 

When the bending stresses in the normal plate-spring have reached their 
limit value the situation is more complex. 
Now only part of the properties improve and the buckling load Fz is redu­
ced. Also the other stress-components will become larger in this case. For 
this type of constructions it is therefore advisable to use plate-springs 
without reinforced parts. Only when the plate-spring element is used to 
determine only one degree of freedom (in y-direction) a slight improvement 
may be obtained with the reinforced element. 

Another problem arises when in a certain design with plain plate-springs 
neither the stiffness c nor the stress oj, have reached their limit 
values. In this case an improvement of the guiding may be obtained either 
by increasing the thickness of the plate-spring or by reinforcing the 
plate-spring. In both cases all properties are improved. Whether the lar­
gest improvement is obtained by reinforcing the plate-spring or by 
increasing the thickness is different for each property. In general 
properties in the direction of the y-axis improve most when the plate-
spring is reinforced. The properties in the z-direction improve most when 
the thickness of the plain plate-spring element is increased. 

Finally it may be concluded that partially reinforced plate-spring ele­
ments allow to improve the properties of plate-spring parallel guidings in 
many cases. Whether the achieved improvements are justifying a more com­
plicated construction will depend strongly upon the particular applica­
tion. 
It should be reminded that in this analysis it has been assumed that the 
external geometry of the guiding mechanism ( length and width ) are fixed. 
Generally it will be a good method to improve properties of a plate-spring 
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Property 

Driving stiffness C~ 

Bending stress OL 

Kinematic deflection v(L) 

Buckling load F„ 
Fz (fig.7.12) 

Lowest internal frequency 

Guiding stiffnesses 
cv ,undeflected 
c , deflected 
c7 ,undeflected 
c yundeflected 
c , deflected 
c , deflected 

Load carrying capacity 
(influence of other stress 

components) 
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c is constant 
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Figure 7.20 
Comparison of some of the properties of reinforced piate-spring 
elements with these of normal plate-springs. Indicated is whether a 
property improves ( + or ++ ) , remains unchanged ( 0 ) 
deteriorates ( - or — ) when the parameter q is increased. 
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guiding mechanism by an increasing length or width of the plate-springs. 
In the design of plate-spring mechanisms the selection of the length of 
the plate-spring should thus be given adequate attention, 

Similar improvements of properties may be expected when cross-spring 
pivots with values of the parameter a larger than 2 and less than -1 are 
constructed with partially reinforced plate-spring elements. Such mecha­
nisms are even more comparable to four-bar linkage mechanisms than the 
usual cross-spring pivot designs (see figure 7.21) 

Figure 7.21 
The application of reinforced plate-spring elements may also be consi­
dered for the construction of cross-spring pivots where the parameter a 
is more than about 2 or less than —1. 
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ANNEX 7.1 
Derivation of expressions for some properties of reinforced plate-spring 
elements. 

Using the iterative analytical method discussed in chapter 4 some of the 
main properties of reinforced plate-spring elements used in parallel 
guiding mechanisms may be determined. In this analysis the element shown 
in figure 7.1.1 will be discussed. As the element Is used in a parallel 
guiding mechanism the rotation <t>(L) of the end is equal to zero. As a 
result calculations may be performed on half of the element consisting of 
an elastic part with length t and an infinitely stiff part with length 
q.JL 

From figure 7.1.1 the following relations are obtained 

L = 2 • A •( 1 + q ) (7.1.1) 

u(L) = 2-( u(JO - q-i-ii>(I) ) (7.1.2) 

2-q-
t q-Jl 

9r——H-* 

wu 

Figure 7.1.1. 
In the calculations of the behaviour of the reinforced plate-spring 
elements the dimensions as indicated here are used. As the element is 
considered to be a part of a parallel guiding the calculations may, in 
first order approximation, be performed on one half of the element as 
shown in (b)• 
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For the plate-spring element loaded by forces F and F the following 
. . _ c _ fc. . 1./ \/J«I in the elastic part results (compare equation for the curvature, dq>(s)/as> F v '-

figure 4.3) 

d»(s) 
ds = Kz°[ -Fx°((q+1)-A -s ) + Fy-( \ -u(L) - u(s) ) ] (7.1.3) 

(As discussed in chapter 2 and further K is the compliance factor of the 
elastic part with respect to bending around the z-axis. In most cases the 
expression K = /F T may be used). z a.iz 

Introduction of the dimensionless coordinate £ ■ / leads to the expres-

^ f - V ^ [ -Fx-( (i+q) - 5 ) + ,y. ( ^ . rfji , j (7<I#4) 

Determination of c and v(L) x -—-

In first instance, the first iterative step, the influence of F is 
neglected by the first estimate, u(Q a 0. 
Integration of equation (7.1.4) yields 

<»U) « - Fx-Kz«Jl2.( (l+q)-5-{ • 52 ) (7.1,5) 

and as an improved estimate for the deflection u( £) is obtained 

u(5) * i-oJ5 -4,(5). dg = Fx.Kz.!3.( j »(l+q)'52 - } °53 ) (7.1.6) 

Substitution of these results in expression (7.1.2) gives the following 
expression for the stiffness c x of one complete plate-spring element 

7( K -A3-( 2 + 6»q + 6-q2) 3" , . . - . , 2 , z K "L ( 1 + 3'q + 3'q ) 
12 1 J_2 

3 n 3 3 3 
Kz-L3 l - ( ^ ) Kz-L 1 - p 

(7.1.7) 

Here the parameter p is another parameter indicating which part of the 
total length of the plate-spring is reinforced. The parameter p is equal 
to the relative length of the reinforced part. When 60% of the length L is 
reinforced p equals 0,6. 
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With expression (7-1.7) a relation between F„ and u(L) is dete ined. This 
relation can be used to eliminate F from expressions (7.1.5) d (7.1.6). 
Thus the following improved estimates for the deformed shape i the plate-
spring element are found 

♦*(0 " ~^Y ' °- ' ( C l + q ) - 5 - | - -52 ) 

a_i l j _ U(L) j _ 2 l .3 v 
i - i ° Q • ( 2 •(i+q) ,5 " "ë" 5 ) ( 7 . 1 . 8 ) 

where Q 7 2 
' ( 2 + 6«q + 6°q ) 

The estimate for the deformed shape of the plate-spring ly be used to 
derive an expression for its curvature. This expression IT then be used 
to estimate the magnitude of the bending stresses in the p ce-spring. 

