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IDENTIFYING CHILDRENʼS ACTIVITIES

VERZAMEL JE FIT
DEVELOPMENT OF A LOW-COST WEARABLE TO ASSESS ACTIVITIES 

PERFORMED BY CHILDREN

Introduction

The Problem

Moving frequently and variably is important for mental and physical health. It is associated 
with an improved confidence as well as a reduction in anxiety, stress and depression. Physical 
benefits of exercise are lower HDL- cholesterol levels, lower blood pressure, decreased 
chances of obesity, stronger bones and a better immune system. Children are therefore 
recommended to move at least one hour a day at a moderate intensity level and additionally 
implement muscle and bone strengthening activities for minimally three time per week. 

Children in The Netherlands do not achieve a sufficient amount of physical activity. Therefore, 
measures must be taken to intrinsically motivate Dutch children to move more frequently. 
Meanwhile, it is useful to collect data on physical activity patterns of children to determine 
whether interventions are necessary and whether interventions are effective. This information 
can additionally be used as part of the intervention when rewarding children based on 
positive changes in their behaviour. 

Prospected Features

IMPROVE & VALIDATE 

TU Delft
Sports

Engineering
Institute

Images of children playing:  https://www.freepik.com/vectors/children, Children vector created by brgfx

Estimated Costs

A                 Initiative

However, with more data from both 
genders and all relevant ages it 
seems possible

Initial results suggest it will be difficult 
to accurately identify various 
activites in free-living children

Cool gadget on the right wrist
Uses triaxial accelerometer and heart 
rate measurements 
Transfer data to smartphone application 
through an NFC tag
Charge battery wirelessly via a smartphone
Up to 2 days of data on movements

Verzamel je Fit is part of 
an effort to motivate 
children to move more 
frequently and perform 
varying movements.

Prospected Returns:
Feedback on amount and type of 
physical activity, delivered by the 
user’s favorite athletes

Data collection on movements made 
by children for policy-making and 
evaluating the effect of interventions

Awesome that you have played football today! Keep it up and you could become just as good as I am!

?

Triaxial Accelerometer: 
Heart Rate sensor: 
NFC tag:
Battery: 
Wrist band: 
Micro controller (with storage): 

Currently 
Desired 

High tech smartphone application with 
machine learning algorithm
Athlete of choice encourages variety 
and increased quantity of movements

Why Invest In 
“Verzamel je Fit”?

€ 0.50
€ 0.70
€ 0.20
€ 1.00
€ 0.10
€ 2.00

€ 4.50

Investements are needed to further 
develop the algorithm and wearable 

Accuracy: 84%, Precision: 70-91%  
Precision: >90%  

* All price indications are derived from products with suitable specifications listed on alibaba.com

*





Summary

Dutch children achieve an insufficient amount of physical activity. For that reason, Delft University of Tech-
nology is looking to develop a wearable that contributes to motivating children to move more frequently and
more intensely while collecting data on the movements made by its wearer. In this thesis it was investigated
whether it would be possible to identify the activities performed by free-living children and what type of data
from which body placement should be obtained in order to do so. Due to restrictions resulting from COVID-19,
triaxial accelerometer- and gyroscope measurements of typical child play activities were carried out on various
body parts of eight adults. A Long-Short Term Memory algorithm was applied to short sequential sections of
summarized accelerometer data. This algorithm gives a prediction of the activity executed by the wearer of
a triaxial accelerometer for every 10 seconds in time. The effects of the wear-site (left wrist, right wrist, right
hip, left ankle or right ankle), type of accelerometer (low noise or wide range) and epoch length (0.25, 0.33,
0.5 or 1 second) were studied. The shortest epoch length was found to result in the most precise predictions
per activity and the highest overall accuracy for classifying the activities. The hip and right wrist placement
perform better than the other locations. A wrist placement is favored over the hip because a heart rate sensor
can be added to the former. Measuring the heart rate in combination with classifying the activities performed
gives insight in both intensity and variety of movements made by children.

To further increase the performance of these classifications, predictions made with a score below a certain
threshold, 0.775 in this thesis, can be excluded. This will decrease the amount of classifications made but it
improves the accuracy as well as causing the precision with which each activity is recognized to rise. Without
excluding results with a score below this threshold value, classifications of low noise 0.25 second epoch data
from the right wrists have an accuracy of 74.8% and a precision per activity of 54.5% - 82.1%. Removing the
more uncertain predictions yields an accuracy of 84.0% and a precision between 57.8% - 91.5%. Clustering
specific activities, such as sitting and lying down, increases the precision considerably. The accuracy and
precisions when applying sitting and lying down as one cluster in combination with removing the uncertain
predictions for the low noise sensor become 85.4% and 70.1% - 92.2%. Before this algorithm can be suc-
cessfully implemented in combination with the intended wearable, the precision with which each individual
activity is identified should be >90%. To transfer the collected accelerometer- and heart rate data to a smart-
phone, it is recommended to use NFC technology. Through a smartphone application it can then be made
available for research purposes and the children can get feedback on the variety and quantity of their physical
activity of the past two days. A battery that is appropriately sized for a child’s wrist wearable will only be able
to power the wearable for a few days. This is an insufficient battery life for the intended use, so the battery
has to be charged. NFC technology additionally offers energy harvesting capabilities, making it possible to
wirelessly charge the wearable via a smartphone. From this exploratory research it can be concluded that
it will be challenging to develop a low-cost wearable that can identify activities and measure how frequently
free-living children are physically active. This is the case for both software, the algorithm that predicts which
activities were performed, and hardware, where the most pressing challenge is the battery life. However, it is
believed that with more extensive research it is possible to create a fully operational wearable.
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1
Introduction

1.1. Background and Problem analysis
Physical activity (PA) is associated with an improved confidence and a reduction in anxiety, depression and
stress [4]. Exercise is additionally beneficial for children’s physical health, both in their youth and later life.
Lower HDL-cholesterol levels, a lower blood pressure, less obesity, a higher bone-mineral density and a bet-
ter immune system are examples of observations made among children that participate in PA more often
and have healthier eating habits [10], [16], [22]. Moreover, obesity increases the likelihood of degenerative
diseases later in life [7]. Other severe consequences of childhood obesity are higher chances of cardiovas-
cular diseases and even cancer in adulthood [27]. In order to reap the aforementioned mental and physical
health benefits, or prevent the detriments resulting from an unhealthy lifestyle, all children are recommended
to move at least one hour a day at a moderate intensity level, perform at least three times a week bone and
muscle strengthening activities and limit the time they spend sedentary (SB) [17]. An important side note is
that moving more frequently than these recommendations yields more benefit for the child’s body and mind.
This study will focus on the Dutch context in particular and for Dutch children the same guidelines are upheld
[26]. Dutch children do however not achieve a sufficient amount of PA1, neither do children in other parts of
the world [8]. For that reason, it is essential to encourage children to engage more in PA.

To realize more activity among children, Delft University of Technology is looking to develop a wearable that
assists in intrinsically motivating children to perform movements. The choice for creating a wearable solution
was made because this type of product additionally enables data capturing on the movement patterns of free-
living children. The intention is that the wearable will be used on a large scale, which can be accomplished
by finding a suitable partner for distribution and ensuring that the device is affordable for a large population.
Using the data collected by the wearable when worn by children, decisions can be made regarding interven-
tions to stimulate children to move adequately. More specifically, from gathered data it can be determined
in principle whether an intervention is necessary, whether a certain intervention is effective and the wearable
itself can even be part of the intervention when the personal activity records are used to stimulate exercise in
children. Examples of the latter are rewarding children for performing more various movements or for being
more active than some time before. The sample of children used for policy making should be large enough
to make valid assumptions, which can be facilitated by ensuring that the device is inexpensive enough to be
widely adopted. Furthermore, measurements should be somewhat accurate to avoid pointless or mistaken
interventions. The two main design requirements of the prospected wearable are therefore affordability and
sufficient accuracy.

1.2. Existing devices
There are many ways to encourage children in PA, ranging from (subsidised) social initiatives, for example
by enabling free participation in sport classes2 and implementing more physical activity during a school day3
to commercial toy-like products, such as trampolines and inline skates, and from team-sports to active video
games. It is however impossible to get an accurate overview of movements made by free-living children
through solely analysing data from these practices, because data on executed movements are (most of the
time) not recorded. The exception is active video gaming, which in fact could generate measurements of PA in
children. Nevertheless, it is not feasible to achieve a thorough analysis of free-living children since movements
that occur when they are not connected to their active video game are not registered. Similarly, despite their
measurement accuracy, smartphones are not a suitable source for measurement data because that would
require the smartphone to be at a known placement on the body throughout the entire day. Often children
are not even carrying a smartphone while exercising, since the size and weight can cause inconvenience or
1www.rijksoverheid.nl/onderwerpen/sport-en-bewegen/sporten-en-bewegen-voor-kinderen
2www.oranjefonds.nl/kracht-van-sport
3www.jongerenopgezondgewicht.nl/initiatieven/the-daily-mile
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6 1. Introduction

because they do not want to damage their device.

An example of a commercially available device that is used to collect data on movements made by adults
or children is the Fitbit. The Fitbit Ace 2 is the activity monitor manufactured specifically for children. This
device can be purchased for €69.954. Fitbit has implemented incentives for children to get them to move
more frequently, such as rewards when an activity goal is achieved and a step challenge, in which they can
compete for a trophy in their Fitbit-app against other Fitbit wearers. From the literature study that was con-
ducted as part of this thesis project, it however appeared that Fitbits do not provide an accurate method for
measuring intensities of physical activity in free-living children, the review can be found in Appendix A. The
Ace 2 has not been investigated by any of the studies included in the literature study, however two other
models (Fitbit Zip and Fitbit Charge HR) did not perform well in the field of accuracy. Due to the relatively
high costs of the Fitbits, cheaper alternatives of less established brands are flooding the market. Prices of
the majority of these models start around €20,-, but they do not have a version specific to children, are not
equipped with incentives to stimulate PA in children and the measurement accuracy is questionable5 [19], [25].

In conclusion, Fitbits are not as accessible as desired for this application due to their costs and even cheaper
alternatives are still relatively expensive. Therefore, making general assumptions based on the subgroup that
is equipped with a Fitbit yields a potential participation bias: Children that do wear a Fitbit (or alternative) could
be more active or inspired by their parents to engage in sports. This population could also contain overweight
children that need to keep better track of their activity patterns. Nonetheless, this subgroup will most likely
not form a valid representation of society. It is thus desired to develop a wearable in the price range of a few
euros that provides children with stimuli to move.

Because of this ambition, a prototype has already been developed. The current prototype allows for learning
absolute counts of PA, but it cannot be used to assess different intensity levels or the variety of movements.
When the child connects the wearable to a smartphone, the absolute number representing activity count re-
ceives a time stamp. Using the difference in time between two exchanges of the measured data and the
difference in activity counts between the two moments in time, the child can get ’rewarded’ for moving suffi-
ciently within the passed period of time. This is a start towards the ultimate goal and in this research a method
will be proposed to get even more knowledge on the PA in free-living children, while keeping the possibility
of encouragement open. This thesis will present a concept for a wearable, including a proposition for the
placement of the wearable, and supplementary algorithm that can collectively assess the movements made
by freely playing children.

1.3. Framing the research
Based on the literature study that was conducted prior to the start of this thesis (Appendix A), some aspects
were formulated that were used as input for this thesis. These topics consist of the measurement bias result-
ing from particular movements and study protocol, the choice of wear-site and the decision regarding sensor
types. These subjects will now be explained in more detail.

Starting with the latter, it appears that triaxial accelerometry, biaxial accelerometry and Inertial Measurement
Unit (IMU) measurements can potentially determine both quantity and variety of PA in free-living children.
Therefore, it was decided to use IMUs for the collection of data in this research, since an IMU contains a triax-
ial accelerometer, as well as a triaxial gyroscope and triaxial magnetometer. These sensors can respectively
measure linear accelerations, angular velocities and orientation with respect to the earth, all over three axes.
Because affordability of the wearable is essential, an objective of this thesis is to work with the least amount of
information in order to minimize the number of required sensors and data that has to be transferred. For that
reason trade-offs between the amount of data that has to be transferred and the prediction-accuracy will be
discussed. To the researcher’s knowledge, no literature has yet been published on identification of activities
from summarized data.

Sensor placements sometimes show contradictory results when compared to other wear-sites. Placing sen-
sors on the hips and around the waist yields similar results, while outcomes of the dominant wrist differed from
accelerations found at the non-dominant wrist, Appendix A. The ankle placement has only been researched

4www.fitbit.com/nl/ace2
5www.gizbot.com/wearable-technology/features/are-fitness-trackers-accurate-in-measuring-vitals/
articlecontent-pf117636-068064.html

www.fitbit.com/nl/ace2
www.gizbot.com/wearable-technology/features/are-fitness-trackers-accurate-in-measuring-vitals/articlecontent-pf117636-068064.html
www.gizbot.com/wearable-technology/features/are-fitness-trackers-accurate-in-measuring-vitals/articlecontent-pf117636-068064.html


1.4. Research question 7

three times (Appendix A: Louie et al., Clark, Duncan M. et al.), however these studies report favorable out-
comes with respect to the hip/waist and wrist placements. Due to the ambiguity in investigated literature,
the choice was made to compare the accuracies of predictions made based on information from the various
wear-sites. Because of these considerations and the amount of IMUs that was available, it was decided to
distribute the four IMUs over the bodies of the participants as follows: one on each wrist, one on the right hip
and the last one on an ankle. No comparison was found between dominant and non-dominant ankle in the
literature study, which is why both ankles were investigated.

Some of the researches reported specific activities in which the assessment of intensity levels turned out
to be difficult, Appendix A. This was due to the combination of certain sensor placements and the activity that
had to be performed. Mounting an accelerometer on the hip while measuring the intensity of various upper
body strength games, basketball or active gaming does not result in a high measurement accuracy, for ex-
ample (Appendix A: Canete Garcia-Prieto et al., Pulsford et al.). Cycling appeared to be difficult to estimate
in general, each of the explored wear sites turned out to be unfit for accurate determination of PA intensities
(Appendix A: Duncan, M. et al., Kang et al.). Identifying the activities made by youth should contribute to
more accurate estimation of PA intensity levels for all types of movements. This study will therefore inves-
tigate movements that involve principally the upper body as well as motions that mainly occur in the lower
body. Additionally, a cycling trial and a walking/running trial that facilitated capturing the associated forward
acceleration, as opposed to measurements on a home trainer or treadmill, were part of the measurement
protocol.

1.4. Research question
The overarching theme of this thesis is that TU Delft is aiming to develop a wearable as part of an effort to
intrinsically motivate children to move more often and vary the movements they make, while keeping track
of the quantity and variety in their PA. This thesis will contribute towards this goal by providing insight into
methods for determining which activities children have engaged in. Therefore, the following questions will be
answered in the remaining chapters:

• Which data are required for recognizing the movements made by free-living children?
• What is an appropriate method to determine the type of activity from the measurement data?
• How can this data be transferred from the wearable device to a platform that is accessible for research
purposes, in a safe and affordable manner?

• What is a feasible way to incorporate these measurement and data transfer techniques in a fully opera-
tional wearable device?

In the end of this thesis, practical feasibility of the wearable will be investigated by estimating the required
power supply and data transfer capacities for a potential finalized concept. Recommendations regarding fu-
ture research for improving the algorithm’s predictions will furthermore be given.

1.5. Nota Bene
Due to the measures resulting from the COVID-19 pandemic that were taken during the execution of this
research, unfortunately it seemed unethical to perform measurements on children. instead, collected data
originate from movements made by adults. Data collected from two children in the researcher’s personal
environment have additionally been used to investigate applicability of the algorithm to measurements on
children.





2
Methods

2.1. Data collection
Eight individuals (age: 33.25 ±17.48, 5 females) participated in the trials that were conducted as part of this
study. None of the participants were visibly severely over- or underweight. The participants executed eleven
different activities that are known to be made by free-living children1. All activities were executed in varying
orders and the participants had time to rest in between. Some activities were performed at multiple intensities.
An overview of the activities, their intensities and duration can be found in table 2.1.

Activity Speed or Distance Duration Intensity level

Lying down - 1 minute SB

Sitting - 1 minute SB

Writing/colouring - 1 minute LPA

Boxing Slowly 30 seconds VPA
As fast as possible 15 seconds VPA

Cycling 16 km/h 4 minutes MPA
20 km/h 4 minutes VPA

Throwing a toy ball
3 meter 5 throws LPA
5 meter 5 throws MPA
8 meter 5 throws MPA

Kicking a soccer ball
3 meter 5 kicks MPA
5 meter 5 kicks VPA
8 meter 5 kicks VPA

Jumping over objects

few centimeters 3 jumps MPA
20 centimeters 3 jumps MPA
35 centimeters 3 jumps MPA
45 centimeters 3 jumps VPA

Rope jumping One jump per spin 15 seconds VPA
Two jumps per spin 15 seconds VPA

Walking and running

3 km/h 2 minutes LPA
5.5 km/h 2 minutes MPA
8 km/h 2 minutes VPA
10 km/h 2 minutes VPA

Table 2.1: Activities, instructions and duration as performed by the participants with corresponding intensity levels (Sedentary Behaviour,
Light PA, Moderate PA and Vigorous PA)2 based on estimated Metabolic Equivalents from comparable activities[14], [13], [2]. Boxing,
ball throwing and kicking estimates are based on values determined on adults

With the exception of lying down, sitting and writing, all activities were performed outdoors. Materials and pro-
tocols used during the activities were chosen to maximally resemble free-living conditions for children. The
ball used for throwing was a toy ball of 22 cm diameter, for kicking a size 5 soccer ball was used. Walking and
running trials were carried out as modified shuttle tests to include the forward acceleration and simulate turns
and short bursts of activity, which would not have been possible had this trial been conducted on a treadmill.
1www.mayoclinic.org/healthy-lifestyle/childrens-health/in-depth/fitness/art-20048027
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10 2. Methods

Figure 2.1: IMUs are indicated by the black rectangle, green dots represent the
direction of the IMU’s LEDs. The blue, green and red arrows represent respectively
the positive X, Y and Z directions of the global coordinate system.

Figure 2.2: The blue, green and red arrows rep-
resent respectively the positive X, Y and Z direc-
tions of the IMU’s coordinate system [20].

For similar reasons, the cycling trials were done on the participants’ own bikes, which were equipped with a
smartphone holder on the steer. The smartphone was placed in the holder and its screen was locked on the
application ’GPS Speedometer’, showing the cycling speed and a timer to the participant. The participants
were instructed to ride around 16 km/h for four minutes and then 20 km/h for another four minutes while the
screen was filmed by an external camera (Nikkei XTREME X6) affixed to the collar of their shirts. All other
activities were recorded from a distance, by means of the same video camera held by the researcher. The
recordings included a timestamp that was set to the ’real time’ accurate to the second, which was used to
segment the IMU measurements and link them to the corresponding activity. The time for each activity was
monitored via the stopwatch function on a smartphone.

Each participant had given verbal consent to wearing the four IMUs (Shimmer3, Realtime Technologies ltd.,
Dublin, Ireland) and being recorded with a camera, after being instructed through a protocol approved by
HREC (TU Delft’s Human Research Ethical Committee). The IMUs were placed on the left wrist, right wrist,
right hip and either left or right ankle. Half of the participants was assigned right ankle placement, the other
half wore the IMU on the left ankle. The IMUs were positioned with their green LED-lights facing outwards
and upwards. In case of the IMUs mounted on the back-hand side of the wrist, the green lights thus pointed in
direction of the elbows. The ankle IMUs were placed just behind the lateral malleolus to ensure maximal com-
fort during movements and minimal movement of the IMU with respect to the participant’s body. The image in
figure 2.1 shows the positioning of the IMUs. The firmware on the Shimmers was updated to SDLog v0.19.0
and the Shimmers were configured to record at 51.2 Hz, with Undock/Dock as the Start/Stop logging method.
For all IMUs, the Low Noise (LN) Accelermeter, Wide Range (WR) Accelerometer, Gyroscope and Magne-
tometer were enabled. After the measurements were conducted, the data were imported from the Shimmer3’s
SD cards as an uncalibrated .mat file with unix time through the ConsensysBASIC v.1.6.0. software.

