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Abstract

In recent years, a new way of cancer diagnostics
has emerged, the analysis of DNA fragments circu-
lating in the blood of cancer patients known as frag-
mentomics. This DNA, known as cell-free DNA
(cfDNA), is an easily available biomarker for cell
types. Deducing the tissue origin of cfDNA can
reveal anomalies in cell death caused by diseases.
That holds great potential in cancer detection and
monitoring. The process of establishing the cell
composition of a blood sample is called cell decon-
volution. This research paper focuses on the com-
parison of two methods of cell deconvolution. The
first one UXM, solves this problem by employing
a reference-based technique using a methylation at-
las. The second one reference-free cfSort, utilizes
a Deep Learning Neural Network to perform the
sample analysis. In the paper, however, a simpler
architecture was trained due to the difficulties in re-
production. Experiments have been conducted to
assess the sensitivity of both methods. Experiments
consisted of 5 major cell types together mixed with
white blood cell DNA fragments to assess the sensi-
tivity of each method. Furthermore, different met-
rics such as Pearson’s correlation coefficient have
been used to determine the accuracy of both meth-
ods. In the end, UXM outperformed cfSort in most
metrics, including Pearson’s correlation coefficient,
indicating its superior accuracy in deconvolution
tasks. However, cfSort showed potential for higher
prediction accuracy with further development and
better documentation. The findings highlight the
strengths and limitations of both methods. This
study suggests that while UXM is currently more
reliable, future improvements in cfSort could make
it a viable alternative. Continued research is recom-
mended to enhance the accuracy and transparency
of these methods, ensuring their effectiveness in
real-world healthcare applications.

1 Introduction
In the field of cancer treatment, one of the most important
challenges is the timely and accurate diagnosis of the
disease. Early detection is crucial for successful treatment
outcomes, however, achieving this goal is very difficult.
Cancer diagnosis typically involves invasive procedures and
can be both a physical and emotional burden for patients [4].
Usually, the standard approach to detect cancer is to perform
a biopsy. A biopsy is a medical procedure that involves the
extraction of a small sample of tissue from the body for
diagnostic examination [1]. This tissue sample is typically
analyzed under a microscope to detect the presence of cancer,
helping in the determination of the nature, extent, and stage
of the disease. Depending on the type of biopsy, it can be a
very invasive procedure where the patient has to undergo an
extraction under anaesthesia.

Due to the invasiveness and associated difficulties that
the extraction might pose, there is a great demand for
non-invasive, equally sensitive and accurate diagnostic
approaches. In recent years, a new way of cancer diagnostics
has emerged. That is a form of liquid biopsy [6], specifically
the analysis of circulating DNA fragments in the blood.
This field is known as fragmentomics. The idea behind
fragmentomics is that every cell sheds fragments of DNA
into the bloodstream when it dies. Thanks to that we can
obtain useful information from these fragments while at the
same time ensuring that the sample extraction process is very
short, noninvasive and cost-effective. Several studies have
demonstrated the utility of fragmentomics in detecting the
presence of cancer, for instance by using a machine learning
model to detect anomalies in the fragmentation profile of
white blood cells [3] or by using the length distribution of
DNA fragments from cancer patients to infer tumour load
and types [5]. Despite these advancements, there remains
a large knowledge gap in our understanding of how this
information can be used in cancer detection. The gap stems
from the lack of understanding of the complexity of the
human organism and all the intricate processes that are
occurring on a cellular level.

The main focus of this research paper is to compare
two methods of extracting cell origin information from the
circulating DNA fragments. Cell-free DNA (cfDNA) found
in blood plasma comes mainly from different types of blood
cells such as white blood cells, along with cells lining blood
vessels and tissues such as the liver and kidneys. In cancer
patient samples, cfDNA can include DNA from tumours.
This mix of DNA in plasma reflects how cells naturally break
down and release their genetic material into the bloodstream.

A real-world application would be to detect any anomalies
in these fragments. One way to do so is to estimate the
percentage proportion of each origin, that is being able to
tell how many fragments come from which cell type. This
process lies at the very foundation of anomaly detection and
is known as cell deconvolution.