1 * 2 
With the approximation of cos (|>(g) » ( 1 - ~r •<(> (£) ) the ;inematical end 
deflection v(L) may now be determined using these e ressions. This 
r e s u l t s in 

^f- " "2 • [ J1 i'**(5)2'd? + q=i .^(O2 

u ( D 2 ( q + 1 °q 1 1 °q + H ) 

( | + 2-q + 2"q2 ) 2 

which may a l s o be w r i t t e n a s 

v (L) JL . u (L ) ( l + q ) « ( 1 5 - q + 2 0 - q 2 + 10°q + 2) 

( 1 + 3 °q + 3°q ) 

(7.1.9) 

(7.1.10) 

As might have been expected the limit values of this expression are 

v(L) 1 u(L) for q = 0 and v(L) 1 . u(L) for q ■+ 
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Determination of c 

The improved estimates $ (5) and u (5) may be used in the equation (7.1.4) 
for the curvature /, . The resulting equation can be integrated 
twice to derive expressions for $(5) and u(£) in which the first order 
part of the influence of a force F applied to the plate-spring element is 
taken into account. These expressions may be used to determine the 
influence of F upon the driving stiffness, cx, of the plate-spring 
element. The result thus obtained is equivalent to that given by expres­
sion (7.3.7). 

The obtained expressions for ij)( 5) and u(5) may also be used to eliminate 
the force F„, using expression (7.1.2) and to find new estimates for the 
deformed shape of the plate-spring element. The new estimate for 1)1(5) 
will be 

***(5) --■*¥•• t Q •( ü+q)°5-y °52 ) + 
+ F °Kz°X2°{ Q-Q2°((l+q) 'I - J *5 ) " J 'I + 

+ Q-( ~ °U+q)°53 - -ft >l ) } ] (7.1.11) 

2 3 4 + 20-q + 40 °q + 30 »q where Q~ = 5 
10 •( 1 + 3-q + 3°q ) 

As was done in expression (7.1.9) this estimate may be used to calculate 
the end deflection v(L) of the plate-spring element. The resulting expres­
sion will contain a part similar to that obtained in (7.1.9) and a part 
that is a linear function of the force F . This part is the first order 
estimate of the deflection Av(L) caused by the variation of the bending 
shape of the plate-spring element which causes a certain contribution, 
c , , to the total stiffness c . From this analysis the expression (7.3.12) 
for this effect has been derived. 
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Determination of stiffness cz 

The contribution of the torslonal deformation of the plate-spring under 
influence of a loading force Fz to the deflection w(L) of the end of the 
element in the z-direction may now be determined. As in the Annex 5.1 and 
6.1 the torslonal deformation, 9(5) , is determined using the differential 

A A 

equation given in figure 4.10. Using the estimates <|> (5) and u (5) from 
expression (7.1.8) the differential equation for this case is 

**£■ ~ ~\ • ̂  " V ' -Au=Fz^(l+q-0 + V1.(- ̂  + »(0)] 
u d5 

(7.1.12) 

2 I 
where |i - 0 F „ P i s a parameter depending upon the length to width 

y 
ratio of the elastic part of the element. With this factor the influence 
of the "constrained warping" is taken into account as discussed in chapter 
4 . 
The end conditions for the equation are 

5 = 0 -> 6(0 = 0 

5 = 0 . ifigl = 0 
,fl/j.N " constrained warping " 

5 = 1 * <S? - ° (7.1.13) 
From the differential equation with the given end conditions a solution 
for 0(5) may be found as 

e(5) = y F z = q . i 2 ° ^ . 

«[ A + B-e"^5 + Oe*1"5 + a^l+ a . ^ + a ^ + a ̂  ] 

(7.1.14) 
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The magnitude of the different coefficients may be determined, as was done 
in Annex 4.1, 5.1 and 6.1, leading to the following expressions 

*i---èq - 7 ° ( 1 + q ) 

1 2 1 a„ = y -(l+q)Z + — 2 2 ^ 

a3= - J • (1+q) 

a 4 " 12 

a6 = 2-a2 + 3-a3 + 4 ^ 

i i "IS 
- a, - a, •( 1 - e ; 

6 1 
M ^ - •">*) u 

- a, - a,«( 1 - e11) 
6 1 

B = u-( e^ - e_ti) . 
A - - B - C (7.1.15) 

The contribution of this torsional deformation to the angular deformation 
4,(5) and the deflection w( 5) can now be determined with the following 

expressions (figure 4.10) 

MrfO = / e(5) •**$■'* 

and Aw(5) = Jl Ac|>(5) * d5 (7.1.16) 

The angular deformation <|>(1) and the deflection w( 1) of the end of the 
elastic part may thus be estimated as 

AcKD = -K - F ^ Q 2 . ! 2 ^ - ^ ) 2 • [ A.(±+q) + a ^ ^ + f ) + 

+ a2'( lT + f )+a3'(i + t)+a5-(l0- + f ) + 

+ C(-t-^---e^(^ + -)) ] 
p u |i 

and 

Aw(l) =-Ky.Fz.Q2.I3. (^)2-[ A-(| + f ) + V ( l 2 + 6 > + 
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+ a2 *■ 30 12 ; a3 < 60 20 ; a4 ( 105 30 j 

„ , "5 q 2 2 1 -u q 2 , , + B - ( -1- - — L H — + — + e • ( —-1 - — ) ) + v u 2 3 2 u. ^ 2 3 ; ; 
p p. n p. p 

V |1 2 3 2 p ^ 2 3 ; ; J 
|i p |i p p 

(7.1.17) 

With these expressions the total deflection Aw(L) of the end of the plate-
spring due to the torsional deformation may be calculated as 

Aw(L) = 2 ■ { Aw(l) + q°l°Acl>(D } (7.1.18) 

The result of this analysis has been used to determine the magnitude cf 
the stiffness czt as discussed in paragraph 7.3. It should be reminded 
that the model used to describe the influence of the constrained warping 
is restricted to the case of torsion of beams. When the elastic part is 
relatively short compared with its width this model might not be applica­
ble. Therefore the results of calculations where this condition is not 
satisfied have been shown as a dashed line in the figures in par. 7.3. 