2.2. Data preparation and activity identification algorithm
The raw measurement data were imported in MATLAB R2018b and segmented per activity on the second
of the IMU’s unix time. Data were labeled according to the time registered on the video recordings. The
longer sequences resulting from the running, cycling, lying down, sitting, writing and walking were trimmed
to 30 seconds of data to minimize unbalanced distributions between the various activities. Based on real
time, the data were summarized as the average value per axis over one-fourth, one-third, half and whole
seconds, thus 0.25, 0.33, 0.5 and 1 second epochs. From hereon, only the Low Noise and Wide Range
accelerometer data were used to develop an algorithm. Per participant, the data were structured as a labeled
sequence containing all the activities in a row, in alphabetical order. This order was then randomized and
broken down into four short sequences containing three or four activities. Four of these activities appeared
in two combinations to make sure that the algorithm would not only learn the activities that were combined,
however doing this for all activities would have increased the risk of overfitting. Each of the combinations
was then repeated thirteen times, while the order of the activities within one combination was randomized
per repetition. Thereafter, these sequences were divided into windows, using a sliding window approach,
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of a width of ten seconds and an overlap of seven to eight seconds, depending on the epoch length. For
each of these windows a scalogram was created through a continuous wavelet operation with filterbank set
to twelve voices per octave3. The pooling activations of the GoogleNet ”pool5-7x7_s1” layer were applied
to each scalogram4, returning a column vector of 1024 features per window. For each window, the mode
of the labels present in the window was calculated and used as the label corresponding to the features of
that window. This means that if the window consisted of eight seconds running and two seconds jumping,
the label would be ”run”. These features and labels were divided over one test and seven training data sets
alternating over the participants, so the data of each participant would be used once for testing and seven
times for training. A Long-Short Term Memory (LSTM) network, consisting of a bidirectional LSTM layer with
500 hidden units, was trained on the training sets for each alteration and validated on the test data which the
network was still naive to. All MATLAB scripts that were written for the preparation of data as well as training
of the neural network and classifying the validation dataset can be found in Appendix B.

2.3. Evaluation of the model
For every composition of seven train and one test data set, the classification accuracies of each short se-
quence were calculated. The accuracy was defined as the percentage of all windows within one short se-
quence for which the predicted activity was the same as the actual activity. For each test set 52 accuracies
were found. Since each participant wore four sensors on different locations, 208 accuracies were found per
sensortype and participant. IBM SPSS Statistics 25 was used to make statistical analyses on the prediction
accuracies of each individual. ANOVAs with Tukey’s post-hoc tests were applied to compare difference in
accuracy for the various sensor placements, sensor types and epoch lengths. Via paired T Tests it was in-
vestigated if the addition of gyroscope data to the accelerations would significantly and relevantly improve the
result and if using the magnitude of the three accelerometer axes instead of the three-dimensional data would
decrease the performance of the algorithm. Also, combining data of multiple placements was compared to
using data from a single placement. Addition of sensor measurements was performed by concatenating the
continuous wavelet transforms with filterbanks before the GoogleNet layer activations were executed.

Whereas these are important characteristics for future model and data collection choices, it is also important
to examine the performance of the model on identifying the combined and individual activities. An ANOVA
with Tukey’s post hoc test was applied to find how well the algorithm could recognize each combination of
activities. To investigate the performance on the identification of individual activities and find out which activi-
ties were more easy or difficult to classify, recall and precision were calculated for each activity. Hereafter, it
was investigated whether this algorithm could predict at which intensity level a certain activity was performed.
Hereto the data were divided over 23 classes, representing an activity executed at a specific intensity.

In addition to making a prediction, the classification algorithm was also capable of returning the posterior
probabilities of each test window for each of the activities. Based on these scores a simple classification algo-
rithm was developed to minimize faulty classification in case of overall low posterior probabilities by defining
these activities as ’unknown’ and excluding them when computing the accuracy. Whether the implementation
of an ’unknown’ class contributed to the model’s performance was investigated by means of a paired T Test.
In order to get a better understanding of the influence of the amount of data on the performance of the model,
linear regression analyses were executed for LSTM networks trained on different amounts of data sets. Clas-
sification accuracies of one randomly chosen validation data set were computed for algorithms trained on one
to seven datasets. Investigating this regression enables observing how the performance evolves over the in-
cremental size of training data and if performance could be enhanced by generating and training on more data.

Finally, the LSTM network was trained on all eight measurements that were performed on adults while data
from two girls (age = 12.1 ±0, fraternal twins) was used for validation. The means of the resulting accura-
cies were analysed against the means of the accuracies from the adults that were classified using a network
trained on seven datasets by means of an independent T Test. For each statistical test the significance level
was set to 0.05.

3www.mathworks.com/help/wavelet/examples/classify-time-series-using-wavelet-analysis-and-deep-learning.
html

4www.mathworks.com/help/deeplearning/ug/classify-videos-using-deep-learning.html

www.mathworks.com/help/wavelet/examples/classify-time-series-using-wavelet-analysis-and-deep-learning.html
www.mathworks.com/help/wavelet/examples/classify-time-series-using-wavelet-analysis-and-deep-learning.html
www.mathworks.com/help/deeplearning/ug/classify-videos-using-deep-learning.html




3
Results

3.1. General outcomes
Initially, 80 LSTM networks were trained, each with a training time of approximately 50 minutes. A total of
13312 accuracies resulted from the initial classifications of four epoch lengths, two sensor types (LN and WR
accelerometer), five wear-sites, eight participants and thirteen alterations of each of the four combinations of
activities. Because the mode was used as the operation to label the individual activities within a short se-
quence, the occurrence of each activity varied slightly. Approximately, the activities represented the following
percentages of the total dataset:

Box Cycle Jump Kick Lie Rope jump Run Sit Throw Walk Write
10.9% 7.4% 7.8% 22.9% 3.5% 3.0% 12.4% 3.4% 10.5% 14.6% 3.6%

A summarized comparison of the accuracies for the different wear-sites and epoch lengths can be found
in figure 3.1. All epoch lengths are significantly different from each other (p<0.01). The use of a WR or a LN
accelerometer has no significant influence on the resulting accuracy (p = 0.151). The hip placement yielded
significantly higher results than the other placements (p ≤0.010), whereas the placements on the left side of
the body showed no significant difference in effect of wear-site (p = 0.065), as did the right wrist and ankle (p
= 0.781). Analysis of the combined effects of sensor type and placement for the 0.25 second epoch length
reveals that the combinations of WR & Hip, LN & Hip, WR & Right wrist, LN & Right wrist do not show signifi-
cant differences with respect to each other (p ≥0.219). When investigating the outcomes of the 0.33 second
epoch length, it appeared that the same combinations yielded no significantly dissimilar results (p ≥0.570).
More resembling combinations can be found, however the above mentioned are the only ones in which for
all configurations of sensor type and placement the effects were not significant. Therefore, only the 0.33 and
0.25 second epoch data from the hip and right wrist will be analysed from here on.

3.2. Gyroscope, magnitude and multiple sensor information
The results for summarizing the three dimensional measurements in a magnitude, adding the gyroscope data
to the accelerometer information and merging the magnitude of the accelerometer and gyroscope data are
visualized in figure 3.2. In all cases, enriching the data with raw gyroscope measurements did not improve the
accuracy. Computing the magnitude resulted without exception in a significantly decreased performance with
respect to the three dimensional accelerometer data (p ≤0.021). Likewise, the combination of the accelerome-
ter and gyroscope magnitudes showed a significant reduction in prediction accuracies (all p <0.001). Merging
the right wrist and hip data does not result in a significant improvement of the accuracies found relative to data
from only the hip or wrist, for any of the epoch lengths and sensor types. The changes in mean accuracy in
relation to the single sensors and corresponding P values is listed in table 3.1

Placement With respect to Low noise accelerometer Wide range accelerometer
0.33 seconds 0.25 seconds 0.33 seconds 0.25 seconds

Right wrist and Hip Hip -1.1% (p=0.999) -9.3% (p<0.001) -1.4% (p=0.995) -5.0% (p=0.005)
Right wrist -4.2% (p=0.045) -7.8% (p<0.001) -0.9% (p=1.000) -0.1% (p=1.000)

Table 3.1: Difference and P values for the accuracies resulting from the combination of right wrist and hip data with respect to the accuracie
for the hip and right wrist individually.
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Figure 3.1: The mean accuracy (%) with 95% confidence interval per wear-site, sensor type and epoch length, exact numbers can be
found in Appendix D.
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3.3. Identification of activities
Furthermore, it was investigated whether there was a difference in identification accuracy between the four
randomly assigned short sequences containing specific activities. The combination ”Jump - Lie - Run - Sit”
and ”Box - Kick - Walk - Write” did not result in significantly different accuracies, as did the short sequences
containing ”Cycle - Kick - Rope jump - Run” and ”Jump - Lie - Run - Sit” (p=0.089 and p=0.890, respectively).
All other combinations differ significantly (p ≤0.012).
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Figure 3.3: The mean accuracy (%) with standard deviation and 95% confidence interval of the predictions per short sequence of activities
for measurements from both accelerometers on the right wrist and hip summarized per 0.33 and 0.25 seconds.

Two important performance characteristics of a classification algorithm are precision and recall. Precision
is also known as the positive predictive value and this measure is equal to the ratio of true positives versus all
positives. In this thesis precision therefore denotes how often a specific activity is correctly recognized out of
all the times this activity was predicted. Recall, or sensitivity, refers to the number of activities that are correctly
classified. It is calculated as the percentage of true positives among all predictions made for a certain activity.
The recall and precision for the individual activities trained and validated on adult measurements are shown in
figure 3.4. In this analysis all activities are investigated separately, however it could be acceptable to cluster
some specific activities. One instance is the distinction between sitting and lying. Since both activities are
sedentary, differentiation between the two is less relevant than identifying the difference in lower and upper
body movements. In table 3.2 the changes in precision and recall as a consequence of grouping specific
activities and influence on the overall accuracy are given for a few activities that can be perceived as similar.
The entire overview of how each activity was classified is displayed in confusion matrices for every alternative
in Appendix C.
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Activity
Low noise accelerometer Wide range accelerometer

0.33 s. epochs 0.25 s. epochs 0.33 s. epochs 0.25 s. epochs
Hip Right wrist Hip Right wrist Hip Right wrist Hip Right wrist

Sit or Lie
Prc. 91.5% 84.3% 90.9% 92.8% 88.4% 91.4% 91.8% 89.1%
Rcl. 80.6% 90.6% 90.4% 84.8% 85.5% 85.0% 90.2% 86.5%
Acc. +2.2% +3.0% +1.1% +2.3% +2.4% +2.9% +1.6% +2.3%

Jump or
Rope jump

Prc. 69.2% 72.2% 77.1% 70.7% 80.0% 67.2% 86.4% 69.2%
Rcl. 69.4% 68.2% 75.6% 71.5% 65.0% 67.5% 74.0% 69.2%
Acc. +1.0% +0.2% +0.9% +0.0% +0.3% +0.3% +0.8% +0.0%

Box or Throw
Prc. 68.7% 81.1% 73.5% 80.7% 73.7% 75.9% 80.2% 79.6%
Rcl. 59.1% 62.1% 70.3% 72.9% 73.2% 70.2% 70.1% 71.2%
Acc. +2.3% +1.1% +2.2% +1.4% +2.2% +1.1% +1.2% +1.4%

Correction accuracy +5.5% +4.3% +4.2% +3.7% +4.9% +4.3% +3.6% +3.7%

Table 3.2: Implications of grouping comparable activities.

Number
of
classifications

Low noise accelerometer Wide range accelerometer
0.33 s. epochs 0.25 s. epochs 0.33 s. epochs 0.25 s. epochs

Hip Right wrist Hip Right wrist Hip Right wrist Hip Right wrist

KNN 23688 24237 26054 25825 24349 24118 26094 26008
Thr. 21569 22780 25633 25488 23581 23147 25906 25332
Original 31811 31811 33605 33605 31811 31811 33605 33605

Differences with original classifications
KNN 8123 7574 7551 7780 7462 7693 7511 7597
Thr. 10242 9031 7972 8117 8230 8664 7699 8273

Table 3.3: The amount of classifications made without and with the addition of an unknown class via two different approaches.

3.4. Activity-Intensity identification
For some activities an additional discrimination can be made based on the different intensities at which an ac-
tivity was executed. Various metabolic equivalents (METs) have been assigned to each activity as mentioned
in table 2.1. The eleven activity classes were converted into sixteen classes: Box VPA, cycle MPA, cycle VPA,
jump MPA, jump VPA, kick MPA, kick VPA, lie SB, rope jump VPA, run VPA, sit SB, throw LPA, throw MPA,
walk LPA, walk MPA, write. The Hip’s 0.25 second epoch data produced significantly better results than the
right wrist or 0.33 second epoch measurements, with a mean accuracy for LN of 60.1% and WR of 63.2%
(p≤0.008). Comparing the activity-intensity predictions of the 0.25 second epoch LN and WR hip accelerom-
eter to the same configuration of activity-only predictions shows that the mean accuracy is over 15% lower
when intensities are included in the network training and prediction (p<0.001).

3.5. Categorizing uncertain predictions as ”unknown”
On the 0.25 and 0.33 second epoch length data from the LN and WR accelerometers from the hip and right
wrist it was studied how the classification precision per activity changes when doubtful predicitons would not
be classified. A simple K-Nearest-Neighbours (KNN) machine learning algorithm was constructed to redefine
some predictions as ”unknown” based on their maximal score, an additional output returned by MATLAB’s
classify-function. Additionally, a script was written using a threshold value for the maximal score of 0.775.
This value was was experimentally obtained by changing it iteratively for a subset of measurements and
looking at the resulting overall predictive accuracy and number of excluded classifications. This procedure
thus classified every prediction with a score below the chosen threshold as ”unknown”. The influence of these
two approaches on the precision of the initial classification is shown in figure 3.5. The number of remaining
classifications was also recorded and this can be found for both approaches and all configuration in table
3.3. With exception of the 0.25 second epoch WR right wrist placement, the threshold approach resulted
in significantly better precisions than when no predictions are excluded (p<0.017). The KNN algorithm only
significantly increased the precisions with respect to the original values four out of eight times. For all hip data
and the right wrist’s LN 0.25 second epoch measurements, the threshold method returned significantly higher
precisions than the KNN algorithm. The confusion matrices for all individual sensors and for the predictions
with and without the addition of an unknown class can be found in Appendix C.
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Figure 3.5: The changes in precision per activity with respect to the classification without defining an unknown class for the KNN and the
Threshold (Thr.) algorithms.

3.6. Testing the algorithm on children’s data
The data collected on children were used as validation dataset for a network trained on all eight adult datasets.
The accuracies for each sensor type, placement and epoch length were significantly lower than the accuracies
when validating with an adult data set on an adult data trained network (p <0.001), table 3.4. Also a network
was trained on each of the two children and validated with the other child’s dataset to which the network
was naive. The highest mean accuracy belongs to the 0.25 second epoch data from the right wrist’s WR
accelerometer and was found to be 53.0%, significantly outperforming most other configurations. Only the
right wrist LN 0.25 second epoch data (mean accuracy = 47.1%) and the hip LN 0.33 second epoch (mean
accuracy = 48.1%) yielded no significantly lower results with respect to the best performing sensor (p = 0.219
and p = 0.450, respectively). The accuracies of the low noise 0.25 second epoch hip accelerometer from the
children were compared against those of adults’ predictions obtained when training the LSTM on the same
measurements from one adult. The accuracies of the children’s data are significantly lower with a mean of
40.9% (±20.6, 95% CI: 36.7 - 44.9) as opposed to 53.7% (±22.2, 95% CI:49.5 - 58.0) for the adults’ data set
(p <0.001). When only child data are used for network training and validation, the accuracies (overall average
= 42.5%) are significantly lower (p =0.047) than when the adult trained network, which used more data for
training, is used to classify the children’s measurements (overall average = 44.5%).

Descriptives
of
accuracy

Low noise accelerometer Wide range accelerometer
0.33 s. epochs 0.25 s. epochs 0.33 s. epochs 0.25 s. epochs

Hip Right wrist Hip Right wrist Hip Right wrist Hip Right wrist

Mean 54.1% 45.3% 33.0% 40.1% 54.7% 46.7% 53.1% 29.4%
Std. 24.8 16.4 24.6 17.8 25.3 17.6 23.7 22.9
95% CI (49.3 -58.9) (42.1 - 48.5) (28.1 - 37.8) (36.6 - 43.5) (49.8 - 59.6) (43.3 - 50.1) (48.5 - 57.7) (24.9 - 33.8)

Table 3.4: Mean, standard deviation and 95% CI for the accuracies when classifying data from children on a network trained on adults.

3.7. Effect of more training data on classification accuracy
Seven networks were trained on 0.25 second epoch low noise accelerometer data from the hip sensor, each
with a different number of training data sets, ranging from one to seven. A linear regression analysis was
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performed on the mean accuracies that were obtained after classification of the remaining validation sets
with each network. A correlation coefficient (R2) of 0.9405 (p = 0.016) was found between the mean predic-
tion accuracy and the number of training sets that was used for training the neural network. The plot with
corresponding trendline is included in figure 3.6. The equation for the trendline is: 𝑦 = 0.0327𝑥 + 0.534.

Figure 3.6: Influence of the number of training data on the prediction accuracies of the validation datasets.

3.8. Calculations for data transfer capacity and power demand
For the following calculations it was assumed that the device is programmed to only collect data when the
child is moving, which is estimated to be at most six hours a day. Furthermore it is believed that two days
of accelerometer data yield a sufficient amount of information for research purposes. Calculations were per-
formed for uploading triaxial accelerometer data summarized in 0.25 second epochs, enriched with one HR
measurement per minute to a smartphone. It was calculated that this would result in 518400 accelerometer
data points and 720 HR data points. The accelerometer’s values range between -4096 and +4096, which
means 13 bits are required to store one data point. A value of 255 is the maximum to be stored in 8 bits,
which is sufficient for HR measurements. The required data storage and transfer capacity is therefore 518400
* 13 + 720 * 8 = 6744960 bits, or 6744960 / 1024 = 6586.875 Kbits.

Three wireless methods have been investigated, namely Near Field Communication (NFC), Bluetooth Low
Energy (BLE) and Light-Fidelity (Li-Fi). The maximum transfer speed of NFC is 424 Kbit/s, meaning that it
would take approximately 15.5 seconds to transfer the specified amount of data [11]. NFC tags do not require
power to operate. Through BLE the signal could be sent more continuously, however this requires energy. If
data are transferred with a frequency of 4 Hz, which would take around 8 ms per second1, assuming the mi-
cro controller requires 20 mA while transferring and 5 µA when on standby, the necessary current per second
would be 0.008 * 20 mA + 0.992 * 5µA = 0.165 mA. If two days worth of data would be sent at once, instead
of continuously, the data could be transferred in 6.4 seconds because BLE has a speed of around 1.0 Mbit/s
[24]. However, BLE would require around 4 extra seconds to establish the connection between the device and
the wearable, resulting in an estimated transfer time of 10.4 seconds. Moreover, the current associated with
two days of measurements would then be 10.4 * 20 mA = 208 mA. Li-Fi uses flashing LED lights to transmit a
bar code-like signal to a smartphone camera [21]. One LED can transfer data at a speed of 1550 bit/s when
held at a distance of maximally 5 cm from the smartphone camera [6]. It would thus take 4351.6 seconds
to communicate all measurements from twelve hours to the smartphone when only using one LED. With five
LEDs the transfer time would drop to 870.3 seconds and for 64 LEDs this value would be 68.0 seconds. Each
LED operates on around 20 mA2. Table 3.5 shows the amount of seconds it would cost to transfer one hour
1stackoverflow.com/questions/36725225/how-can-i-estimate-the-power-consumption-of-a-ble-module
2www.allekabels.nl/led-diode/7369/1096839/led-led5gln.html?gclid=EAIaIQobChMI8py0x7jo6wIVmuF3Ch1orQrJEAQYASABEgJzPfD_
BwE

stackoverflow.com/questions/36725225/how-can-i-estimate-the-power-consumption-of-a-ble-module
www.allekabels.nl/led-diode/7369/1096839/led-led5gln.html?gclid=EAIaIQobChMI8py0x7jo6wIVmuF3Ch1orQrJEAQYASABEgJzPfD_BwE
www.allekabels.nl/led-diode/7369/1096839/led-led5gln.html?gclid=EAIaIQobChMI8py0x7jo6wIVmuF3Ch1orQrJEAQYASABEgJzPfD_BwE
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Technique Transfer time (s for 1 hour of data) Connection time (s)

NFC 1.30 -
BLE 0.54 4
Li-Fi: 1 LED 362.63 -
Li-Fi: 5 LEDs 72.53 -
Li-Fi: 64 LEDs 5.67 -

Table 3.5: Seconds of time needed to transmit data from the wearable to a smartphone per hour of collected data.

of measurements for each of the methods.

An expert in the field of electronics was consulted for the estimations regarding the electrical characteristics
of the micro controller unit (MCU) and accelerometer. Performing measurements at 51 Hz with the estimation
that it would take 0.5 ms to read the values causes the MCU and accelerometer to be in high power mode
51 * 0.0005= 2.55% of the time. According to the ShimmerSensing datasheet, the wearable would ask 162
µA in high power mode, 10 µA in low power mode and 2.5 µA in power down mode [15]. Taking 6 hours a
day where the wearable will be active, of which 2.5% in high power mode, gives a daily power consumption,
excluding data transfer, of 461.7 mA. Larger batteries have higher capacities, so a trade-off can be made
regarding the size of the wearable and battery life. For example, a cylindrical lithium ion 18650 battery with a
size of 18*65mm and a capacity of 2600 mAh3 could power the wearable for 2600 / 461.7 = 5.6 days. Another
cylindrical lithium ion battery, the 32650, has dimensions of 32*70mm and 6000 mAh capacity4, meaning it
can power the device for 13.0 days. A different battery delivers not even three days worth of power, but is
considerably smaller with a cuboidal size of 1.0*30*40mm5. For the BLE and Li-Fi technologies, the life ex-
pectancy of the batteries will be less than calculated in this paragraph since these transfer methods require
additional power.