The information enclosed in the cell type proportions
can allow us to analyse the patient’s health. This is all
possible thanks to the property of cancerous cells. Namely, a
cancerous cell’s main priority is to grow and spread rapidly.
When it detects irregularities the organism, attempts to fight
the disease and kill the cancer cells. This way as a result we
can observe a higher level of deaths of a particular cell type
through the DNA fragment levels.

Using cell deconvolution techniques we can compare
healthy and diseased patients, and establish levels at which
we can assume irregularities. We can then guide the patient
to perform more checks. However, this all relies on the
deconvolution methods that are in place. An inaccurate
deconvolution algorithm can produce many false positives
which can lead to DNA fragment levels being diagnosed as
normal. Thus, it is extremely important to use a reliable and
robust method to accurately predict the cell proportions.
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1.1 Cell Deconvolution
To perform the deconvolution, we use the DNA fragments cir-
culating in the blood to draw information from them. DNA
is the instruction manual for the body. It is made up of build-
ing blocks called nucleotides. The order of them specifies the
instructions for the organism to build necessary proteins and
compounds. DNA methylation is a process where a methyl

Figure 1: Methylation across different cell types [4]

group is added to specific DNA molecules, mostly cytosine.
This can alter gene expression without changing the under-
lying DNA sequence. These methylation patterns vary sig-
nificantly between cell types as seen in Fig 1. By analyzing
the methylation profile of a bulk tissue sample, containing a
mixture of different cell types, deconvolution algorithms can
identify cell type-specific methylation signatures. These sig-
natures are then used to estimate the relative abundance of
each cell type within the sample. Deconvolution methods can
be broadly divided into two categories described below.

1.2 Reference-based Deconvolution
Reference-based deconvolution requires a pre-defined set of
methylation profiles for specific cell types. These profiles act
as a reference, allowing the algorithm to identify cell type-
specific methylation signatures within the bulk tissue sample.
A general idea is described in Fig. 2 1. By comparing the
sample’s methylation profile to the reference profiles, the al-
gorithm estimates the relative composition of each cell type
contributing to the sample.
This approach can offer a high accuracy when a reliable refer-
ence set is available, but its limitation lies in the requirement
for pre-characterized cell types. If a specific cell type is ab-
sent from the reference, the deconvolution may miss its con-
tribution or misinterpret it as another similar cell type. The
particular method that was used in this work was the UXM
deconvolution tool [8]

1.3 Reference-free Deconvolution
Reference-free deconvolution, on the other hand, doesn’t rely
on pre-defined cell type profiles that much. It requires them

1Image taken and modified from https://en.wikipedia.org/wiki/
Cellular deconvolution#/media/File:ReffreevsBased.png

Figure 2: General idea of Reference-based deconvolution

to train the model. However, during the deconvolution, the
model only requires the input mixture. The model analyzes
the inherent properties of the methylation data itself. These
methods often employ sophisticated model architectures to
identify underlying patterns within the bulk sample data. This
can be observed in Fig. 3 2

Figure 3: General idea behind reference-free deconvolution

Reference-free methods offer greater flexibility as they do
not require reference patterns. Until recently reference-based
methods were more popular. However, thanks to the fast de-
velopment of Deep Learning Models and the overall progress
of genetics, a new reference-free tool, namely cfSort [7] was
developed and according to the author, it performs better than
the state-of-the-art methods.

1.4 Motivation
This paper will focus on comparing these two methods. Com-
paring the specific reference-free and reference-based decon-
volution methods is crucial for several reasons. It allows
for a neutral evaluation of their performance across a uni-
fied dataset, ensuring the generalizability of findings beyond
specific experimental conditions. Furthermore, such compar-
isons provide insights into the strengths and weaknesses of
each approach, helping researchers select the most suitable
approach based on the specific characteristics of their data
and research goals.

