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Apparent nonlinear damping triggered by
quantum fluctuations

Mario F. Gely 1,3 , Adrián Sanz Mora1, Shun Yanai1,4,5, Rik van der Spek1,
Daniel Bothner 1,2 & Gary A. Steele 1

Nonlinear damping, the change in damping rate with the amplitude of oscil-
lations plays an important role in many electrical, mechanical and even bio-
logical oscillators. In novel technologies such as carbon nanotubes, graphene
membranes or superconducting resonators, the origin of nonlinear damping is
sometimesunclear. This presents a problem, as thedamping rate is a keyfigure
of merit in the application of these systems to extremely precise sensors or
quantumcomputers. Throughmeasurements of a superconducting resonator,
we show that from the interplay of quantum fluctuations and the nonlinearity
of a Josephson junction emerges a power-dependence in the resonator
response which closely resembles nonlinear damping. The phenomenon can
be understood and visualized through the flow of quasi-probability in phase
space where it reveals itself as dephasing. Crucially, the effect is not restricted
to superconducting circuits: we expect that quantum fluctuations or other
sources of noise give rise to apparent nonlinear damping in systems with a
similar conservative nonlinearity, such as nano-mechanical oscillators or even
macroscopic systems.

Amplitude-dependent (nonlinear) damping is ubiquitous in nature. It
was famously described mathematically by van der Pol1 in the context
of his work on vacuum tube circuits2. Now, it is used to describe the
physics of a diverse set of systems, such as the rolling of ships inwaves3

or the nervous system4. It has attracted recent interest due to its
appearance in novel experimental platforms such as nanoscale
ferromagnets5, superconducting circuits6–9 and nanoelec-
tromechanical systems (NEMS)10–13 made for example from carbon
nanotubes, graphene14,15 or superconducting metal16. In some of these
systems the nonlinearity is well explained17–20. Most notably the
saturation of two-level systems in the environment can cause negative
nonlinear damping: the damping rate decreases as the power injected
into the system increases6,8,9,16. But the originof an increase in damping
with power in certain NEMS11–14 or superconducting resonators7

remains speculative. Understanding the originof nonlinear damping in

some of these systems is critical due to the importance of their energy
damping rates in applications such as NEMS based mass sensing21 or
spectrometry22, as well as quantum-limited amplification23,24 in super-
conducting quantum computers25.

We study a dephasing effect in superconducting circuits26, which
phenomenologically appears as nonlinear damping when measuring
the resonant response of a resonator. Central to the observed physics
is the nonlinearity induced by a Josephson junction: that the resonance
frequency varies with the oscillation amplitude, which can be further
approximated as a Duffing or Kerr nonlinearity27. For this reason, the
phenomena discussed here are applicable to all systems featuring a
similar nonlinearity in their resonance frequency, for example the
carbon-nanotubes mentioned above, or even a macroscopic mechan-
ical pendulum.We focus on the regimewhere this nonlinearity is small,
as in Josephson parametric amplifiers24, rather than the single-photon
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nonlinear regime used to construct artificial atoms in circuit quantum
electrodynamics27. Because of their small nonlinearity, such systems
are often thought to be completely described by the classical Kerr
oscillator7,28.

Here however, we report on an effect that is not expected from
the classical Kerr oscillator. More specifically, we present a phe-
nomenon triggered by the interplay between the quantum noise
and Kerr anharmonicity of the oscillator, which closely resembles
nonlinear damping in the steady-state response of the oscillator.
The apparent nonlinear damping is first experimentally character-
ized by probing the frequency response of the resonant circuit. Our
observations are then accurately described by a quantum theory of
a damped driven Kerr oscillator devoid of ad hoc nonlinear
damping, but which takes into account the effect of quantum noise.
Moreover, focusing on an oscillator steady-state below its bist-
ability threshold, a Gaussian state approximation29 allows us to
demonstrate that, in a close vicinity of the resonance, the expected
amplitude of oscillations is akin to that of a driven classical Kerr
oscillator with nonlinear damping. Finally, we provide an intuitive
picture in which the phenomenon can be understood as the oscil-
lator experiencing dephasing induced by its own photon
shot noise.

