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Abstract

The hazards of unexploded ordnance threaten the increasing marine construction activities
nowadays, which increases the importance of unexploded ordnance detection. Research has
shown that transient electromagnetic methods can successfully be used to detect unexploded
ordnance on land. New equipment is being developed to make marine unexploded ordnance
detection also possible. This study aims to determine which targets can be detected and which
not in a marine environment through a numerical feasibility study. Building on an existing
geophysical simulation framework, it asks: Under which conditions can we detect a conduc-
tor on or below the seafloor using a time domain loop source? Through the three-dimensional
modelling of Maxwell’s equations, responses were computed for hollow rectangular targets of
different burial depths, sizes, wall thicknesses, andwall conductivities. For the analysis of these
responses two quantities were introduced, a net effect and a measurability. Evaluation of these
quantities demonstrated the individual impact of the tested parameters on these quantities as
well as the relative significance of the influence of these parameters. The results included de-
rived relations for the influence of individual parameters on the net effect, as well as limits on
themeasurability of targets. A rectangular conductor of 0.1 by 0.1 by 0.4metres or smallerwith a
wall thickness of 10 millimetre, buried more than 2 metres under the seafloor is not measurable
under the noise assumptions made. The relative significance of the parameters was found to be
from most to least significant: burial depth, size, wall conductivity, and wall thickness.
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1 | Introduction

In many periods throughout human history, mankind has fought wars with each other. Over
time, the preferred tool in those wars evolved from swords to all kinds of explosive weapons.
Nowadays, problems arise with explosives that did not detonate. All types of explosives to-
gether (bombs, shells, grenades, mines, et cetera) which did not detonate during combat or
were disposed are called Unexploded Ordnance (UXO) or Explosive Remnants of War (ERW).
In this thesis they are addressed as UXO. All over the world, the risk of a UXO detonating can
have serious implications and be a potential threat. Between 1999 and 2019 the mean yearly
death rate due to UXO detonation was at least above 6000 people worldwide. Since 1999, the
yearly casualties are monitored by the International Campaign to Ban Landmines – ClusterMu-
nition Coalition. Their data is given in Figure 1.1. (Landmine Monitor 2019: 21st annual edition,
2019)

Figure 1.1: Confirmed UXO casualties annually (1999-2018), adapted from Landmine Monitor
2019: 21st annual edition (2019).

Not only on land, but also in the marine environment there are many areas contaminated with
UXO. Offshore ammunition dump sites, naval mine fields, and naval battles are three main
sources of marine UXO. The marine environment is changing constantly due to tidal effects and
UXO locations are changingwith it. In these times, where the number ofmarine structures, such
as wind turbines and oil platforms, is increasing rapidly, the need for marine UXO detection
grows with it.
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CHAPTER 1. INTRODUCTION

1.1 Review

Various geophysical techniques are applied to detect UXO. Themost frequently used techniques
are Electromagnetic Induction (EMI) and magnetometry (Zhang, Collins, Yu, Baum, & Carin,
2003). Magnetometry is applied for UXO detection both on land (Billings, 2004) and in marine
settings (Salem, Hamada, Asahina, & Ushijima, 2005). In magnetometry surveys, local distor-
tions in the Earth’smagnetic field aremeasured. The distortions can be caused by ferrous objects
or minerals. In general, magnetometry measurements are done in the far field of the target and
therefore usually only recover the dipole moment of a target. Classification of the objects size
and shape from only the dipole moment involves a lot of uncertainty and therefore determin-
ing UXO size with magnetometry is difficult. Furthermore, magnetometry is not susceptible for
non-ferrous targets, such as aluminium (Billings, 2004).
The othermain technique, EMI, uses a time varying primarymagnetic fieldwhich induces eddy
currents in conductive targets. The eddy currents produce a secondary magnetic field which is
measured by the receiver. The secondary field can bemeasured alone in so-called TimeDomain
Electromagnetics (TDEM) methods or along with the primary field in so-called Frequency Do-
main Electromagnetics (FDEM)methods. The time domain methods make use of a finite pulse
primary field. After the shutdown of the primary field, the induced secondary field is mea-
sured. The rate of decay contains the information about the subsurface properties. Frequency
domain methods make use of a periodic continuous signal, which is constantly measured by
the receiver. Here, the received signal’s amplitude and phase provide the useful information
(Pasion, 2007). In the world of geophysical ElectroMagnetic (EM) methods, terminology and
abbreviationsmay cause confusion. In principle, all activemethods are calledControlled Source
Electromagnetic (CSEM) methods and all passive methods are called Natural Source Electro-
magnetic (NSEM) methods. Common passive methods are MagnetoTelluric (MT) and Z-axis
tipper Electromagnetics (ZTEM). Active methods can be subdivided into time domain meth-
ods (TDEM or Transient Electromagnetic (TEM)) and frequency domain methods (FDEM). In
practice, some acronyms are used for fewer methods then they actually include. The acronym
CSEM is used primarily for an offshore FDEMmethod to explore for horizontally large resistive
bodies. Time domain methods using a loop source are frequently called TEM in practice. Both
frequency domain methods (Zhang et al., 2003) and time domain methods (Pasion & Olden-
burg, 2001) are used to detect UXO.
To a lesser extent, Ground Penetrating Radar (GPR) has been used for UXO detection (Sato,
Fujiwara, Feng, Zhou, & Kobayashi, 2005), although it is negatively influenced by wave attenu-
ation in the ground and therefore strongly limited in sensing deeply buried UXO (Zhang et al.,
2003).
Recently, studies have been conducted on using TEM for UXO detection (Shubitidze et al.,
2013; Doll et al., 2010) and new equipment has been especially built for these investigations
(MacInnes, Snyder,&Zonge, 2002; Prouty, George,& Snyder, 2011). Multi-component receivers
are being used to generate high density data and make a possible inversion for parameters eas-
ier. There is, however, little known ofwhich targets these sensors canmeasure andwhich targets
they cannot.
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CHAPTER 1. INTRODUCTION

To compute how these new sensorswould respond to different types ofUXO, there are twomain
approaches possible. The first approach is approximating UXO targets with dipole models and
computing TEM responses from the dipole model (Pasion & Oldenburg, 2001). The second
approach is to simulate the whole survey by numerically modelling Maxwell’s equations. This
approach yields a more precise result although at a much greater computational cost.
For one-dimensional problems, Maxwell’s equations can be modelled in semi-analytic fash-
ion. The package empymod (Werthmüller, 2017) can compute electric and magnetic responses
for layered earth models with Vertical Transverse Isotropy (VTI). It models Maxwell’s equa-
tions in three-dimensional space for one-dimensional models. It is based on EMmod from
Hunziker et al. (2015) and uses the Fourier and Hankel transforms from Key (2012). Realis-
tic simulations require three-dimensional models as an input. Various software packages for
the three-dimensional modelling of Maxwell’s equations exist that accept three-dimensional
models. Four open-source ones are: custEM (Rochlitz et al., 2019), emg3d (Werthmüller et al.,
2019), PETGEM (Castillo-Reyes et al., 2018), and SimPEG (Cockett et al., 2015). These four
packages have in common that they solve the formulation of Maxwell’s equations under the
diffusive approximation. The packages emg3d and SimPEG use the finite volume method on
structured grids. The other two, custEM and PETGEM, use the finite element method on un-
structured tetrahedral meshes. For applications in the TEM field, the SimPEG package is the
most advanced.

1.2 Contribution

This research is focused on the shallow marine environment (i.e. seas on the continental
shelf). In this environment we explore the TEM responses of different objects on or below the
seafloor. For simplicity, all objects are rectangular. We acquire these responses through three-
dimensional modelling of Maxwell’s equations. The difference between these objects can be in
the size and shape, orientation, or physical properties of the object.
We carry out our research under the main question of interest: Under which conditions can we
detect a conductor on the seafloor using a time domain loop source? To answer this question,
we first have to find a measurable signal. To quantify how measurable a single signal is, we
introduce the net effect and the measurability. These quantities give a number to each signal,
which makes comparisons between different signals more straightforward.
The conditions we focus on in our research are those of the conductor. The actual classifier, a
device that will tell if a measurable signal is or is not a target of interest, is out of scope of our
investigation. The conditions of the source and receiver instruments are also out of our research
scope and therefore we keep them simple.
In our research, we mainly use SimPEG. From the available open-source options, it is the most
advanced regarding time-domain computations. Next to SimPEG we use empymod to create
semi-analytical background signals. We limit ourselves to using the SimPEG framework for our
simulations. Through the forward modelling simulations, we investigate how each individual

3



CHAPTER 1. INTRODUCTION

parameter influences the measurability and in addition we compare the influences of the dif-
ferent parameters.
The goals of our research are summarised by the main question and underlying sub ques-
tions:

• Under which conditions can we detect a conductor on or below the seafloor using a time
domain loop source?

– How can we define the measurability of sensing on a target?
– How accurately can we solve TDEM problems with SimPEG?
– What is the influence of the individual parameters on the measurability?
– What is the relative significance of the influence of different parameters on the mea-
surability?

1.3 Outline of this thesis

In order to answer the research questions posed above this thesis is written in the following
way. This introductory chapter is followed by a description of the necessary theory underlying
the electromagnetic measurements and the of the common UXO types relevant for this study in
Chapter 2. Chapter 3 describes the validation of the SimPEG software. Subsequently, we define
our approach to answer the main research question in Chapter 4. After that we give the results
and discussion of our study in Chapter 5. Finally we conclude our research in Chapter 6.

4



2 | Background

In this chapter, we review the relevant background literature for our research. First we dive into
the relevant physics startingwithMaxwell’s equations. Thenwe discuss the physical properties
which influence CSEM methods. Hereafter, we examine the noise in CSEM methods. Finally,
we give an overview of common found UXO types.

