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SUMMARY

plate-springs are construction elements with interesting propertles which may be
used to construct accurate guiding mechanisms. Good reproducibility of the
relative motion of the parts of the mechanism may be obtained due to the lack of
play and high stiffnesses in the direction of the "fixed" degrees of freedom.

These high stiffnesses will generally depend upon the magnitude of the defor-
mations of the plate-springs and thus a limit to the maximum deflections will in

many practical cases be imposed.

Apart from the different advantages of plate-spring constructions one of the
main drawbacks might be the absence of a '"technical infrastructure" for their
application. Practical experience in the design of plate-spring mechanisms 1s
limited and has not been documented extensively. Also the information about the
behaviour of the mechanisms under influence of different loading conditions is

not available, or in some instances, not easily accessible.

In this thesis additional information about the behaviour of plate-spring
mechanisms will be derived. In addition this information will be combined with
information obtained in previous researches in three chapters in an attempt to

make it accessible for designers of plate-spring mechanisms.

To obtain additional information an elastic-line model for a plate-spring under
three dimensional loading is developed in chapter 2. In chapter 3 and 4 an
approximating analytical method 1s described which may be used to obtain
solutions for the equations found from the mathematical model. Comparison of
calculated and measured results, obtained with experimental set-ups discussed in
chapter 8, indicated that the elastic-line model had to be extended. Two
additional effects had to be considered. The first effect has been noted earlier
and 1is related with the transition from the stress distribution as found in
bending of beams to the one found in the bending of plates.

The second effect 1s related to the restrictions imposed by the clamped ends
upon the torsional deformation of a plate-spring. This effect of the "con-
strained warping" of the cross-section has been incorporated into the mathe-

matical model.

In chapter 5 to 7 the main properties of different plate-spring mechanisms is
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discussed. In chapter 5 the most complete description of the effects encountered
in the design of plate-spring mechanisms is given, as applied to the design of

plate-spring parallel guidings. Chapter 6 contains additional information as
might be used in the design of cross—spring pivots. A selection of different
plate-spring applications is discussed in chapter 7. Also in this chapter a

' -
discussion about the possible advantages of the use of "reinforced" plate-spring

elements in parallel guiding mechanisms.

In a separate appendix to this thesis the hysteresis in plate-spring mechanisms
is briefly discussed. Generally it is considered as an advantage of plate-spring
mechanisms that "almost no" hysteresis is present. Tc quantify the magnitude of
hysteresis to be expected in these mechanisms measurement of some of the factors
influencing the hysteresis have been started. The preliminary results will be

discussed in Appendix A.
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INDEX OF GLOBAL SYMBOLS

The main symbols used in this thesis will be defined here. Symbols used only in

a single part of the text will be defined in the text.

Decimal point, Multiplication sign.

In the text the comma-sign, ", ", will be used to mark the decimal point in

numbers. A dot at the middle of the character line will be used as

multiplication sign.

Symbol Definition Dimension
A Cross-sectional area of plate-spring (m2)

( beh )
a Geometrical parameter in cross—spring (-)

pivots (fig. 6.3)

b Width of plate-spring (fig. 1.1) (m)
¢ Stiffness
Cx> Cy> Cy» linear stiffness (N/m)
C¢> C¢» Cg»> rotation stiffness (Nm/rad)
E Young's modulus (/m?)
F Force (N)
G Shear modulus (N/mz)
h Plate-spring thickness CEdge 1) (m)
IL = i Moment of inertia of the cross-sectional
area of the plate-spring around the z-axis
(=1—2-b-h3) (n*)
1 Moment of isertia of the cross-sectional
area of the plate-spring around the x-axis
Coimpinhie b (a*)
J Polar moment of inertia of the cross-
sectional area of the plate-spring around
the y-axis
(forb>hfollowsJ=%°b°h3) (m*)
Kx’ Ky’ Kz Compliance factors of the plate-spring
cross—sec;%on . o (I/Nmz)
Sl el geblent e Eebeh :
L Length of reinforced plate-spring element (m)
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w, w(s), w(p) (fig. 2.2)

Length of elastic part of plate—spring (m)

M (kg)
ass
Rate of reinforcement of reinforced plate—
spring element (fig. 7.31) =)
Length coordinate measured along the axis
of the plate-spring (fig. 2.1) (m)
u, u(s), u(f) Displacements in the directions of the
bl 3
v, v(s), v(&) x, y and z-axis
(m)
Coordinate-axes of the plate-springs -)
(Fig.=2.1)
i d
Py 0(8) , $(R) Rotation around the x-axis (rad)
bl
i rad)
9,6(s),0(R) Rotation around the y—axis (
i rad)
6,4(s),06(2)  Rotation around the z-axis (
Coefficient related with the effect of the
constrained warping, ( para. 4.5) 1 - )
(for plate-springs with b > h p =737 ° /‘Izs
"Warping constant" for the plate-spring
cross—section ; s h3 : (m6)
(@ £ori bl >hEfollows ST sypRie b
)

= NITL =

Poisson's constant

(for steel v = 0,3is used in this text)
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Chapter 1

Introduction

General remarks, advantages and applications

Plate-springs are construction elements with a number of interesting pro-
perties. Two parts connected to each end of a plate-spring, figure 1.1, are
rigidly connected to each other in the direction of the three "in-plane"
degrees of freedom. In the remaining three degrees of freedom small rela-
tive movements may be made without exceeding the elastic stress limits of
the plate-spring material. The extremely large ratios, up to 104 = 106,
between the stiffnesses in the "in-plane" and "out-of-plane" directions

yield interesting possibilities for the design of mechanisms.

Different combinations of plate-springs may be used to construct mecha—
nisms. The most commonly known mechanisms are the plate-spring parallel
guiding and the double symmetric orthogonal cross—spring pivot shown in
figure 1.2. In these mechanisms two parts of the construction are connected
by two plate-springs. Generally these two plate-springs will allow one of
the two parts to move with one degree of freedom relatively to the other.
As will be discussed later there will generally be one degree of freedom
that is determined twice (see ch. 5).

In the mechanisms shown in figure 1.2 two plate-springs are acting parallel
and one degree of freedom remains "free'. Another possibility is to make
constructions using two plate-springs in series. In that case only one
degree of freedom is determined. Thus simple elastic shaft couplings and

other mechanisms may be devised (see ch. 7).

The advantage of plate-spring mechanisms have been discussed by different
authors SIS H] RISV ot c2)E

The main advantages noted are

* Relative motion is performed without any sliding or rolling contacts.

This results in a lack of friction and wear.
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Figure l.l.

A plate-spring fixes the relative motion of its two clamped ends in three

of the degrees of freedom with relatively high stiffness. In the remaining
de.

three degrees of freedom limited displacements of the ends can be made

These displacements may be described as,

(b) - Linear motion in the direction of the x-axis

(c) - Rotation around an axis parallel to the z-axis and located in the

plane of the plate-spring and :

(d) - Rotation around an axis parallel to the y-axis and located in the

plane of the plate-spring.

(a)
Figure 1.2

Two of the most well known plate-spring mechanisms are the plate-spring

parallel guiding (a) and the cross-spring pivot (b). In these mechanisms
the deformation of the plate-springs is restricted to bending around axes
parallel to the z-axis. Therefore every point of the mechanisms will move
in a plane parallel to the x-y-planes of the plate-springs. The x=y-plane

1s therefore called "the plane-of-motion".

* The two parts to be connected are solidly connected in the degrees of
freedom which are to be fixed. This results in a .total absence of
"play" and high stiffnesses in these directions, Together these two
facts lead to a highly reproducible movement of the two parts relative
to each other.

* Plate—spring mechanisms are highly insensitive to the influence of
dust, moisture, heat and other environmental conditions,

*

To obtain a certain displacement a force should be applied and this
opens the possibility to use the plate—springs both as a guiding and as
a measuring element.

% Accurate guiding mechanisms may be produced with

production Processes,

These advantages have been used extensively in the field of instrument

design. The reproducible motion is used to guide elements, such as optical

parts, relative to each other. The lack of friction and the small magnitude



scales, pneumatic 1instruments, etc.). Among others Haringx (HI) and
Breitinger (Bl) have indicated that the advantages may be valuable in other
disciplines of engineering design as well. The miniaturization of products
and production machinery will enable, and even lead to, the application of

plate-spring mechanisms. Recent examples of constructions using elastic

elements are

* Guiding mechanisms for lenses 1in optical storage equipment such as

Compact Disc (fig. 1.3), Laser Vision etc.
* Gulding elements for miniature grippers used in mechanisation machines.
* Guiding and driving elements in the design of micro-manipulators for

the micrometer and sub-micrometer range.

Figure 1.3

An example of application of a plate~spring parallel guiding 1is found in

t the
Philips' Compact Disc player.Here plate-springs are used to connec

lens body with the track~following mechanism.

It 1is surprising to note that application is not as numerous as might be
expected. This might be caused by the existence of a number of disadvan-
tages. When these disadvantages are not emphasized enough, disappointing
experiences of designers of plate-spring mechanisms may result. This will
lead to prejudgment and a resistance against the use of plate-spring

elements.

The most important disadvantages of plate-spring mechanisms are

* The allowable displacements, linear or rotation, are limited. Limits
are given by the elastic limits of the plate-spring material and, more
important and less well known, the reduction of the stiffness of the
mechanism in the fixed directions. Typical values for the range of

displacements are 4 0,2 rad for rotations and + 10 mm for translations.

* To maintain a certain displacement a driving force should be applied.
In some mechanisms such a force might be undesirable, in other cases
the force may be considered to be an advantage. Different possibilities
exist to reduce the magnitude of the driving force (DI, E1), but such

solutions are only used in special applications (W2).

* The relative movement prescribed by the plate-springs will in general

not be a pure rotation or translation of the two parts.

* In plate-spring guiding mechanisms as shown in figure 1.2 one degree of
freedom is overdetermined. Upon assembly or during the 1ifetime the two
plate-springs may apply internal loads to each other. Due to these
unknown and unpredictable stresses the behaviour of the mechanism may
be unpredictable, or time and temperature dependent.

Once the existence of this over-determination of the one degree of
freedom is recognized relatively simple methods are available to avoid

the internal stresses (see also ch. 5 and (9}

* For the design of plate~spring mechanisms there exists no '"technical

infra-structure”. Therefore designers will first invent a solution to
their problem, using conventional elements, that satisfies an assumed
set of requirements. Attempts to introduce plate-spring elements after-
wards are generally in vain due €o the different geometrical require-

ments. When the use of plate-springs would have been considered at an



* The behaviour of plate-spring elements is not generally known.

1.2

early stage in the design process their application might have been an

advantage.
Another result of the lacking "infra—-structure”" is the limited expe-
rience and know-how about reliable and simple methods to connect plate-

spring to machine parts. The presence of dead-lines in the design pro-

cess will thus favour the use of conventional solutions.

Diffe-

rent authors have studied the behaviour in different respects. The

results are however not always easily accessible for designers.

The first two disadvantages are elementary. The second one will be a draw-

back only in special cases. The existence of the remaining disadvantages

may be considered as problems to be solved. Time and effort should be dedi-
cated to the development of a '"technical infra-structure". The information
about the behaviour of plate-spring mechanisms may be collected, additional
information may be searched for and a translation of the information to a
form easily accessible and easily used by designers may be made.

In the following it will be attempted to contribute to the solution of
these problems. Main attention will be given to the summarizing and the
supplementing of the available information about the behaviour of plate-
spring mechanisms. This will be discussed in chapter 2, 3 and 4. In the

chapter 5, 6 and 7 information for designers will be given.

Aim and scope of present work

Previous research about plate-spring mechanisms has been directed to the
analysis of the behaviour of the plate-springs under loading in the x-y-
plane. For the mechanisms shown in figure 1.2 this plane is called the
"plane—of motion". Every point of the mechanism moves in a plane parallel
to the x-y-planes of the two plate-springs. The deformations considered in

these researches are restricted to bending of the plate-springs around the

z—axis.

In first instance the results of such researches are :

* The stiffness of the guiding mechanism in the desired direction of
motion.

The maximum value of the bending stresses at a certain deflection in

the mechanism.

These results could be obtained with a linearized form of the differential
equation which may be used to describe the bending of long and slender
beams. They are only valid for relatively small displacements.,

The next parameter of interest is the loading capacity of the guiding
mechanism. To estimate this the buckling load of long slender beams loaded

in the plane-of-motion was calculated.

As the guiding mechanisms were mainly used in measuring Instruments the
non-linearity of the force-displacement relation and the accurate descrip-
tion of the relative motion of the two parts of the mechanisms were impor-
tant characteristics. The linear theory had to be abandonned and different
ways to solve the non-linear equations were developed (for a brief review,
see para. 3.2). The results obtained from investigations with regard to a
single plate-spring are ,
Description of the geometrical non-linearity in the force-displacement
characteristics at relatively large displacements.

Expressions for the stiffness of deformed plate-springs in the direc-

tion of the y-axis.

With regard to the behaviour of mechanisms information about the relative

movement of the two parts of the mechanism was obtained.

These results were all derived using an "elastic-line" model for the plate-
springs. Basically this model is known from general theory about elastic
deformation described by Love, Kirchhoff, Kelvin and others in the nine-
teenth century (1lit. Ll1). Applications of these theories to plate-spring
mechanisms were reported by, (among others), Eastman €937, S EL) = Young
(1944, Y1), Haringx (1949, H1), Hasselmeier (1954, H2), Lotze (1964, L2)
and Zenov (1970, Zl). More recently Dijksman (1979, Dl1) has developed a

non-linear analysis of cross—spring pivots.

_7_



Apart from the theoretical observations about plate-spring mechanisms dif-
ferent authors have attempted to describe practical applications. An inte-
resting summary of possibilities to make practical and impractical mecha-
nisms was given by Breitinger (1976,B1). His description is restricted to

qualitative remarks only.

Although information about relatively large deflections 1is derived by dif-
ferent authors the deflection in practical applications of plate-springs in
guiding mechanisms is relatively small. Only for small deflections the
advantages of plate-springs (reproducible motion, high stiffness) are fully
utilized. This i1s illustrated in figure 1.4 where the ratio between the
stiffness cy and c, of a plate-spring used in a parallel guiding is shown
as a function of the relative displacement of the guiding. In this thesis
it will generally be assumed that the plate-spring deflections are relati-

vely small.

It may be concluded that all previous publications are based upon obser—
vations about the "elastic-line" model for the plate-spring and are
restricted to loading forces in the plane-of-motion. For practical appli-
cations this model may prove to be insufficient.

Di jksman (D1) for instance noted that a considerable contribution to the
non-linearity in the force-displacement characteristics may be expected
when the plate-spring is considered as a plate with a finite width. Unfor-
tunately he does not quantify this effect in his analysis and only

describes the magnitude of the geometrical non-linearity.

In applications of plate-spring mechanisms it is also not practical to
assume that loading forces are restricted to act in one plane. Loading
forces and moments in the other directions will also influence the beha-
viour of the mechanisms. In such cases other deformations in the plate-
springs, such as shear , bending around the x-axis and torsion around the

y—axis should be taken into consideration.

In this work it has been attempted to summarize the relevant information
known from earlier research and to derive additional information that may
be considered necessary for the design of mechanisms. Two separate parts in

this work may therefore be distinguished,

* One part describes the development of a mathematical model describing
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Figure 1.4

One of the advantages of plate-spring mechanisms 1is the large ratio between

driving (c ) and guiding stiff
= g nesses. The ratio between Cy and ¢, for a

plate-spring parallel guiding is given by

c 2

Sy S
3 TR
= B T O O

which relation is derived in chapter 5. From this expression it 1is clear

that a large ratio, for instance more than 101', is only obtainable for

small deflections u of the mechanism. Therefore application of plate-spring
mechanisms is restricted to relatively small displacements.

In the hoe = i
graph the relation between 1 and 3 needed to obtain a certain stiff-

ness ratio is shown.




the deformations of plate-springs under three-dimensional loading con-
ditions This model is subsequently used to derive the desired infor-
mation.

* The second part gives the information required to design plate-spring
parallel guidings, cross—-spring pivots and some miscellaneous mecha-
nisms. In this part both a review of earlier results and new results
are presented. The general part of the information as presented in the
paragraphs 5.2, 6.2 and 7.2 has not been a subject of research. The
information is supplied as background information usefull for the
design of plate-spring mechanisms. The expressions given in these parts

may be just rough estimates.

In chapter 2 of this thesis a mathematical model to analyse the deforma-
tions of a plate-spring under three dimensional loading conditions 1is
derived. This model is based upon the concept of the "elastic-line". A
short review of the methods used to determine the deformations under loads
in the "plane-of-motion" is given in chapter 3. As none of the analytical
methods appears to be easily used for the case of three-dimensional loading
a new method, the "jterative—analytical" method, to obtain approximate
analytical solutions 1is presented. A short description of a computer
program to solve the derived equations using numerical integration techni-

ques is given.

In chapter 4 the use of the "jterative—analytical” method for the case of a
plate-spring loaded by forces Fx and F, is discussed. From results of mea-
surements it proves that the elastic-line concept is not adequate to
describe the main charasteristics of the plate-springs. An improved model
taking into account the effects of the warping of the cross-section 1s

developed in this chapter.

Application of the results of this analysis to the case of plate-spring
parallel guidings is described extensively in chapter 5. In the same chap-
ter relevant information about parallel guidings is given. In this chapter
almost all theoretical aspects about the behaviour of plate-spring mecha-
nisms are discussed and, where needed, compared with results from measure-

ments.

In chapter 6 the main characteristics of cross—spring pivots are discussed.

The kinematic motion of the two parts of the mechanism relative to each

- 10 -

other 1s described in second-order approximation using the equivalent model

of a wheel rolling along a line.

To indicate the multitude of possible applications of plate-springs a num-
ber of them are described in the first part of chapter 7. In the second
half of this chapter the posibilities to improve the performance of paral-

lel guidings by partial reinforcement of the springs 1is discussed

A description of the experimental set-ups used to test the developed mathe-

matical models and of a number of important factors in the design of these
set-ups is given in chapter 8.

In a separate Appendix to this thesis the subject of static hysteresis in

plate-spring mechanisms is briefly discussed. Sources of this hysteresis

and an estimate of the magnitude of their effects will be indicated

Eias
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Chapter 2

Derivation of a general set of equations.

Introduction.

To obtain a set of equations that determine the deformations of plate-
springs they may be treated as long thin rods. In this case it is assu-
med that only deformations due to bending and torsion need to be consi-
dered. It is assumed that the stress distribution in a cross-section is
a superposition of the stress—distributions due to the pure bending of
the central line about two axis and due to pure torsion about the cen-
tral-line, In this case the stress at the central-line will be equal to

zero and the central-line is also referred to as "neutral-line".

In this approach the plate-spring with its rectangular cross—section 1is
represented only by its central-line having two bending and one torsion
stiffness. Therefore this approach is also referred to as the "elastic-

1line'"-concept.,

The following assumptions will be made in this analysis.

The center line is considered to be inextensible. Deformations due to
transverse shear will not be taken into account.

As a generalization of the "Bernoulli-hypothesis" it will be assumed
that linear relations exist between the bending and torsion moments and
the respective curvatures and twist of the plate-spring.

The deformations will be restricted in order to avoid stress levels

above the elastic limit of the material.

These assumptions are justified in most applications of plate-spring
mechanisms. In general they allow for a good approximation of the first
order effects. However there will be deviations between theory and
measurement due to a number of additional effects. Such effects, which

will be discussed in more detail in following chapters, are,

Non—-linearities in the relations between the moments and curvature and

twist which may occur due to transition from plane-strain to plane-

- 13 -
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stress bending or due to the constrained warping of the cross—section
of the plate-spring.

Additional stress components due to the influence of clamping and loa-
ding of the plate-spring. The assumption about the stress distribution
is valid "at a distance" from points of clamping or loading. In the

neighbourhood of such places a more detailed analysis may be required.

As a result the equations developed in the rest of this chapter offer a
good approximation of the deformations of loaded plate-springs when the
loads remain sufficiently small and when the length of the plate spring

is sufficiently large to allow for neglecting the end-effects.
Selection of coordinate systems.

To determine the deformations of a plate-spring clamped at one end and
loaded at the other end a general set of equations will be developed.
To describe the position of the plate-spring an orthogonal coordinate
system with its origin at the clamped end and the y-axis along the
center-line of the, originally straight, plate-spring will be used. The
remaining axes are directed along the principal axes of the crose—sec—
tion.

In figure 2.1 this coordinate-system and the line-coordinate s along
the center-line are indicated. At the free end the plate-spring 1s
loaded by a force and a torque which can be developed in components

along the three coordinate-axes. The force components are F, Fy, and

&> respectively, while the torque components are Mx’ My and Mz.

When the plate-spring 1s deformed the position and orientation of a
cross—-section at a distance s from the clamped end can be described by
six parameters. The position of the center of the cross-section is
determined by the displacements u, v and w in the directions of the x,
y and z-axis. For the orientation a set of three angular coordinates
can be used to describe the rotations of a local orthogonal coordinate
system. This local coordinate system has its origin at the center of
the cross—section, the y—axis along the tangent to the center—line and

x- and z-axis along the principal axes of the cross—section.

i

Figure 2.l Selection of the fixed coordinate system with the origin at the

clamped end. The y-axis coincides with the undeformed center-line and

the x- and z-axes with the principal axes of the cross-section. The

definitions of the positive directions of the loading components and

the dimensions of the plate-spring are indicated.

Different definitions of the angular coordinates have been proposed.
For plate-spring mechanisms where angular deformations are moderately
large (less than one radian) the modified angular coordinates as sug-—
gested by Euler can be used. The definitions of the angular coordina-

tes, ¢, 6 and ¢ are given in figure 2.2.

The definitions of the angular coordinates allow for the transformation

of a vector r in the original coordinate system to a vector r' in the

new coordinate system. The total transformation matrix for the orien—

tation of the orthogonal axes is a result of multiplying the three

transformation matrices for each rotation indicated in figure 2.2. This

results in:

d x: 1 0 0 cos® 0 -sinf cosd si 0
=y, = 0 cos¢ sing |-° 0 1 0 ° | =sing c02$ 0 !
' . . =
Z 0 =-sin¢ cos¢ sin® O cosB 0 2
0 1 z
=R or
s (2519

el B




2.3 Global curvatures and moments.

As stated it will be assumed that a linear relation exists between the
curvatures and twist and the respective moments. For a small part of

the plate-spring of which the orientation of the center-line and prin-

cipal axes are given by the x', y' and z' axes this can be expressed
as:

e = K M

X X X

Ko o= SR e M (2:2)

¥ y y'

= e M
Kz' Kz z4

where k., and K, are the curvatures about x' and z'-axes. Ky is the
twist about the center—line. Mx" My' and M,+ are the applied moments
about the axes x', y' and z'. The coefficients Ke» Ky and K, are the
compliance factors which are determined by the dimensions of the cross—

section and the properties of the material.

The expressions (2.2) relate the local curvatures and twist of the beam
to the applied torque decomposed into components about the local axes.

The shape of a deformed plate-spring will, however, be described with

respect to the fixed, or global, system of coordinates. Similarly the
loading forces will generally be specified with respect to the fixed

system of coordinates as shown in figure 2.1,

itdl and orientation of ;
R s Rt St e An expression relating global curvatures to global moments can be deri-

ition 1is

formed late-spring. The pos

N e i vand Sl (nt e o) S IDe ved from equation (2.2). Therefore it is usefull to write (2.2) in the
isplacements u, s

determined by the three disp -

e i f the cross—section can be determined with the angular form of a matrix equation,

orientation o

coordinates ¢ 6 and 6. The rotations of the cross-section are give
’

b K o K 0 0 M .
Y, . . s
1. A rotation ¢ about the original z-axis (fig.b) ﬁ' £ 2 . ; : : I ' s .
2. A rotation O about the new y-axis (fig.c) . Ky - Oy : .
3. A rotation ¢ about the new x-axis.(fig.d) . = : .

In this expression M' is the torque-vector with respect to the 1local

system of coordinates. Transformation of this vector to the global

system is easily achieved with the transformation expressions specified

=l us
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in equation (2.1). This yilelds,
el = I e R sl 254)

]
Transformation of the vector K to expressions containing the derivati-
ves of the angular coordinates is not as simple. The rotation axis for
¢ , © and ¢ are not orthogonal and correct expressions can be obtained

mathematically (1lit. B2, L1 ) or can be taken from figure 2.3. From

figure 2.3. follows

4a¢ d¢
(S 1 0 -sin6 ds ds
X
e = CER e B LG
= Ky, = 0 cos¢ sin¢.cos® e = R ds
Ko, 0 -sing cos.cosB dé do
2 ds ds
(2.5)

From (2.4) and (2.5) a set of equations relating the global curvatures
and torques is obtained as

do
ds

d =1
i, = R' oK R o M (2.6)
ds =
de
ds
With the known matrices R', K and R solutions for ¢ , 6 and ¢ as func-
tions of the coordinate s may be obtained by integration when the loa-

ding vector M is known as function of s.

Relation between end-loads and local moments.

For an end-loaded plate-spring an expression for the three moments at a
cross-section at s can be obtained with the help of the equilibrium
equations for the part of the plate-spring between s and the end. From

figures 2.1 and 2.2 the following expressions are obtained:

Figure

A de

Kyy = cos{(s) dSS + COSS(S)'Sinw(s)Jj—gE—Sl
~ d9

Bp = —sin¢(s).—d§i)- + COSS(S)'cosd,(s)cd—géE)—

2.3.The 1local curv
atures and th
e twist, Koy ey and k_, ,can be

e
xpressed in terms of the derivatives of the angular coordinates

These equations can be directly derived from the drawing or may be

obtained along formal mathematical lines (1it.B2)
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M(s)=M(D-FF%l+vu)-s—v@))+F=GM£)+W“W

X X z Vi

My(s) = My(l) + FZ°( -u(2) + u(s)) + Fx°( w() - w(s)) (2.7)
Mz(s) = Mz(x) + Fxo(—k - v(R) + s + v(s)) + Fy°( u(2) - uls))

Finally a set of expressions relating the displacements u, Vv and w to

the angular coordinates can be derived. This yields

u(s) Ofs (=cos¢(t) °sind(t) + sin¢(t)°sin9(t)=cos¢(t))°dt

v(s) = Ofs {(cos¢(t)°cos¢(t) + sin¢(t) °sin@(t) esing(t)) - 1 }-dt
w(s) = Ojs ( sind(t)ecosO(t) ) edt (2.8)
where t is a dummy parameter used for the integration.

As a result combination of equations 2.6, 2.7 and 2.8 yields a set of
three non-linear differential, or integro-differential, equations which

determine the deformations of a plate-spring subjected to end loads.

Conclusion.

The analysis given in this chapter leads to a set of equations that
describe the behaviour of a plate-spring under end-loads. Each of the
three equations is a second-order non-linear differential equation. The
boundary conditions needed to solve the equations are available at two
different places and the three equations are strongly coupled. The
total set of equations is shown in figure 2.4, For such a set of equa-
tions no general analytical solution has yet been obtained.

A set of equations as shown in figure 2.4 may be solved with numerical
techniques for different combinations of loading forces. Due to the
triple boundary value problem a rather complex computing program will
be required while a thorough understanding of the behaviour of the
plate-spring will be needed to devise a suitable iteration strategy.

Examples of the use of numerical techniques to solve the equations will

olb b
ds Sty ds

KX-{ cosO‘cosO‘(Mx(ﬂ.) + FZ°(£+V(1)—s—v(s)) + Fy-(—w(l)+w(s)))+
+ cosBesinge(M (L) + FZ'(—u(l)+u(s)) G Fx'(w(l)—-w(s)))-F
= sinBe(M (L) + F «(=2-v()+s+v(s)) + FY'(u(l)—u(s))) }

de
cospea + sin¢-cose-:—§ =

= K '{ (-cos¢esindgtsingesinfe . .
y+(cos¢,, sing°sinBecos¢) (Mx(l)ﬂ‘z (24+v(2)=5=v(8) )+F = (~w( )+wu(s)))+
cos¢t+singesinBesing) «(M () + Fz-(—u(1)+u(5)) + F o(w(2)-w(s)))+
° ° X
+ sin¢ecosb (Mz(l) + Fx-(—l—v(1)+s+v(s)) + Fy-(u(k)—u(s))) }

de
aeindert cosw'cose—gﬁ =
s

K of (singesi Einos .
Z+({— j ni) singtcosdsindcose) «(M (W+F +(v(R)=s-v(8)I+F_«(~w( DHu(s)))+
singecosgicosdrsindreing) «(M () + F_<(-u(D+u(s)+F +(w(L)-w(s)))+
+ . . X
(cospecosB) (M () + F_+(=2-v(D+stv(s)) + F(u(0)-u(s))) |}

s
u(s) = Of (-cos¢esing + singesinBecos¢) *dt

S
v(s) = OI (cosdecos¢ + singesin@esing - 1) odt

w(s) = Ofs (singecosB) edt

Fi
gure 2.4 Total set of equations relating the angular coordinates and

displacements to the end loads applied to the plate-spring
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be given in chapters 3 and 4.

Another way to use the general equations is to attempt to simplify them

in a way suitable for the loading case under investigation. The simpli-

fied form that has been studied most intensively is the one where loads

are only applied in a plane through the center—line and one of the

principal axis. In such a case only pure bending around the z-axis

occurs. The relevant equations for this case are:

0 _ g, M, + Fyo(=2 V() 48 49(8) + EyeC a(2) ~u(s))

S

e E i he(oaae Sani v)is [ (eogg(0); — D rdg i i(2:9)
These equations can be differentiated with respect to s yielding
a*o(s)

sl AN ° = ° 10 .

2 Kz { Fx cosd Fy sind }
ds
with diC K M (2.10)
ds Zoez

These two forms of expressions for the deformation of a plate-spring

loaded in its "plane of motion" have been used extensively. In chapter

3 a glossary of analyzing methods and a new suggestion to obtain appro-

ximate solutions will be presented.

In chapter 4 solutions of simplified forms of the general equations

will be obtained. It will be shown that loading forces perpendicular to

the "plane of motion" have considerable influence on the properties of

plate-spring mechanisms.

Finally it must be emphasized that the obtained equations are just

approximations. Their derivation has been based upon the elastic line

a number of assumptions which restrict their applicability. In
of additional effects will be

concept,
the following chapters some examples

discussed. It will be attempted to obtain additional expressions to

incorporate such effects in the calculations.

fGhaptexseo)

Deformations in the plane of loading.

Introduction.

When a plate-spring, clamped at one end, is loaded at its free end by
forces in the x-y-plane its deformation can be described with the fol-
lowing equations

d¢(s)
=k Kz-( —FX-(R + v(R) - s - v(s)) + Fy.(u(g) )T MG
z

uGe)im ojS sininGe)ide v(s) = Ofs (1 - cos ¢(t))edt @5

which were derived in chapter 2. In order to determine the behaviour of

plate-spring mechanisms solutions for this equation have to be

obtained. Many different methods to obtain solutions have been develo-
ped. In many cases equation (3.1) is differentiated with respect to the

arc length s to obtain the following equations:

2
d ¢(s)
dsz = Kz- ( —Fx- cos ¢(s) + Fy. sin ¢(s) )
do(s) b
{ ds }S=1 T Kz .Mz (3.2)

Due to the absence of the displacements u and v these equations allow

for somewhat simpler solutions.

A review of different methods for solution will be given in the follo-
wing section. As most of the analytical methods do not enable simple
application to the general case of three-dimensional loading another
approach will be developed in section 3.3.

All methods described are based upon the assumption that the compliance
factor, K,, 1s independent of the curvature of the plate-spring. The
magnitude of K, is determined by the Young's modulus, E, of the mate-
rial and the dimensions of the cross-section, b and h. Two relations
for K, are in use.

When the width, b, is much larger than the thick-

ness, h, the plate-spring is treated as a plate. For smaller values of

b the plate-spring is considered to be a narrow beam. This results in:
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e ~_Lé~‘§ for b = h
& Eebeh 5
and K = e =tve) for b > h
z 3
Eebeh

where v is the Poisson's ratio of the material. Dijksman (Dl) and
Schuller (S4) have indicated that the influence of contraction effects
does not only depend upon the ratio b/h but also upon the radius of
curvature. A range of transition between plane-stress and plane-strain
bending has been described by these authors. This transition may have
considerable effects upon the linearity of force-displacement characte-
ristics of plate-spring mechanisms. Therefore the equations described
by Dijksman have been used in a numerical method to solve equations
(3.1) or (3.2). This method will be described in section 3.4.

In section 3.5 the results of some of the methods of solutions wil be
compared with each other and with results from measurements. From the

comparison an indication of the range of validity of each method can be

obtained.
Review of methods to solve equation (3.1).

-Exact analytical solution.

Exact solutions of equations (3.1) or (3.2) may be obtained using the
concept of elliptic dintegrals. Such solutions have been obtained by
Frisch-Fay, Haringx and many others.

Although it is attractive to obtain an exact solution it has occurred
to different authors that the use of elliptic functions is extremely
tedious. As a result different approximating analytical solutions were
sought.

A good description of the use of elliptic functions to describe the

behaviour of plate-springs is given by Frisch-Fay (Fl).

-Linear beam theory.

The first of a number of approximating methods for solution is the
linear beam theory which 1is used widely to determine strength and
stiffness of structures. When the deformations are very small the fol-

lowing simplifications and differential equations are used:

cos ¢(s) = 1 sin ¢(s) = 0
d2 s
_ﬁﬁiil = K ith Fiﬁiil} 5
e Z iy ds s=g = KoM, (3.3)

Although this method is not suitable to study all aspects of the beh
eha-

viour of mechanisms the simple expressions which may be obtained can b
e

used to study the main characteristics of different plate-spring h
mecha-

nisms.

—Quasi-linear beam theory.

the linear Deas _heor e 1flue (= o] he oadin forc
YRt i 5
g e Fy is

neglected. When the approximation sind(s) = ¢(s) is used a differential
g

equation results which can be solved analytically and which allows to

determine the behaviour of loaded plate-spring mechanisms. The estima

ced errors in this method are of the order %'QD(S) and for technical

applications angles upto about 0,3 radians might be allowable

The resulting expressions for the quasi-linear beam theory are:

cgs d(s) =1 sin ¢(s) = ¢(s)
d ¢(s)
= K o —F . d
dsz 2 ( i Fy #s) ) pithel .gégl-)s=£ = Mz'Kz
(3.4)

For these equations solutions of the form:
pCsy o ik ee
with k = ¥ F oK

Yz,

+C

can be found.

—Power-series development.

The previous two approximative te(:lmlques were based upon the assur P=
tion t o Wi =
that ¢‘(S) << 1 and the first erms f the ower S i
P ries

for cos ¢(S) and sin ()(S) were used. Another way to use power series,

as d j
eveloped by Dijksman (D1) and Zenov (Z1), is based upon the assump-

tion that the loadlng forces remain relatively small. This leads to the

requirements:

2
F +2°eK SR
- s oL e E Sl Mo e ey

In this cas i
e the solution for ¢(s) may be expressed as an expansion in

— s
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power series with terms of different degree of loading forces. On this
basis results for ¢(s) including third order terms in the loading for—-
ces have been obtained (D1, Zl). But in principal there are no problems

in obtaining higher order solutions.

With this method expressions describing the behaviour of plate-spring

mechanisms for values of ¢(s)< 0,6 rad. under the mentioned restric-

tions for the loading forces can be obtained. For practical purposes
this maximum angle is more than sufficient. However the restrictions to

low loading conditions might be a disadvantage.

-"Iterative'-analytical solution.

When u*(s) and v*(s) are estimates for the functions u(s) and v(s) for
a particular case of loading of a plate-spring, an approximate value
of ¢(s) can be found from

* * g * —* M
QOS) | (B e ~L- v (D) + s A (8) )+ FeCu () —u(s) ) + M, )

* *
This equation can be solved analytically provided that u (s) and v (8)
can be directly integrated. This solution yields an estimated function

¢*(s) which can be used to obtain new estimates for u(s) and v(s) using

the relations

ol - 1) - dt
u(s) = - Ojs sin ¢(t) *dt  and v(s) = [“(cos ¢(t) - 1)
Whith these new estimates the process of solving equation 3.1 can be
restarted. When the differences between subsequent expressions for ¢(s)

are small enough a solution for equation 3.1 has been obtained.

The success of this iterative method depends upon the convergence of
the process. This again depends strongly upon the suitability of the
initial estimates, u*(s) and v*(s). When these functions are chosen
with care it may be possible to obtain a solution for ¢(s) in only one
iteration step.

In the section 3.3 it will be shown that it is possible to create good
estimates and that this process forms a powerfull tool in studying the

behaviour of plate-springs.

—Numerical methods.

With different methods for numerical integration solutions of equa-—
tions (3.1) or (3.2) for a particular case can be obtained. Such a
solution is comparable with the results from measurements of deforma-
tions of real plate-springs. The advantage of the numerical method is
that results are obtained easily and with a good accuracy. The disad-
vantage 1s that the "numerical experiment" can only describe the reac-—
tions of the model assumed to derive the differential equations. Like
the experimental approach the numerical technique is useful to estimate
the validity of expressions obtained with analytical methods. In addi-
tion results of numerical solutions may be used to derive "empirical
expressions describing the behaviour of plate-spring mechanisms.

As the numerical integration method 1is capable of treating any sort of
differential equation it also allows to estimate the influence of the
transition from plane-stress to plane-strain bending. With the expres-
sions given by Dijksman (D1) describing this transition the behaviour

of real plate-spring may be estimated. This will be discussed further

in section 3.4.

The main difficulty in solving equation (3.1) numerically results from
the boundary conditions which are specified in two different points of
the plate-spring. At the clamped end the angle ¢(s) is equal to zero

while values for u(%) and v(4Q)

are needed to start an integration

procedure. This problem can be solved by an iterative process. Esti-

mates of u(f) and v({%) are used and improved after every cycle. In this
process it is also important to start with well estimated values to

improve convergence of the iterative process.,

—Finite Element Method.