3www.alibaba.com/product-detail/Battery-Lithium-Rechargable-Battery-3-7v_62252618977.html?spm=
a2700.galleryofferlist.0.0.6d473f37yoglox&s=p

4www.alibaba.com/product-detail/Battery-32650-Battery-6000mah-High-Capacity_60812240465.html?spm=
a2700.galleryofferlist.0.0.6d473f37yoglox&s=p

5www.alibaba.com/product-detail/Battery-103040-3-7v-1200mah-Lipo_60764366650.html?spm=a2700.
galleryofferlist.0.0.6d473f37yoglox&s=p

www.alibaba.com/product-detail/Battery-Lithium-Rechargable-Battery-3-7v_62252618977.html?spm=a2700.galleryofferlist.0.0.6d473f37yoglox&s=p
www.alibaba.com/product-detail/Battery-Lithium-Rechargable-Battery-3-7v_62252618977.html?spm=a2700.galleryofferlist.0.0.6d473f37yoglox&s=p
www.alibaba.com/product-detail/Battery-32650-Battery-6000mah-High-Capacity_60812240465.html?spm=a2700.galleryofferlist.0.0.6d473f37yoglox&s=p
www.alibaba.com/product-detail/Battery-32650-Battery-6000mah-High-Capacity_60812240465.html?spm=a2700.galleryofferlist.0.0.6d473f37yoglox&s=p
www.alibaba.com/product-detail/Battery-103040-3-7v-1200mah-Lipo_60764366650.html?spm=a2700.galleryofferlist.0.0.6d473f37yoglox&s=p
www.alibaba.com/product-detail/Battery-103040-3-7v-1200mah-Lipo_60764366650.html?spm=a2700.galleryofferlist.0.0.6d473f37yoglox&s=p


4
Discussion

Before the published results of this research were conceived, some exploratory analyses were performed to
gain better understanding of the data. The implications of these investigations will briefly be discussed before
reviewing the outcomes disclosed in the previous section. Preceding the decision to randomize the order of
activities it was observed that consecutive activities were often confused. Moreover, the order of activities was
alphabetical by default and boxing, alphabetically the first activity label, appeared to be recognized with the
highest accuracy in all cases. When the order of activities was randomized while still forming a full sequence
of eleven activities, accuracies dropped drastically from 85% to around 20%. Therefore it was concluded
that the order-dependency characteristic of LSTM networks1 caused the system to remember these structural
regularities instead of the movement-specific features. Because of the relatively small amount of available
data and the risk of overfitting, two alternatives were considered to work with this neural network property:
Separating the data into individual activities and randomizing the arrangement of these activities or consec-
utively merging the activities and dividing this series over multiple shorter sequences while randomizing the
order of activities within a short sequence. Children are known to move in short bursts rather than for exam-
ple running a marathon. Since the aim of this research is to develop a wearable for children, it was decided
that merging activities would thus be more realistic. The transition periods between individual activities will
comprise a significant portion of the data captured in real life free-living children and an activity identification
algorithm should thus be able to operate adequately when these transitions are present in the data. This is the
approach used to generate all results reported in this thesis. For future research it is important to be aware of
the pitfall of order-dependency, the activities must be randomized to prevent this type of algorithm from simply
learning the order of events rather than movement specific features. Exact reproduction of sequences has no
relevance for this thesis’ intended application of activity recognition in the real world.

4.1. General remarks
Despite trimming the data from some activities, the data set is still unbalanced due to the high prevalence
of kicking. When the activities combined in short sequences were randomly selected, some activities were
picked to occur in two combinations, so these measurements are used twice among all data. This contributed
to the high presence of kicking, since this activity occured in two short sequences. The other reason is that
only long sequences were trimmed, but the full length of the shorter burst activities were included. In hind
sight, a part of the kicking data could have been discarded to get a more equal distribution of data. Kicking
does get recognized with moderate precision, however there are other activities with lower prevalences that
are identified with lower recall than kicking. If the algorithm regularly classifies other movements as kicking,
recall would decrease. Seen the values for recall in figure 3.4 this is not yet an issue with kicking.

4.2. Gyroscope, magnitude and multiple sensors
Using raw gyroscope data does not increase the performance of the proposed LSTM algorithm with respect
to only using three dimensional accelerometer data. If the raw gyrometer data would be used to compute the
actual angular velocities, it could potentially support the differentiation between sitting and lying. This could be
done by establishing a short period of sensor-stationarity to reduce the expanding errors resulting from double
integration [3]. Calculating the actual displacements could affect the classification accuracy of other activities
as well, however as most activities were executed in an upright position the differentiation between activities
should most likely be based on changes in angular velocity, which are also present in raw measurements.
Employing the magnitude of the three accelerometer axes yields relevantly decreased accuracies, since the
accuracy significantly drops between 4.0% and 19.0%. Adding the magnitude of the gyroscope data to this
information continues to produce significantly inferior results. Employing two accelerometers to capture data
on activities does not generate more accurate predictions than using measurements from one accelerometer
1colah.github.io/posts/2015-08-Understanding-LSTMs/
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on either the right hip or the right wrist. This is an unexpected result that is probably due to the method used
to join data from multiple sensors. It is likely there is a better approach to combine measurements from two
sensors, but investigating this was outside the scope of this thesis. However, from these results it can be
concluded that data from one sensor are sufficient for identifying activities. This is also preferable since less
data have to be transferred. A choice thus has to be made between the hip and the right wrist placement.

4.3. Identification of activities
Of the four combinations of activities, only ”Box-Jump-Throw-Walk” generates significantly and relevantly
lower accuracies than the other short sequences. Looking at all classifications done within this sequence,
it becomes obvious that the activities that are most often confused are throwing, classified as kicking (4307
times) or boxing (1898 times), and boxing, predicted as throwing (2740 times). Also, this is the only combi-
nation that shares three activities with other sequences (Box, Jump and Walk) while throwing only appears
in this configuration. Both the hip and right wrist placement confuses throwing mostly with kicking, however
it seems that the right wrist placement is slightly better at distinguishing the two, see Appendix C. It makes
sense that these two are often confused, as the movement pattern apart from the throw or kick itself is fairly
similar. The participants had to jog towards the ball after throwing or kicking, return to their initial position
and have another shot. The fact that the jogging pattern is interrupted by throwing or kicking a ball makes
it probably distinctive from walking or running, but the periodicity of both ball activities is analogous. For the
0.25 second epochs from a wide range accelerometer, precision and recall for throwing are between 75%
and 80%, which is compared to other activities a decent score, see figure 3.4. Despite mixing throwing up
with kicking sometimes, the algorithm is still reasonably capable of recognizing the individual activity. The fact
that boxing and throwing are mixed up can be due to the involvement of the upper body. Even though the
movement itself is quite different, because throwing exists of shorter bursts of the upper body alternated with
a jogging activity whereas boxing is a continuous motion of the upper body, it is possible that the algorithm
acknowledges the relative absence of lower body movements at certain intervals.

Precision and recall have been used to attribute performance of the algorithm for the individual activities.
The bigger picture is that the algorithm can be used for a wearable that motivates children to move more often
by giving them feedback which movements they made. For this application it is therefore more important to
ensure that every time a movement is classified as running the child was in fact running and it is less relevant
to identify every 10 seconds a child spends running. This implies that for this algorithm high precision is fa-
vored over high recall. When studying the results previous to adding an unknown class, it is visible that even
though the WR accelerometer might not perform significantly better, it does recognize certain activities better
than a LN accelerometer. The difference between these types of accelerometers is that the former allows for
measurements of short events with high frequencies, thus explosive burst activities, while LN accelerometers
have a better resolution among lower frequencies, the more sedentary activities, and generally consume less
power2. Albeit not significant, for jumping, cycling and running the WR accelerometer seems to classify with
higher precision than the LN accelerometer. Lying, on the other hand, is most precisely recognized by the
0.25 second LN hip accelerometer. This is thus in accordance with the theory explained before. It would be
interesting to investigate the performance of both sensor types for an increased ratio of jumping, cycling and
running activities. Children are more often sedentary than performing high frequent burst activities, however
the wearable is intended to be in power-down mode when a child is inactive. The ratio of high frequent burst
activities to more sedentary activities that are recorded by the wearable is thus unknown. If there are relatively
a lot of high frequent activities among the measurements, the WR could theoretically significantly outperform
a LN accelerometer. Nonetheless, this cannot be concluded from the outcome of this thesis. From these
results it appears that it does not matter whether a WR or LN accelerometer is used.

From figure 3.4 it is evident that lying, sitting and ropejumping are the hardest activities to identify when
looking at the precision score. However, relevant improvements are made among these classes if clustered
with another comparable activity. The precision of both sedentary activities reaches around 90% and using
a WR accelerometer on the hip both jumping activities get recognized with precisions ≥80.0%, see table 3.2.
Jumping and rope jumping are less often confused for the right wrist than for the hip placement, which is prob-
ably due to the substantial wrist movements involved in spinning the rope. An important question to answer is
thus how much we need to know, since there is a trade-off in distinctiveness and precision, and which clusters
help increase the performance of the algorithm. If it is sufficient to very generally distinguish various activities,
2www.analog.com/en/analog-dialogue/articles/choosing-the-most-suitable-accelerometer-for-your-application-part-2.
html#

www.analog.com/en/analog-dialogue/articles/choosing-the-most-suitable-accelerometer-for-your-application-part-2.html##
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such as being sedentary, walking, running, jumping activities, activities with a ball, etc. the precision for rec-
ognizing such comprehensive classes will increase drastically. It will however remain unknown if a child was
jumping or rope jumping. Because the variety of movements made by children is of interest, the relevance of
identifying activities very specifically is arguably less than having a high precision when categorizing activities
in global clusters. Looking more closely at the specific activities, it can be seen that the right wrist placement
makes for poorer estimations of cycling, rope jumping and sitting but slightly outperforms the hip placement
when it comes to boxing, throwing and walking. Striking is that the precision for writing is comparable for
both wear-sites, but the recall for writing measured on the right wrist is evidently lower. All participants were
right-handed which could have caused the right wrist accelerations during writing to resemble more energetic
movements involving the right hand, as it is often confused with boxing, see Appendix C.

With the activities grouped as described in table 3.2, the precision for recognition of every activity becomes
higher than 80% for multiple combinations of sensor type, placement and epoch length for all of the (grouped)
activities. The precision, accuracy and recall rise even further if activities with a low prediction score are dis-
carded as unknown, see figure 3.5. The 0.33 second epoch length data in particular seems to improve for both
ways of implementing an unknown class, more than the 0.25 second epoch data. Potentially there is greater
uncertainty in predictions among the larger epoch length. This claim is supported because 0.33 second epoch
data are relatively to the original amount of data more frequently classified as ”unknown”, as reported in table
3.3. Furthermore, it can be seen that lying responds the worst to this procedure. From the confusion matrices
in Appendix C it can be derived that this is due to the persistent mix-ups with sitting. The algorithm is repeat-
edly mistakenly convinced that lying is sitting and vice versa. This is not simply due to hesitation, which would
cause lower prediction scores and thus increase precision when a threshold is implemented, but because the
neural network cannot differentiate sufficiently between the two. Also an obvious improvement is seen in the
precision of classifying rope jumping while being the most difficult activity to identify according to the original
data, if lying and sitting are considered a grouped activity. This indicates that the algorithm is generally unsure
when making the prediction of rope jumping rather than being convinced it was something else. Rope jumping
thus occasionally does not show amply pronounced features to be classified with satisfactory confidence.

Despite the fact that omitting inconclusive predictions allows for a significantly better assessment of which
activities indeed were executed, there is now also a lot of data that is not taken into account. Approximately
23.4% and 26.1% of the predictions that were actually correct have on average been classified unknown by
respectively the machine learning and threshold approaches 3.3. Nevertheless, abiding by the same reason-
ing why high precision is preferred over high recall, making more precise and accurate predictions is favored
over more negligently classifying every ten seconds of the day as an activity. It is therefore recommended
to perform a more thorough investigation into an algorithm that can exclude the most ambiguous predictions
without discarding too much of the correctly classified data. The algorithm calculating the time that a child
was active should accordingly be tweaked to ensure that the loss of predictions does not result in a severe
underestimation of the amount of PA.

4.4. Supplementary categorization of intensities
Identifying the activity and intensity based on the triaxial accelerometer data from the hip and right wrist pro-
vided substantially lower accuracies than only classifying activities. Another method for estimating intensity
levels is by measuring the heart rate (HR). Disadvantages of this feature are it’s subjection to emotional dis-
tress and that it exhibits a plateau effect at very high intensities [1]. The former objection can be reversed by
knowing the activity that was executed at the time of measuring the HR. When the child in question is sitting
while simultaneously displaying a high HR, it can be concluded that he or she might have been watching a
thrilling movie. The matter of the plateau effect cannot be abated in the same way, however as this phe-
nomenon only occurs at very high intensities it is not that relevant. That is to say, at high HR it is already
certain that a child is performing VPA and the relevance of the measurements is not affected by missing these
slight deviations within this level of intensity. Also, especially when omitting some classifications based on
a low classification score, the HR data can provide more information on the quantity of physical activity per-
formed by a child. HR measurements can nowadays easily be obtained from a wrist location, putting the right
wrist placement in a favorable position over the hip placement [23],[18].

4.5. Children’s data and quantity of data
Using an algorithm trained on measurements from adults, it can be determined whether a child is sedentary
with sufficient precision. However, the remaining activities are not appropriately being recognized, meaning
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that for the classification of activities performed by children, a network should be used that was trained on
data generated by children. Because age or physical development could apparently be pertinent factors for
variance in accelerometry measurements, it is additionally recommended to collect data over the range of
ages that are of interest for the development of this wearable. Potentially the classifications would become
more accurate if the age or body height of the wearer is known and the smartphone application would classify
measurements by employing a neural network trained on information from children with similar characteristics.
Even though there exists a significant difference between the accuracies found when applying children’s data
to an adult trained network and the outcomes returned by training and testing a network on children data, as
the difference in means is only 2.0%, it is not a relevant distinction. It is essential information that the adult
network was trained on eight data sets, while the child network was trained on one. More data on children will
make for a better performing network, there will be further elaborated on this topic in the following paragraph.

Training the 0.25 second epoch data on the hip’s LN accelerometer with three training sets resulted in a
validation accuracy of 64.8%, figure 3.6. The right and left ankle had no significant difference in performance,
but showed higher accuracies for three training sets. Upon further analysis, it was found that the ankles did
not achieve results that were significantly different from the hip when trained on three data sets (p≤0.745). In
future research it should be considered to examine one ankle alongside the hip and right wrist placements,
with more data for each of the wear-sites. By means of the high correlation coefficient of 0.94 associated with
figure 3.6 it can furthermore be assumed that more data in general would contribute to improved accuracies.

4.6. Comparison with existing research
One study was discovered that applied a pre-trained Convolutional Neural network (CNN) to both an existing
and a real-world data set [5]. The reason for this was that the researchers wanted to evaluate the pre-trained
CNN for realistic circumstances, because the existing data set was thought to under-represent important
challenges present in real-world data. They found that the existing data set was classified with an accuracy
of 91.98% while the realistic measurements only returned an accuracy of 67.51%. Acknowledging that the
LSTM network proposed in this thesis was trained and validated on ”real-world” data, the activity-classification
accuracies achieved by using summarized triaxial accelerometer data from the hip and right wrist are promising
compared to the previously mentioned study.

4.7. Data transfer and power supply implications
It is desired to save two days worth of data before deleting the earliest recordings in order to limit the potential
bias resulting from children who only connect on days that they were relatively active. If the smartphone is
connected to the smartphone with intervals larger than two days, it will take more time to complete the transfer
of data than when data is more often transmitted. Li-Fi technology is infeasible for the intended application
because it will take too long to transfer the predicted amount of data. For larger amounts of data, NFC takes
relatively longer to perform the data transfer than BLE. It is however expected that NFC will be possible at
higher rates in the future [9]. When looking at the time required for the transmission of one hour of data and
taking into account the additional time needed to establish a connection, see table 3.5, NFC is found to be
faster than BLE if the wearable transfers less than 5.26 hours data. There are thus advantages regarding the
transfer times for both techniques, but BLE requires extra power to operate in addition to the considerable
amount of power estimated for the MCU and accelerometer. NFC is thus favored over BLE.

Even when the wearable is equipped with a passive data transfer component, the wearable would last merely
a couple of days with a reasonably sized battery. NFC technology actually allows for energy harvesting. In
this procedure, the power of an active electronic device is used to power the battery of a device that carries a
NFC tag. This is not a fast procedure for charging a battery, but if the wearable would be in close proximity of
a smartphone, for example at nights, it would be possible to recharge it [12]. This is preferred to replacing the
battery every few days or making the wearable disposable, due to user comfort and sustainability constraints
respectively. An additional benefit of NFC technology is that it is inexpensive, at cost of $0.05 to %0.10 USD3.
One more advantage is the associated safety, since data can only be transferred over a range of a couple
of centimeters. The disadvantage of a lengthy smartphone-communication time could be partially solved by
encouraging children to update more regularly or by finding a method that demands less data. Using 0.33
second epoch lengths reduces the time needed for data transfer by almost 25%.

3https://medium.com/blue-bite/your-questions-answered-7-common-misconceptions-about-nfc-9c580fd66635
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Conclusion

With the proposed framework it is possible to identify an activity for every 10 seconds of summarized triaxial
accelerometer data. Based on this research alone, it appears that the most promising way of assessing both
intensity levels and the specific activities performed by free-living adults is through 0.25 second epochs of
right wrist triaxial accelerometer measurements enriched with counts from a HR monitor. This can be done by
creating a scalogram of the accelerometer data, computing GoogleNet activations of this frequency plot and
using this as input for a neural network consisting of a bidirectional Long-Short Term Memory layer with 500
hidden units. Results indicate that the algorithm can distinguish the eleven activities that are part of this thesis,
but the accuracies obtained by only taking the previously mentioned steps are not sufficient. The accuracies
of LN and WR 0.25 second epoch accelerometer data of the right wrist are respectively 74.8% and 74.4%.
The associated precisions per activity range from 54.5% to 82.1% and from 49.1% to 83.3%. The precision for
recognizing the various activities should be minimally 90% for each activity. If the prediction is often incorrect,
children might get demotivated and not use the application as much. High precisions are thus necessary to
contribute to motivating children to move more frequently. If the information is used for research or policy-
making purposes, the classifications should as well be of sufficient quality in order to make valid assumptions.
Achieving the desired precisions will be difficult, but in the researcher’s opinion it is not inconceivable. It is
therefore strongly recommended to carry out future data collection on children over the full range of relevant
ages and to accumulate a lot more data than what was used in this thesis. To improve the performance of the
algorithm, two techniques should be applied: Removing ambiguous classifications and clustering activities for
which the distinction is not relevant.

Discarding classifications with a low predictive certainty is strongly recommended, although additional re-
search is needed to develop a suitable procedure for this. When classifications of right wrist LN measure-
ments with a score below 0.775 are eliminated, an accuracy of up to 84.0% and precisions per activity between
57.8% and 91.5% can be achieved. These results will further increase when specific activities are clustered,
for example sitting and lying down, as both are sedentary. Clustering sitting and lying yields a total accuracy
of 85.4% and the lowest precision would change to 70.1%. Activities should thus be clustered into relevant
groups and classifications with a low certainty should be excluded. Research should be done to determine
which activities are relevant to cluster. A promising cluster is lying down and sitting, since they are often con-
fused and both activities are sedentary and therefore the distinction is not that interesting for the interaction
between the child and the smartphone application or for the policy-making. Moreover, kicking and throwing
are often confused, clustering these would additionally improve the algorithm’s performance. However, it is
debatable whether the latter would form an appropriate cluster since determining physical relevance for dis-
tinguishing specific activities was outside the scope of this thesis. Groups of activities should be carefully
chosen in a way that the beneficial effects of the movements within a cluster are comparable and that these
activities are mixed up by the software.

Not only development of the algorithm will be challenging, also the hardware has to be considered. A bat-
tery life of several days is a drawback of the current concept, since children will have to think about charging
the wearable quite often. If they forget to charge it the wearable will shut down and no measurements are
recorded. This could cause children to lose their motivation to move more frequently and variably. When
selecting the electronics for the end product, there should be focused on a maximal reduction of power con-
sumption. For now, it is advised to use NFC technology as means of transferring the data from the wearable
to a smartphone application. This is because an NFC tag does not require power and it allows for energy
harvesting, thus enabling wireless charging of the wearable’s battery.
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Abstract
Objective
Regular physical activity (PA) is associated with improved mental and physical well-being in children. It is
however approximated that 81% of youth world wide does not achieve the desired amount of activity. Therefore,
the ambition exists to develop a device that intrinsically encourages youth to move more frequently. Because
children additionally need to vary the movements they make, this gadget should register how often children move
at which intensities as well as give information on the diverse movements that are executed by the wearer. For
that reason, this review will give an oversight of the accuracies of different available sensor-types and placements
on the body of children that have been used for PA recording in children.

