Urban Local Climate Zone classification through deep learning using spatio-temporal thermal imagery

P5 presentation Michaja van Capel

1st supervisor: 2nd supervisor: Co-reader: Delegate:

Azarakhsh Rafiee Roderik Lindenbergh Vitali Diaz Mercado Wido Quist

Contents

- Introduction
- Related work (LCZ's, LST, deep learning)
- Goal
- Research questions
- Methodology
- Results
- Conclusions
- Recommendations

Introduction

- Increased urbanization
- Demand for understanding and characterizing urban climate
- Local Climate Zone classifications
- Spatio-temporal thermal imagery

Related work: Local Climate Zones

- Steward and Oke (2012)
- Different geospatial data sources for LCZ classifications:
 - Manual sampling,
 - Multi-spectral satellite imagery,
 - Aerial imagery,
 - Ground-level imagery,
 - LiDAR data,
 - Other (derived) geospatial data.

Related work: Land Surface Temperature

- Thermal remote sensing
- Long-wavelength infrared radiation (8-14 µm)
- ECOSTRESS (daily coverage, 70x70m pixels)

Related work: LCZ-LST

• Correlations

Related work: Deep learning

• Matching the level of the human brain in solving complex problems

Urban Local Climate Zone classification through deep learning using spatio-temporal thermal imagery

Goal

- Explore a new source for LCZ classification: spatio-temporal thermal imagery
- Gain insight in enhancing the process of LCZ classification
- Optimize the created classification algorithm

Research questions

To what extent is a CNN with U-net architecture using spatio-temporal thermal imagery suitable for the classification of urban Local Climate Zones?

- How can a representable training data set be collected?
- When it comes to the architecture of U-net, what values for the hyperparameters of the deep learning network lead to the best classification result?
- What is the impact of temporal frequency (day-night, seasonal) on the classification performance?

Methodology: Overview

Methodology: Data pre-processing

- Study area and time span selection
- Data collection:
 - Prepare thermal imagery
 - Data split 70/15/15

Methodology: Create ground truth

- LCZ-LST analysis
- Correlations too complex for manual training data labelling
- Unsupervised clustering: ISODATA

Figure 3.3.: Drawn polygons on LCZ map by Demuzere et al. [2019]

Methodology: Training data labelling

- Unsupervised clustering: ISODATA
- Clusters based on thermal behaviour

Table 4.2.: Class descriptions based on aerial imagery

Class Number	Class Description
0	Unclassified
1	Dense forest/meadows, often next to water
2	Less dense forest/meadows
3	Residential area
4	Residential area with a lot of green/meadows
5	Shallow water
6	City centre/industrial area
7	Deepest water/sea water
8	Deep water
9	A few greenhouses, does not appear often
10	A few greenhouses, does not appear often

Methodology

15

Methodology: Model

- Convolutional Neural Network (CNN) with U-net architecture
- Ronneberger et al. (2015)
- Effective for precise semantic segmentation tasks for images

Methodology: Evaluation and analysis

- Evaluation metrics: **Overall Accuracy, Precision**, Recall, F1-scores per class, Macro F1-score
- Compare Masked image patches to predicted masks

40

50

60

50

F1 score per class

40

Results: Hyperparameter tuning

Learning rate

Results: Hyperparameter tuning

Patch size

Results: Hyperparameter tuning

- Learning rate: 0.001
- Patch size: 64
- Loss function: SparseCategoricalCrossentropy()

Results: Full dataset

- Test OA = 0.7484
- Test macro F1 score = 0.5903

≻ 30 .

- Edge effects
- Class imbalance

Results: Seasonal experiment

- Data was split in Spring/Summer and Autumn/Winter data set
- New data sets used for training and testing
- Significant performance differences (OA of 0.7585 and 0.5856)
- Class 1 "Dense forest/Meadows" and 4 "Residential area with a lot of green/meadows" are more difficult to distinguish when training and testing with Autumn/Winter images
- LCZ's are differentiated better in Summer than in other seasons regarding LST (Du et al. 2020)

Class	Test F1 score per class		
	Spring/Summer	Autumn/Winter	
1	0.6230	0.3374	
2	0.8253	0.6245	
3	0.8307	0.6596	
4	0.7581	0.4392	
5	0.6948	0.6781	
6	0.8052	0.7308	
7	0.0000	0.0000	
8	0.7714	0.7011	
9	0.0000	0.0000	
10	0.0000	0.0000	

Results: Daytime vs. nighttime

- Data was split in daytime and nighttime data set
- New data sets used for training and testing
- Significant performance differences (OA of 0.8001 and 0.4764)
- The classes that show more "extreme" behaviour (warmer or cooler than other classes), are misclassified as classes with less fluctuations and more average values.
- At night the LST values are more similar to each other

Class	Test F1 score per class		
	Daytime	Nighttime	
1	0.7594	0.0513	
2	0.8505	0.5874	
3	0.8296	0.6596	
4	0.7842	0.1409	
5	0.7143	0.5035	
6	0.7273	0.0000	
7	0.0510	0.0000	
8	0.7690	0.0000	
9	0.0000	0.0000	
10	0.0000	0.0000	

Results: Extreme analysis

• High LST values but ensuring variability can yield superior performance compared to the full dataset

Selection of images	number of images	Test accuracy
Maximum	1	0.260
Maximum per peak	4	0.285
All peaks	14	0.834

Table 5.7.: Test accuracy values for different image selections

To what extent is a CNN with U-net architecture using spatio-temporal thermal imagery suitable for the classification of urban Local Climate Zones?

- How can a representable training data set be collected?
 - Unsupervised clustering
 - Clusters based on thermal behaviour
 - Representable for this application

- When it comes to the architecture of U-net, what values for the hyperparameters of the deep learning network lead to the best classification result?
 - Hyperparameters adopted from Bathia (2021)
 - Hyperparameter values experimentally selected (learning rate, loss function, patch size)

- What is the impact of temporal frequency (day-night, seasonal) on the classification performance?
 - Summer/Spring
 - Daytime
 - Variability and thermal images with large contrast

To what extent is a CNN with U-net architecture using spatio-temporal thermal imagery suitable for the classification of urban Local Climate Zones?

Suitable for this application (hyperparameters, training data) Good starting point

Recommendations

- Take weather conditions into account
- Integration of other thermal imagery sources
- Integration with other geospatial data

Urban Local Climate Zone classification through deep learning using spatio-temporal thermal imagery

P5 presentation Michaja van Capel

TUDelft

1st supervisor: 2nd supervisor: Co-reader: Delegate:

Azarakhsh Rafiee Roderik Lindenbergh Vitali Diaz Mercado Wido Quist