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Continuous-Time State-Space Unsteady Aerodynamic Modeling
for Efficient Loads Analysis

Noud P. M. Werter,∗ Roeland De Breuker,† and Mostafa M. Abdalla†

Delft University of Technology, 2629 HS Delft, The Netherlands

DOI: 10.2514/1.J056068

Thepresent paperproposes a continuous-time state-space formulation of the unsteady vortex latticemethod,which

is derived through a discretization of the governing advection equation for transport of vorticity in the wake. A

continuous-time system is obtained by only discretizing the advection equation in space, while retaining the derivative

with respect to time. The discretization in space is based on the discontinuous Galerkin method. The present method

can be applied to any arbitrary nonuniform wake discretization and can be extended to higher-order panel

methods or a nonflat wake shape. The method is extended to compressible flows by applying the Prandtl–Glauert

transformation. The time-dependent terms in the small disturbance potential equation are neglected. Thus,

incompressible flow solution procedures are applied with minimum modifications to unsteady compressible

problems.The benefits are demonstrated by applying themodel to the gust analysis of a general aircraftwing, varying

the time step, and introducing a nonuniform wake discretization, resulting in a reduced model size for a given

accuracy. The resulting continuous-time state-space model can be used for efficient loads analysis of general aircraft

wings including the effects of compressibility and allows for easy integrationwith structural or flight dynamicmodels

for efficient aero(servo)elastic analyses.

Nomenclature

A = area, m2

Ass = state matrix
a = speed of sound, m∕s
Bss = input matrix
b = half-chord, m
bi;j = width of element i, j, m
Css = output matrix
c = chord, m
Dss = feedthrough matrix
eΓ = unit vector of a vortex segment
F = force vector, N
H = gust length, m
h0 = plunge amplitude, m
I = identity matrix
K = stiffness matrix
k = reduced frequency
M = Mach number
M = mass matrix
M = moment vector, Nm
N = number of elements
N = flux matrix
n = surface unit normal vector
p = pressure, N∕m2

S = surface
t = time, s
u = state-space input vector
V = velocity vector, m/s
w = test function
x = position vector, m
x = state-space state vector

x, y, z = coordinates, m
y = state-space output vector
α = angle of attack, deg

β =
���������������
1 −M2

p
Γ = vortex strength, m3∕s
∂Ω = finite element boundary
ρ = air density, kg∕m3

ϕ = velocity potential, m2∕s
ψ = shape function
Ω = finite element domain
ω = frequency, rad/s
1 = vector of ones

Subscripts

B = boundary
b = body
G = gust
Gref = gust amplitude
NB = neighboring elements
NS = number of side of an element
TE = trailing edge
w = wake
w0 = first row of wake elements trailing the wing
x = with respect to xyz coordinate system
�x = with respect to �x �y �z coordinate system
∞ = freestream conditions

I. Introduction

O NEof the driving parameters in the design of aircraft has always
been reducing weight to reduce the operating cost and make

aircraft more efficient. As a consequence, wings have become more
flexible, making aeroelasticity more important in wing design. To
determine the dynamic response of an aircraft to, for example, a gust,
an unsteady aerodynamic model is required to determine the
dynamic loads.
There are severalways topredict the unsteady aerodynamic loads on

an aircraft. Murua et al. [1] give an overview of unsteady aerodynamic
modeling for loads analysis. The three most commonly used methods
are two-dimensional (2-D) unsteady airfoil theory, the doublet lattice
method (DLM), and the unsteady vortex lattice method (UVLM). A
brief overview of each of these methods will be given in the following
paragraphs. More recently, computational fluid dynamics-based
methods have gained popularity for the analysis of, for example,
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limit-cycle oscillations [2–5], flutter [6,7], gust response [8–11], and
transonic shock buffet [12,13]. However, currently these methods are
still computationally too costly to be applied for dynamic loads
analysis during the preliminary design of aircraft.
Two-dimensional unsteady airfoil theory is generally referred to as

strip theory. It uses closed-form solutions for several specific cases
(i.e., impulsive flows, step gusts, harmonic oscillations, and sinusoidal
gusts) to set up a state-space system to determine the unsteady
aerodynamic loads. Strip theory has extensively been used for high-
altitude long-endurance (HALE) aircraft modeling [14,15]. Two
different methods to obtain a state-space system from the closed-form
solutions are commonly used: this is known as Peters’s finite-state
method [16] and the indicialmethod of Leishman andNguyen [17]. The
main advantages of strip theory are its simplicity and that it allows for
easy corrections (e.g., for stall). However, themain disadvantage of strip
theory is that it is based on 2-D unsteady airfoil theory with three-
dimensional (3-D) corrections, and thus, it cannot give any accurate
information about the spanwise loading distribution.
Thedoublet latticemethod, introducedbyAlbanoandRodden [18], is

probably the most widely used method for unsteady load analysis of
aircraft. One of the advantages of DLM is that compressibility is
captured in the analysis. DLM assumes harmonic displacements on the
natural vibration modes of the wing to determine the aerodynamic
influence coefficients (AICs) for several reduced frequencies and flight
conditions. The solution is converted from the frequency domain to the
time domain by means of a rational function approximation (RFA).
There are two well-known techniques for the RFA: Roger’s approach
usingPadéapproximants [19] andKarpel’sminimum-statemethod [20].
The setup in the frequencydomainmakes themethod especially suitable
for flutter analysis. However, when time domain simulations are
required, an incorrect selection of lag terms in the RFA can have a
significant effect on the accuracy of the results. Especially when a
discrete gust is modeled, the time lags resulting from the convection of
the gust over the wing, which are expressed as phase shifts in the
frequency domain, make the approximation of the gust response in
the time domain by means of an RFA problematic. To overcome this
problem, two methods were introduced: 1) dividing the aerodynamic
model into several aerodynamic zones, each having their own gust input
[21] and2) the physicalRFA [22],where instead of applying theRFAon
the AICs in generalized coordinates, the RFA is applied to the AICs at a
panel level, resulting in a gust input per aerodynamic panel such that the
time lags can be modeled directly. Both methods, however, result in an
increase in the number of aerodynamic states and still use harmonic
aerodynamic data to predict the transient aerodynamic response.
Furthermore, a wide range of reduced frequencies has to be covered to
ensure accurate results.
The unsteady vortex lattice method uses a distribution of vortex