Methods
The database Web of Science was explored for documents on measuring quantity and/or variety of PA using
wearable devices in children aged 6 to 12 years. A pre-set search string was used to retrieve relevant literature.
Articles were included by means of predetermined exclusion criteria. In the analysis, study objectives, protocols
and outcomes were reviewed, without a statistical analysis.

Results
All documents that turned up were systematically reviewed for eligibility. 34 studies were included after applying
the in- and exclusion criteria on all 295 documents that resulted from the search string. Some research reported
on both investigated characteristics of PA, therefore 30 of the included studies discussed quantity and only 8
reported on variety. From the included literature it was concluded that a triaxial accelerometer (AM) or heart
rate (HR) monitor assesses quantity with the highest accuracy in the case of free-living children. Additionally,
triaxial AMs allow for estimation of motor skill development, ground reaction force (GRF) and combined with
a machine learning algorithm even enable recognition of different movements. The placements of the device on
the body that yield the highest accuracy are the hip and the ankle.

Discussion
From the included documents it became evident that there is often a trade-off between accuracy and cost. Tri-
axial AMs are the most accurate option for assessing quantity and different aspects of variety of PA in children.
Because triaxial AMs are expensive, solutions requiring cheaper technology combined with algorithms facilit-
ating extraction of information with an accuracy equal to triaxial AM measurements should be explored. It
is furthermore recommended to look beyond the devices reviewed in this study and explore more innovative
ways of determining PA intensities and variety of movements made by children. Waist- and ankle-worn sensors
outperformed wrist worn devices based on accuracy, but when taking convenience for the user into account the
wrist placement seems more appropriate.

Keywords: physical activity, children, measurement device, accelerometer, IMU, pedometer, heart rate monitor
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Abbreviations

AEE Activity Induced Energy Expenditure
AM Accelerometer
EE Energy Expenditure
EMG Electromyography
GRF Ground Reaction Force
HR Heart Rate
IMU Inertial Measurement Unit
LPA Light Physical Activity
MET Metabolic Equivalent
MPA Moderate Physical Activity
MVPA Moderate to Vigorous Physical Activity
PA Physical Activity
PM Pedometer
SB Sedentary Behavior
TDEE Total Daily Energy Expenditure
TEE Total Energy Expenditure
VPA Vigorous Physical Activity

1 Introduction

The intention of this review is to contribute to the
development of an easy-to-use, small sized and af-
fordable wearable that will motivate children to be
more active and at the same time can be used to
track movement patterns in children. Physical activ-
ity (PA) is associated with an improved confidence
and a reduction in anxiety, depression and stress [1].
Especially in children the psychosocial benefits of
PA are evident [2]. Even at the age of 5 exposure
to exercise stimulates bone accrual [3]. In addi-
tion to stimulating and maintaining a healthy body
composition, the combination of moving frequently
and healthy eating habits improves the functions of
the heart and vessels, metabolism, bones and im-
mune system [4]. In addition to having individual
consequences, overweight and obesity also pressure
finances in the medical sector [5]. Thus, moving
regularly has a positive influence on both the men-
tal and physical health of youth and their adulthood.

It is recommended for children to move at least
60 minutes a day to remain healthy [6]. More
specifically, children between 5 and 17 years old
should engage in at least one hour of mostly aerobic
Moderate to Vigorous-intensity Physical Activity
(MVPA) per day. Additionally, for a minimum of
three times per week bone and muscle strength,
among others, should be stimulated by performing
Vigorous-intensity Physical Activity (VPA). How-
ever, it is estimated that worldwide 81% of children
aged between 11 and 17 years do not reach sufficient
levels of PA to comply with these recommendations
[7]. Therefore, it is important to stimulate children
to move more frequently and/or more intensely. Be-
sides the amount of time that children spend being
active, it is also important that they do not always
execute the exact same movement. To enable a

favorable muscle and bone development over their
entire body, youth should engage all different body
parts in PA by alternating the movements they
make. This review aims to give insight into the dif-
ferent possible approaches that have been used by
researchers to study two important characteristics
of PA, which are defined as quantity and variety of
the activities performed by youth.

Quantity is an indication of how often and how
intensely people move. This can be calculated using
minutes of being active and determining different
intensity levels of PA. Variety is a more difficult
concept to define and measure. To obtain data on
variety, different activities should be distinguished
from one another. So, jumping, cycling and running
for example should be recognized and characterized
as different categories of movement. This is because
during these activities different bones and muscles
are loaded. Another aspect of these movement is
how well they are executed by the child performing
a certain movement. The ability to correctly perform
a motion depends on the motor skill competence of
the individual child. Which muscles and how these
are used to result in a certain movement can differ
between kids of different ages for use of force and
motions get more gradual and precise when a child
gets older1. Furthermore, it is of importance how
beneficial a certain activity is for bone and muscle
development, or in other words: physical health.
For example, bone growth is stimulated by GRF
(Ground Reaction Force) and peak loading of the
bone [8]. These loads can thus be measured to get
an indication of how beneficial the PA is for the
skeleton.

Sedentary Behavior (SB), Light PA (LPA), Moder-
ate PA (MPA), MVPA or VPA are most commonly
used to describe the intensity of PA. PA intensity
levels can be measured subjectively, by means of
surveys or diaries, and objectively, using motion de-
tecting devices. Self-reported PA has been proven
to have low reliability and validity in children mul-
tiple times [9], [10]. Also parents have been shown to
over- and under-report single activities and therefore
the existing parent questionnaires yield inaccurate
results [11]. It is therefore preferred to use objective
methods to gain information on the quantity and
variety of activity in children, which is why this re-
view is primarily concerned with ways to objectively
and accurately assess PA characteristics in children.
In addition to the different types of available devices,
there also is a choice in location of the device on the
body

Different intensities can be determined by measuring
the Energy Expenditure (EE), which is measured by
breathing through a gas analyser or via examining
urine samples [12]. EE is a result from PA and from
EE it can be observed how many calories are being

1https://www.stanfordchildrens.org/en/topic/default?id=the-growing-child-school-age-6-to-12-years-90-P02278
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burned by the body during which intensities of exer-
cise. PA only forms a part of the daily EE because
the main contributor to EE is the resting EE, among
which the thermal regulation of the body [12]. EE
due to PA is the variable component of the Total EE
(TEE). The rate of EE is called Metabolic Equival-
ent (MET). Since it is not feasible to equip a large
population of children with (portable) breath ana-
lysers during free living conditions, measurements of
EE and METs can solely be used to validate other
measurement devices, such as accelerometers (AM),
pedometers (PM), heart rate (HR) monitors and the
placement of these devices on the body. To relate
activity recorded by these devices to PA intensities,
cut-points for intensity levels are set based upon
METs and EE.

When studying the variety and execution of move-
ments made by children, making observations is
the most common approach. For a systematic way
of conducting and reporting on these observations
when made by humans, multiple surveys have been
developed that focus on different aspects of chil-
drens’ PA. For example, there are questionnaires
created for evaluating the motor skill competences
of children [13] and inquiries on which movements
are often made by children [14]. These examples
require an other individual to watch and report on
children’s PA, meaning it is both a subjective and
an inconvenient procedure for a large-scale invest-
igation. An objective approach for recording the
movements made by children is via optical motion
capture technologies. This method uses camera re-
cordings and special software to gain information on
the pose, the combination of position and orienta-
tion, of different body parts. Additional markers on
the subject’s body might be necessary, however there
are markerless systems available as well2. Despite
the fact that markers are no longer a prerequisite, an
optical system is not feasible for analyses of many
children due to the required set-up. Therefore, it
would be valuable to look into options of tracking
motions using non-optical systems. Some of these
non-optical techniques require an electromagnetic
field, which is also impractical for extensive research.
Measuring inertial data thus poses the best solution
for collecting knowledge on this characteristic.

Especially from the age of six, children are known
to get more involved in organized movements activ-
ities, like team sports or dancing, and become less
interested in creative ones [15]. Since particularly
spontaneous playing and exercise should be encour-
aged to get children to move regularly, it is evident
to stimulate six-year-olds and over to move more
outside their scheduled sports routines. With the
current state of technology it is possible to accur-
ately measure characteristics of PA in children. Even

though the first motion-capture technology was in-
vented during World War I3 and Inertial Measure-
ment Unit (IMU) technology started to evolve in the
1930s [16], only recently technology has developed
sufficiently to allow for small sized and inexpensive
measurement options [17].

Sensor type and placement on the body are sub-
stantial factors to consider when measuring char-
acteristics of movements made by children. Previ-
ously conducted (systematic) reviews have focused
on adults [18] or looked only at the use of an AM
compared against measuring EE [19]. In this system-
atic review, the different approaches for measuring
the quality and variety of PA in children between
the ages of 6 and 12 will be summarized. Addi-
tionally, the accuracy of the different methods will
be reported in order to select the most reliable and
valid option(s) to investigate children’s movements.

2 Methods
The main inclusion criterion was defined as follows:
The objective of the article should be to give in-
formation on the quality of the measurements per-
formed on children by one or multiple types of wear-
able activity monitors. Based upon this criterion, a
few sub inclusion criteria were formulated:

• The research should address where on the body
a certain device was placed

• The research should address the type of meas-
urement device that was used

• The movements made by the participants
should be natural, in a sense that the motions
could also occur in free playing conditions

• Participants should be aged between 6 and 12
years old

Using these criteria, the database Web Of Science
was searched on the 19th of November 2019, us-
ing the search term that can be found in appendix
A. The search settings were set to find only docu-
ments in the English language and included docu-
ments from 1993 and beyond, because that was when
sensors were deemed reliable enough to distinguish
different body postures [20]. Five predetermined
key references ([21], [22], [23], [24], [25]) and ad-
ditionally applying multiple broader search strings
were strategies to investigate whether all relevant
studies were found. Each of the predetermined ref-
erence documents turned up when using the above
mentioned search term. Applying broader search
strategies did not result in more relevant documents.

2https://www.qualisys.com/applications/human-biomechanics/markerless-motion-capture/?gclid=
Cj0KCQiAsbrxBRDpARIsAAnnz_PZk9tn-cNMWUyylwmuIcDsU66npq-CXbN9_1oleIQz7mcyGGz3CksaAtkxEALw_wcB

3https://engt.co/2JUozfA
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The studies were assessed for eligibility by means of
the subsequent exclusion criteria:

• No full text available using TU Delft resources.
• Not available in English language
• Comments, letters, reviews or case reports
• Animal studies
• Measurements were not performed on children

between the age of six and twelve. In case of
research with an age span predominantly in-
side the range and an average age within the
limits of 6.0 to 12.0, the research should not be
excluded based on age.

• The research does not address where on the
body the movement was recorded.

• The research does not specify the type of
sensor that was used.

• No wearable motion sensors were used, e.g.
when only observations or questionnaires were
conducted.

• All participants of the research were part of
a specific patient population, e.g. obese or
Cerebral Palsy.

• The participants were asked to perform a
movement that could be seen as ‘unnatural’,
meaning the movement usually does not occur
in freely playing children, e.g. weight lifiting,
or measurements were performed in an unnat-
ural location, e.g. at high altitude.

• Sensors were used to measure something else
than physical activity, e.g. sleep or respiratory
movements.

• Results do not include measures of the quality
of the data as delivered by the device.

Initially, the irrelevant document types were ex-
cluded from the list of results. Of all other records
the titles and abstracts were screened for eligibility
in accordance with the exclusion criteria. There-
after, the full text of the remaining papers was ana-
lysed. During this phase, documents meeting any
of the exclusion criteria were discarded, while from
the eligible documents relevant data for this study
were obtained. Data that were deemed relevant con-
sisted of: title, author, year of publication, number
of participants, mean age and age-span of the par-
ticipants, gender of participants, type of sensor(s),
location of sensor(s) on body, wear time, research
settings, movements made, what the wearable was
compared against and the results on quality of the
measurement method.

Comparisons between different studies were made by
looking at the measurement device that was used,
the participant’s characteristics, where the sensor
was situated, during what type of activity record-
ings were made, device settings, used cut points and
what the device was compared against to gain a
better interpretation of the (differences in) results.
Since the aim of this study is to provide an overview
of existing literature, no statistical analyses were
performed.

3 Results

The search resulted in a total of 295 documents.
Irrelevant document types were excluded from this
review. Of the remaining 211 documents, titles and
abstracts were screened for eligibility against the
exclusion criteria. The full text of all remaining pa-
pers was analysed. During this phase, relevant data
for this study was obtained while simultaneously
researches meeting any of the exclusion criteria were
discarded. A flowchart on this selection process can
be found in figure 1.

All results are summarized in table 1. Due to very
dissimilar working protocols such as sensor types,
placements, executed activities and outcome meas-
ures, most studies cannot be directly compared to
each other. It was therefore decided it would be
impractical to make a quantitative analysis. In
this qualitative systematic review, multiple studies
containing identical components will be grouped to-
gether in order to get a meaningful verdict on how
quantity and variety of children’s PA can be assessed
most accurately.

Based on the information summarized in table 1
it is obvious that most documents focused on quant-
ity of PA and relatively few on variety in movements.
From the documents that did describe methods for
determining the latter, these approaches often also
allowed for derivation of PA intensity levels. For
solely measuring quantities it is unnecessary to know
the movement that was executed. However, for gain-
ing knowledge on variety in movements a possible
method is to determine which movement was made.
If there is a desire to conclude on motor skill devel-
opment skills with certainty, it is even essential to
know the exact movement that was performed. Be-
cause information on the gender and age is required
in addition to knowing the specific activity that
was executed, determining motor skill competence
on a large-scale in free-living children is probably
impossible. From the results it is evident that move-
ments can be distinguished to a certain extent and
bone loading can be estimated using wearable mo-
tion trackers.

Pedometers
Looking more thoroughly to the individual con-
clusions of the different included studies, several
connections can be made between the different re-
searches. Two important variables for quantification
of PA in children are the sensor type and placement
of the device. When looking at the appropriate-
ness of the different types of available sensors it
becomes evident that there are contradicting res-
ults described in the included studies. Especially
on the topic of using PMs for determining PA levels
there is disagreement in literature: Zeng et al. [26],
Beets et al. [27] and Duncan, S. et al. [28] con-
clude that waist-worn PMs do not provide a reliable
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Figure 1: Flowchart of inclusion process

way for measuring intensity, whereas Trapp et al.
[29], Louie et al. [30], Kilanowski et al. [31] and
Ye et al. [32] suggest that it would offer a good
alternative to HR monitors, uni- or triaxial AMs. A
notable distinction can however be made between
these two groups, all studies reporting PMs to be
inaccurate compared the PM to a uni- or triaxial
AM, whereas the studies that decided in favour of
the PM used EE or observations with beforehand
estimated METs or PA intensity levels as criterion
value. Ye et al. [32] and Kilanowski et al. [31] stated
that the PM and AM correlate better at higher in-
tensities. It is plausible that during the free-living
circumstances no sufficient amount of high intensity
levels were reached. It is therefore also possible that
the negative outcomes are due to the accuracy of the

device the PM was compared against, rather than
the accuracy of the PM itself. If the results of Zeng
et al. [26] are left out of this comparison, for reasons
that will be explained later, another distinction can
be made: Beets et al. [27] and Duncan, S. et al. [28]
tested the PM in free-living circumstances, while
the other studies analyzed instructed activities or
walking and running. It can thus not be ascertained
whether the criterion value, the performed activities
or a combination caused the ambiguity in conclu-
sions on waist-worn PMs. Based on this uncertainty
in literature, it cannot be concluded that waist-worn
PMs present a good alternative to AMs or HR mon-
itors for measuring PA intensity levels.
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Authors
(year)

Objective Criterion Value Conclusion Remarks Setting

Kilanowski
et al. (1999)
[31]

Compare PA quantities
from PM on the left hip
and a triaxial AM on the
right hip

Observations and
estimated intensity
levels

PM, AM and observations were highly correlated for
the combination of classroom and recreational activ-
ities and for only recreational activities, with r>0.94
(P<0.001) for all comparisons. However, for the
lower levels of activity that occurred in the classroom
activities the correlations were lower.

PM and AM yield more accurate
results for higher intensity activ-
ities

Instructed
activities

Louie et al.
(1999) [30]

Validation of a HR mon-
itor, PMs on the ankle,
hip and wrist, a uniaxial
AM on the left hip and a
triaxial AM on the right
hip for determining quant-
ity of PA

EE from indirect
calorimetry

All measurements except for those originating from
the wrist PM showed significant correlations with EE
(P<0.001). The triaxial AM predicted EE most ac-
curately, but HR monitor and the hip-worn PM are
also good predictors. The uniaxial AM performed
worse than the hip PM. Combining the triaxial AM
with the HR monitor resulted in the strongest com-
bination, in which 91.6% of the variance was ex-
plained (P<0.01).

Only boys participated in this
study. A HR monitor, a PM
on the hip or a triaxial AM on
the hip yield comparable results,
but a PM outperforms a uni-
axial AM. Adding HR monitor
improved validity

Instructed
activities

Ott et al.
(2000) [33]

Compare PA quantities
from a uniaxial AM on
right hip, triaxial AM on
the left hip and a HR mon-
itor

Estimated activity
intensities

The triaxial AM showed the highest correlation with
the estimated intensity whereas HR exhibited the
best correlation with METs.

Triaxial AM and HR are better
predictors of respectively Intens-
ity levels and METs then uni-
axial AM

Instructed
activities

Nilsson et al.
(2002) [34]

Compare lower back to
right hip placement of a
uniaxial AM for measur-
ing quantity of PA

No significant difference between both placements for
high and very high intensity levels (P=.58 and P=.17
respectively), only at moderate intensities with 5
second epochs there is a significant effect of the wear
location (P<0.01)

Uniaxial AM on lower back and
right hip yield comparable res-
ults, epoch settings are more im-
portant to take into considera-
tion than placement

Free-living

Hoos et al.
(2003) [35]

Validation of a triaxial
AM on the lower back
for determining quantity
of PA

TDEE from doubly
labeled water
method

TDEE and the triaxial AM worn on the lower back
correlated well with each other (r=0.79 (P<0.01))

Placing a triaxial AM on the
lower back is a valid method for
measuring PA intensity levels in
free-living children

Free-living
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Lanningham-
Foster et al.
(2005) [24]

Validation of inclinomet-
ers and triaxial AMs for
the assessment of posture
allocation

Observations and
EE from indirect
calorimetry

Pants containing two inclinometers positioned on
each mid-thigh and one AM at the lower back could
not distinguish sitting and lying from each other, but
as both are SB it is possible to discriminate SB from
non-SB. Pants counting four inclinometers, two on
the lower thigh and two on the waist, and two AMs
at the lower back did not give any faults when meas-
uring body position. Triaxial AM data correlated
strongly with EE (r>0.97 for all children)

Distinctions between lying, sit-
ting and standing can be made
using a minimum of 4 inclino-
meters, triaxial AM on the lower
back allows for accurate meas-
urement of PA intensities

Lie down,
sitting and
standing

Tanaka et al.
(2007) [36]

Validation of triaxial AM
for assessing quantity of
PA & Comparing domin-
ant wrist to left hip place-
ment

EE from indirect
calorimetry

The correlations found between AM counts and EE
were between 0.878 and 0.932. However, for stair
climbing and ball tossing, predictions derived from
AM counts underestimated EE by over 30%. The
results from the device on the left hip correlated bet-
ter with EE than the data from the one on the wrist.

Left hip placement outperforms
wrist placement in instructed
activities. Stair climbing and
ball toss are hard to measure
with AM on left hip.

