
Urban Local Climate Zone classification through deep 
learning using spatio-temporal thermal imagery 

P5 presentation
Michaja van Capel

1st supervisor: Azarakhsh Rafiee
2nd supervisor: Roderik Lindenbergh
Co-reader: Vitali Diaz Mercado
Delegate: Wido Quist



Contents

• Introduction
• Related work (LCZ’s, LST, deep learning)
• Goal
• Research questions
• Methodology
• Results
• Conclusions
• Recommendations

2



Introduction

• Increased urbanization
• Demand for understanding and 

characterizing urban climate
• Local Climate Zone classifications

• Spatio-temporal thermal imagery
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Related work: Local Climate Zones

• Steward and Oke (2012)

• Different geospatial data sources for LCZ classifications:
 - Manual sampling,
 - Multi-spectral satellite imagery,
 - Aerial imagery,
 - Ground-level imagery,
 - LiDAR data,
 - Other (derived) geospatial data.
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Related work: Land Surface Temperature

• Thermal remote sensing
• Long-wavelength infrared radiation (8-14 µm)
• ECOSTRESS (daily coverage, 70x70m pixels)
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Related work: LCZ-LST

• Correlations
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Related work: Deep learning

• Matching the level of the human brain in solving complex problems
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Goal

• Explore a new source for LCZ classification: spatio-temporal 
thermal imagery

• Gain insight in enhancing the process of LCZ classification
• Optimize the created classification algorithm
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Research questions

To what extent is a CNN with U-net architecture using spatio-temporal thermal 
imagery suitable for the classification of urban Local Climate Zones?
• How can a representable training data set be collected?
• When it comes to the architecture of U-net, what values for the 

hyperparameters of the deep learning network lead to the best classification 
result?

• What is the impact of temporal frequency (day-night, seasonal) on the 
classification performance?
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Methodology: Overview
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Methodology: Data pre-processing
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• Study area and time span selection
• Data collection:
 - Prepare thermal imagery
 - Data split 70/15/15



Methodology: Create ground truth
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• LCZ-LST analysis

• Correlations too complex for manual training data labelling

• Unsupervised clustering: ISODATA



Methodology: Training data labelling
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• Unsupervised 
clustering: ISODATA

• Clusters based on 
thermal behaviour



Methodology
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Methodology: Model

16

• Convolutional Neural Network 
(CNN) with U-net architecture

• Ronneberger et al. (2015)
• Effective for precise semantic 

segmentation tasks for images



Methodology: Evaluation and analysis
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• Evaluation metrics:
Overall Accuracy, Precision, 
Recall, F1-scores per class, 
Macro F1-score

• Compare Masked image 
patches to predicted masks



Results: Hyperparameter tuning

Learning rate

18



Results: Hyperparameter tuning

Patch size
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Results: Hyperparameter tuning

• Learning rate: 0.001
• Patch size:  64
• Loss function: SparseCategoricalCrossentropy()
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Results: Full dataset

• Test OA = 0.7484
• Test macro F1 score = 0.5903

• Edge effects
• Class imbalance
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Results: Seasonal experiment

• Data was split in Spring/Summer and 
Autumn/Winter data set

• New data sets used for training and testing

• Significant performance differences (OA of 0.7585 
and 0.5856)

• Class 1 “Dense forest/Meadows” and 4 
“Residential area with a lot of green/meadows” 
are more difficult to distinguish when training and 
testing with Autumn/Winter images

• LCZ’s are differentiated better in Summer than in 
other seasons regarding LST (Du et al. 2020)
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Results: Daytime vs. nighttime

• Data was split in daytime and nighttime data set

• New data sets used for training and testing

• Significant performance differences (OA of 0.8001 
and 0.4764)

• The classes that show more ”extreme” behaviour 
(warmer or cooler than other classes), are 
misclassified as classes with less fluctuations 
and more average values.

• At night the LST values are more similar to each 
other
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Results: Extreme analysis

• High LST values but ensuring variability can yield superior 
performance compared to the full dataset
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Conclusion

To what extent is a CNN with U-net architecture using spatio-temporal thermal 
imagery suitable for the classification of urban Local Climate Zones?
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Conclusion

• How can a representable training data set be collected?
• Unsupervised clustering
• Clusters based on thermal behaviour
• Representable for this application
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Conclusion

• When it comes to the architecture of U-net, what values for the 
hyperparameters of the deep learning network lead to the best 
classification result?
• Hyperparameters adopted from Bathia (2021)
• Hyperparameter values experimentally selected (learning rate, loss function, patch 

size)
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Conclusion

• What is the impact of temporal frequency (day-night, seasonal) on the 
classification performance?
• Summer/Spring
• Daytime
• Variability and thermal images with large contrast
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Conclusion

To what extent is a CNN with U-net architecture using spatio-temporal thermal 
imagery suitable for the classification of urban Local Climate Zones?

Suitable for this application (hyperparameters, training data)
Good starting point
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Recommendations

• Take weather conditions into account
• Integration of other thermal imagery sources
• Integration with other geospatial data
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