
From thermal comfort to heat
mitigation action

A reproducable QGIS plugin for calculating the
physiological equivalent temperature in Dutch cities

Marieke van Esch

MSc Thesis Geomatics 2024

From thermal comfort to heat mitigation
action

A reproducable QGIS plugin for calculating the
physiological equivalent temperature in Dutch cities

by

Marieke van Esch

to obtain the degree of Master of Science of Geomatics and Urbanism
at the Delft University of Technology,

to be defended publicly on Wednesday April 17, 2024 at 12:45 PM.

Student number: 4545508
Project duration: February, 2023 – April 17, 2024
Thesis committee: Ir. E. Verbree, TU Delft, 1st supervisor

Dr.Ir. S. van der Spek, TU Delft, 2nd supervisor
Dr.Ir. S. Koopmans, Wageningen University, co-reader
Dr.Ir. S. Khademi, Building Technology Department External Comitee

An electronic version of this thesis is available at http://repository.tudelft.nl/. This work is licensed
under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/ The plugin developed is viewed on
https://github.com/mariekeve/petplugin and also has a Creative Commons Attribution 4.0

International License. Contact with the creator of the github can be reached through email in the github link.

http://repository.tudelft.nl/
http://creativecommons.org/licenses/by/4.0/

Abstract

In the summer of 2023 heatwaves became quite prominent in the south of Europe. The Netherlands Meteo-
rological Institute predicts that heat waves will increase from 26 to a maximum of 47 days by 2050, affecting
also the Netherlands in the future. The main research question was how to propose a strategy for a liveable
environment by designing public spaces while mitigating heat stress for vulnerable target groups in the con-
text of Bospolder Tussendijken in Rotterdam, the Netherlands. This research questions how a reproducible
tool could help identify heat stress and test design interventions in Dutch cities. The research included a
literature review, expert consultations, scenario planning, modeling of the urban environment and mapping
techniques. The research compares heat stress models as a context. By comparing the heat stress software
main points like reproducability guidelines, computation time, design interventions, scale of modeling were
important. Improvements are made on the reproducability and an open accessible QGIS plugin is developed
for urban designers to indicate and test their design interventions. Refinement of the wind calculation con-
tributed to speed up times for calculating the wind speed over large areas. Multiple applications are possible
to these results. Future research should focus on the some refinement in PET calibration to work properly and
advanced wind modeling is required for urban design practices. The research emphasized the importance of
identifying heat stress in public spaces and the need for urgent action to maintain the quality of life in the fu-
ture. Ultimately, the research concluded that urban planning should priorities the network of interventions
to be durable and readable for citizens to function in the urban environment, whilst not being the option to
maximize heat mitigation.

Keywords: Physiological Equivalent Temperature, Thermal Accessibility, Liveability, heat mitigation

iii

Acknowledgments

I would like to thank my supervisors Edward Verbree, Stefan van der Spek and Marjolein van Esch. Also the
external supervisors Sytse Koopmans and Gert-Jan Steeneveld from Wageningen University. I would also like
to thank external parties such as Niels van der Vaart for providing the links to Rotterdam. Martijn Meijers for
his time in showing me how to use the API’s of KNMI. Merel Scheltema as urban designer of the municipality
of Rotterdam for sharing her knowledge about the Rotterdam heat plan and Andre de Wit as mobility expert of
the municipality of Rotterdam. Laurens Versluis for sharing his knowledge about Witteveen and Bos. Most of
all, I would like to thank my family for supporting me throughout the whole graduation year, also the graduate
group I studied with. I would also like to thank Diego Sieglevulda for his guidance during the first quarter of
the Master’s orientation process.

v

Preface

The past summer has shown signs of changing climate variability. In Spain, people are already feeling the ef-
fects of heat at the beginning of spring, according to The Guardian [Guardian, 2023]. Due to carbon emissions
over the past decades, the heat will continue to linger in the atmosphere. The government has warned people
to take precautions due to drought and temperatures 7-11 degrees Celsius above the average for this time of
year. They have also highlighted behavioral thermoregulation strategies to cope with the heat [Millyard et al.,
2020]. If emissions continue at the current rate, heat events are likely to occur more frequently in the future,
affecting not only the southern part of Europe but also other regions. It is important to take action in the built
environment to address climate change, which requires a new approach to how we design our surroundings.
Speculative design is necessary to sketch future scenarios with different stakeholders by creating scenarios
and testing them to develop comprehensive designs [Dunne and Raby, 2013]. Climate modeling requires
consideration of the complexity of meteorological and physical factors. The synergy of the social aspect of
public space usage is a key driver for adapting to climate adaptation in the built environment. This report is
part of the joint degree between the studies Geomatics and Urbanism, in which Geomatics form strategies for
urban development. The title of the Geomatics report is: “From thermal comfort to heat mitigation action:
Informed Strategies for Mitigating PET Heat Stress in Public Spaces for Vulnerable Groups – A Rotterdam Case
Study”.

vii

Contents

Abstract iii

Acknowledgments v

Preface vii

1 Introduction 7
1.1 Health at risk . 7
1.2 Heat mitigation research and action in the Netherlands . 8
1.3 Research gap . 10
1.4 Research aim . 10
1.5 Academic Value of the Research. 10
1.6 Social Relevance of the Research . 10
1.7 Research questions . 10
1.8 Structure of the report . 11

2 Thermal comfort models 13
2.1 Positioning heat stress models . 13
2.2 Conclusions. 15

3 Thermal comfort software 17
3.1 Requirements . 17
3.2 Thermal comfort software models . 21
3.3 Conclusion . 22

4 Physiological Equivalent Temperature (PET) model 25
4.1 Physical model . 25
4.2 Reproducability paper code guidelines Koopmans et al. [2020] 27

5 PETs simulator 33
5.1 Computational workflow . 33
5.2 PET simulator . 44
5.3 User interface . 45

6 Physiological Equivalent Temperature veri�cation 51
6.1 Wind direction . 51
6.2 Block size . 53
6.3 Block size comparison 1000x1000 research area. 55
6.4 Frontal area . 56
6.5 Scalability . 59
6.6 Calibration of the code . 61

7 Physiological Equivalent Temperature application 63
7.1 PET calculation . 64
7.2 Applications . 71
7.3 Testing the design interventions . 74

8 PETs evaluation 83
8.1 Reproducability . 83
8.2 Assessment reproducability. 85

9 Discussions and limitations 87
9.1 Discussion . 87
9.2 Limitations . 87

ix

x Contents

10 Conclusions 89
10.1 Sub research questions answered . 89
10.2 Conclusion . 90
10.3 Additional Points of Growth from this Research . 91
10.4 Conclusion joint degree . 91

11 Future research 93
11.1 Points of improvement . 93
11.2 Transferability of the Research . 95

A Symbols 101

B Python code 103
B.1 python/pet_parameters.py . 104
B.2 python/geotiff_creator.py . 106
B.3 python/pysolar1.py . 108
B.4 python/get_svf.py. 112
B.5 python/fraction_area_buildings_treeregr.py . 113
B.6 python/ndvi_infr_large.py . 119
B.7 python/vegetation_footprints.py . 121
B.8 python/skyview_footprints.py . 122
B.9 python/urban_heat.py . 123
B.10 python/pet_calculate.py . 124
B.11 python/pet_simulator.py . 126

C Users manual 143
C.1 Creation knmi files . 147

D Extended research area eastern wind Wageningen 149

E Extended research area eastern wind Rotterdam 157

F Diurnal table 165

G Additional concept �gures 167

H Original python code 169
H.1 sytse/fraction_area_buildings_treeregr.py . 169
H.2 sytse/ndvi_infr_large.py. 179
H.3 sytse/vegetation_footprints.py . 181
H.4 sytse/skyview_footprints.py. 184
H.5 sytse/pet_calculate.py . 186

I MSE wind old 193

J Dates 2023 Rotterdam 195

K Walkability analysis 199

List of Figures

1.1 KNMI climate scenario’s and predictability of amount of warm days and summer days adapted
from [KNMI, 0000] [CAS, 2020] . 7

1.2 Stakeholder diagram. Adapted from [Hofman, 2022] . 8
1.3 Stakeholder power interest matrix. Adapted from [Hofman, 2022] 9
1.4 Placement of this research within the field of knowledge and action. Put in the framework of

Deltaprogramme [Programme, 2018] . 9
1.5 Flowchart proposed in the Urbanism part. 12

2.1 Overview thermal models . 15

3.1 Reproducability guidelines . 18
3.2 Reproducability checklist according to [Framework, 2022] . 19
3.3 Wind modeling roughness layer retrieved [Cochran and Derickson, 2005] figure 4 20
3.4 Schematic representation of 3d wind flow pattern around a high-rise building retrieved from

Urban Physics: Effect of the micro-climate on comfort, health and energy demand by [Moonen
et al., 2012] . 21

4.1 Simplified flowchart as published in [Koopmans et al., 2020] . 25
4.2 Evaluated flowchart considered the code provided by [Koopmans et al., 2020] 28
4.3 Legend flowchart . 29

5.1 Flowchart refactored. 35
5.2 Legend flowchart refactored . 36
5.3 Research area 1000x1000 m white (output), extended research area 1500x2100 m black (input),

and base map RGB 4000x4000 m (data). 36
5.4 Wind averaging footprint from roughness layer to 1.2m wind speed factors field. 37
5.5 Vegetation fraction and sky view factor averaging footprint for determining the UHI max de-

pending on the wind direction. 37
5.6 Wind direction for the research area of 100x100m. 38
5.7 Output files on research area. 40
5.8 Intermediate output files on research area. 41
5.9 Scaled vegetation fraction wind. 42
5.10 Scaled sky view fraction wind. 42
5.11 Urban heat. 43
5.12 PET. 44
5.13 Qgis plugin screen PET Simulator plugin. 46
5.14 Weather stations Netherlands retrieved from. 47
5.15 T atmospheric temperature for Rotterdam in the months june till september 2023 (Data re-

trieved from KNMI [0000] postprocessed by author . 48

6.1 Different wind directions files on research area 100x100m . 52
6.2 Research area 100 x 100 m, eastern wind. 53
6.3 Trendline time data block size 5m . 54
6.4 Research area 1000 x 1000 m, eastern wind. 55
6.5 Sensitivity analyses frontal density factor buildings. 57
6.6 Sensitivity analyses frontal density factor trees. 58
6.7 Percentage time . 59
6.8 Elapsed time (s) . 59
6.9 Trendline time data block size 1m . 60

1

2 List of Figures

6.10 Trendline time data block size 5m . 61
6.11 Trendline time data block size 2m . 61
6.12 Calibrated frontal density factor trees. 61
6.13 Outcome Sytse Koopmans . 62

7.1 Location of Bospolder Tussendijken in Rotterdam . 63
7.2 Fig. T atmospheric temperature for Rotterdam in the months june till september 2015 (Data

retrieved from KNMI [0000] post-processed by author) . 64
7.3 Different wind directions files on research area Rotterdam Bospolder Tussendijken 65
7.4 18:00 . 66
7.5 18:00 . 67
7.6 Color classes of PET on the 1st of July 2015 . 68
7.7 18:00 . 69
7.8 18:00 . 70
7.9 Color classes of PET on the 29th of June 2015 . 71
7.10 Cumulative cost of walking with thermal comfort to parks with 500m and 200m thermal comfort

accessibility . 73
7.11 Cumulative cost of walking with thermal comfort to market with 500m and 200m thermal com-

fort accessibility . 73
7.12 Cumulative cost of walking with thermal comfort to playgrounds with 500m and 200m thermal

comfort accessibility . 74
7.13 Adding greenery and replacing parking spaces . 75
7.14 Trees added / updated by size . 76
7.15 rgb and infr changed in values on specific streets and visserijplein 77
7.16 Shadow influence at 15:00 . 77
7.17 Sun pattern over the day with design interventions of adaptation of trees 78
7.18 18:00 . 79
7.19 Color classes of PET on the design interventions on the 1st of July 2015 80
7.20 18:00 . 81
7.21 Comparison of public spaces after heat mitigation measures . 82

8.1 Fig. Github page for retrieving the PET simulator plugin repository 84

C.1 Simulation overview of hours and base map data . 145
C.2 Directory base maps in the map data . 145
C.3 Hour simulation directory of the run Rotterdam . 145
C.4 Qgis plugin PETs window 1 static parameters. 146
C.5 Qgis plugin PETs window 2 dynamic parameters. 146
C.6 Qgis plugin PETs window 3 calculation screen. 147
C.7 file handling . 147

D.1 DTM . 149
D.2 DSM . 150
D.3 DSM - DTM . 150
D.4 Building mask. 151
D.5 Building height. 151
D.6 Building mask. 152
D.7 Tree mask. 152
D.8 Sky view factor. 153
D.9 Sky view factor mask. 153
D.10 Water mask. 154
D.11 NDVI near infrared. 154
D.12 NDVI red green blue. 155
D.13 Shadow 1200 LST. 155

E.1 DTM . 157
E.2 DSM . 158

List of Figures 3

E.3 DSM - DTM . 158
E.4 DSM - DTM . 159
E.5 Building mask. 159
E.6 Building height. 160
E.7 Building mask. 160
E.8 Tree mask. 161
E.9 Sky view factor. 161
E.10 Sky view factor mask. 162
E.11 Water mask. 162
E.12 NDVI near infrared. 163
E.13 NDVI red green blue. 163
E.14 Shadow 1200 LST. 164

G.1 NDVI values retrieved from [eesa, 2024] . 167
G.2 Sky view factor[Hämmerle et al., 2011] . 168

I.1 Trendline time data block size 5m . 193

J.1 Fig. T atmospheric temperature for Rotterdam in the months june till september 2023 (Data
retrieved from KNMI [0000] postprocessed by author) . 195

J.2 The two dates for 2023 . 196
J.3 Output files on research area 25th of Junest 2023. 196
J.4 Output files on research area 28th of Junest 2023. 197

K.1 Orientation map and H/W ratio buildings . 200
K.2 Attraction betweeness market containing line segment pieces with more than 1000 dwellings as

shortest path route . 201

List of Tables

2.1 Physiological Equivalent Temperature classification . 14

3.1 Comparisonsoftwaremodels . 23
3.2 Comparison software table . 23

4.1 The A and B interpolation matrix . 27
4.2 Legend flowchart. Values are ranging from 0 minimum towards 3 maximum reproducability . . 31

5.1 Table dynamic data Wageningen 1 juli 2015 . 48
5.2 Temperature and corresponding thermal perception . 49

6.1 Frontal density factors. 56
6.2 Blocksize 1 wind computing time extrapolated for South-Holland and the Netherlands 59
6.3 Blocksize 5 wind computing time extrapolated for South-Holland and the Netherlands 60
6.4 Block size 25 wind computing time extrapolated for South-Holland and the Netherlands 60

7.1 Table dynamic data Rotterdam 1 juli 2015 . 64
7.2 Table dynamic data Rotterdam 29 june 2015 . 64
7.3 Temperature and corresponding thermal perception . 68
7.4 Temperature and corresponding thermal perception . 71

5

1
Introduction

This chapter introduces the topic of graduation research. Furthermore, the former research will be intro-
duced and the research gap will be acknowledged. The proposal for this research is formulated by the research
aim. The approach will summarize the main research questions. The approach summarizes the methodology
which will set out the sub-research questions related to this topic. At the end of this chapter, the structure of
the report is elaborated.

1.1. Health at risk
A heat wave is defined as a period of at least 5 consecutive summer days with a maximum temperature of 25.0
°C or higher, of which at least three days have a maximum temperature of 30.0 °C or higher, as measured at the
meteorological weather station in De Bilt, the Netherlands. This phenomenon is expected to become more
common as our emissions contribute to climate change. This is further explained in scenarios with high and
low emissions (see Figure 64), which predict an increase in the number of summer days with temperatures
above 25 degrees Celsius.

Figure 1.1: KNMI climate scenario’s and predictability of amount of warm days and summer days adapted from [KNMI, 0000] [CAS, 2020]

People lack an adaptable response of the human body to a day of 25 Celsius degrees or above and this is
an indicator of the mortality rates of people. This puts the health of citizens at risk. Physiological factors like
heart rate will take some days to adapt to a warmer environment. Another aspect is that people can dress

7

8 1. Introduction

more for colder situations in contrast to hotter days [Lenzholzer, 2018] . These combinations lead to higher
mortality rates with heat extreme like the occurrence of a summer day of 25 degrees [Daanen, 2023]. This is a
serious issue now and in the future.

1.2. Heat mitigation research and action in the Netherlands

The Delta Plan on Spatial Adaptation [of Infrastructure and Waterboard, 2018] requires all municipal govern-
ments in the Netherlands to conduct a climate stress test addressing flood risk, heat stress, and drought. In
2019, Wageningen University created a report and code for RIVM, and in 2020, Witteveen en Bos released a
PET-heat map for the Netherlands in cooperation with Wageningen University and Climate Adaptive Services
(CAS) [CAS, 2020]. Although this web viewer is publicly available, it does not allow designers to assess spatial
and temporal effects and make design decisions in specific locations. The "Hot Issues" conference at HVA in
2020 highlighted that municipalities are all in the process of reproducing this code themselves [HVA, 2020].

Furthermore, the National Heat Plan has been active since 2015 under the supervision of RIVM, with
multiple stakeholders involved in heat mitigation matters in the Netherlands. These stakeholders are divided
into state, private, and civil society parties, with a distinction made between primarily involved stakeholders
and a wider audience of stakeholders. There are several collaboration formations identified using a power and
interest matrix. The first formation involves health-considered parties, the second involves financial parties,
and the third is particularly interested in the liveability component of society, including immediate residents,
academia, urban planners, and municipalities. Collaborative sharing of knowledge and action based on the
power-interest is crucial for taking care of heat stress mitigation.

Several sources are mapped out below and positioned on the "know, want, and taking action" framework
Fig1.4 of the Delta Plan. It is evident that knowledge and action on this subject are fragmented and can be
consolidated from the perspective of urban environment modelers towards the application of action-based
urban design practitioners.

Figure 1.2

Figure 1.2: Stakeholder diagram. Adapted from [Hofman, 2022]

Figure 1.3

1.2. Heat mitigation research and action in the Netherlands 9

Figure 1.3: Stakeholder power interest matrix. Adapted from [Hofman, 2022] .

Figure 1.4: Placement of this research within the field of knowledge and action. Put in the framework of Deltaprogramme [Programme,
2018]

10 1. Introduction

1.3. Research gap
Based on the orientation phase, which involved talking to various parties, two main research gaps have been
identified. One is the lack of an interactive, open-access tool that helps discover knowledge for an action-
based approach. The other gap is the absence of a developed strategy on how to target the most important
public spaces for transformation.

1. Lack of one open platform with knowledge for multiple parties/stakeholders

The PET published there is designed to represent the average conditions from 10:00 UTC to 16:00 UTC
on the first of July. However, it doesn’t take into account the spatial-temporal variations throughout
the day, nor does it offer a baseline for typical daily conditions in cities. As a result, it’s not possible
to test any interventions based on this data. To address this, the research opts to model the PET using
the calculation model developed by Koopmans et al. [2020], in line with the reproducability guidelines
advocated by the Agile conference [Framework, 2022]. We will need to provide a more detailed expla-
nation of the PET calculation method using Python for the next steps in the process.

2. Strategy approach missing for intervening in public space

Currently, several municipalities are addressing this issue in their own way. There are no established
guidelines for how municipalities should approach this problem, and their strategies vary widely. Dur-
ing the symposium at the University of Applied Sciences "Hot issues" organized by [Hogeschool van
Amsterdam, 2023], the differences became evident. However, there is no standardized approach to the
strategic implementation of interventions in public space design to make cities more heat-resistant.

1.4. Research aim
The first research aim of this part of the graduation project is to combine an interactive open tool for address-
ing the spatial-temporal behavior of heat stress in urban environments. A second research aim is a strategy
for creating a design to mitigate heat stress with the application case study in the neighborhood of Bospolder
Tussendijken in Rotterdam North.

1.5. Academic Value of the Research
The academic value of [Koopmans et al., 2020] can be enhanced by opening up and restructuring the code.
This will enable the generation, verification, and comparison of intermediate results, facilitating the integra-
tion of research from other disciplines based on a shared knowledge base. As well as spreading awareness
through the expansion of educational opportunities. The academic positioning of the strategy development
and methodology development alongside the work of [van Esch, 2015] and ongoing developments in the
Dutch government places this research as an interesting integration of vulnerable groups which need a more
climate-safe environment.

1.6. Social Relevance of the Research
The research introduces an accessible tool that can help a wide range of people understand the impact of heat
in their local area. This tool can encourage more efficient communication and inspire collaborative efforts
involving various parties to create strategies for mitigating heat stress. The significance of this lies in devising
a plan to revamp public spaces, ultimately enhancing the quality of life for residents.

1.7. Research questions
Main research question: “How can a strategy be developed for mitigating heat stress through Physiologi-
cal Equivalent Temperature model while ensuring a livable environment for vulnerable groups in Bospolder
Tussendijken, Rotterdam, the Netherlands?”

The objective was twofold: to create an interactive tool indicating PET heat stress in urban areas of the
Netherlands and to design a strategy specifically tailored to Bospolder Tussendijken. This part of the joint
thesis focused on reproducable tool to indicate the PET in Dutch cities.

1.8. Structure of the report 11

The main question will be answered using this research question:
"To what extent could a reproducible tool help with identifying spatial-temporality of heat stress through PET
in urban environments and test design interventions?"

1. What is the position of PET next to other thermal comfort models?

2. Which software is available for open use for modeling heat stress?

3. In what way could the reproducability of [Koopmans et al., 2020] be improved?

4. What is the sensitivity of the wind computation and how could this model be applied to other locations?

5. How can the PET be applied on in Rotterdam for urban design interventions?

1.8. Structure of the report
The structure of this report will include an analysis of the availability of modeling heat stress. This will be dis-
cussed in Chapter 2: Thermal comfort models. Next, it accesses the available software in Chapter 3: Thermal
comfort models. The physical model of [Koopmans et al., 2020] and the reproducability will be assessed in
Chapter 4: Physiological equivalent temperature model. This reveals the improvement of the code. Chapter 5:
PET simulator showcases the reproducible procedure of the QGIS plug-in developed by the author. Eventu-
ally, in Chapter 6: PET model verification, there will be validation of the model and the potential opportunity
to use it for other use cases. Chapter 7: PET application, shows the application of the Rotterdam case study
and the application of the thermal comfort model to investigate heat stress, thermal accessibility of several
public spaces and testing design interventions. Also chapter Chapter 8 PETs evaluation, looks back on the re-
producability of the plugin for other third-party applications. Chapter 9Discussions and limitations, will dive
into the discussion and limitation of the research. Chapter 10 addresses the conclusions. Lastly, Chapter 11
proposes the future research. This research is part of the joint graduation research with application to the
Rotterdam case study. See Figure 1.5.

12 1. Introduction

Figure 1.5: Flowchart proposed in the Urbanism part.

2
Thermal comfort models

2.1. Positioning heat stress models
This section positions the heat stress models available related to the researched Physiological Equivalent
Temperature model used by [Koopmans et al., 2020].

For thermoregulation for the heat storage model the energy heat balance model is developed. It holds an
equilibrium for people to function [Havenith, 1999].

δs = M +R +Cv +Cd −E (2.1)

Metabolic rate (M) is the rate at which the body generates heat internally. Typically, the average metabolic
rate at rest is 70 W, while during extensive exercise it can rise to 700 W. Net radiation (R) is the balance between
the radiation absorbed and emitted by the body. Mean radiant temperature (MRT) characterizes the radiation
field. Convection Cv is the transfer of heat by the movement of air and is enhanced by wind. Conduction
Cd refers to the transfer of heat between materials in direct contact. Heat loss occurs through evaporation
of sweat and respiration, where exhaled air tends to be warmer and more humid than inhaled air (E). The
thermal balance depends on the weather conditions. Higher net radiation tends to increase heat storage,
while heat loss can occur through sweating or exposure to wind [Matzarakis and Amelung, 2008] and [Höppe,
1999]. Several thermal indices have been developed to quantify thermal comfort.

Mean Radiant Temperature
The Mean Radiant Temperature (Tmrt) is an effective indicator of thermal stress experienced by the human
body due to the radiant heat emitted by its surrounding environment. Conceptually, Tmrt is the uniform
temperature where the radiant heat transfer from the human body equals the non-uniform enclosure.

Predicted Mean Vote
The Predicted Mean Vote (PMV) is a widely used thermal index for assessing indoor thermal comfort. It
originates from research by Fanger (1970) [Fanger, 1970] and is based on the idea that comfort is achieved
when there is thermal equilibrium without physiological stress. The PMV is based on a steady-state heat
balance model and is evaluated by individuals in a controlled indoor environment. They rate their experience
on a seven-point scale ranging from -3 (cold) to 3 (hot), with 0 representing neutrality.

Munich Energy model
The steady-state model includes the sweat rate as a function of mean skin temperature and core temperature
[Mayer and Hoppe, 1987b]. Heat fluxes are determined by the energy balance equation, from the body core
to the skin, and from the skin through clothing. Additionally, the individual’s age and sex are factored in when
calculating both metabolic rate and sweat rate. This model closely aligns with thermophysiology and is highly
personalized for each individual.

13

14 2. Thermal comfort models

PET Thermal perception grade of physiological stress
< 4 °C very cold extreme cold stress
4 - 8 °C cold strong cold stress
8 - 13 °C cool moderate cold stress
13 - 18 °C slightly cool slight cold stress
18 - 23 °C comfortable no thermal stress
23 - 29 °C slightly warm slight heat stress
29 - 35 °C warm moderate heat stress
35 - 41 °C hot strong heat stress
>41 °C very hot extreme heat stress

Table 2.1: Physiological Equivalent Temperature classification

Physiological Equivalent Temperature

The MEMI was a starting point for the Physiological Equivalent Temperature (PET) developed by [Mayer and
Hoppe, 1987a]. It compares complex outdoor conditions to a typical steady-state indoor setting (MRT = Ta,
v=0.1m/s, VP= 12hPa or RH=50% at Ta=20C) with the age of a 35 year old male. [Höppe, 1999]. The real out-
door climate is matched with a fictive indoor environment where the same level of temperature discomfort is
experienced. Physiological Equivalent Temperature (PET) is linked with the bio climate of the place. It is cal-
culated by determining the temperature at which the energy balance for indoor conditions is the same as the
mean skin temperature and sweat rate for outdoor conditions. This makes it easier for people to assess the
thermal comfort of a place, as compared to interpreting mean skin temperature values. PET values around
21°C are considered comfortable, while higher values indicate a higher chance of heat stress, and lower val-
ues indicate a too cool environment for comfort see Table2.1 [Mayer and Hoppe, 1987b] [Höppe, 1999] [Fiala
et al., 2012]. This is an widely used measure around urban planners, and persons not familiar with thermo-
physiology. This semantic representation of spatial temporal influences of built environment as static factors,
physiological factors as static factors and climate factors as dynamic factors give a better understanding for
other disciplines to deal with the effects of heat stress on the public health.

Wet bulb globe temperature

The Wet Bulb Globe Temperature (WBGT) is a measure used to assess heat stress. It combines the readings
from three instruments: the Natural Wet Bulb (NWB), Globe Temperature (GT), and Dry Bulb (DB) ther-
mometers. It was developed during World War II in the military and indicates the amount of exercise a per-
son can handle before experiencing heat stroke. Nowadays, it is a common measure for employees working
outside [RIVM, 2023]. This links metabolic actions to temperature and requires specific materials to obtain
accurate measurements. Shortcomings include the underestimation of humidity and air movement, which
can lead to an unclear understanding of stress in environments with limited evaporation. This inadequacy
exacerbates the existing inconsistencies in effective temperature measurements for two main reasons [Budd,
2008].

UTCI

The Universal Thermal Climate Index (UTCI) is an internationally standardized thermal index developed by
the World Meteorological Organization (WMO). It assesses thermal comfort or stress in both outdoor and
indoor environments by considering various environmental factors such as air temperature, humidity, wind
speed, and radiation from the sun and surrounding surfaces. UTCI estimates the equivalent air temperature
at which the human body would experience thermal stress as it would under the prevailing environmental
conditions. It’s widely used for assessing heat stress and thermal comfort in research, policy, and practice
due to its comprehensive and standardized approach that can be applied across different geographic loca-
tions and climates [Blazejczyk et al., 2013].

2.2. Conclusions 15

Figure 2.1: Overview thermal models

2.2. Conclusions
Several models have evolved from the well-known Physiological Equivalent Temperature (PET) model, rang-
ing from thermostatically PMV and MEMI to a more universally comprehensible PET model across disci-
plines. These models consider three key influences: dynamic climate data, static built environment data,
and standardized physiological performances. Given the standardization of the PET model in the Nether-
lands, it remains the appropriate choice for modeling the thermal comfort of citizens in the country. PET
serves as a comparison between complex outdoor conditions and a typical steady-state indoor environment,
aligning indoor energy balance with outdoor mean skin temperature and sweat rate for simplified thermal
comfort assessment. However, PET is a static model for indoor thermal environments, whereas UTCI and
WBGT incorporate factors such as clothing and metabolic rate, providing more comprehensive overview.

3
Thermal comfort software

3.1. Requirements

Software requirements

In the previous chapter, various models are discussed for identifying heat stress in urban environments. The
standard measure for the Netherlands is the PET. This chapter examines the available software programs for
this purpose. The selection criteria for the software depend on urban climate factors and the accessibility of
data to users, in line with Agile reproducability guidelines [?].

Reproducability requirements

In the context of knowing, wanting and acting as outlined in the Deltaplan (2018), it is crucial to ensure that
the software is reproducible for a wider audience of users.

With the Agile (2020) reproducability Guidelines document, Figure-E.9 refers to the reproducability as-
sessment of the different stages of reproducing georeferenced material. The aim of this report is that every
step towards higher reproducability counts. Authors should also be aware of the benefits, such as contribut-
ing to a community. The three steps of geo-handling are thus distinguished. First, the input data are assessed,
for example, if the data are open available and well documented. Secondly, the methods are described, i.e. the
software tools for pre-processing the data, methods for analysis and processing, and finally the computing
environment and visualisation of the material. Finally, the results will be evaluated.

17

18 3. Thermal comfort software

Figure 3.1: Reproducability guidelines

3.1. Requirements 19

Figure 3.2: Reproducability checklist according to [Framework, 2022]

20 3. Thermal comfort software

Urban designers climate factors

For urban designers it is important to know what is changeable of the built environment which influences the
climatic dynamic factors in cities. It’s important to consider factors such as radiation, air temperature, and
wind computation. The physical built environment, including surface materials, water, and vegetation, can
significantly impact the dynamic values in cities. Additionally, it’s crucial to examine the micro climate, which
can vary based on size. The software should accurately handle fluctuations in the presence of landscaping
elements. The influence of shadow and vegetation patterns is limited to the immediate surroundings of trees
or buildings. Therefore, it is important to capture these mitigating fluctuations [van Esch, 2015]. The software
needs to be able to scale from a small to a large scale, considering various scopes such as neighborhoods or
entire cities. Next to this, the running time of the simulations should be taken care of. When it comes to wind
modeling, it’s important to distinguish between methods. One method focuses on the abstraction of wind
flow in one direction with the representation of an averaging method of building height resistance translated
from roughness layer to the ground [Macdonald et al., 1998] (Figure 3.3). However, a more advanced model,
such as the computational fluid dynamics model, does take into account the real behavior of wind [Mirzaei,
2021] (Figure 3.4). In order for the wind computation tool to be effective, it should be easy to operate and
provide results quickly. The time taken to run the tool is a crucial factor that affects the accuracy of the
results, and needs to be considered at all levels of computation to ensure robustness.

Figure 3.3: Wind modeling roughness layer retrieved [Cochran and Derickson, 2005] figure 4

3.2. Thermal comfort software models 21

Figure 3.4: Schematic representation of 3d wind flow pattern around a high-rise building retrieved from Urban Physics: Effect of the
micro-climate on comfort, health and energy demand by [Moonen et al., 2012]

3.2. Thermal comfort software models
Several software options are available for modeling the urban microclimate, including ENVIMET, PET na-
tional map, Urban Microclimate, UMEP and CRC tool. Each of these software options has unique features
that distinguish them from each other."

ENVIMET
ENVIMET is one of the highly accurate climate modeling software and is used by heat experts [met GMBH,
n.d.]. The wind modeling uses computational fluid dynamics. However, this software is not open source. The
software could only be retrieved with a fee subscription. Also due to its high precision this modeling software
the runtime is relatively large and is therefore suitable for calculating small urban areas. A simplification of
this modeling software is also suitable for indicating the micro climate on urban level.

Urban Multi-scale Environmental Predictor
The Urban Multi-scale Environmental Predictor (UMEP) is a climate service tool, designed for researchers
and service providers (e.g. architects, climatologists, energy, health and urban planners) presented as a plugin
for QGIS. It works with different methods like pre-processor, processor and after result. All dependencies
have to be performed sequentially in order to make it working. The modifications of inbetween results are
only suitable for the plugin in order to let it work Lindberg et al. [2018]. The wind modeling is done by a the
Macdonald et al. [1998] method. With the proper knowledge of the plugin it is usable for neighborhood scale
and city scale.

Urban micro climate
Urban micro climate is a widely used climate analysis software among architects ([MIT, 0000]). It is integrated
as a plugin in the Rhino environment, with plugins called Ladybug that read various climate data. The pri-
mary output is the dry bulb temperature, which does not reflect the PET. However, it is adaptable software
environment for designers to make urban environmental differences and test the results. In the input CAD
file, buildings, courtyards, public squares, roads, and trees are represented in poly lines or surfaces. This

22 3. Thermal comfort software

should be regurlary updated and could potentially overestimate the performance of mitigating measures like
evaporative surfaces. These input data are a representation of the real world and need to be generated first by
manually drawing or retrieving from the BAG. Despite this, many urbanists use QGIS to perform geo-spatial
analyses.

PET national map
It is developed for the weather input of the Netherlands, and therefore suitable for Dutch test cases. There
is provided documentation of [Koopmans et al., 2020] on the code. It has an 1-m accuracy which makes
it suitable for modeling fluctuations of shading and evaporative surfaces. The input data is obtained from
publicly available sources and generated for each location in the Netherlands in a seamless manner. The
wind modeling uses the MacDonald method [Macdonald et al., 1998]. It is suitable for urban micro climate
modeling to identify critical areas. The code itself is not publicly available but the steps are documented in
[Koopmans et al., 2020].

CRC tool
CRC tool does not indicate the areas which are endangered by heat stress but only showcases potential miti-
gation elements and measured in costs [Deltares, 2020]. It is a privately developed tool and not transferable
to other interfaces to reproduce the outcome yourself.

3.3. Conclusion
The software requirements were assessed if it was a reproducible manner of retrieving the information with
the connection between knowing, wanting and acting see Table3.2. Therefore it is necessary to indicate the
critic areas and also being able to intervene in the public space. Next to that it should be reproducible for a
broader audience. Therefore the AGILE requirements of reproducability are important which are divided in
input, methods and results. Also the requirements of the influencing factors of the urban environment which
can be changed by the urban designer should be integrated in the software. Small fluctuations of evaporative
surfaces or shadow are important to model. For the usability for multiple users the scalability of the area is
important as well as the runtime of the software. As seen in the inquiry there are different software models
with their own purpose and audience. The PET map developed for the Netherlands does have the poten-
tial to be scaled to other locations in the Netherlands [Koopmans et al., 2020]. It has a scalability potential
for multiple research areas and it can handle the fluctuations of evaporative and shadow patterns. It does
use an abstraction of the wind method to speed up the computation process. In the next chapter the PET
calculations will be addressed and the reproducability will be assessed.

3.3.C
o

n
clu

sio
n

23

Table 3.1: Comparisonsoftwaremodels

Urba nmicro climate PETkaart ENVIMET CRC(ClimateResilient
City)tool

UMEPtool

Open source YES YES NO,against fee NO YES
Adaptabledata YES NO YES YES NO
Publisher MIT Wageningen university,

Witteveen en Bos
ENVIMET GMBH Essen
Germany

Deltares Fredrik Lindberg,
TingSun,Sue Grimmond,
Yihao Tang, Nils Wallen-
berg

Users Architects Public accessible as viewer Commercial Public accessible and ad-
vanced version against
fee.Commercial

Researchers and service
providers(e.g.architects,
climatologists, energy,
health and urbanplanners)

Website
https://urbanmicroclimate
.scripts.mit.edu/umc.php

https://www.klimaateffect
atlas.nl/nl/

https://www.envi-
met.com/

https://www.deltares.nl/en
/software/climate-
resilient-city-tool/

https://umep-
docs.readthedocs.
io/en/latest/

level 3D 2.5D 2.5D 2.5D 1and2D
Software Grasshopper and ladybug Viewable online or can be

retrieved by klimaat effec-
tatlas

ENVIMET CRC tool QGIS

Input 3D geometry, Weather data Weather data KNMI local,
spatial data of built envi-
ronment

Weather data national Weather data Built environment height
and canopy trees

Output Dry bulb temperature, en-
ergy consumption

PET Mean Radiant Tempera-
ture(MRT), Physiological
Equivalent Temperature
(PET) and Universal Ther-
mal Climate Index (UTCI)

Heat reduction, Cost analy-
sis

Shadow, wind, skyviewfac-
tor, UHI, Thermal outdoor
comfort

Scope area Micro level Micro, Meso, Macro level Micro level Macro, Meso and Micro
level

Micro,Meso,Mesolevel

Purpose Indicate areas and design Indicating high experi-
enced temperatures in
areas

Indicate areas and design Indicate areas and design Indicate urban heat island
and how to mitigate heat

Takes environment into accountBuilt environment Built environ-
ment,evaporation water
and greenery

Evaporation water and
greenery and green roofs
and green facades

Built environment, evapo-
ration water and greenery

Buildings and vegetation

Runtime 1km x 1km 0-10min - 100+min 0-10min 0-10min

Table 3.2: Comparison software table

4
Physiological Equivalent Temperature

(PET) model

4.1. Physical model
The method for the Physiological Equivalent Temperature (PET) calculation is described in Koopmans et al.
[2020]. The formulas used, along with the corresponding variables and units of measure, are provided in the
flowchart of figure 4.1. This chapter provides an overview of the formulas.