Another method to perform numerical experiments on models of the phy-
sical plate-springs is the finite element method. In this method the
plate-spring is considered as a system containing a number of smaller

parts. For each

small part relatively simple relations

between the
relative motion of the ends and the forces applied at these ends can be
obtained. Solutions for the complete plate-spring are obtained when the

resulting set of linear algebraic equations is solved. For larger
deflections different iterations are required to arrive at sufficiently

accurate solutions.
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ter 2
In this method the set of differential equations derived in chapte

d
i{s not used. As this method will give results that are similar an

hod it
equivalent to those obtainable with the numerical integration met
E h.
has not been used in this researc .
E les of the application of the finite element method can be foun
xamp
in literature (W1) AR W2) I Che it 1 n

bes calculations of the behaviour of th

st report van der Werff (W1)

e doubly symmetric cross—
descri
t under different loading conditions.In the second report

spring pilvo :
ent program is described that may be used to calcu

(W2) a finite elem .
late the main properties of different sorts of plate-spring mechanisms
in the plane of motion.

i her
An advantage of the finite element method 1is that without furt

hanisms
i erformed on complete mec
complications the calculations can be P

containing more than one or two plate-springs and rigid links.

3.3

Iterative analytical solution.

As stated in the previous section equation (3.1) could be solved when
sulitable estimates for u(s) and v(s) are available. Such estimates can
be found using the fact that a plate-spring, when considered in the
plane of motion, has only two degrees of freedom. This indicates that
the shape for a plate-spring is, to a high degree of accuracy, deter-
mined by two parameters. Sultable parameters are the displacement and
angular deflection at the end of the plate-spring, u() and ¢(R) .
This assumption about the plate-spring having only two degrees of free-
dom is correct when the deflections are not too large and no buckling
occurs. As plate-springs are used in the design of mechanisms because
they have only two degrees of freedom this assumption will not be a

restriction to the field of application of this method.

To 1llustrate the iterative analytical solution the case of a plate-
spring loaded only by the force F, will be discussed here. The full
solution of equation (3.1) will be given in Annex 3.I to this chapter.

For this particular case equation (3.1) reduces to

= 2R SR SO R e v ()

with v(s) = OIS ( cos o(t) - 1) o dt (3.5)

To obtain estimates for u(s) and v(s) it is assumed that ¢(s) is des—

cribed by
¢(s) = a_ + a,*s + a e ,53

oREe g 3

and that good estimates for u(s) and v(s) are obtained using the linea-

rized expressions
s 1 2 :
u(a) = s e ot adt and v(B) =t of o(t)“edt

The values of the coefficients ay to aj are determined from the boun—

dary conditions
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0
u( L)

$(0) =0 u(0)
o(2) = 6(R) u(2)

As a result the following estimate for ¢(s) 1s obtalned.

u(R) | (8,2
o) = ( —200(0) ~6-2EL ) e(B) + (Bea() +6g ()

u(l) _
Putting ¢(R) = ¢R 5 T o Yy

and E =~% this expression becomes

e (3.6)
§(s) = ( =200, =67u )k + ( 300y + 6oug)E

X te
E pression (3 6) which is a general expression for the first estima

& ’
Spfiﬂg shape as a function o d)(l) and U/Q', may be Simpli—

of the plate-
fied for this particular case since M,=0. This yilelds

de(s) _
MZ.KZ o { ds }s=1

0 and thus

2 (3.7)
8(s) = 200,°E = 6,°F

Using this expression to obtain an estimate for v(s) yields

*
i R e R
Ll g S et hptE)
*
s w2
b s

When these results are substituted in the differential equation (3.5)

this ylelds

o(s) b3 T T
3 e o U R R R O 10

Through direct integration this can be solved, leading to

6
it 2 el A el g L6
#(s) :_KZ.FX.XZ.{ Eseoit (peCionetitvip e 7o ="' %0
(3.8)

Expression (3.8) gives a new estima

plate-spring. To compare this shape with the

tion (3.7) the loading force Fy should be expressed in the angular

deflection of the end of the plate-spring.

This leads to

Sigpi—

te for the shape of the deformed

original estimate in equa-

1
X {1 2 11 9 (3.9)

and, after some rearringing,

2
0(s) = ( 2°0,°F = ¢,°E" ) o (3.10)
2
{1+ % 0(6—11-§+10-§3—6-§4+§5 ) )
o 7
(= 30" ) 60 - 30°F

The first factor in (3.10) is equivalent to expression (3.7). The dif-
ference between the two expressions can be easily estimated. When ¢(s)
is smaller than 0,5 rad., the difference along the plate-spring is
nowhere more than 0,005 rad. This indicates that, for most practical
purposes, the result obtained after one iterative step 1s accurate
enough. To illustrate this the relation between Fy and ¢£ as given in
expression (3.9) is compared with similar results from other techniques

in figure 3.1,

The fact that the technique described above 1is sufficiently convergent

in one step is due to the selection of @1 and u, as parameters to esti-

2
mate the shape of the plate-spring. It would be equally possible to use
the loading force F, as parameter to describe the estimated shape.
Using results from the linear beam theory the first estimate would be

2 o ok
o(s) = —KZ'FX-X o( E - Ewg )

and along similar lines as described before the following expression

relating ¢1 and F, is obtained

2

1 11 952
¢1 = —Kz-Fx-k o( e 240.( FX'KZ.R e @i

A result that was also obtained by Dijksman (D1), and can be used only

for small values of Fy as can be concluded from figure 3.1.
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results from the iterative analytical method with

It is clear that this first order estimate may only

relatively small values of the deflection u(R). A

this effect will be obtained in

3.4

Numerical integration.

The expressions for u(s) and v(s) may be differentiated and equations

3.1 may thus be written as

%: Ryel <P C 2+ v = 5 = w(s)) + Eo( u(h) - u(e)) + M, }
AU (3.12)
ds
vl o) cos ¢(s) - 1
ds

Equations (3.12) form a set of first—order differential equations. With
standard methods for numerical integration solutions for such a set of
equations can be obtained with sufficient accuracy. Examples of such
standard methods are Eulers' method, Heun's method and, in different
forms, Runge-Kutta methods. In the following the fourth-order Runge-

Kutta integration method will be used (see also Annex 3.1I).

When solving equations (3.12) the simultaneous numerical integration
will be started from s=0. As can be seen from the first of equations

(3.12) 41t will be necessary to know the value of u(f) and v(&) to
d¢(s)
dis

tions have been solved.

determine However u(f) and v(4%) are only known when the equa-
As a result it will be necessary to perform an iterative process of
estimating u() and v(R), solving equations 3.12, improving the esti-
mates for u(f) and v(R) etc., until they have been estimated with suf-
ficient accuracy. For this iterative process different strategies may
be developed in order to assure convergence to the desired solution
without excessive computing efforts. This is not trivial since for
given end displacements expression (3.12) can have an indefinite number
of solutions.

The most straight-forward strategy appears to be the one described in
figure 3.3. After choosing a first estimate for u(R) and v(R) the equa-
tions are integrated. The values of u(f) and v(A) determined by the
integration are directly used as new estimates and this continues
untill the differences in the successive estimates are less than the
allowed inaccuracy.

This simple strategy is, however, not '"globally convergent'". For the
loading cases, combined with initial estimates, where no convergence
occurs more refined strategies to determine new estimates can be deve-

loped.
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(a) (b)

To start the {teratfon process an estimate for the position of the
loaded end {is made, point A. Upon integration the shape of a loaded
plate-spring is determined. The newly calculated end position is
point B. The determined shape {s the correct solution for the
loading case shown in ¢ and d.

(c)

(d)

The magnitude of the extra bending moment, M which i1s added to

(rey s

the desired loading M,, can be easily determined from the

equilibrum equations for the bar AB in figure c.

Figure 3.3 Iterative "shooting" process used to determine the deformed shape

of a loaded plate-spring through numerical integration.

S

i

In the following step the new estimate for the position of the
loaded end might be point B. Upon integration a new position for
the loaded end of the plate-spring is obtained. In order to find
the desired solution it is hoped that after every step the

magnitude of Mgy, will decrease.

The described process proves to be suitable for many practical
loading situations. As shown in figures e and f there may occur

difficulties.

When point A is selected as estimate the point B will result.
Using point B will again generate point A and this will continue
forever. In such cases the process as described here {1s not
convergent. Other strategies to obtain new estimates can be chosen.
A simple variation would be to select a point '"somewhere" on the
line connecting A and B as a new estimate. Variations of the
distance from point A supplies a tool that may be used to make the

process convergent.

Figure 3.3. Continued
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For most practical cases the strategies as described in figure 3.3 are
sufficient. With these methods it turns out that even "exotic'-cases as
the post-buckling of the Euler-strut and large deformations of C-shaped
springs can be determined. For this last class of problems Watsong and
Wang (W3) have used the "homotopy'-method to develop a globally-conver-—

gent numerical process to solve equations (3.12).

The computer program used to solve equations (3.12) as described in

Annex 3.II, consists of the following sections

-Main program, controlling input and output and the '"shooting'-stra-
tegy to determine new estimates. To perform integration this program

calls to,

—Subroutine RKSTEP, which performs one step of the integration process
on an arbitrary number of first-order differential equations. This

routine calls to,

—Subroutine FUNK, which returns the values of the different deriva-
tives at the specified point of the plate-spring. This subroutine con-

tains the three differential equations (3.12).

The numerical method to determine solutions for the differential equa-
tions has different applications in the analysis of plate-spring mecha-
nisms. Firstly it is possible to determine highly accurate solutions
even for larger deflections. Such solutions can be used to test the
validity of simple expressions obtained with approximative methods.
Still the solutions can only describe the behaviour of the model used
to describe the plate-springs and differences between calculated and
measured values can be expected.

This comparison of calculation and measurements, when both are suffi-
ciently reliable, may enable to improve the model describing the plate-

spring.
When such improvements of the model are incorporated in the differen-—
tial equations the numerical method enables solution of complex sets of

equations which cannot be treated with exact or approximative tools.

An interesting example of this second application is formed by the

analysis of the influence of the transition between plane-strain and
plane-stress bending. To describe the relation between the bending
compliance factor K,, the dimensions of the plate-springs and the

curvature K, Di jksman (lit. D1) has presented the following equations

K =22 =v) e « { 1.2 ; 2 }
z E'b°h3 2V °f1(n) + 1 = 2y °f2(n)
% 2
1
where n={ 3'(1—v2)°b4' 2
2
h
£ =

L Lesinh(2°n)—%°sin(2°n)=2°nesinh( n) *sin( n)+cosh(n) *sin(n)=sinh(n) ccos(n)
ne( sinh(n) + sin(mn) )2

x cosh(n) - cos(n)
72(M =TT sinh(m) + sin(m )

(E is Youngs modulus and v the Poisson ratio of the material).
As can be seen the bending stiffness is a function of the curvature k,.
This is graphically represented, for different values of Poisson's

ratio, in figure 3.4 . (See also Ashwell (Al) )

When these equations are incorporated in the FUNCTION-subroutine part
of the computerprogram a new value of K, will be calculated at every
step in the integration process. A slight complication is that X, is
known as a function of the curvature. When only the applied torque is
known K, can be determined in a few iterative-steps. The nature of the

curves as shown in figure 3.4 assures that a good estimate can be

‘obtained, even when the curvature, k,, 1s replaced by,

0= vz
KZ(S) = 12°Mz(s)' e
Eebeh
as a first estimate in the iterative process.
The new FUNCTION-subroutine is shown in Annex 3.II1. This new model of
the plate-spring can be used to determine whether observed differences
between calculated and measured values are due to this effect of varia-

tion of the bending stiffness. This will be discussed further in the

following section.
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As discussed in section 3.3 for larger values of the loading force Fy
the relations derived by the linear—-beam theory are no longer valid.
With the power-series method (Dijksman (D1)/Zenov (Z1)) and the itera-

tive analytical method the following relations can be derived:

1
Linear beam , u, = 3 fX
i = l"f o 1 = A'f . ) (Zenow,Z1)

Power series , uJl = e 35 %4 e :

: 1 ey
Iterative analysis 3 324.u 2) :-gef o( 1 - 3S.fx )

420 R
where f = F_°K '12 and u, = u( v

X =7 2 2L

The result from the iterative—analysis contalns the result from equa-
tion (3.11) and, in addition, an estimate of the third-order term in

the approximation for sin ¢(s) .

To make the differences between the different methods visible the mag-

the

nitude of the force F  as predicted or measured is divided by F,,

force as calculated with the linear beam theory. The results are given

in figure 3.6.

In figure 3.6 two results from measurements are shown. For the relati-
vely '"narrow" plate-spring the results agree well with these obtained
through numerical calculation. The measured results for the "wide"
plate-spring differ consiberally from the calculated results.

These differences result from the fact that the wide plate-spring will
experience a transition from plane-stress to plane-strain at the places
that are most heavily loaded. With the numerical method the influence
of this effect can be calculated and the results are shown in figure
3.7. It is seen that a good agreement for both the narrow and the wide
plate-spring is obtained with Polsson's ratio of 0,3.

(Note: The actual value of the Poisson ratio for the material of the
plate-spring has not been measured and the value of 0,3 is an estimate.
Due to the anisotropy in the thin sheet of rolled material the actual
value might be slightly different. The inaccuracy resulting from this
uncertainty is considered to be negligible.)

E
s
F
X0
1,15
10 x-0,15
powel series
He
1,10
iterative-
analysis
1,05 \
numerical a0
il 4_¢5555==$;
0 0,1 0,2 9,3
u(f)

Comparison of rtesults from different methods to determine the
relation between the force Fy and the deflection u() with results
from measurements. The result from the numerical analysis was
obtained without the consideration of the variation of the bending
stiffness. The measured results were obtained through measurements
at plate-spring parallel guidings with spring dimensfons

80*2,5%0,4 mm. and 80*20%0,25 mm.
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Figure 3.7

F
X0
X
1,15
10 0,15 mm.
X
power teries
1,10 // =
X L :
iterative-
analysis
numerica,
b%e 2,4 x ¢,3 mm.
1,05
1 /
0 0,1 0,2

S o

To determine the influence of the transition from plane-stress to
plane-strain the effect of the variation of the bending stiffness
can be 1incorporated 1in the computer program for the numerical
solution of the differenti{al equation. With this improved model the
obtained results show a good agreement with the measured results.

(For the calculations a Poisson's constaut of 0,3 was used.)

When the plate-spring is loaded by a force Fy the stiffness in the
direction of the x-axls will differ from the result obtained with the
linear-beam theory. In this case the influence of Fy will also be
noticed for small deflections. To analyse this influence it is suffi-
cient to consider only the linear terms of the force B2 and deflection

u(L). The relations between u(l), F, and F_, from the different methods

x Y
are
1
Linear-beam theory up s Aomage fx
7 2. 172
Power-series Uy =73 fx (¢l 5 fy + 105 fy ) flitt.Z1)
1 Qs 9é'fy)
Iterative analysis (I) u,= —of
sl
128ey: 240 "y
1 i
{11) u = »f
Jr 3 = 2.
(1+5fy)
where u = ath , £ =F K -Rz and f = F_°K '12 .
i 5 X o y v

The first result of the iterative—analysis is derived from equations
3.1.2 in Annex 3.I. The second result is obtained when the iterative-—
analysis is performed with a first estimate of ¢(s) where, as in sec—

tion 3.3, the condition M,=0 is used to eliminate ¢l or ul .This leads

to the first estimate
2
#(s) = =3eu o( = 5oF )

These results are graphically represented in figure 3.8 where the

normalized stiffness, the ratio between F, and u as a function of F

20 b i
is plotted. It can be clearly seen that the stiffness as predicted by

the power-series method is only valid for small values of F as was

y’

indicated by Dijksman (Dl) whose power-series derivation required that
Gl

i fy

X?

e e



Conclusion: 3.1 Annex. Calculation of general expressions for end-loaded plate-spring.

The examples of the application of the iterative analytical method to

solve the differential equations (3.1) indicate that this method yields The analysis of the deformation of the end-loaded plate-spring is based
relatively simple expressions for the main characteristics of loaded upon the following expressions
plate-springs. The obtained results are sufficiently accurate for most

- e d¢(s)
practical applications and they are equivalent to the results obtalned = Kz.{ _Fx'( $h (D A e e Fy°( e MZ }
with other analytical methods. In addition the iterative analysils may

= i der the influence of = S . s

be used to study the behaviour of plate-springs unde e u(s) oj S e Gl S5 el Of (eos it e
spatial loading. In the following chapters it will be shown that this
method is efficient when the deformations of plate-spring mechanisms For practical applications in plate-spring mechanisms it may be assumed
under various loading conditions must be determined. that ¢(s) < 0.5. To simplify the given expressions the following

definitions are introduced

s vl v(s u( L) )
g=2 , v, =¥ | yp-¥a |, 2B g 2SS
F and f_ = F_ <K °£2 £ =UF K '12 = M
b4 X =z 4 y Y oz d (2).Kz.1
—_—
F
7
Together with ¢(s) < 0.5 the basic equations are reduced to
c
X
- doCE) _
{ T —fx-( ILsp G = A V) ) A fy-( uohs u(g) ) + m,
2 S| s
it th = E = & 1 (3.1.1)
| = o) = ff-s@ede w(®) =[5 (5 0(0®) eda
iterative
1,5 measurements analysik 11
Using these definitions the first estimate for ¢(E) and u(E) can be
pover spries derived from (3.6), yielding:
2 i e 2 2
: B(E) = 6,°( =2 + 3°E) - u o( 6°F - 6oL
2 3
W(E) = 4o S = E) +upe( 398 - 208)
eT e o =
To obtain a first order solution which incorporates the influence of
. : the loading force Fy equation (3.I.1) may be solved using these
= estimates and assuming v(E) to be equal to zero.
=25 -1,25 0 1,25 e This leads to
F K <f
Yisz,
. d6(8) 2 3 4
e (I T ou, e =g . 2 3
Figure 3.8 Application of a force Fy, to the plate-spring {influences the dg X ( Rt mZ+ fy ] G 3Bt 2:81) = fy'¢£'( E=SES)
stiffness c, .The magnitude of this influence can be estimated with
different analytical methods. The obtalned results are compared and, upon integration with ¢(0) = 0 and u(0) = 0,

with results from measurements performed by Grentzius (Gl).
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1
§(E) = ~£o( E = FoE) +m o+ £oeuo( £ =€ +38 ) +
] 3 1 4
- fy-¢la(-§.g - zwg )

=2 18 1 2 2
Eia( 5l = e BR) = nem 28 = y upe( 3 2 4 & o E oL =

13

u(g)

1)
S

L1 b
fy'¢£'(12 £

With these expressions the following relations between the loading

forces and the deflections of the loaded end can be obtained,

L s S O e
¢(1) =) f + mZ + 5 fy 1 12 fy ¢£ 9 2
S S S %
Ty EmE S e e e S

These relations are similar to those obtained by the linear-beam theory
when Fy equals zero. They form a basic set of equation for plate-

springs loaded by a tensile or compression force.

In addition to .these expressions a relation for v(E) or v2 can be

obtained using the third of equations (3.I1.1). For vy this yields,

e oo g s ¥ 39 19
e i, f3m, S m - £t gy = ) ok
A S e A 2SR el =l
tmotE ol 3ptty = Tty F fy o S50 t S04 ¢£ 5040°Ug %) |

(3.1.3)

These results are first order expressions which are good approximations
as long as v(E) is negligibly small. This assumption is not satisfied
for larger deflections or for compressive loads above the critical
buckling force. A more accurate expression for moderately large
deflections can be obtained when an estimated function for both u(¥)
and v(E) 1s substituted in the differential equation. Suggestions for

such estimates are
u(®) = 00 =€ + ) + upe( 39E% - 2080)

2 £ 23 324 955 g 155 w5l BiusS
EERIE o E e e e = noth ol AeE - e SR 4

2
—ule( 608 - 9egt + 1850

Solving the equations (3.I.1) with these estimates leads to expressions
which allow to estimate non-linear effects in guiding mechanisms in a
way similar to the one used in section 3.3. The shape of the plate-
spring resulting from this solution is determined by

T2 2 L 1 4
#e) = SrH z;—gvr, i€ % O IR A N + 5o +

T 0% 5
1 "ge(- ol Em S+ 2% +
5
: o(——-a+—-£ —?— —-a P
4 4
m-g+fy-u-<g—z+—-a>—f-¢-<3a )
and
el LB

LSOl B Grvr il il Hotm, 4 o L1 Tgifsrdnans L0 et

With the approximation sin ¢(s) = ¢(s) the deflection ug of the end is

determined as,

gl AR B T I AL
v = E NG rgstY N T ) T e

(3.T:5)

With these expressions it is possible to estimate a part of the non-
linearity in plate-spring mechanisms. The non-linearities are, in
general, resulting from the non-linear geometry and from non-lkinear
behaviour of the material. In expressions (3.I.4 and 5) the influence
of the deflection v(s) is determined. However it has been assumed that
¢(s) is small in order to calculate u(s) with the linearized expression
for sin ¢(s). This means that non-linear effects of the order
é°®(s)3 have been neglected. It is of course possible to derive better
approximations for u(s). The resulting expressions are becoming rather
complex.

An  illustration of the result obtained when a higher order
approximation is used has been given in para.3.5. Here the relation
between the deflection u and the driving force Fy, for a plate-spring

has been given.
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Annex 3.II.
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Computer

programs used for the numerical integration of the

differential equations

The computer program consists of the following three sections :

Main program :VEERO1
Integration subroutine :RKSTEP
Function subroutine with the : FUNK

differential equations

Two versions of the last subroutine are presented. The first one 1s not

accounting for the effect of the anti-clastic curvature of the plate-

spring.

In the second version a few statements have been added to take

this effect into account.

sNsNeNsNaNsNs NeNo RoNeNoNeNoNeNoNel

[sNeNeNsNeNoNoNe]

102

Main program

Program "VEEROL1"

This is the main program unit used for the numerical
integration of differential equations describing the
behaviour of plate-springs loaded at the free end.
Here the input of the data about the loading case and
spring dimensions may be entered. The program will then
perform numerical integration of the equations.

This process is started with initial estimates
provided interactively and after each cycle the new
values for the end deflections are returned. The vuser

may specify whether a naw

integration cycle shnuld be started and this will
continue untill the user indicates that the end
deflections hawve been determined with sufficient
accuracy.

PROGRAM VEERO1

DIMENSION STO(100, 6), A(L), AN(E)

COMMON /FUNV /XM, YM, ZM, FD, FN, FP, RKX, RKY
COMMDN /FUNYZ2 /UL, VL, WL

COMMON /EDEV/ LTR, LTW, LLP, LTX
LOGICAL*1 EDJA, LEXT

DATA LTR/S/, LTW/ 7/, LLF/&/, LTX/4/

DATA STO/4600%0 3

Input secfion for the relative compliances Kx
and Ky, the magnitude of the normalized

loading components, the number of integration
intervals along the plate-spring and an estimate
for the deflection u(l) of the loaded end.

WRITE(LTW, %) ‘GEEF RKX EN RKY’
READ(LTR, 100) RKX, RKY

WRITE(LLF, 102) RKX:RKY

FORMAT( * COMPLIANTIES ZIJN : ‘, 2F12. 5)

40

103

100
101

S50

a1

g ilajie Na s iig

200

aQanon

o000 o0

300

WRITE(LTW, <) ‘GEEF MX,MY,MZ, D, M, P *
READ(LTR, 100) Xt1, Y1, ZM, FD, FN, FP
WRITE(LLF, 103)

FORMAT( * BELASTINGEN ZIJUN : (MX, MY, MZ, D, N,P) ‘)
WRITEC(LLP, 100) XM, YM, ZM, FD, FN, FP
WRITE(LTW, ) ‘HOEVEEL STAPPEN? (INTEGER) ‘
READ(L.TR, 101) NSTEF

FORMAT(6F12 5)

FORMAT(2IR)

WRITE(LTW, ) ‘GEEF SCHATTER VOOR UL: ¢
READ(L.TR, 100) UL

vL=0

WL=0.

H=1. /FLOAT (NSTEP)

DO 41 J=1,64

A(J)Y=0

CONT I NUE

§=0.

DO 200 K=1, NSTEP

For each integralion interval a standard
integration routine, "RKSTEP", 1is called
that will perform the integraftion

of the differenftial equations.

CALL RUSTEP (A, S H, &) AN

DO S5 J2=1,4

STO(K, S2)=AN(J2)
A(J2)=AN(J2)

CONTINUE

WRITE(LLP, 100Q) (ANCI), I=1,6)
S=5+H
CONTINUE
UL=AN(4)
VL=AN(S)
WL=AN(E)

The resulting values of the end deflections are presented at
the user-terminal and he is asked whether a new integration cycle
is desired

WRITE(LTW, 110) UL, VL, WL

FORMAT ( © NIEUWE WAARDEN ZIJW: ‘,3F12.5)

WRITE(LTW, #) ‘NMIEUWNE ITERATIE? -

IF (EDJAC()) GOTO S50

WRITE(LLP, 111)

FORMAT ( ™~ PSI THETA PHI
u(s) VI(s) W(sy )

DO 300 K=1, NSTEP

When the user is satisfied the results of the numerical
integration process are printed and the user may start to
specify a new loading case. ¢

WRITE(LLP, 100) (1000. #STD(K, J), J=1,6)
CONTINUVE

WRITE(LTW, #) ‘NIEUWE WAARDEN 7°

IF (EDJA()) GOTO 40

CALL EXIT

END
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Integration subroutine

SUBROUTINE RKSTEP (A, S, H, NVER, AN)
DIMENSION A(NVER), 41(20), DA(20), AN(NVER)
CALL FUNK (A, S, DA)

DO 10 I=1.NVER

AL (I)=A(I)+HRDACI) /2.
ANCI)=A(I)+H#DA(T) /&6
CONTINVE

CALL FUNK(AL,S+H/2..DA)
DO 11 I=1.NVER
AL(I)=ACI)+HRDA(T) /2
ANCI)=ANCI)+H#DA(I) /3
CONTINUE

CALL FUNK (AL, S+H/2., DA)
DO 12 I=1,NVER
AL(I)=ACI)+H®DACT)
ANCI)=AN(I)+H*DACL) /3
CONT INUE

CALL FUNK (A1, §+H, DA)

DO 13 I=1.,NVER
ANCI)=AN(CI)+H%#DA(I)/&
CONTINUVE

RETURN

END

Function subroutine (Version 1)

SUBROUTINE FUNK(A, S, DA)

DIMENSION A(&), DACS)

COMMON /FURV/XM, YM, ZM, FD. FN, FP, RUX, RKY

COMMON /FUNV2/UL, VL, WL

COSPS=COS(A(1))

SINPS=SIN(A(CL))

COSTH=COS(A(2))

SINTH=SIN(A(2))

COSFH=COS(A(3))

SINPH=SIN(A(3))

U=A(4)

V=A(3)}

W=A(&)

XMS=XM+FP# (1. +VL-S-V)+FN* (—WL+W)

YHS=YM+FP# (=UL+U)+FD# (WL~W)

ZMS=ZM+FD* (—1. -VL+S+V)+FN#* (UL-U)

RX=RKX# (COSTHH#COSPH#XMS+COSTH#SINPH#YMS
—SINTH*ZMS)

RY=RKY# ((~COSPS#SINPH+SINFS#SINTH#COSPH) #XMS
+(COSPS#COSPH+SINPS#SINTH#SINPH ) #YMS

+SINPS#COSTH#ZMS)
RZ=(S1NPS#SINPH+COSPS*SINTH#COSPH) #XMS

+(-SINPS#COSPH+COSPS#SINTH#SINPH) #YMS

+COSPS#COSTH*ZMS

DA(3)=(SINPS#RY+COSPS#RZ)/COSTH
DA(2)=(RY-DA(3)#SINPS*COSTH) /COSPS
DA(1)=RX+SINTH#DA(3)
DA(4)=-COSPS#*SINPH+SINPS#*SINTH#COSPH
DA(S)=COSPS#COSPH+SINFS*SINTH#SINPH-1
DA(&)=SINPS#COSTH

RETURN

END

S50

(AN

Function subroutine (Version 2)

SUBROUTINE FUNKC(A, S, DA)

DIMENSION A(5), DA(S)

COMMON /FUNV/ XM, YM, ZM. FD, FN, FP« RKX, RKY

COMMON /FUNVZ2/UL, VL, WL, B, H, PC

SINH(X)=(EXP(X)-EXP(-=X))#%. 3

COSH(X)=(EXP(X)+EXP(-X))#%*. 5

COSPS=COS(A(1))

SINPS=SINCA(1)}

COSTH=COS(A(2))

SINTH=SIN(A(2))

COSPH=COS(A(3))

SINPH=SIN(A(3))

u=aca)

V=A(3)

W=A(6)

AMS=AMHFPH (1, +VL-5-V) +Fids (—WL+W)

YMS=YM+FP# (-UL+U)+FD* (WL-W)

ZMS=ZM+FD# (~-1. —VL+S+V)+FN# (UL-U)

RX=RKX* (COSTH#COSPH#XMS+COSTH#SINPH#*YMS
—SINTH#ZMS)

RY=RKY# ((-COSPS#SINPH+SINPS#SINTH#COSPH) #XMS
+(COSPS#COSPH+SINPS#SINTH#SINPH ) #YMS
+SINPS#COSTH#ZMS)

RZ=(SINPS#SINPH+COSPS*#SINTH#COSPH) #XMS

+(~SINPS*#COSPH+COSPS#SINTH#SINPH) #YMS
+COSPS#COSTH#*ZMS

IF (ABS(RZ).EQ.0.) @O0TO SO

PU=B#* (H/ABS(RZ) )##(—. S)#(3#(1-PC##2) ) %%, 25
Fl=(. S#SINH(2 #FU)-. S#SIN(2. #PU) -
2. #PU#SINH(PU)#SIN(PU)+COSH(PU)#BIN(PU)~
SINH(PU)I#CAS(FU) )/
(FUX(SINH(PU)+SIN(PU) ) ##2)
F2=(COSH(PU)-COS(FW) )/
(PU#(SINH(PU)+SIN(FU)}))
RZ=RZ# (1-PC##2)/(1+PCx##2%(F1/2. -2, #F2))

DA(3)=(SINPS#RY+COSPS#RZ) /COSTH
DA(2)=(RY-DA(3)#SINPS*#COSTH) /COSPS
DAC1)=RX+SINTH#DA(3)
DA(4)=-COSPS#SINPH+SINPS#SINTH#COSPH
DA(S)=COSFS#COSPH+SINPS#SINTH#SINPH-1.
DA(6)=SINPS#COSTH

RETURN

END

= 5o
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Chapter 4.

Plate spring deformation under three-dimensional loading.

4.1 Introduction

In chapter 2 a mathematical model has been derived which may be used to
determine the shape of a plate-spring under three-dimensional loading
of the free end. This derivation resulted in the set of "integro-diffe-
rential" equations of figure 2.4 (which are also given in figure 4.1) .
To find solutions for these equations two independent methods are avai-
lable. The first method is based upon numerical integration and an
iterative process which yields solutions for the complete set of equa-
tions. The other method is based on the "iterative-analytical" method
for solving the simplified differential equations which was introduced

in chapter 3.

At first it will be demonstrated how this method is used to solve the
equations as derived in chapter 2 which were based upon the concept of
the elastic line. This model is only valid for long and slender beams
and the results are only first estimates for the behaviour of plate-
springs when the length is not large compared to the width. (This dis-
cussion is nevertheless presented here as it clearly illustrates the
mathematical operations used in the iterative analytical method.)

The theoretical results will be compared with those from numerical
methods and with experimental results. It will be shown that the analy-
tical and numerical results are in good agreement. However the experi-
mental results indicate that the torsional compliance of plate-springs
is smaller than expected.

In the final part of this chapter the mathematical model will be fur-
ther developed to account for the effect of the constrained warping of
the cross—section at the clamped ends of the plate-spring. It will be
shown that better agreement between experimental and theoretical

results is obtained with this extended mathematical model.
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ds

de d
cosdwd—s + sind,'cos(-)'d—s =

2 t;in@-M =

ds
= Kx'[ cose'cosd)'(Mx(l) i Fz'(,Q+v(1)—s—v(s)) + F_o(-w(R2)+w(s)))+

+ cosBesinde(M (L) + Fz°(—u(ﬁ.)+u(s)) + Fx°(w()i)—w(s)))+
= sin®e(M () + F (=2-v(D)+stv(s)) + Fy-(u(x)—u(s>)) }

)
K '{ (-cos¢esin¢t+sindesinBecosd) '(Mx(1)+Fz-(1+v()l)—s-v(s))+F o(-w( L)+w(s)))+
+(cos¢ecosdtsingesinBesing) (M (L) + FZ-(—u(l)+u(s)) + Fx'(w(l)'w(s)))“*‘
+ sindecos@e(M (1) + Fx'(—l—v(1)+s+v(s)) + Fy'(u(i)—u(s))) }

d
‘Siﬂw'ﬁ A cosw-cose-%s =

K7'{ (sin¢esin¢gt+cosdesin@ecosd) -(Mx(1)+FZ'(1+V(1)-5—V(S))+F e(=w(+w(s)))+
+(-sindecos¢tcosdpesinBesing) '(My(ﬂ.) S Fz'(‘U(1)+U(S))+Fx’(w(1)“w(5)))+
+(cos¢°c059)~(MZ(l) + Fx-(—k—v(l)+s+v(s)) + Fy-(u(ﬂ)—u(s))) ]

= Ofs (~cos¢esing + sindesinBecos¢) °dt
= Ofs (cospecosd + sinpesinBesing - 1) «dt

= Ofs (sinde°cosB) «dt

Figure 4.1 The relations between the deformations of the plate-spring and the

load applied to the end can be determined with a mathematical
model consisting of a set of "integro-differential" equations.

This model has been derived in chapter 2 (figure 2.4).

4,2 Linearization and simplification of the differential equations.

Exact analytical solutions of the three differential equations given in
figure 4.1 are not available. To determine the behaviour of plate-
spring mechanisms it is however sufficient to find solutions for the
range of technically possible or desired deformations. Moreover it is
sufficient to obtain "close estimates" of the actual behaviour. As the
mathematical model is itself an approximation there is no strict need
to find exact solutions for the mathematical model.

In this section it will be attempted to use the information available
about the physical plate-spring to reduce the differential equations to

a set of simplified, approximating equations.

The first step in this process is to assume that angular deflections in
"sound" plate-spring mechanisms will remain small. As upper limit angu-
lar deflections of 0.3 radians might be used. For the functions sina

and cosa the following power series may be used
SN0 S~ e

COES 0 =N

When sino is approximated by sin a = « the maximum relative error will
be less than 1.5 % for o 0.3 rad. With cosa = 1 the relative error
will then be less than 4.5 %. This magnitude of relative errors is for
many applications acceptable and the equations of figure 4.1 may be
simplified accordingly.This should however be done carefully. For the
expression for v(s) for instance
s = Ofs (cosdecosd + sindesinbesing — 1) - dt (4.1)

this would result in

v(s) = of° (1 + 4000 - 1) +de =[5 gepege at (4.2)

which is incorrect.Substitution of fhe first two terms of the power-—
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series for cos a yields

2 )
N 3o0 = dot” + heg” et + ge0ep - 1 )edt =
2
= o7 (=hee peg? + ge0g Yo at (4.3)

13

v(s)

This indicates that the substitution of power—series and the successive
approximation should be performed carefully. Following this method the
equations of figure 4.1 will result in the set of equations given in
figure 4.2.

These results are applicable for long slender beams without restriction
to the shape of the cross-section. For plate-springs however the
compliance factors K, and Ky are much larger than the compliance factor

and K, will be from 10° 3

Kx' Typically the ratio between K ,K to 10°.

S
As a result only the angular deflection ¢ en O and the displacement u
may have a significant magnitude. The angular deflection ¢ and displa-
cements v and w can be considered as disturbances which are relatively

small.

To obtain approximating expressions for the main deformations a first
estimate in the iterative—analytical process would be to assume that
¢ ,v and w are equal to zero. This leads to the following expressions

for ¢, 6 and u

gg =K, o [ =0eQ D) + F,2(28)) + M(D) + F+(-u() + u(s)) }

1t}

L ak, ¢ { 0O + F s(1m8)) + 800 (M (D) + F,+(-u(2) + u(s))) +

S BE A o) Fy'( u() - uls))) }

u(s) = f° -0 ¢ de (4.4)

When the main deformations have been determined the magnitude of the
disturbances ¢ ,v and w can be estimated with simplified forms of the

remaining equations

Sy o A : SO

e A { MO P E e[ L) }

v(s) = Ofs e

wis) = ,f° ¢ - a (4.5)

ddiigide -
% LG
=K e

. { O (0 + F_e(v(D)-s=v(s)) + Fy-(-w(1)+w(s)))+
i ¢-(Hy(1) + F_e(-u(D+u(s)) + Fx-(W(l)—w(s)))+
——e-(nz(x) + Fy“(—l-v(l)+s+v(s)) + Fy-(u(x)—u(s))) }

4o , . do _
ds 50 ds

= Ky-[ (—¢+¢-e)-(MX(1)+FZ-<x+v(z)—s—v(s))+F o(~w( D+w(s)) )+
+(1+¢eBep) (M () + F ;(—u(1)+u(s)) + F ;(w(l)—w(s)))+
4 (M (D) + F o (Aov(Dstv(s) + Fe(a(2)-u(s))) }

4o, do
_¢'E; # ds

= KZ-[ (¢'¢+9)-(Hx(1)+FZ'(1+V(K)—s—v(5))+F o(=w( D+w(s)))+
+(—¢+e-¢)=(My(1) it FZ-(—u(1)+u(s))+FX-(w(z)~w(s)))+
s (M (2) + ¥ e(-2-v(tstv(s)) + F_(u(R)-u(5))) }

uls) = f° (=6 + ¢+0)de

Leshot W IEN)
of7 (5007 = 307 + e0eg ) ede

v(s)

w(s) = Ofs ¢ edt

Figure 4.2. Result of the first step of simplificatfon of the differential
equations from fig.4.1 used to approximate the behaviour of a
plate-spring under three-dimensional loading. The angular

deflections ¢, 6 and ¢ are a function of the parameter s.
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A further simplification of the second of equations (4.4) is possible
with respect to the part containing the product ¢°6 . In this part the
influence of F, can be neglected as it is small compared with the

influence of F, in the first term. This leads to

Aoy 5 . A b
i {G(MX(K)+FZ (& s))+9®My(R)+
M (D) + E o(=2k8) + F_e(u(D)=u(s)) } (4.6)

This expression still contains one term which is quadratic in the angu-
lar deflections , ¢ and 6 . This term can only be neglected when the
couple My(l) has the same order of magnitude as one of the other loa-
ding components. This will be true for plate-spring mechanisms which
are mainly based upon bending of the plate-springs, such as parallel
guides and cross—spring pivots.