rings over the mean aerodynamic surface to solve the potential
flow equations. Katz and Plotkin [23] give a good overview of the
implementation of UVLM. The main advantages of UVLM are that it
is written in the time domain, and thus the transient aerodynamic
response is computed directly, and that it allows for modeling of a free
wake and can thus be used for the computation of the flow around
wings undergoing large motions. Therefore, UVLM has recently
become popular for the accurate analysis of HALE aircraft wings
undergoing large deformations [1]. Furthermore, UVLM can be
written in a discrete-time state-space system [24,25], allowing easy
integration with other disciplines. More recently, this discrete-time
form of thewake-shedding equation has been converted to continuous
time by Stewart et al. [26], using the time step used to define the
discrete-time system using a central differencing scheme, following
a similar approach as Mohammadi-Amin et al. [27], who used a
backward Euler scheme to obtain a continuous-time representation for
a boundary element solution based on constant strength doublet
panels. Themain disadvantage ofUVLM, however, is that it solves the
Laplace equation and, therefore, does not account for the full effects of
compressibility.
Within this field, the present paper proposes a novel continuous-

time state-space formulation of UVLM, which, in contrast to
Mohammadi-Amin et al. [27] and Stewart et al. [26], is directly derived
through a discretization of the governing advection equation for

transport of vorticity in the wake by means of the discontinuous
Galerkin method and not based on an underlying discrete-time
discretization. In case the incompressible flow equations are solved, a
continuous-time system is directly obtained by only discretizing the
advection equation of wake vorticity in space, while retaining the
derivative with respect to time. As a consequence, the present method
can 1) be applied to a nonuniform wake discretization that takes
advantage of the diminishing influence of vorticity as it is advected in
thewake, 2) be extended to any arbitrary nonflat wake shape, and 3) be
extended to higher-order panel methods.
The main limitation of the method, apart from being a small

disturbance potential flowmethod, is in neglecting the time-dependent
terms in the governing small disturbance potential equation. The
Prandtl–Glauert transformation is applied to the present continuous-
time formulation and the incompressible flow solution procedures are
applied to the transformed geometry. It should be noted that, in case of
a solution to the full compressible governing equation including
time-dependent terms, the presence of time delays in the governing
boundary integral equation requires a discretization of the governing
equations in both space and time (see Morino [28]) and an equivalent
continuous-time representation can only be sought through a discrete-
time formulation.
Section II provides a brief explanation of potential flow theory in

aerodynamics, which is used as the basis for the aerodynamic model,
followed by the implementation of this potential flow theory in a novel
continuous-time formulation of the unsteady vortex lattice method.
The model is verified by applying it to several steady, unsteady, and
compressible benchmark solutions, followed by the application of the
model to the discrete gust analysis of awing to illustrate the benefits of
the present model, as discussed in Sec. III. Finally, conclusions will be
drawn on the application of themodel for efficient aeroelastic analysis.

II. Unsteady Aerodynamic Model

For efficient loads analysis, the unsteady aerodynamicmodel is based
onpotential flow theory implementedbymeansof theboundaryelement
method. The underlying theory is presented in Sec. II.A, followed by the
compressible boundary conditions in Sec. II.B. Section II.C presents a
brief overviewof the unsteadyvortex latticemethod used to illustrate the
present approach. Finally, Sec. II.D presents the discretization of the
advection equation for the transport of vorticity in thewake bymeans of
the discontinuous Galerkin method, which is required to derive the
continuous-time state-space formulation, as presented in Sec. II.E.

A. Potential Flow Theory

When the flow conditions around a wing correspond to very high
Reynolds numbers, exhibit no strong shocks, neglect transonic effects,
and are under small angles of attack, the small disturbance velocity
potential can be introduced and the Prandtl–Glauert equation is
obtained (see, for example, Blair [29], or Morino [28]). The Prandtl–
Glauert transformation ( �x � x∕

���������������
1 −M2

p
� x∕β, �y � y, �z � z) is

applied, resulting in the following governing equation:

∂2ϕ
∂ �x2

� ∂2ϕ
∂ �y2

� ∂2ϕ
∂ �z2

�
�

2M

a
���������������
1 −M2

p
�
∂2ϕ
∂ �x∂t

�
�
1

a2

�
∂2ϕ
∂t2

(1)

where M is the Mach number, a is the speed of sound, and ϕ is the
disturbance velocity potential defined as

V � V∞ � ∇xϕ (2)

where V is the local velocity vector, V∞ is the freestream velocity
vector, and the subscript x indicates the xyz coordinate system.
In case of steady flow, the right-hand side of Eq. (1) reduces to zero

and the Laplace equation is obtained such that incompressible flow
solution procedures can be used to obtain the compressible flow
solution. In case of compressible unsteady flow, the time-dependent
terms need to be considered as well. However, for low to moderate
subsonic Mach numbers, the right-hand side is relatively small and the
solutions to the unsteadyPrandtl–Glauert equation can by approximated
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by solutions to the Laplace equation for the small disturbance velocity

potential:

∇2
�xϕ � 0 (3)

The validity of the Laplace equation for compressible unsteady

aerodynamics is thus dependent on the Mach number and the level of

unsteadiness of the flow. A common measure for the level of

unsteadiness in the flow is the reduced frequency k defined through

k � ωb

V∞
(4)

where ω is the frequency and b is the reference half-chord. As long as

either the reduced frequency or the Mach number is low to moderate,

the incompressible flow solution is expected to approximate the

unsteady compressible flow solution by applying the Prandtl–Glauert

transformation and solving the Laplace equation. This observation is

supported by numerical results shown in Sec. III.
To complete the definition of the problem, boundary conditions

need to be specified. In aerodynamics of aircraft, these in general

consist of a boundary condition enforcing flow tangency on the wing

surface and a boundary condition that ensures that the flowdisturbance

vanishes at infinity:

�∇xϕ� V∞ − Vb� ⋅ n � 0; on thewing surface (5)

lim
jx−x0j→∞

∇xϕ � 0 (6)

where n is the surface unit normal vector, x0 is the position vector on
thewing surface, x is the position vector of the location of interest, and
Vb is the velocity of the wing surface with respect to the freestream

velocity as, for example, introduced by aeroelastic deformations.
To model a lifting surface by means of potential flow theory, a

wake surface trailing the wing needs to be introduced, which is a

surface of discontinuity for ϕ. The transport of vorticity on this wake
surface is governed by the advection equation as, for example,

derived by Morino [28]:

∂Δϕ
∂t

� Vw ⋅ ∇Δϕ � 0 (7)

whereΔϕ is the jump in velocity potential over the wake surface and

Vw is the local velocity on the wake surface. To find a solution to the

problem, the jump invelocity potential in thewake needs to be related

to the velocity potential on the wing surface. This relation can be

found through the Kutta condition, which states that the flow leaves

the sharp trailing edge of an airfoil smoothly and the velocity there is

finite, resulting in

ΔϕbjTE � ΔϕwjTE (8)

where Δϕb is the potential difference on the body and Δϕw is the

corresponding potential difference in the wake along the same

streamline.
A common assumption in aeroelasticity (see, for example, Giesing

et al. [30]) is that thewake surface is rigidly connected to thewing and

convected with the freestream velocity such that Eq. (7) reduces to

∂Δϕ
∂t

� V∞ ⋅ ∇Δϕ � 0 (9)

which is a valid assumption as long as themotions of thewing remain
small with respect to the reference configuration.

B. Compressible Boundary Conditions

To investigate the effect of compressibility, the Prandtl–Glauert
transformation also needs to be applied to the boundary conditions. In
case of compressibility, the boundary condition at infinity still holds,
however, the flow tangency condition, given by Eq. (5), is dependent
upon the induced velocity ∇ϕ at the wing surface and is therefore
affected by the transformation. Defining the wing surface as
S�x; y; z; t� � 0, such that the surface normal n is given by ∇xS, the
flow tangency condition, given by Eq. (5), can be written as

�V∞ − Vb �∇xϕ� ⋅ ∇xS � 0 (10)

and introducing the Prandtl–Glauert transformation�
V∞ − Vb �

�
1

β

∂ϕ
∂ �x

;
∂ϕ
∂ �y

;
∂ϕ
∂�z

��
⋅ ∇xS � 0 (11)

�V∞ − Vb� ⋅ ∇bS�
�
∂ϕ
∂ �x

;
∂ϕ
∂ �y

;
∂ϕ
∂�z

�
⋅
�
1

β

∂S
∂x

;
∂S
∂y

;
∂S
∂z

�
� 0 (12)

As can be seen, the flow tangency boundary condition in the
compressible flow solution can be computed using incompressible flow
solution routines, as long as the Prandtl–Glauert transformation is
applied to thewing geometry and the x component of the surface normal
is divided by β.

C. Unsteady Vortex Lattice Method

To solve the potential flow problem, a collocation method is
commonly used. In UVLM, the wing is modeled by vortex ring
elements on its camber surface under a thin-wing approximation. As
illustrated in Fig. 1, the camber surface of the wing, the first row of
wake elements trailing the wing, and the free wake are discretized by
Nb, Nw0

, and Nw quadrilateral elements, respectively. Note that the
jump in velocity potential over thewing surface and thewake is equal
to the vortex strength of the vortex ring elements (i.e., Δϕ � Γ).
The flow tangency condition, given by Eq. (5), is satisfied at Nb

collocation points on the wing surface, resulting in the following set
of Nb equations as, for example, derived by Katz and Plotkin [23]:

K1Γb � K2Γw0
� K3Γw � −V ⋅ n (13)

whereV ⋅ n represents the contribution of the freestream velocity and
anymotion of thewing surface andK1,K2, andK3 are thematrices of
aerodynamic influence coefficients defining the induced velocities
normal to the wing surface induced by the vorticity on the wing Γb in
the first row of wake elements Γw0

and in the free wake Γw on the
collocation points (i.e., ∇ϕ ⋅ n).
Under the assumption of small disturbances with respect to the

mean steady flow solution, the right-hand side of Eq. (13) for a panel
p on the wing surface reduces to

−Vp ⋅ np � −V∞ ⋅ np|����{z����}
mean steady flow

−ΔV∞ ⋅ np|������{z������}
freestreamperturbation

−V∞ ⋅ Δnp � Vb ⋅ np|�����������������{z�����������������}
motion of thewing surface

(14)

Fig. 1 Example wing discretization using vortex ring elements.
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Recognizing that themean freestream flowV∞ is oriented along the

x axis and introducing a small perturbation angle with respect to the

mean freestream flow α, as illustrated in Fig. 2,ΔV∞ can be defined as

a function of α, resulting in

−Vp ⋅ np � −V∞nxp − V∞nzpα − V∞ ⋅ Δnp � Vb ⋅ np (15)

Note that, in this case, the perturbation angle α is defined by a

rotation about they axis. The sameprinciple can, however, be extended

to any arbitrary rotation in three dimensions, as long as the axis of

rotation of interest for the perturbation angle α is defined beforehand.

For instance, in this example, this is the y-axis or in case of wings with
dihedral it will be the projection of the spanwise reference axis on the

plane normal to the undisturbed flow. As a consequence, the influence

of aeroelastic deformations can also be introduced by a perturbation

angle of attack α similar to the definition of downwash in the doublet

lattice method as, for example, given by Giesing et al. [30].
The first term in Eq. (15) represents the steady boundary condition,

which is independent of time for a wing that is flying at a constant

freestream velocity V∞ with a fully developed wake. Consequently, a

solution can be found by splitting the problem into two subproblems.

First, a steady solution satisfying the first term in Eq. (15) is obtained,

assuming constant vorticity in thewake. Second, an unsteady solution

satisfying the remaining terms inEq. (15) is obtainedbydeveloping the

wake vorticity in time. Finally, by the principle of superposition, the

total aerodynamic forces and moments can be found.
Next, using Eq. (8), a set of Nw0

equations representing the Kutta

condition can be derived, resulting in

K4Γb � K5Γw0
� 0 (16)

whereK4 andK5 are matrices containing ones and zeros to link each

trailing-edge panel to its corresponding wake panel.
When discretizing the wake, special care needs to be taken for the

panels directly trailing the trailing edge. From a physical point of view,

this can be interpreted by looking at the starting vortex.When thewing

is accelerated from rest and the vortex strength in thewake is still zero,

the closing vortex of the first wake panel can be interpreted as the

starting vortex that develops and is a lumped representation of the

continuous vortex sheet shed during the initial movement of the wing.