Instructed
activities

Hussey et al.
(2009) [37]

Validation of a triaxial
AM on the right hip for as-
sessing quantity of PA

EE from indirect
calorimetry

Correlations between EE and AM counts were lowest
for the slowest walking velocity (r=0.56 (P<0.01))
and highest at 9 km/h (r=0.84 (P<0.01))

Higher correlations for triaxial
AM counts and EE at higher PA
intensity levels

Walking and
running

Krishnaveni
et al. (2009)
[38]

Validation of uniaxial AM
on the right hip

TEE from doubly
labeled water
method

There is no significant relationship between TEE and
uniaxial AM counts

Possibly there is a relationship
with PA intensities

Free-living

Ye et al.
(2010) [32]

Compare PM counts on
left and right hip & Com-
pare PA quantities from
uniaxial AM and PM on
the left hip

Estimated METs PM counts from the two locations were strongly cor-
related, the calculated intra class coefficient was at
least 0.812 (P<0.05). For all speeds PM and AM res-
ults were significantly correlated (r=0.850, r=0.829
and r=0.685 for 4, 6 and 8 km/h (all P<0.05)). The
correlation between PM and AM was higher during
PE (r=0.819. P=<0.05) than at recess (r=0.703,
P=<0.05). At higher speeds PM counts from left
and right hip were less consistent

With increasing speeds the cor-
relation between PM and AM
becpmes weaker, PM might be
less accurate at increased velocit-
ies

Walking and
running

Beets et al.
(2011) [27]

Compare PA quantities
from uniaxial AM and PM
on the right hip

PM consistently underestimates minutes spent in
MVPA when compared to a uniaxial AM

PM and uniaxial AM outcomes
differ

Free-living
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Duncan, S et
al. (2011)
[28]

Compare PA quantities
from a PM and an om-
nidirectional AM worn on
the hip

The PM reported significantly lower MVPA than the
AM, as MVPA was underestimated by 37 to 45%
(P<0.001), also precision of the PM was concluded
to be low because the 95% limits of agreement were
wide with a difference of around 200% between the
lower and upper boundary

PM underestimates MVPA with
respect to omnidirectional AM
counts

Free-living

Pulsford et
al. (2011)
[39]

Validation of uniaxial AM
on the right hip for meas-
uring PA quantities

EE from indirect
calorimetry

Except for jogging, all non-sedentary activities re-
vealed significant relationships with METs and AM
counts (P <0.001). There was a strong association
between AM counts and EE, although sensitivity and
specificity were higher for SB(99% and 97%) and
VPA(95% and 91%) than for LPA(60% and 83%)
and MPA(61% and 76%). Activities in which the up-
per body was more involved, basketball for example,
yielded too low AM counts for their PA level.

Uniaxial AM can predict SB and
VPA with high accuracy, LPA
and MPA can still be predicted
but with lower accuracy. Hip
placement is not suitable for
movements in which the upper
body is more evidently involved

Instructed
activities

Trost et al.
(2011) [21]

Validation of a uniaxial
AM on the right hip for
measuring quantity of PA

EE from indirect
calorimetry

Sensitivity and specificity of SB(100% and 79.3%),
LPA(49.3% and 91.5%), MPA(60.0% and 88.3%),
VPA(73.7% and 93.8%) and MVPA(88.3% and
91.7%) can be accurately distinguished by an uni-
axial AM

There is a relatively low sensitiv-
ity for recognizing LPA and MPA
with a hip mounted uniaxial AM

Instructed
activities

Neugebauer
et al. (2012)
[40]

Validation of biaxial AM
on the right hip for estim-
ating GRF

Force plate data GRF and AM data are positively related with one
another (r=0.967(P<0.001) or (r= 0.877 (P<0.001),
depending on the model)

GRF from walking an running
can be estimated based on hip
acceleration

Walking and
running

Ojiambo et
al. (2012)
[41]

Validation of a uniaxial
AM on the right hip com-
bined with HR monitor-
ing and a triaxial AM on
the right hip for measur-
ing quantity of PA

TEE from doubly
labeled water
method

The uniaxial AM combined with HR monitoring
yields comparable accuracy to triaxial AM, there ex-
ists a significant positive relationship between PA
levels and data from both AMs. Only using a uni-
axial AM does not result in a significant relationship
with EE. The combined data from a uniaxial AM and
HR monitor were a significant predictor of EE, be-
cause adding HR information to uniaxial AM meas-
urements increased the predictive validity, resulting
a correlation coefficient of r=0.61 (P<0.05) between
the tested devices and PA levels. TEE could be pre-
dicted with higher accuracy than AEE.

Both triaxial and uniaxial AM on
the right hip had significant pos-
itive relationships with PA and
TEE, adding HR measurements
could improve accuracy

Free-living
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Routen et al.
(2012) [42]

Compare PA quantities
from right hip and non-
dominant wrist placement
of omnidirectional AM

The total hip AM count was significantly lower than
that of the wrist (P<0.01).

Wrist placement overestimates
PA with respect to hip placement

Free-living

Phillips et al.
(2013) [43]

Compare PA quantities
from wrist and hip place-
ment of a triaxial AM
& Validation of a triaxial
AM and uniaxial AM on
the hip

EE from indirect
calorimetry

When comparing the locations of the triaxial AMs
with each other, hip placement results in a signi-
ficantly higher validity against the criterion value
(r=0.970 (P<0.05)). Measuring at the hip with a
triaxial AM yields an overall higher sensitivity than
when placed on the wrist, while the correlation of
uniaxial AM with EE was equal to that of the tri-
axial AM on the hip. Wrist worn monitors reported
high intensities during Wii games while MET values
were low

Hip placed triaxial AMs are over-
all more accurate than wrist-
worn ones, however a triaxial
AM located at either wrist or
right hip as well as a uniaxial AM
on the hip can validly discrim-
inate between activity intensity
levels. Active gaming is over-
estimated by wrist-worn triaxial
AM

Instructed
activities

Reading et
al. (2013)
[44]

Validation of a triaxial
AM on the right hip for
determining PA quantities

EE from indirect
calorimetry

The AM overestimated the time spent in SB and
LPA but underestimated the occurence of MPA and
VPA. The average MET activity as derived from
EE was significantly higher than what was measured
using AMs. There exists a non linear relationship
between EE and AM counts of intermittent and non-
steady state activities.

Hip placement during active
video gaming, which consists of-
ten of upper body movements

Active video
gaming

Trapp et al.
(2013) [29]

Validation of PM on the
waist for estimating PA
quantities

Observations PMs accurately measure the amount of steps that
are taken. The absolute value of percentage er-
ror between the criterion and measured data was
greatest at the lowest speed.

Higher intensity levels yield more
accurate results for PMs on the
waist

Walking and
running

Rowlands et
al. (2014)
[45]

Compare PA quantities
from wirst and hip place-
ment of a triaxial AM &
Compare uniaxial and tri-
axial AM on the right hip

The triaxial data from both locations correlated
strongly with the uniaxial hip counts. Time spent in
SB had a correlation of >0.87 (P<0.001) and time
in MVPA a correlation of >0.83. In LPA the wrist-
worn triaxial AM only correlated for 0.61 to 0.63
(P<0.001) and the hip-worn triaxial AM dit not have
a significant relation to the uniaxial AM.

There is a difference in triaxial
AM worn on the hip and wrist
for estimations of MVPA (the
most important intensity for the
purpose of this research). Uni-
axial and triaxial AM data of
the right hip differ significantly
in free-living children

Free-living
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Jang et al.
(2015) [46]

Validation of a neural net-
work with triaxial AM
data from the wrist, waist
and ankle for distinguish-
ing different movements

EE from indirect
calorimetry

With a 3-stage network it was possible to categorize
walking with an accuracy of 95.97%, all other activ-
ities could be recognized with an accuracy of over
90%, EE was predicted with an average accuracy of
81.91%

Not only the type of movement
that is made can be identified
from a neural network with tri-
axial AM data as input, also the
PA intensity level can be determ-
ined from triaxial AM data

Instructed
activities

Meyer et al.
(2015) [47]

Validation of a triaxial
AM at the hip for estim-
ating GRF

Force plate data The recordings of a triaxial AM correlated with GRF
(r=0.90(95% CI=0.68-0.97)), however GRF was con-
sistently overestimated by the AM. Tasks with higher
locomotion velocities and landing heights featured
higher GRFs (P <0.001). Walking had the lowest
GRF, followed by jogging and running and landing
tasks had the highest GRF.

GRF can be calculated from tri-
axial AM data, but be careful
of systematical overestimation of
GRF when measured this way.
GRF could potentially generate
information on the type of move-
ment that is executed

Walking,
running and
jumping
activities

Chandler et
al. (2016)
[48]

Validation of a triaxial
AM on the wrist for meas-
uring quantity of PA

HR reserve A wrist-placed triaxial AM can classify SB, LPA, and
MVPA excellently, MPA is a bit more difficult but
can still be classified

Only study with HRR as cri-
terion value

Instructed
activities

Ren et al.
(2016) [49]

Validation of a neural net-
work with triaxial AM
data from the right hip
for distinguishing different
movements

Classification of in-
tensity levels

Overall, activities could be identified with an accur-
acy of 64% and intensity estimation was 92% accur-
ate. Continuous activities were more easy to classify
than the intermittent ones. Some video games were
the hardest to recognize out of all before mentioned
activities. Intensity levels of the video games and
sports and exercise categories got recognized with
the lowest precision.

Triaxial AM data combined with
a machine learning algorithm al-
lows for classifying different ex-
ecuted activities, when the activ-
ities are known beforehand and
PA intensity levels can be accur-
atly determined from this data

Instructed
activities

Bisi et al.
(2017) [50]

Determine whether five
triaxial IMUs can be used
to objectively measure
motor skill development

Observations com-
bined with a survey

Measurements from triaxial IMUs on each ankle,
each wrist and the lower back show an agreement
with motor competence assessed from observations
of at least 77%

Not feasible for large populations Instructed
activities

Canete
Garcia-
Prieto et al.
(2017) [22]

Comparison of uniaxial
AM on the right hip
and HR monitor for de-
termining quantity of PA
& Compare endurance
games and strength games

EE from indirect
calorimetry

There was no significant correlation between uniaxial
AM and EE for strength games (r=0.21 (P=0.574)).
HR correlated better with EE (r=0.71 (P=0.032) for
endurance games and r=0.48 (P=0.026) for strength
games) than a uniaxial AM (r=0.48 (P=0.026) for
endurance games)

The low correlations for AM and
strength games could be due to
the right hip placement of the
AM, while most strength games
involved the upper body and
movements were not noticed by
the device

Free-play
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Gao et al.
(2018) [51]

Validation of a triaxial
AM worn anteriorly on the
waist for estimating neur-
omuscular loading

EMG AM and EMG recordings did not agree with each
other for intensity levels other than SB, the AM
counted more LPA and less MPA than the EMG did.
AM measurements poorly represent neuromuscular
activity

It is currently not possible to de-
rive EMG information from AM
measurements, would this be rel-
evant?

Instructed
activities

Kim et al.
(2018) [52]

Compare PA quantities
from uniaxial AM and tri-
axial AM on the wrist,
comparing waist and wrist
placement of a triaxial
AM

The uniaxial AM showed moderate convergent valid-
ity when compared to both triaxial AMs for MVPA
(r=0.64–0.75),and SB (r=0.45–0.66), but weak con-
vergent validity for assessing LPA. Uniaxial AM con-
sistently overestimated MVPA. Both triaxial AMs
correlated strongly (r0.87)

Uniaxial AM and triaxial AM
data differ, waist and wrist
placed triaxial AM yield compar-
able results

Free-living

Mooses et al.
(2018) [53]

Compare PA quantities
from hip-worn Fitbit Zip
and a triaxial AM

Fitbit Zip overestimated the number of steps and
time in SB and underestimated MVPA with respect
to the triaxial AM. The more active participants
were, the more steps and MVPA were overestim-
ated. When children were sedentary, MVPA was to
a greater extent underestimated.

Fitbit overestimates more on
higher intensity levels and under-
estimates more on lower intensity
levels

Free-living

Zeng et al.
(2018) [26]

Compare PA qunatities
from a PM and triaxial
AM at the waist

There is no significant relationship between the
measured MVPA quantity by the PM and triaxial
AM (r=0.027, P=0.597). Both devices are unreliable
methods for finding PA levels of exergaming children.

The activity monitors were
placed at the waist while active
gaming is mostly done with
the upper body, likely that
movements have been missed

Active video
gaming

Clark (2019)
[23]

Validation of raw triaxial
AM data of the ankle
for assessing quality and
quantity of movement

Observations by
means of an optical
motion tracking
system

Spectral purity-derived movement quality can be
computed from raw triaxial AM data. Differences
in motor competence between children of separte age
groups can be established. Raw accelerometry is fur-
thermore an accurate and valid option for assessing
quantity (absolute variance: <0.001 g, coefficient of
variation: 0.004%, in all axes)

An ankle worn triaxial AM can
be used for accurately determin-
ing quantity and quality of move-
ment

Instructed
activities
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Duncan, M
et al. (2019)
[25]

Comparing placement of
triaxial AMs on both
wrists, dominant waist
and dominant ankle for as-
sessing quantity of PA

EE from indirect
calorimetry

When cycling was included all relations between
MET and AM were significantly weak, except for
the ankle-worn AM which had a moderate relation-
ship (r=0.752 (P<0.01)). When cycling was omitted
from the measurements, correlations improved for all
wear locations. Ankle placement was still associated
the strongest with METs (r=0.790 (P<0.01)

Out of these locations, the ankle
placement can best discriminate
between the different PA intens-
ity levels both with and without
cycling as part of the activities

Instructed
activities
with cyc-
ling, other
lower and
upper body
movements

Kang et al.
(2019) [54]

Validation of wrist worn
Fitbit Charge HR trackers
and triaxial AM on each
wrist for mesuring quant-
ity of PA

EE from indirect
calorimetry

The Fitbit achieved good results in classifying SB
(acc: 80.73%) and weaker results when identifying
LPA (acc: 66.1%) and MVPA (acc: 70.8% ). The tri-
axial AM showed higher accuracy and specificity for
assessing MVPA (acc: 81.9%, sp:94.3%). Omitting
the cycling activity from the data caused all results
to improve further. Dominant and non-dominant
wrist placement yield comparable results.

Triaxial AM is more accurate
than Fitbit, cylcing cannot ac-
curately be measured from wrist
worn sensors

Instructed
activities

Table 1: Results of included articles
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Uniaxial accelerometers
Furthermore, some studies conclude that a uniaxial
AM can achieve results that are comparable to those
of a triaxial AM, like Phillips et al. [43] Pulsford et
al. [39] Trost et al. [21] and Louie et al. [30]. How-
ever, other research, as that conducted by Ojiambo
et al. [41] and Krishnaveni et al. [38] declare that
the previous statement is not true. The difference
between the former and latter group is in what set-
ting the measurements were conducted; Ojiambo et
al. [41] and Krishnaveni et al. [38] both looked at
free-living conditions while the others investigated
uniaxial AMs for instructed activities. All uniaxial
AMs were worn on the right hip except for Louie et
al. [30], who placed them on the left hip. Rowlands
et al. [45] and Kim et al. [52] were more ambigu-
ous on the validity of uniaxial AMs with respect to
triaxial AMs and both declared that SB and MVPA
correlated significantly and strong between both
devices, however this was not the case for LPA. For
reasons similar to those given in the paragraph about
the PM, uniaxial AMs are not proven to provide ac-
curate measurements regarding quantity of PA in
free-moving children. However, Ojiambo et al. [41]
did find a significant relation between EE and the
uniaxial AM when the AM data was combined with
a HR monitor

Fitbits, bi- and triaxial accelerometers and heart
rate monitors
Both studies that investigated a different version
of the Fitbit, Kang et al. [54] and Mooses et al.
[53], concluded that it was not a good predictor for
activity levels other than SB. With the exception
of Zeng et al. [26], all studies that investigated a
triaxial AM (Duncan, M. et al. [25], Hoos et al.
[35], Hussey et al. [37], Tanaka et al. [36], Chandler
et al. [48], Louie et al. [30], Kang et al. [54], Clark
[23], Ojiambo et al. [41], Jang et al. [46], Ren et
al. [49] and Gao et al. [51]) proved that a triaxial
AM on ankle, wrist and waist correlates strongly
with EE and PA intensities and therefore allows to
classify PA levels correctly. Moreover, comparing
the results of Chandler et al. [48] to those of Trost
et al. [21] and Pulsford et al. [39] reveals that a
wrist worn triaxial AM better estimates LPA and
MPA than a uniaxial AM on the right hip. MVPA
is comparable between the two devices. Ott et al.
[33] also showed that a triaxial AM and HR mon-
itor correlate better with METs and PA intensities
than a uniaxial AM. The fact that HR monitoring
provides adequate measurements is supported by
Louie et al. [30] and Canete Garcia-Prieto et al.
[22], the latter even suggested that a HR monitor
functions better than a biaxial AM on the right hip,
assumed based on the higher correlations with EE.
It was furthermore suggested by Louie et al. [30]
and Ojiambo et al. [41] to improve the accuracy of
an AM by combining these data with information
from an HR monitor. Ojiambo et al. [41] proved
this with a combination of a uniaxial AM and HR

monitor, but Louie et al. [30] added the HR monitor
to both uni- and triaxial AM data and reported that
the combination with a triaxial AM resulted in the
strongest correlation with EE. Canete Garcia-Prieto
et al. [22] and Ott et al. [33] even concluded that
solely using HR monitoring allows for an accurate
assessment of PA intensities.

Placement for determination of quantity
A large amount of studies used the wrist, right hip
or waist as placement site, in contrast to the few
studies mounting a sensor on the ankle. Duncan, M.
et al. [25] mounted a triaxial AM on the ankle of
children and concluded that the ankle worn device
discriminated PA levels better than waist and wrist
worn triaxial AMs. The ankle achieved the best
results in both cases, so when cycling was included
and left out of the measurements. Clark [23] was
also able to distinguish different intensities using
an ankle work AM. Louie et al. [30] put a PM on
the ankle and compared it to PMs on the wrist and
waist, the PM at the waist performed best of all
locations, ankle was second. Accuracy could thus
be subjected to the combined effect of sensor type
and placement site. Tanaka et al. [36] also experi-
mented with placement and saw that a triaxial AM
on the dominant wrist lead to a lower performance
than the left hip. Stair climbing and ball toss were
underestimated by both AMs. There was further-
more a difference in omnidirectional AM placement
under free-living conditions found by Routen et al.
[42], who figured out that the total hip count was
significantly lower than the counts from the device
on the non-dominant wrist. According to Nilsson et
al. [34] a uniaxial AM on the hip and lower back
provide results that do not significantly differ from
one another. Ye et al. [32] proved that a PM on
the left hip yields results comparable to the right
hip. Apparently there is a difference between the
ankle, wrists and waist as a location for triaxial and
omnidirectional AMs and PMs, but uniaxial AMs or
PMs placed around the waist produce results that
agree with each other.

Placement for specific activities
Two of the included studies solely investigated active
gaming, but there were more that included active
gaming as one of the instructed activities. Overall,
active gaming activities showed low relationships
with PA intensities, for instance Reading et al. [44]
and Zeng et al. [26]. Upon examination of these
studies, it becomes clear that they chose a waist
placement for their devices. Active gaming, for
example Nintendo Wii, requires movements from
the upper body. The waist underestimated the PA
levels, while devices placed on the wrist overestim-
ated the intensities. For example Phillips et al.
[43], who placed a triaxial AM on the wirst of Wii
playing children, commented that the active gaming
was overestimated by this device. Basketball was
an activity part of the study done by Pulsford et al.
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[39], in this case the uniaxial AM on the right hip un-
derestimated the motions made by the upper body
as well. Therefore the decision for the placements
of the devices was poor for this specific activity.
It would be interesting to test ankle placement f.e.
in active gaming activities or free-living conditions.
Unfortunately, none of the included studies invest-
igated either. Other instances where the type of
activity contributed to the results were reported by
Duncan, M. et al. [25], where higher correlations
were achieved once cycling was taken out of the res-
ults, and Canete Garcia-Prieto et al. [22], where the
strength games involved upper body motions but
the AM was placed on right hip, causing the device
to not sense all movements made.

Measuring variety
When looking at the methods used to assess the vari-
ance of activities performed by children, there ap-
pear to be different aspects that can be considered.
Bone loading was investigated by Neugebauer et
al. [40] and Meyer et al. [47], which is important
for bone development. Bisi et al. [50] and Clark
[23] assessed motor skill development in children.
Lanningham-Foster et al. [24] studied differenti-
ation of body posture, while Jang et al. [46] and
Ren et al. [49] succeeded in identifying the exact
type of mevement that was made. The only facet of
variety in PA that was concluded to be impossible
to determine by an included research was neuromus-
cular loading, as attempted by Gao et al. [26].

Although inclinometers on the thighs and waist can
successfully distinguish lying, sitting and standing
from one another [24], this is not a relevant factor
for this review’s purposes. The sensor types that can
be used for measuring relevant elements of variety
were IMUs [50] and bi- or triaxial AMs [23],[47],[40]
[46],[49]. IMUs were only proven to be useful in de-
termination of motor skill development and biaxial
AMs for finding the GRF, while from triaxial AM
data motor skill development, the GRF and the ex-
act type of movement can be deducted.

Placement for determination of variety
Similar to measuring quantity of PA, the placement
on a child’s body is also important to consider. Mo-
tor skill development can be measured by putting
the triaxial AM on the ankle and the GRF can be
calculated from hip-worn triaxial AM data. For the
identification of movements, both included studies
successfully implemented artificial intelligence pro-
cedures. Important to note are the measurement
protocols used in the two researches, because Jang
et al. [46] needed three sensors, on the wrist, waist
and ankle, whereas Ren et al. [49] only required
one AM on the right hip. All movements that were
made by the participants were chosen previous to
the study.