Results
Experimental setup
The circuit used in this experiment (Fig. 1) is constructed from an
inductor, capacitor and superconducting quantum interference
device, or SQUID. The SQUID is flux-biased to its sweet spot (integer
flux quantum), and behaves as a single Josephson junction30. The
junction induces an anharmonicity of strength K = 2π × 80 kHz five
orders of magnitude smaller than the resonance frequency
ωr = 2π × 5.17 GHz. The cosine potential of the junction is accurately
described in this limit K≪ωr by the Kerr effect in the Hamiltonian31

Ĥ = _ ωr �
K
2
âyâ|fflfflfflffl{zfflfflfflffl}

Kerr

�K
2

0
BBB@

1
CCCAâyâ , ð1Þ

where â is the annihilation operator for photons in the circuit. Intui-
tively, the junction is acting as an inductor, with an inductance which
increases with the number of photons âyâ in the circuit. As a con-
sequence, the resonance frequency of the circuit is lowered with each
added photon, labeled as the Kerr term in Eq. (1).

The circuit undergoes internal damping, losing energy at a rate
κint = 2π × 186 kHz. This is typically due to losses in the different
dielectric materials traversed by the electric fields32. Additionally, the
circuit is coupled to a transmission line, through which we drive the
circuit with amicrowave signal. Conversely, the transmission line leads
to energy leaking out of the circuit, which is characterized by an
external damping rate κext = 2π × 2.1MHz. As a consequence, the total
damping rate and spectral linewidth κ = κint + κext is much larger than
the shift in resonance frequency K due to an added photon: κ≫K. The
circuit is thus far from the regime of superconducting qubits27. We will
call it a Kerr oscillator and first attempt to describe its behavior fol-
lowing the classical equation for the steady-state amplitude of its
oscillations a

iΔ� iKjaj2 + κ
2

� �
a= ϵ : ð2Þ

Here Δ =ωr −ωd is the detuning of the driving frequency ωd to the
resonance frequency ωr, and the strength of the drive
ϵ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κextPin=ð2_ωrÞ

p
is given by Pin the power of the drive impinging on

the device.

The circuit is made by patterning a thin film of sputtered
molybdenum–rhenium alloy on silicon, and subsequently fabricating
the aluminum/aluminum-oxide tunnel junctions (see “Methods”). The
device is thermally anchored to the ~20milliKelvin stage of a dilution
refrigerator, and the input (output) microwave wiring is attenuated
(isolated) to lower its microwave mode temperature, such that the
average number of photonsnth excited by thermal energy is negligible.
The transmission coefficient S21 = 1 − κexta/(2ϵ) is then measured using
a vector network analyzer (VNA) for varying microwave power
(see Fig. 2a).

Experimental data
We note an increase in both the detuning Δmin which minimizes
transmission, and the value of the minimum Min∣S21∣. The classical
prediction Δmin =Kα

2 resulting from Eq. (2)—where α = 2ϵ/κ is the
expected maximum amplitude—accurately matches the shift of the
resonance. However, by plugging the maximum amplitude α into the
expression for S21, we obtain a constant value for Min∣S21∣ = ∣1 − κext/κ∣
(dashed line in Fig. 2a), which disagrees with the measurement.

In a classical approach to the problem, a power-dependence of
the internal damping rate thereforehas to create this change. Since κext
is determined by the geometry of the circuit, it should remain
unchanged by the power of the drive. For κext/κ to vary and produce
the observed change in Min∣S21∣ = ∣1 − κext/(κext + κint)∣, the internal
damping should increase as the drive power increases. At the highest
drive power for which data is displayed (Pin = − 124 dBm), the internal
damping rises to 2π × 255 kHz. We note that this power lies below the
bistability threshold (see Supplementary Notes 3 and 4F). Such non-
linear damping can be included in the model of Eq. (2) through
κint ! κnl

int = κint + γjaj2. We fit a solution of the resulting equation to
the data (see Methods), observing good agreement (Fig. 2) for
γ = 2π × 5.02 kHz.