Determination of the stiffness c,, V 

When the torque M is applied to the end of the plate-spring element a 
rotation c|>(L) of this part around the z-axis through the center of the 
plate-spring will result. Due to considerations about the symmetry of the 
loading of the plate-spring element no torsional deformation, 6(i"L) , at 
the middle of the plate-spring will occur. 

To determine the magnitude, Acjj(L), of the rotation caused by torsional 
deformation of the elastic part of the plate-spring element the same 
method as discussed for the influence of F is followed. A differential 
equation as expression (7.1.12) is derived. For this equation the boundary 
conditions are 

"constrained warping" 
(7.1.19) 

5 = 0 ■» 

5 = 1 + 
5 = 0 + 

5 = 1 + 

6(5) - 0 
6(5) - 0 
d6(5) 

d? 
d6(5) 

d5 
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In this case the extra boundary condition may be used to determine the 
unknown internal torque M in the plate-spring» 
The obtained solution for 9(E,) will be of the form 

6(5) = K -M °Q = i° ^Q- .[ A + B-e^"5 + C'e1**5 + y x x i 
+ Bj'5 + a2»52 + a3-53 + a4»C ] (7.1.20) 

where the magnitude of the different coefficients in this case are deter­
mined as 

a2 = - • (1+q) , a3 = - g , a4 = 0 , a5 = a2+ a3 , 

a 6= 2.a2+ 3-a3 

2.(e_|1- l)-( e^ - 1) + |i-( e^-e •*) 

- < a 5 + ^ ) > ( e""- 1} - a6 
2-( e"^ - !)•( e1" - 1) + |W e •* - e~^) 

A = -B -C 
a = n°B - n»C (7.1.21) 

The magnitude of the torque My is 

M = M -Q. ̂ - • ( a. + '/ 2 ) (7.1.21) 
y x Jl 1 |i 

With this solution for 9(|) the magnitude of Ac[)(l) may be determined as 
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44,(1) = -K .MX'A«( ^ r )2 "Q2 •[ A«( { + q) + a j . ( | + | ) + 

+ a2-(TJ + f ) +a 3 . ( 2J + f ) + V < jff + f ) + 

+ B . ( f -^ + ^+ e ^ . ( 4 - ^ ) ) + , „2 H ^2 p. 

+ C ( - i - - l - A + . ' » . ( 4 + A ) ) ] (7.1.23) 

and the t o t a l angular d e f l e c t i o n , A^(L) , of the end of the p l a t e - s p r i n g 
element w i l l be 

A<KD = 2» Ad̂ Cl) (7 .1 .24) 

These results have been used in par, 7.3 to determine the guiding stiff­
nesses of the plate-spring elements. 
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Chapter 8 

Measuring plate-spring characteristics 

8«1 Introduction 

To investigate whether the mathematical models used to calculate the beha­
viour of plate-spring mechanisms are adequate different experimental set­
ups have been made- The measurements done with these installations must be 
accurate enough to indicate noticeable differences between theory and rea-
lity« In this chapter three different set-ups will be described. In each of 
these set-ups similar general considerations have been used. A number of 
these general remarks will be discussed first. 

8o2 General observations 

* Prediction of the absolute magnitude of stiffnesses. 

The absolute magnitude of the stiffnesses of plate-spring mechanisms may in 
general be predicted with an uncertainty of about 20%. This is mainly due 
to the relatively large inaccuracy in the plate-spring thickness which in 
most cases has a cubic influence upon the stiffness,, For thicker plate-
springs (> 0,3 mm) the inaccuracy decreases. 

Other factors contributing to the inaccuracy are Young1s modulus of the 
material and the shape and properties of the clamping pieces. Young's modu­
lus for thin plate-springs is varying due to anisotropy of rolled material 
(variations up to 5% may be found) and the molecular structure of the mate­
rial. Measurements by J. Smit (S2) indicated a decrease of Young's modulus 
of steel plate-springs of about 5% as function of the thickness varying 
from 0,8 to 0,15 mm. 

Elastic deformation of the clamping pieces and rounded edges thereoff ren­
der the estimate of the actual plate-spring length inaccurate. An addi­
tional length of one half of the plate-spring thickness may be added for 
each clamped end to account for deformation of the clamping. The additional 
length for the curvature at the edges of the clamping pieces depends upon 
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the radius of curvature. Generally 0,1 to 0,2 mm may be added for this 
effect» 

From these remarks it is clear that no accurate measurements are needed to 
estimate the absolute magnitude of the stiffnesses. Variations of these 
stiffnesses however are all relative to the intitial values and the rela­
tive magnitude of these variations may be measured accurately. In the 
design of plate-spring mechanisms it will be sufficient when the relative 
magnitude of these variations, e.g. non-linearity or stiffnesses decreasing 
with deflection, are predicted. In the set-ups for measurements it is 
therefore attempted to relate variations to an initial value, for instance 
the stiffness around the undeflected position. 

* Influence of internal stresses. 

When a plate-spring is mounted in a measuring set-up no undesired internal 
stresses due to over-determination of degrees of freedom should occur. The 
theoretical analysis generally assumes that no such stresses are present. 
The different degrees of freedom of the clamping pieces at the plate-spring 
end must be fixed in such a way that in the experiment such stresses are 
avoided. In general this means that of the "free-end" of a plate-spring 
only three degrees of freedom (x, $ and 6) are to be prescribed while the 
plate-spring itself fixes the remaining degrees of freedom of the free-
ends, see figure 8.1. 
For the construction of a guiding mechanism for measurements the slide or 
the foundation may be made as in figures 5.14 or 6.13 to avoid unwanted 
stresses. 

* Geometrical effects. 

In the theoretical analysis it is assumed that the undeformed plate-springs 
are flat. This means that specimens for measurements should not be bend or 
twisted considerably. The presence of burrs at the sides, due to cutting 
for instance, is not allowable as they will lead to unpredictable effects. 
Dijksman (Dl) discusses the influence of an initial curvature of the plate 
around the y-axis of the plate-spring. To avoid the resulting non-linearity 
it may be suggested to operate the plate-spring mechanism in a range not 
including the position where the plate-springs are undeformed. 
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Abbe s principle. 