As argued by Katz and Plotkin [23], this vortex should be placed

around 0.2–0.3 of the distance covered by the following wake panel.
Once the vortex strength distribution has been found, the

aerodynamic forces and moments can be determined directly from the

vortex strength of the vortex segments using the Kutta–Joukowski

theorem, equivalent to the forces originating from the horseshoe

vortices in the unsteady lifting line theory [31]. The computation of the

aerodynamic forces andmoments can be split into a steady component

and an unsteady component, similar to Simpson et al. [32].
The steady component of the aerodynamic forces is given by the

steady component of the Kutta–Joukowski theorem and is computed

for each of the vortices on the wing surface under the assumption of

small perturbations with respect to the freestream flow:

Fst � ρV∞ × Γ � ρV∞ × eΓΓ (17)

where eΓ is the vector defining the vortex segment and Γ is the vortex

strength of the vortex segment. The resulting force acts at themidpoint

of the vortex segment.

The unsteady component is computed per panel according to the

unsteady component of the Kutta–Joukowski theorem:

Funsti
� ρV̂∞ × êΓ _ΓA (18)

where V̂∞ is the unit vector in the direction of the freestream flow

velocity, êΓ is the unit vector in the direction of the leading vortex
segment of the panel, A is the surface area of the panel, and the dot

indicates a time derivative. Finally, the aerodynamic moments can be
computed by defining a set of reference axes with respect towhich the

aerodynamic moments are computed.
Using Eqs. (17) and (18) for the steady and unsteady forces, the

total aerodynamic forces and moments can be related to the vortex
strength according to

�
F
M

�
�

�
Fst

Mst

�
�

�
Funst

Munst

�
� L1Γb � L2

_Γb (19)

where L1 represents the contribution of the steady component of the

Kutta–Joukowski theorem and L2 represents the contribution of the
unsteady component of the Kutta–Joukowski theorem.
Now that the flow tangency condition, Kutta condition, and

computationof aerodynamic forces andmomentshavebeendiscretized,
only thediscretizationof transport of vorticity in thewake [Eq. (9)] is left

to obtain the complete unsteady aerodynamic model. This is presented
in the next section.

D. Transport of Vorticity in the Wake

Once the vortex strength at the start of the wake is known, the
transport of vorticity in the wake is governed by the advection

equation, givenbyEq. (7). To solveEq. (7), the discontinuousGalerkin
method, as introduced by Reed and Hill [33] and discussed in more

detail by Li [34], is used. Thewake is discretized using finite elements
that geometrically coincide with wake panels and the solution Δϕ is

approximated by an interpolation function Δϕh, which is continuous
within each element, but generally discontinuous across element

boundaries.
First, Eq. (7) is multiplied with a test function wh integrated by

parts over each element individually and then summed over all
elements to obtain the weak formulation:

XNw

k�1

�Z
Ωk

wh

∂Δϕh

∂t
−V∞⋅∇whΔϕhdV�

Z
∂Ωk

whΔϕhV∞⋅nkdS

�
�0

(20)

where k is the element index,Ωk represents the surface of element k,
∂Ωk represents the boundary of element k, and nk is the outward unit
normal on the element boundary.
Next, the flux of vorticity along the boundary of each element

(i.e.,ΔϕhV∞) is approximated by a numerical flux as a function of the
interpolation functionΔϕh on each side of the boundary, as illustrated

in Fig. 3. The numerical flux is typically defined as a function of the
mean and jump of, in this case, Δϕ across the boundary, defined by

Δϕh � 1

2
�Δϕ�

h � Δϕ−
h �; �Δϕh� � Δϕ�

h n
� � Δϕ−

hn
− (21)

Fig. 2 Panel at an angle αp with respect to the freestream flow.

Fig. 3 Definition of the numerical flux between element k (k�) and its
neighboring element k−.
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resulting in a numerical flux of

ΔϕhV∞ � V∞Δϕh � CV ⋅ �Δϕh� (22)

where CV is a nonnegative definite matrix dependent on the value
of V∞ ⋅ n.
Next, Δϕh and wh are defined by an expansion using a set of p

(orthogonal) basis functions ψ on each element k:

Δϕh �
XNw

k�1

Xp
m�1

Δϕ̂k;m�t�ψk;m�x� (23)

wh �
XNw

k�1

Xp
m�1

ŵk;mψk;m�x� (24)

where the coefficients ŵk;m can be chosen arbitrarily and Δϕ̂k;m are
unknown functions of time. A convenient choice for the coefficients
ŵk;m is to set one coefficient equal to one, while setting all other
coefficients equal to zero. Following this approach, a set ofpordinary
differential equations can be derived for the unknown coefficients
Δϕ̂ for each element k as, for example, shown by Li [34]:

M
∂Δϕ̂k

∂t
�

�
K�

XNS
i�1

KB;i

�
Δϕ̂k �

XNS
i�1

NB;iΔϕ̂�NB;i� � 0 (25)

where the massmatrixM and the stiffness matrixK are defined by the
integral in Eq. (20), KB;i and NB;i represent the contribution of the
numerical flux defined by Eq. (22) across the boundary of the element,
Δϕ̂k are the degrees of freedom of element k,Δϕ̂�NB;i� are the degrees
of freedom of the neighboring elements, andNS is the number of sides
along the boundary of the element.
In our implementation, a classical upwinding scheme given

by CV � 1∕2�V∞ ⋅ n�I and piecewise constant basis functions
[i.e.,ψk;m�x� � 1] have been selected, such that eachwake element can
be represented by an equivalent vortex ring element with strength
Γk�t� � Δϕk�t�. Recognizing that, as illustrated in Fig. 1, V∞ is
oriented along the x axis and always positive such that vorticity is
transported in the positive x direction, the element equation [Eq. (25)]
reduces to

Ai;j
_Γwi;j

� �Γwi;j−1
�t� − Γwi;j

�t��V∞bi;j � 0 (26)

_Γwi;j
� �Γwi;j

�t� − Γwi;j−1
�t��V∞

Δxwi;j

(27)

where Ai;j is the area of the element, bi;j is the width of the element
perpendicular to the flow direction,Δxw is the wake panel length in the
flow direction, and the element number k has been replaced by a
spanwise element index i and a streamwise element index j to reflect the
transport of vorticity in the streamwise direction.
Finally, by assembling all element equations, the transport of

vorticity in the wake is governed by the following matrix equation:

_Γw � K6Γw � K7Γw0
(28)

where K6 represents the transport of vorticity throughout the wake
andK7 introduces the influx of vorticity in the wake governed by the
first row of wake elements.
Note that Eq. (7) has only been discretized in space and no

assumptions aremade regarding the timederivative.As a consequence,
this approach allows for implementation of arbitrary wake shapes,
wake discretizations (structured and nonstructured), or higher-order
panel methods, while retaining a continuous-time representation. As
long as the jump in velocity potential at the trailing edge is known,
Eq. (7) and the discontinuousGalerkinmethod can be used to describe
and discretize the transport of vorticity in the wake, after which the

choice of singularity element will determine the final set of discretized
equations. Instead of a wake that is aligned with the undisturbed
freestream flow, the present approach can, for example, also be applied
to a prescribedwake geometry including the effects of wake roll up as,

for example, used by Murua et al. [1] and Hesse and Palacios [35] in
their discrete-time formulation. Furthermore, besides introducing a
nonuniform wake discretization, as presented in Sec. II.C, that takes
advantage of the diminishing influence of vorticity as it is advected in
the wake, possible future improvements in efficiency can be made by
reducing the computational effort required for the wake by converting
wake elements downstream of the wing to vortex particles, as
introduced by Voutsinas [36] or Willis et al. [37].

E. Continuous-Time State-Space Formulation

The system of equations, given by Eqs. (13), (16), and (28), can
now be assembled in a continuous-time state-space form, following
the derivation ofMohammadi-Amin et al. [27], however, in this case,
generalized to any generic wing shape and applicable to any arbitrary
wake shape or discretization. The resulting governing equation, as
derived in Appendix A, is given by

_Γw � K8Γw � K9α� K10 (29)

where α is the perturbation angle of attack on the wing surface, K8

represents the contribution of the wing and wake, K9 represents the

contribution of perturbing the freestream flow, andK10 represents the
contribution of the motion of the wing surface.
Similarly, the aerodynamic forces andmoments can also be related

to the vortex strength of the free wake panels, the perturbation angle
of attack on the wing surface, and the motion of the wing surface, as
derived in Appendix B, resulting in�

F
M

�
� L9Γw � L10α� L7 _α� L11 (30)

where L9 represents the contribution of the wing and wake, L7 and
L10 represent the contribution of perturbing the freestream flow, and
L11 represents the contribution of the motion of the wing surface.
Identifying � _α; 1�T as state-space input u, �Γw;α�T as state vector x,

and �F;M�T as output vector y, a standard continuous-time state-
space system is obtained:

_x �
�
K8 K9

0 0

�
x|�������{z�������}

Ass

�
�
0 K10

I 0

�
u|�������{z�������}

Bss

(31)

y �
�
L9 L10

�
|�������{z�������}x

Css

�
�
L8 L11

�
u|��������{z��������}

Dss

(32)

where 1 is a vector of ones in all components and I is the identity
matrix. Note that a unique input can be specified for each wing panel,
allowing for any arbitrary chordwise and spanwise gust distribution to
be modeled.
The continuous-time state-space formulation can, for example, be

used to find the unsteady aerodynamic response of a wing to a discrete
“1 − cos” gust, as defined by

Vi
G�t� �

8<
:

1
2
VGref

�
1 − cos

�
2πV∞�t−ti

0
�

H

��
for 0 ≤ t − ti0 ≤ H

V∞

0 otherwise

(33)

where VG is the gust velocity at location xi, VGref
is the vertical gust

velocity amplitude, ti0 is the time at which the gust reaches location xi,
and H is the gust length. The corresponding input to the state-space

equations can be found by converting the gust velocity to an equivalent
gust angle (i.e., αiG � Vi

G∕V∞) and taking the time derivative,
resulting in
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αiG�t� �
8<
:

1
2

VGref

V∞

�
1 − cos

�
2πV∞�t−ti

0
�

H

��
for 0 ≤ t − ti0 ≤ H

V∞

0 otherwise

(34)

where αiG is the angle of attack induced by the gust velocity on the
collocation point of panel i, located at xi.
Finally, the unsteady aerodynamic response can be found by any

standard state-space solver, where it is important to note that, in
contrast to a discrete-time formulation where the stability of
the explicit time marching scheme limits the maximum time
step [Courant–Friedrichs–Lewy (CFL) condition: CFL≤1], no
assumptions regarding a time integration scheme have been made
in the present model and, consequently, depending on the stability
of the time integration scheme chosen, larger time steps can be
used (CFL >1).
In conclusion, under the assumption of small perturbations of a

thin wing around a steady-state reference configuration, the inviscid,
(in)compressible, irrotational, unsteady aerodynamic forces and
moments acting on any generic wing are computed using a
continuous-time state-space model, allowing for easy integration
with structural or flight dynamic models for efficient aero(servo)
elastic analysis using any arbitrary wake shape and discretization and
a time step solely governed by accuracy requirements. The input
vector allows for a unique time-dependent input for each panel on the
wing surface, allowing for any arbitrary chordwise and spanwise gust
distribution to bemodeled. Once the unsteady aerodynamic response
has been found, the total aerodynamic response can be found by the
principle of superposition of the steady and unsteady aerodynamic
solution.

III. Results

First, the state-space unsteady aerodynamic model, as described
in Sec. II, is assessed in Sec. III.A by running the model for
different unsteady benchmark cases and comparing the results to the
literature. The effect of Mach number and reduced frequency on the
compressible flow solution is discussed in Sec. III.B. Finally, a gust
analysis study is carried out to illustrate the advantages of the current
model. For all results presented, first a mesh convergence study has
been carried out.