While providing an accurate model for our observations, adding
ad-hoc nonlinear damping offers no explanation as to the physical
mechanism underlying the effect. Usually, the most prominent source

Fig. 1 | Superconducting Kerr oscillator circuit. a The Kerr oscillator is con-
structed from an inductor, a capacitor and a SQUID (which behaves as and is
depicted by a single Josephson junction), and is side-coupled to a transmission line
with a coupling rate κext. The circuit undergoes internal damping at a rate κint.
b Optical micrograph of the device, where light gray corresponds to super-
conducting molybdenum-rhenium, and dark gray to the insulating silicon sub-
strate. An interdigitated capacitor on the right is connected to a meandering
inductor on the left. The circuit couples to a transmission line (coplanarwaveguide)
at the top. cScanning electronmicrographof theSQUID: twoaluminum/aluminum-
oxide Josephson junctions connected in parallel. As the flux threading the SQUID is
fixed, it effectively behaves in this context as a single junction.
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of nonlinear damping in superconducting circuits is the saturation of
two-level systems (TLSs) in the environment6,8,9. However, with
increasing driving power, the saturation of TLSs will result in a
decrease of the internal damping rate, while we observe the opposite.
Here, we show that in our system this nonlinear damping behavior can
be explained purely by dephasing triggered by the joint action of the
intrinsic quantum noise and the Kerr anharmonicity of the oscillator.

Quantum mechanical simulation
We first show that approaching the problem quantum mechanically,
without adding nonlinear damping, perfectly describes our measure-
ments. The effect of quantum noise is included in the model through
the steady-state Lindblad equation

i Ĥ=_� ωdâ
yâ+ iϵðây � âÞ, ρ̂

h i
= κ 2âρ̂ây � ρ̂âyâ� âyâρ̂

� �
=2 , ð3Þ

where ρ̂ is the density matrix describing the steady-state of the
oscillator. By numerically solving this equation for varying drive
strengths and frequencies, the resulting amplitude hâi=Trðâρ̂Þ is used
to obtain S21. With only the circuit parameters as free variables, and
notably a constant value for the internal damping, this model is fitted
to all S21 traces (see “Methods” and Supplementary Note 2), revealing
excellent agreement to the data (Fig. 3). Note that we recently became

awareof an analytical solution to this Lindblad equation33,34, whichmay
have simplified our approach.

In Fig. 3, we compare this quantum model to the classical
model: the solution to Eq. (2), which features neither nonlinear
damping nor quantum noise. The only difference between the
quantum model—which predicts the increase in Min∣S21∣—and that
of Eq. (2)—which predicts a constant Min∣S21∣—lies in the value of the
commutator ½â, ây�. In fact, by taking the trace Trðâ � Þ of Eq. (3), and
assuming the amplitude to be a complex number â ! a such that
[a, a*] = 0, we arrive at Eq. (2). Quantum noise can therefore lead to
the entirety of the change in Min∣S21∣. Thermal noise could lead to a
similar effect, but is expected to be negligible in our experiment
(see Supplementary Note 7).

Beyond describing the data, this model can lead to a nonlinear
damping equation for the expectation value hâi. In the Supple-
mentary Note 4, we derive an analytical formula that captures the
behavior of the steady-state response that is in good agreement
with the numerical simulations. We find that in a resonance sce-
nario, whenever the Kerr effect and thermal noise have only a per-
turbative effect on the system, the corresponding steady-state
expectation value for the amplitude hâi matches that of a classical
non-linearly damped driven classical Kerr oscillator. That is, the
steady-state amplitude is ruled by an equation resembling Eq. (2),
but where the quantum and thermal noise lead to a nonlinear
damping coefficient κ + γjhâij2 with

γ =
4K2

κ
nth +

1
2

� �
: ð4Þ

Here the familiar + 1
2 stems from quantum noise, which has the same

effect as half a quantum of thermal noise. The fact that the nonlinear
dampingmodel and the quantummodel are both able to describe our
measurements is therefore not coincidental: while there is no micro-
scopic process leading to nonlinear damping (i.e., loss of energy),
there is apparent nonlinear damping in the equation for hâi when
accounting for the presence of quantum noise. Similar results were
derived for the classical35 and quantum36 spectrum of undriven oscil-
lators, and also in work studying the spectrum of a probe field in the
presence of a strong pump field37. The difference here is that we are
instead interested in the power dependence of the scattering
parameter S21.

Fig. 3 | Apparent nonlinear damping triggered by quantum noise. The experi-
mental results (dots) are compared here to a model with and without quantum
noise (full and dashed line respectively). a Example of experimental and theoretical
∣S21∣ at the input power Pin = − 124 dBm. b As the power varies the model without
quantum noise fails to capture the power-dependent depth of the response, which
is accurately reproduced when quantum noise is introduced.