2.1 Maxwell’s equations

All CSEM methods make use of electromagnetism. How the electromagnetic field behaves is
described by Maxwell’s equations. Maxwell’s equations in differential form in the time domain
are given in Equation 2.1 to Equation 2.4. (Lorrain & Corson, 1970). These equations contain
six different vector functions b, d, e, h, j, jm, and je, with:
b: magnetic flux density (in T or Wb/m2)
d: electric displacement (in C/m2)
e: electric field (in V/m)
h: magnetic field (in A/m)
j: volumetric density of induced current (in A/m2)
jm: volumetric density of external magnetic current (in A/m2)
je: volumetric density of external electrical current (in A/m2)

The other parameter in this set of differential equations is % for the electric charge density.
Maxwell’s equations are given by:

∇ · d = %, (Gauss’s law) (2.1)
∇ · b = 0, (Gauss’s law for magnetism) (2.2)

∇× e + ∂b
∂t

= −jm, (Faraday’s law) (2.3)

−∇× h + ∂d
∂t

+ j = −je. (Ampère’s law with Maxwell’s addition) (2.4)

Specific formulations ofMaxwell’s equations can be acquired through the constitutive relations.
The constitutive relations in the frequency domain are given in Equation 2.5 to Equation 2.7,
where B,D,E,H, and J are the frequency domain versions of b,d, e,h, and j, ε is the electrical
permittivity, µ is themagnetic permeability, and σ the electrical conductivity. In these equations

5



CHAPTER 2. BACKGROUND

it is already assumed that all media are linear, isotropic, homogeneous, and possess electrical
properties which are independent of time, temperature, and pressure. (Nabighian, 1991)

B = µ(ω)H, (2.5)
D = ε(ω)E, (2.6)
J = σ(ω)E. (2.7)

The time domain equivalent of these equations can be obtained by taking the inverse Fourier
transform of each, yielding:

b = µ(t) ∗ h, (2.8)
d = ε(t) ∗ e, (2.9)
j = σ(t) ∗ e. (2.10)

If the medium is instantaneously reacting the constitutive relations in the time domain simplify
to:

b = µh, (2.11)
d = εe, (2.12)
j = σe. (2.13)

In CSEM applications the influence of electrical permittivity is negligible. This is called the
diffusive approximation. This can be showed with the charge conservation law:

∂%

∂t
= −∇ · (j + je). (2.14)

When an initial charge distribution %0 is released at t = 0s in a source-free region, Ziolkowski
and Slob (2019) find the following equation from the charge conservation law:

∂%

∂t
= −∂σ

∂ε
%. (2.15)

This first order differential equation has the following solution:

%(t) = %0 exp(−σt/ε). (2.16)

In the exponent of this function, the inverse of the ratio ε/σ can be found. This ratio is called
the charge relaxation time and is a measure of the time it takes for a medium disturbed by a
passing electromagnetic field to return to its equilibrium. If the time variation of this passing
electromagnetic field is slow compared with the the charge relaxation time, epsilon can be ne-
glected in Maxwell’s equations and the diffusive approximation can be made. For most earth
materials the relaxation time is less than 10 µs (Ziolkowski & Slob, 2019). This means that for
TEM,where usually the firstmeasurement is takenwell after 100 µs the diffusive approximation
is valid.
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CHAPTER 2. BACKGROUND

Figure 2.1: Discretisation of a single cell in (a) Cartesian and (b) cylindrical coordinates (Figure
2 fromHeagy et al. (2015)). Red arrows represent fields, blue arrows represent fluxes, and black
dots represent physical properties.

From Equation 2.3, Equation 2.4, the diffusive approximation, and the constitutive relations
for instantaneously reacting media the following relations depending solely on e or h can be
obtained:

∇× µ−1∇× e + σ
∂e
∂t

= −∇× µ−1jm − ∂je

∂t
, (2.17)

∇× σ−1∇× h + µ
∂h
∂t

= ∇× σ−1je − jm. (2.18)

In Equation 2.17 we end up with the TDEM modelling equation used by SimPEG for the elec-
tric field (Heagy, Cockett, Kang, Rosenkjaer, & Oldenburg, 2017). This equation is discretised
and solved with a spatial finite element scheme and a backward Euler scheme in time by Sim-
PEG.
The discretisation of Maxwell’s equations is done on a staggered mimetic grid, which is de-
scribed by Hyman and Shashkov (1999) and is based on previous research by Yee (1966). In
this discretisation fields are discretised on edges, fluxes on faces, and physical properties at cell
centres. The locations of the edges, faces and centres in Cartesian and cylindrical coordinates
are given in Figure 2.1, where fields are represented with red arrows, fluxes with blue arrows,
and physical properties with black dots.

2.2 Relevant physical properties

Here we discuss the physical properties electrical conductivity (σ) and magnetic permeability
(µ). Both of these are used as diagnostic properties inUXO surveys. Their relation to the electric
and magnetic field was given in the constitutive relations Equation 2.5 and Equation 2.7.
The values for common UXOmaterials of both the electrical conductivity and the relative mag-
netic permeability are given in Table 2.1. In Figure 2.2 typical conductivity values for geological
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targets are given. Electrical conductivity and magnetic permeability are explained in more de-
tail below.
Table 2.1: Values of conductivity and relative magnetic permeability for various metals.
Adapted from O’Neill (2016).

Material Conductivity
(S/m)

Relative
magnetic

permeability

Stainless steel 1.5× 106 1
Aluminium 35× 106 1
Copper 60× 106 1
Carbon steel 7× 106 100

Magnetic permeability

The magnetic permeability (µ) is a property that describes the degree of magnetisation a mate-
rial under influence of a magnetic field. The degree of magnetisation is how much of induced
magnetism amaterial experiences under the influence of an externalmagnetic field. FromEqua-
tion 2.5, we can see the magnetic permeability is the ratio between the magnetic flux density in
a material and the magnetic field intensity applied to it.
Although the main effect in the TDEM response is due to eddy currents in conductors, it has
been shown that large anomalies in the magnetic permeability can result in measurable anoma-
lous effects to the TDEM response (Pavlov & Zhdanov, 2001). Thus, the magnetic permeability
values should also be taken into account when modelling the TDEM surveys for UXO detec-
tion.
Often, the magnetic permeability is represented as a relative permeability. The relative perme-
ability, the ratio between the permeability of a specific medium and the permeability of free
space is given by:

µr = µ

µ0
. (2.19)

Where µ is the permeability of the material, µ0 is the permeability of free space or magnetic
constant with value µ0 = 4π × 10−7 H/m. Relative magnetic permeabilities for common UXO
materials vary from 1 to 100, see Table 2.1.

Electrical conductivity

Electrical conductivity (σ) quantifies to what extent a material is able to induce a current when
subjected to an electrical field. Its value in S/m varies several orders of magnitude for different
materials. Typical conductivity values for geological targets are in the range between 0.01mS/m
and 100 S/m, see Figure 2.2. Values of conductivity for common UXO materials vary from 1.5
to 60 MS/m, see Table 2.1. The reciprocal of electrical conductivity is electrical resistivity (ρ in
Ω m).
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Figure 2.2: Typical conductivity and resistivity ranges for geological targets. (Figure 2 from
Palacky (1988)).

For CSEM methods, we reduced Maxwell’s equations to Equation 2.17 and Equation 2.18 un-
der the diffusive approximation. In these equations, the only physical properties present are
the electrical conductivity and the magnetic permeability. The former changes seven orders of
magnitude for standard geological targets and the latter stays the same for most materials ex-
cept some metals. As a consequence, the electrical conductivity is the most influential material
or rock parameter in CSEM methods.

2.3 CSEM noise

In literature (Ziolkowski & Slob, 2019), five different noise sources are discriminated. These
are: electrode noise; magnetotelluric noise; cultural noise; motionally induced electromagnetic
induction noise; and electronic system noise. The total noise at an electric dipole receiver in
voltage is expressed as follows by Ziolkowski and Slob (2019):

NT (t) = VE(t) + ∆xr [EM (t) + EC(t) + EI(t)] + VS(t). (2.20)

Where:
NT : Total noise voltage at electric dipole receiver.
VE : The noise voltage of the two electrodes.
EM : Magnetotelluric electric field.
EC : Cultural noise field.
EI : Motionally induced induction noise.
VS : Electronic system noise.
∆xr: Receiver length (distance between the two electrodes).
The noise floor is the sum of all unwanted signals. In the case of an electric dipole receiver, it is
NT , given by Equation 2.20. Below the noise level, signals becomemuch more difficult to detect
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as a signal and are easily regarded as noise. To achieve better results, signals can be sampled
for a longer time to rise above the noise floor. In analogy with seismic geophysical methods,
this is sometimes called stacking. In frequency domain CSEM the noise floor at 1 Hz and 100-s
of stacking is around 10−15 V/(A m2) and for corresponding time domain CSEM methods it is
around 10−14 V/(A m2) (Constable, 2010). In the first fully academic marine CSEM and MT
survey Myer, Constable, Key, Glinsky, and Liu (2012) found similar values. The noise floors
they found, for respectively electric and magnetic field data, were: 10−15 V/(A m2) and 10−18

T/(A m). For time domain electromagnetic receivers on the seafloor Li and Constable (2010)
state a threshold of around 10−15 to 10−14 V/(A m2) for a transmitter with an electric dipole
moment of 100 kA m.
In our case, the interest lies in the time domain noise floor. The effects we want to observe in
our research have to be significantly larger than the noise floor. The research from Myer et al.
(2012) gives aswell a TDEMnoise floor of 10−18 T/(A m). If wemultiply this value by the dipole
moment of our source and divide by µ0, we obtain the noise floor for our simulations.

2.4 Marine UXO

An increasing number of constructions is built in the shallow marine environment, such as oil
platforms, pipelines andwind farms. The fact that many seas are pollutedwith UXO endangers
and delays these constructions.
Several UXO types are being found in the shallow marine environment. They can be divided
into aerial High Explosive (HE) bombs, artillery shells, naval mines, depth charges, and tor-
pedoes. The aerial HE bombs can end up in the shallow marine environment by airstrikes on
marine targets or ammunition dumping. In the Second World War it was common for aero-
planes returning to base to jettison their bombs in order to fly quicker. Artillery shells that were
used in naval combat or by anti-aircraft guns (both on ships and coastal mounted) can end up
in the marine environment. Many shallow marine seas around the world were contaminated
with naval mine fields, most notably inWorldWar I andWorldWar II. Althoughmany post-war
clearances have been carried out, naval mines are still being found. Depth charges were used
in both naval and aerial attacks on submarines. Together with torpedoes they are more rarely
found, but they can be present and pose a risk in that case.
When shells impact on the water they normally have a high velocity. In the water this is slowed
down rapidly and the shell follows a trajectory ending up horizontally on the seafloor. (Chu,
Fan, & Gefken, 2008). After the deposit the shell environment may be altered predominantly
by the mechanisms of scour and bedform migration.
Scour is a hydrodynamic process which removes sediment around structures or objects through
the vortex formed in front of the object by fluid motion. This occurs mostly in areas with loose
sediments, such as sand. The scour can create a scour hole around a UXO piece. When the
hole grows so large the UXO piece falls below the seafloor, the hole can fill up with sediment
again (Jenkins, Inman, Richardson, Wever, & Wasyl, 2007). Bedform migration is a sedimen-
tary process caused by moving sediments. In this process the bedforms can co-migrate UXO
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pieces. Depending on the local height of migrating beds objects can be buried in them. Which
trajectory ordnance exactly follows and how it is migrated on the seafloor is out of scope for this
research.
Different UXO types found are of various sizes. A common way of quantifying UXO is by stat-
ing the ferrous mass, as this is the property that will matter for both magnemetry and EMI
surveys. Depending on the site location considered, the UXO types present may vary. A his-
tory desk study is normally performed to show which types are present. A recent study on a
part of the Dutch North Sea expects UXO to be present with ferrous masses from 10 kg up to
701 kg (Schuddinck & van den Berg, 2017). Objects with less ferrous mass are harder to de-
tect. Depending on the operation that will be carried out, a different detection threshold may
be established. A typical detection threshold that is demanded is a 25 or 50 kg ferrous mass of
approximately 0.2 m by 0.6 m up to 3 m below the seabed surface. This is what at least should
be detected to preserve safety in that operation. A 50 kg ferrous mass would roughly translate
to the British WW2 bomb ’G.P. 250-lb. Bomb Mk 1’ of which a schematic drawing is given in
Figure 2.3. This is one of the UXO types expected to be present in the study site of Schuddinck
and van den Berg (2017).
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Figure 2.3: British WW2 bomb ’G.P. 250-lb. Bomb Mk 1’. From page 17 of Naval Ordnance
Systems Command (1946).