A. Verification

To verify the unsteady aerodynamic response, the unsteady

aerodynamicmodel is first comparedwith 2-D unsteady results in the

literature by modeling a wing with an aspect ratio of 200. To do a fair
comparison to the 2-D results, the results from the literature have

been compared with the section lift coefficient at the center of
the wing.
Figures 4a and 4b show the comparison of the present model to the

lift and moment coefficient as predicted by Theodorsen [38] for the

harmonic pitch, plunge oscillation of a 2-D flat plate at different

reduced frequencies. The flat plate pitches around the quarter-chord
axis with an amplitude of 1 deg, has a plunge amplitude of

h0∕b � 0.02∕k, and has been investigated for k � 0.1, k � 0.4,
k � 1.0, and k � 3.0. The wing is discretized using 8 spanwise and
32 chordwise elements. The wake is truncated at 20 times the chord
and the wake is discretized according to Δxw∕c � 1∕32. As can be

seen, the present model shows excellent agreement for k � 0.1 and
k � 0.4. As the reduced frequency increases, the present model

overpredicts the lift and moment coefficient, which can be explained

by the fact that, for the present model, the wake needs to be
discretized, whereas Theodorsen computes the lift and moment

coefficient analytically. Especially at higher reduced frequencies, the
effect of this discretization becomes more pronounced because the

number of wake panels traveled per oscillation becomes smaller. It
should be noted, however, that, for most practical applications, a

reduced frequency of 0.4 is already high.
Aircraft in general have a combination of taper, sweep, dihedral,

twist, and camber. However, to the authors’ knowledge, no results are

available in literature on the unsteady aerodynamic response of panel
methods for thin general aircraft wings. Therefore, to verify the 3-D

unsteady aerodynamic response, the present model is compared with
the unsteady aerodynamic response for rectangular wings. Figure 5a

shows the comparison of the presentmodel to the sudden acceleration

of a flat rectangular wing with an aspect ratio of 6 to the results
obtained by Jones [39]. Thewing is discretized using 8 spanwise and

32 chordwise elements. The wake is truncated at 10 times the chord
and the wake is discretized according to Δxw∕c � 1∕32. As was

shown by Katz for UVLM [40], because the present model can only
represent a finite acceleration rate due to its wake discretization,

whereas the solution by Jones [39] accounts for the infinite
acceleration rate, a moderately higher initial lift can be expected for

a) Lift coefficient b) Moment coefficient
Fig. 4 Verification using a 2-D flat plate undergoing a harmonic pitch, plunge oscillation
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the present model, after which the solution converges to the solution

by Jones.
As a final verification for the unsteady aerodynamic response, the

present model is compared with the results obtained by Wang et al.

[41] using UVLM for the gust response of the Goland wing under a

1 − cos gust. The wing is discretized using 8 spanwise and 32

chordwise elements. The wake is truncated at 10 times the chord and

the wake is discretized according to Δxw∕c � 1∕32. As can be seen
in Fig. 5b, the results show excellent agreement.

In conclusion, the present model shows excellent agreement with
results in the literature for the unsteady aerodynamic response of
wings, thus verifying the present model.

B. Compressible Flow

To investigate the effect of reduced frequency and Mach number
on the validity of the present model for unsteady compressible flow,
the present model is compared with the approximate closed-form
solution, derived by Lin and Iliff [42], for the Possio integral

a) Sudden acceleration of a rectangular wing with an
aspect ratio of 6

b) Gust response of the Goland wing undergoing a
1-cosine gust

Fig. 5 Verification of the 3-D unsteady aerodynamic results

a) Lift coefficient amplitude

c) Moment coefficient amplitude d) Phase angle of the moment coefficient

b) Phase angle of the lift coefficient

Fig. 6 Comparison with the closed-form solution [42] for a pitching thin 2-D airfoil.
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equation, describing the pressure distribution of a lifting surface in
two-dimensional, oscillatory, subsonic compressible flow. The wing
is discretized using 12 spanwise and 32 chordwise elements. The
wake is truncated at 20 times the chord and the wake is discretized
according to a constant wake element size of Δxw∕c � 1∕32.
The resulting comparison in amplitude and phase for both lift

coefficient and moment coefficient of an airfoil pitching with an
amplitude of 1 deg about the quarter-chord is shown in Fig. 6 for
different reduced frequencies and Mach numbers. As can be
concluded from Figs. 6a and 6c, the present model shows excellent
agreement to the closed-form solution in amplitude up to a reduced
frequency of one, after which the effects of compressibility are no
longer captured by the present model. Regarding the phase angle, as
expected, the present model results in a phase angle independent of
Mach number, whereas the unsteady terms in the Prandtl–Glauert
equation introduce a change in phase angle resulting from the effects
of compressibility. However, at a Mach number of 0.8 and a reduced
frequency of one, the error in phase is still less than 10 deg.
Based on these results, it can be concluded that, as expected, with

increasing reduced frequency and Mach number, the unsteady terms
in the Prandtl–Glauert equation are no longer negligible and the
presentmodel can no longer capture the full effects of compressibility
on the unsteady aerodynamic solution. However, although care
should be taken, the results show that the present model provides
sufficiently accurate dynamic load predictions at low to moderate
Mach numbers and reduced frequencies encountered in the normal
operating conditions of aircraft. Note, however, that atMach numbers
above 0.7 care should be taken in applying both the present model
and the closed-form solution, because, depending on the wing
geometry, the underlying assumptions of the linearized potential flow
equations might no longer be valid and, for example, solutions to the
Euler equations might be necessary for accurate results.

C. Gust Response

Finally, the model is applied to the analysis of a swept, tapered
wing with the properties given in Table 1 under a 1 − cos gust of
various lengths, as defined by Eq. (33), to illustrate the advantages
of the present continuous-time state-space model. The freestream
velocity is set to 100 m∕s at sea level. The gust lengths considered

are 5, 10, 20, and 50 times the mean aerodynamic chord, equivalent

to a reduced frequency of 0.628, 0.314, 0.157, and 0.063,

respectively. The gust amplitude is 5.24 m∕s, such that the induced
gust angle of attack is 3 deg. The number of spanwise and chordwise