Fig. 2 | Observation of a resonator steady-state response suggesting nonlinear
damping. a Measured transmission magnitude ∣S21∣ (dots) for different drive
powers. While the shift in resonance frequency is expected from a classical analysis
of the damped driven Kerr oscillator using Eq. (2), Min∣S21∣ is expected to remain
constant (dashed line). bMeasuredMin∣S21∣ (dots) as a function of drive power. Eq.
(2) yields Min∣S21∣ = ∣1 − κext/(κint + κext)∣, suggesting a damping rate which increases
with power κint ! κnl

intðjajÞ from κnl
int = 2π × 193 kHz to κnl

int = 2π × 255 kHz. Indeed,
adding nonlinear damping κnl

intðjajÞ to Eq. (2) leads to theoretical predictions (solid
lines in a) in good agreement with the data. At the three highlighted points, the
expectation values of photon number ∣a∣2 (where the minimum of ∣S21∣ is achieved)
are 1.1, 6.8 and 13.2.
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Quantum mechanical interpretation
We now provide an intuitive explanation as to why there is a decrease
in the amplitude of oscillations hâi—leading to an increase in the
minimum of jhŜ21ij= j1� κexthâi=ð2ϵÞj—when quantum noise is con-
sidered. Because of the Kerr nonlinearity, the uncertainty in the pho-
ton number operator âyâ, translates to uncertainty in the resonance
frequency of the oscillator ωr � Kâyâ=2 (see Hamiltonian of Eq. (1)).
This has two consequences. Effect A: the signal leaking out of the
oscillator into the transmission line inherits the frequency fluctuations
of the oscillator. Since we are measuring a single frequency compo-
nent with our VNA, we will measure a signal of smaller amplitude.
Effect B: the driving is less effective at exciting the oscillator because
the resonance frequency of the oscillator is fluctuating and no driving
frequency will lead to resonant driving. The average number of pho-
tons in the oscillator will decrease.

This interpretation can be more thoroughly explored in phase
space, by making use of the Wigner distribution and Wigner
current38–41. We introduce x̂ = ðâ+ âyÞ=

ffiffiffi
2

p
and p̂= � iðâ� âyÞ=

ffiffiffi
2

p
, such

that the amplitude hâi is given by the center ofmass of the distribution
through hâi=

ffiffiffi
2

p RR
dxdpðx + ipÞW . TheWigner current J

!
, governs the

dynamics of the Wigner function W through the continuity equation
∂tW + ∇

!
J
!

=0. It provides an intuitive visualization of the flow of
quasi-probability in phase space.

As a pedagogical starting point, we show in Fig. 4a the distribution
and different contributions to the current for a coherent state of
amplitude α. This state corresponds to the steady-state that would be
reached in our resonantly driven systemwithout Kerr nonlinearity. The
damping tends to bring each point of the distribution back to the
origin. The drive however, is sensitive to phase and acts in a single

direction. These two currents are balanced by the quantum noise,
which creates a diffusion of the quasi-probability.

In Fig. 4b, we look at how the Kerr effect deforms the same
coherent state, with the damping, driving, and noise temporarily
inactive. We see the consequence of the amplitude-dependent reso-
nance frequency of a damped driven quantumKerr oscillator. In phase
space, the resonance frequency sets the rate at which a point rotates
around the origin. And the amplitude is given by the distance to the
origin. The resulting deformation of the coherent state does not bring
any point in phase space closer to the origin (total energy, or photon
number, remains constant). The center of mass, however, will move
closer to the origin. To be convinced of the latter, one can imagine the
extreme case of the Kerr effect deforming the coherent state into a
ring circling the origin, so that center of mass would be the origin, and
jhâij=0. This mechanism for reducing jhâij corresponds to Effect A
previously discussed.