12



3 | Software validation

The open source Python package SimPEG is a framework for simulation and gradient based pa-
rameter estimation in geophysical applications (Cockett et al., 2015). We will be mainly using
SimPEG’s electromagnetic module (Heagy et al., 2017) to compute electromagnetic responses
in the time domain. To verify the results we compute with SimPEG and find out the numerical
stability of the simulations donewith SimPEG, we compared SimPEGwith analytical equations
for simple electromagnetic problems. With the help of these reproduction tests we can deduce
how to use SimPEG in our further experiments. The properties of the individual meshes cre-
ated to solve each problem in this section can be found in Appendix B. The generation of two
figures with analytical functions and their simulated equivalents is the core result from which
this chapter is built around. These figures are given on 18.
The main results of this chapter were also generated using the semi-analytical electromagnetic
modelling package empymod by Werthmüller (2017). The results regarding empymod can be
found in Appendix C on page 58. The empymod code approximates the analytical functions
perfectly with a maximum percent error below 0.04 percent.

3.1 SimPEG simulations

To carry out numerical TDEM simulations with SimPEG the diffusive equations have to be ap-
plied in discrete space-time. Therefore, both a spatial and a temporal discretisation have to be
made. In this section we describe the process.

Time discretisation

In SimPEG, the temporal discretisation is made by assigning so-called time steps to the simula-
tion. These are the steps the SimPEG solver takes in time. The solver uses a first order backward
Euler method for the time stepping, which has a first order truncation error. For each new step
size the solver has to compute an inverse matrix. The matrix inversion is computationally the
most expensive part of the simulation. The most efficient approach to this situation is using
the same time step size multiple times, which allows utilising the same inverse matrix multiple
times.
Inmost TDEMproblems, onewants toworkwith a logarithmic time scale, which is hard to sam-
ple with just one time step size. Then, the most convenient approach is to use one or two step
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sizes per logarithmic decade. This will sample each decade equally and will limit the number
of factorised matrices that has to be computed and thus will not cause computational ineffi-
ciency.

The scheme we use in the computations in Section 3.2 works as follows: The first point in the
time step scheme is right on the lower bound of the time scale we are interested in. Then, for
each logarithmic decade in our interest we append 21 times 10x−1 and 23 times 3× 10x−1 to our
time step scheme, where x stands for the decade. For the last logarithmic decade (i.e. the end
of the interval of interest) we do not add time step sizes. For example, if we apply this to the
logarithmic interval [10−2, 100] the resulting array of time steps is, where the subscripts denote
the number of the same step size in a row:

[
10−2, 10−3

1 , 10−3
2 , ..., 10−3

20 , 10−3
21 ,

3× 10−3
1 , 3× 10−3

2 ..., 3× 10−3
22 , 3× 10−3

23 ,

10−2
1 , 10−2

2 , ..., 10−2
20 , 10−2

21 ,

3× 10−2
1 , 3× 10−2

2 ..., 3× 10−2
22 , 3× 10−2

23

]
.

(3.1)

The distinct points in time, at which the simulation is performed, corresponding to the time
step scheme are:

[
0.000, 0.010, 0.011, 0.012, ..., 0.030, 0.031,

0.034, 0.037, ..., 0.097, 0.100,
0.110, 0.120, ..., 0.300, 0.310,

0.340, 0.370, ..., 0.970, 1.000
]
.

(3.2)

The result of applying this scheme to the logarithmic interval [10−2, 100] is visualised in Fig-
ure 3.1. In this figure, the blue line marks the start of the interval (10−2), the red line marks the
end of the interval (100), and the purple points are all the time points in our scheme.

Figure 3.1: A logarithmic time interval sufficiently sampled by time steps. Blue bar: start of
interval; Red bar: end of interval; Purple dots: time steps.
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Spatial discretisation

In general it is a good idea to create a spatial grid that is larger then the maximum diffusion
distance the electromagnetic field will reach in the time span given. In addition to this, the
grid cells have to be smaller then the minimal diffusion distance. When these two conditions
hold, the problem can be solved without spatial numerical errors. The diffusion distance can
be approximated by calculating the skin depth with Equation 3.3 (Adapted from Whittall and
Oldenburg (1992)). In this equation δ is the skin depth in metres, t can be any sample time in
seconds and σ any model conductivity in S/m. By putting in the minimal time and maximal
conductivity value, theminimal distance can be determined and by putting in themaximal time
and the minimal conductivity value, the maximal distance can be determined.

δ = 503 ∗
√
t

σ
(3.3)

The minimum distance may be of orders smaller than the maximum distance. The simplest
mesh one can think of, which uses cells smaller than the minimum distance and extends to
more than the maximum distance, is computationally very expensive. Computationally it is
more efficient to use a mesh that uses small cells in the area of interest and extends the cell
size outwards. The meshes used for the simulations in this section are so-called tensor meshes.
They consist of rectangular cells that are fine in the area of interest and expand with coarser
cells outwards. These meshes can be characterised by the core cell width, the number of core
cells, the number of padding cells, and the expansion factor in the padding cells. The core
cell width is the width of cells in the area of interest. The padding cells are the cells outside
the ’core’. They become larger outwards as the cell width is multiplied with the expansion
factor. In practice, expansion factors higher then 2 should be avoided and according to ’urban
legend’ the ’magic’ number is 1.3 (Haber, 2014). For each of the simulations these values can be
found in Appendix B. For horizontal symmetric problems computational cost can be reduced
even further by using cylindrical tensor meshes. Cylindrical meshes for horizontal symmetric
problems only have discretisation in the negative z, positive z, and positive x direction. The
results can then be rotated around the origin to acquire the result in other directions.

3.2 Analytical equations

To validate our computations with SimPEG, we test the package first. We test it by usingmodels
and survey setups for which analytical solutions are known. Using SimPEGwewant to recreate
these analytical solutions and achieve outcomes as close as possible. In this section, we first will
explain two different settings for which analytical solutions are known. Then, we show the
results and errors for these settings. Finally, we show two possible mistakes that can be made
when computing these results.

Vertical magnetic dipole

In the book by Nabighian (1991, p. 215), Ward and Hohmann derive Equation 3.4 and Equa-
tion 3.5 for the vertical magnetic field and the time derivative of the vertical magnetic field
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respectively, which agrees with the expressions given by Kaufman and Keller (1983). These
equations are valid for a homogeneous earth, represented by an infinite half-space, and an infi-
nite half-space of air on top of it. Both the source and receiver are on the interface between air
and earth. In these equationsm is the magnetic moment of the dipole, x stands for the receiver
offset, ρ for the resistivity of the earth. The air resistivity is assumed infinite. The expressions
of Ward and Hohmann are given by:

hz = m

4πx3

[ 9
2θ2x2 erf(θx)− erf(θx)− 1

π1/2

( 9
θx

+ 4θx
)
exp(−θ2x2)

]
, and (3.4)

∂hz
∂t

= − m

2πµ0σx5

[
9 erf(θx)− 2θx

π1/2 (9 + 6θ2x2 + 4θ4x4)exp(−θ2x2)
]
. (3.5)

In these two expressions θ is given by the following equation, in which t is time and µ0 the
permeability of free space.

θ =
√
µ0
4ρt . (3.6)

We used the test example from Ward and Hohmann to recreate the figure given in Nabighian
(1991, p. 215). This example is schematically shown in Figure 3.2. Amagnetic dipole source and
a point receiver are placed on the interface of a half-space earth and a half-space of air. The red
star indicates the magnetic dipole source of unit dipole moment, which is shut down abruptly
at zero time. The resistivity of the earth is 100 Ω m and the resistivity of air is assumed at 108

Ω m.

z

x

(0, 0) (100, 0)

ρair

ρsoil

Figure 3.2: Vertical magnetic dipole setup, units in metres. Red star: magnetic dipole source,
blue diamond: receiver.

Loop

Also in Nabighian (1991, p. 221), Ward and Hohmann derive Equation 3.7 and Equation 3.8
for the vertical magnetic field and its derivative for a loop source that is abruptly shut down
and a receiver in the centre of the loop. In these equations I is the current in the loop before
shutdown, a is the loop radius, and θ is given by Equation 3.6. These equations are valid for the
same homogeneous earth used in Section 3.2 and are given by:

hz = I

2a

[ 3√
πθa

e−θ
2a2 +

(
1− 3

2θ2a2

)
erf(θa)

]
, and (3.7)
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∂hz
∂t

= − I

µ0σa3

[
3 erf(θa)− 2

π1/2 θa(3 + 2θ2a2)exp(−θ2a2)
]
. (3.8)

We used the test example from Ward and Hohmann to recreate the figure given in Nabighian
(1991, p. 221). In Figure 3.3 the setup is shown. The 50 m radius loop source is oriented parallel
to the interface of the two half-spaces and is abruptly turned off at zero time. The vertical mag-
netic field and its derivative are measured right at the centre of this loop. Just as in the dipole
setup the resistivity of the earth is 100 Ω m and the resistivity of air is assumed at 108 Ω m.

z

x

(0, 0)
(50, 0)

ρair

ρsoil

Figure 3.3: Loop source setup, units in metres. Red circle: loop source, blue diamond: receiver.

Results and errors

In Figure 3.4a the test example for a dipole source from Ward and Hohmann is recreated. The
top black curve is defined by Equation 3.4 and is the vertical magnetic field and the bottom
black curve is defined by Equation 3.5 and is the derivative of the vertical magnetic field. The
dotted blue lines are the simulated results using SimPEG. All values are absolute values. The
steep dip in all curves near t = 10−2 s is where the sign flips. The SimPEG simulations show
here the ability to compute a consistent solution that almost fits the analytical solution.
In Figure 3.4b the test example for a loop source from Ward and Hohmann is recreated. The
upper black curve is defined by Equation 3.7 and is the vertical magnetic field at the receiver.
The lower black curve is defined by Equation 3.8 and is the derivative of the vertical magnetic
field at the receiver. The dotted blue lines are the results of the SimPEG simulations. All values
are absolute values. Just as the results for the dipole setup explained in Section 3.2 the SimPEG
simulations for the vertical magnetic field do not blow up or are off.
Although the computed results may look almost similar to the analytical solutions, there are
some differences. To describe those differences, we computed the percent error between the
simulated result and the analytical solution. The percent error Ep between a value v and its
approximation v′ (Rice, 2006) is computed with:

Ep = 100 ∗ |v − v
′|

|v|
. (3.9)

In Figure 3.5 the computed percent errors are plotted against the receiver recording time. The
following findings can be observed in this figure. For the dipole setting, there is an error of
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(a) Dipole source and point receiver (b) Loop source and point receiver

Figure 3.4: SimPEG results compared with analytic solutions. Both are absolute values.