For plate-spring mechanisms where torsion of the plate-springs is the
main deformation it will in many cases be allowable to neglect this
term as the deflection ¢(s) will be very small. It is therefore sugges—
ted to neglect the term 6.¢.My(£) in equation (4.6) and to verify at
the end of the analysis whether this is justified on the basis of the

obtained results.

The result of this process of linearization and approximation is the
set of equations presented in figure 4.3. In using these expressions it

is necessary to be aware of the assumptions made in this section.

Main deformations:

dgis) = Kpel-be (H,(0) 4F2(378)) H (R) 4F(-u(D) + u(s)))
Ay el . ; -
= [ e (M _(2) +E_+(i=5)) +11 (L) +F =(~dts) +

+Fy~( w() - uw(s) ) |

u(s) = OIS —pe dt

Disturbances:

Gl ‘—j—zéﬂ kT () E s

ds
o Al 7
v(s) = oj"~ 7 b de
S
w(s) = of & dt
Figure 4.3. Simplified set of differential equations which can

be used to determine the behaviour of plate-spring mechanisms.
Derived using the following additional assumptions :

- Angular deflections will remain small (< 0,5 rad)

=R o> Ky’Kz

- My(l) is not large compared to all other loading components.
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4.3 Application of the iterative-analytical method.

Solutions for the set of simplified equations may be obtained with the
iterative—analytical method described in chapter 3. To illustrate how
this method is used for cases of three-dimensional loading a simple
case of a plate-spring loaded by two forces F, and F, will be discussed

(see figure 4.4).

As a first step initial estimates for the main deformations, 6,¢ and u,
as a function of s are made, based on the shape of the plate-spring
under influence of only the force Fy. In this case the angular deflec-

tion @ is equal to zero and the estimates for 4 and u are

§°(s) = ape(-208 + 3087 ) -2 (eg S 6eg” )
*

1le) Ly g -2y M 3?2
where £ = %

Figure 4.4 Plate-spring loaded by the end forces B and Fz‘ /

Using the information that Mz(l) equals zero these estimates can be
simplified and expressed in either u(f) or ¢y . Selecting the expres-—

sion containing u(f) yields

* 2 3
o) = -2 L3 -2l 2
*
u (s u( ) B o 1 5
e oo S

Substitution of these estimates in the first differential equation of
figure 4.3 with M, and M, equal to zero leads to
de

5 %
qo s Ky o ELEL o(3eF ~ %.g )EFZ.(K_S) 4

S (s
R e
which can be integrated to estimate the angular deflection 6 as
1 .4

* S 3 1,
6 (s) = Ky-FZ'U(R)'£° (€ =g aF ) £ i 4 2" ) (4.8)

Substitution of this estimate in the second equation of figure 4.3 and
subsequent integration leads to dimproved estimates of the angular

deflection ¢(s) and displacement u(s)

2
§7 () =k oF el - deE? ) 4
gt e e
K K oF su() et o{-hor” + 2ol one it mma
- S.edl s e
ERON e 0 GHUC e gt ar
2 4op L3 T ier S i AR
R AL ORI R

(4.9)

For the relation between the deflection u(f®) of the end of the plate-

spring and the loading forces Fy and F, the following estimate is thus

obtained
Lo, r- 2
ul ) = (4.10)
1 2 4
Rl 71 -KZ- Ky. FZ- )
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This is the first result of the iterative-analytical analysis giving a
first—-order estimate of the influence of the loading force F, on the
s~ ffness of the plate-spring in the direction of the x-axis. This
e: imate is valid only for relatively small values of F,. For large
ve 1es the difference between the two successive estimates for the
st e of the plate-spring becomes to large and further iterative steps
st 1d be made for such cases.

Ir 'rder to estimate the difference between the two expressions for the
de action u(s) ,(4.9) and (4.7) , the relative magnitude of the diffe-
re = for loading with a force ML ( 120 /FE;TK;)~I is shown in figure
4. A linear relation exists between the magnitude of the difference
an Ei . It is clear that the difference wili be less than 5% of u(l)

fo values of FZ-K °K -14 upto 10 and for such cases the estimate of
2

(4 ) appears to be sufficiently accurate for most practical cases.

=3
=)
~
o
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=)
o
=)
@
=
=l

F re 4.5 During the iterative analytical analysis the shape of the deformed
plate-spring is estimated in the subsequent steps. This figure shows
the relative difference between the first and second estimate of the

deflection u(s) for a loading force where F:.KZ.K .lb =1 .

An interesting aspect of expression (4.10) is that it gives a first-
order estimate of the magnitude of the load F, for which the stiffness
c, of the plate-spring becomes equal to zero. From (4.10) the following
expression for I ol obtained

This is a first-order estimate and better estimates may be obtained
through further steps in the iterative analytical process. From the

second step the following estimate for F, would be obtained
Bovs l Eeity Kz'Ky = 4,134

These results obtained from the relatively simple expressions in the
mathematical model may be compared with the result from exact analy-

tical analysis (1lit. Tl,P1), which yields

This indicates that the iterative analytical method yields reasonably

good estimates.

The next step in the analysis is the determination of the angle ¢(s)
and deflection w(s).The relation between F, and w(s) determines the
stiffness of the plate-spring mechanisms perpendicular to the plane of
motion. For many applications it will be sufficient to obtain a first

order estimate of this stiffness.

Using the fourth of the equations from figure 4.3, the initial esti-
i *
mates for ¢ (s) and u (s) and expression (4.8) the following result for

&(s) is obtained

213 2= 553 oe She AR 13E
Ws) = F oK eu() o 508 = 508" + Tgeg’ — o8 4 geE” | 4
3 A2
&+ FZ.KX.R o( E - 5 =) (4.11)

where the first part is due to torsion of the plate-spring and the
second part results from bending about the x-axis where the compliance

1658 is very small.
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Integration of (4.11) yields the following estimate for w(s)

s e 3 s 0 6 1]
B e SR e

13
- gng ) (4.12)

s
2
2

2
w(s) = F, Ky () e |
3 1
+ FZ Kx 2 el 5 2
For the deflection w(!) of the loaded end this yields

n(EL) 2 1 A
1>'7+K3} (4.13)

w(R) = FZ=13- { Ky°(

From this expression it 1s clear that the deflection due to bending
about the x-axis will be dominant for small values of u(f). For values
of Ky = 103-1(x the two effects are equal in magnitude for E%£l = 0,05,
For larger deflections the influence of the torsional deformation
becomes more important.

(Note: This result does not contain the contribution from the shear
deformation of the plate-spring which may become relatively dimportant

for wide plate-springs, % < 2¢b .)

This analysis of the simple case of loading of the plate-spring illu-
strates that simple expressions estimating the main properties of the
plate-spring are easily obtained with the iterative—analytical method.
The derived expressions for the influence of F, upon the stiffness in
the direction of motion ,x-axis direction, and for the stiffness of the
deformed plate-spring in the z-direction are first-order estimates
which may be used for deflections upto 0,2 °R in x-direction and loa-
ding forces F, upto 2°( /ji;ﬁi?- 12) s . Depending upon the required
accuracy the difference between the estimates and exact solutions of

the differential equations may become too large for larger deflections

or loading forces.

4.4 Evaluation of experimental and theoretical results.

To investigate whether the iterative—analytical and numerical solutions
are acceptable predictions of the actual behaviour of the plate-springs
they should be compared with results from reliable experiments.As it is
not easily realized to apply two forces to the free end of the spring
as described in the preceding paragraph, measurements were carried out
with a plate-spring fixed as shown in figure 4.6. The plate-spring is
clamped at the two ends. The "free'-end clamping piece 1s mounted on
three steel wires which fix its position in x, ¢ and O direction. The
loading force F, is applied so as to act along a line through the cen-
ter of the spring. In this case the loading conditions for each half of
the spring will be as discussed in the preceding paragraph (as in
figure 4.4 ). With this measurement the deflection w(2) of the free end
can be determined.The angular deflection ¢ of the free end will be

equal to zero.

Figure 4.6 In order to realize the loading conditions cof a plate-spring shown
in figure 4.4 measurements were performed on springs clamped at both
ends. Using considerations of the symmetry of the loading when the
force F, is applied at the middle of the plate-spring it can be
proved that, apart from a minor effect, each half of the plate-
spring is loaded as assumed in the theoretical analysis.

The plate-spring used in measurements thus has a length 2-% .

e




=

Similarly it is possible to determine the influence of the loading
force F, upon the relation between F  and u(f). In this case the stiff-
ness of a plate-spring parallel guide loaded by the force PN ar the
center of the guide has been measured. (For more details about the

equipment used in measurements see chapter 8)

The measurements were performed with steel plate-springs with the fol-
lowing dimensions, 2+2 = 80 mm.
b = 20 mm.

h = 0.25 mm.

The magnitude of the compliances were calculated with the expressions,

12 3 12
I L R e e e

Bob b ¥ e st

where E and G are Young's modulus and shear modulus respectively.

In figure 4.7 the results from measurements are compared with the pre-
dicted values from expressions (4.10) and (4.13), and with results from
direct numerical integration of the differential equations. In figure
4.7A and B the influence of the shear deformations have been taken into
account as well. For the numerical solution an adapted version of the
computer program described in chapter 3 was used. As can be seen from
figure 4.7 the theoretical results from both methods are in good agree-
ment. This is obvious when the deflections of the plate-springs are
small and the approximations made are acceptable. But also for larger
values of F, and u(l) both theoretical solutions yield about the same
results.There is however a remarkable difference between results from
the theory and those from the experiments. These differences could not
be attributed to the influence of inaccuracies in the experiments.

This comparison of measured and calculated deformations leads to the
conclusion that the mathematical model used to describe the behaviour
of the plate-spring is not complete. The differences are expected to be
maynly due to the influence of the constrained warping of the cross-—
section at the clamped ends of the plate-spring.In the following para-—
graph this will be discussed and the mathematical model will be adjus—
ted accordingly.

w(e)  (um) ’
60
/s
VESRMD
) u(e) % mm P
50 i Cd
e
7
A
(8) 40
e
¢ measure
7
30 7 =
20
10
c
% )= 0 mm.
®20 0

L ’_"Fz ()

0,8
)ﬁ,iterative analysis
0,6 =
\
\",ﬂfmeasurel (B)
%
0,4

o
£
/

Figure 4.7 Comparison of measured and calculated deformations of a plate-spring
loaded by forces FX and F,.

A. Measured and calculated deflection w(2) as a function of the loading
force F, for displacements u(®) of zero and four millimeters.
B. With increasing deflection u(2) the stiffness c, of the plate-spring

in the direction of the z-axis decreases.

For these comparisons the influence of the additional deformation of
the plate-springs due to the shear deformation has been taken into

account.
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C.Due to the influence of the force F, the stiffness of the plate-
spring in the direction of the x-axis 1is reduced. The results from
numerical-integration, iterative-analysis and from measurements are
shown.

Although results from actual measurements are presented here the
measured values have been scaled so as to obtain a dimensionless

presentation enabling a direct comparison with theoretical results.

(Note: u(f) is the deflection at the end of the plate-spring as
shown in figure 4.4. In the measurements this is the deflection of

the middle of the plate-spring (figure 4.6).)

2 = 80 mm.
b = 20 mm.
h = 0,25 mm. )

(Plate-spring dimensions: 2-

4.5 Reconsideration of the mathematical model.

The mathematical model derived in chapter 2 to describe the behaviour
of plate-springs under three-dimensional loading 1is based upon the
theory for long, slender beams. This assumption has been used in all
known previous research on the behaviour of plate-spring mechanisms.
For the case where the plate-spring deformations are strictly confined
to bending about the z—-axis this model has proven to be adequate. This
is a result of the fact that the plate-spring length is large compared
to its thickness.Therefore the deviations from the theoretical stress
and strain distributions resulting from the conditions at the clamped
ends will extend over a short distance, estimated at a few times the
plate thickness. The effect upon the total deflections could be incor-
porated by increasing the length of the spring with about half its

thickness at each clamped end (litt. Sl1).

These considerations are not applicable for loading and deformations in
other directions. The width of the plate-spring will, in general, not
be small compared to the length. The length to width ratio is usually
from 2 to 10. As a result the influence of the clamped ends will extend
over a noticeable part of the spring. As the deformations due to ben-
ding about the x-axis are very small and do not influence the main
deformations 0,¢ and u it is not necessary to change the equations used
to determine them. The influence of the clamped ends upon the torsional
deformations however directly influences the main deformations of the
plate-spring. In the following it will be shown how the mathematical
model can be adjusted to account for these effects.

When a plate-spring is loaded by a torque M, shear-stresses will occur

y
in the cross-sections. Therefore the cross-sections will be deformed.
Points that were initially in one plane of the cross-section will per-
form a relative displacement perpendicular to this plane. The original-
ly flat cross—section will be deformed as shown in figure 4.8. This

deformation is called the "warping" of the cross—section.

=7 =
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Figure 4.8 Due to the torsion moment My shear stresses will be present in every
cross-section. Due to these stresses a rectangular part of the
undeformed plate-spring will deform into a "diamond" shape. Over the

total cross-section this will cause relative motion of different

points of the cross-section in the direction of the y-axis. This is

called the "warping" of the cross-—section.

At the clamping of the plate-spring this warping can not occur. This is
due to the fact that a cross-section slightly inside the clamping
should then be rotated about the y-axis. As the clamping will inhibit
this relative rotation the cross-section located at the edge of the

clamping pleces can not be warped.

The torsional deformation of clamped beams can be calculated with a
method described among others by Koiter (lit. Kl). At first it is
necessary to determine the '"warping-comstant" ,I' , for the cross-
section of the beam. This constant indicates the magnitude of the "out-
of-plane" motion of points of the ,initially flat , cross—section.

Using the expressions given in lit.(K1l) for plate-springs, with rect-
angular cross—-sections with a large ratio of width to thickness, this

constant can be estimated as

S v e b oh (4.14)

From the method described by Koiéer it is concluded that the twisting
torque, My, at a given point of the plate-spring will cause both twist
and warping. Whenever the warping is constrained, for instance at the
clamped ends, this will mean that an increased torque is required to
obtain a certain twist.

This is formalized in the following equation for the curvature

de (s)

= K oM + KT oE » 415
Ky(s) y y y ds? ¢ )

This expression should replace the second of the equations for the
curvatures in chapter 2, the Euler—-Bernoulli hypothesis. Also in the
final set of equations of chapter 2, figure 2.4, the second differen—

tial equation should be adjusted.

To determine the magnitude of the second derivative of the curvature Ky

the expression given in figure 2.3

Ky(S) = cos ¢(s) =* gﬁﬁil' + sin ¢(s)° sin 6(s)~° Qﬁgsl (410

can be used.The resulting expression for de /ds2 will be containing
the first and second derivative of ¢(s) and first to third derivative
of ¢(s) and 6(s).As the expressions used to calculate the deformations,
(figure 4.3), are obtained by simplification and linearization the
expression for dey/ds2 can also be simplified. This leads to the fol-

lowing result

2
d Ky(S) d3e 5 1
= ___Lgl (4.18)
ds ds

With this result the new mathematical model for the plate-spring is
formed by the set of equations given in figure 4.9. It is clear that
the first equation is now a third-order differential equation. To find
solutions for this new mathematical model two additional boundary con-
ditions are required. These conditions are resulting from the situation
at the ends of the plate-spring. At a clamped end the warping of the
cross—section is inhibited and therefore the first derivative of 6(s)
will be equal to zero.At a free end there are no restrictions imposed
upon the deformation of the cross—section. As a result the second deri-

vative of 6(s) will be equal to zero.

==



Main deformations:

d0(s) 4 gy LA8(s)
y 3
ds
= Koof=00 (M (2) +F, (4-8)) +M (4) +F =(-u(2) + u(s))}

=K { o (M, (2) +F, (8=8)) +M, (1) +F (-2ts) +
+Fy-( () - u(s) ) |}

u(s) = OJS = dit

Disturbances:

ke B GO R e - Ci=e) F)

V(8= ofs— % . ¢2° dt

w(s) = 54 e

Figure 4.9 Simplified set of differential equations derived to account for
the effect of the warping of the cross-section; this can be used
to determine the influence of the constrained warping upon the

behaviour of plate-spring mechanisms.

S

Resuming
do
—Clamped end > “%zl' =0 (4.19)
2 3
d
-Free end > ‘~£&51'= 0 (5320
ds

This mathematical model can be used to determine the deformations of
the plate-spring under the influence of forces FZ and I (Gl )
Solutions can be obtained with the iterative analytical method. As in
paragraph 4.3 an initial estimate for the deformed shape 1s used to
start calculations. In Annex 4.1 this analysis is performed, leading to

the following expressions for u(f) and w(2)

3 if
~ =eK oF of o{ }
2Nz 254 51 1 7 Sl 80 T2 S 1O S
IR K sE theloyosnon S R R | shre ey
5ep it p peoop i
(4.21)
1 3
w(l) = 3 ° FzﬂKx-l o+
SN S o e
+ FZ-Ky-u(K) 2] = + i i }
5=l 1 p B B 13
(492)
2 22
where p~ = “ETFEZ‘ and with the assumption that £ > 2°b
Y

The magnitude of the influence of the constrained warping depends upon
the parameter p . For long and slender plate-spring this parameter will
become very large and expressions (4.21) and (4.22) will give the same
results as the earlier results (4.11) and (4.13). For plate-springs

with a rectangular cross—-section and b > h the parameter p may be esti-

il

1+v

mated as,

=
|13
o e

These results could be compared with the results from experiments and
the earlier results as were shown in figure 4.7. In figure 4.10 the
results are shown and it is clear that the analytical results with the
new mathematical model are better predictions of the experimental
results than before. The effect of the constrained warping clearly
forms an important factor in the behaviour of plate-spring mechanisms.

Still the remaining differences between theoretical and experimental
results indicate that other factors are influencing the behaviour of
the plate-springs. Possible causes of the remaining differences may be

the inaccuracy of the actual dimensions of the plate-springs and the
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4.10Results from calculations based on the new mathematical model

compared with the previous results, (fig. 4.7).

A. Measured and calculated deflections w(f) as a function of the

loading force F, for displacements u(£)=0 mm and u(g£)=4 mm.

It is clear that the calculated deflection w(%) obtained with the
new mathematical model (iterative analysis II) is a better estimate
for the measured deflections for u(f) = 4 mm.

The results from calculations with the adjusted mathematical model
for the variations of the stiffness c, of the plate-spring as a
function of the deflection of the loaded end compared with the
earller results and the measured values. For practical applications
it appears that the new mathematical model yields sufficiently

accurate predictions of this variation.

In these comparisons the additional deformation of the plate-spring

due to shear has been accounted for.

meapured

0,8 B dterativg analysis (II)

0,6

numerica >\ : s ¢
JumezEes L \ iteratiye analysis (I)

0N

()

Figure 4.10 Cont.

C. Due to the application of the force F, the stiffness Cr of the
plate-spring decreases. Results from different theoretical methods
estimating this effect are shown together with the results from
measurements Here a remarkably good agreement between the result
obtained with the new mathematical model and the measurement {is
noticed.

(Note: u(f) is the deflection of the end of the plate-spring as
shown in figure 4.4. In the measurements this is the deflection of

the middle of the plate-spring as shown in figure 4.6)

(Dimensions of the plate-spring, 2°¢% = 80 mm
b = 20 mm
h = 0,25 mm. )
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an-isotropy of the plate-spring material. In addition other phenomena
may be caused by the presence of the clamped ends. These effects may be
of interest when smaller inaccuracies will be desired in future prac-
tical applications. For most practical applications i1t will be suffi-
cient to predict the dependency of the stiffness upon the deflections
of the plate-spring with inaccuracies as found in the presented

results.

To obtain more information about the influence of the constrained war-
ping the magnitude of the torsional deformation 6(s) of the plate-
spring loaded as in figure 4.6 has been measured by Kruit (K2). In
figure 4.11 one of the results is compared with the theoretical results
from the iterative analytical method. It is clear that a large diffe-
rence is obtained close to the clamped ends. (Due to the method used in
the measurements inaccuracies of about 0,2-10-3 rad. have to be accoun-

ted for.)
In the following chapters this new mathematical model, given in figure

4,9, will be used to calculate the main properties of different plate-

spring mechanisms.

1

0 (1073 raq)

////’d<<Z;;Mamd(fm 4.3)

callculated (fig. 4.9)

=in

Figure 4.11 Comparison of calculated and measured angular deformations around
the y-axis of the plate-spring (as in fig.4.7) under influence of
the force F,. Values given for u = 0,05 * % and i 2 N.

Annex 4.I.Determination of the deformations of a plate-spring due to the

forces F, and F,, under consideration of the effect of the '"con-

strained" warping.

The iterative—analytical method can be used to obtain estimated solutions
for the set of differential equations given in figure 4.10. Application
of this method for the plate-spring loaded by the forces F, and F , see
figure 4.4, is similar to the application described in paragraph 4.3. The
analysis starts with an initial estimate of the shape of the deformed

plate-spring as given by equations (4.7)

ey = - ML (g - 22
*
e (4.7)

where &= s/ .
These estimates are substituted in the first differential equation of
figure 4.10. As M, and My are equal to zero this leads to the following

equation

de(s) _ K eEele d3egs) _

ds y d53

ax o] B oae _ 302y g 5 o =] 4 SegZe 1.3
AKy{ Cl 3 S oF e(Le)ot FEEUEEE e zg)}
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The solution of this third-order differential equation can be determined
as the sum of a particular solution for the complete equation and a gene~
ral solution for the reduced equation. In this case the solution will

have the following form

6(s) = K ¢F su(R)°Re
Vs

2 3 4
o al.E #+ az.g aF a3.§ wr 34'5 + (particular solution)
+ A+ B.e_“.E : C.eu'g ) (general solution)
(Giale )

h M hich b timated e = E 1
where | = —/==—== which may be estimated as p = | T or plate
springs with small thickness compared to the width.
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The coefficilents aj;=ay, in the particular solution are determined so as to
satisfy equation (4.I.1). The coefficients A, B and C are determined
using the boundary conditions for the total solution for 6(s). For the

loading case as shown in figure 4.4 the boundary conditions are

de(0)
s =0 = 6(0) = O ~ ——ég— = 0
2
s =il > Q_EL%[ = 0
ds

(Note: These boundary conditions are not correct when the plate-spring as

used in the measurements, figure 4.7, is analysed. In that case the boun-

de(g)
ds

sidered in Annex 5.1 and the results show no relevant differences for the

dary condition for s =+ £ should be , = 0 . This case will be con-

dimensions of the plate-spring as used in the measurements.)

This leads to the following expressions for the coefficients a;-a, and A,

B and C
Bae U s ub
SHE 2
P
e 0 -
e e
p
=]
=
A
4 4
(@ e ey e +—6
il 2
B = it sl
VA ol ae )
o i, ]
(s Bt ire 2
G = 24 ) - |
uz-( ol b )
A= -B -C (4.1.3)

Having determined this solution for 6(s), which is a first order esti-
mate, it may be substituted in the second of the equations of figure

4.10, This yields the following equation

e Ty o F,e80( 1= B)e 6(s) +E +be (-1 +E) |

a8 5 (4.1.4)

where 6(s) is given by equation (4.I1.2). This differential equation can

be integrated and leads to the following solution for o(s)
( with ¢(0) = 0 )
205 3 Lot 28 5 il 1 =3 1 -4
8(s) = K K eF, < eu()+ { B 90E 50 % A St et
AL g 1
1 £, OG0 528 ) t a, (5 Rl D
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This result may be used in the third of equations of figure 4.10 and the
following expression for u(s) may be obtained through integration

(with u(0) = 0)
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The relation between the forces F, and F, and the displacement u(&) of
the plate-spring end can thus be obtained by substitution of expressions
(4.I.3) and evaluation of (4.I1.6) for s = R .

Thus the following expression is obtained
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For most practical cases the value of p will be large enough to allow for
simplification of this expression.This will yield the result as given in
expression (4.21). For relatively short plate-springs the complete solu-
tion may be used. It should however be noted that it 1s doubtfull whether
the mathematical model is adequate for short plate-springs where £ < b.

In that case other factors may have a relatively large influence upon the

deformations of the plate-spring.

Following the process described in paragraph 4.3 the solution for 6(s),
expression (4.I.2) can be used to determine the angular deformation |,
¢(s), and the deflection w(s) of the plate-spring. This results in the

following expressions
2 $5
¢(s) = FZ'KX'X eR GREE 2 )

2 52 SR
+ F, oK eu(d) o{ e ulun 2) + 2 slSE & OE i

3.8 L 3.5 J ahe A
a3-(—4£+5£)+a4(5§+25)
+ Ae( -3-<:+%-z»;2)+

L e i S gl
+Bp(3+u+e ( 3 =3-E u))+

Jb ) prEN e a3
+Cp(3+u+e ( 3F -3 p))} @5 8)
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az°( 2§§E'+ %6?) thod) el = %§'+ %;') +
Fas( el w1

T lw
2
-
ot

(4.1.9)

These expressions may be used to obtain the following estimates for the

deflections of the end of the plate-spring

1 2
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For most practical cases where the length of the plate-spring is large
compared to the width these expressions may be simplified leading to the

results presented in expressions (4.21) and (4.22).

With the iterative-analytical method it is possible to derive relatively
simple expressions to estimate the main deformations of the plate-spring.
Application of this method is based upon a number of elementary mathema-—
tical operations. The most important are multiplication and integration
of polynomials which may contain exponential parts. Allthough the opera-
tions are elementary the multitude of them renders the analysis tedious
and time-consuming. Fortunately computer programs exist that can perform
the analytical operations on the expressions that were described here.
The derivation of the expressions in this annex was performed with the
""MUSIMP" program installed on a micro-computer at the Department of

Mathematics of the Delft University of Technology.
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Chapter 5.

Plate-spring parallel guidings.

Introduction.

The most widely used plate-spring mechanism 1is the plate-spring parallel
guiding (see figure 5.1). In this mechanism two plate-springs are connec-—
ting the slide with the surrounding environment. As each plate-— spring
determines the position of the slide in respect of three degrees of free-
dom the two plate-springs together are determining the position of the
slide in six degrees of freedom. The plate-springs however are mounted
with their planes parallel and so both plate-springs allow motion of the
slide in the direction of the x—axis. Thus allowing a parallel motion of
the slide, the plate~springs are twice determining the rotation of the
slide about the x-axis. The influence of this over—-determination of the

slide position will be discussed later in this chapter.

There are two distinct types of construction of plate-gpring parallel
guides as shown in figure 5.1. In the construction I two plate-springs are
used. To obtain a reasonable stiffness of the mechanism with respect to
displacement in the direction of the z-axis and rotations about the x- and
y-axils the width of the springs has to be relatively large (typically from
1 to + of the length).

In construction II four plate-springs are used and are supporting the
slide as the four legs of a table. This construction has a relatively high
stiffness against rotation about the x-axis. To avoid problems due to the
over—determination of the slide position, (twelve degrees of freedom
fixed), the width of the plate-spring will in this case generally be small

with respect to the length (from 1/5 to 1/10 of the length).

Applications of the plate-spring parallel guidings are found in different
fields,
- Conversion of force-displacement or displacement-force in measurement

systems.

- Accurate and reproducible generation of parallel motion, applied in

optical systems where loading forces are small.
- Guiding of parts of machines over small displacements while the posi-
tion of the slide should not be disturbed by relatively high, possibly

dynamic, loading forces.

= =
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Figure 5.1 The two most common types of plate-spring parallel gulding

mechanisms.

Different characteristic properties are making application advantageous in
each field. In the first the integration of the guiding mechanism and the
linear transducing element combined with the absence of friction are im—
portant. For the second the possibility to obtain a very good reproduci-
bility and high quality parallel motion with cheap and simple parts is
important. And in the last field of application the absence of "play" and
friction together with a reliable operation under even extreme environmen—

tal conditions are important properties.

In this chapter many of the properties of plate-spring mechanisms will be
discussed. This discussion is started with a description of the "nominal
behavicur of the plate-spring parallel guide. Nominal in this case inclu-
des the basic properties such as stiffness in direction of motion, motion
in unloaded cases, stresses, allowable loading forces in respect of plate-
spring instabilities, deviations from the ideal motion due to production
inaccuracies and the dynamic stability of the plate-spring. Most of this

information has been obtained in previous research at different places.

The following section will focus on the relation between driving force and
displacement. Due to the deformation of the plate-spring deviations from
the linear relation will occur. Different factors influencing the lineari-
ty will be discussed. Also the effect of loading forces and moments ap-
plied on the slide on this relation will be indicated. Most of the infor-
mation in this and the following section is derived with the mathematical

model and the iterative analytical method as presented in chapter 4.

In the next section the deviation from the desired position resulting from
loading forces and moments wil be determined. An equivalent physical model
of the plate-spring consisting of a combination of three springs will be
introduced. With this model and the expressions supplied to determine the
its parameters the behaviour of the slide under static and dynamic loading

may be determined.
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Nominal behaviour.

When a driving force, F,, 1s exerted upon the slide of a plate-spring
parallel guiding é certain displacement, u, of the slide will result. In
figure 5.2 it is shown that this force should be applied at the center of
the construction to arrive at a symmetrical loading of the plate-springs.
As indicated in figure 5.2 the relation between F, and u can most easily
be determined through calculations of the deformations of one half of the
plate-spring. For each plate-spring this yields:

ey . o
X i

(5.1)

The total force needed for the parallel guide displacement, u,' should be
obtained by addition of the forces for each plate-spring (two springs for

construction I and four in construction II).

This relation may be used to predict the stiffness of the parallel guide.
This prediction will in general not be very accurate. As the thickness of
the plate-spring becomes smaller the uncertainty in the determination of
the compliance factor K, becomes larger. Apart from the uncertainty about
the Young's modulus of the material, (about 5-10%), the influence of inho-
mogenities in the material and small differences between the measured
thickness and the actual, active thickness renders the prediction of the
stiffness rather inaccurate. Another inaccuracy is due to the uncertainty
about the stress~distribution at the clamped-ends. As suggested by diffe-
rent authors, (see lit. Sl), a correction for deformation of the clamping
can be made by increasing the length by a certain amount, for instance by
half the thickness, for each clamped end.

These considerations lead to the conclusion that the uncertainty of the
prediction ranges from about 25% for thin plate-springs, (0,1 mm thick-
ness), to about 5% for thick plate-springs, (0,6 mm). Another factor that
might influence the stiffness of the plate-springs is the orientation of
the y-axis to the direction of rolling of the plates. To obtain an impres-
sion of this influence different plate-springs with dimensions of 100x20x-
0,18 mm were cut from one sheet of material under different orientations.
The stiffness of plate-spring parallel guidings made with these springs

was measured and the result is shown in figure 5.3.

Flgure

u(L)

5.2

(a) (b) (c)

To avold the occurence of extra loading components on the plate-
springs the driving force should preferably be applied at the
polnt of symmetry of the mechanism. In this chapter it is assumed
that driving and loading forces are applied at this point, P, of
the slide.

In this case the loading of one plate-spring is as shown in (b)

and, on the basis of symmetry calculations may be performed on one

half of the plate-spring loaded only by the driving force, Fy (c).

Figure

Angle (degrees) 0 2255 45 67,5 90 L1Z,5 135 157

Measured (A) | 94,9 95,5]95,3]95,1 96,8 94,3 94T [ 951
s values (N). (B)| 94,7 | 95,9 | 95,1 [ 95,4 | 95,9 99,7 9459 119558

5.3

In order to determine the influence of the orlentation of the
plate-spring with respect to the direction of rolling of the sheet
material measurements of gulding stiffnesses for parallel guidings
were performed. With the nominal dimensions of 80x20x0,18 mm a
gulding stiffness of about 96 N/m would be expected.

From the table it may be concluded that no noticeable influence of

the orientation upon the plate-spring stiffness is found.

In the table results from two series of measurements are given to
indicate the reproducibility of the mounting and measurement

process.
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Connected with the displacement u the slide will move in the direction of
the y—axis due to the deformation of the plate-springs. The magnitude of
this displacement, v(&) , is only determined by the length of the plate -

springs and the displacement u(%)

2
v = -3 .2 (5.2)
As a result the kinematical motion of each part of the slide follows a

parabola as shown in figure 5.4a.

The same kinematic behaviour is obtained with the four-bar mechanism of
u(
figure 5.4b, although only for small displacements ,( ~£§2’< 0,1 ), and as

a first-order approximation. The length of the bars should be equal

5
to =0 s

Deviations from the parallel motion may occur due to geometrical inaccura-
cies. When the length of the plate-springs differs by an amount AL a rota-
tion of the slide around the z-axis will occur as a function of the dis-
placement u(f) . For the magnitude of the rotation can be derived

3 22, AL
by 25 2 Ol el S (5.3)

where a is the distance between the plate-springs (fig. 5.4).

Similar undesired rotations occur when the distance, a, between the plate-
spring differs at the two ends. When a difference of Aa occurs the magni-
tude of the rotation is estimated as
M:%,u(_il,A_z (5.4)

In order to avoid this effect different authors (Hl, J1) have suggested to
minimize the geometrical inaccuracies by simultaneous machining of the
surfaces used to clamp the plate-springs. When the plate-springs are sub-
sequently mounted with care accurate guiding mechanisms can be obtained.
An example of such a mechanism is discussed by van der Hoek (H3). In this
construction both AL and Aa are adjustable and consequently both the first

and the second order deviations of ¢ may be eliminated.

Another example of a geometrical error is shown in figure 5.5. Here the
surfaces used to mount the plate-springs are not parallel, a relative

rotation of the slide around the y-axis will occur upon displacement in

T o0~

Figure 5.4

When the slide of the parallel guiding is displaced every point of
the slide will move along a parabola. A motion with the same
curvature is obtained with the four-bar 1link mechanism (b) where

Y 5
the two bars have a length ,% , equal to /601.

Flgure 5.5

Due to manufacturing inaccuracies the two planes of the undeformed
plate-springs may 1intersect each other. As a result the motion of
the slide will be a rotation about the section line. The magnitude
of the rotation at a gilven slide displacement depends upon the

angle Aa.
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the x-axis direction. When the angle between the mounting surfaces is Aa ,
the mechanism can be treated as a torsion-hinge with the center of rota-
tion far from the mechanism in the direction of the z-axis. The magnitude
of the rotation of the slide about the y-axis as a function of the displa-

cement is estimated as

AB = Aq - N €555))
From these remarks it may be concluded that it is advisable to minimize
the deflections of the slide, in relation to the other dimensions, when a

good parallel motion is required.

Another reason to reduce the ratio from displacement to lIengtheiis = 1n
many cases, the magnitude of the bending stress in the material of the
springs. The magnitude of the maximum bending moment and thus of the

bending stress is easily determined from figure 5.2 as

M}(:%.Q.sze,._u(i;
K 2
z
12
and with K = 3 this results in
z Eebeh
B o heaul)
g 3 E ) P (526

where Oﬁax is the maximum bending stress.

This expression gives an estimate of the maximum bending stress in the
plate-springs under nominal conditions. The actual maximum stress level
will be depending upon stress-—concentration effects in the clamped ends.
The magnitude of such effects is not easily estimated and a certain "coef-
ficient of ignorance" should be applied to ascertain that the allowable
stress-levels are not surpassed. (Very often it will not be clear what is
"allowable", rendering the estimates of allowable deflections even more
uncertain).

The magnitude of stresses in the plate-springs will also be influenced by
the loading of the plate-springs. As will be shown the magnitude of the
loading forces is limited in order to avoid instability of the plate-—
springs. Therefore the maximum bending stress due to the desired displace-

ments will in most cases be the most important stress—component.

B
$ FYL l yz

(a) (b)

Figure 5.6 Due to loading forces applied to the slide instability of the
mechanism may occur. The first form of instability occurs when the
driving stiffness cy of the mechanism becomes equal to zero (a).
When the displacements of the slide in the direction of the x-axis

are somehow limited the force Fy may be further increased. The

next limit 1is imposed by the occurrence of instability of the
plate-spring (buckling) where the guiding stiffness cy of the

plate-spring becomes equal to zero (b).

Limits to the loading capacity of plate-spring mechanisms are imposed by
the possible occurrence of instability of the mechanism. When a force Fy
is applied to the slide the driving stiffness cy, will be influenced. Nega-
tive values for Fy, as in figure 5.6a, will lead to a decrease of the
driving stiffness. and at a certain value this stiffness will become equal
to zero. In some cases this may be an advantage as was used in lit. (T2)
and (E2).

When the force in the negative direction of the y-axis exceeds this value
the stiffness c, will become negative. When the displacement of the slide
in the direction of the x-axis 1is not somehow controlled very large
deflections, leading to plastic deformation of the plate-springs, will

theoretically occur in this case.

When the displacement of the slide is controlled, for instance by a cam-
mechanism, servoed actuator, end-stops etc., the negative value of Fy may
be further increased without damage to the operation of the mechanism.
This will be allowable upto the limit of instability of the individual
plate-springs. For a certain magnitude of the force the stiffness of the
plate-spring in the direction of the y-axis will be equal to zero and a

small increase of the force will lead to large deflections.
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The limit values for the loading force Fy for these two cases can be esti-

mated as
Gl (e, S v del 5 B iy~ nz
% Z
2 9 (5.8}
ba® ¢ >izeros: F oK e8" == 4eq
u Y Sz

(Values for loads applied to one plate-spring.)

