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Abstract

In ad-hoc cooperative environments, the usage of
artificial intelligence to take supportive roles and
work in collaboration with humans has proven to be
of great benefit. The objective of this research is to
evaluate the use of population-based training for re-
inforcement learning agents in a simplified version
of the multiplayer game - Overcooked. The method
used to answer that question involves evaluating the
performance of the agents when paired with a hu-
man proxy and their learning curves on different
layouts. Based on the employed method, it was
concluded that both PBT and other self-play agents
display notable underperformance when compared
to human proxies and agents trained using human
data. Moreover, while the inclusion of mutated
agents enhanced sample efficiency in layouts with
minimal collision risks, its effect on the final per-
formance of PBT in those layouts was negligible.
However, this approach managed to improve per-
formance in layouts where collisions were the pri-
mary limiting factor.

1 Introduction
With the swift progress of technology, innovative approaches
are continuously emerging to tackle mundane and repetitive
human-operated tasks, among one of these approaches is the
adoption of Reinforcement Learning (RL) based Artificial In-
telligence (AI). In various industries, such as automotive and
healthcare, there is a drive to develop fully autonomous ve-
hicles and utilize RL agents for detecting and localizing ab-
normalities. Our focus lies in the field of multiplayer games,
where we can explore in a risk-free environment the benefits
of using human-AI cooperation. By applying reinforcement
learning algorithms in video games, we aim to evaluate their
ability to adapt and learn from the environment, make real-
time decisions, and cooperate with other players, providing
us with a clear benchmark for human-AI cooperation.

Overcooked is an example of one such game. Overcooked
[1] is a collaborative game, in which a player is able to pair up
with three other players. The main goal of the game is in col-
laboration to prepare and serve different dishes to customers.
The environment, which will be used for this research project
is a simplified [2] version of the original game, but will still
retain the same multi-agent mechanics. This is done to reduce
the computational intensity. This research aims to assess the
benefits of using RL-based agents in the Overcooked environ-
ment, using Population-Based Training (PBT).

PBT is a training method for machine learning models. It
uses the evolutionary approach to optimize the neural net-
work. PBT can be helpful in the ad-hoc cooperation envi-
ronment, which Overcooked provides. PBT allows agents
to adapt to changes in the environment and learn from the
experience of other agents. The algorithm, which will be
used to update the policies in the PBT is Proximal Policy
Optimization(PPO)[3].

This research will act as a form of validation of the

results from the previous research on the utility of using
PBT with PPO for training RL agents in the Overcooked
environment[4]. The credibility of the results will be in-
creased by reproducing the experiments[5] of the aforemen-
tioned research. Additionally, our objective is to explore var-
ious methods for improving the performance of Population-
Based Training (PBT) To accomplish this, the research aims
to address the following inquiries:

• How does the use of population-based training affect
the performance of Multi-agent reinforcement learning
(MARL) algorithms?

• What changes can be made to the PBT to improve the
agent’s performance when paired with a human player?

2 Background

2.1 Reinforcement Learning

Reinforcement learning is a technique employed in machine
learning where an agent learns how to behave in an environ-
ment by performing certain actions and receiving feedback
in the form of rewards. It is designed to optimize decision-
making processes by training policies that are most likely to
increase the overall reward, based on the status or state of the
system.

In our research, we characterize the reward function us-
ing two types of rewards: sparse and dense. Sparse rewards
are tied to long-term actions where rewards are distributed
infrequently. For example, in the context of the Overcooked
environment, a sparse reward may be given when the chef
completes substantial tasks like fully preparing or serving a
dish. This kind of reward doesn’t necessarily provide feed-
back on every single step of the process, but it places value
on the achievement of long-term, substantial goals.

Conversely, dense rewards are associated with short-term
actions, where rewards are granted for a myriad of tasks. For
instance, if the agent avoids collisions or interacts appropri-
ately with the environment, such as picking up an onion or
placing it into a pot, it could receive a reward. In the Over-
cooked environment, collisions occur when objects or players
come into contact with each other, thus halting game progress
until the collision is resolved. This can include collisions
between chefs or between chefs and the environment (such
as walls or countertops). The main advantage of dense re-
wards is that they provide more immediate and granular feed-
back about the optimality of the agent’s trajectory. They help
the agent understand which actions are beneficial in the short
term, thereby encouraging the replication of such actions.