vortex ring elements is kept constant at 16 and the wake is truncated

at 20 chords behind the wing. Two sets of analyses are run: 1) with

constant size wake elements, while the wake discretization is varied

between Δxw∕c � 1∕2 and Δxw∕c � 1∕32 and 2) with increasing

wake element size aft of the wing. The first set of analyses has been

run to provide a direct comparison to discrete-time simulations,

whereas the second set has been run to illustrate the possibility to

improve the efficiency of the model by varying the wake element

size. An additional analysis with a constant wake discretization of

Δxw∕c � 64 is used as the converged reference solution. The

resulting lift and moment coefficients for different gust lengths, at

the finest constant size wake discretization, are shown in Fig. 7. The

corresponding maximum lift and moment coefficients are given in

Table 2.
To investigate the effect of time step andwake discretization on the

accuracy of the results at different reduced frequencies, the remainder

of this section will only focus on gust lengths of 5 chords (i.e., highly

unsteady) and 50 chords (i.e., quasi steady). Similar conclusions can

be drawn for other gust lengths. Note that, in case of discrete-time

state-space systems, the wake discretization and time step size are

inherently linked and cannot be varied independently, unlike the

present model, highlighting one of the advantages of the present

approach.
Figure 8 shows the effect of a varying time step on the maximum

lift and moment coefficient for different wake discretizations. Note

that, in this case, all simulations were run with a constant time step

size; however, in contrast to discrete-time state-space systems, the

continuous-time formulation of the present model also allows for an

adaptive time step to be used in the time integration, as required. The

equivalent discrete-time state-space results, where the time step

matches thewake discretization, are designated by the filledmarkers.
Several conclusions can be drawn on the effect of wake

discretization and time step on the accuracy of the results. First of all,

as can be expected, the results for a gust length of 50 chords converge

faster than the results for a gust length of 5 chords, because a shorter

Table 1 Wing properties

Property Value

Semispan 5.0 m
Root chord 1.0 m
Taper ratio 0.3
1∕4c sweep angle 30 deg
Dihedral angle 5 deg
Camber 0%
Mean aerodynamic chord 0.713 m

a) CL of a 1-cosine gust of different lengths b) CM of a 1-cosine gust of different lengths

Fig. 7 Effect of gust length on the unsteady aerodynamic response. Time is normalizedwith respect to the time required for the gust to traverse the wing.

Table 2 Maximum lift and moment
coefficient for different gust lengths.

Gust length CLmax
CM1∕4c;max

5c 0.133 −0.262
10c 0.197 −0.358
20c 0.232 −0.410
50c 0.250 −0.438
Steady 0.256 −0.451
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gust length implies a higher reduced frequency, and therefore, finer
wake and time discretizations are required to obtain accurate results.
Second of all, the results clearly show the advantage of the present

model, for example, for a gust length of 5 chords, awake discretization
of 8 panels per chord and the equivalent time step of V∞Δt∕c � 1∕8
results in an error of 2.5%, whereas a wake discretization of only
4 panels per chord with a smaller time step of V∞Δt∕c � 1∕16 only
results in an error of 1.8%, thus clearly showing the advantage of the
variable time step.
Finally, it is interesting to note that, for the lift coefficient at a gust

length of 5 chords, the best result is achievedwith awakediscretization
of only 2 panels per chord and a time step of V∞Δt∕c � 1∕32.
However, care should be taken, because depending on the gust length,
both the convergence rate and the direction of convergence change.
This can be explainedby a combination of effects: 1)Depending on the
gust length, the resulting aerodynamic forces are dominated by steady
or unsteady effects, and thus, by thevorticity distribution in thewake or
the time rate of change of the vorticity distribution in the wake. 2) As
the wake is refined, the vorticity distribution in the wake is captured
more accurately and, depending on the vorticity distribution and its
time rate of change, as the discretization is improved, the resulting lift

and moment coefficient might increase or decrease. In case of a wake

discretization of only 2 panels per chord, the combination of these

effects results in a lift coefficient that is very close to the converged

solution; however, as can be seen in Fig. 8b, the error in moment

coefficient is still 2.8%, indicating a nonconverged solution.
Figure 9 shows the effect of a nonconstant wake discretization on

the maximum lift and moment coefficient for different sizes of

the first wake panel Δxw∕c, for a constant converged time step of

V∞Δt∕c � 1∕32. The number of streamwise wake panels is reduced

from a constant wake to 1∕16th of the number of streamwise wake

panels in a constant wake, while maintaining the size of the first wake

panel and increasing the element size of the remaining wake elements

as the distance behind thewing increases. The ratio in size between two

adjacent elements is kept constant through the following relation,

which maps a uniform element distribution ρ (0 ≤ ρ ≤ 1) onto a

nonuniform element distribution r (0 ≤ r ≤ 1), as given byWeatherill

et al. [43]:

r � eAρ − 1

eA − 1
(35)

a) Relative error in maximum lift coefficient, H = 5c

c) Relative error in maximum lift coefficient, H = 50c d) Relative error in maximum moment coefficient, H = 50c

b) Relative error in maximum moment coefficient, H = 5c

Fig. 8 Varying the time step for time integration for various wake discretizations. Equivalent discrete-time results are indicated by filled markers. The
solution with a constant wake element size of Δxw∕c � 1∕64 and corresponding time step of V∞Δt∕c � 1∕64 has been used as reference solution.
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where A controls the ratio in size between two adjacent elements. The

value of A can be determined by solving Eq. (35) for the first wake

element based on the prescribed size of the first wake elementΔxw∕c,
which defines r, and the desired number of elements, which defines ρ.
The results indicate the advantage of a variable wake element size on

the efficiency of computation. The main conclusion that can be drawn

from these results is the tradeoff that can be made between model size

and accuracy. For a small penalty in accuracy, the number of states in the

system can be significantly reduced by reducing the number of wake

panels. For example, for a gust length of 5 chords, the same accuracy can

be achieved by a first wake element size ofΔxw∕c � 1∕32 and awake
with 80 streamwisewake panels as for a constant wake discretization of

Δxw∕c � 1∕16 and 320 streamwise wake panels, resulting in a

reduction in the number of states by a factor of 4.
In conclusion, the present model allows for unsteady aerodynamic

simulations with increased efficiency with respect to discrete-time

and currently available continuous-time approaches by varying

the wake element size and time step, thus reducing the required

system size for a given accuracy. Furthermore, in case of gust

simulations for aircraft, where many different load cases and gust

lengths need to be run, a single efficient model can be set up, while

computational efficiency is maintained by varying the time step

size as required.