Similar effects will be noticed when loading forces in the direction of
the z-axis are applied. In this case the stiffness c, of the mechanism and
the stiffness c, of the plate-spring may become equal to zero.

When the force F, is applied to the slide at the center of the mechanism
(point P in fig. 5.2) the following estimate for the force at which the

driving stiffness c, will be equal to zero can be used ( 1it.Ll)
2
E *i &/ K *K =% 16
z Z2 oy
(value for one plate-spring)

As discussed in chapter 4 such results are applicable only for long and
slender beams. For plate-springs where the width is not small compared to
the length the influence of the '"constrained warping" at the clamped ends
will have a considerable influence. Expressions which describe the magni-
tude of this influence are not readily available. The influence of the
constrained warping may be accounted for by including a multiplication
factor N in the corresponding expressions which have been derived for long
and slender beams. Thus the following expressions are obtained

AR C RN FO S ST '12'V KisKimaee i 016 Seii)
2 ZE 1

2
Bal CL > ZEero .3 Fz-k oy KZ-KY e e ey O KZ (5.9)

(values for one plate-spring)

The coefficients, 16 and 28, have been derived by Prandtl (Pl). Expres—
sions for the factors xl and kz are not available. For a plate-spring
loaded at 1its free end (see fig.4.4) Timoshenko (Tl) has derived an

expression for A . His result may be used to obtain the following table of

approximations for Rl (for a plate-spring material with Poisson's
constant equal to 0,3) q

e 20 10 8 6 4 2

K1= 1,05 1,10 157152 1,16 1,29 156

= A =

Application of the loading torque Mx may also lead to instability in the
mechanism. In this case the stiffnesses c, and c¢ will both become equal
to zero at the same value of the loading torque. The folowing expression
may be derived for this case

M o8/ K_eK_ =& 2emeh, (5.10)
X Z e )
(values given for one plate—spring)

No expressions for the factor k3 are known. It may be assumed that the
order of magnitude of the influence of the constrained warping is similar
to the one observed for application of the force F,. Derivation of more
accurate expressions for the magnitudes of the critical loads may be an
interesting subject for further research.

As was mentioned it may in some cases be desirable to obtain mechanisms
with driving stiffness c equal to zero. This may be realized by loading
of the slide. When a force Fy is used the required load is only 25% of the
load at which the mechanism will collapse (cy equal to zero). In case of
application of F, about 55% of the critical load should be applied and
when application of the torque M,  is used the load will also lead to
instability in rotation of the slide around the x-axis.

To obtain an impression of the influence of combined application of a
force F, and a moment M, the occurrence of plate-spring instability, limit

case b., has been measured at a plate-spring clamped at the two ends. The

results of these measurements are shown in figure 5.7.

When the slide is loaded by a moment around the z-axis the plate-springs
will be loaded by a tensile and a compressive force respectively. In this
case plate-spring instability may occur when the compressive force exceeds
the limit stated in expression (5.8b). Similarly around the y-axis will
cause loading forces inth direction of the z-axis and instability in the

mechanism may be estimated using expression (5.9).

In many cases the loading capacity of the parallel guiding will not be
governed by considerations about the plate-spring instability. They are in
most cases relevant only as a safety limit. During operation the allowable
loading of the slide will be determined by considerations about the influ-
ence on the relation between driving force (F,) and displacement, u, or
about the deviations from the desired motion or position. Such influences

of the loading forces will be studied in the following sections.
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Figure 5.7 Applicatioﬁ of a force F, to the plate-spring at a distance a from
the centre 1s equivalent to a force F, and a moment M,= a'FZ
applied at the centre. Buckling loads FZ have been measured as a
function of a for a plate-spring with dimensions 80x20x0,25 mm.
The results may be compared with calculated results from
expressions (5.9) and (5.10).
When the force 1s applied close to the center the magnitude of the
limit load 1is best predicted by expression (5.9b). At large
distances from the center the moment M, will become most important

and the limit load may be estimated as,

F g Hx crit
Za a
where Mx crit Mmay be estimated using expression (5.10b)

When the guiding mechanism is subject to varying loading forces or vibra-
tions from the surrounding structure resonance may occur. Resonance of the
slide of the mechanism on the supporting plate—springs can be estimated
when the stiffnesses of the plate-springs in the supporting directions can
be determined. A separate resonance problem occurs for the plate-spring
itself. A plate-spring clamped at two ends can exhibit a vibration in the
shape as indicated in figure 5.8. A range of higher order resonance mode-
shapes will exist at higher frequencies. The lowest résonance frequency,

with the shape of vibration of figure 5.8, can be calculated as (lit.T3)

1

e e 11
VA

where m is the mass of the plate-spring.
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Figure 5.8 Under 1influence of dynamlc loading forces vibrations of the
clamped plate-spring may occur. Using the expressions for the
lowest natural frequency, mode shape as in (a), and the maximum
stress in the plate-spring of a parallel guiding an expression
relating the maximum deflection of the slide and the resulting
natural frequency can be obtalned. From this expression, see fig.

(b), it may be concluded that application of plate-spring parallel

guldings will in general be restricted to small deflections.

Combination of this expression with the result for the maximum bending

stress in the plate-spring mechanism leads to the following relation

o

e __?LL_& (5.12)

max Eep

where p is the density of the plate-spring material.

When it is desired that this resonance frequency 1is above a certain value
the maximum allowable deflection of a plate-spring, independent of the
dimensions is determined by the three material properties, allowable
stress, Young's modulus and density.

In figure 5.8 the resulting maximum deflection for a certain combination
of material properties is shown as a function of the desired frequency

limit.
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5.3 Force-displacement characteristic ; -linearity.

It may be expected that the linear relation between the driving force, F,,
and the deflection of the parallel guiding is valid only for very small
deflections. The following three factors responsible for noticeable devia-

tions from the linear relation will be discussed,

- Geometrical effect.
— Anticlastic curvature.

— Internal stresses in unloaded state.

For small deflections the relation between the driving force and the dis-
placement is described by a linear relation as given in (5.1). This
expression is obtained with the linear beam theory where the displacement
v of the end of the spring is neglected. When the displacement of the
slide increases this movement of the end of the spring is given by expres—

silon 5205

This "shortening" of the plate-spring is the first factor that causes a
deviation from the linear force-displacement relation. To estimate the

magnitude of the non-linearity the deformation of one half of the spring

loaded by a force F, may be determined. Due to symmetry of the construc-
tion the other half will deform in a similar way. This case of loading has
already been discussed in chapter 3. The equation governing the bending of
the spring is

QE%EL == Kz.Fx.( L= RsE LRV (L) = Ly (st 5:13)

When the first estimate for v(s) is v(s)= 0 the shape of the plate-spring

can be determined. This will yield the linear—beam result and the follo-

wing expression for ¢(s) is found

o(e) = - 2L 3.p - 3.2 (5.14)

where & = %

With this expression a new estimate for the displacement v(s) can be

obtained

2
S D 38 9k 9 s
e e i) e~ o o e
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Substitution of this estimate in (5.13) and subsequent integration leads
*

to the following expression for ¢ (s)

2 u(l)>2§ 1

1 .4 ie5 =6
B = 3R ERRC et - S s

# 2 1
p (8) ==k oanve] Je- -

(5515

To obtain a relation between the displacement u(f) and the force Eo u( 2)

can be determined with

u(l) = —OI£ sin ¢(s) ° ds = -Ofl C o(s) - %*@(5)3 2p OO0 Ol
516y

To obtain only the terms upto the third power of u(2) this expression may

be replaced by
W == [ 0T - geate)’ ) - as (5.17)

where the first estimate of the shape of the plate-spring, expression
(5.14), is used to estimate the higher order term for ¢(s). Substitution

of (5.14) and (5.15) and integration leads to the following result

N Fe S SO S ) )
(O =0 o ol o ey = e (o) ) gg-( 7 ) “eu( L) (SR8
which can be written as
155 9_(U§2))2
o 3eu(h) = { 35 2 } (5.19)
X 3 giv al 30
K & 1 = ==s( )
Z 35 L

which expression can be used also for the complete plate-spring when the
factor 3 is replaced by 12. Apparently there are two factors contributing
to this geometrical unon-linearity. The largest factor, due to the displa-
cement v of the point of application of the force Fz, is represented in
the denominator of (5.19). The other factor contributes one quarter of the
non-linear effects, for small deflections, and is due to the third order
term in expression (5.17). This factor 1is present in the numerator of

(5.19).
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This result is graphically represented in figure 5.9. It can be seen that

the procentual increase of the required driving force 1s almost equal
UCDAN 2

to 100¢( S Nt e

s L uge)
1,15
P
1.10. _X"_
1,05
; 0 :;1 0,2 0.3 u()
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Flgure 5.9 Due to the geometrical non-linear effect the driving force F,
required to obtain a certain deflection u(f) 1s larger than
predicted by the linear-beam theory. Expression 5.19 can be

written as,

2
F,o=6" Azl u(ﬁ)
K f
z
u( )
In the graph the magnitude of 6 as a function of n 1s shown.

The second factor influencing the linearity of the relation between the
driving force and the deflection is caused by the influence of the con-
traction in the plate-spring material as was discussed also in chapter 3.
When an element of the plate-spring is loaded by a bending moment this
will result 1in tensile and compressive stresses. Due to the contraction
effects the width of the spring will be reduced at the surface where
tensile stresses are present and increased due to the compressive
stresses. As a result the shape of the cross-section will change as indi-

cated in figure 5.10.

Such contraction effects, the magnitude of which is depending on Poisson's
constant, may develop fully in beams with cross-sections as shown in
figure 5.10. In plates however where the width b is large compared to the

thickness, h, the full development of this effect would cause a large

SRIO0E=

Figure 5.10 When a rectangular beam 1s bended to a curvature with radlus R
tensile and compressive stresses will be present in the upper and
lower half of the cross—sectlon. Due to the occurence of the

transverse strains the cross-section will be deformed and the,

originally straight, upper and lower boundary will be curved with

a radius o] where v is Poisson's constant.

change in the shape of the cross-section. Consequently the bending stiff-
ness of the cross—section would increase considerably. As described by

different authors and summarized by Dijksman (D1) this large deformation
of the cross—section will not occur and the increase of the bending stiff-
ness 1is limited to a factor (1--\12)—1 , where v is Poisson's constant.
Di jksman describes the variation of the bending stiffness in the transi-
tion region from bending of beams to the bending of plates. It appears
that the bending stiffness should be multiplied by a factor ranging from 1

il
to (1=v ) .This factor is a function of the parameter

el d6(s) (5.20)

For different values of Poisson's constant the magnitude of the multipli-
cation factor as a function of p is shown in figure 5.11.

From the graphs it is clear that even very wide plates will have a bending
stiffness equal to T% 'b~h3 for very small curvatures. For the plate--
spring mechanisms this will result in a low stiffness for small deflec-
tions and an increasing stiffness when the plate-springs will become more

curved.

For the plate-spring parallel guiding the following relation between the

maximum curvature and the deflection u(&) can be derived

( do(s) o ge R (5.21)
ds max 12
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Figure 5.1l Due to the transverse stresses In bended plate-springs the
magnitude of the bending stiffness B will be a function of the
dimensions of the cross-sectfon and the local curvature of the

beam. The magnitude of the bending stiffness may be determined as,

In the graph the factor Qp is shown as a function of the parameter

p for three values of Polsson's constant.

(Note : The vertical scale starts at Qg = 1 )
(This effect has also been discussed in para.3.4, flg.3.4)

The magnitude of the influence of the increase of the bending stiffness is

related to the maximum value of the parameter p given by

2
2 - DS u()
pmax =2b hel 0 (5.22)

The magnitude of the parameter p will be varying along the length of the
plate-spring. The compliance factor K, will thus be a function of the
parameter s. This function will be governed by the complex expressions
given in chapter 3 which are graphically represented in figure 5.11. The

resulting differential equations will be difficult to solve analytically.

=Rl —

With numerical methods however it 1is possible to find solutions for the
differential equations and to estimate the influence of the contraction on

the force-displacement characteristics.

Result’s of such numerical analysis are shown in figure 5.12. As in figure
5.9 the increase of the required driving force relative to the magnitude
predicted by the linear beam theory is shown. Results are shown for diffe-

u<§) . Here

2l
rent values of the geometrical factor b .y 25 @ function of

the result from the iterative—analytical method, expression 5.19, is also

geometrical
1,054 5
; /
0 0,1 0,2 0,3
e [

2

Figure 5.12 The occurence of transverse stresses in the plate-springs of a

parallel guiding will give rise to an increase of the required

driving force F,.

As in flgure 5.9 the magnitude of Fy 1s determined as,

FX Zim e lZ-u(i;

Kz'l

For different plate-spring geometries the magnitude of the
factor 6 as a function of u(f)/2 is shown. For very narrow plate~
springs the non-linearity will approach to the effect of the

geometrical non-linearity (curve A ), as in figure 5.9.

(The (Indicated results were obtained by way of numerical

integration techniques, the calculated points have been

indicated).
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given and 1t 1is seen that for narrow beams this gives a reasonable
approximation. For wider beams however the non-linearity of the relation
between F, and u(l) is mainly determined by the influence of the contrac-

tion effect.

The third factor influencing the linearity of the relation between the
driving force and the displacement results from internal stresses in the
construction when no external loads are applied. In the design shown in
figure 5.1.I the two plate-springs are together determining the position
of the slide in respect of six degrees of freedom. Still there exists a
freedom of the slide to move in the direction of the x-axis. This means
that one degree of freedom is determined twice. For the parallel guiding
it can be seen that the rotation of the slide about the x-axis is fixed by
each plate-spring. Upon assembly or during operation, due to thermal
effects or plastic deformation, this over—determination of the position

may lead to internal stresses in the construction.

Due to these internal stresses a certain amount of deformation energy will
be stored in the different elements of the plate-spring parallel guiding.
As the stiffness of the plate-spring against rotation about the x-axis
will vary upon displacement of the slide the magnitude of the stored ener-
gy will change. This variation of the elastic energy in the construction
will influence the relation between the driving force and the slide dis-

placement.

When an angular misalignment of magnitude A¢ is present in the plate-

spring parallel guiding the stored elastic energy, W can be estimated as

0

(5524)

Here c¢ is the stiffness of the plate-spring against rotation about the x-
axis and ce is the stiffness of the slide and foundation against this
rotation. When the slide is moved along the x-axis the required driving
force is changed by an amount, AFX , due to the variation of W, as a func-

tion of u. This variation can be calculated as

dwo 1 2 d
AFX TG 7 S

©
tot
du( £)

(5325)
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The stiffness ce of the slide and foundation can be assumed to be indepen-—
dent of the displacement. The stiffness of the plate-spring will be redu—
ced when the displacement increases and therefore AFy will be negative.
For the parallel guiding of figure 5.1.1 the stiifnesé, C¢ , of a plate-

spring will be determined in paragraph 5.5. The result obtained there is

e
c, = = (5.26)
b b, 2 L 3
Y oge( 1+ anDZEL
h L
1 3 (1+v) . :
where Iy = TE'-h-b and a = e Ca is a constant depending upon the
geometry of the plate-spring (see expression (5.47)).
Using this expression leads to
1
EsL
NS W - A BT
AF = =2 (Ag) " su( L) +a (h) 3 ( 2+ Z_a.(g)z_(u 2])2+ X )2
5 h £ cf-l
(5.27)

Combined with the linear beam theory estimate for the driving force this
results in the following expression for Jizy for the plate-spring guiding

with two springs

1
" 3 - o o B 2,b 4_ EeI
P, Kool =iahntedl = oo Ga SHGED 2ean(Ry2. A2, x )2 }
(5.28)

In this case the stiffness Cy of the slide is reduced most when u( 2)=0.
For general designs the stiffness cg of the foundation will be large
compared to the stiffness of the plate-spring. In that case the relative
decrease of the stiffness C o ttor u.= 0 can be estimated as
a 2 b.4

Acx = ( T Ay e (h> ) (5.:29)
For a plate-spring with length of 80 mm, width of 20 mm and thickness of
0,25 mm, the value of a is about 0,1 and a 4 percent decrease of the

stiffness c, will occur when Ad equals about 0,7*10—3

rad., which is about
equivalent to an internal torque of 140 Nmm. When assembly of the guide 1is

not done carefully such values of the torque are certainly to be expected.



When the slide-displacement increases the influence of this effect will
decrease rapidly which causes a marked non-lineartity of the force-displa-
cement relation. As in figure 5.12 the effect can be shown graphically.
This is done in figure 5.13 where the relative magnitude of AFXcompared

to the driving force according to the linear—beam theory is given for the
plate-spring described above. From the graph it is clear that serious non-
linearity may be expected in this case.

The influence of this effect can be reduced in two ways. When the ratio
of width to thickness is reduced, from wide to narrow plate-springs, the
influence of an angular error Ad is decreased.

Decreasing the width of the plate-spring from 20 to 5 mm reduces the maxi-
mum influence from ten percent to about one-tenth of a percent. Unfortuna-
tely this will simultaneously reduce the ratio between guiding stiffness,

Cyo and the support stiffnesses c, and ¢

.

b

Another way to reduce the influence of the over—determination of the slide
position is to decrease the stiffness of the slide and foundation, cg-.
From expression (5.28) it is clear that the decrease of the stiffness and
the non-linearity will become very small when cg << EI, . This can be

achieved by incorporating an elastic element between the clamping pieces

in the slide or the foundation. Different examples of possible construc~
tions are shown in figure 5.14. In this case the over-determination of the

slide position is avoided and non-linear effects can be reduced.

The influence of the over-determination of the slide position will be even
more noticable in the construction of the parallel guiding shown in figure
5.1.1T. Here four plate-springs are used to guide the slide. Consequently
twelve degrees of freedom of the slide are fixed which leads to a seven-
fold over-determination. Such mechanisms will be hard to assemble without
internal stresses. To reduce this problem the four plate-springs will
generally have a relatively small width. Therefore each plate-spring will
only have a large stiffness in the direction of its axis, the y-axis
direction. With the four plate-springs four degrees of freedom of the
slide are thus determined with a large stiffness. Unfortunately these four
degrees are not independent and in this construction the rotation of the
slide around the x-axis is determined twice. Such parallel guidings will
generally have a relatively low stiffness in the direction of the z-axis

and against rotation around the y-axis.
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Figure 5.13 Three different factors are influencing the non-linearity {in the

force-displacement
guiding. In addition to the geometrical
stresses {in the
influence. For a guiding with two springs,
internal torque of
force as calculated by the linear-beam theory should be multiplied
by a factor 6 as shown (see fig. 5.9). It can be seen that this
effect decreases the stiffness of the parallel guiding.

In combination with the result from calculations with numerical

integration techniques, (see

a large range of varlation and non-linearity results

dimensions.

overdetermined construction

fig.5.12), the line with the +-marks,

characteristic of a plate-spring
non-linearity internal
may have
80x20x0,25 mm, and an
140 Nmm at the neutral position the driving

u(fL)

parallel

a large

for these
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plate-spring

Figure 5.14 The over-determination of the position of the slide in a parallel
guiding can be removed by adding an extra internal degree of
freedom in the slide or foundation. This degreec of freedom could
be realized using a torsion hinge (a) or as a slide with a shape

that has a low stiffness against rotation about the x-axls (b).

As in this case the rotation of the slide, about the x-axis is over—deter-
mined the force~displacement characteristic will be 1influenced by the
internal stresses in the construction. Calculation of the influence of an
angular error Ad can be done as described for the plate-spring parallel
guiding with two plate-springs.

Instead of expression (5.26) for the stiffness of one plate-spring against
rotation about the x—axis the stiffness of a pair of plate-springs should
be used. When a, is the distance between the axis of the two plate-springs
in the direction of the z-axis and cy the stiffness of a plate-spring in

Lthe direction of the y-axis, this results 1in
I

8 T o )
el

A A
St ) z g2 2 2 (5.30)

e

Following the same analysis as before leads to the following relation for
S for the parallel guiding with four springs
1

asl
2 1 2 2 c
oK ef = ou o - (A —— . 2
F 'K +8"= 48eu, o Fa Al s ) D u(2) y2 4to 42 )}
h 700 e
where Cc is the stiffness of one pair of plate-springs when u(f) = 0.
(o]

Also in this case the stiffness of the parallel guiding is reduced around

the wundeflected postion. The stiffness will increase with dincreasing
deflection, which causes a non-linearity in the force-displacement charac—
teristic. This effect is reduced when the stiffness c¢ of the slide and
foundation is very small compared to the stiffness cg, of one pair of

plate-springs when the deflection is equal to zero.
Conclusion.

In this paragraph three effects causing deviations from the linear rela-
tionship between the driving force and the displacement of a parallel
guiding have been discussed. The resulting estimates of the additional
driving force, AFx » for each effect are shown in figure 5.13. The calcu-
lations were performed for a plate-spring with the following dimensions,

length: 80 mm, width: 20 mm, thickness: 0,25 mm.

For the contraction effects Poisson's constant was estimated to be 0,3 and
to calculate the influence of the internal stresses it was assumed that
the slide and foundation have a large stiffness compared to the plate-
spring. The internmal torque was estimated at about 140 Nmm which is about
20 percent of the buckling load for the plate-springs.

When the three effects are combined it is clear that a noticeable non-
linearity exists even for small displacements of the slide. The non-linea-
rity is much larger than expected from the geometrical effect alone. This
example may appear to give an extremely bad impression. It is of course
possible to reduce the contraction effect when more narrow plate-springs
are used. And similarly carefull assembly and handling will allow to
reduce the influence of internal stresses. In such cases the resulting
non-linearity may be about equal to the geometrical effect alone. Such
narrow plate-springs will however not be desirable when a high stiffness
of the guiding mechanism is required and it may be concluded that the
combination of a stiff guiding mechanism and a linear transducing element

is not easily achieved.
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5.4

Force-displacement characteristic ; —influence of loading forces.

When the slide of the plate-spring parallel guiding is subjected to diffe-
rent loading components the relation between the driving force and the
displacement u(f) may be influenced. In this paragraph the nature and

magnitude of these influences will be discussed.

Each plate-spring is suited to determine three degrees of freedom of the
slide position. Therefore each plate-spring will be able to support the
slide with respect to three loading components. For each plate-spring
these loading components will be the forces Fy and F, and the torque Mx'
To determine the magnitude of these components for each spring when the
slide is loaded the equations for static equilibrium of the slide can be
used. A loading torque My acting upon the slide will thus cause loading
forces F, on each spring. Due to the over-determination of the slide posi-
tion however some of the loading components cannot be distributed in this
way. For the construction of figure 5.1.1 (two plate-springs) it 1s not
directly possible to distribute the loading torque M, over the two
springs. For the construction of figure 5.1.II with its seven-fold over-
determination this problem occurs for every loading component. Using con-
siderations about the symmetry of the construction and the fact that all
plate-springs are having the same stiffnesses it will be possible to
estimate the magnitude of the different loading components for each plate-

spring.

In this paragraph the behaviour of one plate-spring under influence of the
three loading components Fy, Fz and Mx will be discussed. The free end of
this plate-spring will be displaced in the direction of the x-axis while
the angular deformations of the end, ¢(R) and 6(L) , will be equal to
zero. To describe the loading of the slide all forces and torques will be
calculated as being applied at the point of symmetry of the mechanism as
indicated in figure 5.2. Forces applied at other points are decomposed
into torques about the axis of the coordinate-system with the origin in

the point of symmetry.

The force Fy will be the loading component having the most influence on
the stiffness c, of the plate-spring. Due to the kinematic behaviour of
the mechanism the free-end of the plate-spring will move in the direction

of the y-axis as a function of the displacement u(4) . This relation has

= 110 =

been given in expression (5.2) as

u(?

"(2):_%' 2

When variations of v(1&) are occuring energy will be supplied to the mecha-
nism by the force Fy. In first order approxlmation the displacement of the
slide will not be influenced by the force Fy and thus the magnitude of the

energy supplied equals

2 u(&)2

3
W= . = o
= v(R) 5 Fy 7

Due to the variations of this energy a variation of the driving force
needed to cause a deflection u(2) will occur.

This variation is determined as

ey AW . S RR64cH , u(r)
e SRR 2

And this will lead to the following relation between F  and u( 2)

A 2 2 u( ) : i i
i, O A="] 7 € AR 10 Fy KZ 0o (15-82)

For the stiffness ce for each plate-spring this yields

12 1 2
Gl 1L oF oK o8 ) @59 aR)
X KZ'XB (HoE 57 S

(Note: The force Fy is the force applied to one plate-spring.)
This result derived using considerations about the energy contained in the
plate-spring, may also be derived using equation (3.1). With the following

estimates for u(s) and v(s)

*
va(s)

=0
* 2
W(s) = upe( 30g” - 2080
where ul = Ei%l and E = % o

This leads to the following differential equation

! dz e Kz'{ = FX'/Q.'( 1 =SEd) ik MZ+ Fy-u(l)-( = 3.£2+ 2,5}3 ) }

(52349

This equation can be integrated yielding an expression for ¢(s). Using the
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boundary condition ¢(&) = O the torque M, can be eliminated and the follo-

wing expression for u(s) can be obtained through integration of the

expression for —¢(s)

20 1 15
u(i) =K, { FX'RZ'( %‘&2— é1E3) = Fy.kou(l>n(‘zu§ i B e e ) }

(€51:35)

And with this expression the result given in (5.32) is again obtained by

substitution of £ =1 .

To determine the influence of a force Fy applied to the slide of the
parallel guiding this expression is sufficient. Different measurements,
see for instance lit. Gl, have been performed and a good agreement has
been found. When the slide is however loaded by a torque M, each plate-
spring will be loaded by equal but opposing forces Fy. The linear
influence of Fy on the stiffness c, of each plate-spring will be equal but
opposite. Together their influence will be equal to zero and it is inte-
resting to determine the second-order effect of the loading force Fy on

the stiffness cy- Therefore the result (5.35) can be used to obtain new

estimates for v(s) and u(s)

V() =0
ok u( ) 2 3 122, L.3_l.4 i
Ul s G e e G e Tl SRR
where £ = HeK °12

y Yo

This leads to the following relation between Fy and u( 2)

2 . culy | R e 2
Bl c= 12 T ftiise £, = 3400 £, } (5.36)

As the magnitude of Fy should be limited to avoid the occurence of insta-
bility of the plate-springs the second-order term will generally be very

2 2
small.( F ¢K *& < 4em )
vz

The two remaining loading components, F, and M., will not have a linear
effect upon the stiffness c, as no displacement or rotation in these
directions are occurring due to the deflection of the slide. These loading
components will however cause torsional deformations of the plate-spring
and this will result in additional deflections of the plate-spring. In
chapter 4 it has been described how the torsional deformation can be

determined. Due to the effect of the constrained warping of the cross-

=] F=

section the influence of this loading components will be depending upon
the length to width ratio of the spring. Using the iterative analytical

method the following relation between F, and u(f) can be derived

F *K 8" = el " - Dol
ik 125 il =K Sk L isee (5.37)

The coefficient C; is a function of the length to the width ratio of the
spring and Poisson's constant for the material. The full expressions for
this coefficient are presented in annmex 5.I. In these expressions it

appears that C; is a function of the parameter p defined as

which may be written as

e e
= (5.38)

(1+v)

for plate-springs with bdh.

0 21,5 ° 43 64,5 86
——y,
Flgure 5.15 The two factors C; and C2 which determine the {influence of the
loading components F‘z and Mx upon the driving stiffness ¢y of the
parallel guiding, given in expressions (5.37) and (5.39), as a

function of the parameter p and the length to width ratio for a

materfal with Polsson's constant equal to 0,3.

For eIxtremely long plate-springs C; and C2 will be equal to—l—
and 50 respectively. e
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In figure 5.15 the relation between this parameter and the coefficient Cl
is shown. In this figure the relation between Cl and the length to width
ratio for a material with Poisson's constant equal to 0.3 can also be
determined. It should be noted that for this loading case the force FZ is
not applied at the end of the plate-spring but halfway the length of the

plate spring.

When the plate-spring is loaded by a torque M,  similar results can be
derived. For the relation between the driving force and the resulting

displacement, for one plate-spring, it holds

u( ) 2

2

2 2
T el o= 100s e K, M”27 C, I (5.39)
Where the coefficient C2 is equivalent to Cl in (5.37) and can be determi-
ned using the expressions given in annex 5.I. This factor can be determi-

X
ned, as a function of P or /b s, from figure 5.15.

As the force F, and torque MX are applied at the middle of the plate-
spring, the point of symmetry, their influences may be simply added when a
combination of the two loading components is applied. For such cases the
following relation can be derived,

7

TR (B A BT o)
o s ey i o Ky +¥ (FE st S o) ) (5.40)

1
When the loading force Fz is applied to the end of the plate-spring, as
shown in figure 5.16, the relation between the driving force and the dis-
placement can be obtained from expression (5.40).

In figure 5.16 the resulting expression is given and represented graphi-
cally. Also in figure 5.16 this result is compared with results from mea-
surements of the stiffness of a plate-spring parallel guiding. As in chap—
ter 4, figure 4.11.C a reasonably good agreement between both results is
obtained. At larger values of the force F, increasing differences are
observed. This may be due to the contribution of higher order effects or
may result from the presence of internal stresses in the over-determined

construction of the guiding.
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When the loading force F, is applied to the slide at the end of

the plate-spring the following relation between Eg andSuGr)Sis

found,

el )
O = 5

L
1 - KzoKy'Pz 2" . (C; + 1C))).

Measurements of this effect have been performed on a guiding with
spring dimensions 80%20%0,18 mn.

The obtained results are presented together with the expected
theoretical result.

The differences found for larger values of the force F, may be due
to higher order effects which were not accounted for 1in the

derivation or may be resulting from {internal stresses 1in the

plate-springs as no steps were taken to remove the over-—

determination in the mechanism.
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From the expressions, presented in this paragraph, it is clear that varia-
tions of the loading of the slide will cause variations in the relation
between the driving force and the resulting displacement. From expression
(5.36) it can be concluded that application of the driving force at the
slide as in figure 5.17 will not result in a large non-linearity when the
distance between the plate-springs in the x-direction is of the order of
the plate-spring length. Application of the driving force under an angle
with the x-axis will not have a noticeable influence on the linearity of
the relation between force and displacement when this angle is less than
0,1 radian ( 5°).

(It might even be considered to vary the angle o as a function of the
deflection of the slide. When the driving force is always applied along
the tangent to the trajectory of the point of application the geometrical

non-linearity as predicted by expression (5.19) will be reduced.)

Figure 5.17 To avoid additional loading components on the plate-springs the
driving force F, should preferably be applied at the point of
symmetry, P, of the mechanism. With the expressions given in this
chapter the effects of application of F, as shown here may be
calculated. In most cases the resulting effects are negligible,

even when the force is applied under a certain angle a with the x-

axls.
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5¢5.

Guiding stiffnesses.

When the slide of a plate-spring parallel guiding 1s subjected to loa-
ding forces and torques two effects will be noticed. At first the
stiffness of the guiding in the direction of motion, c,, will be
changed. When a certain driving force is applied the deflection will
change upon application of the loading forces and torques. This effect

was discussed in the previous paragraph.

The second influence of the loading of the slide is that other deflec-
tions of the slide, not along the desired track, will occur. In accu-
rate guiding mechanisms it will be desired that such deflections will
not exceed certain limits. Therefore requirements about the stiffness
of the guiding mechanism 1in directions other than the direction of
motion must be satisfied. Also when resonance of parts of the guiding
might occur, under the influence of varying loading forces or torques,
it will be desirable to be able to determine the different "guiding"

stiffnesses of the mechanism.

One degree of freedom of the slide in the parallel guiding is intended
to be free. So there are five degrees of freedom which are fixed with a
relatively high stiffness. There are five different stiffnesses of the
guiding to be determined. These stiffnesses are obtained through combi-
nations of the three stiffnesses of the three degrees of freedom that
are fixed by one plate-spring. In this paragraph these three stiffnes-
ses of one plate-spring, deformed as in the plate-spring parallel gui-
ding, will be derived. Through combination of these stiffnesses for the
two or more plate-springs the five guiding stiffnesses of the mechanism

may be obtained.

Of the free cnd of a clamped plate-spring the deflections in y- and z-
axis direction and the rotation around the =x-axis are fixed with a
relatively high stiffness. The behaviour of the plate-spring in these
directions is similar to that of a combination of three supports with a
certain stiffness. These three supports, shown in figure 5.18, are
fixing the same degrees of freedom. To describe the behaviour of the
plate-spring it is therefore sufficient to obtain expressions for the

magnitudes of the three stiffnesses c c, and ¢ as a function of the

y)
plate-spring dimensions and the deflection of the slide of the parallel
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guiding. The two stiffnesses ¢, and c¢

mine the stiffnesses and the positions of the two supports 2, and z, in

figure 5.18.

=Rl 8o

may then be combilned to deter-

Flgure

5.18

To determine the behaviour of a plate-spring parallel guiding
under influence of different loading forces each plate-spring (a)
may be replaced by an equivalent mechanism (b) containing three
helical springs (b). The two springs z) and z, have the same
stiffness and are placed at equal distances from the mlddle of the
plate-spring. The three stiffnesses and the distance ay may be

determined with the expressions derived in this paragraph.

Determination of the stiffness Cy can be done using the differential

equations given in expression (3.1). Using the iterative-analytical
method solutions for these equations may be obtained. With suitable
first estimates for u(s) and v(s), as in expression (5.34), an estimate
of the angular deformation is obtained. A new estimate of the deflec-
tion of the end of the plate-spring in the direction of the y-axis is
than obtained with

w2 = -5+ [* (o)) eds

1
2

When only linear terms in the force Fy are considered this leads to

2
v() 3 n() 82 e 1 ()
Mt s LR S (5.41)

The first part of this expression is the kinematical deflection as
given in expression (5.2). This part is not a function of the loading

force Fy. The first order estimate for the stiffness Cy would thus be

700

- = ( Kz'l'u(l)z) (5.42)

In addition to the deflection calculated here, which is due to small
variations of the bending shape of the plate-spring, a deflection due
to pure tension will occur. This effect will not always be negligible.
When the deflection of the slide is equal to zero the stiffness of the
guiding mechanism is fully determined by the influence of the tensile
stresses as the deflection v(&) predicted by expression (5.41) will

also be equal to zero. Thus expression (5.41) should be replaced by

Al

2
Bl : 1 e
e i ( dE g ) (5.43)

Eebeh z 100
In this case the compliance ‘K, can be estimated as IZ/E.b.h3 and the

following expression for c_ is obtained

y
Eebeh .
o w2t { D 7%% ot ugig )2 } (5.44)

It is clear that for small deflections this stiffness is determined by
the tensile stiffness as determined with Hooke's law. For deflections

of about seven times the plate-spring thickness the bending effect will

contribute an equal part to the total stiffness.
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Figure 5.19 Results of measurements of the deflection v(2) due to the loading
force Fy applied to a plate-spring with dimensions 80%20%*0,25 mm.
Results are shown for different values of the deflection u(l) of
the plate-spring.
It can be seen that variations of this deflection does not

directly influence the magnitude of the second-order buckling

force.The stiffness Cy however decreases with 1ncreasing
deflection u(f). (The theoretical value of the second-order

buckling force for this spring is -33,7 N.)

This expression for the stiffness has been obtained with different
methods. The result has been experimentally verified by Grentzius (Gl).
To perform measurements of the deflection v(&) for larger values of the
force Fy a special measuring set~up has been developed. This set-up
will be described in chapter 8. A resulting graph of the deflection
v(2) as a function of Fy is shown in figure 5.19. From this graph it is
clear that expression (5.44) only gives information about the tangent
to the curve for Fy equal to zero. This was to be éxpected as only
linear terms in the loading force were considered. Depending upon the
required accuracy expression (5.44) may be used to a certain magnitude

of by'

Higher order expressions for v(&) can be obtained by subsequent itera-

tive steps in the iterative analytical method. Using terms quadratic in

the loading force Fy will result in

2

2
v enin s en( 1) 82 L 1 - u( ) h )
1 TR e lasrn I Sl s (E sl

(5.45)

This result 1is compared with a result from measurements in figure 5.20.
In this figure the result from the quasi-linear beam theory for this
case is also given. Expressions for this case were derived in litt.(Nl)
and (E2). As discussed in chapter 3 the result from the quasi-linear
beam theory is a rather complicated expression and application of this
result is done with the help of graphs or tables. The expression (5.45)
will in many cases be suitable to obtain an estimate of the stiffness

c, of a plate-spring in a parallel guiding.

g
The guiding stiffness c can best be determined about the x~axis indi-
cated in figure 5.2 passing through the center of the plate-spring.
When a force F, is appiied at the point of symmetry of the construction
(figure 5.2) the symmetry of the loading of the plate-spring will
assure that the rotation of the free end about the x-axis will be equal
to zero. Thus the force F, will cause only a deflection w(R) of the
slide and a torque M, only a rotation, ¢(&) ,about the x-axis. Determi-
nation of the stiffnesses c, and ¢ can be done with the iterative-
analytical method. Due to the symmetry the analysis could be performed
on one half of the plate-spring as in chapter 4. Analysis of the beha-

viour of the complete spring will yield equivalent results.

‘Using the methods described in Annex 4.1 the following relations

between Fz and w( L) and between the torque M, and the

rotation ¢(L) have been derived

K,
D e AL 2
F K 00 = 12e Tas e o i son oo 2l
X Vies L
: z } (5.46)
M oK % = ¢(R) ° WD .2
Ve T ( Kx + Ky.c4.(__I_) )

where Cq and C, are coefficients which are a function of the length to
width ratio of the plate-spring and the Poisson's constant for the

material. With the elementary estimates for the compliances
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Figure 5.20

Comparison of results from measurements of the stiffness cy of a
plate-spring with different calculated results. Two graphs, for
u(2)=0 and 3 mm., from figure 5.19 are shown. ¥or u(2)=0 mm. the
measured deflection can be compared with the deflection according
to Hooke's law. The measured result for u(2)=3 mm. 1is compared
with the Ffirst and second order iterative results and with the
result from the quasi-linear beam theory.