By defining our reward function in this manner, combin-
ing both sparse and dense rewards, our aim is to create a
reinforcement learning system that encourages the agent not
only to perform tasks that yield immediate rewards but also
to learn and execute actions that lead to long-term success.
The combination of these two reward structures allows for
a more balanced learning experience, fostering an agent that
can effectively operate within the bounds of both immediate
and long-term goals.



2.2 Overcooked environment
To assess the efficacy of reinforcement learning algorithms
in cooperative settings, we will use a simplified version of
the popular multiplayer game Overcooked, referred to as
Overcooked-AI (see Figure 1).

Figure 1: Overview of the simplified Overcooked environment used
for this research. Image is taken from[4].

It’s important to clarify that Overcooked-AI is not iden-
tical to the commercially available game, Overcooked. In-
stead, Overcooked-AI is a version specifically designed for
reinforcement learning research. It simplifies the original
game environment while maintaining the same multi-agent
mechanics and cooperative interactions that are pivotal for the
evaluation of AI performance. Similarly to the original game,
players control chefs around the kitchen to prepare and serve
dishes. Players can choose one of six different actions: up,
down, left, right, noop, and interact. The interaction depends
on the tile that the player is facing. In the original game,
there are different recipes for soups, pizzas, and other dishes.
However, in our environment, chefs can prepare only soups
of onions. In every layout, there is an unlimited supply of
onions, located in one or two places, depending on the lay-
out, plate dispenser, and place where ready dishes are served.
The reinforcement learning agents should be able to navi-
gate through the layout and work in collaboration with other
agents to maximize the served dishes. One cooking procedure
takes the form of a player picking up an onion from the dis-
penser, putting it into a pot, repeating this process until there
are three onions in the pot, then waiting twenty timesteps for
the soup to be cooked, then putting it in a plate, taken from
the dispenser for plates and serving the dish. This awards all
players twenty points.

2.3 Population-Based Training
Population-based training (PBT) is an automated method for
hyperparameters optimization. It is inspired by evolution-
ary algorithms, which combine the concept of training mod-
els with the principles of natural selection and genetic algo-
rithms. Please refer to Appendix B for a pseudo-code imple-
mentation of PBT.

PBT begins with a population of models with randomly ini-
tialized hyperparameters. These hyperparameters define the
characteristics of the model, such as learning rate, batch size,
network architecture, or any other tunable parameters. Each
model is trained for a short period, then evaluated by using
dense rewards. The better performing models are selected and
their hyperparameters are shared with the under-performing
agents, imitating ”survival of the fittest” behaviour. Offspring
models are created by mutating the hyperparameters of the

top models, introducing genetic variations. By mutating the
hyperparameters, the population of models expands its explo-
ration of the hyperparameter space, enabling the discovery of
potentially better configurations. This process continues until
an optimal solution is found or a predetermined number of
iterations is met. In this research, the algorithm that will be
used to update policies will be Proximal Policy Optimization
(PPO).

2.4 Proximal Policy Optimization
Proximal Policy Optimization (PPO) is an on-policies re-
inforcement learning (RL) algorithm, it aims to address
the challenges faced by traditional policy gradient methods,
namely, instability and inefficiency during training. The way
this is ensured is by preventing high variance in the updates
from the original policy. The implementation of this method
relies on the actor-critic model, which uses two different neu-
ral networks, one that handles actions and the second one the
rewards. The actions of each agent are controlled by a single
trained policy.

2.5 Human Models
The human models used in the experiments are behavioral
cloning models, based on already gathered from previous re-
search - human data. Behavioral cloning is a technique that
involves acquiring a policy by observing and imitating an ex-
pert’s desired behavior. It accomplishes this by employing
supervised learning to establish a relationship between states
and corresponding actions. The implementation of BC-based
agent models in this research consists of three main compo-
nents: representing the state as input, generating a probability
distribution of actions as output, and employing the cross-
entropy loss function for training purposes.

Trajectories from the human-human play are collected for
each layout, after which they are separated into two single-
agent trajectory sets. Through behavioral cloning, human
models have been trained for each subset and layout. The BC-
based model is the version of training models and the second
model is used to evaluate the final performance by simulating
a human player.

3 Methodology
3.1 Performance Measuring
In evaluating the effectiveness of Population-Based Training
(PBT) in a collaborative context, we prioritize two core met-
rics: the final performance when teamed with a human proxy,
and learning curves. Although both metrics are crucial, our
main focus will be on the former metric, given the unique col-
laborative setting.