When a body is moving the movement may have components in all six degrees 
of freedom. When it is necessary to measure the displacement of the body 
along a certain line it is necessarv to place the measuring device along 
this line to avoid inaccuracies from other components of the motion. In 
some cases it is not practically possible to follow this principle and 
either two measuring devices are placed at equal distances from the line of 
interest or the measuring device is placed as close as possible to this 
line. 

Symmetrical clamping of plate-springs. 

The clamping of plate-springs is done in such a way that both clamped sur­
faces are connected with similar stiffnesses to the other parts of the set­
up. When a plate-spring is directly clamped with a simple clamping piece 
(as in figure 8.2a) this clamping piece has a relatively low stiffness in 
y, z and (jj directions when compared to the other half of the clamping. To 
avoid potential differences between theory and experiment clamping pieces 
as shown in 8.2b have been used. Here both sides are clamped with a clam­
ping piece and equal stiffnesses for both surfaces are obtained. 

Direct Feedback. 

While measurements are done it is important to have a direct information 
about the quality of the gathered data. When only "raw" numerical data are 
obtained and the processing of these data is performed at a later time, the 
progress of the experiment will generally be delayed. During processing 
doubts about certain results may occur but the conditions during the measu­
rement are difficult to reconstruct. A new experiment must be done and the 
same risk occurs. In the experimental set-ups designed to analyse the 
plate-spring behaviour this problem is avoided through the use of computers 
for an on-line data-processing and presentation. Erronous results are 
detected directly and the source of this errors may be located in an effi­
cient way. The extra time needed to connect the computing devices will, 
generally, prove to be a profitable investment. 
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Figure 8.1 
To measure plate-spring properties, for instance for s tiffness c , the 
two clamped ends of the plate-spring should be mounted in such a way that 
internal stresses are avoided. Here three wires are used to be fix only 
tli e three "free" degrees of freedom of the free clamping piece. 

Figure 8.2 
When a plate-spring is clamped as in figure (a) the upper surface is 
fixed to the support with a lower stiffness in y, z and <\> directions than 
the lower surface. 
To avoid inaccuracies in the measurements clampings of the type shown in 
(b) have been used. (In schematic diagrams this is not always indicated.) 
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Separating the degrees of freedom. 

In the design of experimental set-ups it is good to investigate the measu­
ring process in order to see whether simplifications may be made. In many 
cases a causality in the process is assumed and on this basis the variables 
are divided into dependent and independent ones. Generally it is assumed 
that a plate-spring mechanism will deflect when a force is applied and the 
force will thus be selected as an independent variable. In the set-up for 
measuring guiding stiffnesses it proved to be much simpler to consider the 
deflection as independent variable. 

Similarly many attempts were made to measure the kinematical motion of 
plate-spring parallel guidings. Here the deflection of the slide in the 
directions of the x- and y-axis should be determined. This measurement 
problem is not solved easily when performed as implied in the description 
of the problem (see figure 8.3a). However the problem may be stated as 
measuring the relative displacements in x- and y-axis directions of the 
slide and foundation. This description might lead to a measurement set-up 
as shown in figure 8.3b. Here the two quantities are measured at the two 
different parts and a much simpler measurement system results. 

These two examples indicate that it may be very helpful to contemplate the 
description of a measurement problem. General aspects are the "inversed 
causality" and the "management" of the degrees of freedom. 
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Figure o. 3 
Simultaneous measurement of the two displacements, u and v, of the slide 
in a parallel guiding mechanism poses a difficult measurement problem. 
The problem may be solved more easily when the relative displacements are 
measured independently at the foundation and the slide as indicated in 
(b). 
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.rement of driving stiffness cx of parallel guidings mecha 

To measure the driving stiffness of a parallel guiding mechanism, its non-
linearity and possibly the static hysteresis a set-up with a high resolu­
tion and small hysteresis has been made. Basically one half of the mecha­
nism will perform a pure rectilinear movement in the 'x-direction. The other 
part is fixed in this direction while it is free to move in all other 
directions (as in figure 8.3b). The relative displacement in the x-direc­
tion may be measured without much difficulty. The force in the x-axis 
direction used to fix the other part is measured separately. 

The basic lay-out of the set-up is shown in figure 8.4. Part 1 is moving in 
the x-direction along a slide guided by air bearings. A simple screw (2) is 
used to drive this part and any displacement measuring device may be usen. 
This device is placed as close as possible in the center of the guiding 
mechanism thus reducing the influence of rotations of part (1). 

Part (3) is supported in the x-direction by a long steel wire connected to 
the weighing system of an electronic weighing scale (4). (Sartorius 1205 
M.P., max. mass 0,160 kg, resolution 1 * 10~5 kg). The principle of opera­
tion of such a weighing scale assures that the moving part of the weighing 
system does not move under influence of applied loads. A servo-actuator 
mechanism drives the moving part to its zero-position and the magnitude of 
the force required to maintain this situation is measured and displayed. 
The error in the position of the moving part has been measured and proves 
to be less than 2 \m. 

The displacement of the slide with the part 1 is measured using a SONY-
Magnescale measuring system (5). This system uses a thin rod with a mag­
netic waveform with a 0,2 mm pitch and a detector to measure the displace­
ment. The rods have been made with a constant pitch and the measured dis­
placement at 0,2 mm intervals is measured with a relative inaccuracy of ± 1 
urn. The absolute inaccuracy, which is not important for the measurements, 
is about ± 5 urn over a measuring range of 100 mm. 

Both the weighing scale and the displacement measuring system are connected 
to a DEC-PDP 11/10 computer. A certain displacement of part (1) is given 
and the operator commands the computer to accept data from both devices. 
The digital data are transmitted and in the computer converted to actual 
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Figure 8.4 
Schematic diagram of set-up used to measure the driving stiffness cx of a 
parallel guiding. 