For small loading forces the first order iterative result gives a
reasonable estimate of the stiffness Cye The result from the
quasi-linear beam theory ylelds an excellent agreement with the

measured result.
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the stifnesses c, and c¢ are determined as
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(5.47)
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When the deflection u(f) of the slide is small these stiffnesses are
mainly determined by the bending deformation of the plate-spring about
the x-axis. For larger deflections the stiffnesses will be reduced due
to the increasing influence of the torsional deformations. As for the
tensile stiffness in the expression for Cy the effect of the shear
deformation of the plate-spring may be added in this expression. For
relatively short plate-springs,(f < 4°<b) , and small deflections this
effect may become dominant and the additional deflection may be calcu-

lated with
Aw( L) = FZ R

Expressions for the constants C; and C, are given in Annex 5.I. To
obtain an impression of the magnitude of these constants they are pre-—
sented graphically in figure 5.21. For different shapes of the plate-
springs the magnitude of the stifnesses c, and ¢ as a function of u(f)

is shown in figure 5.22.
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Figure 5.21 The magnitude of the factors Cqy and C, as a function of the
parameter p and the length to width ratio for springs of a

materlal with Polsson's constant equal to 0,3.

For extremely long plate-springs C3 and C; will be equal toz—;-

and gl respectively.
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Due to vartation of the slide deflection the stiffnesses cd, and c,
of each plate-spring will decrease relative to these stiffnesses
for the undeformed plate-springs. The ratio between the actual

stiffnesses and those for u(2)=0 mm. 1s shown as a function

u()

for different length to wldth ratios of the plate-spring.
(For plate springs wlth%= 2 the influence of shear deformations

will have a noticeable effect and should not be neglected.)

The expressions derived for the guiding stifnesses of the plate-spring,
when deformed as in a plate-spring parallel guiding, can be used to
determine the properties and the position of the three helical springs
in the equivalent mechanism shown in figure 5.18. It will be clear that

the stiffness of spring Y should be equal to c, as given in expressions

¥
(5.42) or (5.45). For the springs Z1 and Z2 the sum of their stiffnes-—
ses should be equal to c - Due “to the symmetry they should be posi-
tioned at equal distances along the y-axis from the point P at the

middle of the plate-spring. The total distance, between the springs

ay,
Z1 and Z2 can be determined from

To obtain an impression of the magnitude of a, the resulting values for

il
different plate-springs and as a function of the deflection u(f) are

shown in figure 5.23. It is seen that the distance a, does not change

¥
much for different situations.

With the expressions presented in this paragraph it is possible to
determine the guiding stiffnesses of plate-spring parallel guidings. It
may be usefull to apply the equivalent supporting mechanism as shown in
figure 5.23 to replace each plate-spring. As a result it will be seen
that the slide is supported by a system of helical springs, 6 for the
mechanism with two plate-springs and twelve when four plate-springs are
used. This representation will be wusefull to obtain a qualitative
understanding of the behaviour of the parallel guiding when different

loads are applied.
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Figure 5.23
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The distance ay between the two, helical springs 2y and zy in the
equivalent mechanism in filgure 5.18 depends upon the plate-spring
geometry and the deflection u( %) of the slide. The variations of

a for different length to width ratios and as a fuction
2
of U(h)

are Indicated.

5.6

Conclusion

On the basis of the characteristics of the plate-spring parallel gui-
ding discussed in this chapter some remarks about its suitability in
the different fields of application can be made. For application as a
transducing element (either force displacement or displacement—force)
the aspects of reproducibility and linearity may be of importance. As a
first remark it can be stated that it is not possible to predict the
stiffness c, of the plate-spring guiding with a high accuracy. The
linearity of the relation between the driving force and the slide
deflection is subject to different influences. The non-linearity due to
the geometrical effect is relatively small, 1less than 1% for
u() < 0,12 . The use of relatively narrow plate-springs and carefull
treatment and assembly may yield guidings with such non-linearity. In
most guiding mechanisms however more non-linearity, due to the anti-
clastic curvature and the presence of internal stresses, should be
anticipated.
With modern techniques for data-handling the non-linearity of the
force-displacement relation might be acceptable. The second important
factor is the reproducibility. In paragraph 5.4 it was indicated that
loading forces acting upon the slide may have a noticeable influence on
the force-displacement relation. When good reproducibility is required
care should thus be taken to avoid variations of the magnitude of the
loading forces. Another factor influencing the reproducibility may be
the occurence of hysteresis in the plate-spring material or in the
interface between c¢lamping and plate-spring. This effect will be
briefly discussed 1in Appendix A. There it will be concluded that a
hysteris, or uncertainty range for the position of the slide, of about
0,3% of the maximum deflection can be expected due to the internal

hysteresis in the plate-spring material.

These remarks are giving some indications about the posibilities of the
use of the plate-spring parallel guiding as a measuring element. In
such constructions the plate-spring mechanism is both a guiding and a

transducing element.
The second field of application is the generation of a motion that {is

reproducible and well defined. In optical systems it is common that

components need to be displaced over a certain distance while no para-
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sitic displacements and rotations are allowed. The motion of the slide
of the parallel guiding is a combination of two displacements, yielding
the curve indicated in figure 5.4. The deflection in the direction of
the y-axis is in many cases acceptable. When this is not allowable a
combination of two identical guiding mechanisms may be used. In these
cases the quality of the resulting kinematic motion, the absence of
parasitic displacements, is mainly determined by the accuracy of the
production of the parts of the mechanism. Machining the different parts
together and suitable jigs for mounting are helpfull in this case. With
proper care it will be possible to produce high-quality guiding mecha-
nisms, especially when the required deflection is small. An interesting

example of such a mechanism is described in 1lit. (H2).

The kinematic motion of the unloaded slide may be good, the influence
of loading forces on the slide position may cause untolerable deflec-
tions.

For such cases the quality of the guiding mechanism could be evaluated
with the expressions for the different guiding stiffnesses. To obtain
an 1impression of the quality of a guiding a suitable method is to
determine the ratio between the stiffness Cy and the stiffnesses cy and
e of the guiding. Due to the stiffness Cy certain forces have to be
applied to the slide and when equivalent forces are applied in the y-
and z-axis direction the deflections should preferably be very small.
As an arbitrary suggestion for the ratio between guiding and driving
stiffness the value of 1000 could be used. A much lower ratio will mean
that the guiding stiffnesses are very low. A higher ratio will lead to
a mechanism that will show less deviations from the kinematical motion.
With expressions given in this chapter the following relation between

cprandiesiand c, can be obtained

x y
S 1 }

- e R VTR
% Cno e e
LA, ] onvll
=B dot & Eodilet iy 3 u( R 2
<y ( b Pt Cy ( 5 ) ( 7 )

The dimensions of the plate-spring will generally allow to obtain the

desired ratio, 1000, for u(f) = 0. With increasing deflection this
ratio will decrease. For a steel plate-spring with £ = 4e¢b this limit
is reached for cy:cX for u()it= 0,24 % and for c icy when

u() = 06,098 .

This indicates that in most cases the stiffness c, will be most criti-
cal. For accurate guiding mechanisms it is therefore suggested to mini-
mize the deflection relative to the plate-spring length. From this
consideration it can be concluded that the restriction in the different
analytical methods to relatively small deflections does not interfere

with reality when accurate guiding mechanisms are to be designed.

Resuming it can be stated that the plate-spring parallel guiding is a
useful construction element when small relative displacements of parts
are required. For small displacement a guiding mechanism with high
guiding stiffnesses and a reproducible behaviour can be obtained with

simple elements and without high production costs.
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Annex 5.I. Analysis of plate-spring deformations.

The influence of the loading components FZ and M, upon the driving and
guiding stiffnesses is due to the torsional deformation of the plate-
springs. This influence can be determined with the iterative analytical
solution as was demonstrated in Annex 4.I. For the complete plate-spring

of a parallel guiding the following initial estimates can be used

* 2
6 (s) ==6+u, = (E-E)
wp e (308 - 2080) (5.1.1)

s u( )
where E = /X and u, = /R .

*
ut(shHF=

When the loading force and moment are applied with respect to the middle
of the plate-spring ( s = $¢2 ) the two loading cases may be analysed
independently and the results may be directly combined afterwards. The
force F, will in this case only cause a translation of the free end of
the plate-spring in the direction of the z-axis. The moment M, will only
the x-axis passing through the

cause a rotation of this end around

middle of the plate-spring.
- Influence of force F,.

The initial estimates for ¢(s) and u(s) may be substituted in the first

differential equation of figure 4.9. ,yielding

3
O ea)

B8 el a5 (5.1.2)
* 1 i *
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For this equation a solution 6(s) may be found of the following form

2 3 4
8(s) = Fz-Kyou(X)-JL-{ BSE o SFC A eER e, sE o

i e G (5E08)
s 2 22
where § = z—and = if"iiff . For plate-spring with a rectangular cross-—
Y
o ; n 2 24
section and b>h this may be approximated as p = e (1+v) .

=H1308=

The boundary conditions for the solution for equation (5.I.2) are
s=0 = 6(s) =0 and Qﬁgél =0
s

0 and Qﬁ%ﬁl =0
s

(55154)

2}
]

I

L > 6(s)

Using these boundary conditions the following expressions for the coef-

ficients a) - a, and A,B and C may be derived

R b 3, i
sitTr ) Py S
H B
33 = =2 S 84= 1 I A=-B-C |,
a =
1 a
B = © = 1
- ’ = (5°L.5)
GET pe( 1 - et

With these expressions the solution for 8(s) is determined as a function
of F,. The influence of the torsional deformation upon the bending
deformation, ¢(s) ,can be determined with the second equation of figuré
4.9, yielding the following expression

d‘i’g—:): K,o{ 8(s)eF_+( £~ ) P, HEEOe= L

2 (5:T.6)

where it 1is assumed that the forces are applied halfway the length of
the plate-spring.

This expression may be integrated to find the solution for ¢(s) . With
the boundary condition at the ends of the plate-spring the magnitude of
M, can be expressed in the other loading components. Subsequent integra-
tion will lead to an estimated expression for u(s) that contains the

influence E,

2
u( ) Kz-Fx.2 a
L 12
K oK -FZ-U(Q) -23°(— —l“A = 1-a - — =
ey 12 LEILE S ) T s B
B 1 2 1 B 2 Il 1
e (= of —= = =
u(u 5 e (2+“+4))+
2 B
@ 1 1 2 L 1 2
B m ot — o( — -+ -—=
Bt el e (5t
B i
Substitution of the expressions (5.I.5) will lead to the following
result
() 2 2 3
0= IZ'KZ'FX‘K el Ky'KZ'FZ'u(R) s iile CI .S
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The coefficient C; is only a function of the length to width ratio of
the plate-spring and the Poisson constant for the material. The follo-

wing expression for C; may be obtained

s S
Leinaas = 5 2
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= 24 e 3
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(5.1.9)
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For large values of the length to width ratio this can be approximated

as

1 i
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The expression for 6(s) can also be used to determine the deflection
Mw(2) of the slide resulting from the torsional deformation. According

to the equations in figure 4.9 this may be determined with

socn) = _f* ece)-48e) L g
() = f* secs) o ds

Using the estimates for the deformed shape , expressions (5.I.1), and

the solution for 6(s) , expression (5.I.3), the following expressions
for the additional rotation and deflection A¢P(L) and Aw(R) due to the

torsional deformation of the plate-spring may be derived

4
AP(R) = Ky-FZ-u(Jl)z-{ a, +a e SRR
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The loading force F, will only cause a deflection of the slide which can
be determined as

2
A L= FZ'KY"U(K) -l'CB

1 ] 96 . 57 1 24 . 288

h = —= SO O e LI £ (R SO

where C3 28+ 2+ Tt 6 (2‘u+ 3+ 5) iz
S p p P p =iz

and for large length to width ratio

6. L__L .21 26 96 288 576
55T 2 % et

This result may be compared with the result obtained in Annex 4.I. In

Annex 4.1 the parameter p is related to the length of half the plate-

spring and thus the following substitutions in the expression for

Aw(2) should be made for this comparison

* *
L= "2 s SAndE GO e (7)) A
With these substitutions it shows that the two results are only slightly

different. This difference 1is due to the difference in the boundary

conditions used for the two derivations.

- Influence of moment Mx‘

The determination of the influence of the moment M applied to the

plate-spring upon the deformations will be done in a similar way as for
the force F,. The initial estimates given in expression (5.I.1) will be

used to obtain the differential equation for 6(s)

5
dB(s) = e e () S R 2
T Ky Eel 3 = Ky ( -0 (s) MX + M ) 55T 15
ds Y

In this case the moment My applied at the end of the plate-spring is not

equal to zero and its magnitude will be obtained using the boundary

conditions.

The solution for this equation will be of the form
= ° ° e ° .2 .3 4
e(s)-MxKyu(Jz) {a1£+32§ Foa

¥ oA Beg B g (5.1.14)
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The boundary conditions for this case are identical to those given in
expression (5.I.4) and using these the following expressions for the

coeffients aj~a, and A,B and C may be derived

al = - Q1 = a2 =3 , ag = - 2 y a, = 0 - A= - B - C
=) Q
Bi= 4 , @ = - (5.1.15)
pe( eM 4+ 1) peC e¥+ 1)
where Q, = = e-u
4 1+ e—u + % o( e_“— 1)

The magnitude of the moment My may be determined from

My = Mx'u(l)-( a, - ° ay ) (55 1.16)

o
With this solution for O(s) the influence of the moment Mx upon the
deformation of the plate-spring in the x-axis direction can now be
determined. The second equation of figure 4.9 yields

dee) _ o ., I8 8 T R

ds 2

[STPS
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Upon integration and subsequent elimination of the moment Mz an expres-—
sion for the deformation ¢(s) is obtained containing the influence of 12,
and M. This expression may be integrated to obtain the following

expression for the deflection u(f) of the end of the plate-spring

3 12
+ %.(-i.( 1A ) %w( o ) s
+ ﬁ.( l“-( T sy +%-< Ef ety | (5.1,17)

Substitution of the expressions given in (5.I.15) will lead to the
following result
u( ) 1 2

2
e KZ Fx 2 o+ Ky-KZ Mx u( 2) *2<C

9 (5eT.18)

where the coefficient Cy may be determined as

and for large values of the length to width ratio this can be approxi-
mated as
S o 1
G St
B
Due to the application of the moment Mx the free end of the plate-spring
will be rotated around the x-axis passing through the middle of the
plate-spring. The contribution from the torsional deformation of the
plate-spring to this rotation, AY(L) ,may be determined using the esti-
mates (5.I.5) and the solution for O(s) , (5.I.15). This leads to the

following result

NGBl et T SOOI - 1051 it
(L) . M 1 { Ay kg e
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Substitution of the expressions given in (5.I.14) will lead to

2
i e (CLORE
AP(R) = Mx Ky N C4 E52T0 0
. 5 12
with C4 == a5 pz = Q1

For relatively long plate-springs this may be approximated by

i
5 = 7 2
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6.1

Chapter 6.

Cross—spring Pivots

Introduction.

Cross—spring pivots are plate-spring mechanisms that determine the position
of a body in respect of five degrees of freedom and allow for a limited
motion in the remaining degree of freedom. In this sense the plate-spring
parallel guiding, allowing for the parallel motion of the slide, may be
considered as a special case of the group of cross-spring pivots.

The two plate-springs of a cross—-spring pivot are positioned such that
their x-y-planes are parallel or coinciding. As a result the motion of the
body will, 1in first-order approximation, be a rotation around an axis
parallel to the z-axes of the springs. Under nominal operation the deforma-
tion of the plate springs is confined to bending about the z-axis, in the
direction with largest compliance.

Two examples of possible constructions of cross—-spring pivots are shown in

figure 6.1.

In figure 6.2 the principle of operation of the cross—-spring pivots is
explained. When observed in the direction of the z-axis each plate-spring
will fix the position of the body, or rotor, in the x-y-plane in the direc-
tion of its y=—axis. This situation is similar to the one found in bar-
linkage mechanisms and the observed motion of the rotor will be a rotation
around the pole, P. The relative position, length and other dimensions of
the plate-springs may be varied, the first order approximation of the
motion of the rotor will be a rotation around the point where the two cen—

tral lines of the undeformed plate-springs intersect.

As the plate-spring parallel guiding may be considered to be a special kind
of cross-spring pivot many of the effects reviewed in chapter 5 will also
affect the behaviour of the cross-spring pivots. The linearity in the rela-
tion between the driving torque M, and the rotation ¢(&) will be changed
due to geometrical non-linear effects, the influence of the anti-clastic
curvature and the presence of the internal stresses due to the over-deter-
mination of the rotor position. Different loading forces will both influ-
ence the stiffness ¢, and generate deflections of the rotor from the

¢

"nominal’ track.
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Figure 6.1

Two examples of the construction of cross-spring pivots.

For most general applications the planes of the two plate-springs will be
perpendicular as in these two constructions. Such mechanisms are called
“orthogonal cross-spring pivots". In most cases the two plate-springs will be
equal in dimensions and properties and the initial axis of rotation will be
positioned at equal distances from both the clamped ends of the plate-springs
(a). These mechanisms are refered to as "symmetric orthogonal cross—-spring
pivots". When the initial axis of rotation, or the line falling in both of the
planes of the plate-springs, divides the two plate-springs in two parts with
equal length (b) the mechanism is called, '"doubly symmetric orthogonal cross-—
spring pivot". It 1s this mechanism that is of most practical interest and
which has received most of the attention in earlier research.

(Figure taken from litt. (D1).

Figure 6.2
Each plate-spring will determine the positlon of its free end in the direction

of its y-axls (y; and y; in (a)) when only the x-y-plane is considered. This
situation is similar to the case of the four-bar linkage mechanism shown in

{(b). The motion of the both mechanisms 1s in first~order approximation a

rotation around the z-axis through the pole, P. In both mechanisms the pole
\\\\\iill be displaced when rotations occur.

In this chapter a number of the main properties of the cross-spring pivots

will be discussed.

This discussion will begin with a derivation of the '"nominal" behaviour of
the cross-spring pivots. This derivation will be based upon the assumption
that the cross-spring pivot is a mechanism with one degree of freedom of
which the motion can, in first-order, be considered as a rotation about a
known axis. Where other researches, 1lit. (Dl) and (Hl), use the equations
for static equilibrium of the rotor to determine the deformations of the
two plate-springs, the derivation given in paragraph 6.2 will calculate the
deformation of each plate-spring separately.

Finally the combination of the deformations of the two plate-springs will

yield a second-order approximation for the resulting motion of the rotor.

At the end of this chapter the influence of loading forces F, and torques
My and M, upon the behaviour of cross—spring pivots will be analysed.

The emphasis will be placed upon the determination of the resulting guiding
stiffnesses of the mechanism and no detailed analysis of the occurring non-—
linear effects will be given. As was concluded in paragraph 5.4 the combi-
nation linear

of plate-spring guiding and the transducing element for

measuring intsruments does not appear to be very succesfull,
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(a) (b)

Figure 6.3

The first—order estimate of the relative motion prescribed by a cross-spring
pivot is a rotation around an axis through the pole P.(a).

To calculate the contribution of each spring to the moment M, required to

obtain a rotation ¢ the deformation of one plate-spring may be estimated using

the equivalent mechanism shown in (b).

Nominal behaviour of cross—spring pivots.

The first property of interest in the study of cross—-spring pivots is the
stiffness ¢, against rotation about the axis through the pole P. Both
plate-springs will contribute to the stiffness. As the motion of the rotor
1s considered to be a rotation around the pole the contribution of each
spring can be estimated with the equivalent mechanism of figure 6.3b. When
the distance from the fixed end of the plate-spring to the pole is a.f,
where a 1is positive in the direction of the positive y-axis, the relation

between the angle of rotation ¢(2) and the end deflection u(f) will be

u() = (a=1) ¢ 2 ¢ sin ¢$(Q) (6,1)

The equivalent mechanism will only be applicable for small values of the

angle of rotation and the following approximation can be made

nEE= (A 1DE e ¢ e d(C0) (6.2)
The relation between the driving torque M, applied to the rotor and the

resulting rotation can be derived through estimation of the stored elastic
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energy in the plate-spring. For the shape of the deformed plate~spring with
certain values of ¢(2) and u(R) a general expression satisfying the end
conditions was derived in chapter 3, expression (3.6). Substitution of the

relation (6.2) into expression (3.6) yields
0(s) = 6(8) = { (4= 6ra)eE+ ( =3 + 6ea) g } ¢643)

s
h ==y

where g n

The energy stored in the plate-spring at a certain rotation ¢(%) can be

estimated as

2
a0 LY d 1 2 1 o
Ve =7t o R i s = e g 133 (6.0)
Z

Where K, is the compliance factor for the plate-spring (cf. 2SHE)S
As dwel = Mz°d¢(£) the following first-order estimate for the driving
torque MZ due to one plate-spring can be derived

M. K. L= 4. o(8) . (1-3a+3a%) (6.5)
The total stiffness of the cross-spring pivot will contain the contribution
from both plate-springs. Using the indexes 1 and 2 for each plate-spring
the total stiffness of the cross-spring pivot will be

1 2 }

1 2
‘———j}—’( 1 =3 a +3 a ) + Kzz'lz (1-3 a, +3°a2 )

Zis ol
(6.6)

This relation is valid for all geometries of cross—spring pivots, including
the - parallel guiding, provided that no buckling of the plate-spring will
occur due to the application of the torque. It will be shown that for all
possible geometries a suitable way of application of the torque can be

found.

The deformation of a plate-spring in a cross-spring pivot, the
rotation ¢(&) and deflection u(f), can be obtained through application of a
force Fy, and a torque M, at the end of the plate-spring. The magnitudes of
these loading components can easily be estimated as

4e0( R

M= (3

e
7 K 2 &
z

Ko -l
Z

°a) and F

[N [89)

s (D e g (62

i 3 L



For each of the plate-springs of the cross-spring pivots these '"nominal'
loading components can be determined. When the external, driving force or
torque is applied to the rotor in such a way that the equations of static
equilibrium for the rotor are satisfied, each of the plate-springs will be

loaded according the expression (6.7). In figure 6.4 this is explained

graphically. On the basis of this analysis the nominal loading condition

for arbitrarily shaped mechanisms can be obtained. For symmetrical cross-— [:—E‘::’

spring pivots this is further illustrated in figure 6.5. r K
n

I'Y\
h
()
M

()
Figure 6.4
According to expressions (6.7) each plate-spring in a cross-spring pivot may Figure 6.5
be deformed into the shape resulting from the first-order description of the A simple expression may be obtalned, using expressions (6.7) to determine the
prescribed relative motion by a force F, and moment M,.(a). The two sets of place where the nominal driving force F, should be applfed for symmetric
loading can be combined and is statically equivalent with one force applied at cross-spring pivots. In such mechanisms two plate-springs have the same
a distance from the pole P. (b). properties and the parameter a is the same for each spring.

For such mechanisms the distance ag (figure a) is related to the height hC of
the mechaanism by,

3a-1

Sl M T (63—3)
Under influence of the nominal loading forces no tensile forces, Fy’ will For the doubly-symmetric cross-spring pivot ,a = }, the force F, should be
be present in the springs. For these cases the maximum value of the inter-— applisdfation Mattnltetdistance S ThtsE tnplicateaStha iilcad ueRbyRaRuon=nTRIA

. . . 1s the nominal loadi for h hani -
nal bending moment in the plate-spring will occur at one of the clamped y s e PTCEIS RS

ends. The magnitude of the maximum bending moment can be estimated, using

expressions (6.7), as

LD e bas i

Mmax = Kz'l ( -2 +6°a) for a » 3 and
O (60 i i o

R N e ST (6.8)

z
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With these estimates the maximum bending stress occurring in the plate-

spring is determined by

1
o = ¢(R) "% e E o ( =2 +6°a) for a » > and

max
L) vl Bk b)) . .for A<t ‘ (6.9)
el o(R) i a I 5 -

As the bending deformation of the plate-spring does not directly depend
upon extra loading components applied to the rotor, these estimates will
for most practical cases be sufficient to estimate the stresses in the
plate-springs.Only for cases where large loading components perpendicular
to the x-y-plane ( a force F, or a torque MX) are applied it is necessary
to determine the shear stresses due to the torque My occurring in the clam-—
ped ends. The magnitude of this torque can be determined from Annex 6.I.
The other loading components will generate other stresses in the mechanism
which will not depend upon the angle of rotation of the pivot and can be

determined with usual methods.

These considerations are based upon the first-order approximation where it
is assumed that the rotor rotates around the pole P. For small angular

deflections the following approximate relations are found for u(f) and v( L)
1 2
u(f) = (a=1) * & * o(8) o ) = e(a=1)°2°4(R) (6.10)

According to expression (6.3) the shape of the deformed plate-spring, how-
ever, is fully determined when ¢(2) and u( L) are known. Therefore expres—
sion (6.3) can be used to determine an estimate for the magnitude of v*(l)
belonging to the rotation ¢(&) and deflection u().

*
From expression 6.3 the following expression for v (%) is obtained

V) = F 1= cos a(s) deds == o fF as)?eds =
e ¢(x>2-{%-az-%-a+—%} (6.11)

The two expressions (6.10) and (6.11) for v(R) are equivalent only for

values of a given by

AR
6

or AR R 7EEande s A =0 87300

a = =+

N [—
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Figure 6.6
Three possible constructions of cross-spring pivots where the parameter a =

1/8 or a = 7/8. The second order approximation of the motion of such

mechanisms is a rotation around the pole P.

The motion obtained with such cross-spring pivots, shown in figure 6.6,
will 1in second-order approximation be a rotation around the axis through

the pole P.

For all other cross-spring pivots the equivalent mechanism of a pure rota-—
tion will be only a first-order approximation. A better description of the
resulting motion of the end of the plate-spring is given by expressions
(6.2) and (6.11) for u(f) and v(2). An infinite number of mechanisms exists
which will satisfy these two expressions. One of the simple mechanisms is
the motion of a circle rolling along a line (see also lit. (L2)). In the
undeformed state the circle, attached to the rotor, will touch the line in
the point P. To describe the mechanism two parameters are available, the
radius of the circle and the angle between the line and the axis of the
undeformed spring. Analysis of the motion of this mechanism proves that
expressions (6.2) and (6.11) will be satisfied for all mechanisms where the
middle of the circle, in the undeformed state, lies on a line, AB, perpen-—
dicular to the plate-spring axis at a distance c.f from the clamping in the
foundation. The distance c.f depends only upon the parameter a and 1s

determined by

col = =2e%° | iCh By & e } (6.12)
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Flgure 6.6
Three possible constructions of cross-spring pilvots where the parameter a =

Figure 6.7

One of the mechanisms giving a second order approximation‘ of the motion

1/8 or a = 7/8. The second order approximation of the motion of such

mechanisms is a rotation around the pole P.

prescribed by one spring in a cross-spring pivot. The circle with radius R is

connected to the rotor and is rolling along a line, L;, Lz, connected with the

stator. The diameter of the circle and the angle f may be varied, but the

center of the circle should fall on the line AB in the undeformed position of

the plate-spring. % | The motion obtained with such cross—-spring pivots, shown 1in figure 6.6,

will 1in second-order approximation be a rotation around the axis through

the pole P.

This equivalent model, illustrated in figure 6.7, gives an adequate second

order description of the motion of one point of the rotor, the end of one For all other cross-spring pivots the equivalent mechanism of a pure rota-—

w
plate-spring. In the cross-spring pivot two plate-springs are present and tion will be only a first-order approximation. A better description of the

the motions of two points are thus prescribed. As an infinite number of resulting motion of “the ‘end jof the plotespr s Sul i o i i

mechanisms as sketched in fig. 6.7 can be obtained through variation of the (6.2) and (6,11) for u(f) andiw(1). An infinite mumbesicinaceniales s vrs

angle B it may be possible to obtain one mechanism that satisfies the which will satisfy these two expressions. One of the simple mechanisms is

requirements of both plate-springs. In figure 6.8 it is seen that such a the motion of a ieircle rolling mlonz i’ Linel(eegalon s it Sl o

mechanism, a circle rolling along a line, can be found. The center of this undeformed state the circle, attached to the rotor, will touch the line in

circle is the point where the two lines A;B, and A,B, intersect, the radius the point P. To describe the mechanism two parameters are available, the

of the circle is equal to the distance MP and the line is perpendicular to radius of the circle and the angle between the line and the axis of the

the line MP. In this way one equivalent mechanism giving a second order undeformed spring. Analysis of the motion of this mechanism proves that

description of the motion of the rotor of a cross—spring pivot can be expressions (6.2) and (6.11) will be satisfied for all mechanisms where the

obtained. Some examples of such mechanisms are given in figure 6.8. For middle of the cirele, in the dndeformed stqre, Lics i il b

symmetrical constructions as in figure 6.8 b and c the line will be paral- dicular to the plate-sprine sazls at e distance -1 soust el il Ua Nl

lel to the line connecting the clamped ends of the springs and the radius foundation, The distagce_.e-! depends only Hpor el o ol

of the circle can be determined as, deernineaiby

2' o) = —=)e)o -l - e —_—
R=___Jl__{_g,az+;.a__l} e col = =2+8° { Tea a + } (6.12)

cos(%/,)
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Figure 6.7

One of the mechanisms giving a second order approximation. of the motion
prescribed by one spring in a cross-spring pivot. The circle with radius R is
connected to the rotor and is rolling along a line, L, L2, connected with the

stator. The diameter of the circle and the angle B may be varied, but the

center of the circle should fall on the line AB in the undeformed position of

the plate-spring.

This equivalent model, illustrated in figure 6.7, gives an adequate second
order description of the motion of one point of the rotor, the end of one
plate-spring. In the cross-spring pivot two plate-springs are present and
the motions of two points are thus prescribed. As an infinite number of

mechanisms as sketched in fig. 6.7 can be obtained through variation of the

angle B it may be possible to obtain one mechanism that satisfies the

requirements of both plate-springs. In figure 6.8 it is seen that such a G gULERETL

3 2 Y The two groups of equivalent mechanisms from figure 6.7 for the t late-
mechanism, a circle rolling along a line, can be found. The center of this o g ESCHORE 8l e
springs have one mechanism in common. This mechanism with one circle of a

i i intersect he radi
circle is the point where the two lines AIBI and AZBZ tersect, t 1us certaln diameter connected to the rotor and rolling along a certain line

of the circle is equal to the distance MP and the line is perpendicular to through the pole P is one of the possible second-order descriptions of the

the line MP. In this way one equivalent mechanism giving a second order motion prescribed by the cross-spring pivot.

. y : } For symmetric cross-sprin ivots the line 1is parallel to the 1i
description of the motion of the rotor of a cross-spring pivot can be e b B 9: thedne connecting
the two clamping points in the stator.

obtained. Some examples of such mechanisms are given in figure 6.8. For
P g g For negative values of R determined from expression (6.13) the center of the

symmetrical constructions as in figure 6.8 b and c the line will be paral- circle is located on the opposite side of the line (c).

lel to the line connecting the clamped ends of the springs and the radius

of the circle can be determined as,

b b G e S R R (6.13)

COS(a/Z)
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where « is the angle between the axis of the two springs.

For negative values of the radius the circle, attached to the rotor, is
touching the stationary line at the side of the stator (see figure 6.8b).
This improved model for the nominal motion of the rotor of the cross—spring
pivot may be used in further analysis. It can be used to estimate a part of
the magnitude of non-linearity due to geometrical effects and to determine

the influence of loading forces on the stiffness 4 of the cross—spring

pivot.

Apart from these considerations about the torsional stiffness of the cross-
spring pivots and the kinematical motion of the rotor some remarks about
its loading capacity and dynamic behaviour should be made.

As for the parallel guiding mechanism the stiffness of a cross—spring pivot
will be influenced by loads applied to the rotor. At certain values of the
loading forces this stiffness will become equal to zero. Some remarks about
the magnitude of these loading forces will be made in the next paragraph.
When the angular position of the rotor is prescribed the loading forces may
cause instability of the individual plate-springs. These loading forces may

be calculated with the expressions given in chapter 5e

The behaviour of the mechanism under influence of dynamic loading forces
will mainly be governed by the stiffness of the guiding 1in the different
directions. These stiffnesses will be derived in para. 6.4. Just like for
the parallel guiding mechanism internal vibrations of the separate plate-
springs may occur. The lowest frequency at which this resonance will occur
can be determined with expression (5.11).

This expression may be combined with expression (6.9) for the maximum
stress in the plate-spring. For a cross—spring pivot with a = 4 the follo-

wing relation for the lowest natural frequency results,

=l ) (6.14)
oo g i :

For a steel plate-spring with a length of 10 mm and for a maximum angle of

0,3 rad this frequency will be about 2500 Hz.
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Stiffness of the cross-spring pivot

The relation between a driving torque M, applied to the rotor and the
resulting rotation ¢(L) will, as a first-order estimate, be governed by
expression (6.6).

For larger values of the angle of rotation second-order effects will result
in additional, non-linear contributions to this relation. Due to different
combinations of loading forces applied to the rotor the stiffness of the
cross-spring pivot will be influenced. In this paragraph the nature and the

order of magnitude of these factors will be discussed.

The following three effects will contribute to the non-linearity in the

relation between M, and ¢(R) ,

= Geometrical non-linearity.
= Anti-clastic curvature.

= Internal stresses, due to the over—-determination of the slide position.

As the motion of the rotor will only be in first-order approximation a
rotation around an axis through the pole the relation (6.6) derived on the
basis of this assumption will only be adequate for small values of the
angle ¢(R) . For larger deformations the improved model described in para-

graph 6.2 may be used to obtain an estimate of the non-linear effects.

As described for the parallel guiding mechanism the geometrical non-linea-
rity will not be the only or the largest non—-linear effect. Due to the
transition from plane-stress to plane-strain bending, the effect of the
anti-clastic curvature, an important non-linear contribution may be obser-
ved for relatively wide plate-springs. Also the internal stresses in the
cross—spring pivot may cause a noticeable change in the relation between
the torque M, and the angle ¢(L) . Due to the internal stresses the stiff-
ness cy will be reduced for small values of ¢(R) . The magnitude and the
influence of the internal stresses decrease with increasing angle of rota-

tion.
The first estimate for the stiffness of the cross-spring pivot, expression

(6.6) , has been derived using the assumption that the rotor performs a

pure rotation around the axis through the pole P. The shape of the deformed

= i) =



plate-spring was determined using the conditions at the end estimated with
this model of the relative motion. The actual shape will in general differ

from this shape due to the following effects,

-Due to the improved, second-order model for the motion of the rotor des-—
cribed in the previous paragraph the relation between the two conditions at

the end of the plate-spring, as given in (6.10) should be supplemented

u( L)
2

= (1 =a)eleg(R) + r-¢(l)2 (6.15)

where the magnitude of r depends upon the radius of the circle, R, and the
angle between the plate-spring and the 1line in the equivalent model as

presented in figure 6.8. (See figure 6.9)

~The expression (3.6) relating the shape of the deformed plate-spring to
the end displacements ¢(2) and u(R) is a first order estimate. This expres—
sion thus neglects the influence of the tensile force Fy- In the cross-
spring pivot such tensile forces will be present when only a driving torque
M, is applied and therefore their influence will be noticeable in the

z
second order part of the expressions for the stiffness c .

o

Figure 6.9
To obtain a second-order estimate of the stiffness of a cross-spring pivot the

relation between the deflection u(f) and rotation ¢(&) of the plate-spring

must be determined using a second-order mechanism describing its motion. From

this figure an estimate of this relation can be obtained.

=E50 =

The first effect may be calculated for mechanisms where the second effect
is absent. This will be the case for mechanisms where the pole P is located
at the middle of both plate-springs. In that case the geometrical parameter

a is equal to } for both plate-springs and the tensile forces will be equal

to zero.

Using expression (6.15) the elastic energy stored in the deformed plate-

spring is in that case estimated as

1 2 2 4
Woq = 2K o { o)+ 6er ep() ) (6.16)

The contribution of one plate-spring to the driving torque Mz will then bhe

M, = —%%%l—. {1+ 24.r2.¢(1)2 } 6517
z

To estimate the magnitude of this non-linear effect, only for mechanisms
with a=4, it is necessary to derive an expression for the parameter r. From

figure 6.9 the following relation is obtained
r = $°Recos(p) (6.18)

Combination of the expressions (6.17) and (6.18) will allow to estimate the
magnitude of the geometrical non-linearity for these cross—spring mecha-
nisms. For the group of symmetric cross-—spring pivots, where each plate-
spring has the same dimensions and properties the following expression for

the driving torque is thus obtained

M) SRS e % ten e (6.19)

For usual constructions of cross-spring pivots the geometrical non-linea-
rity will be relatively small. For ¢ = 0,3 rad the magnitude of the second
term between the brackets is only 0.015 for the standard doubly-symmetric,
orthogonal cross-spring pivot (a = }). It is however important to note that
unexpected effects may occur when other geometries are considered. For a
symmetric cross—spring pivot with a = } but with increased angle a the non-

linearity increases rapidly. This is shown in figure 6.10.
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(b)

(a)

Figure 6.10
The geometrical non-linearity for cross-spring pivots depends upon the angle «

between the plate-springs. For a rotation of 0,3 rad the non-linearity for the

mechanism shown in (a) is about 1,5% while this is increased to about 137% for

the mechanism shown in (b).

For cross—spring pivots with other values for the geometrical parameter a
the influence of the tensile forces in the plate-springs should be accoun-
ted for. This might be done using the iterative analytical method in combi-
nation with the equations for the static equilibrium of the rotor. This
effect has however been studied in detail by Dijksman (D1) and his results
may be used to indicate the magnitude of the non-linearity for the group of

orthogonal, symmetric cross—spring pivots.