Figure 4.1: Simplified flowchart as published in [Koopmans et al., 2020]

PET (°C) is calculated for a sun, a shade or a night situation. The parameter depends on the air temper-
ature Ta (°C), measured at a height of two meters above the land surface, the wet bulb temperature Tw (◦C),
the global solar radiation Qs (Wm−2), the diffusive radiation Qd (Wm−2) and the latent heat flux. PETsun is
expressed by

PETsun =−13.26+1.25Ta +0.011Qs −3.37ln(u1.2)+0.078Tw +0.005Qs ln(u1.2)5.56si n(φ)

−0.0103Qs ln(u1.2)sin(φ)+0.0546Bb +1.94Sv f
(4.1)

where σ (5.67 ·10−8 Wm−2K−1) is the Stefan Boltzmann constant, Sv f (-) denotes the sky-view factor and φ

(degrees) denotes the solar elevation angle. The latent heat flux follows from the Bowen ratio Bb that relates

25

26 4. Physiological Equivalent Temperature (PET) model

this flux to the sensible heat flux. The latent heat flux follows from evaporation of water from the land surface.
Evaporation is affected by the wind speed, which is measured at a height of 1.2 m u1.2 (ms−1). PETnight and
PETshade are given by

PETnight,shade =−12.14+1.25Ta −1.47ln(u1.2 +0.060Tw +0.015Sv f Qd+
0.0060(1−Sv f)σ(Ta +273.14)4 (4.2)

Air temperature and wet bulb temperature
The urban heat island coefficient U H Imax that is used for calculating the air temperature on a 2-m level. The
coefficient follows from

U H Imax = (2−Sv f −Fveg)
4

√
S ↓ ·(Tmax −Tmin)3

U
(4.3)

This equation consists of a physical part and a meteorological part. The first part describes the physical
part with the sky-view factor Sv f and the vegetation fraction Fveg within a certain source area. Water bodies
are treated as buildings overnight and as grass during the day. Both parameters are averaged over a source
area of 500 x 1100 m with a resolution of 25 meters. The orientation of this source area depends on the
wind directionHeusinkveld et al. [2014]. The second part consists of a meteorological term S ↓ (Kms−1) that
represents the mean downward shortwave radiation and the average wind speed during the day U (ms−1).
The temporal conductivity Tmax - Tmin (°C) is measured between 8:00 UTC and 7:00 UTC the next day. Air
temperature at given hour Ta(h) (°C) follows from

Ta(h) = Trefstation +U H Imax ·dcycle(h) (4.4)

where Trefstation (°C) denotes the atmospheric temperature measured at a KNMI weather station at a height
of 1.2 m, dcycle corrects U H Imax. The diurnal correction factor varies between -0.02 and 1 as can be seen in
Appendix ??. The table in this appendix was derived from Oke [1982].

The wet bulb temperature Tw (h) (°C) follows from the air temperature and the solar elevation angle as

Tw (h) = Ta(h) atan (0.151977(φ+8.313659)0.5)+atan (Ta(h)+φ)−atan (φ−1.676331)

+0.00391838φ1.5 atan(0.023101φ)−4.686035
(4.5)

Wind velocity
For the wind calculation the MacDonald method is used [Macdonald et al., 1998]. The calculation provides a
spacial frontal area density factor λ that can be written as

λtot = 0.6λbuildings +0.3λtrees +0.015 (4.6)

The factor resembles the resistance of buildings and trees on the wind. The resistance depends on the height
of buildings and trees in front of a spatial location and on the variation in height. Heights are considered over
a source area As (m2) of 280 x 140 m area with a scaled resolution of 35 meters. Frontal areas determine the
perpendicular surfaces towards the wind direction. If there are a lot of buildings in this direction then the
frontal area density will be high which will lead to less wind. The frontal area density factor scales the wind
speed that is measured by KNMI weather stations at a height of 10 meters above land surface u10 (m/s). For
the PET calculation a wind speed at a height of 1.2 meters above land surface u1.2 (m/s) has to be obtained.

With a sufficient frontal surface area
(
0.6λbuildings +0.3λtrees

)> 25/As the wind speed at this level follows
from

u1.2 = uH exp

[
9.6λ

(
1.2

H
−1

)]
(4.7)

where λ expresses either λbuildings or λtrees. The wind speed at roof in case of a building at height H (m) is
written as uH (m/s)

uH = −u∗

B
ln

(
A+B zw

A+BH

)
+uzw (4.8)

the parameters A and B are presented by Table-4.1 and zw (m) denotes the top of the roughness layer. The
friction velocity u∗ follows from

u∗ = 0.4
u60

ln
(

60−d
z0

) (4.9)

4.2. Reproducability paper code guidelines Koopmans et al. [2020] 27

where z0 is the surface roughness length, uzw is expressed as

uzw = u60

ln
(

zw−d
z0

)
ln

(
60−d

z0

) (4.10)

where the wind at a height of 60 meter follows from the wind speed measured by a weather station u60 =
1.3084u10. If the frontal surface area is insufficient according to

(
0.6λbuildings +0.3λtrees

) < 25/As then the
wind speed directly follows from

u1.2 = 0.6350 u10 (4.11)

λtot d/H zw /H z0/H A/H B
0.05 (<0.08) 0.07 2.0 0.048 -0.35 0.56
0.11 (0.08 till 0.135) 0.26 2.5 0.071 -0.35 0.50
0.16 (0.135 till 0.18) 0.32 2.7 0.084 -0.34 0.48
0.20 (0.18 till 0.265) 0.42 1.5 0.08 -0.56 0.66
0.33 (=> 0.265) 0.57 1.2 0.077 -0.85 0.92

Table 4.1: The A and B interpolation matrix

Diffusive radiation
The diffusive radiation follows from the measured solar radiotion is calculated as

Qd =


Qs τa ≤ 0.3

(1.6−2τa)Qs 0.3 ≤ τa ≤ 0.7

0.2Qs τa > 0.7

(4.12)

The atmospheric transmitivity τa is given by

τa = Qs

1367sin(φ)
(4.13)

Latent heat flux
In order to retrieve the evaporative surfaces the Normalized Difference Vegetation Index (N DV I) is intro-
duced. This index evaluates the red band of the RGB image and the red band of the infrared image. The
index provides ranges that represents the health and evaporative functioning of the greenery in the urban
environment. For information about the values see Appendix G.

N DV I = N I R −R

N I R +R
(4.14)

If the N DV I exceeds 0.16 then vegetation is assumed to evaporate well and the Bowen ratio is set to 0.4. For
impervious urban surfaces the ratio is set to 3.0 [Oke, 2002].

4.2. Reproducability paper code guidelines Koopmans et al. [2020]
First, the script provided by Sytse Koopmans from Wageningen will be assessed for reproducability according
to the Framework [2022] as named in Figure E.9 and Figure 3.2. Next, the new code for assessing PET on a
city scale will be executed. An analysis was conducted based on the code provided by the author (see Figure
4.2).

28
4.P

h
ysio

lo
gicalE

q
u

ivalen
tTem

p
eratu

re
(P

E
T

)
m

o
d

el

Figure 4.2: Evaluated flowchart considered the code provided by [Koopmans et al., 2020]

4.2. Reproducability paper code guidelines Koopmans et al. [2020] 29

Figure 4.3: Legend flowchart

Input data
The input data is focused on the datasets required to run the method in order to conduct the results. The in-
put data is categorised in whenever they are in non-proprietary format, if third party reuse is possible, if the
guidelines are referenced to the data. The datasets provided are in non-proprietary formats and include Geo-
tiff, text, and vector datasets in Geopackage format. The spatial data consists of raster Tiff and vector datasets,
while the climate data is in text format. The text file is derived from [KNMI, 0000] and contains hourly data.
It includes atmospheric temperature (TT), wind speed (FF), wind direction (DD), global solar radiation (Q),
relative humidity (RH), and minimum and maximum temperatures (Tmin and Tmax) between 8:00 UTC and
9:00 UTC of the following hour. It also includes the average daily wind speed (U). The file has been modified
to calculate Qdif, generate Sunalt, activate the Day/Night switch, and display the diurnal factor on an hourly
basis, making it not immediately repeatable for other users. The vector data, including building envelopes,
trees, and water, are derived from [Geofabrik, 2020] and [NEO and Geodan, 2024], saved as geopackages, and
eventually rasterized as Tiffs in QGIS. The spatial dataset is in Tiff format. Geospatial information, which
could be seen as static parameters, are added later for each dataset, such as RGB, Infrared, Sky view factor,
and rasterized vector datasets. These could have been generated immediately by saving the files as Geotiff
and handling them with the metadata properties. Due to the repetition in mentioning these static parameters
and by changing that in each file, inconsistencies can appear which cause incompatabilities. These static pa-
rameters next to the dynamic parameters of the climate should be centralized on a place where each separate
python file could make use of.

The datasets used for third-party purposes are referenced in Figure 10 and can be obtained from various
sources such as PDOK [Kadaster, 2023], geofabrik.de [Geofabrik, 2020], KNMI, and AHN. It’s important to
note that the tree registry data from WUR, NEO, and Geodan is not accessible to the general public. The
research outlines two methods for obtaining tree registry data or determining tree crown height using the
position and height of trees, one of which involves using AHN and NDVI. The paper utilizes accurate tree
registry data.

The paper discusses the authors referenced in the data. All the links are accessible, but the datasets must
be downloaded separately from various web links. The bomen register and Sky View Factor are initially not
available. The bomen register contains high-quality data and requires a subscription. For other locations, a
workaround is needed to make the data publicly accessible. As for the Sky view factor, a script must be written
to derive the datasets of the Sky view factor and the sky view factor mask from [KNMI, 2023].

30 4. Physiological Equivalent Temperature (PET) model

For each Tiff image the georeferencing were done separately.

1 latarray=np.zeros(shape =(h,w))

2 lonarray=np.zeros(shape =(h,w))

3 ymin =171322

4 ymax =177291

5 xmin =439813

6 xmax =445583

7 latmin=xmin+(xmax -xmin)/(2*h)

8 latmax=xmax -(xmax -xmin)/(2*h)

9 lonmin=ymin+(ymax -ymin)/(2*w)

10 lonmax=ymax -(ymax -ymin)/(2*w)

11 ##cells =32*48

12 ## create lat and lons

13 for i in enumerate(lonarray [0]):

14 lonarray[:,i[0]] = lonmin + (lonmax - lonmin) * i[0]/(w-1)

15 #print('lonarray ',lonarray)

16 for i in enumerate(latarray [: ,0]):

17 latarray[i[0]] = latmax - (latmax - latmin) * i[0]/(h-1)

Methods
The method section is subdivided into pre-processing, method, analysis and processing, and computational
environment. The method to develop the procedure is open data licence. The software code is, however,
only retrieved by the developers themselves. This could be made open and available via GitHub or a plugin
of QGIS. This was due to the lack of amount of money to create reproducible software for third-party use.

The pre-processing reproduction steps are documented in Appendix A of [Koopmans et al., 2020] via the
DOI that is provided https://doi.org/10.1016/j.buildenv.2020.106984. In the paper is a clear connection be-
tween tables, figures, maps and statistical values and the documentation is available in a README file. How-
ever, third-party users are hard to regenerate. Climate data is modified in Excel using a CSV format, and
the climate parameters are referenced multiple times in separate Python computation files. It also involves
generating missing climate parameters such as Qs in the correct units of measure, as well as Qdif, salt, and
diurnal factors. Refactoring the data by centralizing the parameters as dependencies is useful to make it more
operable. For method, analysis, and processing, it is necessary to dive into the software tools/libraries/pack-
ages and computational workflow. The reproduction steps are visible in the flowchart in [Koopmans et al.,
2020] but are a bit oversimplified. Figure 4.2 with legend Figure K.2 shows the elaborated steps necessary to
reproduce the same in-between results and results.

For the method, the approach of calculating the PET is intended to calculate the wind by the MacDonald
method validated for the Dutch context (to be more specific in the Wageningen Herwijnen context). Each
Python code has a README file that explains the use, but not the precise intermediate output results. For
the analysis part, the same in-between output should be generated and reproduced through other parties.
Since the Python files were not directly connected, all the Python file outputs were Tiff-based and of the
format of CSV output per cell a value. Also, the Fveg and Svf were manually averaged over 25m outputs
in QGIS. This led to non-linearity in the generation of the intermediate values, since modifications of the
output files of Python were modified in QGIS. This causes untraceable intermediate step output files of in-
between procedures. To upgrade to ideal, a software package is required with structured metadata, tests, and
an automated workflow if applicable add a link to the running instance of the software. To upgrade to Ideal:
minimum, versioned code repository to upload to GitHub and an open license of the software is required.
The processing involves using Python software for computational steps, along with importing libraries such
as PIL, Pandas, and Numpy. There are 7 separate Python files: ndvi_calculator, svf_footprint, vegfra_footprint,
fraction_area_buildings_treeregr, PET_angothour, and PET_calculate. Unfortunately, these Python files are
not interconnected, leading to disjointed results. The ndvi_calculator is used to calculate areas that qualify as
evaporative surfaces and contain a Bowen ratio. svf_footprint and vegfra_footprint depend on wind direction
to average the values on a 25m resolution. fraction_area_buildings_treeregr is for calculating wind, while
PET_angothour projects climate scenarios for 2050 with high- and low emissions. PET_calculate combines
output files of intermediate steps and climate dynamic data to calculate PET in sunny and shady locations.

For the computational environments, Python was used. Pre-processing values do include actions in soft-
ware like Excel, QGIS basic environment and the UMEP QGIS plugin for generating the shadow patterns of

4.2. Reproducability paper code guidelines Koopmans et al. [2020] 31

buildings and trees. Also as already mentioned the in-between results were modified in QGIS. To properly in-
stall UMEP, you need a compatible version of Python in both QGIS and PyCharm. To minimize the amount of
errors the Excel manual procedure could be included in a Python file, which can generate the desired output
per day. The visualization environment is QGIS. This is a graphical environment used by urban designers.

Results
The results of the code have been verified for the Wageningen area, and the names of the services for down-
load are provided. The software has been assessed through interaction with the publishers. One of the re-
quirements is a camera-ready paper. Peer review is conducted in cooperation with Gert-Jan Steeneveld and
Bart Heusinkveld but is not incorporated in the code. If a reproducability review report is published, a DOI
will be included in a template. The report should ensure that all the steps in the workflow are reproducible.
On request the output is available.

Assessment reproducability
This scientific research institute of Wageningen University has included reproducability measures for its ver-
ified research on PET in Wageningen. After this chapter a conclusion assessment has been evaluated as seen
in table 4.2, with 0 as minimum to reproducability measures and 3 as maximum of reproducability. For the
processing part, reproducability can be increased. Many pre-processing steps are needed to handle the good
input data for the code to work. For the method, analysis and processing the method is well documented in
[Koopmans et al., 2020], but due to lack of money this is not funded to make it open software for third parties
to use. For the processing ndvi_calculator, svf_footprint, vegfra_footprint, fraction_area_buildings_treeregr,
PET_angothour, PET_calculate are used, see appendix H. Also there are modifications in QGIS instead of lin-
earity in Python file handling, this hinders the calculation workflow to work fluently. Next, the factorisation
of static parameters such as location and weather values is highly valued instead of filling them into each file.
Also, the Python code is not openly available in a GIT repository for others to see. The computing environ-
ment is QGIS, Python, the UMEP plugin in QGIS and Excel. Python is used for the calculations and Excel
for the weather data parameters. QGIS is used only as a visual environment. The results are documented in
Appendix A in [Koopmans et al., 2020], but the results are only available and documented on request. If you
wish to reproduce the results yourself, the final results should be calibrated against the results of [Koopmans
et al., 2020] to verify the results.

Input data 2
Methods pre-processing 1

method, analysis, processing 1
computational environment 1
visualisation 2

Results 1

Table 4.2: Legend flowchart. Values are ranging from 0 minimum towards 3 maximum reproducability

5
PETs simulator

5.1. Computational workflow
For the improvement of the code of Sytse Koopmans the decision is made to improve the reproducability
for each step of the steps from input datasets, methods and results. The flowchart for the advanced refac-
tored PET calculator is shown in Figure 5.1. The refactored Python code is displayed in Appendix B. In Ap-
pendix H the original code is displayed as a reference. Appendix C showcases the User Manual, and Ap-
pendix ?? presents step-by-step the extended research input files of Wageningen.

Input datasets
For the input files, an upgrade is made through using open-source accessible input. For the calibration of the
code for the Wageningen test case the boomregister is used [NEO and Geodan, 2024]. For the Rotterdam test
case [diensten Rotterdam, 2023] which is an open source of the municipality of Rotterdam. In the future, a
detection method of tree classification could be used. Also, the modifications of the climate data by [KNMI,
0000] can now be generated by the Python script pysolar1.py which are taken as input for pet_parameters.py
and also the retrieval of the Sky view factor geotiff maps are retrieved through the API link through the code
get_svf.py. For the processing part, the decision was made to make an integral user interface to link the
Python files with each other via one driver Python file. With Qt Designer, the link is made to create one
graphical user interface in QGIS since this is the platform urban planners use the most for working at mul-
tiple scales [Lawhead, 2018]. Therefore this report created a QGIS plugin called PET simulator which can be
downloaded via GIT, more explanation is in Appendix C. Therefore the computation kernel, in the code the
Python file is called pet_simulator, is integrated into the QGIS plugin for third-party users to use. The link
between Python and QGIS is made by the graphical user interface supporter Qt designer. Furthermore, there
is a refactoring of the parameters which are used in each Python file which functions as classes. These files
are geotiff_transform.py for the georeferencing towards arrays and vice versa. Additionally, pet parameters
are introduced to standardize the input parameters like static factors, such as the research area coordinates
and the cell size and block size of the wind computation, as well as climate dynamic factors retrieved from
the [KNMI, 0000]. This makes it more understandable for other software developers. Through the decision to
integrate the computational workflow with the integration of the visual representation environment of QGIS,
the workflow process is more understandable and can be modified for other test cases in the Netherlands as
well.

33

34
5.P

E
Ts

sim
u

lato
r

5.1.C
o

m
p

u
tatio

n
alw

o
rkfl

ow
35

Figure 5.1: Flowchart refactored.

36 5. PETs simulator

Figure 5.2: Legend flowchart refactored

Processing
To calculate the urban morphology heat attribution, we need to compute svf averaging fraction, and vegeta-
tion fraction averaging which are depended on the wind direction. Self-evident, this is also required for the
wind computation. This requires handling the necessary input files for extended research outcomes. We will
create clips of the basis maps for the research area needed to compute for each wind direction, which are
called extended research areas. Detailed procedures for the 1000x1000m research area of Wageningen will be
explained in this chapter.

Figure 5.3: Research area 1000x1000 m white (output), extended research area 1500x2100 m black (input), and base map RGB 4000x4000
m (data).

In the program refactoring, the parameterized block size for modeling the vegetation fraction, sky view
fraction, and wind computation is taken into account. Instead of the variable averaging of approximately
25m and 35m, the window frames were adjusted to a standard block size of 25m. The wind averaging window
is shown in Figure 5.4 , and the sky view factor averaging window is shown in Figure 5.5.

5.1. Computational workflow 37

Figure 5.4: Wind averaging footprint from roughness layer to 1.2m wind speed factors field.

Figure 5.5: Vegetation fraction and sky view factor averaging footprint for determining the UHI max depending on the wind direction.

38 5. PETs simulator

(a) (b) block size 1, N (c)

(d) block size 1, W (e) block size 1, no wind (f) block size 1, E

(g) (h) block size 1, S (i)

Figure 5.6: Wind direction for the research area of 100x100m.

In pet_simulator this is made possible through

Listing 5.1: clip to extended research area window code snippet

1 # clip to extended research window

2 outputfile = f'{self.spatial.directory_out}input \\{ self.spatial.label}_{

name}.tif '

3 bounds = (self.spatial.xmin -xleft , self.spatial.ymin -ydown , self.spatial.

xmax+xright , self.spatial.ymax+yup)

4 gdal.Warp(outputfile , intiff , outputBounds=bounds)

Listing 5.2: visualisation tif for in the report code snippet

1 self.TifToJPG(self.spatial.directory_out , 'input ', f'{self.spatial.label}_{

name}', large=True)

Listing 5.3: writing the array to text file code snippet

5.1. Computational workflow 39

1 if self.dlg.checkBox.checkState ():

2 ArrayWriteG(f'{self.testin}', f'{self.spatial.label}_{name}', f'{ outputfile

}')

Listing 5.4: adding layer to QGIS project

1 raster_layer = QgsRasterLayer(outputfile , f'{name}', 'gdal ') # input from

file

2 if not raster_layer.isValid ():

3 print('Error: Invalid raster layer.')

4 else:

5 QgsProject.instance ().addMapLayer(raster_layer)

Wind calculation
python code: fraction_area_buildings_treeregr
input: buildings_mask, buildings_height, trees_mask, trees_height
output: wind_2d

Original input data building map vector 1(m) https://www.geofabrik.de/ open data lidar height raster
1(m) https://www.ahn.nl/ahn-4 open data tree map vector 1 (m) https://diensten.rotterdam.nl/ar
cgis/rest/services/SB_Infra or bgt download https://app.pdok.nl/lv/bgt/download-viewer/

open data Input data for code buildings_mask Figure D.4, buildings_height Figure D.5, trees_mask Figure D.7,
trees_height Figure D.6 Output fraction_area_buildings_treeregr wind_2d Figure 5.7 on blocksize scale The
building mask scaled area

Listing 5.5: The building mask scaled area code snippet

1 building_area = np.mean(mask_building_fine[istart: iend + 1, jstart: jend +

1])

2 if building_area > 1e-2:

3 building_height[i,j] = np.mean(building_height_fine[istart: iend + 1,

jstart: jend + 1]) / building_area

4 mask_building[i, j] = 1.0

5 tree_area = np.mean(mask_tree_fine[istart: iend + 1, jstart: jend + 1])

6 if tree_area > 1e-2:

7 tree_height[i, j] = np.mean(tree_height_fine[istart: iend + 1, jstart: jend

+ 1]) / tree_area

8 mask_tree[i, j] = 1

Building weight scaled with wind

Listing 5.6: Building weight scaled with wind code snippet

1 if wind_on:

2 if WE: # east -west or west -east wind

3 for m in range(istart , iend + 1, 1):

4 for n in range(jstart , jjend , 1):

5 building_weight[i, j] += abs(building_height_fine[m, n + 1] -

building_height_fine[m, n]) * 0.5

6 tree_weight[i, j] += abs(tree_height_fine[m, n + 1] - tree_height_fine[m, n

]) * 0.5

7 else: # north -south or south -north wind

8 for n in range(jstart , jend + 1, 1):

9 for m in range(istart , iiend , 1):

10 building_weight[i, j] += abs(building_height_fine[m + 1, n] -

building_height_fine[m, n]) * 0.5

11 tree_weight[i, j] += abs(tree_height_fine[m + 1, n] - tree_height_fine[m, n

]) * 0.5

Building weight scaled without wind

https://www.geofabrik.de/
h
https://diensten.rotterdam.nl/arcgis/rest/services/SB_Infra
https://diensten.rotterdam.nl/arcgis/rest/services/SB_Infra
https://app.pdok.nl/lv/bgt/download-viewer/

40 5. PETs simulator

Listing 5.7: Building weight scaled without wind code snippet

1 else: # no wind

2 for m in range(istart , iend + 1, 1):

3 for n in range(jstart , jjend , 1):

4 building_weight[i, j] += abs(building_height_fine[m, n + 1] -

building_height_fine[m, n]) * 0.5

5 tree_weight[i, j] += abs(tree_height_fine[m, n + 1] - tree_height_fine[m, n

]) * 0.5

6

7 for n in range(jstart , jend + 1, 1):

8 for m in range(istart , iiend , 1):

9 building_weight[i, j] += abs(building_height_fine[m + 1, n] -

building_height_fine[m, n]) * 0.5

10 tree_weight[i, j] += abs(tree_height_fine[m + 1, n] - tree_height_fine[m, n

]) * 0.5

Building front computation

Listing 5.8: Building front computation code snippet

1 # calculate building and tree fronts for a cell using its window (1 no

blockage , 0 fully blocked)

2 tree_front = 0

3 building_front = 0

4

5 for m in range(istart , iend + 1, 1):

6 for n in range(jstart , jend + 1, 1):

7 building_front += building_weight[m, n] * buildingfactor

8 tree_front += tree_weight[m, n] * treefactor

Figure 5.7: Output files on research area.

Ndvi large calculation
python code: ndvi_infra_large
input: rgb, infr, water_mask, tree_mask
output: ndvi, vegfra, ndvi_crop_mask, ndvi_tree_mask

Original input data aerial photo (RGB) raster 1(m) 0.25 https://www.pdok.nl/ open data, near infrared
(NIR) raster 1(m) 0.25 https://www.pdok.nl/ open data water map vector 1(m) https://www.geofabri
k.de/ Input data code input rgb Figure D.12, infr Figure D.11, water_mask Figure D.10, tree_mask Figure D.7
output NDVI Figure 7.20a, NDVI crop mask Figure 7.20b NDVI tree mask Figure 7.20c, vegetation fraction
Figure 7.20d

1 lufo_rgb , meta = GeotifToArray(rgb , 3)

https://www.pdok.nl/
https://www.pdok.nl/
https://www.geofabrik.de/
https://www.geofabrik.de/

5.1. Computational workflow 41

2 lufo_infr , meta = GeotifToArray(infr , 3)

3 r = lufo_rgb[:, :, 0]. astype(int)

4 g = lufo_rgb[:, :, 1]. astype(int)

5 b = lufo_rgb[:, :, 2]. astype(int)

6 infr = lufo_infr[:, :, 0]. astype(int)

7 ndvi_infr = (infr - r) / (infr + r)

8 ndvi_infr[ndvi_infr < 0] = 0

9 arr = ndvi_infr

(a) NDVI (b) NDVI crop mask

(c) NDVI tree mask (d) vegetation fraction

Figure 5.8: Intermediate output files on research area.

Fveg vegetation footprint calculation

python code: vegetation_footprint
input: vegfra
output: vegfra_2d

Input data from ndvi_infra_large Figure 7.20d Output data vegfra_2d Figure 5.9 with blocksize resolution in
this case 25m

42 5. PETs simulator

Figure 5.9: Scaled vegetation fraction wind.

Sky view factor footprint calculation
python code: skyviewfactor_footprint
input: skyview_factor
output: skyview_2d

Original input data Sky-view factor map raster 1m https://api.dataplatform.knmi.nl/open-data/

v1 open data with API provided with the code get_skyview.py Input data code skyviewfactor_footprint 1m
resolution Figure D.8 Output data skyview_2d with blocksize resolution in this case 25m Figure 5.10

Figure 5.10: Scaled sky view fraction wind.

Urban heat Island Max calculation
python code: urban_heat
input: vegfra_wind, svf_wind
output: urban_heat

Input data vegfra_wind with 25m resolution from vegetation_footprint Figure ??, svf_wind with 25m reso-
lution from skyviewfactor_footprint Figure ?? Output data Urban heat morphology geospatial contribution
Figure 5.11

Listing 5.9: urban heat morphology code snippet

1 uhi *= 2

https://api.dataplatform.knmi.nl/open-data/v1
https://api.dataplatform.knmi.nl/open-data/v1

5.1. Computational workflow 43

2 uhi = uhi - vegfra - svf

3 factor = (S * (Tmax - Tmin) ** 3 / U) ** (1 / 4)

4 uhi *= factor

5 im3 = ArrayToGeotif(uhi , meta)

Figure 5.11: Urban heat.

PET calculation
python code: pet_calculate
input: shadow, urban_heat, wind_2d, svf, svf_mask, ndvi_crop_mask, ndvi_tree_mask
output: pets

Input data Shadow Figure D.13, urban_heat Figure 5.11, wind_2d Figure 5.7, svf Figure D.8, svf_mask Fig-
ure D.9, ndvi_crop_mask Figure 7.20b, ndvi_tree_mask Figure 7.20c. Output Hourly Physiological Equivalent
Temperature Figure 5.12 The calculation of the PET could be performed on the day with sun and without sun
areas, as well as on places were there is vegetation present. As well as in the night situation.

Listing 5.10: wet bulb temperature code snippet

1 Ta = uhi[:] * diurnal + TT

2 Tw = TT * np.arctan (0.15198 * (RH + 8.3137) ** 0.5) + np.arctan(TT + RH) -

np.arctan(

3 RH - 1.676) + 0.0039184 * RH ** 1.5 * np.arctan (0.023101 * RH) - 4.686

Listing 5.11: scaling factor multiplied with wind speed 60m height code snippet

1 wind = ((wind - 0.125) * 0.5829 + 0.125) * FF

2 wind[wind < 0.5] = 0.5

Listing 5.12: PET calculation day situation code snippet

1 # day

2 if Q > 0:

3 sun_temp , meta = GeotifToArray(im1 , 1)

4 sun = sun_temp * (1 - trees_2m [:])

5 PETshade = (-12.14 + 1.25 * Ta[:] - 1.47 * np.log(wind [:]) + 0.060 * Tw + 0.015

* svf [:] * Qdif +

6 0.0060 * (1 - svf [:]) * stef * (Ta[:] + 273.15) ** 4) * (1 - sun [:]) * svf_mask

[:]

7 PETveg = (-13.26 + 1.25 * Ta[:] + 0.011 * Q - 3.37 * np.log(

8 wind [:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind [:]) + 5.56 * np.sin(

9 sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind [:]) * np.sin(

10 sunalt / 360 * 2 * np.pi) + 0.546 * Bveg + 1.94 * svf [:]) * mask_vegfra [:] *

sun [:] * svf_mask [:]

44 5. PETs simulator

11 PETnoveg = (-13.26 + 1.25 * Ta[:] + 0.011 * Q - 3.37 * np.log(

12 wind [:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind [:]) + 5.56 * np.sin(

13 sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind [:]) * np.sin(

14 sunalt / 360 * 2 * np.pi) + 0.546 * Bnoveg + 1.94 * svf [:]) * (1 - mask_vegfra

[:]) * sun[:] * svf_mask [:]

15 PET = PETshade + PETveg + PETnoveg

Listing 5.13: PET calculation night situation code snippet

1 # night

2 else:

3 PETshade = (-12.14 + 1.25 * Ta[:] - 1.47 * np.log(wind [:]) + 0.060 * Tw +

0.015 * svf [:] * Qdif

4 + 0.0060 * (1 - svf [:]) * stef * (Ta[:] + 273.15) ** 4) * (1 - sun [:]) *

svf_mask [:]

5

6 PET = PETshade

Figure 5.12: PET.

5.2. PET simulator
Pet simulator eventually combines all the python files together as shown in Appendix B. It combines geo-
tif.creator places the retrieved arrays as georeferenced tifs in EPSG:28992 - Amersfoort / RD New coordinates
of x and y. pet_parameters which combines the static data of the location and the dynamic weather data of
the generated weather.py csv files see subsection dynamic parameters and static parameters. With addGt-
tiffLayer the link between QGIS and python is made to immediately publish all the in-between results to the
visualisation software of QGIS.

Listing 5.14: Example of invocation of PET calculate in PET simulator.py

1 from .algorithm.pet_calculate import PET_calculate

2 flag = []

3

4 # import geotiff

5 flag.append(time.perf_counter ())

6 name = f'Shadow_{self.weather.year}{self.weather.month :02d}{self.weather.

day :02d}_{self.weather.hour :02d}{self.weather.min :02d}_LST '

7 name = "Shadow_20150701_1400_LST"

8

9 im1 = self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial.

label}_{name}.tif ') # small

5.3. User interface 45

10 im2 = gdal.Open(f'{self.spatial.directory_out}output \\{ self.spatial.label}

_urban_heat.tif ') # small

11 im3 = gdal.Open(f'{self.spatial.directory_out}output \\{ self.spatial.label}

_wind.tif ') # small

12 im4 = self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial.

label}_svf.tif ') # small

13 im5 = self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial.

label}_svf_mask.tif ') # small

14 im6 = self.clipper(self.spatial.directory_out , 'output ', f'{self.spatial.

label}_ndvi_crop_mask.tif ') # small

15 im7 = self.clipper(self.spatial.directory_out , 'output ', f'{self.spatial.

label}_ndvi_tree_mask.tif ') # small

16

17 # calculate

18 flag.append(time.perf_counter ())

19 im8 = PET_calculate(self.spatial , self.weather , im1 , im2 , im3 , im4 , im5 ,

im6 , im7) # small #nonetype

20

21 # add layer and write geotiffs

22 flag.append(time.perf_counter ())

23 name = 'pets '

24 self.addGttiffLayer(f'{self.spatial.directory_out}output\\', name , im8 ,

driver , root)

25 im1 = im2 = im3 = im4 = im5 = im6 = im7 = None

26 self.dlg.label_17.setText('checked ')

27 flag.append(time.perf_counter ())

28 self.TifToJPG(self.spatial.directory_out , 'output ', f'{self.spatial.label}

_pets ')

29 flag.append(time.perf_counter ())

5.3. User interface

Qt designer

The software that is necessary for running the PET simulation is chosen to be Python and QGIS. QGIS is
meant as the graphical user interface for users to visualize the (in-between) results. Python is required to do
the computations. In order to make the link between Python and QGIS, Qt designer is necessary. Qt designer
is developed to create a plugin in QGIS that users can use to create their maps. This will enhance the reprodu-
cability of the (in-between) results for several stakeholders in the process. More in depth explanation is stated
in the user manual Chapter C. Some libraries that are required are GDAL package to make the georeferenced
projections from matrix calculations to the preferred georeference system. For running the script also the
plugin UMEP is still used in QGIS in order to create the shadow files from the DSM-DTM for each hour. In
the plugin installer it is possible to install UMEP and the UMEP processing, see B. In order to create reprodu-
cability the plugin is developed see Figure 5.13. This is created through the Plugin builder tool in QGIS. Each
QGIS version is compiled with Qt designer. Qt Designer is designed to create a graphical user-interface that
is compatible with python and QGIS. For the plugin three windows are developed: first the static parameters
of the built environment location and the reference to the directory of the file locations on the device of the
basis maps. Next window will read the csv files for each run and hour simulation. Also, after clicking on this
window the input files of the extended research area are generated and visualised in QGIS. The third window
will indicate the processing of the several python files for eventually generating the required research area
maps with in-between results and end results.

46 5. PETs simulator

Figure 5.13: Qgis plugin screen PET Simulator plugin.

Parameters for spatial information and weather conditions

In the plugin’s parameter section, both dynamic climate data and static data are utilized. Dynamic data can
be obtained from the URL https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens of a
nearby weather location. Wageningen Herwijnen has been selected as the weather location for Wageningen,
while the weather station Rotterdam is used for Rotterdam (see Figure 5.14). When looking for a summer day
(above 20 °C) or a heatwave day (above 25 °C), an overview of the summer months is needed.

https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens

5.3. User interface 47

Figure 5.14: Weather stations Netherlands retrieved from.

In the case of a heatwave date, the 1st of July is chosen because it is above 25 degrees. For the vali-
dation, it is necessary to have good comparison material. The boxes that need to be checked at the knmi
https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens are YYYYMMDD, TT, FF, dd, Q, U.
YYYYMMDD represents the month, day, hour. TT represents the atmospheric temperature (°C). FF represents
the wind speed (in 0.1 m/s) averaged over the last 10 couple of minutes of the past hour. dd represents the
wind direction (°) averaged over the last 10 couple of minutes of the past hour 360=North, 90=East, 180=South,
270=West, 0=calm, 990=changeable. Q represents the Global irradiation (in J/cm2)/h. U represents the Rela-
tive humidity (%). As mentioned earlier, the Python code weather.py generates the CSV files for the dynamic
data used in the script. Table 5.1 is the dynamic weather data necessary for the CSV file.

https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens

48 5. PETs simulator

Figure 5.15: T atmospheric temperature for Rotterdam in the months june till september 2023 (Data retrieved from KNMI [0000] post-
processed by author

Table 5.1: Table dynamic data Wageningen 1 juli 2015

hour TT FF dd Q Qdif sunalt RH wind WE winddir day diurnal Tmin Tmax
9 26.4 5 100 711.1111 142.2222 48 52 TRUE TRUE E day 0.007 21.1 33
10 28 6 100 794.4444 158.8889 55.3 48 TRUE TRUE E day 0.03 21.1 33
11 29.8 6 100 855.5556 171.1111 60.1 44 TRUE TRUE E dayt 0.05 21.1 33
12 31.2 6 130 868.0556 173.6111 60.9 35 TRUE TRUE E day 0.07 21.1 33
13 32.1 5 130 825 165 57.4 37 TRUE TRUE E day 0.11 21.1 33
14 32.8 4 140 743.0556 148.6111 50.8 35 FALSE FALSE S day 0.16 21.1 33
15 32.9 5 120 629.1667 125.8333 42.5 37 TRUE TRUE E day 0.23 21.1 33
16 33 4 130 491.6667 144.1848 33.4 37 TRUE TRUE E day 0.31 21.1 33
17 33.2 4 120 338.8889 132.3261 24.2 39 TRUE TRUE E day 0.42 21.1 33
18 30.9 3 100 130.5556 113.7764 15.2 45 TRUE TRUE E day 0.56 21.1 33

For the static parameters ymax 442895 xmax 174698 ymin 441895 and xmin 173698 are chosen.