1 ."Foundation" of plate-spring parallel guiding mechanism 
2. Screw used to drive part 1 
3. "Slide" of plate-spring parallel guiding mechanism 
4. Electronic weighing scale 
5. Displacement transducer 
6. Air bearing guiding mechanism 
7. Elastic support for rod of displacement transducer 
8. Plate-spring 
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values in millimeters and Newtons. To determine the stiffness a number of 
data pairs is collected and a least-square method is used to determine the 
tangent of the best fitting straight line. The best estimate of the stiff­
ness is obtained when the displacements are small enough to avoid non­
linear effects of the plate-springs, but large enough to avoid errors due 
to the resolution of the measuring apparatus. Deflections of ± 2 mm proved 
to be yielding good results when plate-springs with a length of about 8 mm. 
were used. 

When the initial stiffness of the guiding mechanism was determined the 
computer could be used to display the difference between values calculated 
with this stiffness and values measured at larger deflections. In this way 
graphs as given in figure 3.7 could be made. While doing the measurements 
the measured data are directly presented. Thus deviations due to defects in 
the measurement set-up or the testobject can be detected immediately. 

With the measuring system stiffnesses of parallel guidings as presented in 
chapter 3, 4 , 5 and 7 have been determined. As the resolution of both 
force and displacement is of the order 1:104 non-linear effects with magni­
tudes less than U could well be determined. Although the measuring system 
may contain a number of sources of systematical errors (such as elastic 
deformation of weighing scale support and the attached steel wire and 
others) very good reproducible results were obtained. When a measurement 
was repeated the result was within a range of ± 0,1%. Disassembling and 
reassembling the guiding mechanism yielded differences less than ± 1%. 

This repeatability is more than sufficient to determine the main effect of 
loading or geometrical variations upon the guiding stiffness. The resolu­
tion of the measuring set-up is even large enough to allow the measurement 
of static hysteresis in the guiding mechanism. An example of a measured 
hysteresis curve is shown in figure 8.5. From this figure it may be seen 
that the differences in the rest-force when the deflection is equal to zero 
is less than 0,2% of the maximum applied force. The hysteresis is partly 
due to the hysteresis in the plate-spring material, the clamping of the 
plate-spring and the measuring set-up itself. The last contribution is of 
the order of magnitude of 2.10_4 as was determined by Smit (S3). The magni­
tude of material and clamping hysteresis may be investigated with the avai­
lable measuring system. A description of preliminary results of such measu­
rements will be given in Appendix A. 
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Figure 8.5 
To obtain information about hysteresis in plate-spring mechanisms a 
modified version of the hysteresis curve may be measured. Shown is a 
result from a measurement with a parallel guiding with plate-spring 
dimensions 80*20*0,18 mm. Starting from u(.O = 0 two complete cycles of 
loading were made. 
In order to present the measured hysteresis only the force difference AF 
(between the measured force and the force calculated using an estimated 
value for the stiffness) relative to the maximum force F predicted for 
the maximum deflection is shown as a function of the slide displacement. 
Thus the result from an ideal mechanism will be a horizontal line as AF 
is equal to zero for all deflections. Due to the non-linearity in the 
force-displacement relation the measured curves without hysteresis will 
be sloping upwards for positive and downwards for negative values of u( 3.) 

(see para. 5.3). Due to hysteresis different curves will be obtained 
during the upward and the downward stroke. The resulting difference in 
this case is about 0,2% when u( A) = 0. (see also Appendix A) 
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8o4 Measurement of stiffness c. 

The stiffness c of a plate-spring as used in a parallel guiding is com­
posed of two effects* The tensile stiffness as predicted by Hooke's Law is 
independent of the deflection of the guiding. In addition to this effect 
small changes of the bending shape of the deformed plate-spring due to 
forces F will cause a deflection in the direction of the y-axis. This 
effect depends upon the deflection of the guiding. 

The measurement of these stiffnesses poses a measurement problem quite 
different from measuring the driving stiffness c_,a When a steel plate-
spring with dimensions 80x20x0,25 mm is considered the stiffnesses are of 
the order of magnitude of 10 -10 N/m. As the loading forces are limited 
to 20-30 N. , to avoid instability or second order effects, the deflections 
to be measured are in the range from 2 to 30 pm. 

Measurements of the trajectory of a point of the slide carrying loading 
forces do not yield accurate estimates of the stiffness c„c The kinematic 
deflection v(Z) of the slide is about 200 pm and the deflection due to the 
stiffnesses may only be estimated, 

A better result may be expected when a plate-spring is fixed in its defor­
med shape and the additional deflection upon variation of the force F„ is 
measured (see fig. 8.7). But even in this case the experiment should be set 
up with great care. This is illustrated when the stiffness of the mounting 
plate for the plate-spring shown in figure 8.7 is estimated. The solid 
steel block S with dimensions 80x40x35 mm has a stiffness of about 
10 ' N/m in the direction of the y-axis. It will be clear that with such a 
set-up no accurate measurements especially for plate-springs with small 
deflections in the x-direction will be obtained. 

Attempting to avoid this sort of difficulties the experimental set-up shown 
in figure 8.8 has been made. The plate-spring (1) is clamped at both ends 
with symmetrical clamping pieces (2) as described in figure 8.2. The 
"fixed" clamping (2a) is mounted on a rotation stage build up as a four-bar 
linkage mechanism with elastic hinges (3). This mechanism enables the 
adjustment of the relative angular position of both clamping pieces. The 
best alignment of this angle is found by testing the similarity of the two 
stable buckling shapes of the undeformed specimen plate-spring (u(Jc) = 0 ). 
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Figure 8.6 

Plate-spring parallel guiding loaded by a force Fv. 

Figure 8.7 

Measurement of the stiffness cy may be done on one plate-spring of the 

parallel guiding which is clamped in such a way that the desired defor­

mation is prescribed. 
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Figure 8.8 
Schema 
spring 

1. Plate-spring 
2. Clamping pieces 
3. Angle adjustment mechanism 
A. Displacement transducers 
5. Support for free clamping piece 2b 
6. Three wires supporting no.5 
7. X-Y displacement stage 
8. Rod for application of force F 
9. Cables for force application 
10. Lever 
11. Force transducer 
12. Motor driven y-displacement stage 

tic diagram of set-up used to measure the stiffness c of a plate-
deformed as in a plate-spring parallel guiding. 
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The influence of small angular misalignments may be calculated using the 
expressions for the plate-springs in a cross-spring pivots. This effect is 
illustrated in figure 8.9 where measured deflection curves for different 
angular misalignments are shown. 

