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ABSTRACT

We present an alternative approach to tomo-PIV that seeks to recover single voxel particles rather than blobs of extended size. Our
approach follows the classical MLOS-SMART method with a weight matrix built with the system’s Point Spread Function coefficients.
As such an approach requires only a few voxels to explain the image appearance, it yields much more sparse reconstructed volumes.
We carefully justify our method for building the weight matrix and show on synthetic PIV images with a large exploration of generating
conditions that it always leads to better results than MLOS-SMART.

1. Introduction

In numerous PIV [1] and tomo-PIV experiments, particles have a very small physical size, so that their images on the camera sensors
are mostly controlled by the aperture diffraction, and are thus essentially a characteristic of the imaging system. Optimization in plane
PIV developments has led to seeking a resulting point spread function (PSF) having a 3× 3 pixel square shape, in order to guarantee
a good subpixel accuracy in the displacement estimation. During the development of tomo-PIV, the same rule-of-thumb has been
maintained so that conventional MART/SMART-based tomo-PIV methods [7][2] have aimed at reconstructing "particle blobs", i.e.
voxel aggregates of several voxels width, rather than the actual particles, which would lie in a single voxel (and, usually, be much
smaller than the voxel size).

In difficult experimental conditions such as when viewing through curved walls, in the presence of defocusing, or in compressible
flows, it is known that the PSF shape can vary dramatically, leading to accuracy losses in the estimation. Recently, this has led Schanz
et al. [9] to propose an approach in which these changes are taken into account. However, their algorithms do not fully recover the
particle vision, and still reconstruct blobs.

In this paper we introduce a simple and accurate method for recovering more closely the particle’s physical reality. The proposed
method is based on the image formation model from optics. The main difference between our approach and tomo-PIV is best captured
in Figure 1 : a particle whose geometrical image is much smaller than the PSF produces an Airy-like image sketched on the left. The
orthodox tomo-PIV (such as introduced by [7]) models this image as the integration of a 3D bell-shaped blob in the volume, along a
thin pixel-sized pencil elongated in the direction of the line of sight.
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Figure 1: Image formation from a volumic projection: particle model (left) and blob model (right).

In our approach the physical image model is carefully discretised in order to yield a rigorous representation of image data in terms of
voxelised particle intensity and a weight matrix. This weight matrix is shown to be built from appropriate samples of the PSF. This
result is original and enables to incorporate PSF calibration data in a straightforward manner. Analysis of the different degrees of
freedom in the discretisation step allows us to explore an original path in tomo-PIV, that of voxel grids with higher density than the
classic voxel-to-pixel ratio v/p = 1.

Using the proposed weight matrix a MART/SMART-based reconstruction can be used to yield nearly one-voxel wide particles. This is a
first step in a global framework, where the subvoxel accuracy will be preserved by adapted refinement schemes in future developments.



In addition to being more physically sound, we show that this particle approach is indeed more accurate than the conventional methods
for a large range of PSF sizes and thus will potentially maintain a good accuracy in the difficult experimental conditions mentioned
above (e.g., interfaces, compressible flows, illuminated volumes larger than the cameras depth of fields, leading to the presence of
defocused particles in the images). Besides, the method is directly adapted to sparsity-based techniques such as [8, 3, 6]. In a companion
communication [6], we show in particular that this enables a dramatic reduction of the problem size, and thus of the processing time.

This paper is outlined as follows. Section 2 recalls the basic image formation model for particle images. Then the main contribution
of this paper is introduced in Section 3, that is, a careful discretisation of the image model that justifies the classic expression of image
data in terms of an appropriate weight matrix, and a voxelized intensity field. The usefulness of such a representation is demonstrated
on a set of numerical experiments whose conditions are described in Section 4, the experiments themselves being gathered in Section 5.