Listing 5.15: Link between Plugin and code for static and dynamic parameters

1 def importdata(self):

2

3 self.spatial.directory_in = self.dlg.lineEdit_3.text()

4 self.spatial.directory_out = self.dlg.lineEdit_2.text()

5 self.spatial.label = self.dlg.lineEdit_1.text()

6

7 with open(f'{self.spatial.directory_out}set.csv ', 'r') as fp:

8 lines = fp.readlines ()

9 lines = [line.strip() for line in lines]

10 lines = [line.split(',') for line in lines]

11 self.spatial.station = lines [3][1]

12 self.spatial.ymax = float(lines [4][1])

13 self.spatial.xmax = float(lines [5][1])

14 self.spatial.ymin = float(lines [6][1])

15 self.spatial.xmin = float(lines [7][1])

16 self.spatial.cellsize = float(lines [8][1])

17 self.spatial.blocksize = float(lines [9][1])

18 self.spatial.Resize ()

19 self.weather.TT = float(lines [10][1])

20 self.weather.FF = float(lines [11][1])

5.3. User interface 49

21 self.weather.dd = float(lines [12][1])

22 self.weather.wind , self.weather.WE , self.weather.winddir = wind_direction(

self.weather.dd , self.weather.FF)

23 self.weather.Q = float(lines [13][1])

24 self.weather.Qdif = float(lines [14][1])

25 self.weather.sunalt = float(lines [15][1])

26 self.weather.RH = float(lines [16][1])

27 self.weather.diurnal = float(lines [21][1])

28

29 self.dlg.lineEdit_7.setText(f'{self.spatial.ymax}') # north

30 self.dlg.lineEdit_6.setText(f'{self.spatial.xmax}') # east

31 self.dlg.lineEdit_5.setText(f'{self.spatial.ymin}') # south

32 self.dlg.lineEdit_4.setText(f'{self.spatial.xmin}') # west

33 self.dlg.lineEdit_17.setText(f'{self.spatial.cellsize}') # south

34 self.dlg.lineEdit_16.setText(f'{self.spatial.blocksize }') # west

35 self.dlg.lineEdit_3.setText(f'{self.spatial.directory_in }')

36 self.dlg.lineEdit_2.setText(f'{self.spatial.directory_out }')

37 self.dlg.lineEdit_1.setText(f'{self.spatial.label}')

38 self.dlg.lineEdit_15.setText(f'{self.spatial.station}')

39 self.dlg.lineEdit_8.setText(f'{self.weather.TT}')

40 self.dlg.lineEdit_9.setText(f'{self.weather.FF}')

41 self.dlg.lineEdit_10.setText(f'{self.weather.dd}')

42 self.dlg.lineEdit_12.setText(f'{self.weather.Q}')

43 self.dlg.lineEdit_13.setText(f'{self.weather.Qdif}')

44 self.dlg.lineEdit_14.setText(f'{self.weather.sunalt}')

45 self.dlg.lineEdit_11.setText(f'{self.weather.RH}')

Simulation process
Each layer will be put in the QGIS project to link the computational environment of Python computation
towards the visualization environment of QGIS.

Results
The results of the PET simulator are compared with the model of Koopmans in the next chapter. However, the
end product, the Physiological Equivalent Temperature map, displays heat stress. To communicate the results
properly, the principles from [Bertin, 2011] serve three main functions: recording information, communicat-
ing information, and processing or simplifying information. The recorded information presents calculated
Physiological Equivalent Temperatures. These are the visualization of the calculated maps of PET, which are
in a continuous colored way of 18 degrees to 50 °C PET. To communicate the data effectively to third parties,
classification of the PET for different levels of thermal perception and physiological stress on human beings
is required according to [Höppe, 1999]. This classification is shown in a table, using semantic coloring to
express slight cold and no thermal stress with cool tones, and the slight to extreme heat stress with warm to
extremely dark colors, reflecting the level of heat stress that people can handle (see Table 5.2).

PET Thermal perception Grade of physiological stress color code
13 - 18 °C Slightly cool Slight cold stress
18 - 23 °C Comfortable No thermal stress
23 - 29 °C Slightly warm Slight heat stress
29 - 35 °C Warm Moderate heat stress
35 - 41 °C Hot Strong heat stress
>41 °C Very hot Extreme heat stress

Table 5.2: Temperature and corresponding thermal perception

6
Physiological Equivalent Temperature

verification

Sensitivity analyses

A wind sensitivity analysis is carried out to understand the performance of the wind calculation for the scala-
bility of the data for use by urban designers, for the test case of urban environments such as cities. Therefore,
an analysis of the robustness of the newly introduced varying block sizes of 1m, 5m, and 25m of wind is car-
ried out. The frontal area density factors are also tested to validate the block size change as a granularity
option and accuracy validation with the output data from Koopmans. Koopmans used the original 35m block
size for his wind calculations. Runtime and scalability are also discussed for use by urban designers.

6.1. Wind direction

First, the wind direction will be evaluated. The QGIS plugin can generate different outcomes on the Windfield
based on the clip size of the extended areas. A closer look at the wind could be found in the comparison of the
100x100m area as mentioned with the wind direction in the previous chapter Figure 6.1. Figure 6.1b show-
cases wind coming from the North, Figure 6.1c showcases wind coming from the East, Figure 6.1d showcases
wind coming from the South, Figure 6.1e showcases wind coming from the West, Figure 6.1f showcases wind
wind is <2.5m/s therefore no wind.

51

52 6. Physiological Equivalent Temperature verification

(a) rgb image (b) north

(c) east (d) south

(e) west (f) nowind

Figure 6.1: Different wind directions files on research area 100x100m

It is evident that the wind scaling factor varies based on the frontal area from different wind directions.
North, East, and no wind result in a high frontal area, reducing the impact of wind on PET. In the southern
research area, there is less frontal area, leading to higher wind scaling factors. The colors are adjusted to the
minimum and maximum values of each field.

6.2. Block size 53

6.2. Block size
For the robustness of the data and accuracy, the built-in function is the block size, which can vary from 1m,
5m, and 25m approximately. For the area of 100x100m, this is the overview. As can be seen in the figure, the
scale of the values will be averaged in the same manner. Only the 1m is very accurate based on the whole
computation field, which leads to more spikes and fluctuations of the output data, whereas the 5m and 25m
are averaged more, thus containing a smoother field.

(a) rgb image (b) block size 1m

(c) building height (d) block size 5m

(e) tree height (f) block size 25m

Figure 6.2: Research area 100 x 100 m, eastern wind.

54 6. Physiological Equivalent Temperature verification

The robustness of the block size scale is evaluated by computing the mean square error, root mean square
error, and the r2 value to assess data similarity.

MSE(y, ŷ) = 1

N

N∑
i=1

(yi − ŷi)2 (6.1)

Comparing the blocksize between 1 and 5 there was a high correlation with the r2 score of 0.641.

Listing 6.1: MSE between blocksize 1 and blocksize 5 100x100 area

1 R**2 = 0.9863

2 MSE = 4.495 * 10**(-7)

3 RMSE = 0.00067

Listing 6.2: MSE between blocksize 5 and blocksize 25 100x100 area

1 R^2 = 0.8999

2 MSE = 2.0222 * 10**(-5)

3 RMSE = 0.004497

Listing 6.3: MSE between blocksize 1 and blocksize 25 100x100 area

1 R^2 = 0.8558

2 MSE = 2.119 * 10**(-5)

3 RMSE = 0.004

Figure 6.3: Trendline time data block size 5m

By comparing the different resolutions, it was found that the deviations in MSE are of similar small mag-
nitude. Additionally, a high degree of correlation is observed between the different block sizes, approaching
nearly 1.

6.3. Block size comparison 1000x1000 research area 55

6.3. Block size comparison 1000x1000 research area

For the robustness of the data and the accuracy the built-in function is the block size which can vary from 1m,
5m and 25m approximately. For the area of 1000x1000m this is the overview. As could be seen in the figure
winds the scale of the values will be averaged the same. Only the 1m is very accurate based on the whole
computation field which leads to higher and lower values, whereas Figure 6.4

(a) rgb image (b) block size 1m

(c) building height (d) block size 5m

(e) tree height (f) block size 25m

Figure 6.4: Research area 1000 x 1000 m, eastern wind.

56 6. Physiological Equivalent Temperature verification

6.4. Frontal area

Wind sensitivity for different wind surface density factors is seen in Table 6.1. The normal frontal density
factors (fdf) as mentioned in the formula of the wind are 0.6 respectively for the buildings and 0.3 * 0.9 crown
size height for the trees. A comparison is made to validate the outcome of different fdf.

fdf buildings fdf trees
run8sim16 0.6 0.27
run8sim17 0.1 0.27
run8sim18 0.9 0.27
run8sim19 0.6 0.03
run8sim20 0.6 0.6
run8sim21 0.3 0.27

Table 6.1: Frontal density factors.

This is showcased by the following figures Figure 6.5 for the building fdf and Figure 6.6 for the varying tree
fdf.

6.4. Frontal area 57

(a) PET fdf building 0.1 fdf tree 0.27 (b) eastern wind fdf building 0.1 fdf tree 0.27

(c) PET fdf building 0.6 fdf tree 0.27 (d) eastern wind fdf building 0.6 fdf tree 0.27

(e) PET fdf building 0.9 fdf tree 0.27 (f) eastern wind fdf building 0.9 fdf tree 0.27

Figure 6.5: Sensitivity analyses frontal density factor buildings.

58 6. Physiological Equivalent Temperature verification

(a) PET fdf building 0.6 fdf tree 0.03 (b) eastern wind fdf building 0.6 fdf tree 0.03

(c) PET fdf building 0.3 fdf tree 0.27 (d) eastern wind fdf building 0.3 fdf tree 0.27

(e) PET fdf building 0.6 fdf tree 0.6 (f) easterns wind fdf building 0.6 fdf tree 0.6

Figure 6.6: Sensitivity analyses frontal density factor trees.

The influence of a lower fdf of the buildings is causing much more roughness in the wind calculation and
therefore the PET, in comparison to the fdf for the trees. For the calibration section of this chapter the fdf
of buildings is adjusted because of the difference of blocksize width of 25 meters to the original 35 meters
approxiametely of the code of Koopmans et al. (2020).

6.5. Scalability 59

6.5. Scalability

To talk about the usability of the program for urban planners, the computation time according to the research
area is important. See Figure 6.7 and Figure 6.8. A lot of computing time is spent on the wind computation.
To examine the functionality across various scales, Tables 6.2, 6.3, 6.4 were created with an extrapolation to

Figure 6.7: Percentage time

Figure 6.8: Elapsed time (s)

match the size of Rotterdam.

Table 6.2: Blocksize 1 wind computing time extrapolated for South-Holland and the Netherlands

blocksize1 area (m2) t (s) t(min) t(h) t(day)
100 259.344 4.3224 0.07204 0.0030017
200 1074.287 17.90478 0.298413 0.0124339
500 5846.292 97.4382 1.62397 0.0676654
1000 23250.96 387.516 6.4586 0.2691083
2000 47847.62 797.4603 13.29101 0.5537919

Rotterdam 10000 255537.4 4258.957 70.98261 2.9576089

60 6. Physiological Equivalent Temperature verification

Table 6.3: Blocksize 5 wind computing time extrapolated for South-Holland and the Netherlands

blocksize5 area (m2) t (s) t(min) t(h) t(day)
100 8.424 0.1404 0.00234 0.0000975
200 12.165 0.20275 0.003379 0.0001408
500 28.615 0.476917 0.007949 0.0003312
1000 107.562 1.7927 0.029878 0.0012449
2000 211.9064 3.531774 0.058863 0.0024526

Rotterdam 10000 1103.338 18.38897 0.306483 0.0127701

Table 6.4: Block size 25 wind computing time extrapolated for South-Holland and the Netherlands

block size25 area (m2) t (s) t(min) t(h) t(day)
100 24.439 0.407317 0.006789 0.0002829
200 8.164 0.136067 0.002268 9.449E-05
500 13.716 0.2286 0.00381 0.0001588
1000 27.198 0.4533 0.007555 0.0003148
2000 62.82 1.047 0.01745 0.0007271

Rotterdam 10000 257.718 4.2953 0.071588 0.0029828

The trend lines for the different block sizes could then be plotted.

(a) rgb changed (b) infr changed

Figure 6.9: Trendline time data block size 1m

6.6. Calibration of the code 61

(a) rgb changed (b) infr changed

Figure 6.10: Trendline time data block size 5m

(a) rgb changed (b) infr changed

Figure 6.11: Trendline time data block size 2m

As can be seen from the trend lines, block size 25 is the most useful option for larger-scale calculations
as opposed to 1m or 5m. However, at a scale of 100x100m, it will take a little longer to average the data.
However, as can be seen from the accuracy of the data, some precise information will be lost. Therefore, for
sizes smaller than Rotterdam, the block size of 5m will be more favorable for checking the performance of the
public space.

6.6. Calibration of the code

(a) PET fdf building 0.16 fdf tree 0.27 (b) Eastern wind fdf building 0.16 fdf tree 0.27

Figure 6.12: Calibrated frontal density factor trees.

62 6. Physiological Equivalent Temperature verification

(a) PET fdf building 0.6 fdf tree 0.27 (b) Eastern wind fdf building 0.6 fdf tree 0.27

Figure 6.13: Outcome Sytse Koopmans

The updated model was validated using the findings from Koopmans et al. (2020), and adjustments were
made to the five factors based on this validation. Setting the fdf of the buildings to 0.16 and maintaining the
fdf of the trees at 0.27 resulted in a high r2 score in the final PET map.

Listing 6.4: MSE between blocksize 25 and blocksize 35 wind outcome sytse 1000x1000 area

1 R^2 = 0.7803

2 MSE = 0.0774

3 RMSE = 0.2782

Listing 6.5: MSE between blocksize 25 and blocksize 35 PET outcome sytse 1000x1000 area

1 R^2 = 0.6399

2 MSE = 137

3 RMSE = 11.7

One possible explanation for the discrepancy in the R2 value between the 25m and 35m block sizes, de-
spite a small MSE, is the scaling of wind data values to 0 and 1, respectively. However, there are differences
in the R2 value that may be attributed to adjustments in the fdf of the buildings for the 35m block size. Ad-
ditionally, during the refactoring phase, there may have been a downgrade in the modeling of wind values
to either a 35m or 25m resolution, which could be addressed in future improvements. Therefore the positive
correlation of the PET is not too strong at the moment. To make it better there should be an evaluation of
the other in-between measures as well. The removal or addition of buildings also impacts the generated PET
map, contributing to the relative large MSE deviation in the mean square error. Despite this, the R2 value is
therefore not too high to the preferred 0.7 to 1.0 correlation with the final result.

In conclusion, the wind sensitivity on blocksize resulted different resolutions with high positive corre-
lation. for the operability for larger scale research areas the wind sensitivity with the blocksize of 25 meter
could be easily used to determine a brief overview of the results. Due to the refactoring the fdf factor of the
buildings needed to be adjusted to a lower value to be calibrated with the end result. Refinement in the fdf
building and other in-between steps in the process are required in order to come to a higher PET resemblance
with the code of Koopmans (2020).

7
Physiological Equivalent Temperature

application

The flowchart depicting the advanced refactored PET calculator can be found in Figure ??. The refactored
python code is available in Appendix B, while the User Manual is presented in Appendix C. Additionally,
Chapter E details the step-by-step process of the extended research input files of Rotterdam North, which was
utilized to calculate the PET for Bospolder Tussendijken [van Esch, 2024], see Figure 7.1. Other applications
to determine the walkability of the place are described in Chapter K Walkability.

Figure 7.1: Location of Bospolder Tussendijken in Rotterdam

63

64 7. Physiological Equivalent Temperature application

7.1. PET calculation
For the days to be modeled, an overview is made to depicts the days with a temperature above 20 °degrees
and a day above 25 °C, see Figure 7.2 .

Figure 7.2: Fig. T atmospheric temperature for Rotterdam in the months june till september 2015 (Data retrieved from KNMI [0000]
post-processed by author)

The chosen dates are the 1st of July and the 29th of June, see Table 7.1 and Table 7.2.

Table 7.1: Table dynamic data Rotterdam 1 juli 2015

hour TT FF dd Q Qdif sunalt RH wind WE winddir day diurnal Tmin Tmax
9 27.2 4 100 699.425 155.9823 48 45 TRUE TRUE E day 0.007 23.7 34
10 29 5 100 808.84 154.012 55.3 43 TRUE TRUE E day 0.03 23.7 34
11 30.3 7 90 865.625 169.524 60.1 39 TRUE TRUE E day 0.05 23.7 34
12 31.8 6 110 865.625 176.726 60.9 32 TRUE TRUE E day 0.07 23.7 34
13 32.5 5 110 821.305 169.524 57.4 29 TRUE TRUE E day 0.11 23.7 34
14 33 5 120 745.13 158.998 50.8 30 TRUE TRUE E day 0.16 23.7 34
15 33.8 5 120 634.33 143.5459 42.5 31 TRUE TRUE E day 0.23 23.7 34
16 34 5 130 501.37 134.1004 33.4 29 TRUE TRUE E day 0.31 23.7 34
17 33.8 5 130 351.79 121.1653 24.2 33 TRUE TRUE E day 0.42 23.7 34
18 32.9 5 110 202.21 95.36945 15.2 36 TRUE TRUE E day 0.56 23.7 34

Table 7.2: Table dynamic data Rotterdam 29 june 2015

hour TT FF dd Q Qdif sunalt RH wind WE winddir day diurnal Tmin Tmax
9 20.5 4 270 559.54 278.8815 48 65 TRUE TRUE W day 0.007 11.3 23.1
10 21.5 4 250 704.965 243.5441 55.3 57 TRUE TRUE W day 0.03 11.3 23.1
11 22.5 4 270 738.205 261.424 60.1 58 TRUE TRUE W day 0.05 11.3 23.1
12 21.3 4 270 735.435 271.0638 60.9 64 TRUE TRUE W day 0.07 11.3 23.1
13 22 4 290 742.36 230.7026 57.4 64 TRUE TRUE W day 0.11 11.3 23.1
14 21.7 3 270 646.795 245.0592 50.8 58 TRUE TRUE W day 0.16 11.3 23.1
15 22 3 320 533.225 237.4175 42.5 53 TRUE TRUE N day 0.23 11.3 23.1
16 21.2 3 350 368.41 228.7261 33.4 56 TRUE TRUE N day 0.31 11.3 23.1
17 20.4 3 350 271.46 171.3269 24.2 57 TRUE TRUE N day 0.42 11.3 23.1
18 19.9 2 350 210.52 89.52669 15.2 55 FALSE TRUE C day 0.56 11.3 23.1

7.1. PET calculation 65

Possible wind directions
The wind field direction possibilities of Rotterdam Bospolder Tussendijken case study, see Figure 7.3.

(a) rgb image (b) north

(c) east (d) south

(e) west (f) nowind

Figure 7.3: Different wind directions files on research area Rotterdam Bospolder Tussendijken

1st of Juli 2015
First the wind calculation is executed. On the 1st of Juli there is only wind coming from the east, see Figure 7.4.

66 7. Physiological Equivalent Temperature application

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.4: 18:00

The PET is determined with these influences, , see Figure 7.5.

7.1. PET calculation 67

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.5: 18:00

In the color styling of the PET classes, see Figure 7.6. , see Figure 7.3 showcases the legend.

68 7. Physiological Equivalent Temperature application

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.6: Color classes of PET on the 1st of July 2015

PET Thermal perception Grade of physiological stress color code
13 - 18 °C Slightly cool Slight cold stress
18 - 23 °C Comfortable No thermal stress
23 - 29 °C Slightly warm Slight heat stress
29 - 35 °C Warm Moderate heat stress
35 - 41 °C Hot Strong heat stress
>41 °C Very hot Extreme heat stress

Table 7.3: Temperature and corresponding thermal perception

7.1. PET calculation 69

29th of June 2015

First the wind calculation is executed. On the 29th of June 2015 there is only wind coming from the west and
north, see Figure 7.7.

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.7: 18:00

The PET is determined with these influences, see Figure 7.8.

70 7. Physiological Equivalent Temperature application

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.8: 18:00

In the color styling of the PET classes, see Figure 7.9. For the legend see Figure 7.4

7.2. Applications 71

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.9: Color classes of PET on the 29th of June 2015

PET Thermal perception Grade of physiological stress color code
13 - 18 °C Slightly cool Slight cold stress
18 - 23 °C Comfortable No thermal stress
23 - 29 °C Slightly warm Slight heat stress
29 - 35 °C Warm Moderate heat stress
35 - 41 °C Hot Strong heat stress
>41 °C Very hot Extreme heat stress

Table 7.4: Temperature and corresponding thermal perception

7.2. Applications

72 7. Physiological Equivalent Temperature application

Determining thermal accessibility

To see the performance of the accessibility on the PET heat grid, to calculate walking accessibility, the deci-
sion was made to use the generated maps of PET per hour as input. While vector integration could have been
an option, the variation in PET on a small scale means that an average value for a path segment wouldn’t ac-
curately represent the whole picture. Additionally, there is no pedestrian network of line segments available;
therefore, the raster represents the area to traverse. Another decision could be to add the values on a vector
pedestrian network. Due to the limited time and lack of finding a good program to add the values of PET
on a pedestrian network, the raster data was used. Next to that, raster data is also more storage-efficient for
large continuous datasets since it only stores data values at each grid cell, unlike vector data which requires
explicit storage of individual vector features and can be more memory-intensive. Raster data also enables the
creation of visually appealing maps, especially when rendering continuous data for the accessibility of places
in an isochrone manner.

Eventually the tool r.walk is used from the Grass package in QGIS. Input that is given is the DEM on which
people can walk upon. The cost layer is the PET map, but is first translated to a normalized friction cost map.

Listing 7.1: Normalization in QGIS Raster Calculator

1 ("pet_hour" - 21) / (45 - 21)

The preferred accumulation cost will be the temperature experience of 21 PET °C within an estimated
walking distance of 500 m for elderly people and 200 m for young children. The maximum friction cost will
depend on the target groups. It’s possible to adjust this as needed. Starting points are essential, and parks are
provided as an example. However, accessibility can change throughout the day. The r.walk function calculates
the cumulative cost of moving between different geographical locations on an elevation raster map. The
output includes two raster maps: one showing the lowest cumulative cost (time) of moving from each cell
to user-specified starting points, and another illustrating the direction of movement to the subsequent cell
along the path back to the starting point as movement direction. In comparison to r.cost, this function takes
into account not only the friction map but also anisotropic travel time. This considers variations in walking
speed associated with both downhill and uphill movements. Figure 7.10, 7.11, and 7.12 showcase the service
area of the Dakpark and park 1943, the cumsum from the Visserijplein market square, and the cumsum from
several playgrounds in the neighborhood on warm days of the 29th of June and the 1st of July in 2015. It’s
worth noting that the thermal accessibility service area of the market square and the parks are not covered
all the time in the whole neighborhood, and on the 1st of July, they both shrink in area. In contrast, the
playgrounds, which are frequently represented in the neighborhood, are covered the most at all times. This
could be a potential strategy to invest in the nodes along the network before transforming the street network.

7.2. Applications 73

Figure 7.10: Cumulative cost of walking with thermal comfort to parks with 500m and 200m thermal comfort accessibility

Figure 7.11: Cumulative cost of walking with thermal comfort to market with 500m and 200m thermal comfort accessibility

74 7. Physiological Equivalent Temperature application

Figure 7.12: Cumulative cost of walking with thermal comfort to playgrounds with 500m and 200m thermal comfort accessibility

7.3. Testing the design interventions

For the testing of the design interventions, the current situation needs to be modified to the new situation
which need to be tested, see figures 7.13, 7.14. The procedure is written down below.

7.3. Testing the design interventions 75

Figure 7.13: Adding greenery and replacing parking spaces

76 7. Physiological Equivalent Temperature application

Figure 7.14: Trees added / updated by size

For enhancing the model with vegetation, the NDVI and RGB input files need to be modified:

1 Enhancing the simulation model with vegetation:

2

3 1 Utilize a shapefile to depict greenery on a separate layer. This can be

achieved by either referencing an RGB image or the bgt wegdeel layer to

match the existing landscape.

4 2 Navigate to the menu and select Raster > Conversion > Rasterize (Vector

to Raster).

5 Within the Rasterize calculator dialog:

6 a. Choose the polygon layer intended for rasterization as the input vector

layer and set it to value 1.

7 b. Define the output raster size , extent , and resolution.

8 c. During rasterization , areas lacking values will be assigned a nodata

value. Thus , it's essential to employ the raster tool 'Fill NoData

cells ' and assign a value of 0.

9 3 Proceed by setting the red value of the new layer from 1 to 40 (" Output

raster@1 "= 1) * 40.

10 a. Subsequently , generate two additional layers filled with 0. Merge the 40

band with the other two layers of 0 using raster > miscellaneous >

7.3. Testing the design interventions 77

merge , opting for the "Place each input file into a separate band"

option.

11 b. Go to Layer > Create Layer > New Raster Layer from the menu. Specify

dimensions , extent , and resolution for the new raster layer , ensuring

alignment with the existing ndvi_infr image. Designate three bands for

the new raster layer.

12 c. Utilize the raster calculator tool (accessible from the Processing

Toolbox) and input the expression 40 * (band@1 > -1), where band@1

represents the first band of the new raster layer. This expression will

assign a value of 40 to all pixels in the first band. Repeat this

process for the remaining two bands if specific values are required.

13 4 Combine the new raster layer with existing layers , such as ndvi_infr@1

and ndvi_infrz@1 , creating a new band named "infrnew_add ."

14

15 To merge with the existing RGB image and rgb_infr , follow steps 3 to 5 as

outlined above.

These are the adapted rgb and infr input files cropped to the research area, Figure 7.15.

(a) rgb changed (b) infr changed

Figure 7.15: rgb and infr changed in values on specific streets and visserijplein

(a) tree height adapted (b) sun areas at 15:00 from tree height

Figure 7.16: Shadow influence at 15:00

The generated shadow pattern after updating the treemask and tree height with the new trees of 2m radial
see figure 7.17. For artificial constructutions the modifications were made directly in the shadow files. This

78 7. Physiological Equivalent Temperature application

is for the Visserijplein and Schiedamseweg the case.

(a) 9:00 (b) 12:00

(c) 15:00 (d) 18:00

Figure 7.17: Sun pattern over the day with design interventions of adaptation of trees

The generated PETs are in Figure 7.18.

7.3. Testing the design interventions 79

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.18: 18:00

In the color styling of the PET classes, see Figure 7.19.

80 7. Physiological Equivalent Temperature application

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.19: Color classes of PET on the design interventions on the 1st of July 2015

The difference in PETS in comparison before the interventions are marked in figure Figure ??.

The difference in PETS in comparison before the interventions are marked in figure 7.20 on the places of
intervention.

7.3. Testing the design interventions 81

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.20: 18:00

For a better closeup of the public spaces where the interventions took place are Figure 7.21. There is a
mitigating effect on the 1st of July.

82 7. Physiological Equivalent Temperature application

Figure 7.21: Comparison of public spaces after heat mitigation measures

Design interventions tested with physiological equivalent models offer a powerful means to simulate and
understand how changes to the built environment impact human health. These models allow researchers and
designers to analyze complex interactions between environmental factors and physiological responses in a
controlled setting. This method poses speculative design scenario’s to be tested which will serve the human
comfort and health. At the moment it is possible to adjust the greenery and the tree and building height for
the simulations. The input pre-processing phase can be smoother. Collaboration among architects, planners,
engineers, and health experts is facilitated by these interdisciplinary tools, leading to optimized designs that
benefit diverse populations. Ultimately, integrating physiological equivalent models into design processes
enhances the overall quality and sustainability of built environments, fostering healthier communities.

8
PETs evaluation

8.1. Reproducability

Input data

The input data is focused on the datasets required to run the method in order to conduct the results. The
input data is categorised in whenever they are in non-proprietary format, if third party reuse is possible, if
the guidelines are referenced to the data. The datasets provided are in non-proprietary formats and include
Geo tiff, text, and vector datasets in Geopackage format. The spatial data consists of raster GeoTiff and vector
datasets, while the climate data is in text format. The text file is derived from [KNMI, 0000] and contains
hourly data. It includes atmospheric temperature (TT), wind speed (FF), wind direction (DD), global solar
radiation (Q), relative humidity (RH), and minimum and maximum temperatures (Tmin and Tmax) between
8:00 UTC and 9:00 UTC of the following hour. It also includes the average daily wind speed (U). The file has
been modified with pysolar.py to calculate Qdif, generate Sunalt, activate the Day/Night switch, and display
the diurnal factor on an hourly basis, making it not immediately repeatable for other users. In addition to
the paper of Koopmans there is an improvement on third party reuse, since two of the input data are now
open access resources. The vector data, including building envelopes, trees, and water, are derived from
[Geofabrik, 2020] and trees from [?], saved as Geo-packages, and eventually rasterized as Tiffs in QGIS. The
workaround for Bomenregister is needed to make it more reproducable. For Rotterdam the data of trees can
be retrieved from https://diensten.rotterdam.nl/arcgis/rest/services/SB_Infra the tree
point coordinates can be retrieved with additional attribute information. Relevant attribute information are
height and crown size. With preparation actions in QGIS the points can be buffered and rasterized according
to half the crown size and the height of the tree_mask can be assigned to the specific rasters. In order to
retrieve the Skyview factor data an API code must be made available. This code for transferring information
of the webservice towards a raster data on their own device requires a script to be written to retrieve this
information. The code get_svf.py retrieves the input values of svf maps needed for the calculation of the
svf calculation. The code to transform the text file to the attributed required parameters is done through
pysolar.py and get_svf.py for retrieving the Sky view factor tiles and the trees with crownsize by [diensten
Rotterdam, 2023].

Methods

The method section is subdivided into pre-processing, method, analysis and processing, and computational
environment. The software is open and available via GitHub or a plugin of QGIS. This was due to the lack of
amount of money to create reproducible software for third-party use. The PET simulator is available through
© 2024 by Marieke van Esch is licensed under CC BY-SA 4.0 (created with https://chooser-beta.creati

vecommons.org/) via https://github.com/mariekeve/pet_simulator.git see Figure 8.1, therefore
this reproducible software is for third-party use.

83

https://diensten.rotterdam.nl/arcgis/rest/services/SB_Infra
https://chooser-beta.creativecommons.org/
https://chooser-beta.creativecommons.org/
https://github.com/mariekeve/pet_simulator.git

84 8. PETs evaluation

Figure 8.1: Fig. Github page for retrieving the PET simulator plugin repository

The pre-processing reproduction steps are documented in the User manual Chapter C. As well as the
Wageningen test area and the difference Wageningen test area. All parameters are provided: The parame-
ters are obtained by the spatial and dynamic parameters section. The dynamic section entails the converted
KNMI hourly values. And the static parameters are obtained by giving the wished spatial frame for your out-
put, those are summurised in pet_parameters.py. For the method, the approach of calculating the PET is
intended to calculate the wind by the MacDonald method validated for the Dutch context (to be more spe-
cific in the Wageningen Herwijnen context). https://github.com/mariekeve/pet_simulator.git

contains a README.txt file explaining all the python files separately and their intermediate results. For the
analysis part, the same in-between output should be generated and reproduced through other parties. The
processing involves using Python software for computational steps, along with importing libraries such as
bindings PyQt for Qt designer, geospatial libraries like from osgeo import gdal, osr, ogr. Next up calculation
libraries like numpy, pandas, multiprocessing, datetime, time, matplotlib, PIL, csv and pvlib. There are ex-
tension of Python files: ndvi_calculator, pet_parameter, geotiffcreator, svf_footprint, vegfra_footprint, frac-
tion_area_buildings_treeregr, PET_simulator, urban_heat, get_svf.py, pysolarv1 and PET_calculate. These
Python files are interconnected, leading to jointed results. The ndvi_calculator is used to calculate areas
that qualify as evaporative surfaces and contain a Bowen ratio. svf_footprint and vegfra_footprint depend on
wind direction to average the values on a 25m resolution. fraction_area_buildings_treeregr is for calculating
wind. PET_calculate combines output files of intermediate steps and climate dynamic data to calculate PET
in sunny and shady locations. Computational environments are documented and provided: the computa-
tional environment is Python and are documented. Next to this QGIS is used as a visualisation and commu-
nication environment to use for different third parties. This is possible through the QGIS plugin throughQT
designer QGIS plugin developer.

The visualization environment is QGIS. This is an graphical environment used by urban designers. Through
the integration of PyQt the intermediate results are immediately put in the QGIS project. Therefore the
transparancy of the intermediate output files is upgraded for third party users with expertise and not. Ver-
sions of relevant software components (libraries, packages are provided). The version of GDAL 3.7.1 needs
to be installed on both QGIS 3.30 and your Python 3.9 environment. Also the newest version of UMEP 4.0.4
needs to be installed on your device. The run was ran with The HP Zbook with Intel Core i7 delivers high
performance with its powerful CPU, boasting a 2.2 GHz base frequency and up to 4.1 GHz maximum Turbo
Boost frequency across its 6 cores. It has an installed RAM of 16.0 GB which is a substantial amount of running
separate tasks. The permanent storage capacity of the PC is 475GB.

Results
The results of the code have been verified for the Wageningen area, and the names of the services for down-
load are provided. The software has been assessed through interaction with the publishers. A camera-ready
paper will be published after the submission of the thesis. This thesis is reviewed by two other mentors and
is published whilst it was finished. The software is available through the GIT https://github.com/marie

keve/pet_simulator.git.

https://github.com/mariekeve/pet_simulator.git
https://github.com/mariekeve/pet_simulator.git
https://github.com/mariekeve/pet_simulator.git

8.2. Assessment reproducability. 85

Input data 2
Methods pre-processing 1

method, analysis, processing 2
computational environment 3
visualisation 2

Results 3

8.2. Assessment reproducability.
Table ?? deals with the reproducability of the refactored code and the integration of a QGIS plugin. The main
points of improvement are to improve the accessibility of the input datasets. Unfortunately, modifying input
files to test alternative designs is still an intensive task for third-party use, but not impossible. A description
is given in chapter 7. For the methods, the calculation workflow is more integrated with pet_simulator, the
parameters are in pet_parameters and the geospatial transformations are done in geotiff_creator. The result
and intermediate results of all calculations are provided by ndvi_calculator, svf_footprint, vegfra_footprint,
fraction_area_buildings_treeregr, urban_heat, get_svf.py, pysolarv1 and PET_calculate. The computing envi-
ronment is minimized to Python and QGIS as the visual environment. The advantage of the plugin is that the
intermediate results are also made available in the QGIS project to do applications like testing the design and
integrating other techniques like testing design interventions after modifying the original input files, street
orientation, attraction betweeness to determine the most walked streets for multiple destinations. The plugin
is publicly available via a GIT publication for use by third parties.

9
Discussions and limitations

9.1. Discussion
Validation
Due to the reproducability requirements and the refactoring of the computation model, a decision was made
to adopt a fixed block size of 25 meters for the computation, in contrast to the variable block sizes of 25 and
35 meters utilized in the computation model proposed by [Koopmans et al., 2020]. Consequently, the fraction
density factor of buildings needed adjustment to accommodate this newly specified block size. Subsequently,
validation of the data was conducted.

Interactivity of the graphical user interface of the QGIS plugin
The user interface was configured to accommodate the spatial and weather information requirements for
the specific location. Eventually, a screen displays the various Python procedures that have been executed.
Currently, specific directories need to be filled in to read the CSV file with spatial and weather data. It would be
beneficial to have API’s connected to facilitate the immediate creation of base maps for specific information
by a web server. Additionally, the KNMI pysolar is set up solely in Python for creating the .CSV files from the
KNMI .text files. This functionality could also be incorporated.

9.2. Limitations
Accuracy of open data for trees
Due to the restriction on accessing private information from [NEO and Geodan, 2024], the trees, along with
their individual additional information such as tree height and tree crown, were generated from openly ac-
cessible data provided by [diensten Rotterdam, 2023]. In this scenario, the area of the tree crown could po-
tentially be inaccurately represented in size compared to reality.

Computation memory
For run4 for the case study of Rotterdam, 23 GB is reserved for having the base maps for modeling 1 hour. For
the other hour days of the day specifically each 234 KB each have to be generated for the area. It is necessary
to have such amount of space available on your computer. The run was ran with The HP Zbook with Intel
Core which has a RAM of 16GB with 6 cores, with the potential to run calculations separately. The permanent
storage capacity of the PC is 475GB.

87

10
Conclusions

This research aimed to address the question: "How can a strategy be developed for mitigating heat stress
through Physiological Equivalent Temperature model while ensuring a livable environment for vulnerable
groups in Bospolder Tussendijken, Rotterdam, the Netherlands?"
The objective was twofold: to create an interactive tool indicating PET heat stress in urban areas of the Nether-
lands and to design a strategy specifically tailored to Bospolder Tussendijken. This part of the joint thesis
focused on reproducable tool to indicate the PET in Dutch cities..
The tool aims to model the Physiological Equivalent Temperature (PET) for outdoor thermal comfort. An
analysis of available software, particularly the PET developed by Deltaplan at Wageningen University [Pro-
gramme, 2018], was conducted. To enhance reproducability Agile guidelines are integrated. Sharing data via
an open platform was deemed optimal, facilitated by a QGIS plugin opening the Python code. A sensitivity
analysis for wind modulation was performed, and PET was applied to assess thermal comfort in the area.

10.1. Sub research questions answered
1. Which thermal comfort models do express heat stress?

Several models have evolved from the well-known Physiological Equivalent Temperature (PET) model,
ranging from thermostatically PMV and MEMI to a more universally comprehensible PET model across
disciplines. These models consider three key influences: dynamic climate data, static built environ-
ment data, and standardized physiological performances. Given the standardization of the PET model
in the Netherlands, it remains the appropriate choice for modeling the thermal comfort of citizens in
the country. PET serves as a comparison between complex outdoor conditions and a typical steady-
state indoor environment, aligning indoor energy balance with outdoor mean skin temperature and
sweat rate for simplified thermal comfort assessment. However, PET is a static model for indoor ther-
mal environments, whereas UTCI and WBGT incorporate factors such as clothing and metabolic rate,
providing more comprehensive overview.

2. Which software is available for open use for modeling heat stress?
The software requirements were assessed if it was a reproducible manner of retrieving the information
with the connection between knowing, wanting and acting see Table3.2. Therefore it is necessary to
indicate the critic areas and also being able to intervene in the public space. Next to that it should be
reproducible for a broader audience. Therefore the AGILE requirements of reproducability are impor-
tant which are divided in input, methods and results. Also the requirements of the influencing factors
of the urban environment which can be changed by the urban designer should be integrated in the
software. Small fluctuations of evaporation surfaces or shadow are important to model. The usability
for multiple users the scalability of the area is important as well as the runtime of the software.

3. In what way could the reproducability of [Koopmans et al., 2020] be improved?
The Wageningen University scientific research institute has incorporated reproducability measures in
its PET research. A conclusion assessment, rated from 0 to 3 on reproducability, is presented in Table
4.2. To enhance reproducability in input, methods and results. Input datasets are well documented
but not all publicly available. For the methods, various pre-processing steps are necessary for data

89

90 10. Conclusions

preparation. The method and processing steps are well-documented in [Koopmans et al., 2020], yet
due to the lack of funding prohibits making the software open-source for third-party use. Tools like
ndvi_calculator, svf_footprint, and others (detailed in Appendix H) are employed, with QGIS modifi-
cations posing workflow challenges. Parameters are favored for re-factorization. The computing en-
vironment involves QGIS, Python, UMEP plugin, and Excel, with Python for calculations and Excel for
weather data. QGIS is solely utilized for visualization. Results, available in Appendix A of [Koopmans
et al., 2020], are accessible upon request. For input data, as methods as results improvements could be
made. In the context of agile reproducability, each improvement enhances the sharing of information
across multiple disciplines.