2https://en.wikipedia.org/wiki/Cellular deconvolution#/media/
File:ReffreevsBased.png
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1.5 Problem Decomposition
To effectively address the main research question, we decom-
posed it into the following sub-problems:

• Which method is better in terms of performance?
This question involves measuring the accuracy of the
models using Pearson’s correlation coefficient. Addi-
tionally, we will perform a short qualitative analysis of
each approach in terms of their codebase reproducibility.

• How do the two models compare in a sensitivity de-
tection test? We investigate their performance in detect-
ing low percentages of a secondary cell type in a mixture
with white blood cells (WBCs). The reason for this ex-
periment is to establish how well the two methods detect
cell types if the corresponding proportion of DNA frag-
ments is low. This is important as it affects the way we
draw conclusions from results. results of each method.

2 Methodology
In this chapter, we describe the approach to answering the
research question. We present the experiment setup and the
method modifications.

2.1 Algorithm Selection and Design
For this research, we selected the UXM deconvolution tool
for reference-based deconvolution and cfSort for reference-
free deconvolution.

UXM
A well-established method developed by Loyfer et al. [8].
UXM3 is a computational reference-based deconvolution al-
gorithm for DNA methylation sequencing data. It constructs
a reference atlas where the percentages of unmethylated frag-
ments are computed for every marker in each cell type. A
non-negative least squares (NNLS) algorithm [8] is then used
to fit an input sample and estimate its relative contributions.
It covers the 39 most common human cell types.

cfSort
A newly released method in August 2023 by Li et al. [7].
cfSort 4 is a Deep Learning-based approach for sensitive and
accurate tissue deconvolution in cfDNA. It is built upon tissue
markers covering 29 major human tissue types.

2.2 Experimental Setup
Data Collection: We used a dataset of 521 genomic DNA
samples, including 464 non-WBC tissue samples from
the GTEx project [2] and 57 WBC samples from UCLA
hospitals taken from the cfSort dataset [7]. We choose 5
types of cells to evaluate the methods. Specifically, breast
tissue with 15 samples, colon tissue with 29 samples, lung
tissue with 16 samples, prostate tissue with 13 samples and
kidney tissue with 13 samples. These types were chosen due
to their occurrence in cancer studies and the availability of
samples.

3https://github.com/nloyfer/UXM deconv
4https://github.com/jasminezhoulab/cfSort

Select tissue type: breast, prostate, colon, lung, kidney

Randomly draw 3 WBC samples and 3 other tissue samples

Mix samples at specified proportions, from 0% to 20%

Process mixture with UXM and cfSort

Repeat for 10 iterations

Figure 4: Flow of the experiment

Experimental Design: To evaluate the deconvolution
methods, we created mixtures of WBCs with five other tissue
types: breast, prostate, colon, lung, and kidney tissue. We
created mixtures with the following concentration of a tissue
type in a white blood cell mixture: 0%, 0.5%, 1%, 2%,
3%, 5%, 10%, 15%, and 20%. For each ratio, we randomly
drew three WBC files and three files from another tissue
type, generating mixtures that reflect varying levels of the
secondary cell type. Each mixture was processed using both
the UXM and cfSort deconvolution methods. This process
was repeated 10 times to ensure the reliability of the results.
A general overview is seen in Flowchart 4

2.3 Evaluation Metrics
To assess the performance of the deconvolution methods, we
calculated two key metrics:

• Minimal Composition Detection: For each iteration,
we took the minimal composition of the secondary cell
type that could be reliably detected. By reliable detec-
tion, we assumed that the detected proportion of the type
is within 50% of the original proportion. That is, in the
case of 10% of the composition of another cell type, be-
tween 5% and 15% would be considered detected

• Pearson Correlation Coefficient 5: We computed the
average Pearson’s correlation coefficient for each cell
type across all iterations. This metric helps quantify
the accuracy of the deconvolution by comparing the pre-
dicted cell type proportions to the actual proportions.

5https://www.britannica.com/topic/
Pearsons-correlation-coefficient
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The Pearson correlation coefficient r between two vari-
ables X and Y is calculated as follows:

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2

where:

– Xi and Yi are the individual sample points.
– X and Y are the means of the sample points X and

Y , respectively.
– n is the number of sample points.

