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Introduction

* Increased urbanization
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characterizing urban climate ——
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Built types

Related work: Local Climate Zones

Land cover types

Definition

1. Compact high-rise
2. Compact midrise

3. Compact low-rise
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4. Open high-rise

gt

5. Open midrise

6. Open low-rise

e
)

YL

8. Large low-rise
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9. Sparsely built
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10. Heavy industry
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Dense mix of tall buildings to tens of
stories. Few or no trees. Land cover
mostly paved. Concrete, steel, stone,
and glass construction materials.

Dense mix of midrise buildings (3-9
stories). Few or no trees. Land cover
mostly paved. Stone, brick, tile, and
concrete construction materials.

Dense mix of low-rise buildings (1-3
stories). Few or no trees. Land cover
mostly paved. Stone, brick, tile, and
concrete construction materials.

Open arrangement of tall buildings to
tens of stories. Abundance of pervious
land cover (low plants, scattered
trees). Concrete, steel, stone, and
glass construction materials

Open arrangement of midrise buildings
(3-9 stories). Abundance of pervious
land cover (low plants, scattered
trees). Concrete, steel, stone, and
glass construction materials.

Open arrangement of low-rise buildings
(1-3 stories). Abundance of pervious
land cover (low plants, scattered trees).
Wood, brick, stone, tile, and concrete
construction materials

Dense mix of single-story buildings.
Few or no trees. Land cover mostly
hard-packed. Lightweight construction
materials (e.g.. wood, thatch,
corrugated metal)

Open arrangement of large low-rise
buildings (1-3 stories). Few or no
trees. Land cover mostly paved
Steel, concrete, metal, and stone
construction materials.

Sparse arrangement of small or
medium-sized buildings in a natural
setting. Abundance of pervious land
cover (low plants, scattered trees)

Low-rise and midrise industrial struc-
tures (towers, tanks, stacks). Few or
no trees. Land cover mostly paved

or hard-packed. Metal, steel, and
concrete construction materials.

A. Dense trees

C. Bush, scrub
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D. Low plants
E. Bare rock or paved

F. Bare soil or sand

G. Water

Heavily wooded landscape of
deciduous and/or evergreen trees.
Land cover mostly pervious (low
plants). Zone function is natural
forest, tree cultivation, or urban park

Lightly wooded landscape of
deciduous and/or evergreen trees.
Land cover mostly pervious (low
plants). Zone function is natural
forest, tree cultivation, or urban park

Open arrangement of bushes, shrubs,
and short, woody trees. Land cover
mostly pervious (bare soil or sand)
Zone function is natural scrubland or
agriculture.

Featureless landscape of grass or
herbaceous plants/crops. Few or
no trees. Zone function is natural
grassland, agriculture, or urban park

Featureless landscape of rock or
paved cover. Few or no trees or
plants. Zone function is natural desert
(rock) or urban transportation.

Featureless landscape of soil or sand
cover. Few or no trees or plants.
Zone function is natural desert or
agriculture.

Large, open water bodies such as seas
and lakes, or small bodies such as
rivers, reservoirs, and lagoons

VARIABLE LAND COVER PROPERTIES

Variable or ephemeral land cover properties that change

significantly with synoptic weather patterns, agricultural practices,

and/or seasonal cycles.

b. bare trees

s. snow cover

d. dry ground

w. wet ground

Leafless deciduous trees (e.g. winter)
Increased sky view factor. Reduced
albedo.

Snow cover >10 cm in depth. Low
admittance. High albedo.

Parched soil. Low admittance. Large
Bowen ratio. Increased albedo.

Waterlogged soil. High admittance.
Small Bowen ratio. Reduced albedo

 Steward and Oke (2012

* Different geospatial data sources for LCZ classifications

Manual sampling,
Multi-spectral satellite imagery,
Aerial imagery,

Ground-level imagery,

LiDAR data,

Other (derived) geospatial data.




Related work: Land Surface Temperature

* Thermal remote sensing
* Long-wavelength infrared radiation (8-14 pm)

* ECOSTRESS (daily coverage, 70x70m pixels)

Temperature
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Related work: LCZ-LST
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Related work: Deep learning

* Matching the level of the human brain in solving complex problems

: (b)
Data Science
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Artificial Intelligence R
Machine Learning
(d)
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(c) layer layer layer layer
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Urban Local Climate Zone classification through deep
learning using spatio-temporal thermalimagery
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Goal

* Explore a new source for LCZ classification: spatio-temporal
thermal imagery

* Gaininsight in enhancing the process of LCZ classification

* Optimize the created classification algorithm



Research questions

To what extent is a CNN with U-net architecture using spatio-temporal thermal
Imagery suitable for the classification of urban Local Climate Zones?

* How can a representable training data set be collected?

* When it comes to the architecture of U-net, what values for the
hyperparameters of the deep learning network lead to the best classification

result?