2. Imaging model from optics

In our approach, which we call Particle Volume Reconstruction (PVR), the weighting matrix W is built directly by following the
physical model shown in Figure 1 (left). A particle with index p at point Xp in 3D-space has a geometrical image F(Xp) in the focal
plane (in practice, the 3D to 2D projection function F results from the camera calibration procedure), and the particle intensity Ep is
shared between the impacted pixel and its immediate neighbours according to weights given by the so-called Point Spread Function
h(x). For the sake of simplicity, we assume hereafter that the PSF is homogeneous over the illuminated volume. This is not a strong
assumption, as all the following derivations can be readily adapted to the case of known variation of the PSF (which is the case of
astigmatism generated by water/air interface or defocusing). The intensity distribution in the image plane for a number of particles P
then reads

I(x) =
P

∑
p=1

Eph(x−F(Xp)), (1)

where x = (x,y) denotes any location in the image plane. In practice, camera sensors consist of an array of pixels k = (k1,k2), each
gathering a single intensity value I(k).

For all the numerical experiments in this paper we assume a PSF made of a Gaussian Optical Tranfer Function with standard deviation
σpsf averaged on the pixel surface, assuming a 100% fill factor:
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3. Discretisation of the imaging model

Based on (1), reconstruction of the number of particles, their 3D positions and intensities is a difficult nonlinear problem. A more
workable approach is to build an intermediate representation of particles on a 3D grid associated to a voxel space representation,
encoding simultaneously the particles location and intensity. An important parameter of such a grid is its scale ∆, i.e., the voxel
physical size. Without loss of generality any node of this grid (the center of a voxel) can be indexed with a triplet of signed integers
n= (nx,ny,nz) such that the 3D position of the node is n∆.

We look for a matrix-vector counterpart of (1)
I = WE, (3)

where I is a vector that collects image pixels indexed by k introduced in Section 2, E is a vector of intensities located at discrete notes
n∆ and the weight matrix W has entries denoted by Wkn.

Discretisation of (1) requires a volumic interpolation of the Projection+PSF function X 7→ h(x−F(X)) based on grid node values
near X , i.e.,

h(x−F(X))≈∑
n

h(x−F(n∆))β(X−n∆). (4)

β can be any interpolation kernel, but for the sake of particle reconstruction we advocate that this kernel should be as short as possible;
thus in this paper we will use a trilinear interpolation.

Using (4) for each particle position Xp, and plugging into (1)

I(x) ≈
P

∑
p=1

Ep

(
∑
n

h(x−F(n∆))β(Xp−n∆)

)
,

≈ ∑
n

h(x−F(n∆))

(
P

∑
p=1

Epβ(Xp−n∆)

)
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where the last equality is obtained by swapping the summations.

The last expression enables us to introduce a discrete 3D field

Ẽn =
P

∑
p=1

Epβ(Xp−n∆). (6)



The 3D field Ẽn can be seen as a discrete approximate representation of the original Dirac-like particle field. Conversely, given Ẽn,
one can recover the intensity and position of particles with subvoxel accuracy if they do not overlap within this 3D representation.

Using (5) at pixel index k and introducing (6) we get:

I(k)≈∑
n

h(k−F(n∆))Ẽn. (7)

This is the sought matrix-vector representation (3). The entries of the weight matrix W have a straightforward expression in terms of
the PSF and the geometric projection function:

Wkn = h(k−F(n∆)). (8)

Such a property is in particular in contrast with the approach of [9], in which the computation of W needs the PSF and a postprocessing
which is unnecessary here.

The accuracy of the approximation in (7) depends on the accuracy of the original approximation (4). The accuracy of (4) depends
in turn on the v/p ratio. Typically, a PSF σpsf = 1 can be accurately sampled using v/p = 1, but for a well focused particle with
σpsf = 0.4 it is not sufficiently accurate, in this case v/p = 0.5 is more appropriate. Further examples of this dependence will be given
in Section 5.3.

Another way to control the accuracy of approximation (4) is through the shape of the interpolation kernel β and its size in voxel unit.
In this respect, nearest neighbour interpolation is too coarse and would require too small a v/p. The trilinear interpolation kernel is
better, but higher-order polynomial interpolation would achieve a better order of approximation. But another factor to consider is the
shape of volume Ẽ: by (6), the kernel controls the smoothness of the discrete particle volume. Selecting the kernel thus depends on the
subsequent use of the reconstructed volume. If the reconstructed volume is to be correlated between successive time steps, β should be
smooth and spread over at least 3×3×3 voxels in order to yield low peak locking, this is typically the logic promoted by Schanz et al.
[9] although there is no explicit β kernel defined in their paper. Conversely, if the emphasis is put on detection, the opposite direction
can be taken: choose the kernel with the most compact support so as to yield spiky volumes. This direction is favored by the fact that
the system I = WE is most of the time inverted with multiplicative algorithms like MART or SMART that promote sparsity [8]. The
kernel of trilinear interpolation is thus a good sparsity/accuracy trade-off. In that case, specific strategies can be implemented to refine
the particle position to subvoxel accuracy; to us this should be best done when estimating the displacement, and is thus not addressed
here.