2.4 Implementation Details
The implementation involved several critical steps:

• Code availability: We developed code (available at the
TU Delft GitLab Repository6) to generate DNA frag-
ment mixtures. The pipeline includes scripts for data
preprocessing, mixture generation, and running the de-
convolution methods.

• File sampling: Each sample was in the form of a .pat
file, a .pat.csi file and a .bed file. A .pat file con-
tains fragments of DNA methylation patterns, including
the position of each methylated cytosine and its context
within the genome. A .pat.csi is an index of a corre-
sponding .pat file, allowing for efficient querying and
retrieval of methylation data based on genomic coordi-
nates. To create a mixture we drew a certain percentage
of DNA fragments from each of the 3 files of a particu-
lar cell type. The rest was filled with fragments from the
WBC files.

• Method Modification: Both UXM and cfSort were
modified to accept .pat files as input. This involved
adapting the input formats and ensuring compatibility
with our data.
UXM modification:
The UXM deconvolution tool was well-written and
documented and only minor adjustments were neces-
sary. The primary change involved mapping the cell
types in our dataset to those used by UXM, which has
a higher resolution with 39 cell types. For example,
UXM’s multiple white blood cell types were mapped
to our dataset’s general ”WBC” category. The exact
mapping is in the Appendix 7. This higher resolution
of UXM is primarily due to the more diverse dataset
used for training and extensive experiments conducted
by the UXM creators, rather than the method itself.
Additionally, we modified UXM to use the human
genome version 19, as cfSort’s markers were created
based on that version.

cfSort modification: Due to the poor maintenance
of the cfSort codebase, its reliance on Python 2 and
the lack of proper comments or documentation, we
encountered major difficulties in using it directly. As

6https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Reinders
Pronk Hazelaar/showard-Detection-of-cancer-using-blood.git

a result, we decided to train our model and reproduce
the exact steps of the cfSort method but with a simpler
model architecture. We used the methylation markers
provided with the original codebase and followed these
steps.

For each marker, we noted its chromosome posi-
tion, alpha value, and cluster-ID. By marker, we define
a location on the DNA sequence in which methylation
differs across different tissue types. Alpha-value is
defined as the fraction of methylated positions out of
all pairs on a DNA fragment. This fragment-level
measurement has been utilized in several studies to
identify cancer-specific methylation markers [9]. The
cluster-ID was a marker clustering strategy designed to
merge individual tissue markers into a marker cluster
that is robust against the impact of nucleosome posi-
tioning. Constrained K-means clustering was performed
on the individual markers based on their methylation
profiles across training samples, allowing four to seven
individual markers in a cluster. All this information was
already provided in the marker files of cfSort.

We simulated 400 mixtures as described in the cf-
Sort paper. A detailed description can be found in the
Appendix 8. For each marker region, we counted how
many reads mapped to it, and in how many of these
fragments the fraction of methylated cytosines was less
than the alpha-value of that marker. We then added
together these two numbers for all markers with the
same cluster-ID to get, for each cluster, the fraction of
fragments that were below the alpha value, which is the
cfSort feature.
We followed the preprocessing steps, including log-
transform and min-max scaling, as described in the
supplement of cfSort to arrive at the features. Finally,
we trained a linear regression model using the features
from the mixtures we generated. We added a softmax
layer at the output to ensure the predicted composition
results were always positive.

3 Results
3.1 Specification of types for UXM
To compare the performance of cfSort and UXM deconvolu-
tion tools, we evaluated the accuracy of UXM both with and
without specifying the exact cell types present in the sample.
When running UXM without specifying the cell types, it
was unable to reliably detect the presence of underlying cell
types. The fraction of actual cell types in the sample mixture
that was correctly detected was notably low, with average
values ranging from 0.608 to 0.712 across different tissue
types. That is, if a sample was a mixture of WBC and colon
DNA fragments only 71,2% of all fragments were detected
to be of these specific types. The results are visible in Tab. 1.