(a) Dipole source and point receiver (b) Loop source and point receiver

Figure 3.5: Percent errors between SimPEG simulations and analytical solutions.
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around 15% in the derivative of the magnetic field at the earliest times. For both the dipole
and the loop setting, there is a increasing error, with periodic behaviour, for both the vertical
magnetic field and its derivative in the late times (t > 10−1 s). These periods have the length of
half a logarithmic time decade. The late time error is the largest in the derivative of the vertical
magnetic field. Around the sign flip in the dipole setting, the largest errors occur. The percent
error in the derivative of the vertical magnetic field even becomes larger than 200 (Not visible
in the figure; the maximum value was clipped to 20% to make the other values clearer.). This
extreme error is an artefact of the relative error equation. Once a signal goes to zero by the sign
flip, the error blows up.

The error in the earliest times in the derivative of the vertical magnetic field is scaling with the
smallest cell size. When we computed the same simulations with larger core cells in its mesh,
this error became larger, and vice versa for smaller core cells. At time steps this small, the mesh
has to be very fine to compute results accurately. The increasing errors in the late times (t > 10−1

s) occur due to two different reasons. Generally, at later times an error starts to grow due to the
mesh cells that are expanding outwards. For both of the simulations an expansion factor of 1.3
was used. If the expansion factor of themesh is lower, this error is also lower. On top of that, the
time discretisation causes error. The two different time step sizes per logarithmic time decade
explain the two periods per logarithmic time decade seen in the error curve.

An explanation for the error growing over time lies in the discretisation scheme the SimPEG
framework uses for time stepping. As mentioned before, the time stepping scheme used is first
order backward Euler. In a first order method, the error scales with the time step size, which is
also visible in the errors we computed.

Possible discretisation errors

In Figure 3.6 two possible errors in the result computed with SimPEG are shown. The cause of
the errors lies in the discretisation of the problem. These errors were made in solving the prob-
lem described in Section 3.2, where we compute the vertical magnetic field and its derivative
from dipole source that is shut down at time zero. These computations are then compared with
the analytical solution. For both plots, the top lines are the derivative of the vertical magnetic
field, and the bottom curves represent the vertical magnetic field. Both of the errors shown are
made in the computation of the vertical magnetic field. The black lines are analytical solutions
and the dashed blue lines the SimPEG simulation results. The problem for which these curves
are computed is described in Section 3.2. In Figure 3.6a the air resistivity value set to 2 × 1014

Ω m. In analytical formulas this can be assumed infinite to acquire a closed form solution, but
when using numerical solvers, extremely large numbers may cause errors. Due to this error,
the computed solution is shifted off the analytical solution. In Figure 3.6b we used a mesh that
was around four orders too small to account for the diffusion distance of the electromagnetic
field. After 10−1 ms, the solution starts to blow up. In Figure 3.6a this does not happen, because
a sufficiently large mesh was used.
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(a) Amplitude shift in solution. (b) Solution blows up after 10−1 ms.

Figure 3.6: Possible simulation artefacts due to (a) too large air resistivity and (b) too small
domain size.

3.3 Extension to fields

Receiver array

In Equation 3.4 and Equation 3.5 the receiver offset from the source is the parameter x. Whenwe
change this parameter to different values we can calculate the response at different offsets. This
waywe can simulate the responses a line of receiverswould receive fromadipole source and can
also check the results with the analytic formula. In the SimPEG simulation this will not cause
more computational cost, because it can handle multiple receivers in one simulation.
We chose to simulate a two kilometre line of 100 equally spaced receivers, with the dipole source
at the origin. The receivers measure the derivative of the vertical magnetic field from t = 10−8

s to t = 100 s. This is the same time span used in Section 3.2. In Figure 3.7 the result of the
SimPEG simulation is shown, together with the analytical solution and the percentage error
of the simulation with respect to the analytical solution. The characteristics of this mesh are
in Appendix B. The time discretisation scheme used is the same as the scheme described in
Section 3.1.
The resulting error in Figure 3.7 may look complicated, but the same error artefacts as in Sec-
tion 3.2 can be observed. Between t = 10−8 s and t = 10−7 s the error is over 20%, caused by the
combination of really small time steps and spatial cells being too large. At the sign change in the
field there is again a large error, noticeable by the curved yellow line. Hereafter, the periodically
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Figure 3.7: Dipole impulse response for a line of receivers. Top: simulated response; Middle:
analytical response; Bottom: percentage error.
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repeating behaviour in the error can be observed again. Next to these earlier observed error be-
haviours there are some new artefacts. Roughly between offsets x = 1000 m and x = 2000 m,
the error starts to rise. This is caused by the expanding cells of the mesh. Until x = 900 m core
cells of size 3 m are used. For all greater offsets the cell size is expanding with the expansion
factor of the mesh, which was set to 1.2.

Field progression

Just as we extended the dipole setup, we can extend the loop setup. For the same homogeneous
half-space earth as before we use the same 50 metre loop. We use two metre spaced receivers
from the centre of the loop radially outwards. They record between 10−6 and 10−3 seconds from
loop shutoff. In Figure 3.8 a snapshot of the vertical magnetic field at each logarithmic decade
is shown. The radial axis is defined in metres and points outward from the centre.

Figure 3.8: Vertical magnetic field progression after loop shutoff at four different logarithmic
spaced times.
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3.4 Conclusions for simulations with SimPEG

In this chapter we conducted multiple experiments with SimPEG. We compared simulated re-
sults to analytical equations, first for a dipole source with one receiver and second for a loop
source with one receiver. Then, we extended these simulations to multiple receivers to compute
fields over time. Again, we did this first for the dipole source and second for the loop source.
In the cases of a dipole source and one receiver, a loop source and one receiver, and a dipole
source and multiple receivers, we compared the results with analytical equations. For all three
cases a percent error was computed. Respectively for the three cases the errors are plotted in
Figure 3.5a, Figure 3.5b, and Figure 3.7.
From the simulations computed and the comparison to analytical solutions, we can draw a num-
ber of conclusions for further simulations:

1. The time window of interest for a certain simulation should be sampled everywhere in
this window, but should ideally not use too many different time step sizes for the sake of
computational time. For example, two different time step sizes per logarithmic decade in
the time window of interest work well.

2. The model should be carefully discretised into a spatial mesh. The mesh should be small
enough around areas of interest, such as the source or parameter boundaries. It is small
enough when it’s smaller then the minimum diffusion distance around the source and
when boundaries are on their physical location. Not taking care of this causes errors in
the earliest time steps. On top of this, the mesh should extend far enough to account for
the maximum diffusion distance.

3. To create a large mesh, the mesh cells can be made larger outwards from the centre of
the mesh with the expansion factor. Higher expansion factors cause more error at later
times in the simulation. Keeping the expansion factor low helps to suppress this error.
Expansion factors above 2 should be avoided. Thus, accepted values for the expansion
factor are between 1 and 2.

4. Extreme conductivity or resistivity values (1010 Ω m ormore, 10−10 S/m or less)may cause
extreme errors. They are hard to handle for the solver and can cause a blow up in the
solution. It is best to not use such extreme values.

5. In our simulations we find an error increasing over time. In the derivative of the magnetic
field this error is the largest. For the dipole source this error is 19 percent or lower, for the
loop source 14 percent or lower. The source of this error is the first order backward Euler
scheme SimPEG uses for the time stepping. By implementing a second order method
this error could most likely significantly be decreased, however at the cost of computation
speed.

To get the best out of both worlds and achieve consistent results with reasonable computational
cost the first thing we will do in our further simulations is use a coarse time sampling scheme
and a mesh with a minimal number of cells, in order to just produce consistent results. Then,
when consistency is found on a certain simulation, it should be computed with a finer time
sampling scheme and a finer mesh to decrease the errors as far as possible.
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4 | Sensitivity analysis

Now thatwe established the limits of the software, we use it to answer the research questionswe
posed in Chapter 1. In this chapter we investigate the influence of the target’s parameters on the
response signalwith the goal to find out how these parameters are related to the recorded signal.
First we introduce the marine model along with an overview of the parameters we evaluate
in this model. Then, we discuss the survey setup used in the model. After that, we define
the measurability and how to quantify the modelled responses. Furthermore, we perform the
parameter sensitivity analysis in two different ways. First taking a one-at-a-time approach to
find out the individual relations between parameters and modelled response. Second, we take
a statistical approach by comparing influences of probable parameters values on the modelled
responses between the different parameters. Finally, we explain our characterisation experiment
and give an overview of all experiments conducted.

4.1 Marine model

In Figure 4.1 a schematic overview of the marine model is given. It is defined in a three-
dimensional Cartesian coordinate system with the positive z axis pointing downwards. The
positive y axis is pointing out of the page. The model consists of three layers, from top to bot-
tom: air (white), sea (dark grey), soil (light grey). Each layer has its own conductivity value,
respectively σair, σsea, and σsoil. The sea layer is the only layer with a finite thickness, which is
equal to the depth to the seafloor dseafloor. The air and soil layers are both half spaces. The origin
of the coordinate system is defined at the interface between air and sea. Right below the origin,
the source is located in the sea layer at depth dsrc. Consequently, the depth to the source must
always be lower than the depth to the seafloor (dsrc < dseafloor).
In the model’s soil layer, there is an extra feature present. This is the target we are interested
in. Regardless of the shape of the target, its depth (dtarget) is defined from the seafloor to the
top surface of the target. This means that for a unit cube target with dtarget = −0.5 half of the
cube is submerged into the soil and the other half is exposed in the sea. We define the target
in the model as a hollow cuboid. The parameters length L, widthW , and height H define the
size and the outer shape of the cuboid in, respectively, the x, y, and z directions. The cuboidal
target model has a wall thickness ∆xwall. It has two conductivity values, one for the wall (ρwall)
and one for the interior (σinterior). A graph of the cuboidal model is given in Figure 4.2 with
annotations of its shape and size parameters.

25



CHAPTER 4. SENSITIVITY ANALYSIS

dseafloor

dtarget

dsrc

z

x

(0, 0)

target

source

σair

σsoil

σsea

Figure 4.1: The marine model. σair, σsea and σsoil are the air, sea and the soils conductivity,
respectively.

Figure 4.2: Example cuboidal target model. The solid blue colour denotes the target’s interior
and the transparent blue colour the target’s wall.
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Actual UXO targets are usually of cylindrical or spherical shape. The target we are modelling is
cuboidally shaped. We chose this because we cannot discretise a cylindrical or spherical shape
without significant aliasing on a rectangular mesh. Modelling a cylinder properly on a rect-
angular mesh would require a very fine cell size around the cylinder. This would cause a sig-
nificant increase in the number of cells and therefore also in the computational cost. Adaptive
tetrahedral gridmethods can overcome this problem, but they are not implemented in SimPEG.
Before this choice was made, we conducted an experiment to test the impact of rotations of the
target. This experiment used yaw, pitch and roll rotations around the target’s main axis and
is described in Appendix D. Our main conclusion of this experiment is that yaw rotations of
the target give no significant change to its response, and thus we can keep the target perfectly
aligned with the grid.
In this section we introduced many parameters without a given value in our model. An
overview of these parameters can be found in Table 4.1.