In the steady-state of our experiment, simulated in Fig. 4c, the
evolution of the Kerr effect is eventually balanced by the other cur-
rents. Due to the large spread of the state in phase, the diffusion
induced by quantum noise is weaker, and the damping current further
misaligned with the drive compared to Fig. 4a. Since the drive is not
parallel to the combined currents of damping and noise, it is less
effective at countering them, so less effective at driving the system. Or
in other words, in addition to countering the damping, the drive also
has to counter the evolution of the Kerr effect. As a consequence, the
average photon-number tends to decrease, which is the second con-
tribution to a lower amplitude (Effect B). In the Supplementary Infor-
mation (SupplementaryNote 5B), we elaborate onwhy this decrease in
amplitude is nonlinear with driving power.

Fig. 4 | Phase spacepictureofapparentdamping.Herephase spaceoperators are
defined by â= x̂ + ip̂

� 	
=

ffiffiffi
2

p
, see Supplementary Note 5A for further details. aWigner

distribution of the steady-state in absence of Kerr nonlinearity (driven at ωr with
Pin = − 124dBm). The balance between quantum noise, damping and drive is shown
by vectors corresponding to Wigner currents. b Growth of phase uncertainty of a
coherent state under Kerr nonlinearity. The amplitude-dependent resonance fre-
quency (Kerr effect) translates to a radius-dependent rotation around the origin.
The center ofmass of the distribution rotates at a frequencyKα2. In a frame rotating
at that frequency, the effect of the Kerr nonlinearity is to increase the uncertainty in
phase (this is the frame adopted in (c)). The larger the uncertainty in phase (the
extreme case being a ring around the origin), the closer the center of mass of the
distribution gets to the origin (i.e., jhâij ! 0). This is the first contribution (effectA)

to a reduced resonant amplitude’s magnitude jhâij. c Wigner distribution of the
steady-state withKerr nonlinearity (atminimum ∣S21∣with Pin = − 124dBm). The Kerr
effect is eventually balanced by the damping, quantum noise and drive. Since the
drive nowopposes both damping andKerr effect, it is less effective at opposing the
damping and driving the state away from the origin (compared to (a)). This brings
thedistribution closer to theorigin, and constitutes the second contribution (effect
B) to a reduced resonant amplitude’s magnitude jhâij. The center of mass (hâi)
(white dot) is compared to the classical steady-state (white cross). Since theWigner
current of the Kerr effect grows with the amplitude squared jhâij2 / ϵ2 and the
drive and dissipation currents grow with ϵ and jhâij respectively, the reduction in
jhâij does not linearly follow the driving strength ϵ (see Supplementary Note 5B).
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Using a Gaussian state approximation (see Supplementary
Note 4), we are able to weigh the influence of Effect A and Effect B in
reducing the value of the resonant amplitude hâi. We rely on an ana-
lytical comparison of the corresponding amplitude’s magnitude jhâij
andphoton number hâyâi, and the fact that Effect A does not affect the
photon number, whereas Effect B reduces the amplitude by reducing
the photon number from its expected value for a coherent stateffiffiffiffiffiffiffiffiffiffiffiffi

hâyâi
q

= jhâij. With respect to a coherent state of amplitude α, the

reduction in
ffiffiffiffiffiffiffiffiffiffiffiffi
hâyâi

q
corresponds to half the reduction in jhâij in our

system (without thermal noise). Thismeans that a reduction in photon
number is responsible for only half of the observed effect, indicating
that half of the increase in MinjS21j can be attributed to Effect A, and
half to Effect B. The same conclusions can be drawnwith thermal noise
(assuming nth≪ α2).

While we have focused on the case nth≪ α2, where the damping
seems to increase with the amplitude of oscillations, the opposite
regimenth≫ α2 has alreadybeen explored experimentally42,43 andbears
some common features with this work. When thermal fluctuations
dominate, the state of the oscillator is well described as a statistical
mixture of oscillatory amplitudes, each shifting the resonance fre-
quency by a different amount given by the Duffing nonlinearity. This
results in a broadening of the resonance line-shapewhen the oscillator
is probed, which has been phenomenologically interpreted as an
increase in damping, for example in carbon nanotubes42. This picture
even extends to the case nth≪ α2 where a residual broadening persists
due to quantum heating of the oscillator by the driving field44.

Finally, we note that for all driving strengths featured in our
measurements, quadrature squeezing occurs along an axis
u= cosðθÞx + sinðθÞp, rotated by an angle θwith respect the the x-axis.
At the highest driving power (Figs. 3 and 4), the most highly squeezed
quadrature is characterized by θ≃ −0.11π, where the uncertainty Δu is
83% of Δx for a coherent state.