Due to these low detection rates, we decided to run the
UXM with specified cell types to test its accuracy in the
following tests. When specifying the cell types, UXM
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Table 1: Fraction of each cell type sample mixture correctly detected
by UXM without specifying cell types

Tissue Type Average Standard Deviation
Breast Tissue 0.614 0.074
Colon Tissue 0.712 0.068
Kidney Tissue 0.635 0.028
Prostate Tissue 0.685 0.026
Lung Tissue 0.608 0.062

Table 2: Fraction of each cell type sample mixture correctly detected
by UXM with specifying cell types

Tissue Type Average Standard Deviation
Breast Tissue 0.999 0.000271
Colon Tissue 0.999 0.000171
Kidney Tissue 0.999 0.000179
Prostate Tissue 0.999 0.000190
Lung Tissue 0.999 0.000241

showed a significantly higher accuracy with average values
close to 1.0 and very low standard deviations. Only a 0.1%
fraction was classified as different from the provided types.
This pattern was consistent across all tissue types, as shown
in Table 2.

As for the cfSort, it was trained in a way to predict all
the underlying types and the results of this are shown in
Table 3.

Table 3: Fraction of each cell type sample mixture correctly detected
by cfSort

Tissue Type Average Standard Deviation
Breast Tissue 0.921 0.0415
Colon Tissue 0.912 0.0844
Kidney Tissue 0.904 0.0477
Prostate Tissue 0.917 0.0517
Lung Tissue 0.958 0.0243

3.2 Pearson’s Correlation Coefficient Experiment
In this experiment, we evaluated the performance of the UXM
and cfSort deconvolution tools by calculating Pearson’s cor-
relation coefficients for different tissue types. The results in-
dicate a better performance of the UXM with an average cor-
relation of 0.920 against cfSort’s 0.826 correlation across all
samples and types. The data also shows that the standard de-
viation of Pearson’s coefficients is generally higher for cfSort
compared to UXM. For example, in the case of colon tissue,
UXM has a standard deviation of 0.0193, whereas cfSort’s
standard deviation is 0.0687. This suggests that the cfSort
method produces more variable results than UXM. The box
plot in Fig. 5 visually demonstrates the difference in variabil-
ity and all the results are stored in table 4. One thing worth
indicating is the two outliers in the colon tissue visible both

Figure 5: Pearson’s correlation results of both methods

in the UXM and cfSort correlation results.

Table 4: Mean and standard deviation of Pearson’s correlation coef-
ficients for UXM and cfSort across different tissue types

Tissue Type UXM cfSort
Mean Std Mean Std

Breast Tissue 0.925 0.0046 0.827 0.0385
Colon Tissue 0.911 0.0193 0.817 0.0687
Kidney Tissue 0.915 0.0066 0.823 0.0369
Prostate Tissue 0.918 0.0096 0.830 0.0412
Lung Tissue 0.930 0.0047 0.835 0.0278

3.3 Sensitivity Detection Experiment

In our earliest detection test, we compared the performance
of the UXM and cfSort deconvolution tools across various
tissue types. The results are summarized in Table 5. As men-
tioned earlier we defined detection when the predicted level
is within 50% range of the actual level. Notably, UXM con-
sistently detected the other types at the lowest compositions
all types apart from colon and prostate. The mean value of
those types was 10 times larger than others. CfSort’s results
on the other hand were not that spread out, ranging from the
earliest detection at 0.037 of colon tissue to 0.09 of breast
tissue. Overall, UXM had an average mean value of 0.0207,
while cfSort had a higher average mean value of 0.0595. This
suggests that cfSort generally detected the presence of tissue
types at higher mean values compared to UXM.