To avoid the influence of deformations of the rotation stage and other 
parts of the set-up the deformation of the plate-spring is measured 
directly between the two clamping pieces. Two "TESA"-displacement measuring 
instruments (4) are used at each side of the plate-spring. The signals from 
these instruments are added and divided by two and thus the main influence 
of relative rotations of the two clamping pieces, due to deformations of 
the foundations under the applied loads, is eliminated. 

The movements of the "free" clamping pieces (2b) are fixed by the plate-
spring in three degrees of freedom. The support of this clamping piece 
should thus fix only the three remaining degrees of freedom to avoid the 
possible occurrence of internal stresses or asymmetric loading of the 
plate-spring. Therefor the support (5) is connected with three steel wires 
(6) ((|> 0,8 mm) to the table of a standard x-y support (7). The movements of 
this support are used to generate a deflection, u(A), and to compensate for 
the kinematic deflection v(Jl) of the plate-spring. 

A certain pre-load, a positive force F is applied to the plate-spring by 
the weight of the support (5) and of additional masses attached to this 
support (7). To obtain a deflection curve, v(i) versus F a force is 
applied to the free clamping piece upwards. This force is applied through a 
bar (8) and two cables with helical springs (9). The end of the cables is 
supported through a lever (10) of a force transducer (11). When the force 
transducer is moved upwards by a motor driven stage (12) the loading force 
Fy upon the plate-spring will be reduced. The information from the force 
transducer and the displacement transducers is collected, transmitted to 
the computer (DEC-PDP 11/10) and analysed. A value for the measured stiff­
ness c„ is determined using a least-square calculation upon about 30 data-
pairs around the point where F„ equals zero. 

The force transducer was designed to measure relatively small forces with a 
high stiffness of the transducer. In that case the deflections at the point 
of application are relatively small and may not be measured with standard 
displacement transducers. The design contains a "knuckle-joint" mechanism 
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Figure 8.9 
When Che relative angle of rotation of the two clamped ends of the plate-
spring is varied the measured force-displacement characteristic of the 
plate-spring varies as well. 
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using elastic hinges. A small deflection at the point of application of the 
force is transmitted to a larger deflection (20 times) at the point of 
measurement of the displacement. The stiffness of the mechanism is due to 
the stiffness of the elastic hinges. Measurement of the displacement should 
preferably be done without contacting the mechanism as a force applied at 
the point of measurement is equivalent to a measuring error of a 20 times 
larger input force. 
In the measurements of which the results have been presented the displa­
cement was measured using a "TESA"-transducer. This is a contacting device 
but the small force variations ( =0,01 S ) in this transducer did not 
generate too large inaccuracies in the force measurement. 

.5 Measurement of stiffnesses cz and c <!>' 

The stiffness of a plate-spring parallel guiding in the directions of the 
z-axis and around the y- and x-axis are due to the stiffnesses cz and C((j of 
each of the two plate-springs. The measurement of these two stiffnesses 
requires an experimental set-up similar to the one described for the measu­
rement of c . Here again a high stiffness should be determined at relati­
vely low values of the loading force. The same basic principles have been 
used in building the experimental set-up. The total set-up however is not 
developed that far but the obtained results, especially the detection of 
the influence of the "constrained warping", were sufficiently accurate to 
support the developed theoretical model. 

The experimental set-up is shown in figure 8.10. The plate-spring (1) is 
clamped using two symmetrical clamping pieces (2). As the clamping pieces 
will be subject to a bending moment around the x-axis the fixed clamping 
piece has been widened to increase the stiffness. 
The fixed clamping (2a) is connected to the support of a conventional x-y 
stage (3). Also connected to this clamping piece is a horizontal bar (4) 
carrying two "TESA"-displacement transducers (5 and 6). 
The transducer (5) rests on the surface of a bar (7) fixed to the "free" 
clamping piece (2b) at the center of the undeformed plate-spring. The other 
transducer (6) also rests upon this bar (7) but at a distance of about 100 
mm in y-axis direction from the other one. The two transducers thus allow 
for measurement of the deflection w( SL) and rotation i\,(SL) of the free-end. 
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Figure 8.10 
Schematic diagram of the set-up used to measure the stiffness cz of a 
plate-spring deformed as in a parallel guiding. 

1. Plate-spring 
2. Clamping pieces 
3. X-Y-stage 
4. Bar 
5.,6. TESA-displacement transducer 
7. Bar 
8. Loading table 
9. Support for free clamping piece 
1U. Wires supporting no. 9 
11. Weight for balancing of no. 9 
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The loading force, F , should be applied at the center of the plate-spring 
and will cause only a deflection of the free-end. The force is generated by 
placing weights upon the table (8) which is connected to the free-clamping 
piece. When the force is applied at the correct position the two displace­
ment transducers will show an equal displacement. When the force is applied 
at a different point a combination of force Fz and moment M̂ . is applied. 
Thus both stiffness cz and c^ may be determined. 

The free clamping piece is supported by a table (9) which is supported by 
three steel wires (10) which determine its remaining three degrees of free­
dom. The influence of the mass of the free clamping piece and the connected 
parts is compensated by means of a balance mass (11) which is placed in 
such a way that the clamping piece will be kept in its measurement position 
when the plate-spring is removed. 

Although less elaborate this experimental set-up enabled measurement of the 
stiffness with an inaccuracy of about 5% of the measured value for steel 
plate-springs with dimensions 80x20x0,25 mm or similar. 

APPENDIX A 

Preliminary results of measurement of hysteresis in plate-spring mechanisms. 

Hysteresis in plate-spring guiding mechanisms is observed in two ways. Due to 
the hysteresis mechanical energy will be lost during each cycle of vibration in 
a vibrating system. Thus a free vibration will be damped and the mechanism will 
eventually come to a stable situation. 

Statically the hysteresis is noted by the differences in the force-displacement 
curves during reversed motions of the mechanism. Due to this effect the position 
of the mechanism under influence of a certain driving force is undetermined. 
This effect leads to inaccuracies when the plate-spring mechanism is used as a 
transducing element. 