Our primary evaluation is based on the final performance
of the PBT-trained agent when teamed with a simulated hu-
man player. In essence, we are interested in the mean re-
ward per episode when the agent, trained via PBT, is paired
with the human proxy. For a robust analysis, this is com-
pared against the mean rewards per episode of various other
agents, all paired with the same human proxy. This approach
allows for a comparative assessment of the final performance



of our PBT agent when working alongside a human counter-
part. Notably, this evaluation provides a crucial indication
of PBT’s ability to generalize to unfamiliar agents - in this
case, a human player. This is especially important as we want
to measure PBT’s ability to interact effectively when paired
with human counterparts.

While our emphasis is on the agent’s final performance
with a human model, we also evaluate the learning curves
to gain insights into the sample efficiency of PBT. Learning
curves, represented as average rewards per episode across the
environment, illustrate the amount of data and time PBT re-
quires to optimize its policy. These rewards are computed
based on the sparse rewards of the chosen agent when paired
with all other agents in the population, including itself. By
doing so, we can determine how many environmental steps
are required for the agent to achieve peak performance. De-
spite the value of learning curves in assessing sample effi-
ciency, we emphasize that our primary focus lies on the PBT
agent’s ability to partner effectively with human proxies.

3.2 Experimental Variations
To address our second research question on enhancing PBT
performance, we investigate two main modifications. Our
main focus is to increase the noise in the population. By
increasing the noise, or in other words, by making these
mutations more variable, we aim to create a population of
agents that are more diverse in their strategies and responses.
We hypothesize that this could lead to agents that are better
at generalizing toward human players, who are inherently
unpredictable and diverse in their behaviors. Inspired by this
proposition, we have designed our experimental variations
to involve the mutation of selected individuals from the
initial population, aiming to promote diversity within the
population. In this approach, we will employ a larger number
of mutation factors and a higher mutation probability,
enhancing the extent and probability of genetic mutations.
Importantly, these mutations will be conducted only once
at the beginning of the training, ensuring simplicity and
cost-effectiveness. Further investigations will be conducted
to examine the effects of varying population sizes on the
training process.

3.3 Experimental Layout
Due to time constraints, concerning the computational costs,
two layouts will be used, namely ’Asymmetric Advantages’
(see Figure 2) and ’Coordination Ring’ (see Figure 3). The
agents trained for each of these layouts are using four differ-
ent seeds in order to minimize the noise. The choice of these
layouts was based on their ability to display the agents’ capa-
bility to maximize their strengths ’Asymmetric Advantages’
and their ability to coordinate for example to avoid collisions
’Coordination ring’.

3.4 Baseline Agents
To gauge the effectiveness of PBT, compared to different ap-
proaches, the final performance of PBT is assessed alongside
that of various baseline agents when paired with a human
proxy. The comparison involves different agents, which are

Figure 2: Asymmetric Advantages layout. Image is taken from [4].

Figure 3: Coordination Ring layout. Image is taken from [4].

listed below. The agents in the evaluation are trained using
the same parameters as outlined in the previous research.

• HProxy: Human model trained through the behavioral
cloning approach to simulate the human player.

• BC: An imitation agent, based on a distinct dataset,
which was used to train the human proxy.

• SP: PPO agent, which was trained only by the self-play
method.

• PPOBC : PPO agent trained with the BC of a human
model.

• PPOHProxy
PPO agent trained with human proxy.

Gives an overview of the peak performance, which could
be achieved by PPO given full access to the human
proxy.

4 Experimental Setup and Results
4.1 Experimental Setup
The results shown below are products of the conducted exper-
iments. They are divided into two parts, each one focusing on
a single research question. The first results focus on evaluat-
ing PBT agents trained based on the experimental setup of
previous research[4] in an attempt to reproduce and validate
their findings. The second results will focus on analyzing the
effects of a larger number of mutation factors and a higher
mutation probability in PBT on the same parameters from [4].
Additionally, we have increased the population size from 3 to
4 agents to explore the potential advantages of a larger popu-
lation.

4.2 Results After Reproduction of Experiments
Learning Curves
To evaluate the sample efficiency of training the PBT agent,
the learning curve is graphed and analyzed for both experi-



ment layouts: ’Asymmetric Advantages’ and ’Coordination
Ring’. Please refer to Figure 4 for the graphical representa-
tion.

In both layouts, the trained agents have a similar final per-
formance of 180 for ’Asymmetric Advantages’ and 170
for ’Coordination Ring’. However, the agents trained on the
’Coordination Ring’ layout, require 3x106 more timesteps to
reach the same maxima in performance. These findings indi-
cate that the agent trained in the ’Coordination Ring’ layout
exhibits lower sample efficiency, requiring more data for pol-
icy optimization.