4 Discussion
In this section, we analyse our experimental results, exam-
ining the sensitivity detection experiment and the Pearson’s
correlation coefficient experiment. We also explore future re-
search directions and underline the limitations of our study.
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Table 5: Earliest detection mean values and number of samples for
UXM and cfSort across different tissue types

Tissue Type UXM Mean cfSort Mean
Breast Tissue 0.0055 0.09
Colon Tissue 0.04 0.037
Kidney Tissue 0.0050 0.07
Prostate Tissue 0.0479 0.0375
Lung Tissue 0.0050 0.063

Overall 0.0207 0.0595

Figure 6: Sensitivity test of the UXM for both methods

4.1 Pearson’s Correlation Coefficient Experiment
Analysis

The Pearson’s correlation coefficient experiment revealed
a trend in the performance of the UXM and cfSort decon-
volution tools, with UXM outperforming cfSort in terms
of average correlation and lower standard deviation across
different tissue types. However, an interesting aspect of the
results is the presence of outliers in the tissue correlation re-
sults for both UXM and cfSort methods. This is particularly
visible in the colon tissue. The presence of outliers in both
methods suggests that the variability might not be due to the
deconvolution methods themselves but could be caused by
other factors related to the samples.

To further investigate this anomaly, a deeper analysis of
the coverage for the files used in each sample is recom-
mended. Coverage, defined as the number of reads for
each region of each marker in the .pat file, could potentially
explain the lower correlation coefficients observed in these
outliers. It is possible that these samples had significantly
lower coverage, resulting in fewer markers being sampled for
the colon tissue type, which could impact the results of the
experiment.

To validate this hypothesis, an experiment should be
conducted to analyze the correlation between the coverage of

samples and their corresponding Pearson correlation coeffi-
cients. To ensure the reliability of the results the number of
samples and iterations should be increased. Such an analysis
could provide valuable insights into these outliers.

4.2 Sensitivity Detection Experiment Analysis
In our sensitivity detection experiment comparing UXM and
cfSort across various tissue types (Table 5), we observed
that cfSort consistently achieved higher mean detection val-
ues compared to UXM. It exhibited significantly larger mean
values for colon and prostate tissues, approximately 10 times
higher than those for other tissue types. This suggests that the
differences in detection performance between the two meth-
ods may be influenced by the specific composition of mark-
ers used for these tissue types. Further investigation into the
markers utilised by each method could provide insights into
optimising their respective detection accuracies. A simple ex-
periment to count the number of discovered markers per each
type could help understand these results.

4.3 Limitations
One limitation to mention is that we selected lung, kidney,
colon, breast, and prostate tissues for our study. It is im-
portant to note that breast and prostate tissues are associated
with gender-specific cancers, as breast cancer affects mostly
women and prostate cancer exclusively affects men. This
gender specificity should be considered when interpreting the
results, as it may influence the tissue type proportions and
their implications for health and disease detection. Addition-
ally, the current study did not cover the entire dataset of 29
cell types, which includes a broader range of tissues and po-
tential markers.

4.4 Future Research Directions
Future research could explore and refine the designed archi-
tecture of cfSort. As mentioned in the analysis of the exper-
iments the results should be further investigated. To ensure
a more comprehensive evaluation of the deconvolution meth-
ods, future research should test UXM and cfSort across all
29 cell types. This expanded analysis would provide a more
detailed understanding of the methods’ performance and reli-
ability in detecting various tissues.

4.5 General Remarks About Both Methods
A good codebase is crucial for the practical application of
research ideas. While the concepts presented in the cfSort pa-
per may be innovative, their value is significantly diminished
if the code is not reproducible or well-maintained. Poorly
documented and outdated code can lead to substantial time
wasted trying to understand and implement the proposed
methods. This issue was evident in our experience with
cfSort which was intended to be a Deep Neural Network
(DNN) for cell deconvolution but due to time constraints
had to be changed to a simpler model. Despite its potential
for better prediction accuracy, cfSort is essentially a black
box model, offering no transparency in its decision-making
process. This lack of explainability requires extensive
reasoning and testing before such a model can be trusted in
real-world scenarios, particularly in the field of healthcare
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where the decisions can have great consequences.

In contrast, the reference-based UXM approach, which
utilizes methylation patterns derived from tissues, offers a
more straightforward and mathematically anchored solution.
Although the need to provide the types for UXM can be a
limitation, its transparency and explainability make it a more
reliable choice, especially when making decisions related
to human health. The ability to understand and justify how
conclusions are reached in medical applications is often more
important than the high accuracy a model can reach.