4 Discussion

Most information on movement patterns in children
can be derived from raw triaxial AM data. The few
studies that investigated triaxial AMs placed on the
ankle of children reported good results for PA quant-
ity derivation, although additional research needs to
be done regarding this placement in free living con-
ditions. Via machine learning, relevant movements
that are made by children can be recognized and mo-
tor skills can be determined from these movements.
Using machine learning to identify specific motions
was done by Ren et al. [49], but their participants
wore a triaxial AM on the hip. Clark [23] succeeded
in determining quality by using a triaxial AM on the
ankle. The possibility of doing both with only one
device should be further analyzed.

Following the recommendations regarding the
amount of PA in children, only MVPA and VPA are
important to determine. Therefore, it is necessary
to find a sensor that can at least distinguish these
intensities accurately. Uniaxial AM and PM show
poorer predictive values for estimating quantities in
free living conditions and in this review no evidence
has been found that these can be used as indicators
for variety of movements. Despite the feasibility of
HR monitoring for determining quantities of PA,
this method is also not capable of delivering inform-
ation appropriate for tracking variety in exercise.
Furthermore, HR responses can also be triggered by
emotional stimuli and for very high PA levels HR
responses will exhibit a plateau effect. HR monit-
ors could however be added to AMs to increase the
predictive validity for measuring PA quantity, but
the clinical relevance of this improvement should be
examined before this decision is made.

One downside of using triaxial AMs is that they
are relatively expensive compared to PMs, uniaxial
AMs and even HR monitors. Even though a tri-
axial AM outperforms the alternatives in the fields
of accuracy and feasibility when measuring quant-
ity and variety of PA in free-playing children, it
still might not be the ’best’ solution for the specific
problem posed in this review due to the associated
high costs. Furthermore, three axes produce a lot
more data than one or two axes. Therefore it is
recommended to look into the possibility of repro-
ducing (raw) triaxial AM data based on biaxial AM
measurements. It is not recommended to use an
uniaxial AM because from this review it was seen
these devices appear to be accurate in lab settings
but this turns out to be incorrect when looking at
the free-living circumstances. A fabricated device
containing a uniaxial AM might thus be wrongfully
validated. Biaxial AMs have been proven to enable
GRF estimation, but none of the included studies
used a biaxial AM to investigate quantity. This
sensor type might offer potential for an accurate
wearable.
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Because affordability is crucial for the intended use
of this review, various alternatives should be con-
sidered. The choice can be made to equip a child
with multiple cheap devices at the same or different
locations on the body, as opposed to a single ex-
pensive gadget. From the results it is evident that
all placements around the waist, including right and
left hip, lower back and anteriorly at the waist, show
comparable accuracy. The one study that compared
a triaxial AM at the waist-location to the ankle,
favored the ankle placement over the former. Wrist
was reported to have lower accuracy in all stud-
ies that compared placements using EE as criterion
value, and studies comparing locations often repor-
ted that the wrist overestimated the AM counts with
respect to the hip. However, the wrist might be the
most convenient location seen the objectives of this
study. For children it is relatively easy to put on a
bracelet that has to be fixated tight enough to not
move independently of the body. Putting a sensor
on the hip would require a belt of some sort, because
clipping it to belt loops would allow for too much
movement by the device. Strapping it on the ankle
is harder to take off and on, it would be a shame if
the device is not used because of that.

Two studies reported that cycling was a difficult
motion for determination of quantity of PA [25],[54].
Since the prototype is meant to be used in The Neth-
erlands, a country that is known for the number of
people that ride bikes, that is inconvenient. Free-
moving children are very likely to bike, but these
biking motions might get unnoticed, systemically
biasing measurements. It is therefore, regardless
which sensor and placement will be chosen in the
end, recommended to investigate ways of compens-
ating this bias.

If motor skills of an individual need to be assessed,
it is required to know the exact movement that
was made. Identification of executed movements
is possible by application of machine learning ap-
proaches. Artificial intelligence algorithms can how-
ever only distinguish beforehand selected activities,
which makes this method probably infeasible to use
in free-living children. Another way of knowing the
executed movement, is if the motions made while
wearing the device are determined beforehand, in-
structed activities for instance. This could be al-
ternated with free play, hereby estimating quantity
from free play, knowing the variety because certain
movements are instructed and learning quality from
the execution of instructed motions. When choos-
ing this manner of collecting data, variety of true
free-living conditions cannot be observed from these
recordings, but this concept potentially allows for
estimation of motor skill development.

A statement made by Nilsson et al. [34] was that
settings of the uniaxial AM are more important
than placement. An important setting of activity

monitors that varied over the studies concerning PA
in children is the epoch length, the frequency at
which data is registered. Since PA in youth is highly
intermittent due to the median bout length of ≥6
seconds for low and medium and even ≥3 seconds
in high intensity activities [55], it is advisable to
choose a relatively short epoch time or high sample
frequency. Longer epochs result in bias, they over-
estimate LPA, MPA and MVPA but underestimate
SB and VPA [56]. In other words, the more extreme
intensity levels are leveled out when using larger
epoch lengths. Due to this effect it is recommended
to measure PA in children with an epoch length of
maximally 5 seconds [56].

Some other relevant topics have not been discussed
in this review. Examples of this are affordability,
size, easiness of use, comfort, appearance and fool-
proofness. This is partially related to user friend-
liness, which is very important because there is no
value in creating a device that no one will use. This
could influence the reliability of the measurements as
well, when children wear the device on an incorrect
location, the recorded information may be biased.

Two additional matters are gender and age. Boys
and girls develop differently, however gender dif-
ferences are not considered. This could also affect
the conclusions drawn on quality of movement from
measurements by the final device. It could be useful
to either uncover the gender of the users or produce
separate toys expecting that boys and girls might
have different preferences regarding the looks of a
gadget. The latter is of course not a certainty and
could actually result in faulty measurements when
the preferences do not correlate with gender. Age
is also an issue because what is considered ’normal’
motor skill development depends on age. It should
thus be known how old the wearer of a specific gad-
get is. These are all considerations that should be
analyzed in detail while conceiving the final design.

This review was conducted to contribute to the
development of a device or toy for children that will
encourage PA and record data for research purposes.
The intended product will be aimed at children aged
between 6 and 12 years. Besides adhering to the
developmental state of the intended users of the
product, the safety is an important feature to take
into consideration as well. A toy with a diameter of
3.2 cm and a length ranging between 2.5 and 5.7 cm
is considered a small toy [57]. It is recommended to
manufacture "small toys" only for children with a
minimum age of 6 years due to choking hazards in
lower ages [58]. Large-scale data on children’s PA
would be useful for research purposes. It might for
example be possible to recognize patterns in move-
ment and work on prevention of overweight and
depression among youth.
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Only currently existing sensors, that are already
being used for the investigated purposes, have been
mentioned in this review. There might be altern-
atives that were not discussed because they have
not yet been used to measure the objectives of this
review. Therefore, it is recommended to not only
fixate on the devices specified in this research, but
also look for instruments that are more innovative
than the accepted methods.

5 Conclusion

Assessing variety is very ambitious, if not impossible,
to achieve in free-living children on a large-scale.
Uniaxial AMs and PMs do not meet the desired
accuracy, according to this review’s results. Bi- or
triaxial accelerometers have potential to gain know-
ledge on quantity of PA, motor skill development,
bone loading and identification of movements. It is
known that triaxial AMs can measure all of these for
instructed activities, however the latter three have
not been investigated in free-living settings by any
of the included documents. Giving instructions for
execution of a certain movement by the wearer is an
alternative to overcome this obstacle. Biaxial AMs
have only been verified for determining GRF, but as
triaxial AMs are expensive it might be worth look-
ing into this option. Although wrist placement yields
lower validity than ankle or waist placements, it is a
more convenient wear-site for children.
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Appendix A: Systematic search
string
((TI=("quality" OR "quantity" OR "variety" OR
"characteristics" OR "features" OR divers* OR
"variation" OR "amount" OR "capacity" OR "fre-
quency" OR intensit* OR measur* OR determin*
OR assess* OR evaluat* OR quantify* OR profil*
OR estimat* OR monitor*) AND TI=(movement*
OR sport* OR exercis* OR activit* OR "physical
activity" OR motion* OR "locomotion" OR “energy
expenditure”) AND (TI=("child" OR "children" OR
"childhood" OR "schoolchild" OR "schoolchildren"
OR "boy" OR "boys" OR "girl" OR "girls" OR
"schoolage" OR "schoolboy" OR "schoolboys" OR
"schoolgirl" OR "schoolgirls" OR "Pediatrics" OR
"Pediatric" OR "Pediatrics" OR "Paediatric" OR
"Paediatrics" OR "schoolchild*" OR "pediat*" OR
"paediat*" OR "youth" OR "youths" OR prepu-
bert* OR "six year old" OR "seven year old" OR
"eight year old" OR "nine year old" OR "ten year
old "OR "eleven year old" OR "twelve year old" OR
"6 year old" OR "7 year old" OR "8 year old" OR
"9 year old" OR "10 year old" OR "11 year old"
OR "12 year old" OR "six years old" OR "seven
years old" OR "eight years old" OR "nine years
old" OR "ten years old" OR "eleven years old" OR
"twelve years old" OR "6 years old" OR "7 years
old" OR "8 years old" OR "9 years old" OR "10
years old" OR "11 years old" OR "12 years old")
NOT AU=Child) AND TI=("sensor" OR "sensors"
OR "imu" OR "imus" OR "inertial measurements"
OR "inertial measurement" OR "accelerometer"
OR "accelerometers" OR acceleromet* OR "gyro-
scope" OR "gyroscopes" OR gyroscop* OR "mag-
netometer" OR "magnetometers" OR magnetomet*
OR “angular velocity” OR “angular velocities” OR
inclino* OR "pedometer" OR "pedometers" OR
"Wearable Electronic Device" OR "Wearable Elec-
tronic Devices" OR "Fitness Tracker" OR "Fit-
ness Trackers" OR "Wearable" OR "Wearables"
OR "Activity Tracker" OR "Activity Trackers" OR
"fitbit" OR "fitbits") NOT TI=(Obese OR obesity
OR overweight OR Autism OR "cerebral Palsy" OR
CF OR "Cystic Fibrosis" OR disease OR diabetes
OR diabetic OR questionnaire OR "observational"))
OR (WC=(sport) AND TI=("quality" OR "quant-

ity" OR "variety" OR "characteristics" OR "fea-
tures" OR divers* OR "variation" OR "amount"
OR "capacity" OR "frequency" OR intensit* OR
measur* OR determin* OR assess* OR evaluat*
OR quantify* OR profil* OR estimat* OR mon-
itor*) AND TI=(movement* OR sport* OR exer-
cis* OR activit* OR "physical activity" OR motion*
OR "locomotion" OR “energy expenditure”)AND
(TI=("child" OR "children" OR "childhood" OR
"schoolchild" OR "schoolchildren" OR "boy" OR
"boys" OR "girl" OR "girls" OR "schoolage" OR
"schoolboy" OR "schoolboys" OR "schoolgirl" OR
"schoolgirls" OR "Pediatrics" OR "Pediatric" OR
"Pediatrics" OR "Paediatric" OR "Paediatrics" OR
"schoolchild*" OR "pediat*" OR "paediat*" OR
"youth" OR "youths" OR prepubert* OR "six year
old" OR "seven year old" OR "eight year old" OR
"nine year old" OR "ten year old "OR "eleven year
old" OR "twelve year old" OR "6 year old" OR
"7 year old" OR "8 year old" OR "9 year old"
OR "10 year old" OR "11 year old" OR "12 year
old" OR "six years old" OR "seven years old" OR
"eight years old" OR "nine years old" OR "ten years
old" OR "eleven years old" OR "twelve years old"
OR "6 years old" OR "7 years old" OR "8 years
old" OR "9 years old" OR "10 years old" OR "11
years old" OR "12 years old") NOT AU=Child)
AND TS=(("sensor" OR "sensors" OR "imu" OR
"imus" OR "inertial measurements" OR "inertial
measurement" OR "accelerometer" OR "acceler-
ometers" OR acceleromet* OR "gyroscope" OR
"gyroscopes" OR gyroscop* OR "magnetometer"
OR "magnetometers" OR magnetomet* OR “angu-
lar velocity” OR “angular velocities” OR inclino*
OR "pedometer" OR "pedometers" OR "Wear-
able Electronic Device" OR "Wearable Electronic
Devices" OR "Fitness Tracker" OR "Fitness Track-
ers" OR "Wearable" OR "Wearables" OR "Activity
Tracker" OR "Activity Trackers" OR "fitbit" OR
"fitbits") NEAR/5(measur* OR method*)) AND
TI=(characteristic* OR assess* OR measur*) NOT
TI=(Obese OR obesity OR overweight OR Autism
OR "cerebral Palsy" OR CF OR "Cystic Fibrosis"
OR disease OR diabetes OR diabetic OR question-
naire OR "observational"))) AND la=english
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B
Scripts

B.1. Reading data
% Karen Rijnders
% Master Thesis Biomedical Engineering - Sports Engineering
% February - September 2020
close all

%% Manually Load Data
saveName = 'IMU_P...'; %Name file after participant

%% Get Data of Left Wrist
% Left wrist Uncalibrated Low Noise Accelerometer data
LW_acc_x_ln = leftWrist_Accel_LN_X_UNCAL;
LW_acc_y_ln = leftWrist_Accel_LN_Y_UNCAL;
LW_acc_z_ln = leftWrist_Accel_LN_Z_UNCAL;

% Left wrist Uncalibrated Wide Range Accelerometer data
LW_acc_x_wr = leftWrist_Accel_WR_X_UNCAL;
LW_acc_y_wr = leftWrist_Accel_WR_Y_UNCAL;
LW_acc_z_wr = leftWrist_Accel_WR_Z_UNCAL;

% Left wrist Uncalibrated Gyroscope data
LW_gyr_x = leftWrist_Gyro_X_UNCAL;
LW_gyr_y = leftWrist_Gyro_Y_UNCAL;
LW_gyr_z = leftWrist_Gyro_Z_UNCAL;

% Left wrist Uncalibrated Magnetometer data
LW_mag_x = leftWrist_Mag_X_UNCAL;
LW_mag_y = leftWrist_Mag_Y_UNCAL;
LW_mag_z = leftWrist_Mag_Z_UNCAL;

% Left Wrist rtc Data
LW_time = leftWrist_Timestamp_Unix_CAL;

%% Get Data of Right Wrist
% Right wrist Uncalibrated Low Noise Accelerometer data
RW_acc_x_ln = rightWrist_Accel_LN_X_UNCAL;
RW_acc_y_ln = rightWrist_Accel_LN_Y_UNCAL;
RW_acc_z_ln = rightWrist_Accel_LN_Z_UNCAL;

% Right wrist Uncalibrated Wide Range Accelerometer data
RW_acc_x_wr = rightWrist_Accel_WR_X_UNCAL;
RW_acc_y_wr = rightWrist_Accel_WR_Y_UNCAL;
RW_acc_z_wr = rightWrist_Accel_WR_Z_UNCAL;

% Right wrist Uncalibrated Gyroscope data
RW_gyr_x = rightWrist_Gyro_X_UNCAL;
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RW_gyr_y = rightWrist_Gyro_Y_UNCAL;
RW_gyr_z = rightWrist_Gyro_Z_UNCAL;

% Right wrist Uncalibrated Magnetometer data
RW_mag_x = rightWrist_Mag_X_UNCAL;
RW_mag_y = rightWrist_Mag_Y_UNCAL;
RW_mag_z = rightWrist_Mag_Z_UNCAL;

% Left Wrist rtc Data
RW_time = rightWrist_Timestamp_Unix_CAL;

%% Get Data of Hip
% Hip Uncalibrated Low Noise Accelerometer data
H_acc_x_ln = Hip_Accel_LN_X_UNCAL;
H_acc_y_ln = Hip_Accel_LN_Y_UNCAL;
H_acc_z_ln = Hip_Accel_LN_Z_UNCAL;

% Hip Uncalibrated Wide Range Accelerometer data
H_acc_x_wr = Hip_Accel_WR_X_UNCAL;
H_acc_y_wr = Hip_Accel_WR_Y_UNCAL;
H_acc_z_wr = Hip_Accel_WR_Z_UNCAL;

% Hip Uncalibrated Gyroscope data
H_gyr_x = Hip_Gyro_X_UNCAL;
H_gyr_y = Hip_Gyro_Y_UNCAL;
H_gyr_z = Hip_Gyro_Z_UNCAL;

% Hip Uncalibrated Magnetometer data
H_mag_x = Hip_Mag_X_UNCAL;
H_mag_y = Hip_Mag_Y_UNCAL;
H_mag_z = Hip_Mag_Z_UNCAL;

% Hip rtc Data
H_time = Hip_Timestamp_Unix_CAL;

%% Get Data of Right or Left Ankle

if exist(rightAnkle_Accel_LN_X_UNCAL) == 1
% Right ankle Uncalibrated Low Noise Accelerometer data
RA_acc_x_ln = rightAnkle_Accel_LN_X_UNCAL;
RA_acc_y_ln = rightAnkle_Accel_LN_Y_UNCAL;
RA_acc_z_ln = rightAnkle_Accel_LN_Z_UNCAL;

% Right ankle Uncalibrated Wide Range Accelerometer data
RA_acc_x_wr = rightAnkle_Accel_WR_X_UNCAL;
RA_acc_y_wr = rightAnkle_Accel_WR_Y_UNCAL;
RA_acc_z_wr = rightAnkle_Accel_WR_Z_UNCAL;

% Right ankle Uncalibrated Gyroscope data
RA_gyr_x = rightAnkle_Gyro_X_UNCAL;
RA_gyr_y = rightAnkle_Gyro_Y_UNCAL;
RA_gyr_z = rightAnkle_Gyro_Z_UNCAL;

% Right ankle Uncalibrated Magnetometer data
RA_mag_x = rightAnkle_Mag_X_UNCAL;
RA_mag_y = rightAnkle_Mag_Y_UNCAL;
RA_mag_z = rightAnkle_Mag_Z_UNCAL;
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% Right ankle rtc Data
RA_time = rightAnkle_Timestamp_Unix_CAL;

elseif exist(leftAnkle_Accel_LN_X_UNCAL) == 1
% Left ankle Uncalibrated Low Noise Accelerometer data
LA_acc_x_ln = leftAnkle_Accel_LN_X_UNCAL;
LA_acc_y_ln = leftAnkle_Accel_LN_Y_UNCAL;
LA_acc_z_ln = leftAnkle_Accel_LN_Z_UNCAL;

% Left ankle Uncalibrated Wide Range Accelerometer data
LA_acc_x_wr = leftAnkle_Accel_WR_X_UNCAL;
LA_acc_y_wr = leftAnkle_Accel_WR_Y_UNCAL;
LA_acc_z_wr = leftAnkle_Accel_WR_Z_UNCAL;

% Left ankle Uncalibrated Gyroscope data
LA_gyr_x = leftAnkle_Gyro_X_UNCAL;
LA_gyr_y = leftAnkle_Gyro_Y_UNCAL;
LA_gyr_z = leftAnkle_Gyro_Z_UNCAL;

% Left ankle Uncalibrated Magnetometer data
LA_mag_x = leftAnkle_Mag_X_UNCAL;
LA_mag_y = leftAnkle_Mag_Y_UNCAL;
LA_mag_z = leftAnkle_Mag_Z_UNCAL;

% Left ankle rtc Data
LA_time = leftAnkle_Timestamp_Unix_CAL;

end

%% Calculate Real rtc for each sensor in Seconds
% rtc = datestr([1]*double(a)./86400+datenum(1970,1,1,0,0,0),'yyyymmddTHH:MM:SS

')
% rtc = unixtime(double(a))
LW_rtc = datetime(uint64(LW_time/1000),'ConvertFrom','posixtime','TimeZone','

Europe/Amsterdam','Format','dd-MMM-yyyy HH:mm:ss');

RW_rtc = datetime(uint64(RW_time/1000),'ConvertFrom','posixtime','TimeZone','
Europe/Amsterdam','Format','dd-MMM-yyyy HH:mm:ss');

H_rtc = datetime(uint64(H_time/1000),'ConvertFrom','posixtime','TimeZone','
Europe/Amsterdam','Format','dd-MMM-yyyy HH:mm:ss');

if exist(RA_time) == 1
RA_rtc = datetime(uint64(RA_time/1000),'ConvertFrom','posixtime','TimeZone'

,'Europe/Amsterdam','Format','dd-MMM-yyyy HH:mm:ss');
elseif exist(LA_time) == 1

LA_rtc = datetime(uint64(RA_time/1000),'ConvertFrom','posixtime','TimeZone'
,'Europe/Amsterdam','Format','dd-MMM-yyyy HH:mm:ss');

end

%% Save everything in a structure
% Left wrist data
IMU.LW.Acc_LN = [LW_acc_x_ln, LW_acc_y_ln, LW_acc_z_ln];
IMU.LW.Acc_WR = [LW_acc_x_wr, LW_acc_y_wr, LW_acc_z_wr];
IMU.LW.Gyr = [LW_gyr_x, LW_gyr_y, LW_gyr_z];
IMU.LW.Mag = [LW_mag_x, LW_mag_y, LW_mag_z];
IMU.LW.rtc = LW_rtc;
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IMU.LW.TimeStamp = LW_time;