4. Simulation setting

We now turn to an evaluation of the efficiency of representation (7) based on synthetic image data and reconstruction algorithm. The
goal of this section is to specify the principles of the numerical experiments used for this evaluation.

4.1 Synthetic setup
All our simulations involve four cameras, which are positioned on a single side of the laser volume at the vertices (±1

2 , ±1
2 , 1√

2
) of a

square of 1 meter side. They are positioned at 1 meter from the centre of the reconstructed volume, the latter defining the origin (0,0,0)
and point at it. The pin-hole model is assumed for the cameras (without Scheimpflug adapter for simplicity) and calibration is supposed
to be perfectly known. The focal length is 100 mm, thus the magnification factor M is equal to 0.1, and the pixel size is 10µm with
100% fill factor. Thus a voxel-to-pixel ratio v/p = 1 leads to voxels of 0.1 mm side. The image size is set to 512×512; hence, the field
of view is fixed for each simulation. The dynamic range of the images is chosen equal to 8 bit.

The laser volume is modelled as a 20 mm thick parallelepiped. The reconstructed volume, also 20 mm thick, is defined as the smallest
parallelepiped containing the portion of the illuminated volume seen by all the cameras.

The tracers particles are uniformly distributed in the light sheet volume. The density is controlled by the particle per voxel count
(ppv). Horizontal and vertical extension of the sheet are larger than the field of view covered by all the cameras. It is important to
notice that this leads to the fact that all the illuminated particles cannot be seen by all cameras, which is systematically the case in real
datasets, and is however not often taken into account in synthetic experiments. Our companion papers [6, 5] give further details on this
important issue. The scattered light is proportional to the square of the particle physical diameter dp. Note that Mie’s scattering is not
taken into account in this study. Consequently, the intensity of a particle depends only on its diameter and on its depth. It is given by
I0d2

pe−z2/2σL , where I0 is a constant, and σL is the standard deviation of the laser sheet profile modelled as a Gaussian. In this study
the dependence in z is very weak as we consider the laser sheet as an almost perfect top hat with σL = 0.05. The particle diameters
are supposed small enough (a few microns) to neglect the size of their geometric image Mdp. dp is drawn in [mindpmaxdp] according
to a Gaussian law with mean mdp and standard deviation stddp. Unless otherwise specified: I0 = 300, mindp = 0.5, maxdp = 2.5,
mdp = 1.5, stdd p = 0.15.

The images are synthesized according to (1) with a PSF given by (2). Unless otherwise specified, we take σpsf = 0.6 . With this value,
a particle has a 4×4 pixel image pattern. In a given experiment, σpsf does not vary with the volume depth, but a range values of σpsf
is considered between 0.4 and 1.4. This is a first-order account of the impact of defocusing. Unless otherwise specified, a Gaussian
noise with mean 5 and standard deviation 2 is added to the images. Its amplitude is thus about 10% relative to the maximum particle
intensity.

4.2 Reconstruction Algorithm



The Simultaneous Multiplicative Algebraic Reconstruction Technique (SMART) solves linear systems under non negative constraints
[4], and is a popular choice for tomographic PIV reconstruction since Atkinson et al. [2]. It is considered here because of its parallel
structure (compared to MART which is highly sequential). Applying SMART in order to solve (3) yields the following update equation
(in logarithmic form in order to emphasize parallelism):

logEk+1 = logEk +µW̃
(

log I− logWEk
)

(9)

W̃ is obtained by normalising W over the columns, and µ is a relaxation parameter. In our simulations µ is set to 1 in order to guarantee
convergence [4].