4. What is the sensitivity of the wind computation?
The wind sensitivity on block size resulted different resolutions with high positive correlation. for the
operability for larger scale research areas the wind sensitivity with the block size of 25 meter could be
easily used to determine a brief overview of the results. Due to the refactoring the fdf factor of the
buildings needed to be adjusted to a lower value to be calibrated with the end result. Refinement in the
fdf building and other in-between steps in the process are required in order to come to a higher PET
resemblance with the code of Koopmans (2020).

5. How can the PET be applied on in Rotterdam for urban design interventions?
With the QGIS plugin, urban planners can conduct spatial-temporal analysis for areas up to 10 km2.
Various models are used to assess the current situation and test proposed heat mitigation measures
outlined in the spatial report. The PET simulator model of Bospolder Tussendijken is used to simulate
heat stress on both summer and warm days. Additionally, a model is created to determine thermal ac-
cessibility based on a thermal comfort level of 21 PET °C, suggesting mitigation measures for specific
roads. The urban design requirements are tested on the influence of heat mitigation measures, em-
phasizing radiation reduction, evaporative materials and considering scale dependencies. Ultimately,
the PET model and r.walk are used to assess the goals outlined in the spatial report, allowing for sce-
nario planning and serving as a open access communication tool for stakeholders involved in urban
mitigation efforts. Design interventions can be tested by modifying base map input data. However, this
process requires a good understanding of adapting the input base maps, which are well documented
in this thesis.

10.2. Conclusion
Therefore this research answers the main research question: “How can a strategy be developed for mitigat-
ing heat stress through Physiological Equivalent Temperature model while ensuring a livable environment
for vulnerable groups in Bospolder Tussendijken, Rotterdam, the Netherlands?” by answering “"To what ex-
tent could a reproducible tool help with identifying spatial-temporality of heat stress through PET in urban
environments and test design interventions?". The utilization of thermal comfort models, including the Phys-
iological Equivalent Temperature (PET) model and its variations, plays a crucial role in expressing heat stress.
These models incorporate dynamic climate data, static built environment data, and standardized physiolog-
ical performances to assess thermal comfort. While PET remains a standard choice for modeling thermal
comfort in the Netherlands due to its standardization and comparison between indoor and outdoor environ-
ments, models like UTCI and WBGT provide a more comprehensive overview by considering factors such as
clothing and metabolic rate.

Regarding available software for open use in modeling heat stress, the reproducability of the software is
essential for broader accessibility and intervention in public spaces. Software should meet AGILE require-
ments for reproducability, considering input, methods, and results, as well as integrate factors influencing
the urban environment that can be modified by urban designers. Usability for multiple users, scalability of
the area, and runtime of the software are also crucial factors to consider.

While efforts have been made to incorporate reproducability measures in PET research, improvements
are needed in input, methods, and results to enhance reproducability further. This includes making input
datasets publicly available, documenting pre-processing steps for data preparation, and addressing chal-
lenges in software accessibility due to funding constraints.

The wind sensitivity on block size resulted different resolutions with high positive correlation. for the
operability for larger scale research areas the wind sensitivity with the block size of 25 meter could be easily
used to determine a brief overview of the results. Due to the refactoring the fdf factor of the buildings needed

10.3. Additional Points of Growth from this Research 91

to be adjusted to a lower value to be calibrated with the end result. Refinement in the fdf building and other
in-between steps in the process are required in order to come to a higher PET resemblance with the code of
Koopmans (2020).

Spatial-temporal modeling using tools like QGIS plugin enables urban planners to analyze areas for heat
stress and assess proposed mitigation measures. By simulating heat stress and determining thermal acces-
sibility, intervention areas in public spaces can be identified and tested for effectiveness. Design interven-
tions focused on radiation reduction, wind promotion, and evaporative materials can be evaluated using PET
models, facilitating scenario planning and communication among stakeholders involved in urban mitigation
efforts.

In conclusion, a reproducible PET tool can significantly aid in testing and designing for heat mitigation
by providing comprehensive assessments of thermal comfort, identifying intervention areas in public spaces,
and evaluating the effectiveness of mitigation measures. However, continuous improvements in software re-
producability, sensitivity analysis, and spatial-temporal modeling are necessary to enhance the tool’s utility
and accessibility for urban planning and design. Also other influences next to solar radiation, evaporation
and wind as mentioned in [van Esch, 2015] could be implemented to enhance other mitigation measures. It
evaluates urban designs using the Physiological Equivalent Temperature plugin, with future potential appli-
cations in modeling PET night urban heat island simulations and improving communication among stake-
holders. The research aligns with field Geomatics, using GIS and spatial analysis techniques to address urban
environmental challenges. The project contributes to understanding the health implications of urban mi-
cro climates and the potential effects of temperature increases, informing policymakers and urban planners
about creating healthy and sustainable urban environments.

10.3. Additional Points of Growth from this Research
Through this thesis, I have also learned to interact with various experts in the field, including academics
from Wageningen, Sytse Koopmans, and Gert-Jan Steeneveld. The networking event at the HvA symposium
"Hot Issues" also contributed to the perspective of different municipalities and their approach to heat man-
agement in their cities [Hogeschool van Amsterdam, 2023]. Additionally, discussions with researchers at the
municipality of Rotterdam, such as Merel Scheltema, and advisor Andre de Wit at Witteveen en Bos, provided
an interesting interdisciplinary mix of information alongside my interdisciplinary background in the study
Geomatics and Urbanism on this issue. Noteworthy in this report is also the alternation of research by de-
sign. Through my interaction with the evidence-based modeling of PET, there is a significant analytical aspect
to this research. The design partly awaited the outcomes of the PET. Therefore, the design part entered the
process later. This allowed me to discover firsthand how research by design took place in the design.

10.4. Conclusion joint degree
The aim was to develop an reproducible spatial-temporal tool for indicating thermal comfort in urbanized
areas in the Netherlands, as well as to create a strategic design for the context-specific area for Bospolder
Tussendijken in Rotterdam. The research was part of a cycle of 3 steps (see figure 8.1). First the development
of the PET simulator tool which made it possible to have reproducability for third-party use. Second it cre-
ated the PET heat stress maps for analysis for the urban design. Third step were the urbanism requirements
for design and the creation of the design. Third part was the reflection for further development of the PET
tool and future work. The PET simulator tool helped eventually to model the heat stress in the application
case study of Rotterdam. Through the analysis of the input datasets, methods and results, it emerged that
the methods should be publicly available with integration of computational environment. A plugin has been
created in QGIS to open the Python code to a larger audience. A sensitivity analysis has been carried out for
the wind modulation. Ultimately, the PET was made readable and applied to the accessibility of the area.
For designing the urbanism part formulated liveability requirements for design implementations. From the
literature liveability is subdivided in physical liveability and social liveability. The physical liveability is ac-
cessibility should be guaranteed despite the increase of days above 25 degrees for vulnerable groups. Next to
that the continuity of the mitigation measures are the most effective since it is scale dependent. Also to keep
the mitigating effects functioning it is important that the mitigation measures are durable depended on the
practical implementations. To make it social appropriate a walk able environment should be supported and
enough social spaces should be available for vulnerable groups. Thirdly the tool evaluated the design imple-
mentations on their effectiveness which leads to additional research of the design and future work. At the
moment shadow is the most contributing factor for heat mitigation. Future work to improve heat mitigation

92 10. Conclusions

is the integration of additional heat mitigation measures, next to solar radiation, and vegetation, measures
or improving the wind in the PET simulator design could enhance its performance. In addition, PET simu-
lator should be better design and analysis integrated without too much effort for modifying the input files
for the designer, in order to make it more third-party use proof. The plugin has great prospects for future
potential applications in modeling PET such as night urban heat island simulations and improving commu-
nication among stakeholders. The research aligns with field Geomatics and Urbanism, using GIS and spatial
analysis techniques to address urban environmental challenges. The project contributes to understanding
the health implications of urban micro climates and the potential effects of temperature increases, informing
policymakers and urban planners about action for creating healthy and sustainable urban environments.

11
Future research

The identification of areas for improvement and the emergence of new research questions serve as the basis
for generating recommendations for future research. This section delves into these recommendations and
proposes potential inquiries for each of the identified research topics.

11.1. Points of improvement
Refinement input data trees
This research is based on reproducability. Another open source was used for the trees. Since the area has an
influence on the frontal density area for the wind, a more accurate representation of trees would be suitable.
Through point cloud segmentation of trees this could be achieved.

– To what extent could tree point cloud segmentation result in calculating an accurate and open accessi-
ble PET?

Refinement wind
The current wind modeling only takes into account four wind directions and no wind. However, it’s possible
that diagonal wind flows may occur. By following upcoming steps, the horizontal and vertical components of
a given wind direction are determined.

1. Calculate Components:

Horizontal Component = Magnitude× sin

(
θ

180
π

)
Vertical Component = Magnitude×cos

(
θ

180
π

)
2. Magnitude Calculation (if needed):

Magnitude =
√

Horizontal Component2 +Vertical Component2

3. Normalization (if needed): If you want to normalize the resulting vector to have a unit magnitude:

Normalized Component = Component

Magnitude

The current software models only take into account the effect of wind based on the variations in slope of
buildings and trees within a large averaged area using the Macdonald method (Macdonald, 1998). However,
this approach does not accurately represent the real wind flow. Incorporating computational fluid dynam-
ics into the research would provide a more accurate model of real wind flows. In de Jongh’s master thesis
[de Jongh, 2021], he suggests a method to integrate a Voronoi approach to estimate the computational fluid

93

94 11. Future research

dynamic model of wind flow in a QGIS environment. His research is also based in Rotterdam. Implementing
this calculation method could lead to a more accurate modeling of wind flow through streets by accounting
for skimming flows which are described in several literature of urban design requirements [van Esch, 2015]
and [Lenzholzer, 2018].

– To what extent could (voronoi) CFD modeling improve the wind calculation in the PET simulator?

Health experts integrated in research
This research could have more of a societal value if there were a link between health experts and the under-
standing of a better urban environment. This research attempted to research accessibility based on thermal
comfort. If there is a link between to what extent people can endure heat there would be more of a scientific
use of the PET modeling. Right now, ENVI-MET developed a pedestrian dynamic comfort linking multiple
models like PET and WBGT to model the thermo-physiological experience to the urban environment. [Bruse,
2023].

– To what extent could participants validate the endure times of different PET values in the urban envi-
ronment?

Sky view factor updated design model
The comparison between shadow and no shadow in the street using Sandra Lenzholzer’s model helps deter-
mine whether design decisions should focus on public spaces or be addressed with buildings [Lenzholzer,
2018]. The creation of shadows and obstruction of the sky lead to higher heat storage in the streetscape.
Currently, only the shadows are being updated, not the skyview factor.

– How could the skyview factor have influence on the calculation of the urban morphology calculation
for updating design interventions?

Pedestrian walking choice based on heat exposure in the street
The research aimed to reduce heat on the most frequently used routes in the neighborhood, focusing on the
shortest path to the destination. However, pedestrians may not always choose the shortest route. Therefore,
further research is required to understand the factors that influence pedestrians’ decisions when choosing
which streets to walk. This understanding could help identify pedestrian preferences for implementing heat
reduction methods.

– How are pedestrians influenced in order to take/change roads towards destinations on a summer day
in comparison to a warm day?

Climate scenarios integrated in research
The code provided by [Koopmans et al., 2020] also had an prediction for the possible different climate sce-
narios. This was left out in the research.

– What is the remarkable change in climate data with the KNMI climate scenarios in contrast to current
situation?

Computation larger areas
When dealing with larger areas, Python may not provide sufficient computational capabilities. In such cases,
using C++ can be highly beneficial for dividing the computation task of computing Physiological Equivalent
Temperature (PET) for larger regions, like the Netherlands. By incorporating parallel processing techniques,
it becomes necessary to divide the Netherlands into smaller tiles or regions, with each tile representing a
manageable portion of the entire area.

C++ offers robust support for multi-threading, enabling the creation and management of multiple threads
of execution within a single program. Leveraging this capability, multi-threading can be employed to dis-
tribute the computation of PET across numerous tiles concurrently. Each thread can then independently
compute PET for a specific tile, thereby utilizing the multi-core architecture of modern CPUs to significantly
enhance performance.

This approach not only speeds up the computation process but also optimally utilizes the available com-
putational resources. Additionally, it allows for efficient scaling, enabling the handling of even larger areas or

11.2. Transferability of the Research 95

datasets with minimal additional effort. By seamlessly integrating parallel processing techniques, C++ em-
powers researchers and practitioners to tackle complex computational tasks with unparalleled efficiency and
effectiveness.

– To what extent could C++ improve the computation time of the PET calculation?

Geospatial database
Storing files directly on the device can be challenging when handling large files and can limit functionality.
QGIS faces difficulties in effectively managing and storing raster data. According to [Langran, 1989], GIS
architecture issues include storage, modeling spatial changes, clustering, data access, algorithms, and system
design individuality.

GIS architecture is inefficient for storage and management tasks. Updating files for spatial modeling re-
quires manual effort and is not understandable by all third party users. GIS still has inefficient clustering
techniques, which hinder parallel processing and indexing. Implementing improvements in this area could
enhance scalability and performance in large-scale temporal GIS applications. Efficient algorithms are cru-
cial for quick data access and responsive query times. Unlike GIS, geospatial databases are available and
can be integrated to achieve spatial-temporal accuracy. Geospatial databases have the capability to store
and manage data more effectively. Integrating the current plugin involves writing Python code to establish
connections with geospatial databases like PostGIS. Storing data in such databases makes it possible to seam-
lessly update spatial and temporal information for multiple users. Consequently, QGIS plugins can effectively
operate with the data stored in these databases. Steps to integrate this in the QGIS plugin would be:

1. Establishing Connection with PostGIS: Utilize Python along with the psycopg2 library to establish a
connection with your PostGIS database from within your QGIS plugin. Ensure you have the connection
parameters such as host, database, username, and password.

2. Retrieving and Visualizing Data: Upon successfully connecting to the PostGIS database, execute SQL
queries to retrieve the desired raster data. Subsequently, visualize this data in QGIS by adding them as
layers to the map canvas.

3. Adding Interaction: Enhance the functionality of your QGIS plugin by incorporating interaction capa-
bilities, such as data filtering, conducting analyses, or editing data within the PostGIS database.

4. Publishing Changes to PostGIS: If your QGIS plugin allows for editing data retrieved from PostGIS, en-
sure that you send any modifications back to the database. This may involve executing SQL update or
insert queries to enact the changes.

Future research could implement this strategy.

– In what way can POSTGIS be connected to PET Simulator plugin in order to improve the computation
of the scalability of the modeling area?

Performance of vegetation for urban heat
Through satellite imagery data the performance of vegetation, NDVI in urban environments could be mea-
sured throughout the summer period and its potential influence on cooling the urban environment. In order
to take a more holistic approach, design interventions are also needed to take a more holistic approach to
maintaining the health of this vegetation.

11.2. Transferability of the Research
The findings of the research can be applied to other areas in the Netherlands. The reproducability is increased
and therefore better to execute on other location, with the required input files. Therefore this research holds
great prospects for other applications such as modeling the night situation of urban heat island effect. How-
ever, it must be said to be a good design tool several steps in the pre-processing must be adapted.

Bibliography

Jacques Bertin. Semiology of Graphics. Esri Press, 1 2011.

Krzysztof Blazejczyk, Gerd Jendritzky, Peter Brode, Dusan Fiala, George Havenith, Yoram Epstein, Agnieszka
Psikuta, and Bernhard Kampmann. An introduction to the universal thermal climate index (utci). Ge-
ographia Polonica, 86(1):5–10, 2013.

Daniela Bruse. Dynamic thermal comfort model for pedestrians, jun 2023. URL https://www.envi-met.c

om/new-bio-met-dynamic-thermal-comfort/.

Grahame M. Budd. Wet-bulb globe temperature (wbgt)—its history and its limitations. Journal of Science
and Medicine in Sport, 11(1):20–32, jan 2008. ISSN 14402440. doi: 10.1016/j.jsams.2007.07.003. URL
https://linkinghub.elsevier.com/retrieve/pii/S1440244007001478.

CAS. Kaartviewer - klimaateffectatlas, 2020. URL https://www.klimaateffectatlas.nl/nl/.

Leighton Cochran and Russ Derickson. Low-rise buildings and architectural aerodynamics. Architectural
Science Review, 48(3):265–276, sep 2005. ISSN 0003-8628, 1758-9622. doi: 10.3763/asre.2005.4833. URL
http://www.tandfonline.com/doi/abs/10.3763/asre.2005.4833.

H. Daanen. Hete hangijzers: plenaire gedeelte. In Hete hangijzers: plenaire gedeelte, Amsterdam, Nether-
lands, jul 2023. Hogeschool van Amsterdam.

W. de Jongh. Urban morphological analysis for wind potential, 2021. URL https://repository.tudelft

.nl/islandora/object/uuid%3Afdbff288-fede-4796-9972-54627af0db77.

Deltares. Crc tool - climate resilient cities deltares, 2020. URL https://www.deltares.nl/en/software-a

nd-data/products/crc-tool-climate-resilient-cities.

diensten Rotterdam. Sb infra bomen mapserver, 2023. URL https://diensten.rotterdam.nl/arcgis/r

est/services/SBInfra/Bomen/MapServer.

Anthony Dunne and Fiona Raby. Speculative Design: Design, Fiction, and Social Dreaming. MIT Press, Cam-
bridge, MA, 2013.

eesa. Vegetation indices and their interpretation: Ndvi, gndvi, msavi2, ndre, and ndwi, 2024. URL https:

//www.auravant.com/en/articles/precision-agriculture/vegetation-indices-and-their-i

nterpretation-ndvi-gndvi-msavi2-ndre-and-ndwi/.

Poul O. Fanger. Thermal comfort: Analysis and applications in environmental engineering. Danish Technical
Pr, Copenhagen, 1970. ISBN 9788757103410.

Dusan Fiala, George Havenith, Peter Bröde, Bernhard Kampmann, and Gerd Jendritzky. Utci-fiala multi-
node model of human heat transfer and temperature regulation. International Journal of Biometeorology,
56(3):429–441, may 2012. ISSN 0020-7128, 1432-1254. doi: 10.1007/s00484-011-0424-7. URL http:

//link.springer.com/10.1007/s00484-011-0424-7.

Open Science Framework. Agile reproducible paper guidelines. https://osf.io/cb7z8/, 2022.

Geofabrik. Geofabrik // home, 2020. URL https://www.geofabrik.de/.

Guardian. Spain braced for record april temperature of 39°c as extreme heat causes misery, 2023. URL https:
//www.theguardian.com/world/2023/apr/27/spain-braced-for-record-april-temperature-o

f-39c-as-heatwave-causes-misery.

97

https://www.envi-met.com/new-bio-met-dynamic-thermal-comfort/
https://www.envi-met.com/new-bio-met-dynamic-thermal-comfort/
https://linkinghub.elsevier.com/retrieve/pii/S1440244007001478
https://www.klimaateffectatlas.nl/nl/
http://www.tandfonline.com/doi/abs/10.3763/asre.2005.4833
https://repository.tudelft.nl/islandora/object/uuid%3Afdbff288-fede-4796-9972-54627af0db77
https://repository.tudelft.nl/islandora/object/uuid%3Afdbff288-fede-4796-9972-54627af0db77
https://www.deltares.nl/en/software-and-data/products/crc-tool-climate-resilient-cities
https://www.deltares.nl/en/software-and-data/products/crc-tool-climate-resilient-cities
https://diensten.rotterdam.nl/arcgis/rest/services/SBInfra/Bomen/MapServer
https://diensten.rotterdam.nl/arcgis/rest/services/SBInfra/Bomen/MapServer
https://www.auravant.com/en/articles/precision-agriculture/vegetation-indices-and-their-interpretation-ndvi-gndvi-msavi2-ndre-and-ndwi/
https://www.auravant.com/en/articles/precision-agriculture/vegetation-indices-and-their-interpretation-ndvi-gndvi-msavi2-ndre-and-ndwi/
https://www.auravant.com/en/articles/precision-agriculture/vegetation-indices-and-their-interpretation-ndvi-gndvi-msavi2-ndre-and-ndwi/
http://link.springer.com/10.1007/s00484-011-0424-7
http://link.springer.com/10.1007/s00484-011-0424-7
https://osf.io/cb7z8/
https://www.geofabrik.de/
https://www.theguardian.com/world/2023/apr/27/spain-braced-for-record-april-temperature-of-39c-as-heatwave-causes-misery
https://www.theguardian.com/world/2023/apr/27/spain-braced-for-record-april-temperature-of-39c-as-heatwave-causes-misery
https://www.theguardian.com/world/2023/apr/27/spain-braced-for-record-april-temperature-of-39c-as-heatwave-causes-misery

98 Bibliography

G Havenith. Heat balance when wearing protective clothing. The Annals of Occupational Hygiene, 43(5):289–
296, jul 1999. ISSN 00034878. doi: 10.1016/S0003-4878(99)00051-4. URL https://linkinghub.elsevie

r.com/retrieve/pii/S0003487899000514.

Bert G. Heusinkveld, G. J. Steeneveld, L. W. A. Van Hove, C. M. J. Jacobs, and A. A. M. Holtslag. Spatial variabil-
ity of the Rotterdam urban heat island as influenced by urban land use. Journal of Geophysical Research:
Atmospheres, 119(2):677–692, jan 2014. ISSN 2169-897X, 2169-8996. doi: 10.1002/2012JD019399. URL
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2012JD019399.

J. Hofman. Keep your hague cool: Mitigating heat stress and the urban heat island effect through urban
design, 2022. URL http://resolver.tudelft.nl/uuid:17f937a9-b5e5-4fde-b149-4b1dc004ea51.

Hogeschool van Amsterdam. Terugblik: Hitte in de stad symposium, 2023. URL https://www.hva.nl/cit

y-net-zero/gedeelde-content/nieuws/nieuwsberichten/2023/07/terugblik-hitte-in-de-s

tad-symposium.html. Accessed: February 23, 2024.

HVA. Coolkit - hva, 2020. URL https://www.hva.nl/kc-techniek/gedeelde-content/contentgroep/

klimaatbestendige-stad/resultaten/coolkit.html.

Martin Hämmerle, Tamás Gál, J. Unger, and Andreas Matzarakis. Introducing a script for calculating the sky
view factor used for urban climate investigations. ACTA CLIMATOLOGICA ET CHOROLOGICA, 44-45:83–92,
01 2011.

P. Höppe. The physiological equivalent temperature - a universal index for the biometeorological assessment
of the thermal environment. International Journal of Biometeorology, 43(2):71–75, October 1999. ISSN
0020-7128, 1432-1254. doi: 10.1007/s004840050118. URL http://link.springer.com/10.1007/s004

840050118.

Kadaster. Pdok download viewer, 2023. URL https://app.pdok.nl/lv/bgt/download-viewer/.

Kadaster. Introductie pdok, 2024. URL https://www.pdok.nl/introductie/-/article/basisregistr

atie-topografie-brt-topnl.

KNMI. Uurwaarden van weerstations, 0000. URL https://daggegevens.knmi.nl/klimatologie/uurge

gevens.

KNMI. Sky view factor of the netherlands - knmi data platform, 2023. URL https://dataplatform.knmi.

nl/dataset/access/svf-nl-3.

S. Koopmans, B.G. Heusinkveld, and G.J. Steeneveld. A standardized physical equivalent temperature ur-
ban heat map at 1-m spatial resolution to facilitate climate stress tests in the netherlands. Building and
Environment, 181:106984, aug 2020. ISSN 03601323. doi: 10.1016/j.buildenv.2020.106984. URL
https://linkinghub.elsevier.com/retrieve/pii/S0360132320303644.

G. Langran. A review of temporal database research and its use in gis applications. International journal of
geographical information systems, 3(3):215–232, jul 1989. ISSN 0269-3798. doi: 10.1080/0269379890894150
9. URL http://www.tandfonline.com/doi/abs/10.1080/02693798908941509.

Joel Lawhead. QGIS Python Programming Cookbook - Second Edition: Automating Geospatial Development.
Packt Publishing, 2018. ISBN 1787124835.

S. Lenzholzer. Weather in the city. NAI booksellers, 2018. ISBN 9789462081987.

Fredrik Lindberg, C.S.B. Grimmond, Andrew Gabey, Bei Huang, Christoph W. Kent, Ting Sun, Natalie E.
Theeuwes, Leena Järvi, Helen C. Ward, I. Capel-Timms, Yuanyong Chang, Per Jonsson, Niklas Krave, Dong-
wei Liu, D. Meyer, K. Frans G. Olofson, Jianguo Tan, Dag Wästberg, Lingbo Xue, and Zhe Zhang. Urban
multi-scale environmental predictor (umep): An integrated tool for city-based climate services. Environ-
mental Modelling and Software, 99:70–87, Januari 2018. ISSN 13648152. doi: 10.1016/j.envsoft.2017.09.020.
URL https://linkinghub.elsevier.com/retrieve/pii/S1364815217304140.

R.W. Macdonald, R.F. Griffiths, and D.J. Hall. An improved method for the estimation of surface roughness of
obstacle arrays. Atmospheric Environment, 32(11):1857–1864, jun 1998. ISSN 13522310. doi: 10.1016/S135
2-2310(97)00403-2. URL https://linkinghub.elsevier.com/retrieve/pii/S1352231097004032.

https://linkinghub.elsevier.com/retrieve/pii/S0003487899000514
https://linkinghub.elsevier.com/retrieve/pii/S0003487899000514
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2012JD019399
http://resolver.tudelft.nl/uuid:17f937a9-b5e5-4fde-b149-4b1dc004ea51
https://www.hva.nl/city-net-zero/gedeelde-content/nieuws/nieuwsberichten/2023/07/terugblik-hitte-in-de-stad-symposium.html
https://www.hva.nl/city-net-zero/gedeelde-content/nieuws/nieuwsberichten/2023/07/terugblik-hitte-in-de-stad-symposium.html
https://www.hva.nl/city-net-zero/gedeelde-content/nieuws/nieuwsberichten/2023/07/terugblik-hitte-in-de-stad-symposium.html
https://www.hva.nl/kc-techniek/gedeelde-content/contentgroep/klimaatbestendige-stad/resultaten/coolkit.html
https://www.hva.nl/kc-techniek/gedeelde-content/contentgroep/klimaatbestendige-stad/resultaten/coolkit.html
http://link.springer.com/10.1007/s004840050118
http://link.springer.com/10.1007/s004840050118
https://app.pdok.nl/lv/bgt/download-viewer/
https://www.pdok.nl/introductie/-/article/basisregistratie-topografie-brt-topnl
https://www.pdok.nl/introductie/-/article/basisregistratie-topografie-brt-topnl
https://daggegevens.knmi.nl/klimatologie/uurgegevens
https://daggegevens.knmi.nl/klimatologie/uurgegevens
https://dataplatform.knmi.nl/dataset/access/svf-nl-3
https://dataplatform.knmi.nl/dataset/access/svf-nl-3
https://linkinghub.elsevier.com/retrieve/pii/S0360132320303644
http://www.tandfonline.com/doi/abs/10.1080/02693798908941509
https://linkinghub.elsevier.com/retrieve/pii/S1364815217304140
https://linkinghub.elsevier.com/retrieve/pii/S1352231097004032

Bibliography 99

Andreas Matzarakis and Bas Amelung. Physiological equivalent temperature as indicator for impacts of cli-
mate change on thermal comfort of humans. In Madeleine C. Thomson, Ricardo Garcia-Herrera, and Mar-
tin Beniston, editors, Seasonal Forecasts, Climatic Change and Human Health, pages 161–172. Springer
Netherlands, Dordrecht, 2008. ISBN 9781402068768 9781402068775. doi: 10.1007/978-1-4020-6877-5_10.
URL http://link.springer.com/10.1007/978-1-4020-6877-5_10.

H. Mayer and P. Hoppe. Thermal comfort of man in different urban environments. Theoretical and Applied
Climatology, 38(1):43–49, 1987a. ISSN 0177-798X, 1434-4483. doi: 10.1007/BF00866252. URL http:

//link.springer.com/10.1007/BF00866252.

H. Mayer and P. Hoppe. Thermal comfort of man in different urban environments. Theoretical and Applied
Climatology, 38(1):43–49, 1987b. ISSN 0177-798X, 1434-4483. doi: 10.1007/BF00866252. URL http:

//link.springer.com/10.1007/BF00866252.

ENVI met GMBH. High-resolution 3d modeling of urban microclimate with envi-met software, n.d. URL
https://www.envi-met.com/.

A. Millyard, J. D. Layden, D. B. Pyne, A. M. Edwards, and S. R. Bloxham. Impairments to thermoregulation
in the elderly during heat exposure events. Gerontol Geriatr Med, 6:2333721420932432, Jan-Dec 2020. doi:
10.1177/2333721420932432. URL https://doi.org/10.1177/2333721420932432. Published online
2020 Jun 15.

Parham A. Mirzaei. Cfd modeling of micro and urban climates: Problems to be solved in the new decade.
Sustainable Cities and Society, 69:102839, June 2021. ISSN 22106707. doi: 10.1016/j.scs.2021.102839. URL
https://linkinghub.elsevier.com/retrieve/pii/S2210670721001293.

MIT. ud software development urban microclimate, 0000. URL https://urbanmicroclimate.scripts.

mit.edu/umc.php.

Peter Moonen, Thijs Defraeye, Viktor Dorer, Bert Blocken, and Jan Carmeliet. Urban physics: Effect of the
micro-climate on comfort, health and energy demand. Frontiers of Architectural Research, 1(3):197–228,
sep 2012. ISSN 20952635. doi: 10.1016/j.foar.2012.05.002. URL https://linkinghub.elsevier.com/re

trieve/pii/S2095263512000301.

Wageningen University NEO and Geodan. Boomregister, 2024. URL http://boomregister.nl/.

Ministery of Infrastructure and Waterboard. Deltaplan en ruimtelijke adaptatie. December 2018. URL https:
//www.deltaprogramma.nl/themas/ruimtelijkeadaptatie/deltaplan.

T. R. Oke. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society,
108(455):1–24, jan 1982. ISSN 0035-9009, 1477-870X. doi: 10.1002/qj.49710845502. URL https://rmets.

onlinelibrary.wiley.com/doi/10.1002/qj.49710845502.

Timothy R Oke. Boundary layer climates. Routledge, 2002.

Delta Programme. Delta programme, 2018. URL https://www.deltaprogramma.nl/deltaprogramma.

RIVM. Achtergronddocument WGBT en PHS bij GGD-richtlijn mmk: hitte en gezondheid | RIVM, 2023. URL
https://www.rivm.nl/documenten/achtergronddocument-wgbt-en-phs-bij-ggd-richtlijn-m

mk-hitte-en-gezondheid.

Gianna Stavroulaki, Daniel Koch, Ann Legeby, Lars Hilding Marcus, Alexander Ståhle, and Meta Berghauser
Pont. Documentation pst 20191122, 2019. URL http://rgdoi.net/10.13140/RG.2.2.25718.55364.

Marieke van Esch. From thermal comfort to heat mitigation necessity: Informed strategies for mitigating pet
heat stress in public spaces for vulnerable groups – a rotterdam case study, 2024. URL https://www.tude

lft.nl/.

Marjolein van Esch. Designing the urban microclimate. A+BE Architecture and the Built Environment, pages
1–308 Pages, june 2015. doi: 10.7480/ABE.2015.6.905. URL https://journals.open.tudelft.nl/abe

/article/view/pijpers.

http://link.springer.com/10.1007/978-1-4020-6877-5_10
http://link.springer.com/10.1007/BF00866252
http://link.springer.com/10.1007/BF00866252
http://link.springer.com/10.1007/BF00866252
http://link.springer.com/10.1007/BF00866252
https://www.envi-met.com/
https://doi.org/10.1177/2333721420932432
https://linkinghub.elsevier.com/retrieve/pii/S2210670721001293
https://urbanmicroclimate.scripts.mit.edu/umc.php
https://urbanmicroclimate.scripts.mit.edu/umc.php
https://linkinghub.elsevier.com/retrieve/pii/S2095263512000301
https://linkinghub.elsevier.com/retrieve/pii/S2095263512000301
http://boomregister.nl/
https://www.deltaprogramma.nl/themas/ruimtelijkeadaptatie/deltaplan
https://www.deltaprogramma.nl/themas/ruimtelijkeadaptatie/deltaplan
https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.49710845502
https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.49710845502
https://www.deltaprogramma.nl/deltaprogramma
https://www.rivm.nl/documenten/achtergronddocument-wgbt-en-phs-bij-ggd-richtlijn-mmk-hitte-en-gezondheid
https://www.rivm.nl/documenten/achtergronddocument-wgbt-en-phs-bij-ggd-richtlijn-mmk-hitte-en-gezondheid
http://rgdoi.net/10.13140/RG.2.2.25718.55364
https://www.tudelft.nl/
https://www.tudelft.nl/
https://journals.open.tudelft.nl/abe/article/view/pijpers
https://journals.open.tudelft.nl/abe/article/view/pijpers

A
Symbols

101

102 A. Symbols

symbol description unit
A parameter for interpolation wind profile -
B parameter for interpolation wind profile -
Bb bowen ratio (sensible heat flux / latent heat flux) -
d zero-plane displacement m
FF10 10-m wind at reference station ms−1

Fveg vegetation fraction -
ϕ zero-plane displacement m
λbuilding frontal area density for buildings -
λtree frontal area density for trees -
λtot total frontal area density -
H building height m
I infrared value of aerial photo (INFR) -
PET Physiological Equivalent Temperature ◦C
φ relative humidity at reference station %
Qd diffuse irradiation W m−2

Qs solar irradiation at reference station W m−2

R red value of aerial photo (RGBI) -
σ Stefan-Boltzmann constant W m−2 K−4

S↓ daily average solar irradiation (in kinematic units) K ms−1

Sv f sky view factor -
τa transmissivity -
Ta air temperature ◦C
Tgem daily average air temperature ◦C
Tmax daily average maximum temperature ◦C
Tmin daily average minimum temperature ◦C
Tref air temperature at reference station ◦C
Tw wet bulb temperature ◦C
U daily average wind speed at reference station ms−1

u1.2 wind reduction at 1.2 m relative to u10 = 1 ms−1 ms−1

u10 reference normalized wind of 1 ms−1 representative for open terrain ms−1

u60 wind at 60-min height (relative to u10 = 1 ms−1), mesowind ms−1

U H I urban heat island ◦C
U H Imax daily maximum urban heat island ◦C
u∗ friction velocity ms−1

uh wind speed at roof height ms−1

z0 (surface) roughness length m
zw top of the roughness layer m

B
Python code

103

104 B. Python code

B.1. python/pet_parameters.py

1 #from IPython import get_ipython

2 #get_ipython ().magic('reset -sf ')

3

4 import numpy as np

5 from .pet_parameters import window_footprint

6 from .geotiff_creator import ArrayToGeotif , GeotifToArray , GeotifWrite

7 #---

8 # petcalculate

9 # purpose: calculate the PET

10 # input: shadow , urbanheat , wind , svf , svf_mask , ndvi_crop_mask , ndvi_tree_mask

11 # output: pets

12

13 def PET_calculate(stat , dyn , im1 , im2 , im3 , im4 , im5 , im6 , im7):

14

15 TT = dyn.TT #TT: Temperatuur (in 0.1 graden Celsius) op

1.50 m hoogte tijdens de waarneming

16 FF = dyn.FF #FF: Windsnelheid (in 0.1 m/s) gemiddeld

over de laatste 10 minuten van het afgelopen uur

17 Q = dyn.Q #Q: Global solar irradiationGlobale

straling (in J/cm2) per uurvak

18 Qdif = dyn.Qdif #Qdif: Difuse radiation

19 sunalt = dyn.sunalt #sunalt:solar elevation angle

20 RH = dyn.RH #RH: Relative Humidity

21 diurnal = dyn.diurnal #diurnal correction factor UHI for Ta

22

23 print('PET.Calculator ')

24 Bveg = 0.4

25 Bnoveg = 3

26 stef = 5.67 * 10 ** -8

27

28 sun , meta = GeotifToArray(im1 , 1) # added anders geen ref in shadow

29 urban , meta = GeotifToArray(im2 , 1)

30 wind , meta = GeotifToArray(im3 , 1)

31 svf , meta = GeotifToArray(im4 , 1)

32 svf_mask , meta = GeotifToArray(im5 , 1)

33 mask_vegfra , meta = GeotifToArray(im6 , 1)

34 trees_2m , meta = GeotifToArray(im7 , 1)

35

36 # with open("D:\\tmp\\test.txt", 'wt ') as f:

37 # f.write(f"sun , meta {sun , meta }\\n")

38 # f.write(f"urban , meta {urban , meta }\\n")

39 # f.write(f"wind , meta {wind , meta }\\n")

40 # f.write(f"svf , meta {svf , meta }\\n")

41 # f.write(f"svf_mask , meta {svf_mask , meta }\\n")

42 # f.write(f"mask_vegfra , meta {mask_vegfra , meta }\\n")

43 # f.write(f"trees_2m , meta {trees_2m , meta }\\n")

44

45

46 Ta = urban [:] * diurnal + TT

47 Tw = TT * np.arctan (0.15198 * (RH + 8.3137) ** 0.5) + np.arctan(TT + RH) -

np.arctan(

48 RH - 1.676) + 0.0039184 * RH ** 1.5 * np.arctan (0.023101 * RH) - 4.686

49

50 wind = ((wind - 0.125) * 0.5829 + 0.125) * FF

51 wind[wind < 0.5] = 0.5

52 wind_temp = np.ravel(wind)

53 #wind_res = np.array(wind_temp).transpose ()

54

B.1. python/pet_parameters.py 105

55 # day

56 if Q > 0:

57 sun_temp , meta = GeotifToArray(im1 , 1)

58 sun = sun_temp * (1 - trees_2m [:])

59

60 PETshade = (-12.14 + 1.25 * Ta[:] - 1.47 * np.log(wind [:]) + 0.060 * Tw

+ 0.015 * svf[:] * Qdif +

61 0.0060 * (1 - svf [:]) * stef * (Ta[:] + 273.15) ** 4) * (1

- sun [:]) * svf_mask [:]