In theory, the difference in the number of timesteps dur-

(a) Asymmetric Advantages

(b) Coordination Ring

Figure 4: Learning curves of a PBT agent in the ’Asymmetric Ad-
vantages’ and ’Coordination Ring’, displaying the average sparse
reward over 3 seeds per episode during training over 400 timesteps.

ing training could be attributed to the level of coordination
required and the likelihood of collision within a given lay-
out. When comparing ’Asymmetric Advantages’ and ’Coor-
dination Ring’, the first layout eliminates the possibility of
agent collision and allows each agent to complete tasks inde-
pendently. Consequently, agents in the ’Asymmetric Advan-
tages’ may attain higher rewards early in training since they
can serve dishes without encountering issues caused by col-
liding with other agents. However, these rewards achieved
may not truly reflect optimized performance, as full coordi-
nation with the other agent is not emphasized.

On the other hand, in ’Coordination Ring’, agents must co-
ordinate with their teammates from the beginning to avoid

collision and maximize rewards. The necessity of coordina-
tion to prevent collisions leads to the agent reaching peak per-
formance in more timesteps than layouts that do not mandate
coordination, such as ’Asymmetric Advantages’. Neverthe-
less, further research is necessary to validate this theory.

Final Performance
To assess the overall performance of PBT, each type of agent
is paired with a human proxy, and the average reward per
episode for each pair is graphed as a bar chart in Figure 5a.
These experimental results from Figure 5a are subsequently
compared and validated against the results presented by [4]
in Figure 5b.
The performance of PBT is initially examined in relation to

(a) Performance results produced from self-conducted
experiments.[4]

(b) Performance results produced from previous research[4]

Figure 5: Performance results of the PBT agent when paired with
the human proxy in comparison to the performance of other agents
matched with the same proxy. For each layout, performance is given
by the average sparse reward per episode during training over 400
timesteps. Striped bars indicate results when the starting locations
of the agents have been swapped.
Note: Horizontal red dotted lines are PPOHProxy + HProxy

its optimal performance. In Figure 5a, when paired with a hu-
man player the mean reward per layout was 65 and 70, respec-
tively, PBT shows a significant decline compared to when it
plays against itself (mean reward: 180, 170). A similar obser-
vation can be made from Figure 5b. However, since all other
models also perform worse than their optimal performance,
the dip in PBT’s performance could be partially attributed to
the suboptimal performance of the human proxy.

Next, PBT is analyzed in comparison to the baseline
agents. As supported by previous research[4], PBT out-
performs self-play, which has a mean reward of 68 and 57
per layout, respectively, as shown in Figure 5a. In con-
trast, the PPOBC agent trained with the human BC model
achieves higher performance with the human proxy (mean



reward: 119, 143) than PBT. Additionally, consistent with
the results presented in Figure 5b, the performance of the BC
agent (mean reward: 127, 59) falls between that of the PBT
and PPOBC agents, as it is a relatively simple model that
only mimics a specific subset of the collected human data.
The performance gap between the optimal performance of
PPOHProxy

and PPOBC highlights the differences between
the individual human models, HProxy, and BC.

In summary, PBT paired with the human proxy shows im-
provement over the self-play method but underperforms com-
pared to agents trained with human data. This indicates that,
to some extent, the population of independently-initialized
policies in PBT enhances generalization capabilities towards
a human player compared to self-play. However, it is un-
derstandable that PBT falls short compared to other baseline
agents since it does not learn its policy directly from human
data.

4.3 Results After Variation of Experiments
Figure 6 illustrates the learning curves of the selected layouts,
which were obtained by incorporating custom mutation fac-
tors (refer to Appendix A) into the Population-Based Training
process. In addition, the figure displays learning curves for
various population sizes, allowing for a comprehensive anal-
ysis of the influence of both the mutations and the population
size on sample efficiency.

Learning Curves
An analysis of the learning curves displayed in the ’Asym-
metric Advantages’ layout is performed. As shown in Figures
6a and 6b, the mutation variations have accelerated the rate,
at which the agent’s performance arrives at its optima. Within
3.8x106 environment timesteps, the learning curve in Figure
6b has reached its optimal performance (203). Compared to
Figure 6a, where we need almost twice as many timesteps to
get our peak performance (180). This means that after the
variations, PBT in the ’Asymmetric Advantages’ layout has a
higher sample efficiency.