Table 4.1: Parameters introduced by the marine model.

Symbol Description Unit

σair Air conductivity S/m
σsea Sea conductivity S/m
σsoil Soil conductivity S/m
σwall Target wall conductivity S/m
σinterior Target interior conductivity S/m
dsrc Depth from sea level to source m
dseafloor Depth from sea level to seafloor m
dtarget Depth from seafloor to target m
L Length of target (x directed) m
W Width of target (y directed) m
H Height of target (z directed) m
∆xwall Wall thickness m

4.2 Survey setup

In TEM methods a primary electromagnetic field is induced into the ground by the antenna.
Most commonly, this antenna is a wire coil. The source strength is given by the magnetic dipole
moment τ . This is the product of the number of turns N , the current I , and the area of the coil
A. This relationship is given by:

τ = NIA. (4.1)

The receiver antenna is most commonly also a coil. The rate of change in the secondary field,
produced by eddy currents in the ground after shutoff of the transmitter, is measured with the
proportional flux through the receiver coil. In practice, a lot of different coil sizes are used.
Devices vary from a single coil source and receiver (“EM61MK2 Operating Instructions”, 2011)
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to arrays of receivers and transmitters (Prouty et al., 2011). As the actual design of a TEM
device is out of our scope, we define the simplest setup that enables us to answer the research
questions. We use a circular loop antenna, with a radius of 0.5 m, a current of 1 A, and only one
winding as source. This corresponds to a dipole moment of 0.25π A m. The receiver antenna is
modelled as a point in the middle of the loop and can measure the derivative of the magnetic
field in x, y, and z directions.

4.3 Signal analysis

In a hypothetical setup we can distinguish between two different signal functions. The target
signal function ftarget(t), acquired on a model with a target, and the background signal function
fbackground(t), acquired on the same model without target. To compare different setups we need
to assess how visible their target signals are over the background signal. This can be done in a
consistent manner by computing the area of the absolute difference between the two functions
on a certain time span [t0, t1]. We call the area between the curves the net effect, denoted with
N . From the net effect, and information about the noise, the measurability can be determined.
The measurability will say if a certain signal is measurable. So to assess our measured signal,
we have two different values, in ascending order of strictness:

1. Net effect
2. Measurability

In this section we first explain the net effect, followed by the measurability.

4.3.1 Net effect

For a general setting with two functions f1 and f2 the area on a certain time span [t0, t1] is
visualised in Figure 4.3. The net effect area for this setting can be calculated with the following
equation:

N =
∫ t1

t0
|f1(t)− f2(t)|dt. (4.2)

The functions may be given on a logarithmic scale. This causes the function points to be spaced
irregularly. For irregularly spaced data the integral can be approximated numerically with the
composite Simpson’s rule by dividing the interval [t0, t1] into an even number N sub-intervals
of widths hk. This is expressed as follows (Vuik, Vermolen, Gijzen, & Vuik, 2007):

∫ t1

t0
f(t)dt =

N/2−1∑
i=0

(αif2i+2 + βif2i+1 + ηif2i) , (4.3)

where fk = f
(
t0 +

∑k−1
i=0 hi

)
are the function values at the kth point on the interval [t0, t1], and
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Figure 4.3: Area between two curves on a given time interval (the net effect).

the coefficients αi, βi, and γi are given by:

αi =
2h3

2i+1 − h3
2i + 3h2ih

2
2i+1

6h2i+1 (h2i+1 + h2i)
, (4.4)

βi =
h3

2i+1 + h3
2i + 3h2i+1h2i (h2i+1 + h2i)

6h2i+1h2i
, and (4.5)

ηi =
2h3

2i − h3
2i+1 − 3h2i+1h

2
2i

6h2i (h2j+1 + h2i)
. (4.6)

For an even numberN of sub-intervals the last or first step needs to be approximated differently,
for example with the trapezoidal rule. For an odd number of samples and thus an even number
of sub-intervals, that are equally spaced, the result is exact if the function is a polynomial of third
order or less. For irregularly spaced samples, the result is exact if the function is a polynomial
of second order or less. By making the substitution f(t) = f1(t) − f2(t) in Equation 4.2 and
applying the composite Simpson’s rule we end up with the following equation:

N =

∣∣∣∣∣∣
N/2−1∑
i=0

(αif2i+2 + βif2i+1 + ηif2i)

∣∣∣∣∣∣ . (4.7)

With the obtained equation we can quantify the net effect of a certain signal in a consistent
manner. On a linear as well on a logarithmic time scheme.
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4.3.2 Measurability

On every TEM measurement there are limiting factors. We distinguish between the following
ones:

• Time resolution
• Noise level
• Signal noise (including water effects)

The time resolution defines the smallest time interval that possibly could be recorded. If a
signal produces net effect before this smallest time interval, it is notmeasurable. The noise level,
introduced in Section 2.3, defines the smallest amplitude that could be recorded. Signals with
amplitudes below the noise level are hard to distinguish from the noise. Stacking and signal
processing can be used to distinguish those signals. The signal noise includes all noise that is
perceived as normal signal. This includes the effects of the moving water. Signal noise is an
uncertainty percentage around the true signal. In practice, this percentage can be determined
by carrying out the same measurement a couple of times and investigating the variation in the
responses.

These three effects can be incorporated in our net effect computation to acquire a single value
measurability of a signal. The limiting factors act as constraints to the computed area and the
remaining area is the measurable net effect, which we call the measurability and denote with
M. The constraints are shown in Figure 4.4, by limiting the net effect from Figure 4.3 into mea-
surability. The minimal time and the noise level appear as linear constraints. Signal noise is
visible as a continuous error percentage for both f1 and f2.

In our experiments we use the conditions given in Table 4.2 for these three constraints. The
smallest time resolution is set to 4 microseconds. Modern systems such as the Towed Transient
Electromagnetic (tTEM) can record unbiased at such small times (Auken et al., 2019). The
noise level is derived from the literature values given in Section 2.3. Multiplying the level given
there by the dipole moment of our loop source, and dividing by µ0 to go from the b field to
the h field yields the noise level we use. In a recent underwater TDEM study the signal noise
was on average 3% and was less than 20% for all experiments (Saville, Bancroft, Bell, Odlum, &
Steinhurst, 2018). We assume the signal noise on any signal to be 10%.

Table 4.2: Constraints applied to go from net effect to measurability.

Constraint Mathematical representation Reference

Time resolution t > 4 µs Auken et al., 2019
Noise level |dh/dt| > 0.625 pA/m Constable, 2010
Signal noise f ± 10% Saville et al., 2018
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Figure 4.4: Measurable area between two curves on a given time interval (the measurability).

4.4 Sensitivity of model parameters

For every ordnance piece in the marine environment, we can identify some key parameters.
Those are: the burial depth, the size, the wall thickness, and the wall’s electrical conductivity.
Out of the parameters in Table 4.1 these are the ones that vary for every other UXO piece. In
our research one of the goals is to determine how these parameters influence the measurability
of a signal. Therefore we conduct two sensitivity studies on these parameters. We carry out
the first sensitivity analysis using a one-at-a-time approach. We choose standard values, vary a
parameter while keeping the rest fixed, and derive the relationship of that parameter with the
measurability. This approach is further explained in Section 4.4.1. For the second sensitivity
analysis, we take a more statistical approach. We model each parameter with a distribution,
and carry out forward simulations with certain points from this distribution. These simulations
yieldmeasurability values, whichwe use to compare the sensitivity of the parameters with each
other. This approach is further explained in Section 4.4.2.

4.4.1 One-at-a-time

In the one-at-a-time sensitivity analysis we analyse every single parameter at a time. After we
established the default parameter values and the parameters to analyse, our workflow for each
parameter is as follows:

1. Compute the TEM response for the marine model without target: the background re-
sponse.
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2. Compute TEM responses for each value the parameter can take.
3. For each simulation, compute the measurability.
4. Analyse the relationship between the measurability and the parameter values.

Ourmarinemodel, defined in Section 4.1 comeswithwide set of parameters (Table 4.1). For our
research, which is focused on the target side of the model, we individually investigate param-
eters which define the target’s geometry. These are the depth of the target below the seafloor,
the size of the target, and the wall thickness. We take standard values for every parameter
in our model, which are given in Table 4.3 and vary one parameter at a time in the following
experiments:

• Depth: we investigate targets from lying on the seafloor, to half submerged targets, to
buried targets up to five metres depth.

• Size: the size is defined by three parameters in our marine model, the length, width, and
height of the target. To find out the general relation between the size and the response
we define a characteristic size Sc which the three parameters depend on. We vary the
characteristic size from 0.4 to 0.15 metres. The width and height equal the characteristic
size, and the length equals four times the characteristic size.
To find out if the horizontal area or the volume of a target is the main influence to the re-
sponse we additionally carry out the following two size experiments, startingwith exactly
the same target with initial dimensions L = 0.1 m,W = 0.1 m, and H = 0.16 m:

– Increasing the horizontal area while the volume stays constant by increasing the
length while decreasing the height.

– Increasing the volume while the horizontal area stays constant by increasing the
height, while the length and width stay constant.

• Wall thickness: we investigate wall thicknesses from 0.01 to 0.05 metres.
For every parameter value in the experiments, we compute the response. Then, we compare
each signal with the background signal, and from that we calculate the measurability. With
the measurability we are able to analyse each parameter and determine its relationship with
the measurability. We quantify the relationship by fitting a polynomial, which is computed
iterative by minimising the error between the fitted points p (xj) and the given points yj :

min E =
k∑
j=0
|p (xj)− yj |2 . (4.8)

To quantify our final fit one might use the Root Mean Square Error (RMSE), with the fitted
values being denoted by ŷi = p (xj):

RMSE =

√∑N
i (ŷi − yi)2

N
. (4.9)

32



CHAPTER 4. SENSITIVITY ANALYSIS

Table 4.3: Marine model parameters with default values for one-at-a-time simulations.