IV. Conclusions

A continuous-time state-space unsteady aerodynamic model has
been presented for efficient load analysis of general aircraft wings.
Based on potential flow theory, under a thin-wing assumption, vortex
ring elements are used to set up the governing discretized equations
for flow tangency and the Kutta condition. Using the advection
equation to describe the transport of vorticity in the wake, under the
assumption of small perturbations with respect to the steady solution
and a fixed wake, the governing continuous-time state-space system
has been derived by discretizing the advection equation only in space,
while making no assumption for the time derivatives. The main
advantage of the present approach is its flexibility, allowing for any
arbitrary wake shape or discretization to be used and straightforward
generalization to higher-order panel methods. The states of the
system are the vortex strengths of the wake vortex elements and the
perturbation angle of attack, and the input of the system is the time
derivative of the perturbation angle of attack.
Verification of the present unsteady aerodynamic model with results

in the literature shows excellent agreement. Comparison of the present
modelwith the approximate closed-form solution byLin and Iliff [42] to
Possio’s integral equation for the pressure distribution of a lifting surface
in two-dimensional, oscillatory, subsonic compressible flow shows
excellent agreement in amplitude up to a reduced frequency of one

a) Relative error in maximum lift coefficient, H = 5c

c) Relative error in maximum lift coefficient, H = 50c d) Relative error in maximum moment coefficient, H = 50c

b) Relative error in maximum moment coefficient, H = 5c

Fig. 9 Varying the number of streamwise wake panels for various initial wake panel sizes. Equivalent constant size wake discretization results are
indicated by filled markers. The solution with a constant wake element size of Δxw∕c � 1∕64 and corresponding time step of V∞Δt∕c � 1∕64 has been
used as reference solution.
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across a range ofMach numbers, whereas for the phase angle, at aMach
number of 0.8 and a reduced frequency of one, the error is only 10 deg.
The results thus show that the present model provides sufficiently
accurate dynamic load predictions at low to moderate Mach numbers
and reduced frequencies encountered in the normal operating conditions
of aircraft. Note, however, that at Mach numbers above 0.7 care should
be taken in applying both the present model and the closed-form
solution, because, depending on the wing geometry, the underlying
assumptions of the linearized potential flow equations might no longer
be valid and, for example, solutions to the Euler equations or full
potential equations might be necessary for accurate results.
Finally, the model has been applied to the gust analysis of a general

swept and taperedwing, showing the benefits of the present approach by
varying the time step and introducing a nonuniformwake discretization,
resulting in a reduced model size for a given accuracy.
To investigate the benefits of the proposed approach in more detail,

in futurework, themethod can, for example, be extended to prescribed
wakegeometries including the effects of, for example, steadywake roll
up or to unstructured wake discretizations.
In conclusion, the resulting model can be used for the efficient

loads analysis of general aircraft wings, including the effects of
compressibility. Its continuous-time state-space implementation allows
for any arbitrary wake shape to be modeled and easy integration with
structural or flight dynamic models for efficient aero(servo)elastic
analysis using a wake discretization and time step solely governed by
accuracy requirements.

Appendix A: Derivation of the State Equation

As derived in Secs. II.C and II.D, the system of equations governing
the potential flow solution around a wing is given by Eqs. (13), (16),
and (28):

K1Γb � K2Γw0
� K3Γw � −V ⋅ n

K4Γb � K5Γw0
� 0

K6Γw � K7Γw0
� _Γw

with −V ⋅ n for a panel p defined by Eq. (15):

−Vp ⋅ np � −V∞nxp|���{z���}
mean steady flow

−V∞nzpα|����{z����}
freestreamperturbation

−V∞ ⋅ Δnp � Vb ⋅ np|�����������������{z�����������������}
motion of thewing surface

Focusing on the unsteady aerodynamic solution around the mean
steady flow, Eq. (13) can be written as

K1Γb � K2Γw0
� K3Γw � B1α� B2 (A1)

where B1 represents the contribution of the freestream perturbation,
andB2 represents the contribution of the motion of the wing surface.
Using Eq. (13), Γb can be written as function of Γw0

, Γw, the
freestream perturbation, and the motion of the wing surface:

Γb � K−1
1 �−K2Γw0

−K3Γw �B1α� B2� (A2)

When this is inserted in Eq. (16), Γw0
can be written as function of

Γw, the freestream perturbation, and the motion of the wing surface:

Γw0
� �K5 −K4K

−1
1 K2�−1K4K

−1
1 �K3Γw −B1α −B2� (A3)

Substituting this relation in the wake transport equation, the state
equation of the state-space system can be derived and the unsteady
aerodynamic solution can be obtained:

_Γw � K8Γw � K9α� K10 (A4)

where

K8 � K6 � K7�K5 −K4K
−1
1 K2�−1K4K

−1
1 K3 (A5)

K9 � −K7�K5 −K4K
−1
1 K2�−1K4K

−1
1 B1 (A6)

K10 � −K7�K5 − K4K
−1
1 K2�−1K4K

−1
1 B2 (A7)

Appendix B: Derivation of the Output Equation

Starting from Eq. (16) to write Γw0
as a function of Γb

Γw0
� −K−1

5 K4Γb (B1)

and introducing this in Eq. (13), the vortex strength of the body panels
can be related to the vortex strength of the free wake panels Γw, the
freestream perturbation, and the motion of thewing surface, resulting in

Γb � −L−1
3 K−1

1 K3Γw � L−1
3 K−1

1 B1α� L−1
3 K−1

1 B2 (B2)

where L3 � I −K−1
1 K2K

−1
5 K4 with I as the identity matrix, B1

represents the contribution of the freestream perturbation, and B2

represents the contribution of the motion of the wing surface, similar to
Appendix A. Taking the time derivative of this equation, grouping all
terms related to the motion of the wing surface, and substituting this in
Eq. (19), the following equation for the aerodynamic forces and
moments is found:

�
F
M

�
� L4Γw � L5α� L6

_Γw � L7 _α�L8 (B3)

where

L4 � −L1L
−1
3 K−1

1 K3 (B4)

L5 � L1L
−1
3 K−1

1 B1 (B5)

L6 � −L2L
−1
3 K−1

1 K3 (B6)

L7 � L2L
−1
3 K−1

1 B1 (B7)

L8 � L1L
−1
3 K−1

1 B2 � L2L
−1
3 K−1

1
_B2 (B8)

Finally, using Eq. (A4), Eq. (B3) can be reduced to

�
F
M

�
� L9Γw � L10α� L7 _α� L11 (B9)

whereL9�L4�L6K8, L10�L5�L6K9, andL11 � L8 � L6K10.
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