In general the relation between the torque M, and the angle ¢(L) may be

written as

" 2
ORI S I S ) (6.20)

In this expression the magnitude of c, is obtained from expression (6.6).
Using the expressions derived by Dijksman the parameter Q as a function of
the geometrical parameter a has been calculated for the orthogonal, symme-
tric cross-spring pivots. The results of these calculations are shown in
figure 6.11. Similar results have been obtained using the finite element

method by van der Werf (lit. W2).

=152 =

-0,01 /
-0,02 =

-0,034+—

-0,041

Figure 6.11
For symmetric, orthogonal cross-spring pivots the second-order estimate for
the relation between the angle ¢(2f) and the torque M, is given by relation

6.20. The magnitude of the factor Q as a function of the geometrical parameter

a has been obtained using the results of Dijksman (D1).

The geometrical non-linearity is only one of the non-linear effects obser-
ved in plate-spring mechanisms. In most practical cases the contribution of
the geometrical effects will be relatively small. A more important contri-
bution may be given by the increase of the bending stiffness due to the
transition from the stress distribution found in the bending of beams to
the one present in the bending of plates. With the information given in
chapter 5 (figure 5.11) the magnitude of this effects may be estimated. It
can be seen that relatively wide plate-springs used to allow for a large
angle of rotation, and thus having a small thickness, show a large non-
linearity. For a doubly-symmetric orthogonal cross—spring pivot with b =
7.% and h = 2/75 the increase of the torque M, for a rotation of 0,3 rad

will be about 4% (for a material with Poisson's constant of about 0,3).

For constructions with other values for the geometrical parameter a this
influence cannot be directly calculated. An impression of the non-linearity
to be expected can be obtained when the maximum curvature of the plate-
spring is determined as in expression (6.8). This maximum curvature may be
used to estimate the magnitude of the parameter p in figure 5.11. This
parameter will allow to estimate the magnitude of the influence of the

increasing bending stiffness.

As the maximum curvature increases when the parameter a is changed the
= 1538~



allowable thickness of the plate-spring will be reduced. Therefore the non-
linearity due to the increasing bending stiffness will be more pronounced
when a # § .

For a cross—-spring pivot with a=1, b = 4% and h = 56— , which will allow
rotation of 0,3 rad, the 4% increase in the driving torque will be expexted
at a rotation of only 0,03 rad. At the full rotation of 0,3 rad the

increase will be about 8%.

The third effect influencing the relation between M, and ¢(2) is due to the
presence of internal stresses. As each plate-spring determines the position
of the rotor with respect to three of the degrees of freedom, the rotor-
position is over—determined. The displacement that is determined twice, is
the motion of the rotor in the direction of the z-axis of the two plate-
springs. Due to this over—determination internal stresses may be present in
the mechanism as shown in figure 6.12 and thus an amount of elastic energy
is stored in the construction. When the angle of rotation, ¢(2), is varied
the amount of this energy will vary and thus the relation between M, and
() will be influenced. As for the parallel guiding discussed in chapter 5
the stiffness cq will be reduced around ¢(2) = 0 and with increasing angle
of rotation the effect decreases. The magnitude of this effect can be

calculated using the method described in chapter 5.

The influence of the internal stresses can be eliminated by careful assem—
bly of the plate-spring mechanism and proper care during the use of the
mechanism to avoid stresses due to temperature changes or excessive loading
forces. A more effective way to avoid the occurence of internal stresses is
the addition of an internal degree of freedom in the mechanism. This extra
degree of freedom, created in the rotor or foundation, will eliminate the
over—determination of the rotor position. In this respect it is important
to create a combination of rotor and foundation that yields a low stiffness
in respect of loading forces applied along the axis of rotation of the
cross—-spring pivot. In figure 6.13 this is illustrated. To reduce the
influence of the internal stresses it is important that the stiffness, cg,
is small relative to the stiffness of the plate-springs in the undeformed

position, given by

2 1 (6.21)

An example of such a construction is shown in figure 6.13. Here the addi-
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Figure 6.12

In a cross-spring mechanism each plate-
spring 1s avoiding the motion of the
rotor along the initial axis of
rotation. Thus this degree of freedom

is determined twice,

Figure 6.13

As two plate-springs in a cross-spring
pivot are determine twice the relative
motion 1in the direction of their z-
axis, an extra internal degree of
freedom must be created when internal
stresses should be avoided. Here the
stator has been modified to allow for a
rotation around the 1line AA. As a
result the relative position of the
rotor along his axis of rotation is
determined by the horizontal plate-

spring only.
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Figure 6.14
Any set of loading components applied to a cross-spring pivot can be

transformed, apart from MZ, into a set of five loading components as shown

here. The x*—axis is chosen along the stationary line in the equivalent
mechanism with its origin in the point P, the pole, of the undeformed

mechanism.

tional degree of freedom is the relative rotation of each plate-spring

clamping around the axis A-A.

The relation between the driving torque, M , and the angle of rotation ¢(L)

Z)
will also be influenced by the loading forces applied to the rotor. The

loading forces can in all cases be replaced by an equivalent system of the
* * * *
g » Fz - Mx and My as indicated in figure 6.14.

These components are specified with respect to the point P, the point where

loading components FX*, E

the initial axis of rotation intersects the plane of symmetry of the cross—

spring mechanism.

The influence of the loading forces in the x-y-plane, the plane of sym—
metry, has been studied extensively (D1, Hl, Wl1). Their influence may be
directly understood when the equivalent kinematical model is wused. In
figure 6.15 a cross-spring pivot with a certain angle of rotation, ¢(2),
together with the equivalent model is shown. The forces Fx* and Fy* are
applied at the point P and in directions along and perpendicular to the
stationary line in the equivalent mechanism. The instantaneous point of

*
rotation for the rotor is the point P and it can be seen that the total

moment around P* will be
* £
MP* = Mz + Fy-R-(sin () ) - FX-R'( 1 = cos ¢(L) ) (6::22)

Thus a force perpendicular to the line along which the equivalent circle is
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Figure 6.15

When a rotatlon of the rotor of the cross-spring pivot occurs its momentary
point of rotation will move, to point P*, as predicted by the equivalent
mechanism. Thus the loading forces applied at the point P, the original axis

of rotation, will exert a torque around the momentary axis of rotation through

* *
P . It is clear that the force Fy has a large influence and FX* yields only a

second order contribution to the torque.

rolling, here Fy*, has a linear contribution to the moment about the point

P* and thus directly influences the stiffness 4 of the cross-spring pivot.
The magnitude of the effect can be directly calculated when the radius R of
the circle is known. The torque Mz needed to obtain a certain rotation ¢(R)

is calculated with

=
I

*
2 % My = FJAR.0(R) (6.23)

where M, ~is the torque needed for the unloaded mechanism, calculated
according to expression (6.5). For the orthogonal, symmetric cross-spring
2 *
pivots, where B = Fy ; this results in
R e : Tt L * 258200 2 1
Mol et e GCR) S {Egel =0 eatSea ) g T Rl F3acic
(6.24)

. h *
From this expression the value of Fy at which the stiffness o of the
cross—spring mechanism becomes equal to zero can be determined.For a

doubly-symmetric cross-spring pivot, a = %, the magnitude of this load will
be

6y 2D
Fyl S oy (6.25)
KZ-X
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* *
Lhesload S = =or Fy at which instability of the individual plate-springs in

such a cross-spring pivot is given by

T i T (6:26)

KZ-EZ

Loading forces applied in the x-y-plane of the cross-spring mechanism
influence the stiffness due to the kinematical behaviour of the mechanism.
The remaining loading forces, force Fz* and torques Mx* and My*, will
influence the stiffness Co due to the occurence of torsional deformations
of the plate-springs. They will generate a second-order effect which is
independent upon the direction of application. To estimate the magnitude of
this influence the components of loading applied to each plate-spring
should be determined on the basis of the equations for static—equilibrium
for the rotor. In this analysis it may be assumed that each plate-spring is
loaded by a force F, and a torque M,. As the stiffness of the plate-spring
with respect to rotation about its y-axis is low no torque My will be
absorbed by the plate-springs.

Difficulties will arise due to the over—determination of the position of
the rotor. The distribution of the force Fz* over the two springs is unde-
termined and considerations about the symmetry or about the relative stiff—
ness in the direction of the z-axis should be used to estimate the magni-

tude of F, for each plate-spring.

Once the two loading components for each plate-spring have been determined
their influence upon the stiffness ¢y can be determined with the methods
described in the previous chapters. The loading forces are applied to the
plate-spring as shown in figure 6.16. The analysis is performed with an

estimated shape of the deformed plate-spring based upon the following end-

conditions
bEE= ¢1
u(l) = (a—l)'1‘¢l
8= 0

It is assumed that the other plate-spring will prevent the rotor to rotate
around the y-axis and therefore it is assumed that O(2) will be almost
equal to zero. Due to the loading forces M, and F, a torsional deformation
along the plate-spring will occur. This deformation in combination with the
loading forces will then cause a variation of the stiffness cy of the

cross—-spring mechanism.

=E1'58F =
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Figure 6.16

In the analysis of the influence of the loading components F, and M, upon the
behaviour of a plate-spring in a cross-spring mechanisms it will be assumed
that these components are applied at the rotor as shown here.

This selection is arbitrary, following from the general system of loading

components applied to the rotor shown in figure 6.14.

In this analysis the influence of the length to width ratio of the plate-
springs, caused by the effect of the constrained warping, will be accounted
for. In Annex 6.I the following relation between the torque M,, for one

plate-spring, and the resulting angle of rotation ¢; is derived

" ~ ° o |=3 e 52
M el =, { 4e(1-3°at3°a”) +

T B 2
— K oK o2 e o e oQeM o o
2 Byt X T “ad sB ok Eochal el B3 |

(6.27)

where the factors PS’ P6 and P7 are functions of both the parameter a and
the length to width ratio of the plate-spring. From this result a point on
the y-axis can be determined where the application of the force F, and the
torque M, yield independent effects.It will be shown in the following para-
graph that this is the point where application of a force FZ will not cause
a relative rotation ¢ of the two clamped ends. This point is located at a
distance ge& from the stationary clamped end as shown in figure 6.17. The
parameter g is a function of the geometrical parameter a and the dimensions

of the plate-spring. When the loading components are applied at this point
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expression (6.27) can be written as

51 onﬁz'Kz 2 MX.KOKZ 2 }
Mzz¢<1>-coo{1—Kz-{(T>+< R }

2
_ 4e( 1 = 3ea + 3ea’)
where CO—- il

z

In figure 6.17 the parameter g and the coefficients Qg and Q7 are given as

a function of the parameter a and the length to width ratio of the plate-

spring.

This expression gives a first-order estimate of the stiffness of one plate-
spring under influence of the loading components F_ and M,. It may be used
to estimate the order of magnitude of the loading components that reduce
the stiffness to zero. The actual first-order buckling loads will be smal-
ler ( about 20 % ). This difference is also seen between the expressions

(5.9) and (5.10) and the expressions (5.37) and (5.39).

Before using this result it will be necessary to determine the loading
situation for each plate-spring in the cross—-spring pivot.
With expression 6.28 the magnitude of M, for each plate-spring may be

determined and thus the stiffness of the cross—spring pivot is obtained.

= l608=
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Figure 6.17
When loading components F, and M, are applied to a plate-spring in a cross—

spring pivot the contribution of that spring to the stiffness ¢, is changed as
indicated by expression (6.28). To determine the influence of the loading
components it is advisable to apply them at a distance g+ from the stationary
clamping. Application of a force F, at this point does not cause a rotation
around the x-axis of the end of the plate-spring and in this case the
influences of F, and M, are independent.

The distance ge°f , shown in (a), is a function of the geometrical parameter a
and the properties of the plate-spring. The presented results are calculated
for plate-spring materials with Poisson's constant equal to 0,3 and for
different length to width ratios.

The figures (b) and (c) show the magnitude of the coefficients Qs and Q7 as a

function of a.
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Figure 6.17 Continued.

Summarizing the contents of this paragraph the following remarks could be

made,

= A cross-spring mechanism may be used as a linear transducing element
when the magnitude of the parameter a is about 0,1 or 0,9, the plate-
springs are relatively narrow and care is taken to avoid the occurence
of internal stresses in the mechanism.

= In other applications a certain non-linearity will be noticed but the
behaviour will be reproducing when the internal stresses are suffi-
ciently small or remain unchanged.

= Variation of the loading forces applied to the mechanism will cause a
change of the stiffness cy of the cross-spring pivot. In measuring
elements such loading forces, and in particular their wvariations,
should be small.

= When used as a construction element large variations of the stiffness
¢y may occur due to the loading forces applied to the rotor. As the
stiffness might even become negative it is advisable to control the
angular position of the rotor by other elements in the construction.

= For construction elements the orthogonal doubly-symmetric cross—spring
pivot allows for the most wide range of applications. A large angle of
rotation at low stiffness combined with good bearing qualities will
often lead to the selection of this mechanism.

= For mechanisms used to define a '"pure" rotation orthogonal symmetric
mechanisms with a geometrical parameter a of l/8 or 7/8 will be most
favourable.

= The most linear transducing element is a cross-spring mechanism with
symmetric and orthogonal springs with values of a around 0,1 or 0,9 as
can be concluded from figure 6.11. For such cases attention should be

paid to the other effects introducing non-linearity.

= 163 =



6.4 Guiding stiffnesses

The cross-spring mechanism is used to determine the position of the rotor |
in respect of five of its degrees of freedom. In the directions of these / f///gfﬂ\\ik T:
/

degrees of freedom the position will be determined with a certain stiff- L AT T A e i
P

ness. These guiding stiffnesses are of importance when dynamic loading '

forces are applied or when a well defined motion under varying loading
forces is required. The stiffnesses in the five directions are determined |

by three stiffnesses of each separate plate-spring. As mentioned before the

plate-springs have a relatively high stiffness in three directions.

In order to visiualize the guiding stiffnesses of the cross—spring mecha-
nism it is useful, as was done for the parallel-guiding, to replace each
plate-spring by a system containing three helical springs. One helical
spring represents the stiffness in the y-axis direction and the other two
are together generating the stiffnesses c, and c¢ o flouresa. I8 isuch an
equivalent model is shown. When both plate-springs are thus replaced the
rotor is supported by six helical springs while it is still free to rotate

around the x-axis through the point P. Tt should be reminded that the

stiffnesses of the helical springs will be a function of the rotation of

the cross—-spring pivot.

To describe the behaviour of the plate-spring, or the equivalent model, in
Figure 6.18.

Each plate-spring in a cross-spring pivot 1is determining three degrees of
springs y, z; and 2z, the distance between the springs 2z, and z, and the freedom with a high stiffness.

the three directions it is necessary to determine the stiffnesses of the

To determine the properties of each plate-
position of these springs (see figure 6.18). spring in these '"bearing" directions it may be replaced by the equivalent

mechanism (b), containing three helical springs.

The spring y is connecting the rotor and stator while its working line

coincides with the originally straight undeformed centerline of the plate-

spring. The springs z; and 2z, have their working lines in the original y-z
plane parallel to the z-axis.

Their distance along the original y-axis, ay» depends upon the relation
between c, and c¢ of the plate-spring. Halfway between these helical
springs is the point where application of a force F, will cause only a
displacement of the end of the plate-spring in the direction of the z-axis
and no rotation about the x—axis.

For symmetric constructions, as in the parallel-guide and the doubly-sym-
metric cross—spring mechanism, this point will be at the middle of the

plate-spring. For other mechanism, and other values of the geometrical
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parameter a, this point will be located at a distance g.2 from the clamping

in the foundation.

The five parameters mentioned, three stiffnesses, a position and a dis-
tance, may be derived using the iterative analytical method described
before. They will be depending upon the dimensions and material properties
of the plate-springs, the geometrical parameter a and, to the largest
extent, the angular position of the rotor. For the undeformed plate-springs
relatively simple expressions may be directly obtained from the linear beam

theory, yielding

6
_ E-a e -y oy 3
Sy il 1 22~ K_°%
X
g =+ and g = ‘%'/~§ s 18

When the angle of the rotation, ¢(R), of the rotor is not equal to zero,
the stiffnesses will decrease. In addition to the deformation due to com—
pression in the y-axis-direction a displacement due to variations of the
bending shape will occur. In the z-axis direction extra displacements due
to torsional deformations will occur. Just like for the parallel guiding
the total stiffness is determined by combination of two stiffnesses in

series.

The magnitude of the deflections in these three directions under influence
of the loading forces being a function of the angle of rotation ¢(R), the
geometrical parameter a and the length to width ratio of the plate-springs
can be determined using the iterative analytical method. For the stiffness

cy of one plate~-spring is thus obtained

1
_ 2 12
(726 * 700

EeA
CE TNl

y L1+ ¢12- c%)

2 (6.29)

«(a-h?)

This expression may be used for small values of ¢(R) as it is derived with
linearized expressions for sin ¢(s) and cos ¢(s). In addition this expres—
sion will only yield the value of the stiffness for small values of the
force Fy. These considerations are explained in more detail in chapter 5.
Expression (6.29) is equal to the result obtained by Dijksman (D1) for

b3
orthogonal cross-spring mechanism (a = /2 rad.) .

The analysis of the deformations due to torsion in the plate-springs caused

by the force F, and the torque M is described in Annex 6.I. Using the

=Hl6 6=

expressions derived there the extra deflection w(f) and angular deformation

¢(2) may be calculated. Combination of the results from the linear beam
theory, the bending deformations, and these results could give a combined
equivalent model according to figure 6.18. The number of variables influen—
cing such a mechanism leads to a rather complex result and therefore a
separate equivalent mechanism to calculate the deformations due to torsion
will be described. The total deflections (%) and w(f) will thus be the sum
of the contributions from the two equivalent mechanisms and, in some cases,

the contribution due to the shear stresses in the plate-spring.

The equivalent mechanism for the calculation of the deformations due to the
torsion is described by three parameters,
~ 8t,the distance from the clamped end which was presented before, figure
6.17.
= ayt,the distance between the two helical springs in the mechanism.
= Czt,the stiffness of the two helical springs in the equivalent mechanism.
This stiffness is calculated as

2
e MEEITRN = b b 12
2 2e(1+v) Led(2)

c
zt Ky'23'¢(2)2

(6.30)

The magnitude of the parameter B and the coefficient Pi3 have been calcu-

lated and the results are shown in figure 6.19.

It is clear that the stiffness C,r 1s a function of the angle of
rotation ¢(L) . For larger angles of rotation the stiffness may decrease
strongly. And when a mechanism is designed to allow for larger rotations
the' thickness to length ratio will be smaller, leading to a further

decrease of the stiffness Cyte

For the stiffness of a plate-spring in the direction of the z-axis three
stiffnesses in series are to be considered
EeA 1

= Sh def tion S S e
ear deformation cas 2 CHaE

" S EeA b=2;
= Bend d ~ . o (=
ending deformation . p 1 2 (¢ l)
Posieth
- Torsion deformation c e ( - )2
2t 44 1+v o(R) ° 2
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Figure 6.19

To determine the behaviour of the cross-spring pivot each plate-spring may be
replaced by an equivalent mechanism as in figure 6.18. To calculate the
deflections due to torsion in the plate-spring the parameter ay can be
determined from fig. (a). The stiffness of both helical springs may then be
determined with expression (6.13) and the magnitude of P)3 can be taken from

fig. (b).

From these expressions the relative order of magnitude of each effect can
be estimated. The shear deformation will be noticeable when the width of
the plate-spring is more than half the length. The torsion deformation will
be important for larger angles of rotation or for larger deflections of the
end of the plate-spring. For mechanisms with values of a equal to 3 the
contribution of the torsion deformation will be noticeable for mechanisms

designed for angular deformations of about 0,15 rad.
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Annex 6.1

Deformation of a plate-spring by the loading components F, and MX

When a plate-spring in a cross—-spring pivot is subjected to the loading
forces F, and MX a torsional deformation will occur when the angle of rota-
tion, ¢(), of the mechanism is unequal to zero. Due to these torsional

deformation the relation between the driving torque M, and the rotation

o() will be influenced and displacements w(R) and ¢(R) of the end of the
plate-spring will occur. In this Annex these effects will be calculated
using the diterative analytical method and the mathematical model for a
plate-spring obtained in chapter 4 (figure 4.9). For the calculations it is
assumed that the force F, is applied along the initial axis of rotation of
the cross-spring mechanism, thus at a distance a.f from the fixed end of

the plate-spring, see figure 6.I.1.

It is assumed that the plate-spring is a part of a mechanism and that the
angular deformation 6(%) of the end (rotation around the y-axis) may be
neglected in solving the equations. This rotation will be small as the
other plate-spring in the mechanism determines this degree of freedom with

a relatively high stiffness.

SN

Thus the following displacements of the free end of the plate-spring are

used as initial estimates a-9

I
Y

$(P) = (L)

u(L) = = (l-a) ¢(R) % Figure 6.1.1.

() = 0 To calculate the deformations of one plate-spring of a cross—spring pivot it
(L) 0 is assumed that the different loading components are applied relative to the

i point P, the point where the initial axis of rotation intersects the y-axis.

v() = 0

w(2) =0

With these end conditions the initial estimates for the shape of the defor-

med plate-springs will be
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¢(s) =
and
2 3
uls) = =) « [ (2 = 3ea)+g” — (1L -2¢a)<E } (@A,
where g = S/X ;

These first estimates can be substituted into the differential equation for

the angular deformation 8(s), the first equation of figure 4.9, which thus

becomes
3
de(s) d 6(s) _
_Jés s Ky.E.F. d 3F (6T 2
s

= Kot { My(x) + F_eu(s) - o) =C M+ F sCard - s) |

This equation is not the same as given in figure 4.9 because of the fact
that the force ¥, is not applied at the end of the plate-spring but at a
distance a*® from the stator. Here My(l) refers to the value of the

internal torsion moment at s = L.

Substitution of expressions (6.I.1) leads to

3
de(s) — K eEele d 8(s)
ds y d53

2
K o{m () + Woep()ef (-4 + 6ea)eE+ (3 - 6ea)eE” | + ,
2
+F oRo0(R) o] (~hea +60a’)eE + (2 = 6eal)eEX + (=2 + 4ea)-E } }
VA

(6.1.4)

As in Annex 5.1 a solution for 6(s) in the following form may be found

2 3 4
Q= 008 e [ a2+ a,4E + a,°F + a8 F
T g 15 pueE (6.1.5)
2
2 X e 24
where p~ = K BT , and for b>h b= o) .
4
The four coefficients ey describe the particular solution for the

differential equation and depend on My(l), M, and F,. The other coeffi-
cients, A, B and C, and the unknown torque My(x) can be determined from the

four boundary conditions

6(0) = 0, 6(L) =0

de(0) 4o

—_— - =0
ds ! ds

Sl

On this basis all the coefficients may be determined and can be written as

a =it iel(a 4y
z

$ 2 2
a; =m s(G1 = 2ea) LA Dk
2 2 3 3 12
e = mx-( 3ea -2 )+ fZ-( 38" ~ 29%a ) + 5 ca,
"
With ag= ( a, ax a, + 84) and d s ( 2-32 + 3-33 + A'a4 ) it follows that
a
(ag-—2)eeh- 1) +a
e ol e S e\
Jelant= 1)s(e* - 1) + u-(ep'— e M
ag =
oz ( ag gl “; Ye(e ™= 1) + ag
20(e™= Dete® - 1) + peeP - ™M
A=-B -C
a. = [NeB —FieC
! 6
m = ¢(2)-{al - ;E . 33}

5 (6L oh)
where f = F ¢27¢K , m =M efeK and m = M (2)*2°K .
z “ 3 x X Y ¥ By y

From these expressions the magnitude of the torque My(R) applied at the
ends of the deflected plate-springs may be calculated. Results of this
calculation for different values of p and as a function of a are presented

in figure 6.1.2

To proceed expression (6.1.5) for the angular deformation 6(s), in combi-
nation with expressions (6.I1.6) are substituted in the remaining equations
of figure 4.9. The second differential equation of figure 4.9 delivers the
base to estimate the influence of F, and M upon the stiffness Cg- In the

calculation it will be assumed that the loading force F, is equal to zero.

vy
As it is the relation between the torque M, and the angle ¢(&) that is of
interest, it is assumed that the force (R and torque MZ are applied as in

figure 6.I.1. Thus the modified version of the equation for d¢(s)/ds reads

dL‘éz) ~ 1(2-{ e(s)-(MX + FZ-( aw =as)l ik M FX.( —ael+s ) }
(6.1.7)

A solution for ¢(s) may be obtained by direct integration and can be used

to obtain an expression for u(s). The resulting expressions for the angle
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#(L) and the deflection u(R) are
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In the undeflected situation the internal torsional moment M (1) is equal to 8%
zero. Upon deflection this torque, due to the loading components FZ and Mx C “,(1 e g) EN R _2_
increases. The value of My(l) is given by uz 5 -
(6
My(i) = ( QM+ g,eF ) e ()
The coefficients g, and q, are functions of the plate-spring properties and To obtain an expression relating ¢(2) to M, it is possible to eliminate the
the geometrlcal parameter a. For a material with Poisson's constant equal to force F, using the relation between u(2) and o(R)
0,3 these coefficients are shown as a function of a for different length to :
idth ios.
width ratios w0 = (a5 el b (C0)

This will yield the following expressions

K
m = o) (4-12+a+120a%) = m = +( PLe(6ea-2) -2+P3+(6+a-3) ) +
¥
b 2 2
—£, 0 & «( Ple(6ea’=2+a) ~2P3=(6-a’-3+a) = P2+(6+a-2)+(6:a-3)) }
y

(6 =S

As the factors P1-P4 contain terms with M, and F, the expression may be
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written as

K
1) I o SR A (R Ay Pt 20 e T o 2
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((Sadalily
where the factors PS’ P6 and P7 are functions of the parameter a and the
properties of the plate-spring. Using the expressions given in this chapter
they can be calculated. Results of such calculations are presented in

figure 6.17.

To determine the guiding stiffnesses c, and Cy of the cross—-spring mecha-
nism the solution for 6(s) (6.I.5) can be used in the equations from figure
4,9, The deformations resulting from the torsion in the plate-spring may be
added to those due to bending about the x-axis for which the stiffnesses
were described in expression (6.28). For the additional angular deforma-

tion, A¢(s), can be written

dad(s) do(s)
ds & 908) ds

Substitution of 6(s) and ¢(s) from expressions (6.I.5) and (6.I1.2) and

subsequent integration leads to the following result for the angle AJ(R) at

the end of the plate-spring
Ap(R) = ¢(x)2= ( P8 + a°P9 ) (ST

J ot | DRy 8
TR ny TR
m o
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S e )

el
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A similar result is obtained for the additional displacement, Aw(R), of the

end of the plate-spring, yielding

=1 6E =

ALY 2
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The factors P8 to Pll are functions of the geometrical parameter a, the
loading components MX and F2 and the properties of the plate-spring.
These expressions determine the parameters describing the behaviour of the
equivalent spring mechanism discussed in paragraph 6.4. The results of such
a calculation have been given in figure 6.19 for different values of the

length to width ratio of the plate-spring.
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Chapter 7.

Different plate-spring applications,

"reinforced" plate-spring elements.

Introduction

In the previous two chapters the two most common applications of plate-—
spring mechanisms have been discussed. Both the parallel guiding and the
cross—spring pivot are guiding mechanisms using two plate-springs, "acting
parallel" to each other, to determine five of the six degrees of freedom
of the moving part. Also in both mechanisms the only deformation of the
plate-spring in the desired motion is the bending of the plate-spring

around the x—-axis.

Many other usefull constructions could be made with plate-spring mecha-
nisms. In such mechanisms either the torsional deformation of the plate-
spring, plate-springs "acting in series", or special properties of plate-
springs may be used. In lit. (Bl) Breitinger has attempted to give a
"morfological table" of the possibilities to construct mechanisms with
plate-springs. Such a table will never be fully completed and will often
contain many solutions which are of limited value. It illustrates, how-

ever, the vast variety of possibilities of application of plate-springs.

In the following paragraph a selection of plate-spring mechanisms will be
briefly discussed. Some of these mechanisms are used to improve the
properties of the parallel guiding or cross—spring pivot. Others are

examples of totally different constructions.

One of the most interesting ways to improve the guiding properties,
stiffness and loading capacities, of the plate-spring parallel guiding is
the use of "partially reinforced" plate-spring elements. In this case one
plate-spring in the parallel guiding is replaced by an element having one
part with high bending stiffness and two short plate-springs at the ends
(see figure 7.1).

Such mechanisms are suggested due to the fact that the central part of
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7.2 A selection of plate-spring applications

7.2.1 Torsion hinges.

Probably the largest number of guiding mechanisms based on the elastic

deformation is the tension strip hinge used in numerous indicating
electric measuring devices (galvanometers etc.). In this mechanism two
pieces of narrow, relatively long metal strip are connecting the rotor

with the stator as in figure 7.2.a. A tensile force is applied to both the

strips and the rotation of the rotor causes torsion of the two strips.
As the driving torques in the measuring devices are applied carefully,
avoiding other loading components, the relatively low stiffnesses in the

X, z, ¢ and ¢ directions are acceptable disadvantages in this application.

Another, more important, disadvantage of using the torsional deformation

of the strips is the relatively large non-linearity in the relation

Figure 7.1

between driving torque and the angle of rotation. This non-linearity is
In a conventional parallel guiding (a) the central part of the plate-

due to the occurence of tensile and compressive stresses in the plate-
spring is not noticeably deformed. To increase the guiding stiffnesses

and loading capacities it might therefore be helpfull to replace that spring cross-section. For a plate-spring as shown in figure 7.2.b the

part by a relatively stiff part (b). relation between the torque My and the angle of rotation 6() may, in

third order approximation, be written as (litt. TI)

2 2
MK o2 = e« {1 e 62y, oDy 5% o(n?) (2l
plate-springs in conventional parallel guidings remains almost undeformed
during normal operation. When loaded in other directions however the where it is assumed that b > h.
central part will be deformed and thus play a part in the guiding stiff- This means that for the plate-spring with dimensions 80x20x0,25 mm the
ness and the maximum loading capacity. influence of the non-linearity at an angular deformation of 0,2 rad.

o
(=210°) will be about 13%, due to this effect.

Different authors have suggested this change in the design of the plate—

spring mechanism. To evaluate their potential advantages these mechanisms This relation was derived while neglecting the influence of the con-
will be studied and compared with the conventional mechanism in paragraph strained warping of the cross—section at the end of the plate-spring. Due
7f ks

to this effect the nominal stiffness for plate-springs will depend upon
the length to width ratio and the Poisson constant for the material. For a

plate-spring clamped at both ends the stiffness may be calculated as

3
¥ =MNLEb'h Q (7.2)
y K273 A

(under the assumption that b >h).
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length to width ratio /b for Poisson constant equal to 0,3 may be taken

The magnitude of Q, as a function of the parameter

from figure 7.2.c. This factor is calculated using the method described in
chapter 4.

Measurements indicate that this method may be used for values of p greater
than 4 ( % > b). For shorter plate-springs the conditions in the clampings

are becoming relatively important and a smaller stiffness is measured.

Another group of guiding mechanisms where the torsional deformation of the
plate-springs is used are the angle-strip hinges which were discussed,
among others, by Jones (litt. J2). In these mechanisms two plate-springs
connect the rotor to the stator as shown in figure 7.2.d. In addition to
the effects described above such mechanisms will cause undesired rotations
of the rotor around an axis in the x-z-plane. For the mechanism of figure
7.2.d. this rotation may be calculated as,

G~ 3 o /T e~ 9(1)2 (7.3)

|

This effect may be avoided when a symmetric construction of the angle-
strip hinge is used. Different constructions may be made. One of them is
shown in figure 7.2.e. Here the two plate-springs are each divided into
two parts placed at equal distances from the axis of rotation. When the
distance from the axis of rotation is increased and the plate-springs are
tilted around their x-axis the vibrating bowl mechanism for parts-feeding

in production automation is obtained.

A

Figure 7.2

a.

Torsion hinges.

Torsion hinges use two spring strips under tension to guide moving
colls in measuring instruments.

Definition of dimensions and coordinate-system for plate-springs in
torsion—hinges.

Due to the influence of the "constrained warping" the stiffness A
is a function of the length to width ratio. When both ends are clam-
ped this influence may be estimated using the factor Q¢ in expression
(o2 )

Angle-strip hinge using two plate-springs with their planes perpen-
dicular to each other.

Symmetrical design of an angle-strip hinge which will avoid the occu-—

rence of undesired parasitic rotations.

=183 =



. Plate-spring with negative and zero stiffness.

To maintain a certain displacement of plate-spring guiding mechanisms it
is generally necessary to apply driving forces. In some cases the energy
needed to deform the plate-springs is a limitation to their application.
In such instances it would be helpfull to use a mechanism with a constant
negative stiffness which is placed parallel to the positive stiffness of

the guiding mechanism.

Such a mechanism for application with parallel guiding mechanisms has been
described in lit. Dl and E2. The principle of operation is indicated in
figure 7.3.a2. An originally straight plate-spring is clamped at both ends
and in the center. The two ends are moved in the direction of the y-axis
toward the center, thus buckling the plate-spring. During this buckling a
certain amount of energy is stored in the plate-spring and part of this
energy is released when the center of the plate-spring moves in the
direction of the x-axis. While moving in the positive x-direction the
plate-spring exerts a linearly increasing force driving the center in this
direction (fig. 7.3.b). When connected to a parallel guiding mechanism as
in figure 7.3.c the total stiffness of the guiding may be considerably

reduced.

The following relations have been derived to describe this plate-spring

with constant negative stiffness, (Dl).

Total length of undeformed plate-spring : 2=

Displacement in y—axis direction of each end: A%

2 EsL
Negative stiffness: c¢_ = - 8e1 .
% 3
X
Buckling forces: F_ = — 4-n2 Ll
Y 42

W= st
i i : x QegeEe of =
Maximum bending stress: OB 2emeE I N

Working range: u =+ 2¢2¢ ¢ ot

348

In theory the first-order expressions for the stiffness of the parallel

guiding and the spring with negative stiffness allow for a total compen-—

~ 184 =~

sation of the positive stiffness of the guiding mechanism.

Due to non-linear effects such a reduction will only be obtained over a
small range of deflections. For practical purposes a reduction of 90 to
95% may be reached.

Another interesting factor is the occurence of increased hysteresis in
these mechanisms. Due to internal damping a small part (about 0,2%) of
the deformation energy in a plate-spring is lost during each cycle. In
the compensated mechanism of figure 7.3.c energy is transferred from the
guiding plate-springs to the compensating spring. The energy loss during
one cycle is a small part of the total energy transferred internally, but
may be considerable when compared to the energy supplied to the mechanism

by the driving forces. Thus the hysteresis of the compensated mechanism

will be about 4% when a reduction of 907 in driving forces is obtained.

To obtain a certain rate of reduction of driving force the dimensions of
the plate-springs have to be calculated beforehand. In this case it is
important to predict the stiffnesses of the plate-springs rather accura-—
tely. In practice this is not possible with uncertainty ranges of about
10% due to the undefined active plate-spring thickness, clamping condi-
tions, internal stresses, Young's modulus and the influence of the struc—
ture of the material. A better solution to adjust the total stiffness of
the mechanism afterwards is making it possible to rotate the center
clamping piece around the z-axis of the plate-springs. In this case the
plate-springs should be buckled as shown in figure 7.3.d. For such
mechanisms a torque M, should be applied to the center clamping with

magnitude

M= 8.1[.}3"I ./ AL

X 2

When the central clamping piece is rotated around the z-axis, positive as

indicated in figure 7.3.d, the negative stiffness will be

c = - 80 -E;I
2

2
e (1 + 0,24e¢¢ A2 )
(Note: In the mechanism shown in figure 7.3d the angle ¢ is negative.)
From this expression the amplitude of the rotation ¢ needed to correct an

uncertainty range of 10%7 may be estimated. For & = 9°¢A% a rotation of =+

o
0,12 rad. (= 7 ) would be required.
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Figure 7.3.e.
Example of a construction using the low stiffnesses of elastic elements
when loaded just over their buckling load.
(The length of the plate-springs is 100 mm. The mass carried at the upper
table is about 15 kg.)

7.2.3 Plate-spring transmission mechanisms.

Transmissions with large transmission ratios over limited strokes may be
created with different plate-spring configurations. The advantages of such
mechanisms, the absense of play, high stiffnesses and good reprodu—
cibility, are of especial dimportance in manipulators for precision

engineering applications.

The most straight forward construction is the cross-spring pivot used as a
pivot for a lever. More interesting are the constructions where very high
transmission ratios may be obtained. A first example is the mechanism
sketched in figure 7.4a. Here a body A is connected by a parallel guiding
mechanism to a body B which is connected by a similar parallel guiding to
the foundation. The displacement of A relative to the foundation, L ieis
fixed by, for instance, a steel wire. The non-linear shortening of the
plate-springs in y-directions can be wused to generate parallel
displacements of body A when body B is moved in the x-direction. For the

transmission ratio may be derived

u
o

3

e
3
Thus the transmission ratio may be adjusted by adjusting 0 and large

transmission ratio's (> 50) may be realized.

In this mechanism non-linear effects are combined to obtain a constant
transmission ratio over a relatively large stroke. For micro-manipulators
the required displacements are often very limited. In such cases non-
linear effects may be used (see fig 7.4b). Here a second plate-spring is
connected to the rotor B, of a cross-spring pivot such that the distance
of the neutral planes of plate-springs 1l and 2 equals h. By displacement x
a rotation ¢ of body B will result and thus the body A will move over the
distance v = ¢°h .
Unfortunately the plate-springs 1 and 2 will shorten over a distance
s e

larger angles of rotation.