Symbol Description Value Unit

σair Air conductivity 10−8 S/m
σsea Sea conductivity 3 S/m
σsoil Soil conductivity 1 S/m
σwall Target wall conductivity 107 S/m
σinterior Target interior conductivity 10−3 S/m
dsrc Depth from sea level to source 49 m
dseafloor Depth from sea level to seafloor 50 m
dtarget Depth from seafloor to target 2 m
L Length of target (x directed) 0.4 m
W Width of target (y directed) 0.1 m
H Height of target (z directed) 0.1 m
∆xwall Wall thickness 0.01 m

For measurabilities that are changing orders of magnitude, the RMSE can become too sensitive
to the extreme values. In this case it is better to use a normalised version. To make it more
useful, we use the Normalised Root Mean Square Error (NRMSE):

NRMSE =

√√√√∑N
i (ŷi − yi)2∑N
i (yi)2

. (4.10)

4.4.2 Statistical approach

In our statistical approach we want to compare the sensitivities of different parameters with
each other. Just as in the one-at-a-time approach, we use the parameters on the target side of
the model. We use the burial depth, the size, wall thickness, and wall conductivity. The size
will be determined by the characteristic size Sc. This is defined identically to the one-at-a-time-
approach (Sc = W = H, 4Sc = L). All other parameters are set to the default values, see
Table 4.3. Our workflow in this approach is as follows:

1. Use a Probability Density Function (PDF) for each of the parameters. When carried out
in practice, this step ideally should be done by conducting a site investigation. The site
investigation will lead to distributions of the parameter that can be used for the rest of the
steps in our statistical approach.

2. Compute the 10th, the 50th, and the 90th percentile of this PDF using the quantile function
to get P10, P50, and P90.

3. Set all parameters to P50 and compute the TEM response for this setting. This setting is
called the base case.

4. For each parameter carry out another two simulations. One using the P10 value, and the
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other using the P90 value. All other parameters are kept to the P50 for both simulations.
These simulations are the low and high outcomes for each parameter.

5. Compare the low and high values by plotting them in a tornado chart.

Probability distribution functions

The PDF from probability theory helps us to classify the values these parameters can take. The
value of this function at a certain point in the sample space of a parameter can be interpreted
as the relative likelihood that the parameter equals this point in sample space. To create an
appropriate distribution for each parameter we used different PDFs. The different ones are
given with their formula, relevant parameters, and a short explanation below.
In this section all distributions are noted as a function p(x; ...), where x can be any value of the
variable distributed. The other defining parameters of the distribution are given after the semi-
colon in the function definition. The symbols used for the other defining parameters may con-
flict with other symbols used in this thesis or even in other distributions given in this section. To
avoid confusion, the defining parameters are explained before each distribution is given.
Themost commonly used distribution is the normal distribution. This bell shaped peak, defined
by the mean µ and standard deviation σ is given by:

p(x;σ, µ) = 1
σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]
. (4.11)

For a parameter that varies many orders of magnitude, the log-normal distribution can make
more sense. This distribution will on a logarithmic scale look like a normal distribution on a
linear scale. The distribution is defined by the medianm and standard deviation σ and is given
by:

p(x;σ,m) = 1
xσ
√

2π
exp

[
−(log(x/m))2

2σ2

]
. (4.12)

The normal distribution is continuous for all real values of x. If we have prior knowledge about
the variable and know that it only has non-negative real values, a Rayleigh distribution works
better. The Rayleigh distribution is only continuous for positive real values. It is defined by the
scale factor σ and is given by:

p(x;σ) = x

σ2 exp
[
−x2/

(
2σ2

)]
, x ≥ 0. (4.13)

Another distribution that is only continuous for positive real values is the chi-square distribu-
tion. It is defined by the degree of freedom k and the function is given by:

p(x; k) =


x

k
2−1e−

x
2

2
k
2 Γ
(
k
2

) , x > 0

0, otherwise,
(4.14)

in which the Gamma function is defined as: Γ(n) = (n− 1)!.
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Pairing functions with model parameters

In Table 4.4 the distributions we used for the model parameters are given, along with the rele-
vant parameter settings of that particular distribution function. A plot of the probability distri-
bution for the model parameters is given in Appendix E.

Table 4.4: Distribution functions for the investigated model parameters.

Parameter Symbol Distribution Equation Function parameters

Wall conductivity σwall Log-normal Equation 4.12 m = 107, σ = 1.7
Characteristic size Sc Rayleigh Equation 4.13 σ = 0.11
Wall thickness ∆xwall Rayleigh Equation 4.13 σ = 0.019
Target’s depth dtarget Chi-squared Equation 4.14 k = 2

Distributions to points

For each variable we can convert the PDF to a Cumulative Distribution Function (CDF) by inte-
grating it. From theCDFwe compute its inverse, the quantile function (also called percent-point
function). We use the quantile function to determine the P10, P50, and P90. Visually the P10,
P50, and P90 can already be determined from the CDF by picking the parameter value corre-
sponding to a CDF of 10%, 50%, and 90%. See the example in Figure 4.5 where the P50 is deter-
mined from a CDF corresponding to a normal distribution (Equation 4.11) as PDF. Applying
this to the functions defined in Table 4.4 yields the P10, P50, and P90 values in Table 4.5.

Figure 4.5: Example of determining the P50 from a CDF.
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Table 4.5: P10, P50, and P90 values for the investigated model parameters.

Parameter Symbol P10 P50 P90 Unit

Wall conductivity σwall 62373 549540 4841723 S/m
Characteristic size Sc 0.05∗ 0.13∗ 0 24∗ m
Wall thickness ∆xwall 0.01∗ 0.02∗ 0.03∗ m
Target’s depth dtarget 0.2∗ 1.4∗ 4.5∗ m
† These values are rounded

4.5 Characterisation experiment

Once a measurable signal is measured, it still has to be determined what actually is measured.
This is where a classifier comes in play. The classifier determines whether the signal corre-
sponds to a target of interest, such as UXO, or a target not of interest, for example some scrap,
and handles the characterisation of the signal. The actual classifier is out of scope of our re-
search, but to find out what the influence of a metal piece not of interest on the response is, we
conduct a characterisation experiment. In our marine model, we add an additional object. This
object is modelled as a metal plate with dimensions L = 0.1 m,W = 0.1 m, and H = 0.01 m. It
is placed directly on the seafloor.

4.6 Overview of experiments

To summarise, here we give an overview of all experiments conducted.
• One-at-a-time approach

– Burial depth
– Target size

∗ Characteristic size
∗ Area versus volume

– Wall thickness
• Statistical approach for relative significance
• Characterisation experiment
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5 | Results and discussion

In this chapter we show and discuss the results of our sensitivity analysis on TEM responses of
marine UXO. The methodology of this analysis is explained in Chapter 4. In this methodology,
two approaches have been discussed. The one-at-a-time approach, focused on the impact of
individual parameters to the UXO response, and the statistical approach, focused on the relative
significance of the impact of different parameters on the UXO response. We first give the results
of the one-at-a-time approach in Section 5.1 and the results of the statistical approach follow in
Section 5.2. Then, we show the results of our characterisation experiment in Section 5.3. Finally,
we discuss the results in Section 5.4.

5.1 Individual parameters

In our marine model, the parameters defining the target are its depth below the seafloor, its
size, and the wall thickness. In Section 4.4.1 we defined simulation experiments that can be
quantified with the net effect and measurability. The net effect and measurability were defined
in Section 4.3. For the depth and wall thickness we conducted a single experiment, for the size
we used two approaches. In this section we discuss the results of all conducted experiments
on single parameter influence. For the first parameter to be discussed, the depth, we show all
relevant figures here. For the other parameter experiments, we only show the final figures here.
Additional result figures can be found in Appendix C.

5.1.1 Depth

The computed signals in our one-at-a-time depth experiment are plotted in Figure 5.1 together
with the background response. The darker red a signal is in this plot, the closer to the seafloor
the target is. Consequently, the signals closer to the seafloor have larger amplitudes and are
visible for a longer time. This is made more clear in Figure 5.2, where the computed signals
are divided by the background response to yield the signal to background ratio for each signal.
Again, the more red curves are closer to the seafloor. Here it is visible that targets closer to the
seafloor produce more signal which is visible at earlier times.
For every computed signal, we computed the net effect andmeasurability. The computed values
for each depth are plotted against the signal magnitude areas of the net effect and the measur-
able net effect, see Figure 5.3. The depth of burial was defined by the top of the target and
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therefore two depth values below zero can be observed in the graph. These correspond to a half
submerged and half exposed target and a target lying on top of the seafloor. The measurability
curve of the burial depth is used to determine a fit, which is shown as a black line in the chart
and is given by:

N = 2.386× 10−3

(dtarget + 1.529)7.751 (5.1)

The equation for the fitted curve shows that the net effect decreases between the 7th and 8th
power for burial depth in metres. The measurability curve in Figure 5.1 becomes a vertical line
after a depth of burial of 2 metres. This means that after two metres the value goes to zero and
therefore a target of 0.1 by 0.1 by 0.4metres atmore than 2metres burial depth is notmeasurable
under the assumptions we took in Section 4.3.

Figure 5.1: Signals computed in one-at-a-time depth of burial analysis.

38



CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.2: Signal to background ratio over time in one-at-a-time depth of burial analysis.

Figure 5.3: Net effect with fit and measurability points for depth of burial experiment.
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5.1.2 Size

To analyse the influence of the size of a target on the net effect and measurability we conducted
two experiments. The first being the characteristic size experiment, where we compute the re-
sponse for different characteristic size, which causes change in all three dimensions of the target.
The second being the area versus volume experiment, where we start with the same object and
generate two curves. One for constant volume and increasing horizontal area, the other for con-
stant horizontal area and increasing volume. We show the results of both experiments in this
section.

Characteristic size

In our characteristic size experiments, we compare targets of different sizes at twometres below
the seafloor. The size is scaled in all three dimensions of the target and is determined by the
characteristic size. The width and height of the target are equal to the characteristic size and
the length equals four time the characteristic size. Alike the size experiment, a computed signal
chart and a signal to background ratio chart were generated for the characteristic size experi-
ment. They can be found in Appendix C. Here, we show the net effect andmeasurability curves
for characteristic size in Figure 5.4. The net effect is fitted with a polynomial that is given by:

N = (1.024× 10−4)S3
c + (1.862× 10−5)S2

c + (4.794× 10−7)Sc − 4.978× 10−8 (5.2)

The measurability curve goes to zero for characteristic sizes smaller than 0.1 metres. Conse-
quently, targets smaller than 0.1 by 0.1 by 0.4 metres at two metres burial depth are no longer
measurable under the assumptions made in Section 4.3. This is exactly the same observation
that we made in the depth of burial experiment.

Area versus volume

Our second experiment regarding the size of the target is the area versus volume experiment.
Here we try to find out what determines the response more, the horizontal area or the volume
of a target. Starting with exactly the same target, we computed two sets of responses. One
with a constant volume and a changing area, and the other with a constant area and changing
volume. For both of these sets we computed the net effect, which is shown in Figure 5.5. In this
figure, the x-axis denotes the multiplier of the starting target. Going from 1 to 2 means the area
is doubled for the constant volume curve (in blue) and means the volume is doubled for the
constant area curve (in red). Both curves are fitted with a polynomial. The polynomial fitting
the area of the target (Atarget) to the net effect (N ) is given by:

N = (7.696× 10−11)A3
target − (1.897× 10−9)A2

target + (3.02× 10−8)Atarget + 1.227× 10−8. (5.3)

The polynomial fitting the volume of the target (Vtarget) to the net effect (A) is given by:

N = (2.573× 10−10)V 3
target − (4.781× 10−9)V 2

target + (3.654× 10−8)Vtarget + 8.676× 10−9. (5.4)
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Figure 5.4: Net effect with fit and measurability points for characteristic size experiment.