* What is the impact of temporal frequency (day-night, seasonal) on the
classification performance?
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Methodology: Overview

Data pre-processing

Prepare thermal imagery Stack images

Define study area
and timespan

Clouds/missing data

Generate patches

Create ground truth —» Data split

Unsupervised clustering
+ Manual adjustments

LCZ-LST analysis

Model development Model validation and analysis

Accuracy Comparison
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Methodology: Data pre-processing

* Study area and time span selection
* Data collection:

- Prepare thermal imagery
- Data split 70/15/15

Prepare thermal imagery Stack images
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Methodology: Create ground truth

 LCZ-LST analysis
* Correlations too complex for manual training data labelling

* Unsupervised clustering: ISODATA
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Figure 3.3.: Drawn polygons on LCZ map by Demuzere et al. [2019]



Methodology: Training data labelling

ISODATA 12 classes 50 iterations

° UnsuperVISed 0 - Unclassified
clustering: ISODATA

e Clusters based on
thermal behaviour

Table 4.2.: Class descriptions based on aerial imagery
Class Number Class Description
Unclassified 10-10
Dense forest/meadows, often next to water
Less dense forest/meadows
Residential area
Residential area with a lot of green/meadows
Shallow water
City centre/industrial area
Deepest water/sea water
Deep water
A few greenhouses, does not appear often
A few greenhouses, does not appear often
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Methodology

Data pre-processing

Prepare thermal imagery

Define study area
and timespan

Clouds/missing data

Create ground truth

Unsupervised clustering

LeCIST aalis + Manual adjustments

Stack images

Generate patches

——> Data split

#max pool 2x2

-

Model development Model validation and analysis
Accuracy Comparison
; ‘"a“‘" output —— train accuracy Actual Masked Image Predicted Masked Image
mage e [**[*] Segmeniation 09| — valsccuracy w
e B s e Hyperparameter
’ tuning ae
05
Model
evaluation 03
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Methodology: Model

e Convolutional Neural Network |
(CNN) with U-net architecture image jolo]

* Ronneberger et al. (2015)
* Effective for precise semantic

segmentation tasks for images .H,

output
segmentation
. map

=»conv 3x3, ReLU
copy and crop

§ max pool 2x2

4 up-conv 2x2
= cOnv 1x1
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Methodology: Evaluation and analysis

 Evaluation metrics:
Overall Accuracy, Precision,
Recall, F1-scores per class,
Macro F1-score

* Compare Masked image
patches to predicted masks
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Results: Hyperparameter tuning

Learning rate
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(c) Learning rate = 0.001

(d) Learning rate = 0.0001
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Results: Hyperparameter tuning

Patch size
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(c) Patch size = 256

19



Results: Hyperparameter tuning

* Learning rate: 0.001
* Patch size: 64

* Loss function: SparseCategoricalCrossentropy()
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Results: Full dataset

Loss Comparison Accuracy Comparison F1 score per class
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Results: Seasonal experiment

* Data was splitin Spring/Summer and
Autumn/Winter data set Class Test F1 score per class

.. . Spring /Summer Autumn/Winter
 New data sets used for training and testing prns

1 0.6230 0.3374
« Significant performance differences (OA of 0.7585 § gggg‘; 82;‘912
and 0.5856) 4 0.7581 0.4392

5 0.6948 0.6781

 Class 1 “Dense forest/Meadows” and 4 6 0.8052 0.7308
“Residential area with a lot of green/meadows” ; g-g{;ﬂﬂ 828?0
eppe . . . . . 7714 7011

are more.dlfflcult to dls.tlngu.lsh when training and 9 0.0000 0.0000
testing with Autumn/Winter images 10 0.0000 0.0000

 LCZ’s are differentiated better in Summer than in
other seasons regarding LST (Du et al. 2020)

22



Results: Daytime vs. nighttime

— Class Test F1 score per class

Daytime  Nighttime

0.7594 0.0513
0.8505 0.5874
0.8296 0.6596
0.7842 0.1409
0.7143 0.5035
0.7273 0.0000
0.0510 0.0000
0.7690 0.0000
0.0000 0.0000
0.0000 0.0000

* Data was split in daytime and nighttime data set
* New data sets used for training and testing

e Significant performance differences (OA of 0.8001
and 0.4764)

* The classes that show more ”extreme” behaviour
(warmer or cooler than other classes), are
misclassified as classes with less fluctuations
and more average values.

S0 NOU R W

Actual Masked Image Predicted Masked Image

* At night the LST values are more similar to each
other
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Results: Extreme analysis

* High LST values but ensuring variability can yield superior
performance compared to the full dataset

Thermal signatures

Selection of images number of images Test accuracy

Maximum 1 0.260
Maximum per peak 4 0.285
All peaks 14 0.834
Table 5.7.: Test accuracy values for different image selections =g ; i : 5
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Conclusion

To what extent is a CNN with U-net architecture using spatio-temporal thermal
Imagery suitable for the classification of urban Local Climate Zones?
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Conclusion

* How can a representable training data set be collected?
* Unsupervised clustering
* Clusters based on thermal behaviour
* Representable for this application
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Conclusion

* When it comes to the architecture of U-net, what values for the
hyperparameters of the deep learning network lead to the best
classification result?

* Hyperparameters adopted from Bathia (2021)

* Hyperparameter values experimentally selected (learning rate, loss function, patch
size)
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Conclusion

* What is the impact of temporal frequency (day-night, seasonal) on the
classification performance?
* Summer/Spring
 Daytime
* Variability and thermal images with large contrast
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Conclusion

To what extent is a CNN with U-net architecture using spatio-temporal thermal
Imagery suitable for the classification of urban Local Climate Zones?

Suitable for this application (hyperparameters, training data)

Good starting point
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Recommendations

 Take weather conditions into account
* Integration of other thermal imagery sources

* Integration with other geospatial data
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