We can draw similar observations from Figure 6c and Fig-
ure 6d, which illustrate the learning curves of agents trained
in a population of size 4. In those figures, the optimal per-
formance peaks at 235 and 240, respectively. We will now
examine the influence of population size on the learning pro-
cess, focusing on Figures 6b and 6d. These figures offer
valuable insights into how varying population size influences
agent performance in PBT. Notably, agents trained in a pop-
ulation of size 3 reach their peak performance at 203, while
agents trained in a population of size 4 exhibit a performance
level of 240. This suggests that training agents in larger pop-
ulations may result in better-performing agents.

Now we will analyze the learning curves displayed in the
’Coordination Ring’ layout. Similarly to the ’Asymmetric
Advantages’ layout, custom mutation factors have proved to
accelerate the learning rate. In this layout with the custom
mutation factor, the agent needs 3x106 timesteps, to achieve
close to the optimal performance, whereas, with the base-
line mutation factor, it needs the whole 8x106 timesteps to
achieve similar performance. At the last timestep, the agent
with baseline mutation factors finishes with a performance

of 170, and the agent, using custom mutation factors 195.
This means that after the variations, PBT in the ’Coordina-
tion Ring’ layout has a higher sample efficiency.

To evaluate the effectiveness of the population in this lay-
out, we will examine Figures 6f and 6h. In contrast to the
’Asymmetric Advantages’, the learning curves depicted in
those figures have similar shapes and similar peek perfor-
mances of 195 and 200, respectively.

The data analysis reveals that introducing variations has a
positive impact on the agent’s efficiency in both layouts. An
intriguing explanation for the enhanced performance in the
’Asymmetric Advantages’ layout is the emergence of coor-
dinated policies within the population. These variations pro-
mote agents to collaborate with each other in order to maxi-
mize their rewards. Previously, it was assumed that agents in
this layout could achieve satisfactory but suboptimal rewards
by acting independently. Additionally, this theory also ex-
plains why variations have similar effects on the second lay-
out. In this case, agents were already compelled to coordinate
from the beginning of training due to the high probability of
collisions. Nevertheless, the introduction of mutations in the
population might have facilitated earlier coordination among
agents to avoid such collisions during training.

Furthermore, we observe that agents trained within
larger populations consistently outperform those trained with
smaller sample sizes in the ’Asymmetric Advantages’ layout.
This is due to an improved exploitation-exploration trade-off
enabled by the larger population size. PBT balances the re-
finement of promising solutions (exploitation) and the search
for new solutions (exploration). A larger population allows
for a better trade-off, with some individuals refining solu-
tions while others explore alternative paths. This dynamic
interaction within a larger population enhances overall per-
formance. On the other hand, in the ’Coordination Ring’ lay-
out, the performance of trained agents does not substantially
change with varying population sizes. This is mainly because
the agents have already identified and adopted an optimal so-
lution within the layout. Consequently, achieving further per-
formance improvements becomes challenging due to layout
constraints. The cooperative interactions in the ’Coordina-
tion Ring’ layout have already been maximized, limiting the
potential for additional enhancements. By recognizing these
distinctions in performance response to population size across
different layouts, we gain insights into the effectiveness and
limitations of PBT in different scenarios.

Final Performance
Considering our observation of the most optimal learning
curves were produced with 4 agents and the custom muta-
tion factor, we’ve decided to pair this particular agent for
further performance evaluation. To assess the influence of
variation and population size on the ultimate performance of
Population-Based Training (PBT), we pair every agent type
with a human proxy. Figure 7 represents the average reward
per episode for each pair. This graphical representation is
then compared against the results of the initial experiments
as illustrated in Figure 5b.

The analysis of PBT’s performance, as depicted in Figure



(a) Asymmetric Advantages with 3 agents and baseline factors
of mutation.

(b) Asymmetric Advantages with 3 agents and custom mutation
factors.

(c) Asymmetric Advantages with 4 agents and baseline factors
of mutation.

(d) Asymmetric Advantages with 4 agents and custom mutation
factors.

(e) Coordination Ring with 3 agents and baseline mutation fac-
tors.

(f) Coordination Ring with 3 agents and custom mutation fac-
tors.

(g) Coordination Ring with 4 agents and baseline factors of mu-
tation.

(h) Coordination Ring with 4 agents and custom mutation fac-
tors.

Figure 6: Learning curves of a PBT agent in the ’Asymmetric Ad-
vantages’ and ’Coordination Ring’, displaying the average sparse
reward per episode during training over 400 timesteps.