Figure 5.5: Net effect with fitted polynomials for area versus volume experiment.
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5.1.3 Wall thickness

The third individual parameter we investigated is the wall thickness (∆xwall). We compute
the response for our standard target of 0.1 by 0.1 by 0.4 metres, at 2 metres below the seafloor
with a wall thickness ranging from 10 millimetre to 50 millimetres. From the responses and
the background response we again computed the net effect and the measurability under the
assumptions made in Section 4.3. The net effect and measurability are plotted against the wall
thickness in Figure 5.6. The net effect is fitted with a polynomial, which is given by:

N = −(1.863× 10−8)∆x2
wall + (1.732× 10−9)∆xwall + 2.996× 10−7. (5.5)

The net effect is visually not changing at all in this graph, but it is just slightly increasing for
larger thicknesses. The measurability shows a steep increase from a ten millimetre wall to a
twenty millimetre wall. This large effect is caused by a part of the signal that is just under the
signal noise level in the target with tenmillimetrewall thickness and above the signal noise level
in the target with twenty millimetre wall thickness. The response itself for ten millimetre wall
thickness does not look much different compared to the response for twenty millimetre wall
thickness (see Appendix C), just as the net effect describes. This steepness is more nuanced in
Figure C-7 in Appendix C by plotting the measurability against the ferrous volume instead of
the thickness. The polynomial fit that is used there for the net effect is given by:

N = (5.035× 10−7)V 2
ferrous + (7.449× 10−9)Vferrous + 2.996× 10−7. (5.6)

Figure 5.6: Net effect with fit and measurability for thickness experiment.
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5.2 Relative significance

To compare the effects that the different parameters have on the signal response we defined
a statistical approach in Section 4.4.2 to investigate the relative significance of the parameters.
The result of this complete analysis is given in the tornado chart, see Figure 5.7. In this chart the
different parameters are plotted against the net effect. The net effect is used, because that gives
insight into the exact relation of a parameter and the corresponding target response, whether it
is actually measurable or not. The middle line, the boundary between the red and blue bars, is
the net effect of the response if all parameters are set to their P50 value. For each parameter, the
left boundary of the bar corresponds to the net effect of the response with the parameter set to
its P10 value, and all other parameters at their P50 value. Likewise, the right boundary of each
bar corresponds to the net effect of the response with that parameter set to its P90 value and all
other parameters to its P50 value. In the chart, the parameters are sorted from the largest to the
lowest impact on the net effect.

Figure 5.7: Influence of P10 and P90 on the net effect for target parameters.

The tornado chart shows us that the depth and characteristic size have the largest impact on the
net effect for the parameter distributions used. The characteristic size also returns the smallest
net effect for its P10 value. This means that in the parameter ranges chosen, the characteristic
size is the most critical parameter. The values on the lower end of the characteristic size spec-
trum produce the least net effect and those targets will therefore be the hardest to detect. In
line with our findings from Section 5.1 the wall thickness does have much impact. Although
more thickness significantly increases the ferrous volume the target response stays almost the
same.
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5.3 Characterisation experiment

In our characterisation experiment we placed a metal scrap piece on the seafloor and a target
below the seafloor to see what the influence of the signal would be. The geometry of this ex-
periment is explained in Section 4.5. In this case, it makes most sense to look at the signal to
background ratios. The signal to background ratios for themodel with andwithout scrap piece,
and also for only the scrap piece are given in Figure 5.8. Their original signals can be found in
Appendix C in Figure C-8.

Figure 5.8: Signal to background ratio over time for the curves in the characterisation experi-
ment.

It is very hard to distinguish the response of scrap and the response of a UXO target. In our
simulations, where only the z component is recorded, the UXO and the scrap produce very
similar shaped responses although their geometry is different. It is possible to distinguish be-
tween a deeper and a lower target based on the time of their response, but then it still remains
a question what the object actually is. In Figure 5.8 the response of the scrap on the seafloor
is not noticeable anymore after 10 ms. The signal to background ratio of the simulated UXO
and scrap response is visually not different than the signal to background ratio of only the UXO
piece.
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5.4 Discussion

We showed the results for individual parameters, relative significance, and the characterisation
experiment. We discuss the outcomes of these three subjects in this section. Our main findings
for the individual parameter sensitivity analysis are:

• The total net effect decreases between the 7th and 8th power with increasing burial depth
in metres. We determined this power by fitting a function to the net effect values for the
investigated burial depths. This means the burial depth is a very sensitive parameter to
UXO detection, as deeper targets produce significantly less signal.

• The increase of net effect with specific size of a target can be approximated with a cubic
polynomial. The increase of net effect with target volume and the increase of net effect
with horizontal area of the target, can both also be approximated with cubic polynomials.

• The horizontal oriented area of the target is the most dominant size parameter, because
in the area versus volume experiment the curve corresponding to increasing area has a
steeper slope than the curve corresponding to increasing volume.

• A conductor of 0.1 by 0.1 by 0.4 metres or smaller, buried more than 2 metres under the
seafloor, with a wall thickness of 0.01 metre, is no longer measurable under our measur-
ability assumptions. This means that a same sized target, which is buried at two metres
depth or less, is measurable. We do not claim that there are no targets measurable at all
deeper than 2metres under the seafloor. Despite the fact that more burial depth decreases
the response between the 7th and 8th power, larger targets increase the response. Thus, tar-
gets larger than 0.1 by 0.1 by 0.4 metres can be measurable at more than 2 metres depth.
Further research is needed to determine the combined effects of depth and size of a target
on the net effect.

• Although a thicker target wall adds conductive volume to the target, it has no significant
impact on the response. This means the 0.01 metre wall thickness can already maintain
the eddy current. That the net effect is almost not increasing with more ferrous volume is
contradicting to the one-at-a-time size experiments, where extra volume does significantly
increase the response. This is the case, because in size experiments extra volume is added
bymaking the outer dimensions of the target larger, and in the thickness experiment extra
volume is added by making the wall thickness larger.

Our main findings for the relative significance experiment are:
• Frommost significant to least significant parameter: burial depth, characteristic size, wall

conductivity and wall thickness. This can be deducted from the tornado chart presented
in Figure 5.7 by the length of the bars.

• The result of this approach would be most useful when computed for real data, see the
paragraph on the next page called ’statistical approach’.

Our main findings for the characterisation experiment are:
• Metal scrap produces responses verymuch alikeUXO responses. More research is needed

to determine how these signals can be characterised, see the paragraph on the next page
called ’three dimensional receiver antennas’.
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Noise assumptions

Another point of discussion is also coupled to real life experiments. To determine which part of
the net effect could be accounted as measurability, we took assumptions about the noise based
on literature. When one would want to determine the relations between target parameters and
net effect of the response, such as we did, it would be best to determine these noise assumptions
in a practical experiment for the sensor that will be used.

Late time error

The main uncertainty of all our simulations lies in the error in the SimPEG simulations that
could not be overcome. In the software validation (Chapter 3) an inevitable error that would
increase with time was found. For the loop source this error was 14 percent or lower. This error
was visible in all signals and would therefore not corrupt the net effect computations imme-
diately. In the software validation we used a cylindrical mesh and could therefore discretise
the problem finer with less cells, compared to the three-dimensional mesh used for the simu-
lations defined in Chapter 4. In the simulations of our sensitivity analysis this same error was
present. This adds an uncertainty to our results, although this is minimised by comparing the
differences between signals, because those signals have the same error. This could be overcome
by implementing a higher order time stepping scheme in SimPEG, which currently uses a first
order backward Euler scheme.

Computational cost

Wehave determined relations between target parameters in themarinemodel and the net effect.
These relations are valid for variation of one parameter and with standard values for other pa-
rameters. In order to determine a relation in which all the parameters would be included, more
simulations are needed to sample this multi-dimensional parameter space. In our approach this
would require much more computational cost.

Statistical approach

It is hard to deduce conclusions from the results of the statistical approach. The problem lies
in the parameter distributions. Although they are not unrealistic, they are arbitrary. Applying
this approach on a real site where an initial investigation already took place would make more
sense. The statistical approach would then lead to findings that would be of direct use.

Three dimensional receiver antennas

The characterisation experiment we carried out is very limited, but it does show us that charac-
terisation between a piece of scrap and aUXO can be very difficult. Tomake the characterisation
process less arbitrary, three component receivers should be added for more information. With
the three components polarisabilities of an object can be computed, which can be used to match
the signals to a UXO model, see for example Pasion and Oldenburg (2001).
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6 | Conclusion

The principal aim of this research was to determine under which conditions we can detect a
conductor on or below the seafloor using a time domain loop source. To answer this question
the responses of conductors under different conditions were modelled and analysed.
To model the TEM responses we used the Python package SimPEG. Before we would use it to
compute the marine TEM responses, we put the package to the test. We computed responses
with SimPEG that we compared with analytical equations from Ward and Hohmann (1988).
We found that we could model the derivative of the magnetic field from a loop source with an
error of 14 percent or lower. This is quite significant, but because the same error shows up in
all modelled signals, we settled with it.
Then, we introduced two quantities to compare multiple signals with each other, the net effect
and the measurability. The net effect we defined as the area between a signal, acquired on sens-
ing on a target, and the background response. This is an integration of all the signal added by a
target over the background response. In reality, this cannot be measured exactly and therefore
we came up with the measurability. The measurability we defined as the net effect area limited
by three constraints: the time resolution, the noise level, and the signal noise including effects
of the (moving) water. Based on literature and previous experiments we made assumptions
regarding these three constraints.
With our software tested and criteria to compare responses in place, we were ready to approach
the main problem of this thesis. We introduced a marine model with a conductor below the
seafloor and a source and receiver right above it. The conductor is a hollow cuboid with a
conducting wall and a resisting interior, a rectangular approximate of an UXO piece. Then, we
defined two approaches to investigate under which conditions we can detect a conductor on the
seafloor.
In the first approach, we focused on the influences on the net effect and measurability, when
changing a single parameter while keeping all the others constant. The parameters we investi-
gated using this approach were the burial depth, size, and wall thickness of the conductor. For
the other parameters we defined a standard situation and kept them in that setting. Our main
findings here were:

• The total net effect decreases between the 7th and 8th power with increasing burial depth
in metres.
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• The increase of net effect with specific size of a target can be approximated with a cubic
polynomial.

• The horizontal oriented area of the target is the most dominant size parameter.
• A conductor of 0.1 by 0.1 by 0.4 metres or smaller, buried more than 2 metres under the
seafloor is no longer measurable under our measurability assumptions.

• Although a thicker target wall adds conductive volume to the target, it has no significant
impact on the response.

In our second approach, we focused on the relative significance of the parameters: burial depth,
characteristic size, wall conductivity andwall thickness. We created value distributions for these
parameters and computed the responses for each parameter at their 10th and 90th percentile
and the other parameters at their median. From these computations we created a tornado chart
showing off the relative significance of these parameters. Our main findings were:

• Frommost significant to least significant parameter: burial depth, characteristic size, wall
conductivity and wall thickness.