Our simulations consider a reference algorithm referred to as tomo-SMART and a new algorithm derived from the present framework
referred to as PVR-SMART. Both algorithms start by an MLOS step [2] that aims to reduce the number of voxels that have to be
considered in the reconstruction. MLOS also reduces the memory requirement for storage of matrix W, if required. Images are
thresholded before MLOS, all pixels with graylevel lower than 4 are set to zero. The MLOS volume is also thresholded: only the
voxels greater than 4 are retained for further refinement. Then, 25 iterations of SMART are performed. In both cases, the iteration is
defined by (9), but the matrix W is different. tomo-SMART builds W by computing the volume intersected by a cylinder and a sphere
centered on the voxel as described in [2]. PVR-SMART computes W using PSF samples and geometric projection functions with (8).
Two PVR-SMART versions can be considered, depending on the scale of the voxel selected in the discretisation of the image formation
model, see discussion below (7). The usual choice is v/p = 1, but for small size PSF we anticipate that a finer discretisation is better,
so we also consider v/p = 0.5. This latter setting has no counterpart for the tomo-SMART algorithm, so with tomo-SMART we have
always v/p = 1.

The MLOS, tomo-SMART and PVR-SMART algorithms have been coded in CUDA in order to take advantage of their intrinsic
parallelism. Taking advantage of the brute force of GPU, the matrix W is not stored, its entries are computed on the fly for projection
and backprojection, and recomputed at the next SMART iteration. Using such an implementation, the processing of four 512× 512
images with PVR-SMART with v/p = 0.5 yields a reconstructed volume of 1254×1182×401 voxels in a few minutes.

Figure 2: Zoom on a slice of reconstructed volume using PVR-SMART with v/p = 1(left) and tomo-SMART (right). σpsf = 0.9.
PVR-SMART clearly shows more spiky results than tomo-SMART.

Figure 2 shows samples extracted from PVR-SMART and tomo-SMART reconstructions for σpsf = 0.9. The proposed method clearly
shows more spiky results than the conventional one, although we do not explicitly use sparsity-enhancing techniques like [8, 3, 6].
MART/SMART techniques are indeed sparsity techniques that are already exploited by using a weight matrix W such as that proposed
here.

4.3 Performance metrics
The difference between the particle approach considered here and the classical tomographic approach initially introduced by [7] raises
the question of which ground truth to consider to build performance criteria for the algorithms. Indeed, for a same set of physical
particles, the former will aim at providing the list of voxels containing a particle together with its corresponding intensity, while the
latter will reconstruct volumetric blobs, of approximately the back-projected particle image size, centred around these physical particles.
In this tomographic framework in particular, [7] builds the ground truth by expanding locally the physical particles to a 3D gaussian
blob, usually of the order of 2-3 voxels size, in the idea of having a volumetric distributions well adapted to the subsequent correlation
step yielding the 3D displacement field. A natural quality measure is then the Q criterion, which indicates the degree of correlation
between the reconstruction and this ground truth.

In the case of PVR-SMART, the Q criterion cannot be applied directly, as the particle reconstructions generated by PVR-SMART have
nearly one voxel size. Therefore, to compute this criterion in the sequel, we expand the PVR-SMART reconstruction using the same
method as for building the ground truth, i.e., filter the voxel volume using the same 3D Gaussian kernel.

We also introduce two metrics adapted to measure the detection performance of PVR-SMART w.r.t.tomo-SMART. The reconstructed
volume is thresholded and only the S brightest voxels are retained as detections. S controls a trade-off between the number of true
particles detected and ghosts, the logic of setting this parameter will be developed in the next section. In order to characterize detection
performance, we compute Precision and Recall, two well known measures in pattern recognition and information retrieval. A detection
(i.e., a thresholded voxel of the reconstruction) is a True Positive (TP) if it is in the neighbourhood of a true particle. Unless otherwise
specified, the neighbourhood is a 3×3×3 voxel cube centred on the voxel of a true particle. A detection is a False Positive (FP), i.e.,



a ghost, if it is not in the neighbourhood of a true particle. A particle is recorded as False Negative (FN) if there is no detection in its
neighbourhood. Precision then gives the fraction of true particles among all detected particles, and Recall is defined as the number of
true positive divided by the total number of particles, i.e.,:

Precision =
#T P

#T P+#FP
andRecall =

#T P
#T P+#FN

, (10)

where # stands for "number of". The best achievable performance is given by Recall = 1 (#FN = 0, every particle is detected) and
Precision = 1 (#FP = 0, all the detections are true particles). In practice both measures depend on a common parameter (e.g., the
threshold or S) and are correlated (i.e., Precision decreases as Recall increases). An example of Recall and Precision curves is given in
Figure 3 in the next section.