° ¢2-l each and this will influence the displacement v for

A similar construction using the distance between neutral planes as part

of a lever is shown in figure 7.4c. The body A is at one end connected to
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the foundation by the two membranmes 1 and 2, the part B is connected to
these two membranes. A displacement x at the input causes a rotation of
part B around point Pl. This will cause a displacement of the end of part

A, thus creating a small rotation a at the other end where part A is

connected with another membrane to the foundation and rotates around point

P2,

Another transmission mechanism has been used in the design of a small

coining press. Such presses are in many cases using a knuckle-joint

mechanism. These mechanisms have a very small stroke with large loading

forces at the end of the stroke. This loading force is transmitted through
the three bearings in the mechanism. The driving force is applied at the
middle joint and a large transmission ratio is obtained at the end of the

stroke.

The three heavily loaded joints may be replaced by ome plate-spring, thus
avoiding all wear and play in the mechanism. The construction shown
schematically in figure 7.4d. will be able to generate compressive loads

of the order of magnitude of the buckling load

2
F - Lo oEe°I

cl 12

Larger magnitudes of the load may be obtained when high order buckling

shapes are prescribed. More than one plate-spring may be used to increase

the loading forces derived from a limited volume of the construction. A
single steel plate-spring with length of 400 mm., width 100 mm. and
thickness of 1,5 mm. will yield a force of about 700 N. The guiding of the
slide of the press might for such cases (a small stroke) be a plate-spring

parallel guiding. For a good positioning of the two parts of the tool the
Figure 7.4 Plate-spring transmission mechanisms.

plane of one of these plate-springs should in such cases be coinciding a. When the displacement, u,, of the slide of a doubly parallel guiding
with the plane where the two tools meet and accuracy is most important. mechanism is fixed in the direction of the x-axis a displacement, x,
of the intermediate slide will lead to a deflection, v, of the slide
in the y-axis direction. The magnitude of the linear transmission
ratio may be adjusted by varying the deflection ug.
b. For small displacements the distance between neutral lines in bended

plate-springs (1) and (2) may be used as part of a lever mechanism

with a large transmission ratio.
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Figure 7.3 Plate-springs with constant negative stiffness.

a. The elastic energy stored in the buckled plate-spring is released
when the central part moves in the direction of the x-axis. To main-
tain a certain positive displacement a negative force Fy should be
applied to the central part.

b. In the region between the two maximum displacement a constant linear
relation between a displacement in x-direction and the force #e
exists.

c. Combination of a plate-spring parallel guiding with its positive
stiffness with a plate-spring with constant negative stiffness may
result in a total stiffness which 1s small compared to the stiffness
of the guiding.

d. Adjustment of the '"negative spring constant" may be achieved by a

rotation of the central part around the z-axis.

The special properties of the buckled plate-springs may also be used to
obtain mechanisms with a very low resonance frequency. From figure 5.19 it
may be seen that a plate-spring will have a very low stiffness in
direction of the y-axis when it is buckled. At this point the plate-spring
may carry a considerable load and the combination of low stiffness and
high load allows to design mechanisms with low resonance frequency.
Similarly very low stiffness in x-direction will result when a parallel

guiding is loaded to the first-order buckling load.

Using these two principles a table with low resonance frequencies in all
its six degrees of freedom has been constructed (figure 7.3.e). The top
plate is supported by three plate-springs which are all buckled in the y-
direction (second order buckling mode). Proper positioning of the center
of gravity of the masses allowed the top plate to move with low stiffness
in y-axis direction and in rotations around any axis in its plane. The
three plate-springs are connected to a subframe which is connected to the
foundation by three steel wires which are all loaded to their first-order
buckling load and thus allow the subframe with the top plate to move in x

and z-directions and to rotate around the y-axis.

It is possible to reach resonance frequencies below 1 Hz in all direc-
tions. It should however be noted that due to vibrations of the springs
(wave propagation) a transmission of vibrations from foundation to the top

plate in the range above 20 Hz may be expected.
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(d)

Figure 7.4. Continued,

Co

The distance between the neutral planes of the rings, (1) and (2), is
used to generate a lever mechanism with a large transmission ratio.

In the knuckle-joint mechanism as used in coining presses the three
joints are heavily loaded. The same mechanism to obtain a high force

and a small displacement can be made with a plate-spring to replace

the three joints.

7.2.4 General four-bar linkage mechanisms using plate-springs.

The kinematical behaviour of the Cross—spring pivot and the parallel
guiding is similar to that of the similarly shaped four-bar linkage
mechanisms. This similarity can be extended to the complete range of four-
bar mechanisms or even to mechanisms containing more linkages. Therefore
it may be possible to construct an equivalent plate-spring mechanism for
any bar linkage mechanism, The range of deflections or rotations of the
plate-spring mechanisms will however be restricted and their application
may only be considered for cases where small rotations and deflections are

required,

Two interesting and classical examples of four bar linkage mechanisms are
the Watts' and Roberts' mechanisms. Both mechanisms cause a linear motion
of one point of the slide together with a rotation.

For Watt's mechanism (figure 7.5a) the equivalent plate-spring mechanism
is shown in figure 7.5c. In first order approximation the calculation of
Stresses and stiffnesses is similar to the calculation for the parallel
guiding. The small rotation ¢ of the slide can be calculated using the

expressions for the displacement v({) of each plate-spring.

In theory any other point on the slide may be forced to move along a line
in x-direction by variation of the lengths of the two plate-springs. In

the mechanism shown in figure 7.5d a simple relation between the lengths

21 %7 and distances a and b may be derived. Substitution of b = -%a leads
to 12 = = ll and thus Watt's mechanism is a special case of thig
mechanism.

These two mechanisms are examples of plate-spring mechanisms with the
kinematical properties of special four-bar linkages. Whenever four-bar
mechanisms are designed for only limited strokes it may be advantageous to
consider the application of plate-springs. In such cases the special

advantages of plate-spring mechanisms may prove to be valuable.
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Figure 7.5 Four-bar linkage mechanisms.

a,b Different four-bar linkage mechanisms have been desi
Examples are Watts'

approximated linear displacement of a point.
mechanism (a), Roberts
Watts' mechanism may be made with plate—
and four joints.

The mechanism shown in

gned to obtain an

' mechanisms and the mechanism shown in (b).

springs replacing two bars

(b) may also be constructed with plate-springs

to obtain an approximated linear motion for small displacements.

7.2.5 Mechanisms with five degrees of freedom ; coupling elements.

Plate-spring mechanisms discussed so far all have only one degree of
freedom. Two plate-springs are used acting parallel to connect a body with
the environment. Another class of mechanisms which may be of interest is
formed by mechanisms with two plate-springs acting in series. In this case
only one degree of freedom is fixed while the remaining five are free

(i.e. having a relatively low stiffness).

An example of such a mechanism is the elastic shaft coupling shown in
figure 7.6a and b. Here two plate-springs with their y-z-planes parallel
are connecting part A through B with part C. Each plate-spring is deter-
mining the rotation of part B around the x-axis to either part A or part
C. Thus the two plate-springs and part B are forming a shaft coupling
between part A and C.All remaining degrees of freedom from part A to C are
not fixed and thus this mechanism is an interesting elastic shaft coupling
element that will allow for limited angular and lateral misalignments of

the two shafts.

This mechanism is very similar to a plate-spring parallel guiding where
the foundation is divided into the two separate parts A and C. The one
degree of freedom that is determined twice in the parallel guiding is the
rotation of part A with respect to part C around the x—-axis. In this
mechanism part B is free to move in the direction of the x-axis relative
to parts A and C. This means that one internal degree of freedom remains
undetermined in this mechanism.

(Note: The torque is transmitted by a pure torsional moment in part B. No

extra loading forces are introduced to the bearings of the two shafts.)

Along similar lines other mechanisms with two plate-springs in series may
be designed. When the z-axis of the two plate-springs are parallel such
mechanisms will be resembling the cross-spring pivots discussed in chapter
6. In cross—spring pivots the translation of the rotor along its axis of
rotation is determined twice. In the mechanism shown in figure 7.6c it is
this translation of part A relative to part C that is fixed. In all other
directions the relative motion of part A with respect to part C is, in

first order approximation, free.

Such mechanisms are useful elements to couple two translating bodies. To
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drive a slide guided by an accurate mechanism, for instance in optical more experience in their application is obtained. In future it may be
instruments, it is desired to avoid the introduction of unknown loading expected that more useful mechanisms can be invented using the large ratio
forces through the driving element. The mechanism shown in figure 7.6¢ between in-plane and out-of-plane stiffnesses of plate-springs.

will allow to connect the driving element with a high stiffness in the

direction of motion and low stiffnesses in all other directions The same

function is obtained with a long rod with a small diameter as is also used

in the measuring system described in figure 8.4.

(Note: It is advisable not to restrict the use of this sort of mechanisms

only to instrument design.)

An extremely simple form of the mechanism is obtained when a plate~spring
is folded over an angle of 90° with as small a radius as possible (see
figure 7.6d).Through combination of different coupling elements, from both
types, it is possible to selectively control the different degrees of
freedom of a body. Van der Hoek (H3) has described some examples of such

combined constructions.

The most interesting properties of these coupling elements will be their
stiffnesses in the different directions. In figure 7.7 and 7.8. expres-—
sions for these stiffnesses are given.

These elements may be compared with equivalent elastic elements performing
the same function. The shaft-coupling (figure b) may be compared with the
coupling using two membranes instead of the plate-springs. Such a membrane
coupling will have a higher coupling stiffness relative to the stiffnesses
in the other directions. However the allowable misalignment of such
membrane couplings is much (about 10 times) smaller than in the case of

the coupling in figure b.

The construction of figure d. may be compared to a single rod or wire. In
this case the single rod will allow for smaller and simpler constructions.
A disadvantage of the single rod is the kinematical displacement of the
end of the rod due to rotations and deflections (similar to the kinematic
deflection v(R) of parallel guidings). The comstruction of figure d. does
not have this disadvantage. In addition the freedom of dimensioning the
plate-springs will allow to obtain larger stiffnesses c, and larger

loading capacities.

The different properties of these mechanisms have not yet been investi-

gated in detail. Many engineering problems might however be solved when
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a.

(a)

(b2)

Figure 7.6 Mechanisms with five degrees of freedom.

The well known parallel guiding is easily transformed into a
mechanisms fixing only one degree of freedom from part C relative to
part A.

Schematic representation (bl) of an elastic shaft coupling. Against
rotation around the axis a high stiffness is obtained while in all
other directions relative motions are allowed for. Such a coupling
may be made by the cutting of slots in a tube as indicated in (b2).
Based upon the geometry of cross-spring pivots a coupling element
determining only one degree of freedom may be obtained.

The function of the cross-spring pivot shown in (c) may be performed

by a single plate-spring bended over as sharp a radius as possible.
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In the undeformed position the stiffnesses of part C relative to part A

with respect to the pure displacements and rotations indicated are,
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The first five stiffnesses are small of the order h2 while the Ilast,
coupling stiffness, is large. This stiffness will in practical cases be so
large that the stiffnesses of flanges and connecting parts become more
important in determining the total stiffness. When the two parts A and C
are not exactly aligned the plate-springs are deformed and the
stiffness ¢ will decrease. From the earlier analysis (chapter 5 and 6)
it may be concluded that the decrease will be limited (to about a factor
two) when plate-spring deflections are less than 5(10) times the plate-
spring thickness and angular deformations are smaller than 5(10) times the
ratio of h/k.

The magnltude of the driving torque leading to instability, buckling of
plate-springs, may in first-order be estimated as,

2sqeEe]l
M - 2R

¥erit H E

where KB is a function of the length to width ratio of the plate-spring as

was discussed in chapter 5. For relatively long plate-springs AB = 1.

Figure 7.7. Main characteristics of elastic shaft coupling.
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The different loading components will be applied to part C with respect to

point P. The relations between the loading components and the deflections
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The ratio between the stiffness c, and the stiffness Cy and c_ is of the

2
order b /h2 which will in practical cases be more than 1000.

The value of the critical value for F, at which plate-spring instability
may occur is estimated (no rigorous derivation being available) at:

1L 3
10°E 12 beh

F =
Zarrit
12

Upon deformation of the plate-spring the stiffness <, will be reduced.
When displacements x and y remain small (less than 5(10) times the plate
spring thickness) and rotations are limited (less than 5(10) times h/1)
the reduction is estimated to be not more than about 60%.

Figure 7.8 Alternative elastic wire support.

7.2.6 Two or more parallel guidings or cross—spring mechanisms placed in series.

The parallel guiding and cross-spring pivot discussed in chapters 5 and 6
have a number of advantages which make them attractive for machine and
instrument design. One of the most important drawbacks for both mechanisms
is the kinematic motion described by rotor or slide. The movement of the
parallel guiding is not along a line but along the top of a parabola. The
movement of the rotor of a cross—-spring pivot is in general not a pure
rotation but the axis of rotation moves during deformation of the plate-
springs. In some cases the possible solutions of Watts' or Roberts’
mechanisms and cross—spring pivots with a = 1/8 or a = 7/8 (figure 6.6)

will be a solution.

A more general way to avoid the unwanted parasitic deflections is the use
of two mechanisms in series (figure 7.9a and b).

The construction for the parallel guiding is rather common and easily
understood (figure a). When the slide C is moved, quasi-statically, the
part B will travel over half the deflection of C and the vertical movement
of C becomes equal to zero. (More information about possible inaccuracies
are given in lit. (H3).)

The same principle may be used for the cross-spring pivot (CEio. h) NPT rERR
rotates over half the angle of rotation of the rotor C. As a result the
axis of rotation of part C relative to the foundation A will be stationary

and pass through the initial axis of rotatiom.

This method of placing two mechanisms in series appears to be rather
attractive. However the proper operation is only assured when the proper
ratio of motion of the parts C and B is obtained. In the basic design this
may be statically assured by the fact that the stiffnesses of both
mechanisms are equal. The accuracy of this method may be sufficient, but
for general purposes the relative motion should also be assured during
dynamic operation and thus the superfluous internal degree of freedom
should be eliminated. This will be even more important when the mechanisms
are loaded in other directions and the main stiffnesses of the two
parallel mechanisms are affected differently. A possible way to eliminate
the internal degree of freedom and to assure the proper ratio of movement
is shown in figure c. Similar solutions might be found for constructions

with two cross—spring pivots in series.



7.3.0

"Reinforced" plate-springs in parallel guiding mechanisms.

When analyzing the shape of a deformed plate-spring in a parallel guiding
it becomes evident that the middle part of the plate-spring remains almost
undeformed. The operation of the mechanism will thus change only very
slightly when this middle part of the plate-spring is made much thicker to
obtain higher stiffnesses locally. Such a mechanism, shown in figure 7.10,
will behave similar to a usual parallel guiding but a relative improvement
in different properties might be achieved. In this paragraph a number of
these properties will be determined. With the results obtained it may be
possible to indicate over what length the plate-spring should be made
stiffer and whether the achieved improvements will be sufficient to

justify the increased constructive complexity.

u(e)

-
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Figure 7.10
When the middle part of the plate-springs of a normal plate-spring paral-

lel guiding (a) is reinforced to give them higher stiffnesses a parallel

guiding mechanism as shown in (b) will result.
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To discuss the properties of such plate-spring elements the element with a
total length L is divided into two parts with a low stiffness and length £
and the remaining part with length 2°qef . Thus the following relation
between total length L and the dimension £ results
L= 2= 13+ q el (72350

For the plain plate-spring q=0 and for the mechanism shown in figure 7.10b
q is about 3.

In Annex 7.1 a description of the calculation of different properties of

reinforced plate-spring elements is given. The results of this analysis

will be discussed here.

The stiffness cy of one plate-spring element is determined as

12eF ]
= (7o352)
T el (G B

The maximum bending stress in the plate-spring o is

1
L e
o, = 3°Es k(zl % o (19 )3y ) (7:359)
+

To compare the properties of parallel guiding mechanisms with and without
reinforced part it is useful to distinguish two cases. In the first case

mechanisms with equal stiffnesses ¢y are compared. In this case the

l =,

|

Figure 7.11

Definition of parameters used in calculation of the properties of paral-

lel guiding mechanisms with reinforced plate-spring elements.
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thickness h of the elastic part in the reinforced elements can be deter-—

mined from the thickness hO of the basic plate-spring from

=
c, is constant » h = 9 [ 1 -4 o T (7.3:4)

1+q o

In the other case the maximum value of the bending stress in the plate-

spring element will be maintained. This will yield

9% is constant » h = ( 1 - T%g ) e ho @7-355)

From these expressions it is clear that the plate-spring thickness must be
reduced in both cases when a large part of the length has been reinforced.
When 90% of the length of the plate-spring has been reinforced the thick—
ness has to be chosen at about 65% of the original thickness to maintain
the stiffness c, at the same value. In order to allow the same value of
the maximum bending stresses the thickness must be reduced to only 27% of
the original value.

The large reduction of the thickness in this last case will cause a
deterioration of some of the properties of the plate-spring guiding. When
it is attemped to maintain the stiffness cy most of the important proper—

ties of the parallel guiding will be improved.

7.3.3 Kinematical deflection, v(L).
The partial reinforcing of the plate-spring will influence the magnitude
of the kinematical deflection. For a four—bar linkage parallel guiding
v(L) was calculated as 0,6-u(L)2/L . For a pure parallel guiding mechanism
with pivots at a distance L, v(L) is O,5-u(L)2/L . For mechanisms with
plate-springs with different values for q the following expression is

obtained

3-u(L)2 (l+q)-(15°q3+20'q2+10°q + 2)
10 2 2 (7£:326)
(V1L V3 eq L8 3eq )

v(L) =

7.3.4 Influence of loading force Fy on stiffness c_.

The expression derived for the kinematical deflection v(L) may be directly

used to estimate the influence of a force F, applied to the slide of the

y
parallel guiding.

Using considerations of the conservation of energy the expression for the

driving stiffness c, is estimated as,

=006 =

2F ov(L)
chie=Nc o( 1+ —L—— )
< i (7 37
u(L)2°c )
X0
where Cxo 1s the stiffness of the guiding mechanism when F._ = 0 determined

by expression (7.32).

As the relative magnitude of the kinematical deflection v(L) does not
depend strongly upon the parameter q no noticeable change of the influence
of Fy upon c, will be found. Only when the nominal magnitude of ¢

X

: o
decreases the influence of forces F. will increase.

7.3.5 Buckling loads of the guiding element.

To obtain an impression of the changes of the buckling loads for the
parallel guiding with reinforced plate-springs the two loading cases shown
in figure 7.12 will be analysed.

The buckling load Fy for the loading case of figure 7.12a will be a force
comparable with the second order buckling load given in chapter 5. For

this buckling load may be derived

2
F mEsFOT 4'ﬂ2' 1+ 2-E-I

== 7:3.8
y 2 LZ ( )

As the thickness h will be a function of the rate of reinforcing the
plate-spring (q) either expression (7.3.4) or (7.3.5) should be substitu—
ted to make a comparison. Thus the buckling load may be compared with the

magnitude for a plate-spring with q = 0 by

= 2 5
B S LG G (c, is constant)
2
By = Fool (H)SaC 1= GEO%)% 1 e et S

For c, constant the buckling load is increased by about a factor 27 when q

9 (90% reinforced). When Op 1s kept constant the increase is only about
a factor 2. The best value for the buckling load is in this case obtained

when about 70% of the plate-spring length is reinforced Cqr="2.5)8

A calculation for the second order buckling load F, for the loading case
shown in figure 7.12b can be made using the energy method as used also in
chapter 5. To obtain an impression of the relation between the buckling

load and the parameter q this calculation has been made while neglecting
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Figure 7.12
Two cases of 1instability (buckling) of reinforced plate-spring elements
have been analysed. The first case (a) is considering an element under a
compressive load, -Fy, while the “free-end" 1is only free to move in the
direction of the y-axis. In the second case a loading force F, is applied
to the center of the element and only motion of the "free—end" in the z-

axis direction 1s possible.

the effect of the constrained warping (influence of the clamping condi-
tions upon the torsional deformation). It should be noted that the effect
of the constrained warping will lead to an increase of the critical loads
when the elastic part is becoming short relative to its width.

This leads to the following expression,

Riet ey Aiz +2A1;A2 5 Tzz 2 ]
k 3'h Ty T tAEG s e e
(7.3.10)
where AnisE=28=6vq
Ay = 6 + 12.q
Ay = 2 + 8.9 + 6.¢°
A, = =4 -12.q - 6.q°
A5 =D ik .q

In the calculation of this expression a deformed shape of the plate-spring
is estimated and the elastic energy in the material is then compared with
the energy supplied by F,. As the estimate for the shape is made under the
assumption that a reinforced middle part is present it may not be expected

that a good value is obtained for q = 0.

The result of this calculation is presented in figure 7.13.

In this graph is shown the factor Ay which may be used to calculate the
buckling load. Also shown are the curves that indicate how the buckling
load is varied if the magnitude of q increases while either the stiffness
¢y or the maximum bending stress o, are kept at constant values by adap-
tation of the thickness h. It may be concluded that no noticeable effect
is obtained in the case where ¢y is kept constant. In this case only the

influence of the constrained warping will lead to an increase of the

buckling load as the length to width ratio of the flexible part decreases.

When it is attemped to maintain the magnitude of the maximum bending
stress it is seen that a drastic decrease of the buckling load is caused.
In cases where the buckling load F, may be of critical importance and O
should not increase it is therefore advisable not to use reinforced plate-

spring elements.
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Figure 7.13

The buckling load, F for the loading case of figure 7.12b, may be

z?

calculated using the expression

/E .G
ESSER A a5 ——

L4

where Ay is a function of the parameter q and may be taken from this
figure.

Also presented are lines indicating the magnitude of F, as a function of
g relative to the buckling load, F,,, for g¢=0 while the plate-spring
thicknesses are adjusted to maintain either c, or o constant.

In this analysis the influence of the constrained warping of the cross-
section has not been taken into account. This effect will lead to higher

values of the force F, when q increases.

7.3.6

7.3.7

Dynamic behaviour of plate-spring elements.

In chapter 5 some remarks were made with respect to the natural frequen-—
cies of the plate-spring elements. When the plate-spring element is parti-
ally reinforced three natural modes of wvibration with relative low
frequencies may be expected for the relatively heavy middle part.

These modes will be a translation in the x-direction, a rotation about the
y-axis and a rotation around a z-axis through the middle of the reinforced
part.

When the mass of the reinforced part is equal to m the natural frequency

for the first mode may be estimated as

bl L e 2

X m-13 sec

The value of the natural frequencies will depend strongly upon the design
of the reinforced part of the plate-spring.

When the mass of the reinforced part is of the same order of magnitude as
the part of the original plate-spring it replaces, an increase of the
lowest mnatural frequency will be obtained. This increase will be small
when the maximum value of the bending stress is kept constant, the para-
meter q being varied. But when the stiffness c, is maintained a noticeable
increase, of factors from 5 to 10, in the magnitude of the natural

frequency may be obtained.

Guiding stiffness, Cy‘

As for the normal plate-springs the stiffness of a reinforced plate-spring
element can be considered as a series of two stiffnesses, the compressive
stiffness according to Hooke's law and the contribution of the varying
bending shape.

The compressive stiffness is independent of the deflection, u(L), of the
end of the plate-spring element. The contribution of the elastic part of
the reinforced element can be calculated using the expressions for the
plate-spring thickness (7.3.4) and (7.3.5). From these expressions it
follows that an increase in the compressive stiffness of the elastic parts
with a factor of about 6 and 2,7 respectively for c, and O, constant may
be obtained for q = 9 ( 90% reinforced).

The contribution of the reinforced part depends upon the design of this
part. In this respect it is advisable to design a symmetrical construction

of the reinforced part. In the a-symmetric construction as is shown in
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Figure 7.14
When the reinforced part of the plate-spring element is not designed

symmetrically (as in (a)) a loading force Fy applied through the flexible

part will cause bending deformation in the reinforced part. This will

reduce the stiffness of this part in the direction of the y-axis.

figure 7.l4a the compressive stiffness of the reinforced part is four

times less than for the construction shown in figure 7.14b.

For the calculation of the influence of variation of the deformed bending

shape on the stiffness c, again the contribution of both the elastic and

the reinforced part shouid be considered. In order to keep the influence
of the reinforced part small it should have a high bending stiffness
around the z-axis. When making the reinforced part out of a massive part
with the same width and material as the elastic part the thickness, h.,
should be about (l+q) times the thickness in the elastic parts. In that
case the contribution of the change in the shape of the elastic part will

be dominant.

=212 =
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Figure 7.15
The relative increase of the part of the stiffness Cy which is due to the

variation of the deformed bending shape of ‘plate-spring elements with

increasing rate of reinforcement (q) for the two different cases, cy is

constant or oy is constant.

For the contribution of the bending deformation of the elastic parts upon

the stiffness the following first order estimate is derived in Anmex 7.1

3

2
e 7000 B Eevealingd S URO (L e e L)

b g T {(i<3512)
y ai 1k 10wy + 4Gt Ll e PR S

L

For the two cases of interest, ¢, ©or ¢, constant, this result may be
compared with the result for the normal plate-spring (g = 0). The result
of this comparison is shown in figure 7.15. When Oy 1s constant the
increase in stiffness Cyb is limited to about a factor 5. When e is con-—
stant the increase may well be over a factor 50.

Especially when a plate-spring element is designed for a relatively large
deflection u(L) the use of reinforced plate-springs will allow for an
increase of the total stiffness of the guiding in the direction of the y-

axis.



3.7.8 Guiding stiffnesses c, and S

In the undeformed position the stiffness c, and c¢ are determined by the
stiffness of the elastic and reinforced part against bending around the x-
axis. The contribution of the elastic part to these stiffnesses may be
directly calculated using results from the linear beam theory. This leads

to the following expressions

5 3
e (1)
o 0 e .._.-—_——-q-——-——E
20 i 1+ 3eq + 3°q
s (7.3.13)
C N . (1+q) e3.

These expressions give the relation between force F, and torque My and the
deflections of the end of the plate-spring in the direction of the z-axis
and rotation around the x-axis when the load is applied as shown in figure
7.16. The given expressions may be used to determine the stiffnesses of
the two helical springs and their distance in the equivalent model shown

in figure 5.18. In that case the two springs have a stiffness

E°l 3
2 L OB (7.3.14)

c =~ fo .
i e den st

and their distance ay is given by

Eedte Lapeiher 2ot i bl (f-aels)

y 1+q 3

Figure 7.16

To determine the stiffnesses c, and ¢,k of reinforced plate-spring ele~

ments the deformations due to a loading force F, and a torque M, have

been analysed (Annex 7.1).

= Dl =

When the stiffnesses are compared to those for normal plate-springs it
shows that the stiffness c  remains almost unchanged when op ' ietkeptiicon=
stant. When the stiffness ¢, is kept comnstant an increase of about a fac-
EOLS2MEONS = f or c,, may be obtained for q = 9. For very large values of q a
larger increase might even be obtained in this case.

The stiffness C¢o will in both cases (ob or e constant) increase. For %
is constant a maximum increase of about a factor 3 will be obtained. For
c, 1s constant an increase with a factor 6 to 7 results for q = 9. For

larger values of q an even larger increase in C¢0 may be obtained.

The contribution of the reinforced part of the plate-spring to the stiff-
nesses depends upon its construction. To obtain full benefit of possible
improvements in the guiding stiffnesses it should be designed to have high
stiffnesses in all directions. To obtain a relatively high stiffness
against rotation around the x-axis it may be necessary to enlarge the

width (b) of the reinforced part.

For the plate-spring element with a certain end deflection u(L) the defor-
mations under influence of a force F, and a torque M, have been calculated
in Annex 7.I. It should be noted that for these calculations it is assumed
that the reinforced part is infinitely stiff which should be considered as
the normal situation and in actual constructions should be assured by a

carefull design of this part.

With the results of the calculations in Annex 7.1 the magnitude CoPMOTRERE
two springs in the equivalent model in figure 5.18 for this case may be

derived. This yields

Gl i AT 2
Ela e Q,

(7.3.16)

The magnitude of the factor Q, may be estimated from the graph in figure
7.17 where results of calculations for different length to width ratios
have been given. It must be realized that the calculations are taking into
account the influence of the warping of the cross—section as discussed in
chapter 4. Therefore the results are only estimates when the ratio of the
length of the elastic part to its width is less than onme. In the graph the

curves are dotted in this region.

With the same remarks the influence of the parameter q upon the distance
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ayt between the two helical springs is shown in figure 7.18. The distance
between the springs is growing with increasing ¢ and thus the stiffness
C¢t is increasing relative to the stiffness c .

To illustrate the possible increase of the stiffness c,; for the reinfor-
ced plate-spring two graphs are presented in figure 7.19. Here the calcu-
lated stiffness c,, 1is compared with the same stiffness for the normal
plate-spring for the two cases, ¢, = constant and ¢, = constant.

From 7.19a it is clear that some increase in c,, may be obtained when cg

is constant. This increase is mainly due to the increasing influence of

e

NS
X
[

|
| PEaEsEe

0 i ] 3 6
Figure 7.17 —q

Application of a force F, to a reinforced plate-spring element as shown
in figure 7.16 will lead to torsional deformations of the elastic parts.
These deformations will cause a deflection of the end of the plate-spring
in the z-axis direction. The magnitude of this deflection may be calcula-
ted using the equivalent mechanism, figure 5.18, where the stiffnesses
c,¢ of the helical springs are calculated using expression (7.3.16). The

magnitude of the parameter Q, as a function of the parameter q, is shown

here for different length to width ratio's (L/b) of the plate-spring

element.

=206

the "constrained warping" in the relatively short and wide elastic parts
of the plate-spring elements. When G, is constant, 7.19b, it shows that
the increasing influence of this effect does not compensate for the
decreasing plate-spring thickness. In this case no noticeable increase in
¢yt 1s found, for relatively large values of the length to width ratio a

decrease in stiffness will even result.

One remark should be made about these calculations. When the total stiff-
ness of a reinforced plate-spring element in the deflected position must
be determined the contributions of the two equivalent models, with e o and
c,¢ respectively, should both be taken into account. This may be done by
adding the deflections and rotations determined by each model. They may in
fact be considered as two spring constructions acting in series as was

also suggested in chapter 6. for the cross—-spring pivots.

0,5

Q 2k 2 3 b 5 6 0 8 9 10
¢ q
Figure 7.18

Application of a torque M, as in figure 7.27 to a reinforced plate-spring
element will lead to torsional deformations of the elastic parts. The
magnitude of the resulting rotation, (¢(L), of the end of the plate-spring
may be estimated using the equivalent model (fig. 5.18) where the dis-
tance between the two helical springs is equal to ayt'L' The magnitude of
aye is shown as a function of the parameter g, and for different length

to width ratlios of the plate-spring elements.
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Comparison of the stiffness c,, obtained with a reinforced plate-spring

element and the stiffness of a plain plate-spring when the two

Czto
elements have the same general dimensions.

In figure a the thickness of the elastic part 1is chosen in such a way
that, while q is changed, the stiffness c, remains unchanged.

In figure b the thickness is varied in such a way that the maximum value
of the bending stress, o, 1s constant.

The ratio between the stiffnesses is shown as a function of q for diffe-

rent length to width ratios.

7.3.9 Magnitude of loading stresses

In the discussion so far only the magnitude of the bending stress o, due
to the deflection u(L) of the end of the plate-spring element has been
considered. When loading forces are applied to the slide they will also
cause other stresses in the elastic parts and as their cross—sectional
area reduces with increasing values of q (larger part reinforced) the
magnitudes of the stresses due to loading forces will increase. In many
cases this will be taken into account by reducing the magnitude of the
allowable bending stress oy. In that case higher stresses due to loading

forces could be allowed.
This will however result in even smaller thicknesses of the elastic part

than was predicted by expression (7.3.5). And therefore many of the

properties discussed will have smaller values than suggested here.
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7.3.10Conclusion
In this paragraph a number of the properties of the reinforced plate— Case considered.
. TR . . Property i
spring element have been discussed. Summarizing figure 7.20 gives an over- i Cx 2 EonRtant cpleiconsoan
i indi i i d or no | =
view indicating whether a property is improve t when a normal plate ) Ay T 5 i
spring is replaced by a reinforced plate-spring. From this figure it is
clear that reinforced elements may be very useful when the bending stres-— Bending stress oy, 4 0
ses are not yet important in the normal plate-spring. In that case rein-
; Kinematic deflection v(L) 0 0
forcement will improve about all the relevant properties. Only the magni-
tude of other stress components due to loading forces will increase. Buckling load F, i 0,+
¥y (£igsTa.12) 0 -,—=
When the bending stresses in the normal plate-spring have reached their
. p . . Lowest internal frequency +
limit value the situation is more complex. g
Now only part of the properties improve and the buckling load F, is redu— Gt e
ced. Also the other stress—components will become larger in this case. For cy undeflected + i
this type of constructions it is therefore advisable to use plate-springs ¢y , deflected L +
: . . 1 c deflected +
without reinforced parts. Only when the plate-spring element is used to zEz i v
c  ,undeflected aF G-
determine only one degree of freedom (in y-direction) a slight improvement ¢, » deflected e 3
may be obtained with the reinforced element. °, , deflected + +
Another problem arises when in a certain design with plain plate-springs G SRR Sy
A £y " S (influence of other stress - -
neither the stiffness ¢, nor the stress g, have reached their 1limit
components)
values. In this case an improvement of the guiding may be obtained either
by increasing the thickness of the plate-spring or by reinforcing the
plate-spring. In both cases all properties are improved. Whether the lar-— Figure 7.20
gest improvement is obtained by reinforcing the plate-spring or by Comparison of some of the properties of reinforced plate-spring
increasing the thickness is different for each property. In general elements with these of normal plate-springs. Indicated is whether a
: A ; : T CYa +
properties in the direction of the y-axis improve most when the plate- DEREERT Sl orEitE )N, renain=Snnchauge R GROE R
deteriorates ( - or —— ) when the parameter q is increased.

spring is reinforced. The properties in the z-direction improve most when

the thickness of the plain plate-spring element is increased.

Finally it may be concluded that partially reinforced plate-spring ele-
ments allow to improve the properties of plate-spring parallel guidings in
many cases. Whether the achieved improvements are justifying a more com-
plicated construction will depend strongly upon the particular applica-
tion.

It should be reminded that in this analysis it has been assumed that the
external geometry of the guiding mechanism ( length and width ) are fixed.

Generally it will be a good method to improve properties of a plate-spring
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guiding mechanism by an increasing length or width of the plate-springs. ANNEX 7.1

In the design of plate-spring mechanisms the selection of the length of Derivation of expressions for some properties of reinforced plate-spring
the plate-spring should thus be given adequate attention. elements.

Similar dimprovements of properties may be expected when cross—spring Using the iterative analytical method discussed in chapter 4 some of the
pivots with values of the parameter a larger than 2 and less than -1 are main properties of reinforced plate-spring elements used in parallel
constructed with partially reinforced plate-spring elements. Such mecha- guiding mechanisms may be determined. In this analysis the element shown
nisms are even more comparable to four-bar linkage mechanisms than the in figure 7.I.1 will be discussed. As the element is used in a parallel
usual cross—spring pivot designs (see figure 7.21) guiding mechanism the rotation ¢(L) of the end is equal to zero. As a

result calculations may be performed on half of the element consisting of

an elastic part with length £ and an infinitely stiff part with length

qele
<P From figure 7.I1.1 the following relations are obtained
7
,/ \\ L=2+%2+1+q) (TN 1y
4 \
’ u (L) =2 (Ru ()R sl (L)) (7.1.2)

(gt
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Lt
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Figure 7.21 Sl
e 45
The application of reinforced plate-spring elements may also be consi- 9 b X
/
dered for the construction of cross—spring pivots where the parameter a o
is more than about 2 or less than —-l. &

Figure 7.1.1.
In the calculations of the behaviour of the reinforced plate-spring
elements the dimensions as indicated here are used. As the element is

considered to be a part of a parallel guiding the calculations may, in

first order approximation, be performed on one half of the element as

shown in (b).
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For the plate-spring element loaded by forces F, and Fy the following

equation for the curvature, ae(s)/ds? in the elastic part results (compare

figure 4.3)

40(8) . o[ —p,((qtl) et ~s ) + Fye( 7 wu(l) - u(s) ) 1 (7.1.3)

(As discussed in chapter 2 and further KZ is the compliance factor of the
elastic part with respect to bending around the z-axis. In most cases the

expression K, = l/E-IZ may be used).

s
Introduction of the dimensionless coordinate g = /R leads to the expres-—

sion

e G~ s e ul) w710

Determination of c_ and v(L)

In first instance, the first iterative step, the influence of Fy is
neglected by the first estimate, u(g) = 0.

Integration of equation (7.I.4) yields

68 = = B K +22e( () oE -3 + £ ) G515

and as an improved estimate for the deflection u(E) is obtained

W(®) = 2o, [5 -0(8)s dE = B K +Le(§ (k) eE =g ) (T.L.6)

Substitution of these results in expression (7.I1.2) gives the following

expression for the stiffness c, of one complete plate-spring element

> 23/ 5 e (1ﬂ)3
x (CRos =( 2k 6°q + 6% ) KZ-L3 Gl B0+ )

12 il 12 1
= 3 3 = 3 3 (TeXe7)
K, °L 1 - (—9—1+q) K, L 1-p

Here the parameter p is another parameter indicating which part of the
total length of the plate-spring is reinforced. The parameter p is equal
to the relative length of the reinforced part. When 60% of the length L is

reinforced p equals 0,6.