62 PETveg = (-13.26 + 1.25 * Ta[:] + 0.011 * Q - 3.37 * np.log(

63 wind [:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind [:]) + 5.56 * np.

sin(

64 sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind [:]) * np.sin(

65 sunalt / 360 * 2 * np.pi) + 0.546 * Bveg + 1.94 * svf [:]) *

mask_vegfra [:] * sun[:] * svf_mask [:]

66 PETnoveg = (-13.26 + 1.25 * Ta[:] + 0.011 * Q - 3.37 * np.log(

67 wind [:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind [:]) + 5.56 * np.

sin(

68 sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind [:]) * np.sin(

69 sunalt / 360 * 2 * np.pi) + 0.546 * Bnoveg + 1.94 * svf [:]) * (1 -

mask_vegfra [:]) * sun[:] * svf_mask [:]

70

71 PET = PETshade + PETveg + PETnoveg

72

73 # night

74 else:

75 PETshade = (-12.14 + 1.25 * Ta[:] - 1.47 * np.log(wind [:]) + 0.060 * Tw

+ 0.015 * svf[:] * Qdif

76 + 0.0060 * (1 - svf [:]) * stef * (Ta[:] + 273.15) ** 4) *

(1 - sun [:]) * svf_mask [:]

77

78 PET = PETshade

79

80 im8 = ArrayToGeotif(PET , meta)

81 sun = urban = wind = svf = svf_mask = mask_vegfra = trees_2m = PET = None

82

83 return im8

106 B. Python code

B.2. python/geotiff_creator.py

1 #from IPython import get_ipython

2 #get_ipython ().magic('reset -sf ')

3

4 import numpy as np

5 from .pet_parameters import window_footprint

6 from .geotiff_creator import ArrayToGeotif , GeotifToArray , GeotifWrite

7 #---

8 # petcalculate

9 # purpose: calculate the PET

10 # input: shadow , urbanheat , wind , svf , svf_mask , ndvi_crop_mask , ndvi_tree_mask

11 # output: pets

12

13 def PET_calculate(stat , dyn , im1 , im2 , im3 , im4 , im5 , im6 , im7):

14

15 TT = dyn.TT #TT: Temperatuur (in 0.1 graden Celsius) op

1.50 m hoogte tijdens de waarneming

16 FF = dyn.FF #FF: Windsnelheid (in 0.1 m/s) gemiddeld

over de laatste 10 minuten van het afgelopen uur

17 Q = dyn.Q #Q: Global solar irradiationGlobale

straling (in J/cm2) per uurvak

18 Qdif = dyn.Qdif #Qdif: Difuse radiation

19 sunalt = dyn.sunalt #sunalt:solar elevation angle

20 RH = dyn.RH #RH: Relative Humidity

21 diurnal = dyn.diurnal #diurnal correction factor UHI for Ta

22

23 print('PET.Calculator ')

24 Bveg = 0.4

25 Bnoveg = 3

26 stef = 5.67 * 10 ** -8

27

28 sun , meta = GeotifToArray(im1 , 1) # added anders geen ref in shadow

29 urban , meta = GeotifToArray(im2 , 1)

30 wind , meta = GeotifToArray(im3 , 1)

31 svf , meta = GeotifToArray(im4 , 1)

32 svf_mask , meta = GeotifToArray(im5 , 1)

33 mask_vegfra , meta = GeotifToArray(im6 , 1)

34 trees_2m , meta = GeotifToArray(im7 , 1)

35

36 # with open("D:\\tmp\\test.txt", 'wt ') as f:

37 # f.write(f"sun , meta {sun , meta }\\n")

38 # f.write(f"urban , meta {urban , meta }\\n")

39 # f.write(f"wind , meta {wind , meta }\\n")

40 # f.write(f"svf , meta {svf , meta }\\n")

41 # f.write(f"svf_mask , meta {svf_mask , meta }\\n")

42 # f.write(f"mask_vegfra , meta {mask_vegfra , meta }\\n")

43 # f.write(f"trees_2m , meta {trees_2m , meta }\\n")

44

45

46 Ta = urban [:] * diurnal + TT

47 Tw = TT * np.arctan (0.15198 * (RH + 8.3137) ** 0.5) + np.arctan(TT + RH) -

np.arctan(

48 RH - 1.676) + 0.0039184 * RH ** 1.5 * np.arctan (0.023101 * RH) - 4.686

49

50 wind = ((wind - 0.125) * 0.5829 + 0.125) * FF

51 wind[wind < 0.5] = 0.5

52 wind_temp = np.ravel(wind)

53 #wind_res = np.array(wind_temp).transpose ()

54

B.2. python/geotiff_creator.py 107

55 # day

56 if Q > 0:

57 sun_temp , meta = GeotifToArray(im1 , 1)

58 sun = sun_temp * (1 - trees_2m [:])

59

60 PETshade = (-12.14 + 1.25 * Ta[:] - 1.47 * np.log(wind [:]) + 0.060 * Tw

+ 0.015 * svf[:] * Qdif +

61 0.0060 * (1 - svf [:]) * stef * (Ta[:] + 273.15) ** 4) * (1

- sun [:]) * svf_mask [:]

62 PETveg = (-13.26 + 1.25 * Ta[:] + 0.011 * Q - 3.37 * np.log(

63 wind [:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind [:]) + 5.56 * np.

sin(

64 sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind [:]) * np.sin(

65 sunalt / 360 * 2 * np.pi) + 0.546 * Bveg + 1.94 * svf [:]) *

mask_vegfra [:] * sun[:] * svf_mask [:]

66 PETnoveg = (-13.26 + 1.25 * Ta[:] + 0.011 * Q - 3.37 * np.log(

67 wind [:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind [:]) + 5.56 * np.

sin(

68 sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind [:]) * np.sin(

69 sunalt / 360 * 2 * np.pi) + 0.546 * Bnoveg + 1.94 * svf [:]) * (1 -

mask_vegfra [:]) * sun[:] * svf_mask [:]

70

71 PET = PETshade + PETveg + PETnoveg

72

73 # night

74 else:

75 PETshade = (-12.14 + 1.25 * Ta[:] - 1.47 * np.log(wind [:]) + 0.060 * Tw

+ 0.015 * svf[:] * Qdif

76 + 0.0060 * (1 - svf [:]) * stef * (Ta[:] + 273.15) ** 4) *

(1 - sun [:]) * svf_mask [:]

77

78 PET = PETshade

79

80 im8 = ArrayToGeotif(PET , meta)

81 sun = urban = wind = svf = svf_mask = mask_vegfra = trees_2m = PET = None

82

83 return im8

108 B. Python code

B.3. python/pysolar1.py

1 # Importing packages

2

3 import pvlib

4 from datetime import datetime as dt

5 from datetime import timedelta

6 import pandas as pd

7 import numpy as np

8

9 # --

10 # Loading in total knmi file

11 df_tot = pd.read_csv('Rotterdam_1juli_2015_knmi.csv ', parse_dates =['YYYYMMDD '])

12 # substracting the last line

13 df_KNMI = df_tot[df_tot.H < 24]

14 print(df_KNMI)

15

16 # --

17 # Setting date with hour values

18 date_time = []

19 solar_elevation = np.zeros(len(df_KNMI.index))

20 # calculating the solar altitude and the diffuse irradiation

21 # Location coordinates for Amsterdam (latitude , longitude)

22

23

24 for i in range(len(df_KNMI.index)):

25 date_time.append(

26 dt(df_KNMI['YYYYMMDD ']. iloc[i].year , df_KNMI['YYYYMMDD ']. iloc[i].month ,

df_KNMI['YYYYMMDD ']. iloc[i].day ,

27 df_KNMI['H']. iloc[i], 0, 0))

28

29 latitude = 52.3667

30 longitude = 4.8945

31

32 solar_position = pvlib.solarposition.get_solarposition(date_time , latitude ,

longitude)

33

34 # Extract solar elevation angle

35 solar_elevation = solar_position['elevation ']. values

36

37 # --

38 # Calculating the average Watt per square meter from the Q

39 Qs_av = np.zeros(len(df_KNMI.index))

40

41 for i in range(len(df_KNMI.index) - 1):

42 Qs_av[i] = 10000 / 3600 * ((df_KNMI[' Q']. iloc[i + 1] - df_KNMI[' Q

']. iloc[i]) / 2 + df_KNMI[' Q']. iloc[i])

43

44 # Calculating atmospheric transmissivity (tau_a)

45 tau_a = Qs_av / (1367.0 * np.sin(solar_elevation * np.pi / 180))

46

47 # Calculating the diffuse irradiation

48 Qd = np.zeros(len(df_KNMI.index))

49

50 for i in range(len(df_KNMI.index)):

51 if tau_a[i] < 0.3:

52 Qd[i] = Qs_av[i]

53 elif tau_a[i] > 0.7:

54 Qd[i] = 0.2 * Qs_av[i]

55 else:

56 Qd[i] = (1.6 - 2 * tau_a[i]) * Qs_av[i]

B.3. python/pysolar1.py 109

57

58 df_KNMI['Qdif '] = Qd

59

60

61 # --

62 # calulating the wind , WE and wind direction

63 def wind_direction(dd , FF):

64 if FF >= 1.5:

65 wind = True

66 else:

67 wind = False

68 # wind = FF >= 1.5

69 if dd < 45 or dd > 315:

70 WE = False

71 winddir = 'N'

72 elif dd < 135:

73 WE = True

74 winddir = 'E'

75 elif dd < 225:

76 WE = False

77 winddir = 'S'

78 elif dd < 315:

79 WE = True

80 winddir = 'W'

81 else:

82 winddir = 'C'

83 return wind , WE , winddir

84

85

86 # addind the wind , WE and wind direction into pandas series through lists

87 windlist = []

88 WElist = []

89 windirlist = []

90

91 for i in range(len(df_KNMI.index)):

92 wind , WE, winddir = wind_direction(df_KNMI[' DD ']. iloc[i], df_KNMI[' FF

']. iloc[i] / 10)

93 windlist.append(wind)

94 WElist.append(WE)

95 windirlist.append(winddir)

96

97 df_KNMI['wind '] = windlist

98 df_KNMI['WE '] = WElist

99 df_KNMI['winddir '] = windirlist

100

101 # --

102 # Adding the station names

103 df_KNMI['station '] = ['Rotterdam '] * len(df_KNMI.index)

104 # drop unnecessary columns like STN and U

105 df_KNMI = df_KNMI.drop(columns=['STN '])

106 # converting the wind and temperature columns

107 df_KNMI[' FF '] = df_KNMI[' FF '] / 10

108 df_KNMI[' T'] = df_KNMI[' T'] / 10

109 # --

110 # Diurnal calculation

111 df_UHI = pd.read_csv('UHI_factors.csv ')

112

113

114 def day_night(dates_KNMI , hour_KNMI):

115 dateslist = [dt(year=dates_KNMI.year , month=4, day =1), dt(year=dates_KNMI.

year , month=4, day =13),

110 B. Python code

116 dt(year=dates_KNMI.year , month=4, day =20), dt(year=dates_KNMI.

year , month=5, day =20),

117 dt(year=dates_KNMI.year , month=5, day =26), dt(year=dates_KNMI.

year , month=7, day =11),

118 dt(year=dates_KNMI.year , month=7, day =31), dt(year=dates_KNMI.

year , month=8, day =22),

119 dt(year=dates_KNMI.year , month=8, day =31), dt(year=dates_KNMI.

year , month=9, day =25),

120 dt(year=dates_KNMI.year , month=9, day =28), dt(year=dates_KNMI.

year , month=9, day =30)]

121 UHIlist = ['5/18', '5/19', '4/19', '4/20', '3/20', '4/20', '4/19', '5/19',

'5/18', '5/17', '6/17']

122 for i in range(len(dateslist) - 1):

123 if dates_KNMI >= dateslist[i] and dates_KNMI < dateslist[i + 1]:

124 diurnal = df_UHI[UHIlist[i]][hour_KNMI]

125 sunrise , sunset = UHIlist[i].split('/')

126 print(sunrise , sunset)

127 if hour_KNMI >= int(sunrise) and hour_KNMI <= int(sunset):

128 daynight = 'day '

129 break

130 else:

131 daynight = 'night '

132 diurnal = 1

133

134 return daynight , diurnal

135

136

137 # addind the wind , WE and wind direction into pandas series through lists

138 daynightlist = []

139 diurnallist = []

140

141 for i in range(len(df_KNMI.index)):

142 daynight , diurnal = day_night(df_KNMI['YYYYMMDD ']. iloc[i], df_KNMI['H'].

iloc[i])

143 daynightlist.append(daynight)

144 diurnallist.append(diurnal)

145

146 df_KNMI['daynight '] = daynightlist

147 df_KNMI['diurnal '] = diurnallist

148

149

150 # --

151

152 def min_max(df_KNMI , date_time):

153 # date = date_time [0]

154

155 list_temperature_inperiod = []

156 list_wind_inperiod = []

157 list_max_temp = []

158 list_min_temp = []

159 list_av_wind = []

160

161 for j in range(0, len(df_KNMI.index), 24):

162 date = date_time[j]

163 print(f'date {date}')

164

165 av_wind_cum = 0

166 temperature_inperiod = []

167 wind_inperiod = []

168 for i in range(len(df_KNMI.index)):

169

B.3. python/pysolar1.py 111

170 # Calculate period start

171 period_start = dt(year=date.year , month=date.month , day=date.day ,

hour =9)

172

173 # Calculate period end

174 period_end = date + timedelta(days =1)

175 period_end = period_end.replace(hour =8)

176

177 if date_time[i] >= period_start and date_time[i] <= period_end:

178 temperature_inperiod.append(df_KNMI[' T']. iloc[i])

179 wind_inperiod.append(df_KNMI[' FF ']. iloc[i])

180 av_wind_cum += df_KNMI[' FF ']. iloc[i]

181 # print(date , wind_inperiod)

182

183 max_temp = np.max(np.array([temperature_inperiod]))

184 min_temp = np.min(np.array([temperature_inperiod]))

185 av_wind = av_wind_cum / len(wind_inperiod)

186

187 list_max_temp.append(max_temp)

188 list_min_temp.append(min_temp)

189 list_av_wind.append(av_wind)

190 list_temperature_inperiod.append(temperature_inperiod)

191 list_wind_inperiod.append(wind_inperiod)

192 # print('length ', list_wind_inperiod)

193 return list_max_temp , list_min_temp , list_av_wind

194

195

196 list_max_temp , list_min_temp , list_av_wind = min_max(df_KNMI , date_time)

197

198 for i, max_temp in enumerate(list_max_temp):

199 # Filter timestamps for the current day

200 mask = (df_KNMI['YYYYMMDD '].dt.date == df_KNMI.loc[i * 24, 'YYYYMMDD ']. date

())

201 # Assign the daily maximum temperature to all hourly timestamps for the

current day

202 df_KNMI.loc[mask , 'Tmax '] = max_temp

203

204 for i, min_temp in enumerate(list_min_temp):

205 # Filter timestamps for the current day

206 mask = (df_KNMI['YYYYMMDD '].dt.date == df_KNMI.loc[i * 24, 'YYYYMMDD ']. date

())

207 # Assign the daily maximum temperature to all hourly timestamps for the

current day

208 df_KNMI.loc[mask , 'Tmin '] = min_temp

209

210 for i, av_wind in enumerate(list_av_wind):

211 # Filter timestamps for the current day

212 mask = (df_KNMI['YYYYMMDD '].dt.date == df_KNMI.loc[i * 24, 'YYYYMMDD ']. date

())

213 # Assign the daily maximum temperature to all hourly timestamps for the

current day

214 df_KNMI.loc[mask , 'FFavg '] = av_wind

215 # --

216 # Writing the csv away

217 df_KNMI.to_csv('Qd_results.csv ')

112 B. Python code

B.4. python/get_svf.py
1 import requests

2 import sys

3

4

5 def download_file_from_temporary_download_url(download_url , filename):

6 try:

7 with requests.get(download_url , stream=True) as r:

8 r.raise_for_status ()

9 with open(filename , "wb") as f:

10 for chunk in r.iter_content(chunk_size =8192):

11 f.write(chunk)

12 except Exception:

13 sys.exit (1)

14

15 print(f"Successfully downloaded dataset file to {filename }")

16

17

18 def main():

19 # Parameters

20 base_url = "https ://api.dataplatform.knmi.nl/open -data/v1"

21 api_key = "

eyJvcmciOiI1ZTU1NGUxOTI3NGE5NjAwMDEyYTNlYjEiLCJpZCI6ImE3NDdjMjVjMWRlNTQ3ZjdhMjM3ZmM5MmM0ZDBiNTkxIiwiaCI6Im11cm11cjEyOCJ9

"

22 dataset_name = "SVF_NL"

23 dataset_version = "3"

24

25 files = [

26 "37 EZ2.tif",

27 "37 FZ1.tif",

28 "37 FZ2.tif",

29 "37 GN2.tif",

30 "37 HN1.tif",

31 "37 HN2.tif",

32]

33

34 for filename in files:

35 filename = filename.lower()

36 filename = "SVF_r" + filename

37

38 # get temporary download url

39 endpoint = f"{ base_url }/ datasets /{ dataset_name }/ versions /{

dataset_version }/files /{ filename }/url"

40 print(endpoint)

41 get_file_response = requests.get(endpoint , headers ={" Authorization ":

api_key })

42 j = get_file_response.json()

43 url = j['temporaryDownloadUrl ']

44

45 # with the url download the file

46 download_file_from_temporary_download_url(url , filename)

47

48

49 if __name__ == "__main__ ":

50 main()

B.5. python/fraction_area_buildings_treeregr.py 113

B.5. python/fraction_area_buildings_treeregr.py

1 import numpy as np

2 from PIL import Image

3 import multiprocessing as mp

4 from .pet_parameters import window_footprint , writer , wind_direction

5 from .geotiff_creator import ArrayToGeotif , GeotifToArray , GeotifWrite ,

ArrayWrite

6 #---

7 # fractionareabuildingstreeregr

8 # purpose: calculate wind speed u1.2

9 # input: buildings_mask , buildings_height , trees_ahn , trees_mask

10 # output: wind_direction

11 #---

12

13 def meancal(a, size):

14

15 mean = 0

16 for j in range(size):

17 mean += a[j]

18 return mean / size

19

20 def myMean(A):

21

22 m,n = A.shape

23 pool = mp.Pool()

24 rowMean = [pool.apply(meancal , args=(A[i,:], n)) for i in range(m)]

25 mean = meancal(rowMean , m)

26 pool.close()

27 return mean

28

29 def FaBuildingTree(stat , dyn , im1 , im2 , im3 , im4):

30

31 print('FaBuildingTree.Calculator ')

32

33 #f = open('d:/tmp/aab.dat ', 'wt ')

34

35 # parameters

36 k = 0.4

37 z0_grass = 0.03

38 refwind = 1 / 0.63501

39 red_grass = np.round(refwind * np.log (1.2 / z0_grass) / np.log (10 /

z0_grass), 2)

40 red_60_10 = np.log(10 / z0_grass) / np.log (60 / z0_grass)

41 buildingfactor = 0.2 #was 0.6

42 treefactor = 0.27 #was 0.27

43 winddir = dyn.winddir

44 WE = dyn.WE

45 wind_on = dyn.wind

46 FF = dyn.FF

47

48 # fine scale extended area = research area + boundary

49 # size must by the same for im1 , im2 , im3 , im4

50 building_height_fine , meta1 = GeotifToArray(im1 , 1)

51 mask_building_fine , meta2 = GeotifToArray(im2 , 1)

52 tree_height_fine , meta3 = GeotifToArray(im3 , 1)

53 mask_tree_fine , meta4 = GeotifToArray(im4 , 1)

54 metafine = meta1

55

114 B. Python code

56 # check fine scale extended area

57 for i in range(metafine [3]):

58 for j in range(metafine [4]):

59 if building_height_fine[i,j] < 1e-3:

60 building_height_fine[i, j] = 0

61 else:

62 mask_building_fine[i, j] = 1

63 if tree_height_fine[i,j] < 1e-3:

64 tree_height_fine[i, j] = 0

65 else:

66 mask_tree_fine[i, j] = 1

67

68 '''

69 metafine = [3,5,1,16,18]

70 building_height = np.zeros((metafine [3], metafine [4])) #nrow ,ncol y,x

71 mask_building = np.zeros((metafine [3], metafine [4]))

72 tree_height = np.zeros ((metafine [3], metafine [4]))

73 mask_tree = np.zeros((metafine [3], metafine [4]))

74 building_height_fine [5,3] = 20

75 mask_building_fine [5,3] = 1

76 tree_height_fine [5,3] = 20

77 mask_tree_fine [5,3] = 1

78 building_height_fine [6, 6] = 10

79 mask_building_fine [6, 6] = 1

80 tree_height_fine [6, 6] = 10

81 mask_tree_fine [6, 6] = 1

82 building_height_fine [8, 5] = 30

83 mask_building_fine [8, 5] = 1

84 tree_height_fine [8, 5] = 30

85 mask_tree_fine [8, 5] = 1

86 stat.nrow = 4

87 stat.ncol = 6

88 stat.cellsize = 1

89 stat.blocksize = 2

90 stat.xmin = 9

91 stat.ymin = 11

92 dyn.winddir = 'E'

93 dyn.upwind = 6

94 dyn.sidewind = 2

95 dyn.downwind = 4

96 dyn.nowind = 100

97 '''

98

99 # transform fine scale extended area to coarse scale extended area

100 scale = int(stat.blocksize / stat.cellsize)

101 nrow = int(metafine [3] / scale)

102 ncol = int(metafine [4] / scale)

103 meta = [metafine [0], metafine [1], stat.blocksize , nrow , ncol]

104 building_height = np.zeros((meta[3], meta [4]))

105 mask_building = np.zeros((meta[3], meta [4]))

106 tree_height = np.zeros ((meta[3], meta [4]))

107 mask_tree = np.zeros((meta[3], meta [4]))

108 building_weight = np.zeros((meta[3], meta [4]))

109 tree_weight = np.zeros ((meta[3], meta [4]))

110

111 for i in range(meta [3]):

112 istart = i * scale

113 iend = istart + scale - 1

114 iiend = iend

115 if i < meta [3] - 1:

116 iiend = iend + 1

B.5. python/fraction_area_buildings_treeregr.py 115

117 for j in range(meta [4]):

118 jstart = j * scale

119 jend = jstart + scale - 1

120 jjend = jend

121 if j < meta [4] - 1:

122 jjend = jend + 1

123

124 building_area = np.mean(mask_building_fine[istart: iend + 1, jstart

: jend + 1])

125 if building_area > 1e-2:

126 building_height[i,j] = np.mean(building_height_fine[istart:

iend + 1, jstart: jend + 1]) / building_area

127 mask_building[i, j] = 1.0

128 tree_area = np.mean(mask_tree_fine[istart: iend + 1, jstart: jend +

1])

129 if tree_area > 1e-2:

130 tree_height[i, j] = np.mean(tree_height_fine[istart: iend + 1,

jstart: jend + 1]) / tree_area

131 mask_tree[i, j] = 1

132

133 if wind_on:

134 if WE: # east -west or west -east wind

135 for m in range(istart , iend + 1, 1):

136 for n in range(jstart , jjend , 1):

137 building_weight[i, j] += abs(building_height_fine[m

, n + 1] - building_height_fine[m, n]) * 0.5

138 tree_weight[i, j] += abs(tree_height_fine[m, n + 1]

- tree_height_fine[m, n]) * 0.5

139

140 else: # north -south or south -north wind

141 for n in range(jstart , jend + 1, 1):

142 for m in range(istart , iiend , 1):

143 building_weight[i, j] += abs(building_height_fine[m

+ 1, n] - building_height_fine[m, n]) * 0.5

144 tree_weight[i, j] += abs(tree_height_fine[m + 1, n]

- tree_height_fine[m, n]) * 0.5

145

146 else: # no wind

147 for m in range(istart , iend + 1, 1):

148 for n in range(jstart , jjend , 1):

149 building_weight[i, j] += abs(building_height_fine[m, n

+ 1] - building_height_fine[m, n]) * 0.5

150 tree_weight[i, j] += abs(tree_height_fine[m, n + 1] -

tree_height_fine[m, n]) * 0.5

151

152 for n in range(jstart , jend + 1, 1):

153 for m in range(istart , iiend , 1):

154 building_weight[i, j] += abs(building_height_fine[m +

1, n] - building_height_fine[m, n]) * 0.5

155 tree_weight[i, j] += abs(tree_height_fine[m + 1, n] -

tree_height_fine[m, n]) * 0.5

156

157 #f.write(f'i {i} j {j} -> {istart} {iend} - {jstart} {jend} ->

building {building_weight[i, j]} tree {tree_weight[i, j]}\n')

158

159

160

161 # research area coarse

162 nrow = int(stat.nrow / scale)

163 ncol = int(stat.ncol / scale)

164 metadata = [stat.xmin , stat.ymin , stat.blocksize , nrow , ncol]

116 B. Python code

165 wind_2d = np.zeros((nrow , ncol))

166

167 # (moving) footprint area coarse

168 jleft , jright , iup , idown = window_footprint(dyn.winddir , dyn.upwind , dyn.

sidewind , dyn.downwind , dyn.nowind , stat.blocksize)

169 total_area = (jleft + jright + 1) * (iup + idown + 1) * scale **2 # number

of large blocks in footprint area

170

171 # upper left cell of the research area in extended research area

coordinates

172 iref = int((stat.ymin - meta [1]) / meta [2])

173 jref = int((stat.xmin - meta [0]) / meta [2])

174

175 # calculate wind scaling map

176 for i in range(nrow):

177 istart = i + iref - idown

178 iend = i + iref + iup

179 for j in range(ncol):

180 jstart = j + jref - jleft

181 jend = j + jref + jright

182

183 switch = False

184 building_area = np.mean(mask_building[istart: iend + 1, jstart:

jend + 1])

185 tree_area = np.mean(mask_tree[istart: iend + 1, jstart: jend + 1])

186

187 if building_area > 0:

188 building_height_mean = np.mean(building_height[istart: iend +

1, jstart: jend + 1]) / building_area

189 switch = True

190 else:

191 building_height_mean = 0

192

193 if tree_area > 0:

194 tree_height_mean = np.mean(tree_height[istart: iend + 1, jstart

: jend + 1]) / tree_area

195 tree_height_regr = np.max (7.721 * tree_height_mean ** 0.5, 0)

196 switch = True

197 else:

198 tree_height_mean = 0

199 tree_height_regr = 0

200

201 if switch == True:

202 height_com_pre = max((building_height_mean * building_area +

tree_height_regr * tree_area * treefactor /

203 buildingfactor) / (building_area +

tree_area * treefactor /

buildingfactor), 4)

204 else:

205 height_com_pre = 4.0

206

207 # calculate building and tree fronts for a cell using its window (1

no blockage , 0 fully blocked)

208 tree_front = 0

209 building_front = 0

210

211 for m in range(istart , iend + 1, 1):

212 for n in range(jstart , jend + 1, 1):

#==

213 building_front += building_weight[m, n] * buildingfactor

B.5. python/fraction_area_buildings_treeregr.py 117

214 tree_front += tree_weight[m, n] * treefactor

215

216 # fit for ahn tree to treefile (bomenbestand)

217 tree_regr = 45.45 * (tree_front ** 0.5)

218 front_regr = building_front + tree_regr

219

220 if front_regr > 25 and switch: # was 25 bij hele kleine

oppervlakten gewoon op 0 laten , moet hoogte hebben zit ook in

BW script

221 height_com = max(height_com_pre , 4)

222 lambda1 = min(front_regr / total_area + 0.015 , 0.33)

223

224 # frontal surface density

225 if lambda1 < 0.08:

226 z0 = 0.048 * height_com # (surface roughness length)

227 d = 0.066 * height_com # (zero -plane displacement)

228 zw = 2 * height_com # (top of the roughness layer)

229 A = -0.35 * height_com # parameter for interpolation wind

profile

230 B = 0.56 # parameter for interpolation wind profile

231 elif lambda1 < 0.135:

232 z0 = 0.071 * height_com

233 d = 0.26 * height_com

234 zw = 2.5 * height_com

235 A = -0.35 * height_com

236 B = 0.50

237 elif lambda1 < 0.18:

238 z0 = 0.084 * height_com

239 d = 0.32 * height_com

240 zw = 2.7 * height_com

241 A = -0.34 * height_com

242 B = 0.48

243 elif lambda1 < 0.265:

244 z0 = 0.08 * height_com

245 d = 0.42 * height_com

246 zw = 1.5 * height_com

247 A = -0.56 * height_com

248 B = 0.66

249 else:

250 z0 = 0.077 * height_com

251 d = 0.57 * height_com

252 zw = 1.2 * height_com

253 A = -0.85 * height_com

254 B = 0.92

255

256 # some additional computations

257 ustar = refwind / red_60_10 * k / np.log ((60 - d) / z0)

258 uzw = ustar / k * np.log((zw - d) / z0)

259 uh = uzw - ustar / B * np.log((A + B * zw) / (A + B *

height_com))

260 wind_2d[i, j] = min(uh * np.exp (9.6 * lambda1 * (1.2 /

height_com - 1)), red_grass)

261 else:

262 wind_2d[i, j] = red_grass

263

264 im = ArrayToGeotif(wind_2d , metadata)

265 building_height = tree_height = mask_tree = mask_building = wind_2d =

wind_notree_2d = wind_tree_2d = None

266

267 #f.close()

268

118 B. Python code

269 return im

B.6. python/ndvi_infr_large.py 119

B.6. python/ndvi_infr_large.py

1 import numpy as np

2 from .geotiff_creator import ArrayToGeotif , GeotifToArray , GeotifWrite

3 #---

4 # ndvi_infra_large

5 # purpose: create the ndvi from rgb and infr imagery

6 # input: lufo_rgb , lufo_infr , water_mask , tree_mask

7 # output: 'ndvi ', 'vegfra ', 'ndvi_crop_mask ', ndvi_tree_mask '

8 #---

9 def Ndvi_infr_large(stat_parameters , dyn_parameters , rgb , infr , water_mask ,

tree_mask):

10

11 print('Ndvi_infr_large.Calculator ')

12

13 wind_2d = np.zeros(shape =(0, 3))

14

15 xmin = stat_parameters.xmin

16 xmax = stat_parameters.xmax

17 ymin = stat_parameters.ymin

18 ymax = stat_parameters.ymax

19

20 ndvi_infr_2d = np.zeros(shape =(0, 3))

21 lufo_rgb , meta = GeotifToArray(rgb , 3)

22 lufo_infr , meta = GeotifToArray(infr , 3)

23 r = lufo_rgb[:, :, 0]. astype(int)

24 g = lufo_rgb[:, :, 1]. astype(int)

25 b = lufo_rgb[:, :, 2]. astype(int)

26 infr = lufo_infr[:, :, 0]. astype(int)

27 ndvi_infr = (infr - r) / (infr + r)

28 ndvi_infr[ndvi_infr < 0] = 0

29 arr = ndvi_infr

30

31 im1 = ArrayToGeotif(arr , meta)

32 h = meta [3]

33 w = meta [4]

34

35 water_mask , meta = GeotifToArray(water_mask , 1)

36 day = np.zeros((h, w), dtype=float)

37 night = np.zeros ((h, w), dtype=float)

38 for i in range(h):

39 for j in range(w):

40 if arr[i, j] > 0.16:

41 night[i, j] = 1

42 day[i, j] = 1

43 if water_mask[i, j] == 1:

44 night[i, j] = 0

45 day[i, j] = 1

46

47 if dyn_parameters.daynight == 'day ':

48 im2 = ArrayToGeotif(day , meta)

49 elif dyn_parameters.daynight == 'night ':

50 im2 = ArrayToGeotif(night , meta)

51

52 tree_mask , meta = GeotifToArray(tree_mask , 1)

53

54 crop = np.copy(night)

55 tree = np.copy(night)

56

120 B. Python code

57 for i in range(h):

58 for j in range(w):

59 if night[i, j] == 1:

60 if tree_mask[i, j] == 1:

61 crop[i, j] = 0

62 else:

63 tree[i, j] = 0

64

65 im3 = ArrayToGeotif(crop , meta)

66 im4 = ArrayToGeotif(tree , meta)

67

68 arr = day = night = tree = crop = None

69 return im1 , im2 , im3 , im4

B.7. python/vegetation_footprints.py 121

B.7. python/vegetation_footprints.py
1 import numpy as np

2 from .pet_parameters import window_footprint

3 from .geotiff_creator import ArrayToGeotif , GeotifToArray , GeotifWrite

4 from numba import jit , prange

5 #---

6 # vegetation_footprint

7 # purpose: vegetation footprint calculation for urban heat map

8 # input: vegfra

9 # output: vegfra_2d

10 #---

11 #@jit(parallel=True)

12 def Vegetation_footprints(stat , dyn , im):

13

14 print('Vegetation_footprints.Calculator ')

15

16 f = open('d:/tmp/veg.dat ', 'wt ')

17

18 vegfra , meta = GeotifToArray(im, 1) # analyse gebied met randen

19

20 nrow = int(stat.nrow * stat.cellsize / stat.blocksize)

21 ncol = int(stat.ncol * stat.cellsize / stat.blocksize)

22 metadata = [stat.xmin , stat.ymin , stat.blocksize , nrow , ncol]

23 jleft , jright , iup , idown = window_footprint(dyn.winddir , dyn.upveg , dyn.

sideveg , dyn.downveg , dyn.noveg , stat.blocksize)

24 iref = int((stat.ymin - meta [1]) / meta [2])

25 jref = int((stat.xmin - meta [0]) / meta [2])

26

27 f.write(f'{ metadata [0]} {metadata [1]} {metadata [2]} {metadata [3]} {metadata

[4]}\n')

28 f.write(f'{nrow} {ncol} {meta [0]} {meta [1]} {meta [2]} {meta [3]} {meta [4]}\n

')

29 f.write(f'{ jleft} {jright} {iup} {idown} {iref} {jref}\n')

30 f.close()

31

32 vegfra_2d = np.zeros((nrow , ncol))

33 for i in range(nrow):

34 istart = i + iref - idown

35 iend = i + iref + iup

36 for j in range(ncol):

37 jstart = j + jref - jleft

38 jend = j + jref + jright

39 vegfra_2d[i, j] = np.mean(vegfra[istart: iend+1, jstart: jend +1])

40

41 im1 = ArrayToGeotif(vegfra_2d , metadata)

42 vegfra_2d = None

43

44 return im1

122 B. Python code

B.8. python/skyview_footprints.py
1 import numpy as np

2 from .pet_parameters import window_footprint

3 from .geotiff_creator import ArrayToGeotif , GeotifToArray , GeotifWrite

4 #---

5 # skyview_footprint

6 # purpose: skyview footprint calculation for urban heat map

7 # input: skyview

8 # output: skyview_2d

9 #---

10 def Skyview_footprints(stat , dyn , im):

11

12 print('SkyView.Calculator ')

13

14 svf_2d = np.array(im)

15 svf , meta = GeotifToArray(im , 1) #

analyse gebied met randen

16

17 nrow = int(stat.nrow * stat.cellsize / stat.blocksize)

18 ncol = int(stat.ncol * stat.cellsize / stat.blocksize)

19 metadata = [stat.xmin , stat.ymin , stat.blocksize , nrow , ncol]

20 jleft , jright , iup , idown = window_footprint(dyn.winddir , dyn.upveg , dyn.

sideveg , dyn.downveg , dyn.noveg , stat.blocksize)

21 iref = int((stat.ymin - meta [1]) / meta [2])

22 jref = int((stat.xmin - meta [0]) / meta [2])

23 h = nrow

24 w = ncol

25

26 mean_svf = np.zeros ((h, w))

27 for i in range(h):

28 istart = i + iref - idown

29 iend = i + iref + iup

30 for j in range(w):

31 jstart = j + jref - jleft

32 jend = j + jref + jright

33 perc = (np.mean(svf[istart: iend+1, jstart: jend +1]) > 0) / (np.sum

(svf[istart: iend+1, jstart: jend +1]) > -1)

34 if perc >= 0.2:

35 mean_svf[i, j] = np.mean(svf[istart: iend+1, jstart: jend +1])

36 elif perc >= 0.1: # linearize between svf=1 for 0.1 and svf as

executed above

37 mean_pre_svf = np.mean(svf[istart: iend+1, jstart: jend +1])

38 mean_svf[i, j] = ((perc - 0.1) / 0.1) * mean_pre_svf + (1 - (

perc - 0.1) / 0.1) * 1

39 else:

40 mean_svf[i, j] = 1

41

42 im1 = ArrayToGeotif(mean_svf , metadata)

43 mean_svf = None

44

45 return im1

B.9. python/urban_heat.py 123

B.9. python/urban_heat.py
1 import numpy as np

2 from .pet_parameters import window_footprint

3 from .geotiff_creator import ArrayToGeotif , GeotifToArray , GeotifWrite

4 import pandas as pd

5

6 #------------------

7 # urbanheat

8 # python code: urban_heat

9 # input: vegfra_wind , svf_wind

10 # output: urban_heat

11

12 def Urban_heat(stat , dyn , im1 , im2):

13

14 print('Urban_heat.Calculator ')

15

16 S = dyn.S

17 U = dyn.U

18 Tmin = dyn.Tmin

19 Tmax = dyn.Tmax

20

21 vegfra , meta = GeotifToArray(im1 , 1)

22 svf , meta = GeotifToArray(im2 , 1)

23 h = np.shape(vegfra)[0] # y

24 w = np.shape(vegfra)[1] # x

25 uhi = np.ones((h, w))

26 uhi *= 2

27 uhi = uhi - vegfra - svf

28 factor = (S * (Tmax - Tmin) ** 3 / U) ** (1 / 4)

29 uhi *= factor

30

31 im3 = ArrayToGeotif(uhi , meta)

32 vegfra = svf = None

33

34 return im3

124 B. Python code

B.10. python/pet_calculate.py

1 #from IPython import get_ipython

2 #get_ipython ().magic('reset -sf ')

3

4 import numpy as np

5 from .pet_parameters import window_footprint

6 from .geotiff_creator import ArrayToGeotif , GeotifToArray , GeotifWrite

7 #---

8 # petcalculate

9 # purpose: calculate the PET

10 # input: shadow , urbanheat , wind , svf , svf_mask , ndvi_crop_mask , ndvi_tree_mask