% Right wrist data
IMU.RW.Acc_LN = [RW_acc_x_ln, RW_acc_y_ln, RW_acc_z_ln];
IMU.RW.Acc_WR = [RW_acc_x_wr, RW_acc_y_wr, RW_acc_z_wr];
IMU.RW.Gyr = [RW_gyr_x, RW_gyr_y, RW_gyr_z];
IMU.RW.Mag = [RW_mag_x, RW_mag_y, RW_mag_z];
IMU.RW.rtc = RW_rtc;
IMU.RW.TimeStamp = RW_time;

% Hip data
IMU.H.Acc_LN = [H_acc_x_ln, H_acc_y_ln, H_acc_z_ln];
IMU.H.Acc_WR = [H_acc_x_wr, H_acc_y_wr, H_acc_z_wr];
IMU.H.Gyr = [H_gyr_x, H_gyr_y, H_gyr_z];
IMU.H.Mag = [H_mag_x, H_mag_y, H_mag_z];
IMU.H.rtc = H_rtc;
IMU.H.TimeStamp = H_time;

if exist(RA_rtc) == 1
% Right ankle data
IMU.RA.Acc_LN = [RA_acc_x_ln, RA_acc_y_ln, RA_acc_z_ln];
IMU.RA.Acc_WR = [RA_acc_x_wr, RA_acc_y_wr, RA_acc_z_wr];
IMU.RA.Gyr = [RA_gyr_x, RA_gyr_y, RA_gyr_z];
IMU.RA.Mag = [RA_mag_x, RA_mag_y, RA_mag_z];
IMU.RA.rtc = RA_rtc;
IMU.RA.TimeStamp = RA_time;

elseif exist(LA_rtc) == 1
% Left ankle data
IMU.LA.Acc_LN = [LA_acc_x_ln, LA_acc_y_ln, LA_acc_z_ln];
IMU.LA.Acc_WR = [LA_acc_x_wr, LA_acc_y_wr, LA_acc_z_wr];
IMU.LA.Gyr = [LA_gyr_x, LA_gyr_y, LA_gyr_z];
IMU.LA.Mag = [LA_mag_x, LA_mag_y, LA_mag_z];
IMU.LA.rtc = LA_rtc;
IMU.LA.TimeStamp = LA_time;

end

%% Save data
save(saveName);
clear all
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B.2. Segmenting data
%% Raw data per activity can be found in Act.RAW, Epoch data per activity can

be found in Act.EPOCH
% Karen Rijnders
% Master Thesis Biomedical Engineering - Sports Engineering
% February - September 2020
clear all

%% Segmenting data based on real time
for w = 1:8 % Loop over participants

IMU_data = sprintf('IMU_P00%d', w);
Time_data = sprintf('times_P00%d',w);

load(IMU_data)
load(Time_data)

% Create names for placements, activities and sensortypes
placeName = fieldnames(IMU)';
sensorType = [”Acc_LN”, ”Acc_WR”, ”Gyr”, ”Mag”, ”rtc”];
actName = string(who('-file', Time_data))';
Tries = [”First”, ”Second”, ”Third”, ”Fourth”, ”Fifth”];
Epochs = [”OneSecond”, ”HalfSecond”, ”ThirdSecond”, ”FourthSecond”]; % ”

TwoSecond” can be added, also add in loop.

% Define start and stop of individual activities
for r = 1: size(actName,2)

act(r) = {eval(actName(r))};

actStart(r) = {act{1,r}(:,1)};
actEnd(r) = {act{1,r}(:,2)};

end
% Find indices of relevant sensor values
% Initiate empty vector
actInd = [];

if isfield(IMU,'LA') ==1
RTC = {LW_rtc, RW_rtc, H_rtc, LA_rtc};

end

if isfield(IMU,'RA') ==1
RTC = {LW_rtc, RW_rtc, H_rtc, RA_rtc};

end

for i=1:(length(actName)) % find indices of start en end of activities per
sensor
for k = 1:size(act{:,i},1)

for j = 1:length(RTC)
Start = min(find(RTC{j} == actStart{i}(k))); % Start time
Stop = max(find(RTC{j} == actEnd{i}(k))); % End time

actInd{k,i,j} = [Start ; Stop];
end

end
end

% Get Raw data per activity
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for ii = 1: size(actInd,2) % loop over activities
fieldname = actName(ii);
for hh = 1:size(act{:,ii},1)

tries = Tries(hh);
for jj = 1: size(actInd,3) % loop over placements

placement = placeName{jj};
for kk = 1: length(sensorType) % loop over sensortypes

sensorname = sensorType{kk};

Act.RAW.(fieldname).(tries).(placement).(sensorname) = IMU
.(placement).(sensorname)((actInd{hh,ii,jj}(1):actInd{hh
,ii,jj}(2)),:);

end
end

end
end

% 1, 0.5, 0.33 and 0.25 s epochs
for ii = 1: size(actName,2) % loop over activities

fieldname = actName(ii);
for hh = 1:size(act{:,ii},1)

tries = Tries(hh);
for jj = 1: size(actInd,3) % loop over placements

placement = placeName{jj};
for kk = 1: length(sensorType) % loop over sensortypes

sensorname = sensorType{kk};

RTC =Act.RAW.(fieldname).(tries).(placement).rtc; % Find
at which time a certain activity occured for a specific
wearsite

% Make matrix with first column is 1 second epoch etc.
groupEpoch = [];
groupEpoch(:,1) = findgroups(RTC); % 1 s

epoch: Group all data that was measured within the same
second

groupEpoch = [groupEpoch(:,1), zeros(size(groupEpoch,1),3)
];

totalTime = max(groupEpoch(:,1));
for rr = 1: totalTime

indices = find(groupEpoch(:,1) == rr);

% 0.5 s epoch
one = min(indices):floor((max(indices)+min(indices))/2)

;
two = ceil((max(indices)+min(indices))/2):max(indices);
groupEpoch(one,2) = (groupEpoch(one,1)*2)-1;
groupEpoch(two,2) = groupEpoch(two,1)*2;

% 0.33 s epoch
one = min(indices):floor((max(indices)+2*min(indices))

/3);
two = ceil((max(indices)+2*min(indices))/3): floor((2*

max(indices)+min(indices))/3);
three = ceil((2*max(indices)+min(indices))/3):max(
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indices);
groupEpoch(one,3) = (groupEpoch(one,1)*3)-2;
groupEpoch(two,3) = (groupEpoch(two,1)*3)-1;
groupEpoch(three,3) = groupEpoch(three,1)*3;

% 0.25 s epoch
one = min(indices):floor((max(indices)+3*min(indices))

/4);
two = ceil((max(indices)+3*min(indices))/4): floor((2*

max(indices)+2*min(indices))/4);
three = ceil((2*max(indices)+2*min(indices))/4):floor

((3*max(indices)+min(indices))/4);
four = ceil((3*max(indices)+min(indices))/4):max(

indices);
groupEpoch(one,4) = (groupEpoch(one,1)*4)-3;
groupEpoch(two,4) = (groupEpoch(two,1)*4)-2;
groupEpoch(three,4) = (groupEpoch(three,1)*4)-1;
groupEpoch(four,4) = groupEpoch(four,1)*4;

end

for n = 1:size(groupEpoch,2)
epochlength = Epochs(n);
Act.EPOCH.(epochlength).(fieldname).(tries).(placement)

.(sensorname) = ...
splitapply(@(x)mean(x,1), Act.RAW.(fieldname).(

tries).(placement).(sensorname), groupEpoch(:,n)
);

end
end

end
end

end

% Save Data
Name_Data= sprintf('Data_P00%d', w);
save(Name_Data, 'Act')

clear all
end
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B.3. Preparing data
% Karen Rijnders
% Master Thesis Biomedical Engineering - Sports Engineering
% February - September 2020
clear all

%% Preparing Epoch data
for z = 1:8 % Loop over participants

for w = 1:4 % Loop over epochs
dataset = sprintf('Data_P00%d', z);
load(dataset)
epochName = string(fieldnames(Act.EPOCH));

epochname = epochName(w);
sensorType = [”Acc_LN”, ”Acc_WR”, ”Gyr”];
Tries = string(fieldnames(Act.EPOCH.(epochname).kick_3))';
actName = string(fieldnames(Act.EPOCH.(epochname)))';

for i = 1: size(actName,2) % loop over activities
fieldname = actName(i);

for j = 1:length(fieldnames(Act.EPOCH.(epochname).(fieldname)))
% loop over trials

tries = Tries(j);

LW_AccLN{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).LW.
Acc_LN;

LW_AccLN{i,2} = actName(i);

RW_AccLN{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).RW.
Acc_LN;

RW_AccLN{i,2} = actName(i);

H_AccLN{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).H.
Acc_LN;

H_AccLN{i,2} = actName(i);

if isfield(Act.EPOCH.(epochname).(fieldname).(tries), 'RA') ==1
RA_AccLN{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).

RA.Acc_LN;
RA_AccLN{i,2} = actName(i);

end

if isfield(Act.EPOCH.(epochname).(fieldname).(tries),'LA') ==1
LA_AccLN{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).

LA.Acc_LN;
LA_AccLN{i,2} = actName(i);

end

LW_AccWR{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).LW.
Acc_WR;

LW_AccWR{i,2} = actName(i);

RW_AccWR{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).RW.
Acc_WR;

RW_AccWR{i,2} = actName(i);
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H_AccWR{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).H.
Acc_WR;

H_AccWR{i,2} = actName(i);

if isfield(Act.EPOCH.(epochname).(fieldname).(tries), 'RA') ==1
RA_AccWR{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).

RA.Acc_WR;
RA_AccWR{i,2} = actName(i);

end

if isfield(Act.EPOCH.(epochname).(fieldname).(tries),'LA') ==1
LA_AccWR{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).

LA.Acc_WR;
LA_AccWR{i,2} = actName(i);

end

LW_Gyr{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).LW.Gyr;
LW_Gyr{i,2} = actName(i);

RW_Gyr{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).RW.Gyr;
RW_Gyr{i,2} = actName(i);

H_Gyr{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).H.Gyr;
H_Gyr{i,2} = actName(i);

if isfield(Act.EPOCH.(epochname).(fieldname).(tries), 'RA') ==1
RA_Gyr{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).RA.

Gyr;
RA_Gyr{i,2} = actName(i);

end

if isfield(Act.EPOCH.(epochname).(fieldname).(tries),'LA') ==1
LA_Gyr{i,1} = Act.EPOCH.(epochname).(fieldname).(tries).LA.

Gyr;
LA_Gyr{i,2} = actName(i);

end
end

end

LeftWrist = sprintf('LW_P00%d',z);
RightWrist = sprintf('RW_P00%d',z);
Hip = sprintf('H_P00%d',z);
LeftAnkle = sprintf('LA_P00%d',z);
RightAnkle = sprintf('RA_P00%d',z);

save(fullfile('...', epochname, LeftWrist), 'LW_AccWR', 'LW_AccLN', '
LW_Gyr')

save(fullfile('...', epochname, RightWrist), 'RW_AccWR', 'RW_AccLN', '
RW_Gyr')

save(fullfile('...', epochname, Hip), 'H_AccWR', 'H_AccLN', 'H_Gyr')

if exist('LA_AccWR','var') ==1
save(fullfile('...', epochname, LeftAnkle), 'LA_AccWR', 'LA_AccLN',

'LA_Gyr')
end

if exist('RA_AccWR','var') ==1
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save(fullfile('...', epochname, RightAnkle), 'RA_AccWR', 'RA_AccLN'
, 'RA_Gyr')

end
end

clear all
end
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B.4. Reshape, Randomize, Train and Test data with overlap through bootstrapping
% Karen Rijnders
% Master Thesis Biomedical Engineering - Sports Engineering
% February - September 2020
clear all

%% Reshape, Randomize, Train and Test Data
for w = 1:4 % Loop over all epochs

D = dir('...'); % Add direction of folders names after epoch length
epochName = D(w).name;

namePlace = {'H', 'LA', 'LW', 'RA', 'RW'};
nameSensor = {'LN', 'WR', 'Gyr'};
fullnamePlace = {'Hip', 'LeftAnkle', 'LeftWrist', 'RightAnkle', 'RightWrist

'};
numParts = 8; % Number of participants

for i = 1:size(namePlace,2) % Loop over all placements
for s = 1: size(nameSensor,2) % Loop over the sensor types

v = 1;
for j = 1:numParts % Loop over eight participants

placeFolder = fullnamePlace{i};
if exist(fullfile('...')) == 2 % File containing data from all

sensor types for 1 placement and 1 participant
load(fullfile('...')) % This same file

Acc = sprintf('%s_%s', namePlace{i},nameSensor{s});
Acc = eval(Acc); % Fill in values from file in variable Acc
for q = 1: size(Acc,1)

Acc{q,3} = LabelActSequences(Acc{q,2}); % Give
categorical activity labels to the sensor data

end

% Merge data from same activity but at different
% intensity
m=1;
Acc_new = [0, {”str”}];
for q = 1: size(Acc,1)

index = find(string(Acc(:,3))== string(Acc{q,3}));
if isempty(find(string(Acc_new(:,2)) == string(Acc{q

,3})))
Acc_new{m,1} = cat(1,Acc{index,1});
Acc_new{m,2} = Acc{q,3};
m=m+1;

end
end
classes = categories(categorical(string(Acc_new(:,2))));
numClasses = numel(classes);

% Sort in Alphabetical order
[~, ix] = sort(string(Acc_new(:,2)));
Acc_new = Acc_new(ix,:);

% Make non alphabetical order for all types and epochs,
% P003 did not have rope skipping data (10 activities
% total in stead of 11)
if w == 1 && j==1 && s ==1 && i==1
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ix11 = randperm(11);
elseif w == 1 && j==3 && s ==1 && i==1

ind11 = find(ix11 == 11);
ix10 = ix11;
ix10(ind11) = [];
ix10 = squeeze(ix10);

end

if j == 3
Acc_new = Acc_new(ix10,:);

else
Acc_new = Acc_new(ix11,:);

end

% Devide into groups of 4 activities, with one
% activity also present in the next group
numActs = 4;
numGroups = ceil((size(Acc_new,1)+numActs)/numActs);
for b = 1:13

for r = 1:numGroups
k = r*numActs;
if r ==1

temp = Acc_new(k-numActs+1:k,:);
elseif r ==2

temp = Acc_new(k-numActs:k-1,:);
elseif r==3

temp = Acc_new(k-numActs-1:k-2,:);
else

temp = [Acc_new(k-numActs-2:end,:); Acc_new
(1,:)];

end
randIdx = randperm(size(temp,1));

Seqs{r,1} = temp(randIdx,:);
end

% Make the labels into sequences of this label,
% matching the length of the sequences of sensor
% data
for r = 1:size(Seqs,1)

m=0;
for c = 1: size(Seqs{r,1},1)

num = size(Seqs{r,1}{c,1},1);
k = j*numGroups;
X{v,b}(1:3, m+1:m+num) = Seqs{r,1}{c,1}';
Y{v,b}(1, m+1:m+num) = repmat(categorical(Seqs{

r,1}{c,2}), [num , 1]);
m = m+num;

end
v = v+1;

end
end

end
end

% Remove empty cells
index = cellfun(@isempty, X) == 0;
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X = X(index);
Y = Y(index);

% Save data
save(fullfile('...'), 'X', 'Y', 'b', 'numGroups', 'numActs', '

classes') % Save the Reshaped & Randomized data with overlap
clear X
clear Y

% Make scalograms from continuous wavelet transforms and get
activations

if exist('...') == 0 % If the file with Googlenet activations do
not yet exist, compute googlenet activations

if epochName == FourthSecond
windowLength = 40;
windowStep = 10;

elseif epochName == ThirdSecond
windowLength = 30;
windowStep = 8;

elseif epochName == HalfSecond
windowLength = 20;
windowStep = 5;

elseif epochName == OneSecond
windowLength = 10;
windowStep = 3;

end

% Separate data in 10 sconds window with 7-8 second overlap
[X_new, Y_new] = SlidingWindow_FT(X, Y, windowLength,

windowStep);
[numSeqs, numFrames] = size(X_new);

% Load google net and compute its activations on the
% scalogram data
netCNN = googlenet;
poolLayer = ”pool5-7x7_s1”;

for k = 1:numSeqs % Loop over participants
for j = 1:numFrames

if isempty(X_new{k,j}) ==0
[feats, labs] = CreateCFS_SW_3D(X_new{k,j}, Y_new{k

,j});
Labels{k,1}(:,j) = labs;
sequences{k,1}(:,j) = activations(netCNN,feats,

poolLayer ,'OutputAs', 'columns');
end

end
end

% Save file with googlenet activations
save('...', 'Labels', 'sequences')

else
% If file with googlenet activations already exists, load
% this file
load('...')
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end

% Bootstrap data to create all combinations of Train and Test
% data with ratio 7:1
for p = 1:numParts

if exist('...') == 2 % if file containing the accuracies
already exists, skip the rest of the loop
continue

else

% Get indices with data per participant
temp = [p:numParts:numParts*b];
iEnd = numGroups*temp;
iStart = iEnd - numGroups+1;
i = [];
for k = 1:b

i = [i, iStart(k):iEnd(k)];
end

% Divide over Train and Test dataset
sequencesTest = sequences(i,1);
sequencesTrain = sequences(setdiff(1:end,i),1);
LabelsTest = Labels(i,1);
LabelsTrain = Labels(setdiff(1:end,i),1);

numClasses = numel(classes);
numFeatures = size(sequencesTrain{1},1);
miniBatchSize = numParts-1;

% Set up neural networ layers
layers = [

sequenceInputLayer(numFeatures,'Name', 'input')
bilstmLayer(500,'OutputMode','sequence','Name','

bilstm_1')
dropoutLayer(0.5,'Name','drop')
fullyConnectedLayer(numClasses,'Name','fc')
softmaxLayer('Name','softmax')
classificationLayer('Name','classification')];

options = trainingOptions('adam', ...
'MiniBatchSize',miniBatchSize, ...
'InitialLearnRate',1e-4, ...
'MaxEpochs', 20, ...
'ExecutionEnvironment', 'cpu', ...
'GradientThreshold',2, ...
'Plots','training-progress', ...
'Shuffle', 'every-epoch',...
'Verbose',false);

% Train network
[netLSTM,info] = trainNetwork(sequencesTrain, LabelsTrain,

layers,options);
clear sequencesTrain LabelsTrain

% Validate network using test datasets
for k = 1:size(sequencesTest,1)

[YPred{i(k),1}, scores{i(k),1}] = classify(netLSTM,



B.4. Reshape, Randomize, Train and Test data with overlap through bootstrapping 66

sequencesTest{k,1}, 'MiniBatchSize', miniBatchSize);
accuracy(k) = mean(YPred{i(k)} == LabelsTest{k,1});

end

% Save file containing accuracies for one participant with
% one sensor type at one placement.
save('...', 'YPred', 'scores', 'accuracy', 'LabelsTest', '

sequencesTest');
end

end
end
clear all

end
end
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B.5. Support functions
B.5.1. CreateCFS_SW_3D
function [feats, lab] = CreateCFS_SW_3D(Signals, Labels)

data = Signals;
labels = string(Labels);

% Separate triaxial data into three individual axes
datax = data(1,:);
datay = data(2,:);
dataz = data(3,:);

% Compute continuous wavelet transform and concatenate the data of
% the three axes
signalLength = size(datax,2);
fbx = cwtfilterbank('SignalLength',signalLength,'VoicesPerOctave',12);
fby = cwtfilterbank('SignalLength',signalLength,'VoicesPerOctave',12);
fbz = cwtfilterbank('SignalLength',signalLength,'VoicesPerOctave',12);

cfsx = abs(fbx.wt(datax));
cfsy = abs(fby.wt(datay));
cfsz = abs(fbz.wt(dataz));
cfs = cat(1, cfsx, cfsy, cfsz);

% Make scalogram image of wavelet transform
im = ind2rgb(im2uint8(rescale(cfs)), jet)*255;

% Use mode of activities present in one scalogram (10 seconds of data) to
% label the window
[classes,~,map] = unique(labels);
modeClass = classes(mode(map));

% Make sure image fits the Googlenet input layer requirements
feats = imresize(im,[224 224]);
lab = categorical(modeClass);
end