Note that, whatever the quality criterion considered, and in all the simulations below, the ground truth will consist of the particles that
are seen by all the cameras exclusively, which is consistent with the fact that all reconstructions are initialized with MLOS.

5. Results

The goal of our simulations is to show the increase in performance of PVR-SMART w.r.t.tomo-SMART in a variety of experimental
conditions, controlled by two parameters Nppp and σpsf. First we explore the ideal case where the PSF size σpsf is known by the
experimentalist, but allow this factor to vary. Then we test the robustness of PVR-SMART w.r.t. inaccurate knowledge of this parameter.

5.1 Selection of detection threshold
Before reviewing these results we need to fix the parameter S that has an impact on the detection performance metrics Precision and
Recall. Figure 3 shows the evolution of the metrics w.r.t. a quantity called normalised sparsity (NS), which is the ratio of the number
S over the total number of particles. Normalised sparsity is merely a monotone function of the detection threshold. Nppp is set to 0.07
and σpsf = 0.6. The left part of Figure 3 shows Precision and Recall for each method. One can observe the antagonist behaviour of
Precision and Recall w.r.t. NS : the objective of getting 1, the best score for both quantities, cannot be achieved, and thus a trade-off has
to be chosen. On the other hand the Q factor implicitly balances the two quantities, as shown in the right part of Figure 3: it reaches a
maximum between NS equal to 1 and 1.5, which slightly favors Recall w.r.t.Precision.

Figure 3: Performance measures w.r.t. normalised sparsity (NS), which is the ratio of the number S of brightest voxels retained over
the total number of particles. Nppp = 0.07 and σpsf = 0.6. Left : Precision and Recall have an antagonist monotonic behaviour w.r.t.
NS. Right : Q has an optimum w.r.t. NS.

It is interesting to note that the ranking of the algorithms is identical for Q and Recall whatever the NS, i.e.,, by decreasing score
value: PVR-SMART v/p = 0.5, PVR-SMART v/p = 1, and tomo-SMART. In particular, a good discrimination between the algorithm
performance is obtained for NS larger than 0.75 and lower than 2.5. Thus any value of NS between 1 and 1.5 can be chosen as reference,
we will choose Recall for NS = 1 to be a good landmark for assessing relative the performance of the algorithms, in conjunction with
the Q criterion.

5.2 Behaviour w.r.t.Nppp

The image particle density Nppp is known to be one of the major factor that drives reconstruction performance in tomo-PIV. Our first
experiment thus deals with the sensibility w.r.t. this experimental parameter.

Figure 4 presents a comparison of a classical tomographic reconstruction (tomo-SMART) and PVR (PVR-SMART) for σpsf = 0.6.
This PSF size corresponds to a good balance between contrast and peak-locking. Apart from the predictible decrease of performance
for Q and Recall as Nppp grows, two facts can be noticed:

1. PVR-SMART behaves better than tomo-SMART all over the range of Nppp;



2. PVR-SMART with v/p = 0.5 behaves better than v/p = 1.

Figure 4: Comparison between conventional tomographic reconstruction and the proposed PVR approach, using the SMART algorithm,
σpsf = 0.6. Left: Q criterion; Right: fraction of detected true particles, or Recall, for NS = 1. Note the performance gain of
PVR-SMART with v/p = 0.5 compared to v/p = 1.

The better performance of v/p = 0.5 compared to v/p = 1 is an original but expected result, which we anticipated in the discussion
that followed the discretisation of the image formation model. The reason is that using v/p = 1 in the case σpsf = 0.6 clearly introduces
aliasing errors in the discrete image model. As a natural way to defeat aliasing is to sample more densely the reconstructed volume,
v/p = 0.5 thus works very well in this respect, though at the expense of an increase of memory and computations. An interesting
question is now to determine if this increase in reconstruction performance obtained by refining the discretisation (reducing v/p) is
robust, i.e., occurs in all experimental situations.