11 # output: pets

12

13 def PET_calculate(stat , dyn , im1 , im2 , im3 , im4 , im5 , im6 , im7):

14

15 TT = dyn.TT #TT: Temperatuur (in 0.1 graden Celsius) op

1.50 m hoogte tijdens de waarneming

16 FF = dyn.FF #FF: Windsnelheid (in 0.1 m/s) gemiddeld

over de laatste 10 minuten van het afgelopen uur

17 Q = dyn.Q #Q: Global solar irradiationGlobale

straling (in J/cm2) per uurvak

18 Qdif = dyn.Qdif #Qdif: Difuse radiation

19 sunalt = dyn.sunalt #sunalt:solar elevation angle

20 RH = dyn.RH #RH: Relative Humidity

21 diurnal = dyn.diurnal #diurnal correction factor UHI for Ta

22

23 print('PET.Calculator ')

24 Bveg = 0.4

25 Bnoveg = 3

26 stef = 5.67 * 10 ** -8

27

28 sun , meta = GeotifToArray(im1 , 1) # added anders geen ref in shadow

29 urban , meta = GeotifToArray(im2 , 1)

30 wind , meta = GeotifToArray(im3 , 1)

31 svf , meta = GeotifToArray(im4 , 1)

32 svf_mask , meta = GeotifToArray(im5 , 1)

33 mask_vegfra , meta = GeotifToArray(im6 , 1)

34 trees_2m , meta = GeotifToArray(im7 , 1)

35

36 # with open("D:\\tmp\\test.txt", 'wt ') as f:

37 # f.write(f"sun , meta {sun , meta }\\n")

38 # f.write(f"urban , meta {urban , meta }\\n")

39 # f.write(f"wind , meta {wind , meta }\\n")

40 # f.write(f"svf , meta {svf , meta }\\n")

41 # f.write(f"svf_mask , meta {svf_mask , meta }\\n")

42 # f.write(f"mask_vegfra , meta {mask_vegfra , meta }\\n")

43 # f.write(f"trees_2m , meta {trees_2m , meta }\\n")

44

45

46 Ta = urban [:] * diurnal + TT

47 Tw = TT * np.arctan (0.15198 * (RH + 8.3137) ** 0.5) + np.arctan(TT + RH) -

np.arctan(

48 RH - 1.676) + 0.0039184 * RH ** 1.5 * np.arctan (0.023101 * RH) - 4.686

49

50 wind = ((wind - 0.125) * 0.5829 + 0.125) * FF

51 wind[wind < 0.5] = 0.5

52 wind_temp = np.ravel(wind)

53 #wind_res = np.array(wind_temp).transpose ()

54

B.10. python/pet_calculate.py 125

55 # day

56 if Q > 0:

57 sun_temp , meta = GeotifToArray(im1 , 1)

58 sun = sun_temp * (1 - trees_2m [:])

59

60 PETshade = (-12.14 + 1.25 * Ta[:] - 1.47 * np.log(wind [:]) + 0.060 * Tw

+ 0.015 * svf[:] * Qdif +

61 0.0060 * (1 - svf [:]) * stef * (Ta[:] + 273.15) ** 4) * (1

- sun [:]) * svf_mask [:]

62 PETveg = (-13.26 + 1.25 * Ta[:] + 0.011 * Q - 3.37 * np.log(

63 wind [:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind [:]) + 5.56 * np.

sin(

64 sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind [:]) * np.sin(

65 sunalt / 360 * 2 * np.pi) + 0.546 * Bveg + 1.94 * svf [:]) *

mask_vegfra [:] * sun[:] * svf_mask [:]

66 PETnoveg = (-13.26 + 1.25 * Ta[:] + 0.011 * Q - 3.37 * np.log(

67 wind [:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind [:]) + 5.56 * np.

sin(

68 sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind [:]) * np.sin(

69 sunalt / 360 * 2 * np.pi) + 0.546 * Bnoveg + 1.94 * svf [:]) * (1 -

mask_vegfra [:]) * sun[:] * svf_mask [:]

70

71 PET = PETshade + PETveg + PETnoveg

72

73 # night

74 else:

75 PETshade = (-12.14 + 1.25 * Ta[:] - 1.47 * np.log(wind [:]) + 0.060 * Tw

+ 0.015 * svf[:] * Qdif

76 + 0.0060 * (1 - svf [:]) * stef * (Ta[:] + 273.15) ** 4) *

(1 - sun [:]) * svf_mask [:]

77

78 PET = PETshade

79

80 im8 = ArrayToGeotif(PET , meta)

81 sun = urban = wind = svf = svf_mask = mask_vegfra = trees_2m = PET = None

82

83 return im8

126 B. Python code

B.11. python/pet_simulator.py

1 # -*- coding: utf -8 -*-

2 """

3 /***

4 PetUi

5 A QGIS plugin

6 Physiological Equivalent Temperature Simulator

7 Generated by Plugin Builder: http ://g-sherman.github.io/Qgis -Plugin -Builder/

8 -------------------

9 begin : 2023 -08 -02

10 git sha : $Format :%H$

11 copyright : (C) 2023 by Marieke van Esch , student TU Delft ,

the Netherlands

12

13 ***/

14

15 /***

16 * *

17 * This program is free software; you can redistribute it and/or modify *

18 * it under the terms of the GNU General Public License as published by *

19 * the Free Software Foundation; either version 2 of the License , or *

20 * (at your option) any later version. *

21 * *

22 ***/

23

24 """

25

26 from qgis.PyQt.QtCore import QSettings , QTranslator , QCoreApplication #Qdate

27 from qgis.core import QgsRasterLayer

28 from qgis.PyQt.QtGui import QIcon

29 from qgis.PyQt.QtWidgets import QAction

30 from qgis.core import QgsProject , QgsRectangle

31 from osgeo import gdal , osr , ogr

32

33 # Initialize Qt resources from file resources.py

34 from .resources import *

35 # Import the code for the dialog

36 from .pet_simulator_dialog import PetUiDialog

37 import os.path

38 import numpy as np

39 import pandas as pd

40 import datetime

41 import time

42 import matplotlib.pyplot as plt

43 from datetime import datetime

44 import matplotlib.image as mpimg

45

46 from .algorithm.pet_parameters import StatParameters , writer

47 from .algorithm.pet_parameters import DynParameters

48 from .algorithm.pet_parameters import window_footprint , wind_direction

49 from .algorithm.geotiff_creator import ArrayToGeotif , GeotifToArray ,

GeotifWrite , ArrayWrite , ArrayWriteG

50

51 class PetUi:

52 """ QGIS Plugin Implementation ."""

53

54 def __init__(self , iface):

55 """ Constructor.

56

57 :param iface: An interface instance that will be passed to this class

B.11. python/pet_simulator.py 127

58 which provides the hook by which you can manipulate the QGIS

59 application at run time.

60 :type iface: QgsInterface

61 """

62 # Save reference to the QGIS interface

63 self.iface = iface

64 # initialize plugin directory

65 self.plugin_dir = os.path.dirname(__file__)

66 # initialize locale

67 locale = QSettings ().value('locale/userLocale ')[0:2]

68 locale_path = os.path.join(

69 self.plugin_dir ,

70 'i18n ',

71 'PetUi_ {}.qm '. format(locale))

72

73 if os.path.exists(locale_path):

74 self.translator = QTranslator ()

75 self.translator.load(locale_path)

76 QCoreApplication.installTranslator(self.translator)

77

78 # Declare instance attributes

79 self.actions = []

80 self.menu = self.tr(u'&PET Simulator ')

81

82 # Check if plugin was started the first time in current QGIS session

83 # Must be set in initGui () to survive plugin reloads

84 self.first_start = None

85

86 self.weather = DynParameters(Date =20150701 , decade=1, hour=12, min=0,

TT=28, FF=6, dd=100, Q=794.444 , Qdif =158.88 ,

87 sunalt =55.3 , RH=48, diurnal =0.03 , Tmin= 24, Tmax = 34, U = 6)

88

89 self.spatial = StatParameters(xmin =172075 , xmax =172075 + 6, ymin

=440675 , ymax =440675 + 5, cellsize=1,

90 station='herwijnen ', station_lat =51.859 ,

station_lon =5.146)

91

92 # noinspection PyMethodMayBeStatic

93 def tr(self , message):

94 """ Get the translation for a string using Qt translation API.

95

96 We implement this ourselves since we do not inherit QObject.

97

98 :param message: String for translation.

99 :type message: str , QString

100

101 :returns: Translated version of message.

102 :rtype: QString

103 """

104 # noinspection PyTypeChecker ,PyArgumentList ,PyCallByClass

105 return QCoreApplication.translate('PetUi ', message)

106

107

108 def add_action(

109 self ,

110 icon_path ,

111 text ,

112 callback ,

113 enabled_flag=True ,

114 add_to_menu=True ,

115 add_to_toolbar=True ,

128 B. Python code

116 status_tip=None ,

117 whats_this=None ,

118 parent=None):

119

120 icon = QIcon(icon_path)

121 action = QAction(icon , text , parent)

122 action.triggered.connect(callback)

123 action.setEnabled(enabled_flag)

124

125 if status_tip is not None:

126 action.setStatusTip(status_tip)

127

128 if whats_this is not None:

129 action.setWhatsThis(whats_this)

130

131 if add_to_toolbar:

132 # Adds plugin icon to Plugins toolbar

133 self.iface.addToolBarIcon(action)

134

135 if add_to_menu:

136 self.iface.addPluginToMenu(

137 self.menu ,

138 action)

139

140 self.actions.append(action)

141

142 return action

143

144 def initGui(self):

145 """ Create the menu entries and toolbar icons inside the QGIS GUI ."""

146

147 icon_path = ':/plugins/pet_simulator/icon.png '

148 self.add_action(

149 icon_path ,

150 text=self.tr(u'PETS '),

151 callback=self.run ,

152 parent=self.iface.mainWindow ())

153

154 # will be set False in run()

155 self.first_start = True

156

157 def unload(self):

158 """ Removes the plugin menu item and icon from QGIS GUI ."""

159 for action in self.actions:

160 self.iface.removePluginMenu(

161 self.tr(u'&PET Simulator '),

162 action)

163 self.iface.removeToolBarIcon(action)

164

165 def clipping(self):

166

167 self.exportdata () # read data from line edits

168

169 root = QgsProject.instance ().layerTreeRoot ()

170 for i in range (11):

171 if i == 0:

172 name = 'ahn '

173 elif i == 1:

174 name = 'building_height '

175 elif i == 2:

176 name = 'building_mask '

B.11. python/pet_simulator.py 129

177 elif i == 3:

178 name = 'ndvi_infr '

179 elif i == 4:

180 name = 'ndvi_rgb '

181 elif i == 5:

182 name = 'Shadow_20150701_0900_LST ' #Shadow_20150701_1000_LST #

Shadow_20150701_1200_LST

183 elif i == 6:

184 name = 'svf '

185 elif i == 7:

186 name = 'svf_mask '

187 elif i == 8:

188 name = 'tree_height '

189 elif i == 9:

190 name = 'tree_mask '

191 elif i == 10:

192 name = 'water_mask '

193

194 intiff = gdal.Open(f'{self.spatial.directory_in }{name}.tif ') #

input from file

195

196 up = max(self.weather.upwind , self.weather.upveg)

197 side = max(self.weather.sidewind , self.weather.sideveg)

198 down = max(self.weather.downwind , self.weather.downveg)

199 now = max(self.weather.nowind , self.weather.noveg)

200 ileft , iright , iup , idown = window_footprint(self.weather.winddir ,

up, side , down , now , self.spatial.cellsize)

201 xleft = ileft * self.spatial.cellsize

202 xright = iright * self.spatial.cellsize

203 yup = iup * self.spatial.cellsize

204 ydown = idown * self.spatial.cellsize

205

206 # clip to maximal extended window

207 outputfile = f'{self.spatial.directory_out}input \\{ self.spatial.

label}_{name}.tif '

208 bounds = (self.spatial.xmin -xleft , self.spatial.ymin -ydown , self.

spatial.xmax+xright , self.spatial.ymax+yup)

209 gdal.Warp(outputfile , intiff , outputBounds=bounds) # output to

file

210

211 self.TifToJPG(self.spatial.directory_out , 'input ', f'{self.spatial.

label}_{name}', large=True)

212

213 if self.dlg.checkBox.checkState ():

214 ArrayWriteG(f'{self.testin}', f'{self.spatial.label}_{name}', f

'{ outputfile }')

215

216 intiff = None

217 raster_layer = QgsRasterLayer(outputfile , f'{name}', 'gdal ') #

input from file

218 if not raster_layer.isValid ():

219 print('Error: Invalid raster layer.')

220 else:

221 QgsProject.instance ().addMapLayer(raster_layer)

222 #layer = QgsProject.instance ().mapLayersByName(f'{name}')[0]

223 #myLayerNode = root.findLayer(layer.id())

224 #myLayerNode.setExpanded(False)

225 #myLayerNode.setItemVisibilityChecked(False)

226

227

228

130 B. Python code

229 def addGttiffLayer(self , directory , name , im, driver , root):

230

231 outputfile = f'{ directory }{self.spatial.label}_{name}.tif '

232 driver.CreateCopy(outputfile , im, strict =0)

233 raster_layer = QgsRasterLayer(outputfile , f'{name}', 'gdal ') # input

from file

234 if not raster_layer.isValid ():

235 print('Error: Invalid raster layer.')

236 else:

237 QgsProject.instance ().addMapLayer(raster_layer)

238 layer = QgsProject.instance ().mapLayersByName(f'{name}')[0]

239 myLayerNode = root.findLayer(layer.id())

240 myLayerNode.setExpanded(False)

241 myLayerNode.setItemVisibilityChecked(False)

242

243 def clipper(self , basedirectory , subdirectory , filename):

244

245 intiff = gdal.Open(f'{ basedirectory }{ subdirectory }\\{ filename}')

246 outputfile = f'{ basedirectory}clip \\{ filename}'

247 bounds = (self.spatial.xmin , self.spatial.ymin , self.spatial.xmax , self

.spatial.ymax) #small

248 gdal.Warp(outputfile , intiff , outputBounds=bounds)

249 outtiff = gdal.Open(outputfile)

250 return outtiff

251

252 def TifToJPG(self , basedirectory , subdirectory , filename , binary=False ,

ticks= not None , large=False):

253 tif = gdal.Open(f'{ basedirectory }{ subdirectory }\\{ filename }.tif ')

254 tifArray = tif.ReadAsArray ()

255 data , metadata = GeotifToArray(tif , 1)

256

257 #[xmin , ymin , cellsize , nrow , ncol]

258

259 extent = metadata [0], metadata [0] + metadata [4] * metadata [2], metadata

[1], metadata [1] + metadata [3] *metadata [2]

260 if binary is True:

261 plt.matshow(tifArray , cmap='gray ', extent=extent)

262 colorarr = np.linspace(np.min(tifArray), np.max(tifArray), 11)

263 plt.colorbar(ticks=colorarr)

264 else:

265 plt.matshow(data , cmap='rainbow ', extent=extent)

266 colorarr = np.linspace(np.min(tifArray), np.max(tifArray), 11)

267 plt.colorbar(ticks=colorarr , shrink =0.8)

268

269 plt.title(filename)

270 plt.xlabel('x') #lon

271 plt.ylabel('y') #lat

272 plt.axis('equal ')

273 plt.gca().xaxis.tick_bottom ()

274 plt.ticklabel_format(useOffset=False)

275

276 if large:

277 plt.savefig(f'{ basedirectory}tif \\{ filename}_large.jpg ',

bbox_inches='tight ')

278 else:

279 plt.savefig(f'{ basedirectory}tif \\{ filename }.jpg ', bbox_inches='

tight ')

280 #plt.show()

281

282 def timecalculator(self , timers , name , flag):

283

B.11. python/pet_simulator.py 131

284 elapsed_time_flag1 = flag [1] - flag [0]

285 elapsed_time_flag2 = flag [2] - flag [1]

286 elapsed_time_flag3 = flag [3] - flag [2]

287 elapsed_time = elapsed_time_flag1 + elapsed_time_flag2 +

elapsed_time_flag3

288 timers[f'Elapsed time {name} (s)'] = elapsed_time

289 timers[f'--- flag1 {name} read (s)'] = elapsed_time_flag1

290 timers[f'--- flag2 {name} calculate (s) '] = elapsed_time_flag2

291 timers[f'--- flag3 {name} write (s)'] = elapsed_time_flag3

292

293 def timewriter(self , filename , timers):

294

295 with open(filename , 'w') as f:

296 # sum = timers.items()[1]. sum()

297 sum1 = sum(timers.values ())/2

298 for key , value in timers.items ():

299 # sum += value

300 f.write(f'{key :35} : {value :6.3f} : {((value / sum1) * 100)

:6.2f} % \n')

301 f.write(f'Total time (s): {sum1 :.6f}')

302

303 def toTif(self , basedirectory):

304

305 for i in range (11):

306 if i == 0:

307 name = 'ahn '

308 elif i == 1:

309 name = 'building_height '

310 elif i == 2:

311 name = 'building_mask '

312 elif i == 3:

313 name = 'ndvi_infr '

314 elif i == 4:

315 name = 'ndvi_rgb '

316 elif i == 5:

317 name = 'Shadow_20150701_0900_LST '

318 elif i == 6:

319 name = 'svf '

320 elif i == 7:

321 name = 'svf_mask '

322 elif i == 8:

323 name = 'tree_height '

324 elif i == 9:

325 name = 'tree_mask '

326 elif i == 10:

327 name = 'water_mask '

328 name = f'{self.spatial.label}_{name}.tif '

329 image = gdal.Open(f'{self.spatial.directory_out}clip \\{ name}')

330 data , metadata = GeotifToArray(image , 1)

331

332 # only for testing

333 #ArrayWrite(f'{self.spatial.directory_out}tif\\{ name}', data ,

metadata)

334

335 def calculate(self):

336

337 self.exportdata ()

338

339 root = QgsProject.instance ().layerTreeRoot ()

340 driver = gdal.GetDriverByName('GTiff ')

341

132 B. Python code

342 #

--

343

344 timers = dict()

345

346 from .algorithm.fraction_area_buildings_treeregr import FaBuildingTree

347 flag = []

348 # import geotiffs

349 flag.append(time.perf_counter ())

350 im1 = gdal.Open(f'{self.spatial.directory_out}input \\{ self.spatial.

label}_building_height.tif ') # large

351 im2 = gdal.Open(f'{self.spatial.directory_out}input \\{ self.spatial.

label}_building_mask.tif ') # large

352 im3 = gdal.Open(f'{self.spatial.directory_out}input \\{ self.spatial.

label}_tree_height.tif ') # large

353 im4 = gdal.Open(f'{self.spatial.directory_out}input \\{ self.spatial.

label}_tree_mask.tif ') # large

354

355 #calculate

356 flag.append(time.perf_counter ())

357 #if not os.path.isfile(f'{self.spatial.directory_out}output \\wind.tiff

'):

358 im5 = FaBuildingTree(self.spatial , self.weather , im1 , im2 , im3 , im4) #

large

359

360 # upscale coarse to fine

361 name = 'wind_coarse '

362 self.addGttiffLayer(f'{self.spatial.directory_out}scale\\', name , im5 ,

driver , root) # test

363 scaled = f'{self.spatial.directory_out}output \\{ self.spatial.label}

_wind.tif ' # large

364 #gdal.Warp(scaled , im5 , xRes=self.spatial.cellsize , yRes=self.spatial.

cellsize , outputType=gdal.GDT_Float32 , resampleAlg =" average ")

365 #im5 = gdal.Open(scaled)

366

367 # downscale coarse to fine

368 data_type = gdal.GDT_Float32

369 driver = gdal.GetDriverByName('GTiff ')

370 in_band = im5.GetRasterBand (1)

371 out_ds = driver.Create(scaled , self.spatial.ncol , self.spatial.nrow ,

bands=1, eType=data_type)

372 out_ds.SetProjection(im5.GetProjection ())

373 geotransform = list(im5.GetGeoTransform ())

374 geotransform [1] /= self.spatial.blocksize / self.spatial.cellsize

375 geotransform [5] /= self.spatial.blocksize / self.spatial.cellsize

376 out_ds.SetGeoTransform(geotransform)

377 data = in_band.ReadAsArray(buf_xsize=self.spatial.ncol ,buf_ysize=self.

spatial.nrow)

378 out_band = out_ds.GetRasterBand (1)

379 out_band.WriteArray(data)

380 im5 = out_ds

381

382 #add layer and geotifs

383 name = 'wind '

384 flag.append(time.perf_counter ())

385 self.addGttiffLayer(f'{self.spatial.directory_out}output\\', name , im5 ,

driver , root)

386 im1 = im2 = im3 = im4 = im5 = None

387 self.dlg.label_18.setText('checked ')

388

B.11. python/pet_simulator.py 133

389 #self.dlg.show()

390 self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial.label

}_building_height.tif ')

391 self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial.label

}_building_mask.tif ')

392 self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial.label

}_tree_height.tif ')

393 self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial.label

}_tree_mask.tif ')

394

395 self.TifToJPG(self.spatial.directory_out , 'clip ', f'{self.spatial.label

}_building_height ')

396 self.TifToJPG(self.spatial.directory_out , 'clip ', f'{self.spatial.label

}_building_mask ', binary=True)

397 self.TifToJPG(self.spatial.directory_out , 'clip ', f'{self.spatial.label

}_tree_height ')

398 self.TifToJPG(self.spatial.directory_out , 'clip ', f'{self.spatial.label

}_tree_mask ', binary=True)

399 self.TifToJPG(self.spatial.directory_out , 'output ', f'{self.spatial.

label}_wind ')

400 flag.append(time.perf_counter ())

401

402 # array write (only with testing)

403 if self.dlg.checkBox.checkState ():

404 ArrayWriteG(f'{self.testout}', f'{self.spatial.label}_{name}', f'{

self.spatial.directory_out}output \\{ self.spatial.label}_wind.

tif ')

405

406 self.timecalculator(timers , name , flag)

407

408 #

--

409

410 from .algorithm.ndvi_infr_large import Ndvi_infr_large

411 flag = []

412

413 #import geotiffs

414 flag.append(time.perf_counter ())

415 im1 = gdal.Open(f'{self.spatial.directory_out}input \\{ self.spatial.

label}_ndvi_rgb.tif ') # large

416 im2 = gdal.Open(f'{self.spatial.directory_out}input \\{ self.spatial.

label}_ndvi_infr.tif ') # large

417 im3 = gdal.Open(f'{self.spatial.directory_out}input \\{ self.spatial.

label}_water_mask.tif ') # large

418 im4 = gdal.Open(f'{self.spatial.directory_out}input \\{ self.spatial.

label}_tree_mask.tif ') # large

419

420 # calculate

421 flag.append(time.perf_counter ())

422 im5 , im6 , im7 , im8 = Ndvi_infr_large(self.spatial , self.weather , im1 ,

im2 , im3 , im4) # large

423

424 # add tif and layer

425 flag.append(time.perf_counter ())

426 name = 'ndvi '

427 self.addGttiffLayer(f'{self.spatial.directory_out}output\\', name , im5 ,

driver , root)

428 name = 'vegfra '

429 self.addGttiffLayer(f'{self.spatial.directory_out}output\\', name , im6 ,

driver , root)

134 B. Python code

430 name = 'ndvi_crop_mask '

431 self.addGttiffLayer(f'{self.spatial.directory_out}output\\', name , im7 ,

driver , root)

432 name = 'ndvi_tree_mask '

433 self.addGttiffLayer(f'{self.spatial.directory_out}output\\', name , im8 ,

driver , root)

434 im1 = im2 = im3 = im4 = im5 = im6 = im7 = im8 = None

435 self.dlg.label_13.setText('checked ')

436

437 self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial.label

}_ndvi_rgb.tif ')

438 self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial.label

}_ndvi_infr.tif ')

439 self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial.label

}_water_mask.tif ')

440 self.clipper(self.spatial.directory_out , 'output ', f'{self.spatial.

label}_ndvi.tif ')

441 self.clipper(self.spatial.directory_out , 'output ', f'{self.spatial.

label}_vegfra.tif ')

442 self.clipper(self.spatial.directory_out , 'output ', f'{self.spatial.

label}_ndvi_crop_mask.tif ')

443 self.clipper(self.spatial.directory_out , 'output ', f'{self.spatial.

label}_ndvi_tree_mask.tif ')

444

445 self.TifToJPG(self.spatial.directory_out , 'clip ', f'{self.spatial.label

}_ndvi_rgb ')

446 self.TifToJPG(self.spatial.directory_out , 'clip ', f'{self.spatial.label

}_ndvi_infr ')

447 self.TifToJPG(self.spatial.directory_out , 'clip ', f'{self.spatial.label

}_water_mask ', binary=True)

448 self.TifToJPG(self.spatial.directory_out , 'clip ', f'{self.spatial.label

}_ndvi ')

449 self.TifToJPG(self.spatial.directory_out , 'clip ', f'{self.spatial.label

}_vegfra ')

450 self.TifToJPG(self.spatial.directory_out , 'clip ', f'{self.spatial.label

}_ndvi_crop_mask ')

451 self.TifToJPG(self.spatial.directory_out , 'clip ', f'{self.spatial.label

}_ndvi_tree_mask ')

452 flag.append(time.perf_counter ())

453

454 # write array (only for testing)

455 if self.dlg.checkBox.checkState ():

456 ArrayWriteG(f'{self.testout}', f'{self.spatial.label}_ndvi ',

457 f'{self.spatial.directory_out}output \\{ self.spatial.

label}_ndvi.tif ')

458 ArrayWriteG(f'{self.testout}', f'{self.spatial.label}_vegfra ',

459 f'{self.spatial.directory_out}output \\{ self.spatial.

label}_vegfra.tif ')

460 ArrayWriteG(f'{self.testout}', f'{self.spatial.label}

_ndvi_crop_mask.tif ',

461 f'{self.spatial.directory_out}output \\{ self.spatial.

label}_ndvi_crop_mask.tif ')

462 ArrayWriteG(f'{self.testout}', f'{self.spatial.label}

_ndvi_tree_mask ',

463 f'{self.spatial.directory_out}output \\{ self.spatial.

label}_ndvi_tree_mask.tif ')

464

465 self.timecalculator(timers , name , flag)

466

467 #

--

B.11. python/pet_simulator.py 135

468

469 from .algorithm.vegetation_footprints import Vegetation_footprints

470 flag = []

471 #import geotiffs

472 flag.append(time.perf_counter ())

473 im1 = gdal.Open(f'{self.spatial.directory_out}output \\{ self.spatial.

label}_vegfra.tif ') # large

474

475 # upscale to blocksize fine to coarse

476 scaled = f'{self.spatial.directory_out}scale \\{ self.spatial.label}

_vegfra.tif '

477 gdal.Warp(scaled , im1 , xRes=self.spatial.blocksize , yRes=self.spatial.

blocksize , resampleAlg =" average ")

478 im1 = gdal.Open(scaled)

479

480 #calculate

481 flag.append(time.perf_counter ())

482 im2 = Vegetation_footprints(self.spatial , self.weather , im1) # small

483

484 #downscale coarse to fine

485 data_type = gdal.GDT_Float32

486 driver = gdal.GetDriverByName('GTiff ')

487 in_band = im2.GetRasterBand (1)

488 out_ds = driver.Create(scaled , self.spatial.ncol , self.spatial.nrow ,

bands=1, eType=data_type)

489 out_ds.SetProjection(im2.GetProjection ())

490 geotransform = list(im2.GetGeoTransform ())

491 geotransform [1] /= self.spatial.blocksize / self.spatial.cellsize

492 geotransform [5] /= self.spatial.blocksize / self.spatial.cellsize

493 out_ds.SetGeoTransform(geotransform)

494 data = in_band.ReadAsArray(buf_xsize=self.spatial.ncol , buf_ysize=self.

spatial.nrow)

495 out_band = out_ds.GetRasterBand (1)

496 out_band.WriteArray(data)

497 im2 = out_ds

498

499 #add layer and geotiffs

500 flag.append(time.perf_counter ())

501 name = 'vegfra_wind '

502 self.addGttiffLayer(f'{self.spatial.directory_out}output\\', name , im2 ,

driver , root)

503 im1 = im2 = None

504 self.dlg.label_14.setText('checked ')

505 self.clipper(self.spatial.directory_out , 'output ', f'{self.spatial.

label}_vegfra.tif ')

506 self.TifToJPG(self.spatial.directory_out , 'clip ', f'{self.spatial.label

}_vegfra ')

507 self.TifToJPG(self.spatial.directory_out , 'output ', f'{self.spatial.

label}_vegfra_wind ')

508 flag.append(time.perf_counter ())

509

510 # write array (only for testing)

511 if self.dlg.checkBox.checkState ():

512 ArrayWriteG(f'{self.testout}', f'{self.spatial.label}_vegfra_wind ',

513 f'{self.spatial.directory_out}output \\{ self.spatial.label}

_vegfra_wind.tif ')

514

515 self.timecalculator(timers , name , flag)

516

136 B. Python code

517 #

--

518

519 from .algorithm.skyview_footprints import Skyview_footprints

520 flag = []

521

522 #import geotif

523 flag.append(time.perf_counter ())

524 im1 = gdal.Open(f'{self.spatial.directory_out}input \\{ self.spatial.

label}_svf.tif ') # large

525

526 # scale to blocksize

527 scaled = f'{self.spatial.directory_out}scale \\{ self.spatial.label}_svf.

tif '

528 gdal.Warp(scaled , im1 , xRes=self.spatial.blocksize , yRes=self.spatial.

blocksize , resampleAlg =" average ")

529 im1 = gdal.Open(scaled)

530

531 # calculate

532 flag.append(time.perf_counter ())

533 im2 = Skyview_footprints(self.spatial , self.weather , im1) # small

534

535 # downscale coarse to fine

536 data_type = gdal.GDT_Float32

537 driver = gdal.GetDriverByName('GTiff ')

538 in_band = im2.GetRasterBand (1)

539 out_ds = driver.Create(scaled , self.spatial.ncol , self.spatial.nrow ,

bands=1, eType=data_type)

540 out_ds.SetProjection(im2.GetProjection ())

541 geotransform = list(im2.GetGeoTransform ())

542 geotransform [1] /= self.spatial.blocksize / self.spatial.cellsize

543 geotransform [5] /= self.spatial.blocksize / self.spatial.cellsize

544 out_ds.SetGeoTransform(geotransform)

545 data = in_band.ReadAsArray(buf_xsize=self.spatial.ncol , buf_ysize=self.

spatial.nrow)

546 out_band = out_ds.GetRasterBand (1)

547 out_band.WriteArray(data)

548 im2 = out_ds

549

550 #add layer and write geotiffs

551 flag.append(time.perf_counter ())

552 name = 'svf_wind '

553 self.addGttiffLayer(f'{self.spatial.directory_out}output\\', name , im2 ,

driver , root)

554 im1 = im2 = None

555 self.dlg.label_15.setText('checked ')

556 self.TifToJPG(self.spatial.directory_out , 'output ', f'{self.spatial.

label}_svf_wind ')

557 flag.append(time.perf_counter ())

558

559 #write array (only for testing)

560 if self.dlg.checkBox.checkState ():

561 ArrayWriteG(f'{self.testout}', f'{self.spatial.label}_svf_wind ',

562 f'{self.spatial.directory_out}output \\{ self.spatial.label}

_svf_wind.tif ')

563

564 self.timecalculator(timers , name , flag)

565

566 #

--

B.11. python/pet_simulator.py 137

567 from .algorithm.urban_heat import Urban_heat

568 flag = []

569

570 # import geotiff

571 flag.append(time.perf_counter ())

572 im1 = gdal.Open(f'{self.spatial.directory_out}output \\{ self.spatial.

label}_vegfra_wind.tif ') # small

573 im2 = gdal.Open(f'{self.spatial.directory_out}output \\{ self.spatial.

label}_svf_wind.tif ') # small

574 self.dlg.label_16.setText('imported ')

575 #self.dlg.show() refresh ??

576

577 # calculate

578 flag.append(time.perf_counter ())

579 im3 = Urban_heat(self.spatial , self.weather , im1 , im2)

580 end_time_flag2 = time.perf_counter ()

581

582 # add layer and write geotiffs

583 flag.append(time.perf_counter ())

584 name = 'urban_heat '

585 self.addGttiffLayer(f'{self.spatial.directory_out}output\\', name , im3 ,

driver , root)

586 im1 = im2 = im3 = None

587 self.dlg.label_16.setText('checked ')

588 self.TifToJPG(self.spatial.directory_out , 'output ', f'{self.spatial.

label}_urban_heat ')

589 flag.append(time.perf_counter ())

590

591 # write array (only for testing)

592 if self.dlg.checkBox.checkState ():

593 ArrayWriteG(f'{self.testout}', f'{self.spatial.label}_urban_heat ',

594 f'{self.spatial.directory_out}output \\{ self.spatial.label}

_urban_heat.tif ')

595

596 self.timecalculator(timers , name , flag)

597

598 #

--

599

600 from .algorithm.pet_calculate import PET_calculate

601 flag = []

602

603 # import geotiff

604 flag.append(time.perf_counter ())

605 name = f'Shadow_{self.weather.year}{self.weather.month :02d}{self.

weather.day:02d}_{self.weather.hour :02d}{self.weather.min:02d}_LST '

606 name = "Shadow_20150701_0900_LST"

607

608 im1 = self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial

.label}_{name}.tif ') # small

609 im2 = gdal.Open(f'{self.spatial.directory_out}output \\{ self.spatial.

label}_urban_heat.tif ') # small

610 im3 = gdal.Open(f'{self.spatial.directory_out}output \\{ self.spatial.

label}_wind.tif ') # small

611 im4 = self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial

.label}_svf.tif ') # small

612 im5 = self.clipper(self.spatial.directory_out , 'input ', f'{self.spatial

.label}_svf_mask.tif ') # small

138 B. Python code

613 im6 = self.clipper(self.spatial.directory_out , 'output ', f'{self.

spatial.label}_ndvi_crop_mask.tif ') # small

614 im7 = self.clipper(self.spatial.directory_out , 'output ', f'{self.

spatial.label}_ndvi_tree_mask.tif ') # small

615

616

617 # calculate

618 flag.append(time.perf_counter ())

619 im8 = PET_calculate(self.spatial , self.weather , im1 , im2 , im3 , im4 , im5

, im6 , im7) # small #nonetype

620

621 # add layer and write geotiffs

622 flag.append(time.perf_counter ())

623 name = 'pets '

624 self.addGttiffLayer(f'{self.spatial.directory_out}output\\', name , im8 ,

driver , root)

625 im1 = im2 = im3 = im4 = im5 = im6 = im7 = None

626 self.dlg.label_17.setText('checked ')

627 flag.append(time.perf_counter ())

628 self.TifToJPG(self.spatial.directory_out , 'output ', f'{self.spatial.

label}_pets ')

629 flag.append(time.perf_counter ())

630

631 # write array (only for testing)

632 if self.dlg.checkBox.checkState ():

633 ArrayWriteG(f'{self.testout}', f'{self.spatial.label}_svf.tif ',

634 f'{self.spatial.directory_out}clip \\{ self.spatial.label

}_svf.tif ')

635 ArrayWriteG(f'{self.testout}', f'{self.spatial.label}_pets ',

636 f'{self.spatial.directory_out}output \\{ self.spatial.

label}_pets.tif ')

637

638 self.timecalculator(timers , name , flag)

639 self.timewriter(f'{self.spatial.directory_out}timewriterv1.txt ', timers

)

640

641

642 #

--

643 def importdata(self):

644

645 self.spatial.directory_in = self.dlg.lineEdit_3.text()

646 self.spatial.directory_out = self.dlg.lineEdit_2.text()

647 self.spatial.label = self.dlg.lineEdit_1.text()

648

649 with open(f'{self.spatial.directory_out}set.csv ', 'r') as fp:

650 lines = fp.readlines ()

651 lines = [line.strip() for line in lines]

652 lines = [line.split(',') for line in lines]

653 self.spatial.station = lines [3][1]

654 self.spatial.ymax = float(lines [4][1])

655 self.spatial.xmax = float(lines [5][1])

656 self.spatial.ymin = float(lines [6][1])

657 self.spatial.xmin = float(lines [7][1])

658 self.spatial.cellsize = float(lines [8][1])

659 self.spatial.blocksize = float(lines [9][1])

660 self.spatial.Resize ()

661 self.weather.TT = float(lines [10][1])

662 self.weather.FF = float(lines [11][1])

663 self.weather.dd = float(lines [12][1])

B.11. python/pet_simulator.py 139

664 self.weather.wind , self.weather.WE , self.weather.winddir =

wind_direction(self.weather.dd, self.weather.FF)

665 self.weather.Q = float(lines [13][1])

666 self.weather.Qdif = float(lines [14][1])

667 self.weather.sunalt = float(lines [15][1])

668 self.weather.RH = float(lines [16][1])

669 self.weather.diurnal = float(lines [21][1])

670

671 self.dlg.lineEdit_7.setText(f'{self.spatial.ymax}') # north

672 self.dlg.lineEdit_6.setText(f'{self.spatial.xmax}') # east

673 self.dlg.lineEdit_5.setText(f'{self.spatial.ymin}') # south

674 self.dlg.lineEdit_4.setText(f'{self.spatial.xmin}') # west

675 self.dlg.lineEdit_17.setText(f'{self.spatial.cellsize}') # south

676 self.dlg.lineEdit_16.setText(f'{self.spatial.blocksize }') # west

677 self.dlg.lineEdit_3.setText(f'{self.spatial.directory_in }')

678 self.dlg.lineEdit_2.setText(f'{self.spatial.directory_out }')

679 self.dlg.lineEdit_1.setText(f'{self.spatial.label}')

680 self.dlg.lineEdit_15.setText(f'{self.spatial.station}')

681 self.dlg.lineEdit_8.setText(f'{self.weather.TT}')

682 self.dlg.lineEdit_9.setText(f'{self.weather.FF}')

683 self.dlg.lineEdit_10.setText(f'{self.weather.dd}')

684 self.dlg.lineEdit_12.setText(f'{self.weather.Q}')

685 self.dlg.lineEdit_13.setText(f'{self.weather.Qdif}')

686 self.dlg.lineEdit_14.setText(f'{self.weather.sunalt}')