=8024 =

With expression (7.I.7) a relation between F, and u(L) is dete ined. This
relation can be used to eliminate F, from expressions (7.I.5) de(7LTl6)%
Thus the following improved estimates for the deformed shape ¢ the plate—

spring element are found

£ Ii
¢(é)=—u(y>°Qa((1+q)og—%w>§2)
u*ggy (@) 1
ThE e s “(1+q) & —% £ ) (7.1.8)
where Q = 3/

R P45 Bog 4 Gl

The estimate for the deformed shape of the plate-spring iy be used to

derive an expression for its curvature. This expression r then be used
to estimate the magnitude of the bending stresses in the p ce-spring.

o . % 1 *
With the approximation of cos ¢(&) = ( 1 - 5 °d (E)2 ) the <inematical end

deflection v(L) may now be determined using these e ressions. This

results in

v(L) 1 * 2 1 * 2
12 e Do e (B sdErchiges St lREl
Far o g D 2
e at Bl s e (7.1.9)
2 il
5 ( §‘+ 2e°q + Z-q2 ) .
which may also be written as
e S u(L)z (l+q)°(15-q3+ 20'g2+ 10eq + 2)
7 e ° (7:3:10)

10 I
€l han t v )

As might have been expected the limit values of this expression are

2 2
3
vw) == 3 2B for g - 0and v(n) = -3 BI gop g s,
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Determination of Cy

* * . .
The improved estimates ¢ (&) and u () may be used in the equation (7.I.4)

d¢(§)/

for the curvature The resulting equation can be integrated

twice to derive expressiiis for ¢(&) and u(&) in which the first order
part of the influence of a force Fy applied to the plate-spring element is
taken into account. These expressions may be used to determine the
influence of Fy upon the driving stiffness, c,, of the plate-spring

element. The result thus obtained is equivalent to that given by expres-—

sSiionm(7 357 )

The obtained expressions for ¢(&) and u(E) may also be used to eliminate
the force F,, using expression (7.I.2) and to find new estimates for the
deformed shape of the plate-spring element. The new estimate for ¢(E)

will be

(2~ - M L[ g o ()~ g ) +
2 1 i
R 0e0 ((Lig) 2 - 5 E D= sE
i 3 1 4
ol = kRl ogT = o gt )l 0 (7.1.11)

4 + 20eq + 40'q2 + 30'q3
2
10 o( 1 4+ 3eq + 3°q )

where Q2 =

As was done in expression (7.I1.9) this estimate may be used to calculate
the end deflection v(L) of the plate-spring element. The resulting expres—
sion will contain a part similar to that obtained in (7.I.9) and a part
that is a linear function of the force Fy. This part is the first order
estimate of the deflection Av(L) caused by the variation of the bending
shape of the plate-spring element which causes a certain contribution,
Cybs to the total stiffness c,. From this analysis the expression (7.3.12)

o
for this effect has been derived.

- 226 -

Determination of stiffness e

The contribution of the torsional deformation of the plate-spring under
influence of a loading force F, to the deflection w(L) of the end of the
element in the z-direction may now be determined. As in the Annex 5.1 and
6.1 the torsional deformation, O(E) , is determined using the differential
equation given in figure 4.10. Using the estimates ¢*(§) and u*(g) from

expression (7.1.8) the differential equation for this case is

S :
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where p~ = K eE°T is a parameter depending upon the length to width
37

ratio of the elastic part of the element. With this factor the influence

of the "constrained warping" is taken into account as discussed in chapter
4

The end conditions for the equation are
& =03 6(g) = 0

E=0 > Q@%%l =0
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constrained warping "

From the differential equation with the given end conditions a solution

for 6(E) may be found as

=~ ° IQZOULG
e(&;)-KyFZQ;z -'LLR

oF
+ cee"

. Rl - ol o ot
[ A+ Bee + a E+ a, £+ ag T+ 3, E ]

(7o)

==



The magnitude of the different coefficients may be determined, as was done

in Annex 4.I, 5.1 and 6.I, leading to the following expressions
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The contribution of this torsional deformation to the angular deformation
o(E) and the deflection w(E) can now be determined with the following

expressions (figure 4.10)

d
a6(8) = J° e - —Qﬁél - dg
and AW(E) = ofé AY(E)  dE (7.1.16)

The angular deformation ¢(1) and the deflection w(l) of the end of the

elastic part may thus be estimated as
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With these expressions the total deflection Aw(L) of the end of the plate-

spring due to the torsional deformation may be calculated as
MAi(L) =2 o { Aw(l) + qef°Ad(l) } (7.1.18)

The result of this analysis has been used to determine the magnitude cf
the stiffness c,y as discussed in paragraph 7.3. It should be reminded
that the model used to describe the influence of the constrained warping
is restricted to the case of torsion of beams. When the elastic part is
relatively short compared with its width this model might not be applica-
ble. Therefore the results of calculations where this condition is not

satisfied have been shown as a dashed line in the figures in par. 7.3.

Determination of the stiffness cy

When the torque Mx is applied to the end of the plate-spring element a
rotation ¢(L) of this part around the z-axis through the center of the
plate-spring will result. Due to considerations about the symmetry of the
loading of the plate-spring element no torsional deformation, O6(4°L) , at

the middle of the plate-spring will occur.

To determine the magnitude, A¢(L), of the rotation caused by torsional
deformation of the elastic part of the plate-spring element the same
method as discussed for the influence of F, is followed. A differential
equation as expression (7.I.12) is derived. For this equation the boundary

conditions are

1]
o

E =R R0 )
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In this case the extra boundary condition may be used to determine the
unknown internal torque My in the plate-spring.

The obtained solution for 6(%) will be of the form

u(i) THUE L GHPUE
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where the magnitude of the different coefficients in this case are deter-—

mined as
1 1
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The magnitude of the torque My is

e (L) 1
My = Mx Q P ( a; + /pz ) (7 2410)

With this solution for 6(%) the magnitude of A¢(l) may be determined as
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AP(l) = _Ky.Mx.xg( U(i) )2 'QZ of Ao %'+ q) + a

L Ekq
+ a2 ( 12 + 3 ) + a

T g 1
e St o (7.1.28)

and the total angular deflection, A¢(L), of the end of the plate-spring

element will be
Ap(L) = 2 AP(L) (7.1.24)

These results have been used in par. 7.3 to determine the guiding stiff-

nesses of the plate-spring elements.
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Chapter 8

Measuring plate-spring characteristics

Introduction

To investigate whether the mathematical models used to calculate the beha-
viour of plate-spring mechanisms are adequate different experimental set-—
ups have been made. The measurements done with these installations must be
accurate enough to indicate noticeable differences between theory and rea-
lity. In this chapter three different set—ups will be described. In each of
these set-ups similar general considerations have been used. A number of

these general remarks will be discussed first.

General observations

Prediction of the absolute magnitude of stiffnesses.

The absolute magnitude of the stiffnesses of plate-spring mechanisms may in
general be predicted with an uncertainty of about 20%. This is mainly due
to the relatively large inaccuracy in the plate-spring thickness which in
most cases has a cubic influence upon the stiffness. For thicker plate-

springs (> 0,3 mm) the inaccuracy decreases.

Other factors contributing to the inaccuracy are Young's modulus of the
material and the shape and properties of the clamping pieces. Young's modu-
lus for thin plate-springs is varying due to anisotropy of rolled material
(variations upto 5% may be found) and the molecular structure of the mate-
rial. Measurements by J. Smit (S2) indicated a decrease of Young's modulus
of steel plate-springs of about 5% as function of the thickness varying

from 0,8 to 0,15 mm.

Elastic deformation of the clamping pieces and rounded edges thereoff ren—
der the estimate of the actual plate-spring length inaccurate. An addi-
tional length of one half of the plate-spring thickness may be added for
each clamped end to account for deformation of the clamping. The additional

length for the curvature at the edges of the clamping pieces depends upon
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the radius of curvature. Generally 0,1 to 0,2 mm may be added for this

effect.

From these remarks it is clear that no accurate measurements are needed to
estimate the absolute magnitude of the stiffnesses. Variations of these
stiffnesses however are all relative to the intitial values and the rela-
tive magnitude of these variations may be measured accurately. In the
design of plate-spring mechanisms it will be sufficient when the relative
magnitude of these variations, e.g. non-linearity or stiffnesses decreasing
with deflection, are predicted. In the set—ups for measurements it is
therefore attempted to relate variations to an initial value, for instance

the stiffness around the undeflected position.

Influence of internal stresses.

When a plate-spring is mounted in a measuring set-up no undesired internal
stresses due to over—determination of degrees of freedom should occur. The
theoretical analysis generally assumes that no such stresses are present.
The different degrees of freedom of the clamping pieces at the plate-spring
end must be fixed in such a way that in the experiment such stresses are
avoided. In general this means that of the "free-end" of a plate-spring
only three degrees of freedom (%, ¢ and 6) are to be prescribed while the
plate-spring itself fixes the remaining degrees of freedom of the free—
ends, see figure 8.1.

For the construction of a guiding mechanism for measurements the slide or
the foundation may be made as in figures 5.14 or 6.13 to avoid unwanted

stresses.

Geometrical effects.

In the theoretical analysis it is assumed that the undeformed plate-springs
are flat. This means that specimens for measurements should not be bend or
twisted considerably. The presence of burrs at the sides, due to cutting
for instance, is not allowable as they will lead to unpredictable effects.
Dijksman (D1) discusses the influence of an initial curvature of the plate
around the y-axis of the plate-spring. To avoid the resulting non-linearity
it may be suggested to operate the plate-spring mechanism in a range not

including the position where the plate-springs are undeformed.
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Abbe's principle.

When a body is moving the movement may have components in all six degrees
of freedom. When it is necessary to measure the displacement of the body
along a certain line it is necessary to place the measuring device along
this line to avoid inaccuracies from other components of the motion. In
some cases it 1is not practically possible to follow this principle and
either two measuring devices are placed at equal distances from the line of
interest or the measuring device is placed as close as possible to this

line.

Symmetrical clamping of plate-springs.

The clamping of plate-springs is done in such a way that both clamped sur-
faces are connected with similar stiffnesses to the other parts of the set-
up. When a plate-spring is directly clamped with a simple clamping piece
(as in figure 8.2a) this clamping piece has a relatively low stiffness in
Y, z and ¢ directions when compared to the other half of the clamping. To
avoid potential differences between theory and experiment clamping pieces
as shown in 8.2b have been used. Here both sides are clamped with a clam-

ping piece and equal stiffnesses for both surfaces are obtained.

Direct Feedback.

While measurements are done it is important to have a direct information
about the quality of the gathered data. When only "raw" numerical data are
obtained and the processing of these data is performed at a later time, the
progress of the experiment will generally be delayed. During processing
doubts about certain results may occur but the conditions during the measu-
rement are difficult to reconstruct. A new experiment must be done and the

same risk occurs. In the experimental set-ups designed to analyse the

plate-spring behaviour this problem is avoided through the use of computers

for an on-line data-processing and presentation. Erronous results are
detected directly and the source of this errors may be located in an effi-
cient way. The extra time needed to connect the computing devices will,

generally, prove to be a profitable investment.
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Figure 8.1
To measure plate-spring properties, for instance for stiffness c,, the
two clamped ends of the plate-spring should be mounted in such a way that
internal stresses are avoided. Here three wires are used to be fix only

the three "free' degrees of freedom of the free clamping piece.

»®

(@)

Figure 8.2
When a plate-spring is clamped as in figure (a) the upper surface is
fixed to the support with a lower stiffness in y, z and ¢ directions than
the lower surface.
To avoid inaccuracies in the measurements clampings of the type shown in

(b) have been used. (In schematic diagrams this is not always indicated.)

Separating the degrees of freedom.

In the design of experimental set-ups it is good to investigate the measu-
ring process in order to see whether simplifications may be made. In many
cases a causality in the process is assumed and on this basis the variables
are divided into dependent and independent ones. Generally it is assumed
that a plate-spring mechanism will deflect when a force is applied and the
force will thus be selected as an independent variable. In the set-up for
measuring guiding stiffnesses it proved to be much simpler to consider the

deflection as independent variable.

Similarly many attempts were made to measure the kinematical motion of
plate-spring parallel guidings. Here the deflection of the slide in the
directions of the x- and y-axis should be determined. This measurement
problem is not solved easily when performed as implied in the description
of the problem (see figure 8.3a). However the problem may be stated as
measuring the relative displacements in x- and y-axis directions of the
slide and foundation. This description might lead to a measurement set-up
as shown in figure 8.3b. Here the two quantities are measured at the two

different parts and a much simpler measurement system results.
These two examples indicate that it may be very helpful to contemplate the

description of a measurement problem. General aspects are the "inversed

causality" and the "management'" of the degrees of freedom.
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(b)

Figure 8.3
Simultaneous measurement of the two displacements, u and v, of the slide
in a parallel guiding mechanism poses a difficult measurement problem.
The problem may be solved more easily when the relative displacements are

measured independently at the foundation and the slide as indicated in

(b).

Measurement of driving stiffness ¢, of parallel guidings mechanisms.

To measure the driving stiffness of a parallel guiding mechanism, its non-
linearity and possibly the static hysteresis a set-up with a high resolu-
tion and small hysteresis has been made. Basically one half of the mecha-
nism will perform a pure rectilinear movement in the x-direction. The other
part is fixed in this direction while it is free to move in all other
directions (as in figure 8.3b). The relative displacement in the x-direc—
tion may be measured without much difficulty. The force in the x-axis

direction used to fix the other part is measured separately.

The basic lay-out of the set-up is shown in figure 8.4. Part 1 is moving in
the x-direction along a slide guided by air bearings. A simple screw (2) is
used to drive this part and any displacement measuring device may be useq.
This device is placed as close as possible in the center of the guiding

mechanism thus reducing the influence of rotations of part (1).

Part (3) is supported in the x-direction by a long steel wire connected to
the weighing system of an electronic weighing scale (4). (Sartorius 1205
M.P., max. mass 0,160 kg, resolution 1 * 10~5 kg). The principle of opera-
tion of such a weighing scale assures that the moving part of the weighing
system does not move under influence of applied loads. A servo-actuator
mechanism drives the moving part to its zero—position and the magnitude of
the force required to maintain this situation is measured and displayed.
The error in the position of the moving part has been measured and proves

to be less than 2 pm.

The ' displacement of the slide with the part 1 is measured using a SONY-
Magnescale measuring system (5). This system uses a thin rod with a mag-
netic waveform with a 0,2 mm pitch and a detector to measure the displace-
ment. The rods have been made with a constant pitch and the measured dis-
placement at 0,2 mm intervals is measured with a relative inaccuracy of + 1
pm. The absolute inaccuracy, which is not important for the measurements,

is about + 5 um over a measuring range of 100 mm.

Both the weighing scale and the displacement measuring system are connected
to a DEC-PDP 11/10 computer. A certain displacement of part (1) is given
and the operator commands the computer to accept data from both devices.

The digital data are transmitted and in the computer converted to actual
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Figure 8.4
Schematic diagram of set-up used to measure the driving stiffness c, of a
parallel guiding.
1."Foundation" of plate-spring parallel guiding mechanism
2. Screw used to drive part 1
. "Slide" of plate-spring parallel guiding mechanism
. Electronic weighing scale
. Displacement transducer
. Air bearing guiding mechanism

. Elastic support for rod of displacement transducer

® N ooy s W

. Plate-spring

values in millimeters and Newtons. To determine the stiffness a number of
data pairs is collected and a least-square method is used to determine the
tangent of the best fitting straight line. The best estimate of the stiff—
ness is obtained when the displacements are small enough to avoid non-
linear effects of the plate-springs, but large enough to avoid errors due
to the resolution of the measuring apparatus. Deflections of + 2 mm proved
to be yielding good results when plate-springs with a length of about 8 mm.

were used.

When the initial stiffness of the guiding mechanism was determined the
computer could be used to display the difference between values calculated
with this stiffness and values measured at larger deflections. In this way
graphs as given in figure 3.7 could be made. While doing the measurements
the measured data are directly presented. Thus deviations due to defects in

the measurement set-up or the testobject can be detected immediately.

With the measuring system stiffnesses of parallel guidings as presented in
chapter 3, 4 , 5 and 7 have been determined. As the resolution of both
force and displacement is of the order l:l()4 non-linear effects with magni-
tudes less than 1% could well be determined. Although the measuring system
may contain a number of sources of systematical errors (such as elastic
deformation of weighing scale support and the attached steel wire and
others) very good reproducible results were obtained. When a2 measurement
was repeated the result was within a Tange oL MO Disassembling and

reassembling the guiding mechanism yielded differences less than + 1%.

This repeatability is more than sufficient to determine the main effect of
loading or geometrical variations upon the guiding stiffness. The resolu-
tion of the measuring set-up is even large enough to allow the measurement
of static hysteresis in the guiding mechanism. An example of a measured
hysteresis curve is shown in figure 8.5. From this figure it may be seen
that the differences in the rest-force when the deflection is equal to zero
is less than 0,2% of the maximum applied force. The hysteresis is partly
due to the hysteresis in the plate-spring material, the clamping of the
plate-spring and the measuring set-up itself. The last contribution is of
the order of magnitude of 2.10_4 as was determined by Smit (S3). The magni-
tude of material and clamping hysteresis may be investigated with the avai-
lable measuring system. A description of preliminary results of such measu—

rements will be given in Appendix A.
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Figure 8.5

To obtain information about hysteresis in plate-spring mechanisms a
modified version of the hysteresis curve may be measured. Shown is a
result from a measurement with a parallel guiding with plate-spring
dimensions 80%20%0,18 mm. Starting from u(2)=0 two complete cycles of
loading were made.

In order to present the measured hysteresis only the force difference AF
(between the measured force and the force calculated using an estimated
value for the stiffness) relative to the maximum force F.,, predicted for
the maximum deflection is shown as a function of the slide displacement.

Thus the result from an ideal mechanism will be a horizontal line as AF
is equal to zero for all deflections. Due to the non-linearity in the
force-displacement relation the measured curves without hysteresis will
be sloping upwards for positive and downwards for negative values of u(2)
(see para. 5.3). Due to hysteresis different curves will be obtained
during the upward and the downward stroke. The resulting difference in

this case is about 0,2% when u(f) = 0. (see also Appendix A)

8.4

Measurement of stiffness Cye

The stiffness cy of a plate-spring as used in a parallel guiding is com—
posed of two effects. The tensile stiffness as predicted by Hooke's Law is
independent of the deflection of the guiding. In addition to this effect
small changes of the bending shape of the deformed plate-spring due to
forces Fy will cause a deflection in the direction of the y—axis. This

effect depends upon the deflection of the guiding.

The measurement of these stiffnesses poses a measurement problem quite
different from measuring the driving stiffness Cx. When a steel plate-
spring with dimensions 80x20x0,25 mm is considered the stiffnesses are of
the order of magnitude of 107 —lO6 N/m. As the loading forces are limited
to 20-30 N., to avoid instability or second order effects, the deflections

to be measured are in the range from 2 to 30 pm.

Measurements of the trajectory of a point of the slide carrying loading
forces do not yield accurate estimates of the stiffness Cye The kinematic
deflection v(2) of the slide is about 200 pm and the deflection due to the

stiffnesses may only be estimated.

A better result may be expected when a plate-spring is fixed in its defor-
med shape and the additional deflection upon variation of the force Fy is
measured (see fig. 8.7). But even in this case the experiment should be set
up with great care. This is illustrated when the stiffness of the mounting
plate for the plate-spring shown in figure 8.7 is estimated. The solid
steel block S with dimensions 80x40x35 mm has a stiffness of about
107‘N/m in the direction of the y-axis. It will be clear that with such a
set-up no accurate measurements especially for plate-springs with small

deflections in the x-direction will be obtained.

Attempting to avoid this sort of difficulties the experimental set-up shown
in figure 8.8 has been made. The plate-spring (1) is clamped at both ends
with symmetrical clamping pieces (2) as described in figure 8.2. The
"fixed" clamping (2a) is mounted on a rotation stage build up as a four-bar
linkage mechanism with elastic hinges (3). This mechanism enables the
adjustment of the relative angular position of both clamping pieces. The
best alignment of this angle is found by testing the similarity of the two

stable buckling shapes of the undeformed specimen plate-spring (u(f) = 0 ).
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Figure 8.6
Plate-spring parallel guiding loaded by a force Fy.

L 1.

2. Clamping pieces

Plate-spring

3. Angle adjustment mechanism

4. Displacement transducers

5. Support for free clamping piece 2b
AAAT 6. Three wires supporting no.5

7. X~Y displacement stage

8. Rod for application of force Fy

9. Cables for force application
10. Lever
11. Force transducer

Figure 8.7 12. Motor driven y-displacement stage

Measurement of the stiffness c, may be done on one plate-spring of the

i
parallel guiding which is clamped in such a way that the desired defor-

Figure 8.8

Schematic diagram of set-up used to measure the stiffness cy of a plate-
mation is prescribed. spring deformed as in a plate-spring parallel guiding.
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The influence of small angular misalignments may be calculated using the
expressions for the plate-springs in a cross—spring pivots. This effect is
illustrated in figure 8.9 where measured deflection curves for different

angular misalignments are shown.

To avoid the influence of deformations of the rotation stage and other
parts of the set-up the deformation of the plate-spring is measured
directly between the two clamping pieces. Two "TESA"-displacement measuring
instruments (4) are used at each side of the plate-spring. The signals from
these instruments are added and divided by two and thus the main influence
of relative rotations of the two clamping pieces, due to deformations of

the foundations under the applied loads, is eliminated.

The movements of the "free'” clamping pieces (2b) are fixed by the plate-
spring in three degrees of freedom. The support of this clamping piece
should thus fix only the three remaining degrees of freedom to avoid the
possible occurrence of internal stresses or asymmetric loading of the
plate-spring. Therefor the support (5) is connected with three steel wires
(6) (¢ 0,8 mm) to the table of a standard x-y support (7). The movements of
this support are used to generate a deflection, u(2), and to compensate for
the kinematic deflection v() of the plate-spring.

A certain pre-load, a positive force F is applied to the plate-~spring by

y’
the weight of the support (5) and of additional masses attached to this

support (7). To obtain a deflection curve, v(2) versus F a force is

>
applied to the free clamping piece upwards. This force is ap;;ied through a
bar (8) and two cables with helical springs (9). The end of the cables is
supported through a lever (10) of a force transducer (l11). When the force
transducer is moved upwards by a motor driven stage (12) the loading force
Fy upon the plate-spring will be reduced. The information from the force
transducer and the displacement transducers is collected, transmitted to
the computer (DEC-PDP 11/10) and analysed. A value for the measured stiff-
ness cy is determined using a least-square calculation upon about 30 data-
pairs around the point where Fy equals zero.

The force transducer was designed to measure relatively small forces with a
high stiffness of the transducer. In that case the deflections at the point
of application are relatively small and may not be measured with standard

displacement transducers. The design contains a 'knuckle-joint" mechanism
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Figure 8.9

When the relative angle of rotation of the two clamped ends of the plate-
spring is varied the measured force-displacement characteristic of the

plate-spring varies as well.
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using elastic hinges. A small deflection at the point of application of the
force is transmitted to a larger deflection (20 times) at the point of
measurement of the displacement. The stiffness of the mechanism is due to
the stiffness of the elastic hinges. Measurement of the displacement should
preferably be done without contacting the mechanism as a force applied at
the point of measurement is equivalent to a measuring error of a 20 times
larger input force.

In the measurements of which the results have been presented the displa-
cement was measured using a "TESA'"-transducer. This is a contacting device
but the small force variations ( = 0,01 N ) in this transducer did not

generate too large inaccuracies in the force measurement.

Measurement of stiffnesses c, and g

The stiffness of a plate-spring parallel guiding in the directions of the
s—axis and around the y- and x-axis are due to the stiffnesses c, and cy of
each of the two plate-springs. The measurement of these two stiffnesses
requires an experimental set-up similar to the one described for the measu-
rement of Cye Here again a high stiffness should be determined at relati-
vely low values of the loading force. The same basic principles have been
used in building the experimental set-up. The total set—up however is not
developed that far but the obtained results, especially the detection of

the influence of the "constrained warping", were sufficiently accurate to

support the developed theoretical model.

The experimental set-up is shown in figure 8,10. The plate-spring (1) is
clamped using two symmetrical clamping pieces (2). As the clamping pieces
will be subject to a bending moment around the x-axis the fixed clamping
piece has been widened to increase the stiffness.

The fixed clamping (2a) is connected to the support of a conventional x-y
stage (3). Also connected to this clamping piece is a horizontal bar (4)
carrying two "TESA'-displacement transducers (5 and 6).

The transducer (5) rests on the surface of a bar (7) fixed to the "free"
clamping piece (2b) at the center of the undeformed plate-spring. The other
transducer (6) also rests upon this bar (7) but at a distance of about 100
mm in y-axis direction from the other one. The two transducers thus allow

for measurement of the deflection w(R) and rotation $(L) of the free-end.
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Figure 8.10

Schematic diagram of the set-up used to measure the stiffness c, of a

plate-spring deformed as in a parallel guiding.

1. Plate-spring
Clamping pieces
. X-Y-stage

. Bar

2.
3
4
5.,6. TESA-displacement transducer
7+ Bar

8. Loading table

9. Support for free clamping piece
10. Wires supporting no. 9

11. Weight for balancing of no. 9
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The loading force, F,, should be applied at the center of the plate-spring
and will cause only a deflection of the free-end. The force is generated by
placing weights upon the table (8) which is connected to the free-clamping
piece. When the force is applied at the correct position the two displace-
ment transducers will show an equal displacement. When the force is applied
at a different point a combination of force F, and moment M, is applied.

Thus both stiffmess c, and c¢ may be determined.

The free clamping piece is supported by a table (9) which is supported by
three steel wires (10) which determine its remaining three degrees of free-
dom. The influence of the mass of the free clamping piece and the connected
parts is compensated by means of a balance mass (11) which is placed in
such a way that the clamping piece will be kept in its measurement position

when the plate-spring is removed.
Although less elaborate this experimental set-up enabled measurement of the

stiffness with an inaccuracy of about 5% of the measured value for steel

plate-springs with dimensions 80%x20x0,25 mm or similar.
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APPENDIX A

Preliminary results of measurement of hysteresis in plate-spring mechanisms.

Hysteresis in plate-spring guiding mechanisms is observed in two ways. Due to
the hysteresis mechanical energy will be lost during each cycle of vibration in
a vibrating system. Thus a free vibration will be damped and the mechanism will

eventually come to a stable situation.

Statically the hysteresis is noted by the differences in the force-displacement
curves during reversed motions of the mechanism. Due to this effect the position
of the mechanism under influence of a certain driving force is undetermined.
This effect leads to inaccuracies when the plate-spring mechanism is used as a

transducing element.

Fortunately the hysteresis in plate-spring mechanisms is small and the resulting
inaccuracy will often be acceptable. To obtain more information about the hyste-
resis some effort has been directed in this direction.

The sources of hysteresis considered are the internal material hysteresis and
the hysteresis resulting from the plate-spring clamping pieces. Both theoretical

and experimental methods were used to gain information about these effects.

The material hysteresis will depend strongly upon the magnitude of the stresses
in the material during the loading cycle. For relatively low stress levels the
hysteresis 1is relatively small, at higher values a pronounced increase of the
hysteresis may occur. In many instances the fatigue stress-limit is indicating

the point where this transition occurs.

The hysteresis in the clamping pieces will depend upon their design and para-
meters as clamping force, friction coefficient, etc. The influence of the hyste-
resis in clamping pieces, relative to that of the material hysteresis, will
depend upon the length of the plate-spring. During the cycle with a certain
stress level in the plate-spring a certain amount of energy is lost in the clam-—
ping piece. The relative magnitude of this amount of energy will be small when a
long plate-spring, containing a large total amount of elastic energy, is used.
Hence the efforts to reduce hysteresis must be directed to reduction of material
hysteresis when long plate-springs are used (i.e. with a large length compared
to th thickness). In constructions with relatively short plate-springs or when

special materials are used the influence of losses in the clamping pieces will
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become dominant.

As suggested in chapter 8 the measurement set-up used to measure the driving
stiffness cy, of plate-spring parallel guidings may be used to estimate the sta-
tic hysteresis in plate-spring constructions. The static hysteresis is of impor-
tance in the design of measuring systems. The dynamic hysteresis will in most
cases be influenced by the damping influence of the surrounding air and will

thus be depending strongly upon the design of the considered mechanisms.

Different examples of measured hysteresis curves are shown in figures Al to A3.
In these figures the magnitude of the difference between measured forces and
forces calculated using a constant stiffness relative to the maximum applied
force as a function of the displacement is shown. In figure Al a curve as measu-
red for a plate-spring parallel guiding is shown. In this case the length of the
plate-spring is relatively large and the contribution from the hysteresis in the

clamping pieces is relatively small.

The magnitude of the hysteresis may be characterized by the ratio between the
force difference, AF, when the displacement is equal to zero on either of the
two curves and the maximum applied force, F, in one direction. Using this defi-
nition the hysteresis in figure Al is estimated as about 0,2%. This will also
indicate the uncertainty range for the position of the slide when no driving
force is applied. The uncertainty range will be 0,27 of 8 mm deflection, giving

a 16 pm range.

In figures A2 and A3 curves measured at short plate-springs are shown. Here the
plate-spring is connected with two clamping pieces as shown in figure 8.2b to
the slide of the measuring set-up and a long bar. The other end of the bar is
suspended at the wire connected to the weighing balance. In this case the plate-
spring is subjected to a, almost, constant bending moment. Due to the short
length of the plate-spring the influence of the hysteresis in clamping pieces is
relatively important. In figure A2 the hysteresis is about 0,4%. It should be
noted that in this case the non—linearity of the force-displacement characteris-

tics is relatively small when compared with figure Al.

Figure A3 shows a similar hysteresis curve for a short plate-spring. Also shown
here are some internal hysteresis curves obtained by making small reciprocating
movements. A certain stabilizing effect during the movements may be recognized

during these cycles.
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To obtain an impression of the relative influences of clamping and material
hysteresis contribution a series of measurements on beryllium~copper plate-
springs was performed. Relatively short plate-springs, active length from 3 to
14 mm., width 6, mm and thickness 0,4 mm, were measured.

In figure A4 the magnitude of the hysteresis, in this case characterized by the
absolute magnitude of the uncertainty range for the unloaded plate-spring, as a
function of the active plate-spring length is shown for different values of the
maximum value of the bending stress. At each stress level a certain uncertainty
due to the deformations in the clamping pieces is observed. The absolute
magnitude increases with increasing stress level.

In addition an uncertainty due to internal material hysteresis which increases

with increasing length of the plate-spring may be noted.
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In first order approximation the force needed to generate a displacement
of a parallel guiding is determined as, F = c.u. With the measurement set-—
up shown in par. 8.3 the differences, AF, from this relation have been
measured as a fuaction of u. The result is shown relative to the magnitude
of the maximum force, Fp,y = Celp,ye.

The hysteresis in the mechanism may be defined as the relative differences
in AF/Fj,4 at the loading and unloading curve for u = 0.

From the graph a hysteresis of about 0,2% is estimated. (see also fig.8.5)

Figure A2

To estimate the influence of the hysteresis in clamping pieces the force-
displacement curves of short plate-springs were measured. The result shown
here was obtained with a plate-spring with dimensions of 4x6x0,4 mm. As in

figure Al only the relative magnitude of the differences from a linear
relation are shown.
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| \J\ To estimate the relative magnitude of material hysteresis and hysteresis
\\b\ in the clamping pieces a serie of measurements on BeCu-plate-springs with
different lengths and maximum stress levels was done. In the graph the
\\\~ / resulting uncertainty range A$¢ found for the unloaded plate-spring
o \\\‘\Q: / element is presented.
5
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Figure A3
Hysteresis curve as measured on a short plate-spring as in figure A2. Here
internal hysteresis cycles have been measured to estimate the influence of

small vibrations around an equilibrium position. It is clear that the

magnitude of the hysteresis depends mainly upon the maximum deflections of

the plate-springs.
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Samenvatting

Bladveren bezitten een aantal interessante eigenschappen welke gebruikt kunnen
worden voor het ontwerp van nauwkeurige geleidingen. Goed reproducerende
relatieve bewegingen kunnen verkregen worden enerzijds dankzij de afwezigheid
van speling en anderzijds door de grote stijfheden in de ondersteunde
richtingen. In het algemeen nemen deze stijfheden af bij vervormingen van de
bladveren en in de meeste gevallen zijn de toelaatbare bewegingen relatief

klein.

Naast de verschillende voordelen is @&n van de grootste nadelen het ontbreken
van een 'technische infrastructuur" voor het gebruik van bladveren. De prak-
tische ervaring in het ontwerpen van bladveermechanismen is beperkt en niet of
nauwelijks in literatuur vastgelegd.

Daarnaast is de kennis over het gedrag van deze mechanismen onder invloed van

belastingen niet volledig bekend en in veel gevallen niet goed toegankeli jk.

In dit proefschrift wordt deze kennis uitgebreid en gecombineerd met reeds
beschikbare kennis. In drie aparte hoofdstukken wordt getracht dit geheel op een

toegankelijke manier te presenteren.

Voor het bepalen van het gedrag van bladveren onder invloed van drie-dimensio-—
nale belastingen wordt in hoofdstuk 2 een wiskundig model op basis van het
concept van de elastische 1lijn beschreven. In hoofdstuk 3 en 4 wordt een
benaderende analytische methode beschreven waarmee oplossingen van de verkregen

differentiaalvergelijkingen kunnen worden verkregen.

Bij het vergelijken van deze resultaten met meetresultaten, verkregen met de
opstellingen beschreven in hoofdstuk 8, bleek dat het concept van de elastische
lijn niet geheel voldoet. Een tweetal effecten moet worden toegevoegd. Het
eerste is het gevolg van de overgang van de spanningstoestand bij balk-buiging
naar die bij plaat-buiging. Dit effect was al eerder aangegeven door o.a.
Di jksman (D1).

Het tweede effect is het gevolg van de door de inklemmingen veroorzaakte invloed
op de torsie-vervormingen. Dit effect van de '"belemmerde welving" van de

doorsnede is toegevoegd aan het wiskundig model voor de bladveer.
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In de hoofdstukken 5 tot 7 worden de belangrijkste eigenschappen van bladveer—
machanismen besproken. Aan de hand van het voorbeeld van de bladveerparallel-
geleiding wordt een uitgebreide beschrijving van de verschillende effecten in
het gedrag van bladveermechanismen gegeven. In hoofdstuk 6 wordt hieraan de
informatie voor het ontwerp van kruisveerscharnieren toegevoegd. Een aantal
verschillende toepassingen van bladveren worden in hoofdstuk 7 besproken. In dit
hoofdstuk wordt ook de mogelijkheid tot het verbeteren van de eigenschappen van
bladveren"

de bladveerparallelgeleiding door het toepassen van 'verstijfde

onderzocht.

In een aparte appendix wordt het optreden van hysterese in bladveergeleidingen
kort besproken. Algemeen wordt het als een voordeel beschouwd dat in bladveer-~
geleidingen "bijna geen'" hysterese optreedt. Om kwantitatieve informatie over de
grootte van de hysterese te verkrijgen zijn een aantal verkennende metingen

gedaan. De eerste resultaten van deze metingen worden in Appendix A besproken.
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Stellingen behorende bij het proefschrift
On the design of plate-spring mechanisms.

De stap van werkelijkheid naar cen theoretisch model vormt de belangrijkste barriére
voor het praktisch toepassen van beschikbare theoretische kennis. Het is daarom ncod-
zakeli jk aan het aanleren van vaardigheid in de modelvorming in het wetenschappeli jk
onderwijs meer aandacht te besteden.

Het toenemen van de abstractiegraad en de groel van het bijbehorende jargon leidt tot
groeiend aanzien van ceen vakgebied of specialisme. In tegenstelling hiermee worden
ontwerpen van mechanische constructies beter als ze eenvoudiger te begrijpen en te
produceren zijn. Wellicht is dit de oorzaak van het gebrek aan aandacht en waardering
die de constructieve werktuigbouwkunde ten deel valt,

Bij het doen van wetenschappelijk onderzoek, of dit nu op het gebied van bladveren,
van kernfysica of van sociologie 1s, is het van wezenlijk belang dat de kwaliteit van
de theoretische en experimentele bijdragen in geli jke mate wordt ontwikkeld. De kwali-
teit van het onderzoek wordt namelijk eerder bepaald door het produkt van beide bij-
dragen dan door hun som.

In werktuigkundige constructies zijn de proceskrachten vaak veel groter dan de door de
zwaartekracht veroorzaakte belastingen. De ontwerper dient zich te realiseren hoe de
krachtwegen in de machine
gesloten zijn. Het onder-
wijs in de sterkteleer zou
hieraan een welkome bij-
drage kunnen leveren door
vraagstukken op andere
wijze te presenteren dan
gebruikelijk. Hierbij is
een voorbeeld voor een
alternatieve presentatie
gegeven.

Het gebruik van het '"Bode~diagram" in de servo-techniek en bij de analyse van dyna-
misch gedrag van systemen is charmant omdat door de logarithmische schalen alles wat
krom is recht wordt gemaakt. De gebrulkte standaard dimensieloze prestatie, (dB),
leidt echter tot een ongedisciplineerd meetgedrag en spraakgebruik en, erger, tot een
afname van het "begrijpend analyseren".

De beschikbare kennis over het gedrag van systemen met meer vrijheidsgraden zou beter
overdraagbaar en toepasbaar worden indien bij het onderwijs meer aandacht wordt
besteed aan het visueel begrijpelijk maken van het wiskundige verschijnsel van de
"orthogonale coordinaat'.

In tegenstelling tot de algemeen bestaande indruk vergt het vakgebied van de '"aange-
paste technologie" een technische inspanning van hoger niveau dan onze Westerse tech-
nologie. Het is 1in het belang van ontwikkelingslanden dat de hulpverlenende organisa-—
ties tijdig tot dit inzicht komen.

Het modelleren van een permanente magneet door een combinatie van een kortgesloten
weerstandsloze spoel en een magnetische weerstand levert een mathematisch geli jk maar
energetisch beter model dan het gangbare model met een bron van constante stroom.

Het rechtsgevoel in onze samenleving wordt voortdurend bedreigd door de regelzucht van
de wetgever. Om in deze gespannen verhouding enige ontspanning te verkrijgen is het
aan te bevelen om in de verkeerslichten voor voetgangers het rode licht te vervangen
door een oranje licht.

April 1985 Jan van Ei jk