Discussion
In conclusion, we have shown how the combination of Kerr non-
linearity and noise, and in particular quantum noise, leads to a
dephasing that can manifest in the same way as nonlinear damping.
Crucially, our findings are not limited to the case of superconducting
resonators. Indeed, preliminary calculations based on our analytical
model indicate that this effect has the correct order of magnitude to
play a role in the nonlinear damping observed in NEMS systems14,
however, driven by thermal rather than quantum noise. We are
therefore confident that this phenomenon can play a valuable role in
identifying the nature of nonlinear damping effects in a broader class
of systems, such as NEMS or other Josephson circuits, which will be
critical to their use in emerging technologies ranging from carbon
nanotube sensors to superconducting quantum computing.

Methods
Device fabrication
The device shown in Fig. 1 is fabricated in two steps45. First, we fabri-
cate the input/output waveguide structures,meandering inductor and
capacitor. On a chip of high-resistivity silicon, cleaned in solutions of
RCA-1, Piranha, and buffered hydrofluoric acid (BHF), we sputter
60 nm of molybdenum–rhenium (MoRe). A three layer mask (S1813/
W(tungsten)/PMMA-950) is then patterned using electron-beam
lithography, and is used in etching the MoRe by SF6/He plasma. The
mask is finally stripped using PRS 3000.

Secondly, we fabricate the Josephson junctions using the Dolan
bridge technique46. We first pattern a methyl-methacrylate (MMA)/
polymethyl-methacrylate (PMMA) resist stack with e-beam litho-
graphy. After development of the resist, and to ensure a good contact
between the aluminum of the junctions and the MoRe, we clean the

sample with an oxygen plasma and BHF. Evaporation of two aluminum
layers (30nm and then 50 nm thick) under two angles (±11 degrees),
interposed by an oxidization of the first aluminum layer, forms the
junctions. Removal of the resistmask inN-methyl-2-pyrrolidone (NMP)
at 80 degrees Celsius completes the sample fabrication.

Data analysis and fitting
Even at lowest driving power, the response of the device does not
perfectlyfit to a Lorentziancurve, indicating the presenceof additional
resonances in the measurement chain which could not be calibrated
out experimentally. To eliminate these, as well as the change in phase
length of the cabling with frequency, we subtract (divide) an affine
function of frequency to the measured phase (amplitude).

The transformation between measured response S21,meas and fit-
ted response S21,fit is thus given by

ðA+BωÞeC +DωS21,fitðωÞ= S21,meas , ð5Þ

where A, B, C, and D are determined through a fit of a low-power
response, where the nonlinearity does not come into play, and the
response of the device alone S21,fit(ω) is assumed to be

S21,fitðωÞ= 1�
G

iðω� FÞ+ E : ð6Þ

We then reduce the amount of noise as well as the superfluous
number of frequency points in the data-set by replacing blocks of
10 successive frequency data-points by their average. The reduction in
number of data-points also facilitates the fitting. We were able to
numerically compute S21 over the 500 frequency points of the data-set
in a minimization routine. For each driving power of the data-set, the
Python libraryQuTiP47,48 wasused to solve the Lindbladequationof Eq.
(3). For each power, the absolute difference between the 500 (com-
plex) numerical and experimental points constitute a first contribution
to theminimized cost function. The difference in theminimumof ∣S21∣,
and the frequency at which ∣S21∣ is minimized, are also added to the
cost-function each with a weight of 200 points. The function is mini-
mized using amodified Powell algorithm49,50, withfive free parameters:
ωr, κint, κext,K, and the attenuation that the signal outputted at the VNA
experiences before reaching the device. The attenuation is found to be
118.3 dB, consistent with the physical attenuation installed at room
temperature and at the different stages of the dilution refrigerator.
The device parameters converge to ωr = 2π × 5.172 GHz,
κint = 2π × 186 kHz, κext = 2π × 2.12MHz, K = 2π × 80kHz.

Data availability
The data used in this study is available in a Zenodo database with the
DOI identifier https://doi.org/10.5281/zenodo.4565179.

Code availability
The code used to analyze the data and generate all figures is available
in a Zenodo database with the DOI identifier https://doi.org/10.5281/
zenodo.4565179.
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