Fortunately the hysteresis in plate-spring mechanisms is small and the resulting 
inaccuracy will often be acceptable. To obtain more information about the hyste­
resis some effort has been directed in this direction. 
The sources of hysteresis considered are the internal material hysteresis and 
the hysteresis resulting from the plate-spring clamping pieces. Both theoretical 
and experimental methods were used to gain information about these effects. 

The material hysteresis will depend strongly upon the magnitude of the stresses 
in the material during the loading cycle. For relatively low stress levels the 
hysteresis is relatively small, at higher values a pronounced increase of the 
hysteresis may occur. In many instances the fatigue stress-limit is indicating 
the point where this transition occurs. 

The hysteresis in the clamping pieces will depend upon their design and para­
meters as clamping force, friction coefficient, etc. The influence of the hyste­
resis in clamping pieces, relative to that of the material hysteresis, will 
depend upon the length of the plate-spring. During the cycle with a certain 
stress level in the plate-spring a certain amount of energy is lost in the clam­
ping piece. The relative magnitude of this amount of energy will be small when a 
long plate-spring, containing a large total amount of elastic energy, is used. 
Hence the efforts to reduce hysteresis must be directed to reduction of material 
hysteresis when long plate-springs are used (i.e. with a large length compared 
to th thickness). In constructions with relatively short plate-springs or when 
special materials are used the influence of losses in the clamping pieces will 
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become dominant. 

As suggested in chapter 8 the measurement set-up used to measure the driving 
stiffness c of plate-spring parallel guidings may be used to estimate the sta­
tic hysteresis in plate-spring constructions. The static hysteresis is of impor­
tance in the design of measuring systems. The dynamic hysteresis will in most 
cases be influenced by the damping influence of the surrounding air and will 
thus be depending strongly upon the design of the considered mechanisms. 

Different examples of measured hysteresis curves are shown in figures Al to A3. 
In these figures the magnitude of the difference between measured forces and 
forces calculated using a constant stiffness relative to the maximum applied 
force as a function of the displacement is shown. In figure Al a curve as measu­
red for a plate-spring parallel guiding is shown. In this case the length of the 
plate-spring is relatively large and the contribution from the hysteresis in the 
clamping pieces is relatively small. 

The magnitude of the hysteresis may be characterized by the ratio between the 
force difference, AF, when the displacement is equal to zero on either of the 
two curves and the maximum applied force, F, in one direction. Using this defi­
nition the hysteresis in figure Al is estimated as about 0,2%. This will also 
indicate the uncertainty range for the position of the slide when no driving 
force is applied. The uncertainty range will be 0,2% of 8 mm deflection, giving 
a 16 pin range. 

In figures A2 and A3 curves measured at short plate-springs are shown. Here the 
plate-spring is connected with two clamping pieces as shown in figure 8.2b to 
the slide of the measuring set-up and a long bar. The other end of the bar is 
suspended at the wire connected to the weighing balance. In this case the plate-
spring is subjected to a, almost, constant bending moment. Due to the short 
length of the plate-spring the influence of the hysteresis in clamping pieces is 
relatively important. In figure A2 the hysteresis is about 0,4%. It should be 
noted that in this case the non-linearity of the force-displacement characteris­
tics is relatively small when compared with figure Al . 

Figure A3 shows a similar hysteresis curve for a short plate-spring. Also shown 
here are some internal hysteresis curves obtained by making small reciprocating 
movements. A certain stabilizing effect during the movements may be recognized 
during these cycles. 
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To obtain an impression of the relative influences of clamping and material 
hysteresis contribution a series of measurements on beryllium-copper plate-
springs was performed. Relatively short plate-springs, active length from 3 to 
14 mm., width 6, mm and thickness 0,4 mm, were measured. 
In figure A4 the magnitude of the hysteresis, in this case characterized by the 
absolute magnitude of the uncertainty range for the unloaded plate-spring, as a 
function of the active plate-spring length is shown for different values of the 
maximum value of the bending stress. At each stress level a certain uncertainty 
due to the deformations in the clamping pieces is observed. The absolute 
magnitude increases with increasing stress level. 
In addition an uncertainty due to internal material hysteresis which increases 
with increasing length of the plate-spring may be noteci. 
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Figure Al 
In first order approximation the force needed to generate a displacement 
of a parallel guiding is determined as, F = c.u. With the measurement set­
up shown in par. 8,3 the differences, AF, from this relation have been 
measured as a function of u. The result is shown relative to the magnitude 
of the maximum force, Fmax = c.uma . 
The hysteresis in the mechanism may be defined as the relative differences 
in AF/Fmax at the loading and unloading curve for u ■ 0. 
From the graph a hysteresis of about 0,2% is estimated, (see also fig.8.5) 
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Figure A2 
To estimate the influence of the hysteresis in clamping pieces the force-
displacement curves of short plate-springs were measured. The result shown 
here was obtained with a plate-spring with dimensions of 4x6x0 ,4 mm. As in 
figure Al only the relative magnitude of the differences from a linear 
relation are shown. 
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Figure A3 
Hysteresis curve as measured on a short plate-spring as in figure A2. Here 
internal hysteresis cycles have been measured to estimate the influence of 
small vibrations around an equilibrium position. It is clear that the 
magnitude of the hysteresis depends mainly upon the maximum deflections of 
the plate-springs. 
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Figure A4 

To estimate the relative magnitude of material hysteresis and hysteresis 
in the clamping pieces a serie of measurements on BeCu-plate-springs with 
different lengths and maximum stress levels was done. In the graph the 
resulting uncertainty range A<t> found for the unloaded plate-spring 
element is presented. 
(Dimensions, width 6 mm, thickness 0,4 mm). 
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Samenvatting 

Bladveren bezitten een aantal interessante eigenschappen welke gebruikt kunnen 
worden voor het ontwerp van nauwkeurige geleidingen. Goed reproducerende 
relatieve bewegingen kunnen verkregen worden enerzijds dankzij de afwezigheid 
van speling en anderzijds door de grote stijfheden in de ondersteunde 
richtingen. In het algemeen nemen deze stijfheden af bij vervormingen van de 
bladveren en in de meeste gevallen zijn de toelaatbare bewegingen relatief 
klein. 