687 self.dlg.lineEdit_11.setText(f'{self.weather.RH}')

688

689 """

690 f = open('D:\\tmp\\aba.txt ', 'wt ')

691 df_KNMI = pd.read_csv(f'{self.spatial.directory_in }\\ knmi_results.csv ')

692

693 yyyymmdd = f'{self.dlg.dateTimeEdit1.date()}'

694 f.write(f' yyyymmdd {type(yyyymmdd)} {yyyymmdd }\n')

695 hhmmss = f'{self.dlg.dateTimeEdit1.time()}'

696 f.write(f' hhmmss {type(hhmmss)} {hhmmss }\n')

697 station = self.dlg.lineEdit_15.setText(f'{self.spatial.station}')

698 original_format = "%YYYY -%mm -%dd"

699 parsed_date = datetime.strptime(yyyymmdd , original_format)

700 desired_format = "%dd/%mm/%YYYY"

701

702

703 parsed_time = datetime.strptime(hhmmss , "%H:%M:%S")

704 hour = parsed_time.hour

705

706 formatted_date = parsed_date.strftime(desired_format)

707

708

709 date_string = self.dlg.dateTimeEdit1.date()

710 parsed_date = eval(date_string) # Evaluate the string to create a

QDate object

711

712 year = parsed_date.year()

713 month = parsed_date.month()

714 day = parsed_date.day()

715

716

717

718 f.write(f' yearmonthday {year} {month} {day}\n')

719 """

720

721

140 B. Python code

722 #

--

723 def importknmi(self):

724

725 # knmi file -> self.weather

726 df_KNMI = pd.read_csv(f'{self.spatial.directory_in }\\ knmi_results.csv ')

727 yyyymmdd = f'{self.dlg.dateTimeEdit1.date()}'

728 hhmmss = f'{self.dlg.dateTimeEdit1.time()}'

729 station = self.dlg.lineEdit_15.setText(f'{self.spatial.station}')

730

731

732 f = open('D:\\tmp\\aba.txt ', 'wt ')

733 f.write(f'{type(yyyymmdd)} {yyyymmdd }\n')

734

735 original_format = "%Y-%m-%d"

736 parsed_date = datetime.strptime(yyyymmdd , original_format)

737 desired_format = "%d/%m/%Y"

738

739 parsed_time = datetime.strptime(hhmmss , "%H:%M:%S")

740 hour = parsed_time.hour

741

742 formatted_date = parsed_date.strftime(desired_format)

743

744

745 condition = (df_KNMI['YYYYMMDD '] == formatted_date) & (df_KNMI['H'] ==

hour) & (df_KNMI['station '] == station)

746 filtered_rows = df_KNMI[condition]

747 """

748 self.dlg.lineEdit_8.setText(f'{self.weather.TT}')

749 self.dlg.lineEdit_9.setText(f'{self.weather.FF}')

750 self.dlg.lineEdit_10.setText(f'{self.weather.dd}')

751 self.dlg.lineEdit_12.setText(f'{self.weather.Q}')

752 self.dlg.lineEdit_13.setText(f'{self.weather.Qdif}')

753 self.dlg.lineEdit_14.setText(f'{self.weather.sunalt}')

754 self.dlg.lineEdit_11.setText(f'{self.weather.RH}')

755 """

756 self.dlg.lineEdit_8.setText(filtered_rows['TT '])

757 self.dlg.lineEdit_8.setText(filtered_rows['FF '])

758 self.dlg.lineEdit_8.setText(filtered_rows['dd '])

759 self.dlg.lineEdit_8.setText(filtered_rows['Q'])

760 self.dlg.lineEdit_8.setText(filtered_rows['Qdif '])

761 self.dlg.lineEdit_8.setText(filtered_rows['sunalt '])

762 self.dlg.lineEdit_8.setText(filtered_rows['RH '])

763

764 def exportdata(self):

765

766 self.spatial.ymax = float(self.dlg.lineEdit_7.text())

767 self.spatial.xmax = float(self.dlg.lineEdit_6.text()) # east

768 self.spatial.ymin = float(self.dlg.lineEdit_5.text()) # south

769 self.spatial.xmin = float(self.dlg.lineEdit_4.text()) # west

770 self.spatial.cellsize = float(self.dlg.lineEdit_17.text()) # south

771 self.spatial.blocksize = float(self.dlg.lineEdit_16.text()) # west

772 self.spatial.directory_in = self.dlg.lineEdit_3.text()

773 self.spatial.directory_out = self.dlg.lineEdit_2.text()

774 self.spatial.label = self.dlg.lineEdit_1.text()

775 self.spatial.station = self.dlg.lineEdit_15.text()

776 self.spatial.Resize ()

777

778 #self.weather = DynParameters ()

779 self.weather.TT = float(self.dlg.lineEdit_8.text())

B.11. python/pet_simulator.py 141

780 self.weather.FF = float(self.dlg.lineEdit_9.text())

781 self.weather.dd = float(self.dlg.lineEdit_10.text())

782 self.weather.wind , self.weather.WE , self.weather.winddir =

wind_direction(self.weather.dd, self.weather.FF)

783 self.weather.Q = float(self.dlg.lineEdit_12.text())

784 self.weather.Qdif = float(self.dlg.lineEdit_13.text())

785 self.weather.sunalt= float(self.dlg.lineEdit_14.text())

786 self.weather.RH = float(self.dlg.lineEdit_11.text())

787

788 with open(f'{self.spatial.directory_out}set.csv ', 'wt ') as f:

789

790 f.write(f'directory_in ,{self.spatial.directory_in }\n')

791 f.write(f'directory_out ,{self.spatial.directory_out }\n')

792 f.write(f'label ,{self.spatial.label }\n')

793 f.write(f'station ,{self.spatial.station }\n')

794 f.write(f'ymax ,{self.spatial.ymax :2.2f}\n')

795 f.write(f'xmax ,{self.spatial.xmax :2.2f}\n')

796 f.write(f'ymin ,{self.spatial.ymin :2.2f}\n')

797 f.write(f'xmin ,{self.spatial.xmin :2.2f}\n')

798 f.write(f'cellsize ,{self.spatial.cellsize :2.0f}\n')

799 f.write(f'blocksize ,{self.spatial.blocksize :2.0f}\n')

800 f.write(f'TT ,{self.weather.TT:2.2f}\n')

801 f.write(f'FF ,{self.weather.FF:2.2f}\n')

802 f.write(f'dd ,{self.weather.dd:2.2f}\n')

803 f.write(f'Q,{self.weather.Q:2.2f}\n')

804 f.write(f'Qdif ,{self.weather.Qdif :2.2f}\n')

805 f.write(f'sunalt ,{self.weather.sunalt :2.2f}\n')

806 f.write(f'RH ,{self.weather.RH:2.2f}\n')

807 f.write(f'wind ,{self.weather.wind}\n')

808 f.write(f'WE ,{self.weather.WE}\n')

809 f.write(f'winddir ,{self.weather.winddir }\n')

810 f.write(f'daynight ,{self.weather.daynight }\n')

811 f.write(f'diurnal ,{self.weather.diurnal }\n')

812 f.write(f'Tmin ,{self.weather.Tmin}\n')

813 f.write(f'Tmax ,{self.weather.Tmax}\n')

814 f.write(f'U,{self.weather.U}\n')

815 # f.write(f'upwind ,{self.weather.upwind }\n')

816 # f.write(f'sidewind ,{self.weather.sidewind }\n')

817 # f.write(f'downwind ,{self.weather.downwind }\n')

818 # f.write(f'nowind ,{self.weather.nowind }\n')

819 # f.write(f'upveg ,{self.weather.upveg }\n')

820 # f.write(f'sideveg ,{self.weather.sideveg }\n')

821 # f.write(f'downveg ,{self.weather.downveg }\n')

822 # f.write(f'noveg ,{self.weather.noveg }\n')

823

824 def weatherknmi(self):

825 self.importknmi ()

826 self.exportdata ()

827

828 def run(self):

829 """ Run method that performs all the real work """

830

831 # Create the dialog with elements (after translation) and keep

reference

832 # Only create GUI ONCE in callback , so that it will only load when the

plugin is started

833 if self.first_start == True:

834 self.first_start = False

835 self.dlg = PetUiDialog ()

836

837 self.dlg.lineEdit_3.setText(f'{self.spatial.directory_in }')

142 B. Python code

838

839 self.testin = f'{self.spatial.directory_out}in.txt '

840 f = open(self.testin , 'wt ')

841 f.close()

842 self.testout = f'{self.spatial.directory_out}out.txt '

843 f = open(self.testout , 'wt ')

844 f.close()

845

846 self.dlg.label_18.setText('')

847 self.dlg.label_13.setText('')

848 self.dlg.label_14.setText('')

849 self.dlg.label_15.setText('')

850 self.dlg.label_16.setText('')

851 self.dlg.label_17.setText('')

852

853 # show the dialog

854 self.dlg.show()

855

856 self.dlg.pushButton1.clicked.connect(self.importdata)

857 self.dlg.pushButton2.clicked.connect(self.clipping)

858 #self.dlg.pushButton4.clicked.connect(self.weatherknmi)

859 self.dlg.pushButton3.clicked.connect(self.calculate)

860

861

862 result = self.dlg.exec_ ()

863 # See if OK was pressed

864 if result:

865 a=1

C
Users manual

User Manual: Installation Requirements
** Attention this user manual is written down in march 2024. Update of this manual could be found at the
github page, or contact the writer of this report for clarification**

User manual v.0.1.
The software required to run the PET simulator includes QGIS, Python, and the UMEP QGIS plugin. Ad-

ditionally, Excel and Notepad are useful if the option to write text files from the generated in-between files
and output files is checked.

1. Installation of QGIS on Windows

(a) Visit the QGIS website and go to the download page. Preferably, choose the OSGEO4W Network
Installer (64-bit) and start the installation.

(b) To install the latest version (3.x), begin the installation and choose Express Desktop Install. Note
that the plugin works on QGIS 3.30.1. Visit www.qgis.org for installation instructions on other
operating systems.

2. Install the UMEP plugin

(a) Go to: Plugins -> Manage and Install Plugins... in QGIS Desktop.

(b) Under the All tab, search for UMEP. Click on UMEP and then click Install Plugin. We recommend
clicking OK to the popup question below to avoid troubles later on.

3. Adding missing Python libraries and other OSGEO functionalities

(a) Operating system and installation instructions

i. Windows: As Windows does not include a Python installation, QGIS makes use of a separate
Python installation added during QGIS installation on your PC. There are two options avail-
able:

A. (Try this first) Run the osgeo4w-setup-x86_64.exe (or osgeo4w-setup-x86_64.exe
depending on your system) executable. This can be found using the Windows search
bar. Select Advanced Install -> Install from Internet. When prompted to se-
lect packages, search for the required package (e.g., pandas) and click on Skip until you
see a version number of pandas. Finish the installation.

B. Alternatively, use pip in the OSGeo4W shell provided with QGIS to install desired Python
libraries.

For other operating systems such as MAC OS X, Linux, or other platforms, refer to the UMEP
documentation: https://umep-docs.readthedocs.io/en/latest/Getting_Started.html.

4. Installation of PyCharm

(a) Download PyCharm

143

144 C. Users manual

• Go to the official PyCharm website: https://www.jetbrains.com/pycharm/download/

• Choose the edition (Community or Professional) and click on the corresponding download
button for Windows.

• Once downloaded, locate the installer file (.exe) on your computer.

(b) Run the installer

• Double-click on the installer file to start the installation process. Windows may prompt you
to allow changes to your system.

• Follow the setup wizard prompts to configure the installation, choosing installation location
and additional components as needed.

(c) Complete the installation

• After configuring installation options, click "Install" to start the process. The installer will
copy necessary files and configure PyCharm.

(d) Launch PyCharm

• Once installed, launch PyCharm either from the Start menu or desktop shortcut.

(e) Activate PyCharm (Professional Edition)

• If using the Professional Edition, activate it using a license key or JetBrains account creden-
tials.

(f) Set up Python interpreter

• Upon first launch, configure a Python interpreter. Choose an existing installation or install
Python from within PyCharm if needed.

(g) Start using PyCharm

• Explore PyCharm features and tools for Python development.

5. Downloading PET simulator from GitHub

• The PET simulator directory should be added to the file location of plugins in the directory of
QGIS.

• Example location: C:\Users\marie\AppData\Roaming\QGIS\QGIS3\profiles\default\python\plugins\pet_simulator

Listing C.1: Tifs necessary for retrieving SVF files from knmi api

1 files = [

2 "37EZ2.tif",

3 "37FZ1.tif",

4 "37FZ2.tif",

5 "37GN2.tif",

6 "37HN1.tif",

7 "37HN2.tif",

8]

Figure ??

Downloading the plugin
The open link to the PET simulator plugin is https://github.com/mariekeve/pet_plugin. Here you can
find the pet_simulator directory which need to be placed in the directory of python plugins in QGIS. An exam-
ple isC:\Users\marie\AppData\Roaming\QGIS\QGIS3\profiles\default\python\plugins\pet_simulator.
Next to this you can find an example file of run10 which showcases the run directory. An example where to
put the directory in order to let it run should be in D: \project see Figure C.1. If you are in the directory of
a run for example there is a data directory containing the base maps see Figure C.1 . In each hour simulation
Figure C.3 showcases the directories created like clip, input, output, scale and tif. Also a txt file is created for
the computation time and a set.csv is there for the climate and static parameters.

https://github.com/mariekeve/pet_plugin

145

Figure C.1: Simulation overview of hours and base map data

Figure C.2: Directory base maps in the map data

Figure C.3: Hour simulation directory of the run Rotterdam

PET simulator QGIS plugin
Go to: Plugins -> Manage and Install Plugins... in QGIS Desktop. Under the All tab, search for PET
simulator. Click on PET simulator and then click Install Plugin. We recommend clicking OK to the popup
question below to avoid troubles later on. The figures below show the outlook of the different screens of the

146 C. Users manual

plugin. Figure C.5 showcases the second screen of the plugin. This window needs the input directories of
the base maps and the set.csv directory. Input is for example D:\project \run10 \data \ and output is
D:\project \run10 \sim25 \ and the label is run10sim25.

Figure C.4: Qgis plugin PETs window 1 static parameters.

The following figure C.5 showcases the second screen of the plugin. All the climate parameters are visible.

Figure C.5: Qgis plugin PETs window 2 dynamic parameters.

Figure C.7 showcases the third screen of the plugin. Here you can run the program. Check buttons will
appear if one of the python calculation files are well excuted.

C.1. Creation knmi files 147

Figure C.6: Qgis plugin PETs window 3 calculation screen.

Eventually the results are stored as geotiffs in the directories clip, input, output, scale and tif. Input is the
extended research area of the research area. Scale are the scaled wind, svf and fveg for the averaging windows.
Output showcases the in-between results and endresults. Tif directory outputs tifs for report documentation.

File handling is visible in this figure:

Figure C.7: file handling

C.1. Creation knmi files
Use pysolarv1 python file to read the knmi text file of one day and create the set csv files for each simulation
of each run.

148 C. Users manual

Libraries required
The required installment of running the code are the packages gdal in python as well as in QGIS python
environment. This can be installed with downloading a wheel. The wheel can be retrieved by https://gith
ub.com/cgohlke/geospatial-wheels/releases/tag/v2023.7.16

Listing C.2: Mean Squared Errors 1000x1000 m gebied

1 import pip

2

3 def install_whl(path):

4 pip.main(['install ', path])

5

6 install_whl("path/to/gdal.whl")

https://github.com/cgohlke/geospatial-wheels/releases/tag/v2023.7.16
https://github.com/cgohlke/geospatial-wheels/releases/tag/v2023.7.16

D
Extended research area eastern wind

Wageningen

Figure D.1: DTM

149

150 D. Extended research area eastern wind Wageningen

Figure D.2: DSM

Figure D.3: DSM - DTM

151

Figure D.4: Building mask.

Figure D.5: Building height.

152 D. Extended research area eastern wind Wageningen

Figure D.6: Building mask.

Figure D.7: Tree mask.

153

Figure D.8: Sky view factor.

Figure D.9: Sky view factor mask.

154 D. Extended research area eastern wind Wageningen

Figure D.10: Water mask.

Figure D.11: NDVI near infrared.

155

Figure D.12: NDVI red green blue.

Figure D.13: Shadow 1200 LST.

E
Extended research area eastern wind

Rotterdam

Figure E.1: DTM

157

158 E. Extended research area eastern wind Rotterdam

Figure E.2: DSM

Figure E.3: DSM - DTM

159

Figure E.4: DSM - DTM

Figure E.5: Building mask.

160 E. Extended research area eastern wind Rotterdam

Figure E.6: Building height.

Figure E.7: Building mask.

161

Figure E.8: Tree mask.

Figure E.9: Sky view factor.

162 E. Extended research area eastern wind Rotterdam

Figure E.10: Sky view factor mask.

Figure E.11: Water mask.

163

Figure E.12: NDVI near infrared.

Figure E.13: NDVI red green blue.

164 E. Extended research area eastern wind Rotterdam

Figure E.14: Shadow 1200 LST.

F
Diurnal table

165

166 F. Diurnal table

17-Jun 17-May 18-May 19-May 19-Apr 20-Apr 20-Mar
0 0.748 0.782 0.807 0.91 0.9 1 1
1 0.667 0.64 0.704 0.78 0.757 0.888 0.866
2 0.602 0.573 0.617 0.675 0.71 0.728 0.69
3 0.525 0.49 0.533 0.59 0.543 0.609 0.56
4 0.449 0.355 0.435 0.49 0.413 0.49 0.38
5 0.281 0.15 0.227 0.32 0.15 0.256 0.107
6 0.127 0.078 0.095 0.12 0.057 0.079 0.015
7 0.063 0.025 0.032 0.04 0 0.007 -0.02
8 0.019 -0.013 -0.009 -0.005 -0.02 -0.02 -0.007
9 -0.015 -0.02 -0.02 -0.02 -0.005 0.006 0.007
10 -0.02 -0.001 -0.003 -0.004 0.013 0.01 0.029
11 0 0.025 0.02 0.016 0.037 0.033 0.05
12 0.03 0.056 0.048 0.042 0.063 0.056 0.074
13 0.065 0.09 0.08 0.071 0.09 0.082 0.108
14 0.117 0.165 0.136 0.111 0.15 0.128 0.161
15 0.205 0.27 0.215 0.176 0.222 0.184 0.228
16 0.335 0.413 0.325 0.27 0.318 0.27 0.312
17 0.532 0.6 0.485 0.386 0.45 0.366 0.424
18 0.747 0.803 0.662 0.546 0.6 0.506 0.556
19 0.906 0.92 0.849 0.716 0.762 0.651 0.695
20 0.975 0.978 0.932 0.877 0.89 0.803 0.838
21 1 1 0.979 0.941 0.95 0.901 0.911
22 0.931 0.925 1 0.981 0.982 0.958 0.964
23 0.849 0.83 0.918 1 1 0.983 0.984

G
Additional concept figures

Figure G.1: NDVI values retrieved from [eesa, 2024]

167

168 G. Additional concept figures

Figure G.2: Sky view factor[Hämmerle et al., 2011]

H
Original python code

H.1. sytse/fraction_area_buildings_treeregr.py
1 from IPython import get_ipython

2 get_ipython ().magic('reset -sf ')

3

4 import numpy as np

5 from PIL import Image

6 #from osgeo import gdal

7

8 #ds = gdal.Open('D:/DGRW/UHImax95_denhaag_zoetermeer.tif ')

9 #channel = np.array(ds.GetRasterBand (1).ReadAsArray ())

10

11 #im = Image.open('D:/DGRW/denhaag/CID/vegfraction_denhaag_zoetermeer_2040green.

tif ')

12 #im = Image.open('D:/DGRW/denhaag/CID/larger/

vegfraction_denhaag_zoetermeer_2040_lp.tif ')

13 im = Image.open('C:/Users/koopm043/OneDrive - WageningenUR/Userdata/koopm043/

NL_heatmap/Wageningen/output/buildings_meanheight_2.tif ')

14 im2 = Image.open('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/koopm043/

NL_heatmap/Wageningen/output/buildings_mask_mean_2.tif ')

15 #im3b = Image.open('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/koopm043

/NL_heatmap/Wageningen/output/trees/treegrid.tif ')

16 im3= Image.open('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/koopm043/

NL_heatmap/Wageningen/output/trees/trees_ahn.tif ')

17 im4= Image.open('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/koopm043/

NL_heatmap/Wageningen/output/trees/tree_mask.tif ')

18

19

20

21

22 bheights = np.array(im)

23 trees = np.array(im3)*0.9

24 #trees_ahn=np.array(im3b)*0.9

25 mask_tree=np.array(im4)

26 mask = np.array(im2)

27 w=np.shape(im)[1]

28 h=np.shape(im)[0]

29

30 #print tree_height

31 #np.savetxt('C:/Users/koopm043/OneDrive - WageningenUR/Userdata/koopm043/

NL_heatmap/Wageningen/output/wind/tree_effect/base/tree_height.csv ',trees ,

delimiter=',',fmt = '%10.5f')

32 #np.savetxt('C:/Users/koopm043/OneDrive - WageningenUR/Userdata/koopm043/

NL_heatmap/Wageningen/output/wind/tree_effect/ahn/tree_height_ahn.csv ',

169

170 H. Original python code

trees_ahn ,delimiter=',',fmt = '%10.5f')

33

34 #

35 latarray=np.zeros(shape =(h,w))

36 lonarray=np.zeros(shape =(h,w))

37 ymin =172075

38 ymax =176425

39 xmin =440675

40 xmax =444815

41 latmin=xmin+(xmax -xmin)/(2*h)

42 latmax=xmax -(xmax -xmin)/(2*h)

43 lonmin=ymin+(ymax -ymin)/(2*w)

44 lonmax=ymax -(ymax -ymin)/(2*w)

45 ##cells =32*48

46 ## create lat and lons

47 for i in enumerate(lonarray [0]):

48 lonarray[:,i[0]] = lonmin + (lonmax - lonmin) * i[0]/(w-1)

49 #print('lonarray ',lonarray)

50 for i in enumerate(latarray [: ,0]):

51 latarray[i[0]] = latmax - (latmax - latmin) * i[0]/(h-1)

52 #print('latarray ',latarray)

53 # for j in enumerate(latarray[i[0]]):

54 # print(i[0],j[0])

55 # for j in enumerate(latarray[i]):

56 # print(i,j)

57

58 #vegfra_array=np.zeros(shape=(h/4,(w+1)/4,3))

59 #urban_2d=np.zeros(shape=(cells ,3))

60 height_2d=np.zeros(shape =(0,3))

61 area_2d=np.zeros(shape =(0 ,3))

62 building_tree_2d=np.zeros(shape =(0,4))

63 lambda_2d=np.zeros(shape =(0,3))

64 front_2d=np.zeros(shape =(0,3))

65 front_tree_2d=np.zeros(shape =(0 ,3))

66 wind_2d=np.zeros(shape =(0 ,3))

67 wind_notree_2d=np.zeros(shape =(0,3))

68 wind_tree_2d=np.zeros(shape =(0 ,3))

69 mean_area_2d=np.zeros(shape =(0 ,3))

70 tree_area_2d=np.zeros(shape =(0 ,3))

71 ## urban_new =[[]]

72 #for i in range (50,len(heights) -50,10):

73 # for j in range (50,len(heights [0]) -50,10):

74 # item=[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),np.mean(

heights[i-50:i+50,j-50:j+50])]

75 # area=[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),np.mean(mask

[i-50:i+50,j-50:j+50])]

76

77 z0_grass =0.03

78 k=0.4

79

80 refwind =1/0.63501

81 red_grass=np.round(refwind*np.log (1.2/ z0_grass)/np.log (10/ z0_grass) ,2)

82 red_60_10=np.log (10/ z0_grass)/np.log (60/ z0_grass)

83 #trees

84 #CS =0.003 from Raupach 1994.

85 #CR=0.3

86

87 winddir=True # True is winddirection , False is no wind direction

88 WE=True #WE= True means West or east , False , north or south

89 verspringend=False

90 unbc =140 #positive is east or south , negative is west or north

H.1. sytse/fraction_area_buildings_treeregr.py 171

91 width =140

92 length =280

93 #height_thres =10

94

95 cellsize =1

96 if winddir:

97 if WE:

98 horc=length

99 verc=width

100 unbwc=unbc

101 unbnc=0

102 else:

103 horc=width

104 verc=length

105 unbnc=unbc

106 unbwc=0

107 else:

108 horc =175

109 verc =175

110 unbnc =35

111 unbwc =35

112 # unbc=0

113

114 #outsize =1

115 unbw=int(unbwc/cellsize /2)

116 unbn=int(unbnc/cellsize /2)

117 hor=int(horc/cellsize /2)

118 ver=int(verc/cellsize /2)

119 out=abs(int(unbc/cellsize /4))

120 #for i in range (945 ,1050 , out):

121 total_area=hor *2* ver*2

122 buildingfactor =0.6

123 treefactor =0.5*0.6

124

125 for i in range(ver -unbn ,len(bheights)-ver -unbn ,out):

126 #for i in range(ver -unbn ,350,out):

127 #for i in range (2000 ,2900 , out):

128 print(i)

129 for j in range(hor -unbw ,len(bheights [0])-hor -unbw ,out):

130 # for j in range(hor -unbw ,350,out):

131 # for j in range (1500 ,2400 , out):

132 # print(j)

133 # for j in range(hor -unb ,len(heights [0])-hor -unb ,int(unb /2)):

134 # area=[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),np.sum(mask[

i-ver:i+ver ,j-hor+unb:j+hor+unb])]

135 switch=False

136 mean_area =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),np.mean(

mask[i-ver+unbn:i+ver+unbn ,j-hor+unbw:j+hor+unbw])]

137 tree_area =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),np.mean(

mask_tree[i-ver+unbn:i+ver+unbn ,j-hor+unbw:j+hor+unbw])]

138 if mean_area [2]>0:

139 building_height =[np.round(latarray[i,j],4),np.round(lonarray[i,j

],4),np.mean(bheights[i-ver+unbn:i+ver+unbn ,j-hor+unbw:j+hor+

unbw])/mean_area [2]]

140 switch=True

141 else:

142 building_height =[np.round(latarray[i,j],4),np.round(lonarray[i,j

],4) ,0]

143 if tree_area [2]>0:

144 tree_height =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),np

.mean(trees[i-ver+unbn:i+ver+unbn ,j-hor+unbw:j+hor+unbw])/

172 H. Original python code

tree_area [2]]

145 tree_height_regr =[np.round(latarray[i,j],4),np.round(lonarray[i,j

],4),np.max (7.721* tree_height [2]**0.5 ,0)]

146 switch=True

147 else:

148 tree_height =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4) ,0]

149 tree_height_regr =[np.round(latarray[i,j],4),np.round(lonarray[i,j

],4) ,0]

150 if switch:

151 #weigh heights from trees en buildings

152 # height_com_pre =[np.round(latarray[i,j],4),np.round(lonarray[i,j

],4),max((building_height [2]* mean_area [2]+ tree_height [2]* tree_area [2]*

treefactor/buildingfactor)/(mean_area [2]+ tree_area [2]* treefactor/

buildingfactor) ,4)]

153 height_com_pre =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4)

,max((building_height [2]* mean_area [2]+ tree_height_regr [2]*

tree_area [2]* treefactor/buildingfactor)/(mean_area [2]+ tree_area

[2]* treefactor/buildingfactor) ,4)]

154 # height_com =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),

max(max(height [2], tree_height [2]) ,4)]

155

156 front=0

157 tree=0

158 building =0

159 #easterly wind

160 # if wind:

161 if winddir:

162 if WE:

163 for m in range(i-ver+unbn ,i+ver+unbn -1,1):

164 for n in range(j-hor+unbw ,j+hor+unbw -1,2):

165 if bheights[m,n+2]- bheights[m,n]!=0:

166 front+=abs(bheights[m,n+2]- bheights[m,n])*0.5*

buildingfactor

167 building +=abs(bheights[m,n+2]- bheights[m,n])*0.5*

buildingfactor

168 # elif trees[m,n+2]-trees[m,n]!=0:

169 # front+=abs(trees[m,n+2]- trees[m,n])*0.5* treefactor

170 # tree+=abs(trees[m,n+2]- trees[m,n])*0.5* treefactor

171 elif trees[m,n+4]- trees[m,n]!=0:

172 front+=abs(trees[m,n+4]- trees[m,n])*0.5* treefactor

173 tree+=abs(trees[m,n+4]-trees[m,n])*0.5* treefactor

174 else:

175 # j=1085

176

177 for n in range(j-hor+unbw ,j+hor+unbw -1,1):

178 for m in range(i-ver+unbn ,i+ver+unbn -1,2):

179 if bheights[m+2,n]-bheights[m,n]!=0:

180 front+=abs(bheights[m+2,n]-bheights[m,n])*0.5*

buildingfactor

181 building +=abs(bheights[m+2,n]-bheights[m,n])*0.5*

buildingfactor

182 elif trees[m+2,n]-trees[m,n]!=0:

183 front+=abs(trees[m+2,n]-trees[m,n])*0.5* treefactor

184 tree+=abs(trees[m+2,n]-trees[m,n])*0.5* treefactor

185 # print(m,n,abs(heights[m+1,n]-heights[m,n]))

186 else:

187 # print('no wind ')

188 for m in range(i-ver+unbn ,i+ver+unbn -1,1):

189 for n in range(j-hor+unbw ,j+hor+unbw -1,2):

190 if bheights[m,n+2]- bheights[m,n]!=0:

H.1. sytse/fraction_area_buildings_treeregr.py 173

191 front+=abs(bheights[m,n+2]- bheights[m,n]) *0.25*

buildingfactor

192 building +=abs(bheights[m+2,n]-bheights[m,n]) *0.25*

buildingfactor

193 elif trees[m,n+2]- trees[m,n]!=0:

194 front+=abs(trees[m,n+2]- trees[m,n]) *0.25* treefactor

195 tree+=abs(trees[m,n+2]- trees[m,n]) *0.25* treefactor

196 for n in range(j-hor+unbw ,j+hor+unbw -1,1):

197 for m in range(i-ver+unbn ,i+ver+unbn -1,2):

198 if bheights[m+2,n]-bheights[m,n]!=0:

199 front+=abs(bheights[m+2,n]-bheights[m,n]) *0.25*

buildingfactor

200 building +=abs(bheights[m+2,n]-bheights[m,n]) *0.25*

buildingfactor

201 elif trees[m+2,n]-trees[m,n]!=0:

202 front+=abs(trees[m+2,n]-trees[m,n]) *0.25* treefactor

203 tree+=abs(trees[m+2,n]-trees[m,n]) *0.25* treefactor

204

205

206 # print ("")

207 # print(i,j,front/total_area)

208 # print(" ")

209

210 #fit for ahn tree to treefile (bomenbestand)

211 tree_regr= 45.45*(tree **0.5)

212

213 front_regr= building + tree_regr

214 building_tree =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),

building/total_area ,tree/total_area]

215

216 if front_regr > 25 and switch == True: # bij hele kleine oppervlakten

gewoon op 0 laten , moet hoogte hebben zit ook in BW script

217 # lambda1_pre=front/total_area

218 height_com =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),max

(height_com_pre [2],4)]

219 lambda1 =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),min(

front_regr/total_area +0.015 ,0.33)]

220 front1 =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),

front_regr]

221 front1_tree =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),

tree_regr]

222 lambda_tree=min(tree/total_area ,0.33)

223 if switch is False:

224 raise "fix front height issue"

225 # height2=np.array ([8 ,16 ,24])

226 if lambda1 [2] < 0.08:

227 if verspringend:

228 z0 =0.075* height_com [2]

229 d=0.078* height_com [2]

230 zw=2* height_com [2]

231 A= -0.41* height_com [2]

232 B=0.59

233 else:

234 z0 =0.048* height_com [2]

235 d=0.066* height_com [2]

236 zw=2* height_com [2]

237 A= -0.35* height_com [2]

238 B=0.56

239

240 elif lambda1 [2] <0.135:

241 if verspringend:

174 H. Original python code

242 z0 =0.140* height_com [2]

243 d=0.26* height_com [2]

244 zw=1.9* height_com [2]

245 A= -0.45* height_com [2]

246 B=0.58

247 else:

248 z0 =0.071* height_com [2]

249 d=0.26* height_com [2]

250 zw=2.5* height_com [2]

251 A= -0.35* height_com [2]

252 B=0.50

253

254 elif lambda1 [2] <0.18:

255 if verspringend:

256 z0 =0.150* height_com [2]

257 d=0.32* height_com [2]

258 zw=1.4* height_com [2]

259 A= -0.73* height_com [2]

260 B=0.83

261 else:

262 z0 =0.084* height_com [2]

263 d=0.32* height_com [2]

264 zw=2.7* height_com [2]

265 A= -0.34* height_com [2]

266 B=0.48

267 elif lambda1 [2] <0.265:

268 if verspringend:

269 z0 =0.140* height_com [2]

270 d=0.47* height_com [2]

271 zw=1.3* height_com [2]

272 A= -0.82* height_com [2]

273 B=0.88

274 else:

275 z0 =0.08* height_com [2]

276 d=0.42* height_com [2]

277 zw=1.5* height_com [2]

278 A= -0.56* height_com [2]

279 B=0.66

280 else:

281 if verspringend:

282 z0 =0.084* height_com [2]

283 d=0.65* height_com [2]

284 zw=1.3* height_com [2]

285 A= -0.62* height_com [2]

286 B=0.68

287 else:

288 z0 =0.077* height_com [2]

289 d=0.57* height_com [2]

290 zw=1.2* height_com [2]

291 A= -0.85* height_com [2]

292 B=0.92

293

294

295 # if height_com > height_thres:

296 ustar=refwind/red_60_10*k/np.log((60-d)/z0)

297 #uzw= refwind/red_60_10*np.log((zw-d)/z0)/np.log((60-d)/z0) #uh ~=

uzw otherwise uh is too low. In reality use 17.8 and fill zw in

z.