5 Responsible Research
5.1 Data Collection
The data diversity in our study is likely limited due to the
origins of the samples. The samples are primarily sourced
from various institutions in the USA, including the National
Disease Research Interchange, Roswell Park Cancer Institute,
Science Care, Inc., and the ELSI study at Virginia Common-
wealth University. The GTEx project [2] is led by the Broad
Institute of MIT and Harvard. This geographical concentra-
tion suggests that the data may not be very diversified, show-
ing a predominantly US-based population. This limitation is
difficult to address, as expanding the sample base internation-
ally would require extensive cooperation and resources. De-
spite this, the data still provides valuable insights, but it’s im-
portant to recognize the potential bias introduced by its lim-
ited diversity.

5.2 Use of Generative AI and Large Language
Models

In our work, we used large language models primarily to help
understand the existing code, especially the cfSort algorithm.
The cfSort code lacked useful comments and documentation,
making it hard to figure out what the functions did and how
the algorithm functioned. By using large language models,
we were able to explain the functions and get a clear picture
of the algorithm’s structure. We made sure not to feed any
sensitive data into the model during this process.

5.3 Reproducibility
To ensure the reproducibility of our experiments:

• Software and Tools: All software and tools used are
publicly available, and custom scripts are provided in
the GitLab Repository7.

• Data Availability: Datasets used in this study are pub-
licly available [2].

• Documentation: Detailed documentation of proce-
dures, including data processing pipelines and parameter
settings, is included in the repository. The code is well-
commented and the architecture is designed to be easily
understandable.

7https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Reinders
Pronk Hazelaar/showard-Detection-of-cancer-using-blood.git

6 Conclusion
This study set out to compare two methods of cell decon-
volution, namely UXM and cfSort, in the context of detect-
ing cancer using blood samples. Both UXM and cfSort have
their strengths and weaknesses, with UXM performing bet-
ter or the same as cfSort across all scenarios. Specifically,
UXM consistently showed higher accuracy and lower vari-
ability in identifying cell types within mixed tissue samples.
CfSort, while demonstrating potential in some cases, was hin-
dered by its simple architecture. Future research should fo-
cus on addressing the main limitations identified in this study.
These are, providing more extensive testing using more cell
types and evaluating cfSort using its designed architecture.
Our findings underscore the critical importance of both trans-
parency and explainability in choosing deconvolution meth-
ods, especially in medical applications where accuracy and
the ability to understand decision-making processes are cru-
cial.
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A Appendix
A.1 Dataset types to UXM types mapping

1 dataset_to_uxm_map = {
2 ’WBC’:
3 [’Blood-B’, ’Blood-Granul’, ’Blood-Mono+

Macro’, ’Blood-NK’, ’Blood-T’],
4 ’breast tissue’:
5 [’Breast-Basal-Ep’, ’Breast-Luminal-Ep’],
6 ’colon tissue’:
7 [’Colon-Ep’, ’Colon-Fibro’],
8 ’kidney tissue’:
9 [’Kidney-Ep’],

10 ’prostate tissue’:
11 [’Prostate-Ep’],
12 ’lung tissue’:
13 [’Lung-Ep-Alveo’, ’Lung-Ep-Bron’]
14 }

Figure 7: Cell types mapping. Each key of the dictionary is a type
in the dataset mapped to a list of types that the UXM was trained to
distinguish.

A.2 Mixture generation for the training of linear
regression

Figure 8: Mixture generation for training

In four steps, we generated a simulated sample. In Step
1, we first selected the tissue types that contributed positive
fractions to the simulated sample. WBC always contributed
positively to the final mixture. In Step 2, we chose an origi-
nal tissue sample at random for each selected tissue type and
WBC. In Step 3, we created a random tissue composition for
the simulated sample. We set the tissue fraction to zero if a
tissue type was not chosen in Step 1, and we required WBC
to always have the highest tissue fraction. In Step 4, we sam-
pled sequencing reads at random from the selected samples
(from Step 2) based on tissue composition (generated in Step
3).
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