Naast de verschillende voordelen is één van de grootste nadelen het ontbreken 
van een "technische infrastructuur" voor het gebruik van bladveren. De prak­
tische ervaring in het ontwerpen van bladveermechanismen is beperkt en niet of 
nauwelijks in literatuur vastgelegd. 
Daarnaast is de kennis over het gedrag van deze mechanismen onder invloed van 
belastingen niet volledig bekend en in veel gevallen niet goed toegankelijk. 

In dit proefschrift wordt deze kennis uitgebreid en gecombineerd met reeds 
beschikbare kennis. In drie aparte hoofdstukken wordt getracht dit geheel op een 
toegankelijke manier te presenteren. 

Voor het bepalen van het gedrag van bladveren onder invloed van drie-dimensio­
nale belastingen wordt in hoofdstuk 2 een wiskundig model op basis van het 

& concept van de elastische lijn beschreven. In hoofdstuk 3 en 4 wordt een 
benaderende analytische methode beschreven waarmee oplossingen van de verkregen 
differentiaalvergelijkingen kunnen worden verkregen. 

Bij het vergelijken van deze resultaten met meetresultaten, verkregen met de 
opstellingen beschreven in hoofdstuk 8, bleek dat het concept van de elastische 
lijn niet geheel voldoet. Een tweetal effecten moet worden toegevoegd. Het 
eerste is het gevolg van de overgang van de spanningstoestand bij balk-buiging 
naar die bij plaat-buiging. Dit effect was al eerder aangegeven door o.a. 
Dijksman (Dl). 
Het tweede effect is het gevolg van de door de inklemmingen veroorzaakte invloed 
op de torsie-vervormingen. Dit effect van de "belemmerde welving" van de 
doorsnede is toegevoegd aan het wiskundig model voor de bladveer. 
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In de hoofdstukken 5 tot 7 worden de belangrijkste eigenschappen van bladveer-

machanisraen besproken. Aan de hand van het voorbeeld van de bladveerparallel-

ge Ie id ing wordt een uitgebreide beschrijving van de verschillende effecten in 

het gedrag van bladveermechanismen gegeven. In hoofdstuk 6 wordt hieraan de 

informatie voor het ontwerp van kruisveerscharnieren toegevoegd. Een aantal 

verschillende toepassingen van bladveren worden in hoofdstuk 7 besproken. In dit 

hoofdstuk wordt ook de mogelijkheid tot het verbeteren van de eigenschappen van 

de bladveerparallelgeleiding door het toepassen van "verstijfde bladveren" 

onderzocht. 

In een aparte appendix wordt het optreden van hysterese in bladveergeleidingen 

kort besproken. Algemeen wordt het als een voordeel beschouwd dat in bladveer­

geleidingen "bijna geen" hysterese optreedt. Om kwantitatieve informatie over de 

grootte van de hysterese te verkrijgen zijn een aantal verkennende metingen 

gedaan. De eerste resultaten van deze metingen worden in Appendix A besproken. 
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Stellingen behorende bij het proefschrift 
On the des i gn of pla te-spring mechanisms. 

De stap van werke li jkheicl naar een theoretisch model vormt de belangrijkste barrlëre 
voor het praktisch toepassen van beschikba re theoretische kennis. Me t is daa rom nood-
zakeLljk aan liet aanleren ^an vaardigheid In de modelvorming in het wetenschappelijk 
onderwijs mee r aandacht te bes teden. 

Het toenemen van de abstractiegraad en de groei van het bijbehorende jargon leidt tot 
groeiend aanzien van een vakgebied of specialisme. In tegenstelling hiermee worden 
ontwerpen van mechanische constructies be ter als ze eenvoudiger te begrijpen en te 
produceren zijn. Wellicht is dit de oorzaak van het gebrek aan aandacht en waardering 
die de constructieve werktuigbouwkunde ten deel valt. 

Bij het doen van wetenschappelijk onderzoek, of dit nu op het gebied van bladveren, 
van kernfysica of van sociologie is, is het van wezenlijk belang dat de kwaliteit van 
de theoretische en experimentele bijdragen in gelijke mate wordt ontwikkeld. De kwali­
teit van het onderzoek wordt namelijk eerder bepaald door het produkt van be 1de bij­
dragen dan door hun som. 

ïn werktuigkundige construct les zijn de proceskrachten vaak 
zwaartekracht veroorzaakte belastingen. De ontwerper dient 
krachtwegen in de machine 
gesloten zijn. Het onder- % dx 
wijs in de sterkteleer zou 
hieraan een welkome bij­
drage kunnen leve ren door 
vraags tukken op andere 
wijze te presenteren dan 
gebruikelijk. Hierbij is 
een voorbeeld voor een 
alternatieve presentatie 
gegeven. 

veel groter dan de door de 
zich te realiseren hoe de 

Het gebruik van het "Bode-diagram" in de servo- tec hniek en bij de analyse van dyna­
misch gedrag van systemen is charmant omdat door de logarithmische schalen alles wat 
krom is recht wordt gemaakt. De gebruikte standaard dimensieloze prestatie, (dB), 
leidt echter tot een ongedisciplineerd meetgedrag en spraakgebruik en, erger, tot een 
afname van het "begrijpend analyseren". 

De beschikbare kennis over het gedrag van systemen met meer vrijheidsgraden zou beter 
overdraagbaar en toepasbaar worden indien bij het onderwijs meer aandacht wordt 
besteed aan het visueel begrijpelijk maken van het wiskundige verschijnsel van de 
"orthogonale coördinaat". 

In tegenstelling tot de algemeen bes taande indruk vergt het vakgebied van de "aange­
paste technologie" een technische inspanning van hoger niveau dan onze Westerse tech­
nologie. Het Is in het belang van ontwikkelingslanden dat de hulpverlenende organisa­
ties tijdig tot dit Inzicht komen. 

Het modelleren van een permanente magneet door een combinatie van een kortgesloten, 
weerstandsloze spoel en een magnetische weerstand levert een mathematisch gelijk maar 
energetisch beter model dan het gangbare model met een bron van constante stroom. 

liet rechtsgevoel in onze samenleving wordt voortdurend bedreigd door de regelzucht van 
de wetgever. Om in deze gespannen verhouding enige ontspanning te verkrijgen is het 
aan te bevelen om in de verkeerslichten voor voetgangers het rode licht te vervangen 
door een oranje licht. 

April 1985 Jan van Eijk 