• The result of this approach would be most useful when computed for real data.
The two approaches together showed us that time domain electromagnetic loop sources can be
used to detect conductors on the seafloor, but their responses become too small to measure for
objects smaller than 0.1 by 0.1 by 0.4 metres at more than 2 metres below the seafloor.
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Appendix A

EM equation derivations

We start with Faraday’s law (Equation 2.3) and Ampère’s law with Maxwell’s addition (Equa-
tion 2.4):

∇× e + ∂b
∂t

= −jm, (A-1)

−∇× h + ∂d
∂t

+ j = −je. (A-2)

If we assume the physical properties are homogeneous throughout the domain and substitute
the constitutive relations b = µh, d = εe, and j = σe we obtain:

∇× e + µ
∂h
∂t

= −jm, (A-3)

−∇× h + ε
∂e
∂t

+ σe = −je. (A-4)

Under the diffusive approximation the term with ε vanishes and we end up with:

∇× e + µ
∂h
∂t

= −jm, (A-5)
−∇× h + σe = −je. (A-6)

From these two equations we can isolate ∂h
∂t and e as follows:

∂h
∂t

= −µ−1jm − µ−1∇× e, (A-7)
e = σ−1∇× h− σ−1je. (A-8)

To substitute these expressions, we first have to take the time derivative of Equation A-6, which
yields:

−∇× ∂h
∂t

+ σ
∂e
∂t

= −∂je

∂t
. (A-9)
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Now we can fill in the isolated expressions for e and ∂h
∂t into respectively Equation A-5 and

Equation A-9, and move the source terms to the right hand side to end up with the final expres-
sions:

∇× µ−1∇× e + σ
∂e
∂t

= −∇× µ−1jm − ∂je

∂t
, (A-10)

∇× σ−1∇× h + µ
∂h
∂t

= ∇× σ−1je − jm. (A-11)
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Mesh characteristics

Table B-1: Mesh characteristics for simulated problems

Problem Mesh
type

No. of
core cells

Core
cell size

No. of
padding cells

Expansion
factor

Total no.
of cells

Dipole Cylindrical 150 1 60 1.3
Loop Cylindrical 40 3 30 1.3
Receiver array Cylindrical 600 3 100 1.2
Object rotation Tensor 31 (x,y)

30 (z)
0.1 (x,y)
0.1 (z) 17 1.9 270.400
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Appendix C

Additional figures

In this appendix additional figures of the following experiments can be found:
• Empymod versus analytics
• Characteristic size experiment
• Thickness experiment
• Characterisation experiment
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Empymod versus analytics

(a) Dipole source and point receiver. (b) Loop source and point receiver.

Figure C-1: Empymod results compared with analytic solutions. Both are absolute values.

(a) Dipole source and point receiver. (b) Loop source and point receiver.

Figure C-2: Percent errors between empymod simulations and analytical solutions.
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Characteristic size experiment

Figure C-3: Signals computed in one-at-a-time size analysis.

Figure C-4: Signal to background ratio over time in one-at-a-time size analysis.
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Thickness experiment

Figure C-5: Signals computed in one-at-a-time thickness analysis.

Figure C-6: Signal to background ratio over time in one-at-a-time thickness analysis.
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Figure C-7: Net effect with fit and measurability for thickness experiment.
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Characterisation experiment

Figure C-8: Computed signals in the characterisation experiment.
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Appendix D

Rotation experiment

In this experiment we review a land based setting with a conducting object located in the sub-
surface. We consider the most common acquisition setup, the loop. We combine this with a
point receiver at the centre of the loop. A common example of a TDEM loop-loop system is the
EM61-MK2A. This is a wheel cart consisting of two coaxial rectangular coils. One being the EM
source and the main coincident EM receiver, and the other being the secondary EM receiver,
which is used for focusing. The system measures four user-specified time gates (“EM61MK2
Operating Instructions”, 2011). The setup we use in this chapter behaves similarly to the EM61-
MK2A.

Land model

The model we use in this section is a simplified earth. This simplified earth is built in a three-
dimensional Cartesian coordinate system with the positive z axis pointing downwards. It is
built from two semi-infinite half-spaces interfacing at z = 0. The bottom (z > 0) semi-
infinite half-space is homogeneous and isotropic soil. On top of this is another semi-infinite
half-space of air, which is also homogeneous and isotropic. As a consequence, the electrical
resistivity in both half-spaces is uniform. In addition there is a rectangular box located at
(x, y, z) = (0, 0, dbox). This box has a length L of three metres, a width W and height H of
fifty centimetres, has its own resistivity value ρbox, and its own permeability value µbox. The
box can be interpreted as a simplification of an UXO piece.

The box can be rotated about axis z, y, and xwith anglesα, β, and γ. These angles are Tait-Bryan
angles and the rotation is intrinsic. In aviation, α, β, and γ are known as yaw, pitch and roll.
Rotation of the box vertices is computedwith Equation D-1. In this equation x′, y′, and z′ are the
rotated x, y, and z coordinates of the vertices. The rotation matrix R is given in Equation D-2
(Diebel, 2006). x

′

y′

z′

 = R(α, β, γ) ∗

xy
z

 . (D-1)
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dbox

z

x

(0, 0)

box

ρair

ρsoil

Figure D-1: The half-space earth of the land problem. ρair and ρsoil are the air resistivity and
the soils resistivity, respectively.

R = Rz(α)Ry(β)Rx(γ) =

 cosα − sinα 0
sinα cosα 0

0 0 1


 cosβ 0 sin β

0 1 0
− sin β 0 cosβ


 1 0 0

0 cos γ − sin γ
0 sin γ cos γ


R =

 cosα cosβ cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ
sinα cosβ sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ
− sin β cosβ sin γ cosβ cos γ

 .
(D-2)

Simulation setup

On the model described in the previous section, we use a standard 1 metre radius horizontal
loop source with its centre at (x, y, z) = (0, 0, 0). The receiver is modelled as a point at (x, y, z) =
(0, 0, 0) and measures the the dhz/dt signal, which would be normally measured by a receiver
loop. Four different tests are modelled. One where the brick is aligned with the numerical
spatial grid, and three where the brick is rotated and not aligned with the numerical spatial
grid. In Table D-1 the changing parameters for the tests are given. What changes in these tests
are the rotations yaw and pitch of the object. The yaw is defined as the rotation around the z axis
and the pitch is defined as the rotation around the y axis. In Table D-2 the standard parameter
values used by all tests.
In comparison to the experiments in the previous chapter, the geometry of this setup is more
difficult. It no longer has cylindrical symmetry. Thus, the spatial discretisation in SimPEG
requires the use of the three-dimensional tensormesh. The three-dimensional tensor mesh uses
quite a lot of cells more than the cylindrical mesh used in the previous chapter and therefore is
computationallymore expensive. If onewants to discretise a three-dimensional ten by ten by ten
homogeneousmodel into one by one by one cells, the full three-dimensional tensormeshwould
need 1.000 cells, where as the cylindrical mesh would only need 50 cells. The mesh properties
we used for this particular simulation can be found in Table B-1 in Appendix B.
The smallest cells used in the mesh were of size 0.1 metre in all three directions (i.e. a ten
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Table D-1: Rotational impact tests.

Test # Yaw (α) Pitch (β) Box volume

1 0 ◦ 0 ◦ 0.7250 (m3)
2 15 ◦ 15 ◦ 0.7402 (m3)
3 30 ◦ 30 ◦ 0.7574 (m3)
4 45 ◦ 45 ◦ 0.7248 (m3)
5 15 ◦ 0 ◦ 0.7350 (m3)
6 30 ◦ 0 ◦ 0.7500 (m3)
7 45 ◦ 0 ◦ 0.7550 (m3)

Table D-2: Standard parameter values ro-
tational tests.

Parameter Symbol Value Unit

Air resistivity ρair 108 Ω m
Soil resistivity ρsoil 10 Ω m
Box resistivity ρbox 10−5 Ω m
Box depth dbox 2.25 m
Box length L 3 m
Box width W 0.5 m
Box height H 0.5 m

centimetre cube). In the objects initial rotation (α = β = 0) the object is aligned with the
mesh cells in the smallest part of the mesh. As the rotational parameters change the spatial
discretisation of the object can no longer be perfect. Due to the rectangularmesh cells, the object
will not have smooth edges, but the object will have aliased edges. Therefore the discretised
volume might also not be the same for rotated objects. In fact, for higher rotational angles, the
aliasing objects becomes more aliased and error in the discretised volume greater. The actual
discretised volumes for each test can be found in the last column of Table D-1.

Results

For each of the tests with two rotations (test 2-4) the simulated data is visualised in Figure D-2a
together with the background signal and the signal of the non-rotated object (test 1). The tests
with only yaw rotations are given in FigureD-2b, alsowith the background signal and the signal
of the non-rotated object. For both figures the background signal is given twice, one simulated
solution and one semi-analytical solution computed with empymod. Just as in the previous
chapter, there is an error in the results simulated with SimPEG. It appears as a small time shift
in the graph between the two background signals. This error is the same for all simulations and
therefore the comparison between the different simulations is still of value.
What we conclude from the figure, is that the signal becomes stronger for more pitch rotation
and arrives earlier. The rotation experiments with only yaw rotation show for the eye all the
same curve. All signals follow the same shaped curve as the non-rotated signal and start and
end perfectly on the with SimPEG simulated background signal. There is no drastic change
when increasing the rotational parameters, the behaviour of the curve is similar, only the signal
strength is greater when the pitch is increased. When only the yaw is increased, the signals are
almost identical. For every test we computed the detectable area between the object signal and
the background signal with Equation 4.7. The results of these computations are given, along
with a linear fit in Figure D-3.
The increase in rotation causes the object to be partly closer to the source and receiver combina-
tion and partly further away. As the strength of the magnetic field excited by the object decays
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(a) Yaw and pitch rotations (b) Only yaw rotations

Figure D-2: Responses for rotated objects

Figure D-3: Detectable area behind rotational experiments with linear fit lines. In red: only yaw
rotations. In blue: yaw and pitch rotations.
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rapidly with distance, a partly closer and partly further away object results in a higher signal
strength, because the closer part of the objectweighsmore. For our further simulationswemake
the assumption that rotations of the object are no sensitive parameters to our simulations. The
objects depth or conductivity will have a much greater effect on the measured signal. Thus, we
can keep objects perfectly aligned with the mesh cells and do not have to take care of aliasing of
the object in the spatial discretisation. A small side note to this assumption is the fact that we
can still rotate the object with 90 degrees or multiples of 90 for all three rotation angles. These
rotations will keep the object aligned with the mesh.
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Appendix E

Parameter distributions

Figure E-1: Probability density function for the target’s depth.

Figure E-2: Probability density function for the target’s characteristic size.
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Figure E-3: Probability density function for the target’s conductivity.

Figure E-4: Probability density function for the target’s wall thickness.

Figure E-5: Probability density function for the soil conductivity.
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