B.5.2. LabelActSequences
function Label = LabelActSequences(var)
var = string(var);

if startsWith(var, ”box”) == 1
Label = categorical(”box”);

elseif startsWith(var, ”walk”) == 1
Label = categorical(”walk”);

elseif startsWith(var, ”run”) == 1
Label = categorical(”run”);

elseif startsWith(var, ”kick”) == 1
Label = categorical(”kick”);

elseif startsWith(var, ”throw”) == 1
Label = categorical(”throw”);
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elseif startsWith(var, ”ropejump”) == 1
Label = categorical(”ropejump”);

elseif startsWith(var, ”jump”) == 1
Label = categorical(”jump”);

elseif startsWith(var, ”cycle”) == 1
Label = categorical(”cycle”);

elseif startsWith(var, ”lie”) == 1
Label = categorical(”lie”);

elseif startsWith(var, ”sit”) == 1
Label = categorical(”sit”);

elseif startsWith(var, ”write”) == 1
Label = categorical(”write”);

end
end

B.5.3. SlidingWindow_FT
function [signalsOut, labelsOut] = SlidingWindow_FT(signal, labels,

windowLength, windowStep)
signalsOut = {};
labelsOut = {};
j = 1;

for i = 1: size(signal,1)
records = size(signal{i,1},2);
windowMax = floor(records/windowStep)*windowStep;

% Begin at first index of data, remainders that do not complete a
% window are removed
for k = 0:windowStep:windowMax

if k+windowLength < windowMax
signalsOut{i, j} = signal{i,1}(:,(k+1):(k+windowLength));
labelsOut{i, j} = labels{i,1}(1,(k+1):(k+windowLength));
j = j+1;
end

end
j = 1;

end
end
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Figure C.1: 1 second epoch, LN accelerometer, Hip 
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Figure C.2: 1 second epoch, LN accelerometer, Left ankle 



C.1. 1 Second Epoch 72 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.3: 1 second epoch, LN accelerometer, Left wrist 



C.1. 1 Second Epoch 73 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.4: 1 second epoch, LN accelerometer, Right ankle 



C.1. 1 Second Epoch 74 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.5: 1 second epoch, LN accelerometer, Right wrist 



C.1. 1 Second Epoch 75 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.6: 1 second epoch, WR accelerometer, Hip 



C.1. 1 Second Epoch 76 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.7: 1 second epoch, WR accelerometer, Left ankle 



C.1. 1 Second Epoch 77 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.8: 1 second epoch, WR accelerometer, Left wrist 



C.1. 1 Second Epoch 78 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.9: 1 second epoch, WR accelerometer, Right ankle 



C.1. 1 Second Epoch 79 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.10: 1 second epoch, WR accelerometer, Right wrist 
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Figure C.11: 0.5 second epoch, LN accelerometer, Hip 
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Figure C.12: 0.5 second epoch, LN accelerometer, Left ankle 
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Figure C.13: 0.5 second epoch, LN accelerometer, Left wrist 
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Figure C.14: 0.5 second epoch, LN accelerometer, Right ankle 
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Figure C.15: 0.5 second epoch, LN accelerometer, Right wrist 



C.2. 0.5 Second Epoch 69 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.16: 0.5 second epoch, WR accelerometer, Hip 



C.2. 0.5 Second Epoch 70 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.17: 0.5 second epoch, WR accelerometer, Left ankle 



C.2. 0.5 Second Epoch 71 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.18: 0.5 second epoch, WR accelerometer, Left wrist 



C.2. 0.5 Second Epoch 72 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.19: 0.5 second epoch, WR accelerometer, Right ankle 



C.2. 0.5 Second Epoch 73 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.20: 0.5 second epoch, WR accelerometer, Right wrist 



C.3. 0.33 Second Epoch 74 
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Figure C.21: 0.33 second epoch, LN accelerometer, Hip 



C.3. 0.33 Second Epoch 75 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.22: 0.33 second epoch, LN accelerometer, Left ankle 



C.3. 0.33 Second Epoch 76 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.23: 0.33 second epoch, LN accelerometer, Left wrist 



C.3. 0.33 Second Epoch 77 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.24: 0.33 second epoch, LN accelerometer, Right ankle 



C.3. 0.33 Second Epoch 78 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.25: 0.33 second epoch, LN accelerometer, Right wrist 



C.3. 0.33 Second Epoch 79 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.26: 0.33 second epoch, WR accelerometer, Hip 



C.3. 0.33 Second Epoch 80 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.27: 0.33 second epoch, WR accelerometer, Left ankle 



C.3. 0.33 Second Epoch 81 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.28: 0.33 second epoch, WR accelerometer, Left wrist 



C.3. 0.33 Second Epoch 82 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.29: 0.33 second epoch, WR accelerometer, Right ankle 



C.3. 0.33 Second Epoch 83 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.30: 0.33 second epoch, WR accelerometer, Right wrist 



C.3. 0.33 Second Epoch 84 
 

 

C.3.1. Hip and right wrist: 2 placements 
 
 
 
 

Figure C.31: 0.33 second epoch, LN accelerometer, Hip & Right wrist 



C.3. 0.33 Second Epoch 85 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.32: 0.33 second epoch, WR accelerometer, Hip & Right wrist 



C.3. 0.33 Second Epoch 86 
 

 

C.3.2. Hip and right wrist: Activity - Intensity 
 
 
 
 
 

 
 

Figure C.33: 0.33 second epoch, LN accelerometer, Hip 



C.3. 0.33 Second Epoch 87 
 

 
 
 
 
 
 
 
 

 
 

 

Figure C.34: 0.33 second epoch, LN accelerometer, Right wrist 



C.3. 0.33 Second Epoch 88 
 

 
 
 
 
 
 
 
 

 
 

 

Figure C.35: 0.33 second epoch, WR accelerometer, Hip 



C.3. 0.33 Second Epoch 89 
 

 
 
 
 
 
 
 
 
 

 
 

 

Figure C.36: 0.33 second epoch, WR accelerometer, Right wrist 



C.3. 0.33 Second Epoch 90 
 

 

C.3.3. Hip and right wrist: ”Unknown” class with KNN algorithm 
 
 
 
 

Figure C.37: 0.33 second epoch, LN accelerometer, Hip, Unknown with KNN 



C.3. 0.33 Second Epoch 91 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.38: 0.33 second epoch, LN accelerometer, Right wrist, Unknown with KNN 



C.3. 0.33 Second Epoch 92 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.39: 0.33 second epoch, WR accelerometer, Hip, Unknown with KNN 



C.3. 0.33 Second Epoch 93 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.40: 0.33 second epoch, WR accelerometer, Right wrist, Unknown with KNN 



C.3. 0.33 Second Epoch 94 
 

 

C.3.4. Hip and right wrist: ”Unknown” class with threshold 
 
 
 
 

Figure C.41: 0.33 second epoch, LN accelerometer, Hip, Unknown with threshold at 0.775 



C.3. 0.33 Second Epoch 95 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.42: 0.33 second epoch, LN accelerometer, Right wrist, Unknown with threshold at 0.775 



C.3. 0.33 Second Epoch 96 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.43: 0.33 second epoch, WR accelerometer, Hip, Unknown with threshold at 0.775 



C.3. 0.33 Second Epoch 97 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.44: 0.33 second epoch, WR accelerometer, Right wrist, Unknown with threshold at 0.775 



C.4. 0.25 Second Epoch 98 
 

 

C.4. 0.25 Second Epoch 
 
 
 
 

Figure C.45: 0.25 second epoch, LN accelerometer, Hip 



C.4. 0.25 Second Epoch 99 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.46: 0.25 second epoch, LN accelerometer, Left ankle 



C.4. 0.25 Second Epoch 100 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.47: 0.25 second epoch, LN accelerometer, Left wrist 



C.4. 0.25 Second Epoch 101 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.48: 0.25 second epoch, LN accelerometer, Right ankle 



C.4. 0.25 Second Epoch 102 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.49: 0.25 second epoch, LN accelerometer, Right wrist 



C.4. 0.25 Second Epoch 103 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.50: 0.25 second epoch, WR accelerometer, Hip 



C.4. 0.25 Second Epoch 104 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.51: 0.25 second epoch, WR accelerometer, Left ankle 



C.4. 0.25 Second Epoch 105 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.52: 0.25 second epoch, WR accelerometer, Left wrist 



C.4. 0.25 Second Epoch 106 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.53: 0.25 second epoch, WR accelerometer, Right ankle 



C.4. 0.25 Second Epoch 107 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.54: 0.25 second epoch, WR accelerometer, Right wrist 



C.4. 0.25 Second Epoch 108 
 

 

C.4.1. Hip and right wrist: 2 placements 
 
 
 
 

Figure C.55: 0.25 second epoch, LN accelerometer, Hip & Right wrist 



C.4. 0.25 Second Epoch 109 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure C.56: 0.25 second epoch, WR accelerometer, Hip & Right wrist 



C.4. 0.25 Second Epoch 110 
 

 

C.4.2. Hip and right wrist: Activity - Intensity 
 
 
 
 
 

 
 

Figure C.57: 0.25 second epoch, LN accelerometer, Hip 



C.4. 0.25 Second Epoch 111 
 

 
 
 
 
 
 
 
 

 
 

 

Figure C.58: 0.25 second epoch, LN accelerometer, Right wrist 



 

 
 

 
 

 

Figure C.58: 0.25 second epoch, WR accelerometer, Hip 



 

C.4. 0.25 Second Epoch 113 

 
 
 

 

 
 

 
Figure C.58: 0.25 second epoch, WR accelerometer, Right wrist 



 

 
 

  
 

 



 

 
 
 
 
 
 
 
 
 
 

 
 



 

 
 
 
 
 
 
 
 
 
 

 
 



 

 
 
 
 
 
 
 
 
 
 

 
 



 

 
 

  
 

 



 

 
 
 
 
 
 
 
 
 
 

 
 



 

 
 
 
 
 
 
 
 
 
 

 
 



 

 
 
 
 
 
 
 
 
 
 

 
 



D
Detailed results

Accuracies for all five wear-sites and four epoch lengths

Placement Low noise accelerometer
1.0 s. epochs 0.5 s. epochs 0.33 s. epochs 0.25 s. epochs

Hip 31.2 ±22.7 (29.0 - 33.4) 52.9 ±22.9 (50.7 - 55.1) 65.3 ±18.9 (63.5 - 67.1) 76.1 ±19.8 (74.2 - 78.0)

Left ankle 21.7 ±16.4 (19.5 - 23.9) 59.2 ±21.1 (56.3 - 62.1) 60.1 ±22.5 (57.0 - 63.1) 65.1 ±21.4 (62.2 - 68.0)

Left wrist 24.9 ±20.3 (22.9 - 26.9) 49.1 ±22.5 (47.0 - 51.3) 67.2 ±20.5 (65.2 - 69.2) 71.7 ±17.7 (70.0 - 73.4)

Right ankle 21.0 ±16.2 (18.8 - 23.2) 52.2 ±28.3 48.3 - 56.1) 71.1 ±20.2 (68.4 - 73.9) 66.2 ±22.2 (63.2 - 69.2)

Right wrist 28.7 ±21.8 (26.6 - 30.8) 52.6 ±23.4 (50.4 - 54.9) 69.5 ±21.6 (66.3 - 70.5) 74.7 ±14.3 (73.3 - 76.0)

Wide range accelerometer
1.0 s. epochs 0.5 s. epochs 0.33 s. epochs 0.25 s. epochs

Hip 32.4 ±23.5 (30.2 - 34.7) 56.2 ±22.8 (54.0 - 58.4) 69.5 ±17.1 (67.8 - 71.1) 78.8 ±13.3 (77.5 - 80.1)

Left ankle 25.3 ±22.2 (22.3 - 28.3) 63.9 ±22.3 (60.8 - 66.9) 68.4 ±19.3 (65.7 - 71.0) 66.2 ±21.8 (63.2 - 69.1)

Left wrist 24.2 ±19.9 (22.3 - 26.1) 43.1 ±22.0 (40.9 - 45.2) 62.9 ±24.7 (60.5 - 65.2) 69.4 ±16.6 (67.8 - 71.0)

Right ankle 24.0 ±18.9 (21.4 - 26.6) 62.0 ±25.8 (58.5 - 65.5) 70.8 ±21.3 (67.9 - 73.7) 70.0 ±17.4 (67.5 - 72.2)

Right wrist 21.9 ±18.1 (20.2 - 23.7) 55.5 ±20.9 (53.5 - 57.6) 69.0 ±21.2 (67.0 - 71.1) 74.0 ±16.6 (72.4 - 75.6)

Table D.1: The mean accuracy (%) with standard deviation and 95% confidence interval per wear-site, sensor type and epoch length.
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Accuracies for gyroscope and magnitude data

Operation
Low noise accelerometer Wide range accelerometer

0.33 s. epochs 0.25 s. epochs 0.33 s. epochs 0.25 s. epochs
Hip Right wrist Hip Right wrist Hip Right wrist Hip Right wrist

Gyroscope
61.5 ±20.9 59.9 ±20.6 69.4 ±18.3 59.1 ±21.4 67.3 ±17.1 67.5 ±20.5 74.3 ±17.8 68.5 ±20.4
(59.5 - 63.5) (57.9 - 61.8) (67.6 - 71.2) (57.0 - 61.2) (65.4 - 69.2) (65.5 - 69.4) (72.6 - 76.0) (66.5 - 70.4)
p = 0.049 p<0.001 p<0.001 p<0.001 p = 0.381 p = 0.680 p = 0.002 p<0.001

Magnitude
59.1 ±20.8 57.5 ±24.0 64.4 ±19.5 70.7 ±19.8 50.3 ±21.9 50.1 ±20.1 64.9 ±21.0 50.3 ±18.6
(57.1 - 61.1) (55.2 - 59.8) (62.5 - 66.3) (68.8 - 72.7) (48.2 - 52.4) (48.2 - 52.1) (62.9 - 66.9) (48.5 - 52.1)
p<0.001 p<0.001 p<0.001 p = 0.021 p<0.001 p<0.001 p<0.001 p<0.001

Gyroscope
enriched
magnitudes

53.8 ±23.2 52.5 ±22.7 68.7 ±19.3 55.9 ±22.0 62.5 ±20.5 58.4 ±18.9 71.3 ±18.8 60.4 ±20.0
(51.5 - 56.0) (50.3 - 54.7) (66.8 - 70.5) (53.7 - 58.0) (60.5 - 64.5) (56.5 - 60.2) (69.5 - 73.1) (58.5 - 62.3)
p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001

Table D.2: The mean accuracy (%) with standard deviation and 95% confidence interval and significance with respect to accelerometer-
only data of the gyroscope enriched, accelerometer magnitude and gyroscope and accelerometer magnitude data for measurements
from the IMUs on the right wrist and hip summarized per 0.33 and 0.25 seconds.
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Accuracies for the shorter sequences

Grouped activities
Low noise accelerometer

0.33 s. epochs 0.25 s. epochs
Hip Right wrist Hip Right wrist

Cycle - Kick - Rope jump - Run 67.3 ±19.9 (63.4 - 71.2) 77.7 ±12.1 (75.3 - 80.0) 72.8 ±28.0 (67.4 - 78.3) 78.8. ±13.6 (76.2 - 81.5)

Box - Jump - Throw - Walk 58.9 ±24.8 (54.1 - 63.7) 60.3 ±30.1 (54.4 - 66.1) 69.9 ±18.4 (66.3 - 73.5) 71.2 ±17.6 (67.8 - 74.6)

Jump - Lie - Run - Sit 67.2 ±14.0 (64.5 - 69.9) 68.1 ±15.9 (65.0 - 71.2) 85.4 ±11.2 (83.2 - 87.5) 75.2 ±12.3 (72.9 - 77.6)

Box - Kick - Walk - Write 67.8 ±13.2 (65.2 - 70.3) 67.5 ±20.7 (63.4 - 71.5) 76.5 ±13.7 (73.8 - 79.1) 73.4 ±12.2 (71.0 - 75.8)
Wide range accelerometer

0.33 s. epochs 0.25 s. epochs
Hip Right wrist Hip Right wrist

Cycle - Kick - Rope jump - Run 71.4 ±22.2 (67.1 - 75.7) 71.0 ±20.3 (67.1 - 75.0) 76.4 ±14.9 (73.5 - 79.3) 81.1 ±13.2 (78.5 - 83.7)

Box - Jump - Throw - Walk 69.6 ±13.5 (67.0 - 72.2) 67.9 ±28.8 (62.3 - 73.5) 76.1 ±14.3 (73.3 - 78.9) 66.7 ±21.5 (62.5 - 70.9)

Jump - Lie - Run - Sit 66.7 ±17.9 (63.3 - 70.2) 71.5 ±13.6 (68.8 - 74.1) 82.0 ±10.6 (80.0 - 84.1) 75.2 ±13.1 (72.7 - 77.8)

Box - Kick - Walk - Write 70.1 ±13.0 (67.6 - 72.7) 65.7 ±18.9 (62.0 - 69.3) 80.8 ±12.2 (78.4 - 83.2) 72.9 ±13.9 (70.2 - 75.6)

Table D.3: The mean accuracy (%) with standard deviation and 95% confidence interval of the predictions per short sequence of activities
for measurements from both accelerometers on the right wrist and hip summarized per 0.33 and 0.25 seconds.
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Precision and recall for all activities

Activity
Low noise accelerometer Wide range accelerometer

0.33 s. epochs 0.25 s. epochs 0.33 s. epochs 0.25 s. epochs
Hip Right wrist Hip Right wrist Hip Right wrist Hip Right wrist

Box Prc. 45.9% 69.5% 64.9% 66.0% 65.6% 72.0% 70.6% 65.2%
Rcl. 36.7% 51.2% 49.7% 54.8% 49.3% 51.2% 54.4% 53.3%

Cycle Prc. 66.9% 47.1% 79.8% 59.6% 79.1% 52.7% 86.7% 61.2%
Rcl. 60.7% 57.0% 64.5% 58.5% 70.4% 58.5% 63.6% 73.4%

Jump Prc. 65.7% 75.1% 72.3% 77.1% 83.1% 74.7% 78.8% 80.2%
Rcl. 69.4% 67.0% 75.6% 74.3% 66.2% 73.1% 78.3% 71.9%

Kick Prc. 71.6% 70.5% 80.7% 79.4% 75.0% 70.7% 78.6% 79.5%
Rcl. 85.1% 86.1% 83.3% 89.6% 79.5% 80.1% 87.1% 87.7%

Lie Prc. 52.8% 40.8% 77.1% 54.5% 53.1% 48.2% 65.3% 53.8%
Rcl. 46.4% 27.3% 76.7% 43.1% 51.1% 47.8% 69.9% 57.7%

Rope jump Prc. 52.0% 53.4% 60.0% 56.1% 61.0% 39.9% 73.1% 49.1%
Rcl. 37.5% 66.1% 48.7% 63.7% 52.1% 42.7% 36.1% 62.0%

Run Prc. 74.8% 72.1% 83.6% 82.1% 64.8% 79.2% 88.5% 83.3%
Rcl. 67.9% 90.1% 90.1% 93.3% 75.1% 87.9% 91.8% 93.4%

Sit Prc. 59.9% 47.2% 74.9% 59.3% 52.5% 41.1% 74.2% 55.8%
Rcl. 52.9% 55.9% 74.4% 61.6% 51.1% 35.7% 66.4% 48.4%

Throw Prc. 64.2% 78.9% 61.1% 79.2% 62.0% 69.2% 76.8% 79.6%
Rcl. 60.7% 62.8% 70.4% 77.5% 77.0% 79.2% 75.3% 77.6%

Walk Prc. 66.1% 81.1% 79.5% 80.6% 77.7% 74.9% 78.0% 81.1%
Rcl. 69.9% 63.0% 85.7% 73.8% 77.1% 65.1% 74.8% 67.6%

Write Prc. 59.1% 77.2% 78.1% 76.0% 75.7% 86.4% 80.2% 73.5%
Rcl. 71.0% 57.5% 73.1% 59.0% 75.8% 54.3% 86.1% 64.4%

Average Prc. 61.7% 64.8% 73.8% 70.0% 68.2% 64.5% 77.4% 69.3%
Rcl. 59.8% 62.2% 72.0% 68.1% 65.9% 61.4% 71.3% 68.9%

Sit or Lie
Prc. 91.5% 84.3% 90.9% 92.8% 88.4% 91.4% 91.8% 89.1%
Rcl. 80.6% 90.6% 90.4% 84.8% 85.5% 85.0% 90.2% 86.5%
Acc. +2.2% +3.0% +1.1% +2.3% +2.4% +2.9% +1.6% +2.3%

Jump or
Rope jump

Prc. 69.2% 72.2% 77.1% 70.7% 80.0% 67.2% 86.4% 69.2%
Rcl. 69.4% 68.2% 75.6% 71.5% 65.0% 67.5% 74.0% 69.2%
Acc. +1.0% +0.2% +0.9% +0.0% +0.3% +0.3% +0.8% +0.0%

Box or Throw
Prc. 68.7% 81.1% 73.5% 80.7% 73.7% 75.9% 80.2% 79.6%
Rcl. 59.1% 62.1% 70.3% 72.9% 73.2% 70.2% 70.1% 71.2%
Acc. +2.3% +1.1% +2.2% +1.4% +2.2% +1.1% +1.2% +1.4%

Correction accuracy +5.5% +4.3% +4.2% +3.7% +4.9% +4.3% +3.6% +3.7%

Table D.4: Precision and recall of classification method for individual activities and corrected for activities that are less relevant to distin-
guish, see Appendix C.
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