298 uzw= ustar/k*np.log((zw -d)/z0) # same as previous statement

299 uh=uzw -ustar/B*np.log((A+B*zw)/(A+B*height_com [2]))

H.1. sytse/fraction_area_buildings_treeregr.py 175

300 # wind=[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),min(uh*

np.exp (9.6* lambda1 [2]*(1.2/ height_com [2]-1)),red_grass)] #redundant but

safe meausure , reduntant because uh cannot be larger than red_grass

301 # wind=[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),min(uh*

np.exp (9.6* lambda1 [2]*(1.2/ height_com [2]-1)),red_grass -lambda_tree/

treefactor)]

302 wind=[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),min(uh*np

.exp (9.6* lambda1 [2]*(1.2/ height_com [2] -1)),red_grass)]

303 wind_notree =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),

min(uh*np.exp (9.6* building/total_area *(1.2/ height_com [2]-1)),

red_grass)]

304 wind_tree =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),uh*

np.exp (9.6* tree/total_area *(1.2/ height_com [2] -1))]

305 wind_notree_2d=np.append(wind_notree_2d ,[wind_notree],axis =0)

306 # if lambda1_pre /0.0025 < height_com_pre [2]:

307 # print(np.round(latarray[i,j],4),np.round(lonarray[i,j],4),

lambda1_pre /0.0025 ,uh,wind [2])

308 ## if wind [2]==1:

309 ## stop

310 if tree_regr > 25:

311 wind_tree_2d=np.append(wind_tree_2d ,[wind_tree],axis =0)

312

313

314 # else:

315 else:

316 wind=[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),red_grass

]

317 height_com =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4) ,0]

318

319 lambda1 =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4) ,0]

320 front1 =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4) ,0]

321 front1_tree =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4) ,0]

322

323 wind_2d=np.append(wind_2d ,[wind],axis =0)

324 wind_notree_2d=np.append(wind_notree_2d ,[wind_notree],axis =0)

325 wind_tree_2d=np.append(wind_tree_2d ,[wind_tree],axis =0)

326 height_2d=np.append(height_2d ,[height_com],axis =0) #note the [] around

item , this ensures that dimensions are the same

327 # area_2d=np.append(area_2d ,[area],axis =0)

328 building_tree_2d=np.append(building_tree_2d ,[building_tree],axis =0)

329 lambda_2d=np.append(lambda_2d ,[lambda1],axis =0)

330 front_2d=np.append(front_2d ,[front1],axis =0)

331 front_tree_2d=np.append(front_tree_2d ,[front1_tree],axis =0)

332 mean_area_2d=np.append(mean_area_2d ,[mean_area],axis =0)

333 tree_area_2d=np.append(tree_area_2d ,[tree_area],axis =0)

334

335 if winddir:

336 if WE:

337 if unbc >0:

338 np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahn4regr

/wind_E.csv ',wind_2d ,delimiter=',',fmt = '%10.5f')

339 #output for research , not necessary for creation PET heat map

340 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahn4regr/front.csv ',

front_2d ,delimiter=',',fmt = '%10.5f')

341 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahn4regr/front_tree.

csv ',front_tree_2d ,delimiter=',',fmt = '%10.5f')

342 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahn4regr/H_E.csv ',

176 H. Original python code

height_2d ,delimiter=',',fmt = '%10.5f')

343 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahn4regr/lambda_E.

csv ',lambda_2d ,delimiter=',',fmt = '%10.5f')

344 #

345 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahn4regr/

wind_E_notree.csv ',wind_notree_2d ,delimiter=',',fmt = '%10.5f')

346 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahn4regr/wind_E_tree

.csv ',wind_tree_2d ,delimiter=',',fmt = '%10.5f')

347 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahn4regr/

building_tree_E.csv ',building_tree_2d ,delimiter=',',fmt = '%10.5f')

348 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahn4regr/

plan_area_fraction_E.csv ',mean_area_2d ,delimiter=',',fmt = '%10.5f')

349 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahn4regr/

tree_area_fraction_E.csv ',tree_area_2d ,delimiter=',',fmt = '%10.5f')

350 # else:

351 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/output/wind/

H_W.csv ',height_2d ,delimiter=',',fmt = '%10.5f')

352 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/output/wind/

lambda_W.csv ',lambda_2d ,delimiter=',',fmt = '%10.5f')

353 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/output/wind/

wind_W.csv ',wind_2d ,delimiter=',',fmt = '%10.5f')

354 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/output/wind/

wind_W.csv ',wind_2d ,delimiter=',',fmt = '%10.5f')

355 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/output/wind/

wind_W_notree.csv ',wind_notree_2d ,delimiter=',',fmt = '%10.5f')

356 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/output/wind/

wind_W_tree.csv ',wind_tree_2d ,delimiter=',',fmt = '%10.5f')

357 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/output/wind/

building_tree.csv ',building_tree_2d ,delimiter=',',fmt = '%10.5f')

358 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/output/wind/

plan_area_fraction.csv ',mean_area_2d ,delimiter=',',fmt = '%10.5f')

359 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/output/wind/

tree_area_fraction.csv ',tree_area_2d ,delimiter=',',fmt = '%10.5f')

360 # else:

361 # if unbc >0:

362 # np.savetxt('C:/Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/test/wind_S.csv ',wind_2d ,

delimiter=',',fmt = '%10.5f')

363 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/test/H_S.csv ',height_2d ,

delimiter=',',fmt = '%10.5f')

364 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/test/lambda_S.csv ',lambda_2d ,

delimiter=',',fmt = '%10.5f')

365

366 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/test/wind_S_notree.csv ',

wind_notree_2d ,delimiter=',',fmt = '%10.5f')

367 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/test/wind_S_tree.csv ',

wind_tree_2d ,delimiter=',',fmt = '%10.5f')

368 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/test/building_tree_S.csv ',

building_tree_2d ,delimiter=',',fmt = '%10.5f')

H.1. sytse/fraction_area_buildings_treeregr.py 177

369 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/test/plan_area_fraction_S.csv ',

mean_area_2d ,delimiter=',',fmt = '%10.5f')

370 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/test/tree_area_fraction_S.csv ',

tree_area_2d ,delimiter=',',fmt = '%10.5f')

371 #

372 # else:

373 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/H_N.csv ',height_2d ,delimiter

=',',fmt = '%10.5f')

374 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/lambda_N.csv ',lambda_2d ,

delimiter=',',fmt = '%10.5f')

375 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/wind_N.csv ',wind_2d ,delimiter

=',',fmt = '%10.5f')

376 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/wind_N_notree.csv ',

wind_notree_2d ,delimiter=',',fmt = '%10.5f')

377 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/wind_N_tree.csv ',wind_tree_2d ,

delimiter=',',fmt = '%10.5f')

378 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/building_tree_N.csv ',

building_tree_2d ,delimiter=',',fmt = '%10.5f')

379 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/plan_area_fraction_N.csv ',

mean_area_2d ,delimiter=',',fmt = '%10.5f')

380 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/tree_area_fraction_N.csv ',

tree_area_2d ,delimiter=',',fmt = '%10.5f')

381 #else:

382 #

383 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/UserData/koopm043/

NL_heatmap/Wageningen/output/wind/H_C.csv ',height_2d ,delimiter=',',fmt

= '%10.5f')

384 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/UserData/koopm043/

NL_heatmap/Wageningen/output/wind/lambda_C.csv ',lambda_2d ,delimiter=',',fmt

= '%10.5f')

385 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/UserData/koopm043/

NL_heatmap/Wageningen/output/wind/wind_C.csv ',wind_2d ,delimiter=',',fmt

= '%10.5f')

386 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/UserData/koopm043/

NL_heatmap/Wageningen/output/wind/wind_C_notree.csv ',wind_notree_2d ,

delimiter=',',fmt = '%10.5f')

387 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/UserData/koopm043/

NL_heatmap/Wageningen/output/wind/wind_C_tree.csv ',wind_tree_2d ,delimiter

=',',fmt = '%10.5f')

388 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/UserData/koopm043/

NL_heatmap/Wageningen/output/wind/building_tree_C.csv ',building_tree_2d ,

delimiter=',',fmt = '%10.5f')

389 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/UserData/koopm043/

NL_heatmap/Wageningen/output/wind/plan_area_fraction_C.csv ',mean_area_2d ,

delimiter=',',fmt = '%10.5f')

390 # np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/UserData/koopm043/

NL_heatmap/Wageningen/output/wind/tree_area_fraction_C.csv ',tree_area_2d ,

delimiter=',',fmt = '%10.5f')

391

392 #

393 ##get boundaries

178 H. Original python code

394 ##xmin= lonmin +(lonmax -lonmin)/(w-1) *(10 -2)

395 ##xmax= lonmin +(lonmax -lonmin)/(w-1) *(934+2)

396 ##ymin= latmax -(latmax -latmin)/(h-1) *(10 -2)

397 ##ymax= latmax -(latmax -latmin)/(h-1) *(610+2)

398 ## xspace= (lonmax -lonmin)/(w-1)*4

399 ## yspace= (latmax -latmin)/(h-1)*4

400 #

H.2. sytse/ndvi_infr_large.py 179

H.2. sytse/ndvi_infr_large.py

1 from IPython import get_ipython

2 get_ipython ().magic('reset -sf ')

3

4 import numpy as np

5 from PIL import Image

6 im0_rgb = Image.open('C:/Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/vegfra/ndvi_large/ndvi_rgb_merge.tif ')

7 im0_infr= Image.open('C:/Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/vegfra/ndvi_large/ndvi_infr_merge.tif ')

8

9 im=im0_rgb

10 w=np.shape(im)[1]

11 h=np.shape(im)[0]

12 #

13 latarray=np.zeros(shape =(h,w))

14 lonarray=np.zeros(shape =(h,w))

15

16 ymin =171223

17 ymax =177323

18 #ymax =176223

19 #ymin=ymax -1990

20 xmin =439783

21 xmax =445683

22

23 #xmax =444657

24 #xmin=xmax -2000

25

26 latmin=xmin +0.5

27 latmax=xmax -0.5

28 lonmin=ymin +0.5

29 lonmax=ymax -0.5

30 out=1

31 ##cells =32*48

32 ## create lat and lons

33 for i in enumerate(lonarray [0]):

34 lonarray[:,i[0]] = lonmin + (lonmax - lonmin) * i[0]/(w-1)

35 # print('lonarray ',lonarray)

36 for i in enumerate(latarray [: ,0]):

37 latarray[i[0]] = latmax - (latmax - latmin) * i[0]/(h-1)

38

39 lufo_rgb=np.array(im0_rgb)

40 lufo_infr=np.array(im0_infr)

41 ndvi_img=np.array(im0_infr)

42

43 r=lufo_rgb [:,:,0]. astype(int)

44 g=lufo_rgb [:,:,1]. astype(int)

45 b=lufo_rgb [:,:,2]. astype(int)

46 infr=lufo_infr [:,:,0]. astype(int)

47 #ndvi=g/(r+g+b)

48 ndvi_infr =(infr -r)/(infr+r)

49 ndvi_infr[ndvi_infr <0]=0

50 #vari=(g-r)/(g+r-b)

51 #vari[vari <0]=0

52 #tgi=(g -0.39*r -0.61*b)/g

53 #tgi[tgi <0]=0

54

55 #lufo [: ,: ,1]=255

56 #img = Image.fromarray(lufo)

57 #ndvi =0.55

180 H. Original python code

58 #red=(1-ndvi **0.5) *255

59 #green=ndvi **0.5*255

60

61 ndvi_img [:,:,0]= infr

62 ndvi_img [:,:,1]=0

63 ndvi_img [:,:,2]=0

64

65 #ndvi_2d_temp =[np.ravel(latarray [:]),np.ravel(lonarray [:]),np.ravel(ndvi [:])]

66 #ndvi_2d=np.array(ndvi_2d_temp).transpose ()

67 ndvi_infr_temp =[np.ravel(latarray [:]),np.ravel(lonarray [:]),np.ravel(ndvi_infr

[:])]

68 ndvi_infr_2d=np.array(ndvi_infr_temp).transpose ()

69

70 img = Image.fromarray(ndvi_img)

71 np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/koopm043/

NL_heatmap/Wageningen/vegfra/ndvi_large/ndvi_infr_merge.csv ',ndvi_infr_2d ,

delimiter=',',fmt= '%5.3f')

72 #img.save('E:/ NL_heatmap/Wageningen/vegfra/ndvi/ndvi_infr_0.tif ')

H.3. sytse/vegetation_footprints.py 181

H.3. sytse/vegetation_footprints.py

1 from IPython import get_ipython

2 get_ipython ().magic('reset -sf ')

3

4 import numpy as np

5 from PIL import Image

6 #from osgeo import gdal

7

8 day=False

9 wind=False # True is winddirection , False is no wind direction

10 WE=True #WE= True means West or east , False , north or south

11 unbc =-900 #positive is east or south , negative is west or north

12 width =500

13 length =1100

14

15 if day:

16 im = Image.open('D:/ UserData/koopm043/NL_heatmap/Wageningen/vegfra/

vegfraction_water_cropland_day_28992_Wageningen_begroeidbgt.tif ')

17 else:

18 im = Image.open('D:/ UserData/koopm043/NL_heatmap/Wageningen/vegfra/

vegfraction_water_cropland_28992_Wageningen_begroeidbgt.tif ')

19 vegfra = np.array(im)

20 w=np.shape(im)[1]

21 h=np.shape(im)[0]

22 #

23 latarray=np.zeros(shape =(h,w))

24 lonarray=np.zeros(shape =(h,w))

25 ymin =171322

26 ymax =177291

27 xmin =439813

28 xmax =445583

29 latmin=xmin+(xmax -xmin)/(2*h)

30 latmax=xmax -(xmax -xmin)/(2*h)

31 lonmin=ymin+(ymax -ymin)/(2*w)

32 lonmax=ymax -(ymax -ymin)/(2*w)

33 ##cells =32*48

34 ## create lat and lons

35 for i in enumerate(lonarray [0]):

36 lonarray[:,i[0]] = lonmin + (lonmax - lonmin) * i[0]/(w-1)

37 #print('lonarray ',lonarray)

38 for i in enumerate(latarray [: ,0]):

39 latarray[i[0]] = latmax - (latmax - latmin) * i[0]/(h-1)

40 vegfra_2d=np.zeros(shape =(0,3))

41 area_2d=np.zeros(shape =(0 ,3))

42 lambda_2d=np.zeros(shape =(0,3))

43 cellsize =25

44 outsize =25

45 if wind:

46 if WE:

47 horc=length

48 verc=width

49 unbwc=unbc

50 unbnc=0

51 else:

52 horc=width

53 verc=length

54 unbnc=unbc

55 unbwc=0

56 unbw=int(unbwc/cellsize /2)

57 unbn=int(unbnc/cellsize /2)

182 H. Original python code

58 else:

59 horc =700

60 verc =700

61 unbw=0

62 unbn=0

63

64 hor=int(horc/cellsize /2)

65 ver=int(verc/cellsize /2)

66 out=int(outsize/cellsize)

67 for i in range(ver -unbn ,len(vegfra)-ver -unbn ,out):

68 for j in range(hor -unbw ,len(vegfra [0])-hor -unbw ,out):

69 mean_vegfra =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),np.sum(

vegfra[i-ver+unbn:i+ver+unbn ,j-hor+unbw:j+hor+unbw])/np.sum(vegfra[i

-ver+unbn:i+ver+unbn ,j-hor+unbw:j+hor+unbw]>0)]

70 # print(i,j)

71 # print(hor , unbw , j-hor+unbw)

72 vegfra_2d=np.append(vegfra_2d ,[mean_vegfra],axis =0) #note the [] around

item , this ensures that dimensions are the same

73

74 if wind:

75 if WE:

76 if unbc >0:

77 if day:

78 np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/vegfra/

vegfra25E_day.csv ',vegfra_2d ,delimiter=',',fmt = '%10.5f')

79 else:

80 np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/vegfra/

vegfra25E_night.csv ',vegfra_2d ,delimiter=',',fmt = '%10.5f')

81 else:

82 if day:

83 np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/vegfra/

vegfra25W_day2.csv ',vegfra_2d ,delimiter=',',fmt = '%10.5f')

84 else:

85 np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/vegfra/

vegfra25W_night2.csv ',vegfra_2d ,delimiter=',',fmt = '%10.5f')

86 else:

87 if unbc >0:

88 if day:

89 np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/vegfra/

vegfra25S_day.csv ',vegfra_2d ,delimiter=',',fmt = '%10.5f')

90 else:

91 np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/vegfra/

vegfra25S_night.csv ',vegfra_2d ,delimiter=',',fmt = '%10.5f')

92 else:

93 if day:

94 np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/vegfra/

vegfra25N_day2.csv ',vegfra_2d ,delimiter=',',fmt = '%10.5f')

95 else:

96 np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/vegfra/

vegfra25N_night2.csv ',vegfra_2d ,delimiter=',',fmt = '%10.5f')

97 else:

98 if day:

99 np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/vegfra/

vegfra25_calm_day2.csv ',vegfra_2d ,delimiter=',',fmt = '%10.5f')

100 else:

101 np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/vegfra/

vegfra25_calm_night2.csv ',vegfra_2d ,delimiter=',',fmt = '%10.5f')

102 #np.savetxt('E:/ NL_heatmap/Wageningen/output/wind/Ad.csv ',area_2d ,delimiter

=',',fmt = '%10.5f')

103 #np.savetxt('E:/ NL_heatmap/Wageningen/output/wind/lambda.csv ',lambda_2d ,

delimiter=',',fmt = '%10.5f')

H.3. sytse/vegetation_footprints.py 183

104 #np.savetxt('E:/ NL_heatmap/Wageningen/output/wind/wind.csv ',wind_2d ,delimiter

=',',fmt = '%10.5f')

105

106 #get boundaries

107 #xmin= lonmin +(lonmax -lonmin)/(w-1) *(10 -2)

108 #xmax= lonmin +(lonmax -lonmin)/(w-1) *(934+2)

109 #ymin= latmax -(latmax -latmin)/(h-1) *(10 -2)

110 #ymax= latmax -(latmax -latmin)/(h-1) *(610+2)

111 #xspace= (lonmax -lonmin)/(w-1)*4

112 #yspace= (latmax -latmin)/(h-1)*4

184 H. Original python code

H.4. sytse/skyview_footprints.py

1 from IPython import get_ipython

2 get_ipython ().magic('reset -sf ')

3

4 import numpy as np

5 from PIL import Image

6

7 im = Image.open('C:/Users/koopm043/OneDrive - WageningenUR/Userdata/koopm043/

NL_heatmap/Wageningen/Nynke/urban_morphology/SVF_Wageningen_mean25.tif ')

8 svf = np.array(im)

9 w=np.shape(im)[1]

10 h=np.shape(im)[0]

11 #

12 latarray=np.zeros(shape =(h,w))

13 lonarray=np.zeros(shape =(h,w))

14 ymin =171322

15 ymax =177291

16 xmin =439813

17 xmax =445583

18 latmin=xmin+(xmax -xmin)/(2*h)

19 latmax=xmax -(xmax -xmin)/(2*h)

20 lonmin=ymin+(ymax -ymin)/(2*w)

21 lonmax=ymax -(ymax -ymin)/(2*w)

22 ##cells =32*48

23 ## create lat and lons

24 for i in enumerate(lonarray [0]):

25 lonarray[:,i[0]] = lonmin + (lonmax - lonmin) * i[0]/(w-1)

26 #print('lonarray ',lonarray)

27 for i in enumerate(latarray [: ,0]):

28 latarray[i[0]] = latmax - (latmax - latmin) * i[0]/(h-1)

29

30 svf_2d=np.zeros(shape =(0 ,3))

31 area_2d=np.zeros(shape =(0 ,3))

32 lambda_2d=np.zeros(shape =(0,3))

33 wind_2d=np.zeros(shape =(0 ,3))

34

35 wind=True # True is winddirection , False is no wind direction

36 WE=True #WE= True means West or east , False , north or south

37 unbc =900 #positive is east or south , negative is west or north

38 width =500

39 length =1100

40 cellsize =25

41 outsize =25

42 if wind:

43 if WE:

44 horc=length

45 verc=width

46 unbwc=unbc

47 unbnc=0

48 else:

49 horc=width

50 verc=length

51 unbnc=unbc

52 unbwc=0

53 unbw=int(unbwc/cellsize /2)

54 unbn=int(unbnc/cellsize /2)

55 else:

56 horc =700

57 verc =700

58 unbc=0

H.4. sytse/skyview_footprints.py 185

59 unbw=0

60 unbn=0

61 hor=int(horc/cellsize /2)

62 ver=int(verc/cellsize /2)

63 out=int(outsize/cellsize)

64 for i in range(ver -unbn ,len(svf)-ver -unbn ,out):

65 # print(i)

66 for j in range(hor -unbw ,len(svf [0])-hor -unbw ,out):

67 perc= np.sum(svf[i-ver+unbn:i+ver+unbn ,j-hor+unbw:j+hor+unbw]>0)/np.sum

(svf[i-ver+unbn:i+ver+unbn ,j-hor+unbw:j+hor+unbw]>-1)

68 if perc >= 0.2:

69 mean_svf =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4),np.

sum(svf[i-ver+unbn:i+ver+unbn ,j-hor+unbw:j+hor+unbw])/np.sum(

svf[i-ver+unbn:i+ver+unbn ,j-hor+unbw:j+hor+unbw]>0)] #

70 elif perc >= 0.1: #linearize between svf=1 for 0.1 and svf as executed

above

71 # print('elif ',i,j)

72 mean_pre_svf=np.sum(svf[i-ver+unbn:i+ver+unbn ,j-hor+unbw:j+hor+unbw

])/np.sum(svf[i-ver+unbn:i+ver+unbn ,j-hor+unbw:j+hor+unbw]>0)

73 mean_svf =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4) ,((

perc -0.1) /0.1)*mean_pre_svf +(1-(perc -0.1) /0.1) *1]

74 # print(perc ,mean_pre_svf ,mean_svf [2])

75 else:

76 # print('else ',i,j)

77 mean_svf =[np.round(latarray[i,j],4),np.round(lonarray[i,j],4) ,1]

78 svf_2d=np.append(svf_2d ,[mean_svf],axis =0) #note the [] around item ,

this ensures that dimensions are the same

79

80 if wind:

81 if WE:

82 if unbc >0:

83 np.savetxt('C:/ Users/koopm043/OneDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/Nynke/urban_morphology/svf25E.

csv ',svf_2d ,delimiter=',',fmt = '%10.5f')

84 # else:

85 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/svf/svf25W.

csv ',svf_2d ,delimiter=',',fmt = '%10.5f')

86 # else:

87 # if unbc >0:

88 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/svf/svf25S.

csv ',svf_2d ,delimiter=',',fmt = '%10.5f')

89 # else:

90 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/svf/svf25N.

csv ',svf_2d ,delimiter=',',fmt = '%10.5f')

91 #else:

92 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/svf/svf25C.csv ',

svf_2d ,delimiter=',',fmt = '%10.5f')

186 H. Original python code

H.5. sytse/pet_calculate.py

1 from IPython import get_ipython

2 get_ipython ().magic('reset -sf ')

3

4 import pandas as pd

5 import numpy as np

6 import gdal

7 from PIL import Image

8

9 scenario ="def"

10 Nynke=True

11

12 #get meteofile and put in panda table

13 obs_headernames =['YYYYMMDD ','month ','decade ','hour ','TT ','FF','dd','Q','Qdif ','

sunalt ','rh','diurn ','UHImax ']

14 FDATA = pd.read_table('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/Herwijnen/

Herwijnen_1juli2015_10_16UTC_%s.csv ' %(scenario),sep =",", skiprows=1,

names=obs_headernames , engine='python ')

15 #FDATA = pd.read_table('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/Herwijnen/

Herwijnen_2 -3 aug2013_4_4UTC_%s.csv ' %(scenario),sep =",", skiprows=1, names

=obs_headernames , engine='python ')

16

17 #get GIS static data Wageningen

18 im4= Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/svf/svf_1m_allign.tif

')

19 im5= Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/svf/

svf_1m_mask_allign.tif ')

20 im6 = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/vegfra/ndvi/

ndvi_infr_mask0 .16 _allign.tif ')

21 im7= Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/vegfra/ndvi/

trees_2m_allign.tif ')

22

23 firsttime=True

24 Bveg =0.4

25 Bnoveg =3

26 stef =5.67*10** -8

27 svf = np.array(im4)

28 svf_mask=np.array(im5)

29 mask_vegfra=np.array(im6)

30 trees_2m=np.array(im7)

31

32 w=np.shape(im4)[1]

33 h=np.shape(im4)[0]

34 #

35 latarray=np.zeros(shape =(h,w))

36 lonarray=np.zeros(shape =(h,w))

37

38 ymin =172323

39 ymax =176223

40 xmin =440883

41 xmax =444583

42

43 latmin=xmin+(xmax -xmin)/(2*h)

44 latmax=xmax -(xmax -xmin)/(2*h)

45 lonmin=ymin+(ymax -ymin)/(2*w)

46 lonmax=ymax -(ymax -ymin)/(2*w)

47 out=1

48

49 ## create lat and lons

50 for i in enumerate(lonarray [0]):

H.5. sytse/pet_calculate.py 187

51 lonarray[:,i[0]] = lonmin + (lonmax - lonmin) * i[0]/(w-1)

52 # print('lonarray ',lonarray)

53 for i in enumerate(latarray [: ,0]):

54 latarray[i[0]] = latmax - (latmax - latmin) * i[0]/(h-1)

55

56 PET_2d=np.zeros(shape =(0 ,3))

57

58

59 PETshade=np.zeros(shape =(len(latarray),len(latarray [0])))

60 PETveg=np.zeros(shape=(len(latarray),len(latarray [0])))

61 PETnoveg=np.zeros(shape =(len(latarray),len(latarray [0])))

62

63 #run through timeseries and get time dependent GIS/meteofields like shadow/sun ,

wind and urban morphology (winddependent UHI equation Natalie Theeuwes)

64 for t in range (2,3,1):

65 #for t in range(0,len(FDATA)):

66

67 month= FDATA['month ']. iloc[t]

68 decade= FDATA['decade ']. iloc[t]

69 hour= FDATA['hour ']. iloc[t]

70 sunalt= FDATA['sunalt ']. iloc[t]

71 T=FDATA['TT ']. iloc[t]

72 print(t,hour)

73 if sunalt > 0:

74 if month == 7:

75 if decade == 1:

76 if hour ==6:

77 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_0600_LST.tif ')

78 elif hour == 7:

79 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_0700_LST.tif ')

80 elif hour == 8:

81 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_0800_LST.tif ')

82 elif hour == 9:

83 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_0900_LST.tif ')

84 elif hour == 10:

85 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_1000_LST.tif ')

86 elif hour == 11:

87 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_1100_LST.tif ')

88 elif hour == 12:

89 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_1200_LST.tif ')

90 elif hour == 13:

91 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_1300_LST.tif ')

92 elif hour == 14:

93 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_1400_LST.tif ')

94 elif hour == 15:

95 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_1500_LST.tif ')

96 elif hour == 16:

97 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_1600_LST.tif ')

98 elif hour == 17:

188 H. Original python code

99 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_1700_LST.tif ')

100 elif hour == 18:

101 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_1800_LST.tif ')

102 elif hour == 19:

103 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/julyhour/shadow_20140706_1900_LST.tif ')

104 elif month == 8:

105 if decade == 1:

106 if hour ==5:

107 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_0500_LST.tif ')

108 elif hour == 6:

109 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_0600_LST.tif ')

110 elif hour == 7:

111 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_0700_LST.tif ')

112 elif hour == 8:

113 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_0800_LST.tif ')

114 elif hour == 9:

115 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_0900_LST.tif ')

116 elif hour == 10:

117 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_1000_LST.tif ')

118 elif hour == 11:

119 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_1100_LST.tif ')

120 elif hour == 12:

121 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_1200_LST.tif ')

122 elif hour == 13:

123 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_1300_LST.tif ')

124 elif hour == 14:

125 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_1400_LST.tif ')

126 elif hour == 15:

127 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_1500_LST.tif ')

128 elif hour == 16:

129 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_1600_LST.tif ')

130 elif hour == 17:

131 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_1700_LST.tif ')

132 elif hour == 18:

133 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_1800_LST.tif ')

134 elif hour == 19:

135 im = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

radiation/augusthour/shadow_20140806_1900_LST.tif ')

136 # im = Image.open('D:/ UserData/koopm043/NL_heatmap/Wageningen/

radiation/august/shadow_20140826_1800_LST.tif ')

137 FF= FDATA['FF ']. iloc[t]

138 dd= FDATA['dd ']. iloc[t]

139 sunalt= FDATA['sunalt ']. iloc[t]

140 print(dd)

H.5. sytse/pet_calculate.py 189

141 if FF >= 1.5: #0-1bft

142 if dd <=45:

143 if sunalt > 0:

144 im2 = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

output/urban_morphology_25m_day_N_allign.tif ') #to do

145 else:

146 im2= Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

output/urban_morphology_25m_night_N_allign.tif ')

147 im3= Image.open('D:/ UserData/koopm043/NL_heatmap/Wageningen/

output/wind/wind_N.tif ')

148 elif dd <135:

149 if sunalt > 0:

150 if Nynke:

151 im2 = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

Nynke/urban_morphology/

urban_morphology_25m_day_E_allign.tif ')

152 print('Nynke ')

153 else:

154 im2 = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

output/urban_morphology_25m_day_E_allign.tif ') #to do

155 else:

156 im2 = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

output/urban_morphology_25m_night_E_allign.tif ') #to do

157 print('E ',hour)

158 im3= Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/output/

wind/wind_E.tif ')

159 elif dd <225:

160 if sunalt > 0:

161 im2 = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

output/urban_morphology_25m_day_S_allign.tif ') #to do

162 else:

163 im2= Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

output/urban_morphology_25m_night_S_allign.tif ')

164 im3= Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/output/

wind/wind_S.tif ')

165 print('S ',hour)

166 elif dd <315:

167 if sunalt > 0:

168 im2 = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

output/urban_morphology_25m_day_W_allign.tif ') #to do

169 else:

170 im2= Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

output/urban_morphology_25m_night_W_allign.tif ')

171 im3= Image.open('D:/ UserData/koopm043/NL_heatmap/Wageningen/output/

wind/wind_N.tif ')

172 else:

173 if sunalt > 0:

174 im2 = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

output/urban_morphology_25m_day_N_allign.tif ') #to do

175 else:

176 im2= Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

output/urban_morphology_25m_night_N_allign.tif ')

177 # im3= Image.open('D:/ UserData/koopm043/NL_heatmap/Wageningen/

output/wind_N.tif ')

178 else:

179 if sunalt > 0:

180 im2 = Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

output/urban_morphology_25m_day_C_allign.tif ') #to do

181 else:

182 im2= Image.open('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/

output/urban_morphology_25m_night_C_allign.tif ')

190 H. Original python code

183 im3= Image.open('D:/ UserData/koopm043/NL_heatmap/Wageningen/output/wind

/wind_C.tif ')

184

185 urban=np.array(im2)

186 Ta=urban [:]* FDATA['UHImax ']. iloc[t]* FDATA['diurn ']. iloc[t]+T

187

188 Qgl= FDATA['Q']. iloc[t]

189 Qdif= FDATA['Qdif ']. iloc[t]

190 sunalt= FDATA['sunalt ']. iloc[t]

191

192 rh=FDATA['rh ']. iloc[t]

193

194 Tw=T*np.arctan (0.15198*(rh +8.3137) **0.5)+np.arctan(T+rh)-np.arctan(rh

-1.676) +0.0039184* rh **1.5* np.arctan (0.023101* rh) -4.686 #use station T

195

196 wind = ((np.array(im3) -0.125) *0.5829+0.125)*FF #substitutie S.13 en S.14

197 wind[wind <0.5]=0.5 #minimum wind speed is 0.5 m/s

198 wind_temp=np.ravel(latarray [:]),np.ravel(lonarray [:]),np.ravel(wind)

199 wind_res=np.array(wind_temp).transpose ()

200 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/verification/

wind_2aug2013_%s_0.5.csv ' %(hour),wind_res ,delimiter=',',fmt='%6.2f')

201

202 #1= sun 0= shadow

203 # PETsun does not exist at nighttime and a simpler routine is followed in

the night , i.e in the night PETshade is calculated everywhere

204 if Qgl > 0 and sunalt > 0: #QDir < 120W is shadow #beam

205 sun_temp = np.array(im)

206 sun=sun_temp [74: -6 ,90:]*(1 - trees_2m)

207 # np.savetxt('D:/ UserData/koopm043/NL_heatmap/Wageningen/radiation/sun.

tif ,ndvi_infr_2d ,delimiter=',',fmt= '%5.3f')

208

209 PETshade =(latarray [:], lonarray [:] , -12.14+1.25* Ta[:] -1.47*np.log(wind

[:]) +0.060* Tw +0.015* svf [:]* Qdif +0.0060*(1 - svf [:])*stef*(Ta

[:]+273.15) **4)*(1-sun [:])*svf_mask [:]

210 PETveg =(latarray [:], lonarray [:] , -13.26+1.25* Ta [:]+0.011* Qgl -3.37* np.log

(wind [:]) +0.078* Tw +0.0055* Qgl*np.log(wind [:]) +5.56* np.sin(sunalt

/360*2* np.pi) -0.0103* Qgl*np.log(wind [:])*np.sin(sunalt /360*2* np.pi)

+0.546* Bveg +1.94* svf [:])*mask_vegfra [:]* sun [:]* svf_mask [:]

211 PETnoveg =(latarray [:], lonarray [:] , -13.26+1.25* Ta [:]+0.011* Qgl -3.37* np.

log(wind [:]) +0.078* Tw +0.0055* Qgl*np.log(wind [:]) +5.56* np.sin(sunalt

/360*2* np.pi) -0.0103* Qgl*np.log(wind [:])*np.sin(sunalt /360*2* np.pi)

+0.546* Bnoveg +1.94* svf [:])*(1- mask_vegfra [:])*sun [:]* svf_mask [:]

212

213 PET_tiff=PETshade [2]+ PETnoveg [2]+ PETveg [2]

214 [cols ,rows]=[np.shape(PET_tiff)[0],np.shape(PET_tiff)[1]]

215

216

217 else:

218 PETshade =(latarray [:], lonarray [:] , -12.14+1.25* Ta[:] -1.47*np.log(wind

[:]) +0.060* Tw +0.015* svf [:]* Qdif +0.0060*(1 - svf [:])*stef*(Ta

[:]+273.15) **4)*svf_mask [:]

219

220 PET_tiff=PETshade [2]

221 [cols ,rows]=[np.shape(PET_tiff)[0],np.shape(PET_tiff)[1]]

222

223 #create georeferenced Tiff

224 im= gdal.Open('C:/ Users/koopm043/NL_heatmap/avgPET_1july2015_Herw.tif ') #

pas op deze link is anders dan D:/Drive , dit bestand is verstuurd onder

onder Imme/Ddrive/koopm043/NL_heatmap

225 obj=im.GetRasterBand (1)

226 obj_array=obj.ReadAsArray ()

H.5. sytse/pet_calculate.py 191

227 driver = gdal.GetDriverByName (" GTiff")

228 # outdata = driver.Create('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/output2/

PET_2aug_tiff_%s_test_Imme.tif ' %(hour), rows , cols , 1, gdal.GDT_UInt16)

229 # outdata = driver.Create('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/output2/

PET_1July2015_Herw_12UTC.tif ' %(hour), rows , cols , 1, gdal.GDT_UInt16)

230 outdata = driver.Create('D:/ Ddrive/koopm043/NL_heatmap/Wageningen/output2/

PET_1July2015_Herw_12UTC.tif ' %(hour), rows , cols , 1, gdal.GDT_Float32)

231 outdata.SetGeoTransform(im.GetGeoTransform ())##sets same geotransform as

input

232 im= None

233 outdata.GetRasterBand (1).WriteArray(PET_tiff)

234 outdata.FlushCache ()

I
MSE wind old

Listing I.1: MSE between blocksize 1 and blocksize 5 100x100 area

1 R^2 = 0.6411

Comparing the blocksize between 5 and 25 there was a high correlation with the r2 score of 0.973.

Listing I.2: MSE between blocksize 5 and blocksize 25 100x100 area

1 R^2 = 0.973

But the accuracy of the data declines by comparing the blocksize between 1 and 25 there was a low corre-
lation with the r2 score of -0.04.

Listing I.3: MSE between blocksize 1 and blocksize 25 100x100 area

1 R^2 = 0.5923

Figure I.1: Trendline time data block size 5m

193

J
Dates 2023 Rotterdam

Figure J.1: Fig. T atmospheric temperature for Rotterdam in the months june till september 2023 (Data retrieved from KNMI [0000]
postprocessed by author)

195

196 J. Dates 2023 Rotterdam

Figure J.2: The two dates for 2023

(a) 9:00 (b) 12:00

(c) 15:00 (d) 18:00

Figure J.3: Output files on research area 25th of Junest 2023.

197

(a) 9:00 (b) 12:00

(c) 15:00 (d) 18:00

Figure J.4: Output files on research area 28th of Junest 2023.

K
Walkability analysis

Application network betweeness
To analyze the most frequently used routes, we will use angular choice analysis on the street network of
Bospolder Tussendijken, which was generated by the tool developed by [Stavroulaki et al., 2019]. Angular
choice analysis is a method used to identify the most commonly used paths based on their geometry. First,
we need to normalize the data to highlight the importance of different routes and the urgency of using those
paths. We will consider a distance of 500 meters as a neighborhood distance, which represents the distance an
elderly person can walk within 15 minutes. For a regular person, a distance of 1000 meters will be considered,
and for a biking distance of 15 minutes, a distance of 2500 meters will be used.

1 [language=SQL , caption ={SQL statement for angular choice}, label=lst:case]

2 CASE

3 when ("ac_500_norm" > "ac_1000_norm" AND "ac_500_norm" > "ac_2500_norm")

then 'local '

4 when ("ac_2500_norm" > "ac_500_norm" AND "ac_2500_norm" > "ac_1000_norm")

then 'city '

5 when (abs(" ac_1000_norm" - "ac_2500_norm ") <= 0.02) then 'intermediate '

6 when (" ac_500_norm" < 0.1 AND "ac_1000_norm" < 0.1 AND "ac_2500_norm" <

0.1) then 'irrelevantlocal '

7 else 'overig '

8 END

Determining the orientation of the streets
For determining the orientation of the streets the TOPNL [Kadaster, 2024] will be used. Next to this an excel
table is linked to the names of the streets by a join by field attribute:

Listing K.1: SQL statement for orientation streets

1 CASE

2 WHEN "mainangle" >= 337.5 OR "mainangle" < 22.5 THEN 'North -South'

3 WHEN "mainangle" >= 22.5 AND "mainangle" < 67.5 THEN 'Northeast -Southwest '

4 WHEN "mainangle" >= 67.5 AND "mainangle" < 112.5 THEN 'East -West'

5 WHEN "mainangle" >= 112.5 AND "mainangle" < 157.5 THEN 'Northwest -Southeast

'

6 WHEN "mainangle" >= 157.5 AND "mainangle" < 202.5 THEN 'North -South'

7 WHEN "mainangle" >= 202.5 AND "mainangle" < 247.5 THEN 'Northeast -Southwest

'

8 WHEN "mainangle" >= 247.5 AND "mainangle" < 292.5 THEN 'East -West'

9 WHEN "mainangle" >= 292.5 AND "mainangle" < 337.5 THEN 'Northwest -Southeast

'

10 ELSE NULL

11 END

199

200 K. Walkability analysis

By adding an additional table with the Height Width ratios of the streets there could be a determination if the
solution ought to be sought in the public space or could be transformed by the architecture of buildings.

Figure K.1: Orientation map and H/W ratio buildings

Determining the attraction betweeness of certain locations in order to determine the
streets to interfere in
As a guiding tool which routes are used the most based on dwellings and their destination points, the follow-
ing procedure is set up to count the amount of shortest paths on line segments. The line segments network
are from Dataset: Basic Topography Registration (BRT) TOPNL [Kadaster, 2024] . The set-up is as follows:

201

1 1 Bag dwellings create centroid points

2 2 QGIS network analysis shortest path for all the dwellings towards the

preferred location

3 A. Explode lines

4 A1. Clean from A the multiple geometries > buffer 1m with 0.1 tolerance (

buffer hull)

5 - Bufferhul create new attribute buffered \$id

6 3 Then A \& A1 intersect by location

7 - Virtual layer with bufferid from A1

8 - Virtual layer with buffer count how many times A is intersected in A1

9 - In python a table is created with how many times A is in A1 matching

bufferid with count

10 4 Then link buffercount and bufferid to geometry A1.

Figure K.2: Attraction betweeness market containing line segment pieces with more than 1000 dwellings as shortest path route

	Abstract
	Acknowledgments
	Preface
	Introduction
	Health at risk
	Heat mitigation research and action in the Netherlands
	Research gap
	Research aim
	Academic Value of the Research
	Social Relevance of the Research
	Research questions
	Structure of the report

	Thermal comfort models
	Positioning heat stress models
	Conclusions

	Thermal comfort software
	Requirements
	Thermal comfort software models
	Conclusion

	Physiological Equivalent Temperature (PET) model
	Physical model
	Reproducability paper code guidelines koopmans2020

	PETs simulator
	Computational workflow
	PET simulator
	User interface

	Physiological Equivalent Temperature verification
	Wind direction
	Block size
	Block size comparison 1000x1000 research area
	Frontal area
	Scalability
	Calibration of the code

	Physiological Equivalent Temperature application
	PET calculation
	Applications
	Testing the design interventions

	PETs evaluation
	Reproducability
	Assessment reproducability.

	Discussions and limitations
	Discussion
	Limitations

	Conclusions
	Sub research questions answered
	Conclusion
	Additional Points of Growth from this Research
	Conclusion joint degree

	Future research
	Points of improvement
	Transferability of the Research

	Symbols
	Python code
	python/pet_parameters.py
	python/geotiff_creator.py
	python/pysolar1.py
	python/get_svf.py
	python/fraction_area_buildings_treeregr.py
	python/ndvi_infr_large.py
	python/vegetation_footprints.py
	python/skyview_footprints.py
	python/urban_heat.py
	python/pet_calculate.py
	python/pet_simulator.py

	Users manual
	Creation knmi files

	Extended research area eastern wind Wageningen
	Extended research area eastern wind Rotterdam
	Diurnal table
	Additional concept figures
	Original python code
	sytse/fraction_area_buildings_treeregr.py
	sytse/ndvi_infr_large.py
	sytse/vegetation_footprints.py
	sytse/skyview_footprints.py
	sytse/pet_calculate.py

	MSE wind old
	Dates 2023 Rotterdam
	Walkability analysis