5.3 Behaviour w.r.t.σpsf

Our second numerical experiment takes a step in answering this question. Figure 5 presents the results for tomo-SMART, PVR-SMART
v/p = 1 and v/p = 0.5 for a large range of σpsf values.

Figure 5: Evolution of Q criterion (left) and Recall (right, NS = 1) for various σpsf. Nppp = 0.07.

The left and right part of Figure 5 are quite consistent: v/p = 0.5 is best for low σpsf, then v/p = 1 takes over; for the Q criterion (resp.
Recall) the transition takes place near σpsf = 1 (resp. σpsf = 0.85). We explain this behaviour by overfitting. Setting v/p = 0.5 gives
indeed more degrees of freedom than v/p = 1 to explain image data. This freedom is useful to fit the image of a particle that projects
on two or more pixels, especially if the PSF is sharp and induces aliasing. But as the PSF gets smoother this freedom is unnecessary
and even counter-productive: it makes possible a situation where different volume configurations can explain the same image which
is equivalent to say that the linear system has a lower condition number), and the SMART algorithm is apparently unable to solve the
corresponding ambiguities.

So our answer is no: reducing v/p is not always the best choice, as it can reduce performance by over-fitting the PSF. v/p should be
adapted to the PSF. In any case, Figure 5 shows that a v/p can always be found such that PVR-SMART performs consistently better
than tomo-SMART.



5.4 Behaviour w.r.t. inaccurate PSF knowledge
In practice the PSF is known approximately as it results from a calibration, and depending on the context a family of models can be
fitted to experimental data as demonstrated in [9]. This means that in practice PVR-SMART will use a PSF model which is different
from the true PSF. We propose a first-order study of this problem by assuming that the true PSF is given by (2) with σpsf = 0.6, but let
the parameter σpsf used for reconstruction vary between 0.5 and 0.9. The results are gathered in Figure 6.

Figure 6: Evolution of Q criterion (left) and Recall (right) as a function of the value for σpsf used in PVR-SMART. The true σpsf equals
0.6 and Nppp equals 0.07.

One observes that PVR-SMART is fairly tolerant to inaccurate knowledge of σpsf, in particular v/p = 0.5 has a large domain of validity
around 0.6. Moreover, it seems always better to underestimate σpsf.

6. Discussion and concluding remarks

This paper deals with the first step of tomo-PIV, volume reconstruction. We have presented an alternative approach to the classical
tomographic reconstruction, that seeks to recover single voxel particles rather than blobs of extended size, an approach referred to as
"Particle Volume Reconstruction" (PVR). The proposed method is based on the image formation model from optics. The image model
is carefully discretised in order to yield a rigorous representation of image data in terms of voxelised particle intensity and a weight
matrix built with PSF samples. The degrees of freedom of this representation are analysed and we show the usefulness of adapting
one of them, the volume-to-pixel ratio, depending on the PSF size. In particular we underline the interest of using a volume-to-pixel
ratio lower than one in order to deal with sharp PSFs corresponding to well focused, low f-number optics. Another interesting degree
of freedom is a kernel that controls the smoothness of the reconstructed volume. The proposed PVR method promotes detection of
particles through compact kernels that enforce sparsity, but other choices could be studied further that yield smoother reconstructions
and promote correlation.

PVR-SMART has been shown to perform better than tomo-SMART on a large domain of generating conditions. Robustness to
inaccurate knowledge of the PSF size has also been checked. It is worthwhile mentioning that the proposed image data representation
has also been tested successfully in association with other sparsity-based algorithms, see our companion paper [6].

As PVR directly builds the weight matrix from samples of the PSF, PSF calibration techniques as proposed by Schanz et al. [9] can
readily be used. Future work will aim at developing the post-processing necessary to perform velocimetry from the output of the PVR
method. Since our first implementation PVR is oriented to detection at the voxel scale, particle location refinement is indeed necessary
before tracking the particle along time.
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