Figure 7: Performance results of the PBT agent when paired with
the human proxy in comparison to the performance of other agents
matched with the same proxy. For each layout, performance is given
by the average sparse reward per episode during training over 400
timesteps. Striped bars indicate results when the starting locations
of the agents have been swapped.
Note: Horizontal red dotted lines are PPOHProxy + HProxy

7, is provided. In the ’Asymmetric Advantages’ layout, an
agent trained in a population of 4 with customized mutation
factors achieves an impressive peak average reward of around
100 when paired with HProxy. When paired with other in-
stances of itself, it maintains a mean reward of 240. This per-
formance surpasses that of the baseline-mutated agent, which
was trained in a population of three and achieves a peak score
of 65 and 180 when paired with the same agents. Further-
more, in the ’Coordination Ring’ setup, the baseline agent
demonstrates an average performance of 70 and 170. How-
ever, the agent trained in a larger population, using an in-
creased mutation probability, achieves even better results. It
attains a peak average reward of 80 and 195 when paired with
HProxy and itself, respectively. The modifications applied in
the experiments have a positive effect on PBT’s functional
efficacy. The performance in comparison to other baseline
agents remains relatively consistent, with PBT outpacing the
PPOBC agent only in the ’Asymmetric Advantages’ layout.
In the experiments without alterations, PBT’s average reward
continuously fell below that of PPOBC . Generally, the PBT
agent’s final performance in the ’Coordination Ring’ layout
demonstrates a slight advancement, while in the ’Asymmet-
ric Advantages’ setting, a substantial boost of performance
of almost 40 is observed. Based on our reward system, this
enhancement suggests that, on average, agents trained in a
population size of 4 with customized mutation factors were
able to serve an additional two dishes.

To summarize the analysis of Figure 7, using custom mu-
tation factors within a larger population appears to provide
a small performance boost in the ’Coordination Ring’ lay-
out while proving highly beneficial for agents trained in the
’Asymmetric Advantages’ layout. Consequently, although
adding high-variance agents to the initial population im-
proves sample efficiency for some layouts, it remains unclear
whether this method can consistently enhance PBT’s final
performance across all layouts.

5 Responsible Research
In the course of the investigation, there are several ways in
which the finding could have been misrepresented. First of
all, the evaluation of the PBT agents relies heavily on the hu-
man models derived from previously collected human data.
However, this approach may have its limitations, as informa-
tion could have been omitted or incorrectly recorded during
the process, potentially impacting the validity of our results.
While it is true that missing data in the original experiments
may not completely invalidate the results, training against a
human model derived from limited data does not provide a
complete picture of the performance of these methods with
real humans. However, it is worth mentioning that the orig-
inal paper, which makes use of the same human data, con-
ducted experiments involving actual people who corroborated
their findings. This adds credibility to the results and reduces
the likelihood of significant misrepresentation.

Secondly, misrepresentation could occur if the data relat-
ing to the agents’ learning curves or final performance were
fabricated or falsified. Environmental parameters such as the
seeds or the number of episodes executed could be misrep-
resented or reported inaccurately, which could compromise
the validity of the results. However, such malpractice would
undermine the very purpose of our research, which is to ac-
curately gauge the effectiveness of PBT in a cooperative en-
vironment.

In terms of reproducibility, the experiments described in
the paper can be replicated, given sufficient computational re-
sources. The specifications of the experiments can be found
in this public repository 1. In the repository, a Jupiter Note-
book, used to generate the confirming graphs can be found as
well. The primary limitation of reproducing the experiments
is the time required to train agents, which could span several
days. Nonetheless, given enough time, the experiments can
be fully replicated, allowing the findings to be validated.

6 Related Work
6.1 Population-Based Training
Population-based training (PBT) is a powerful and flexible
reinforcement learning approach that dynamically adjusts hy-
perparameters based on agent performance within the popu-
lation. This characteristic makes it an ideal tool for complex
and ever-changing multi-agent environments.

The power of PBT has been demonstrated in several pre-
vious studies. For example, PBT was used to optimize the
hyperparameters of deep neural networks in various Atari
games[6]. They demonstrated PBT’s superior performance
and computational efficiency compared to traditional meth-
ods like grid search and random search.

OpenAI[7] used PBT in combination with Proximal Pol-
icy Optimization (PPO) to train agents in the game Dota 2.
The results highlighted the effectiveness of PBT in discov-
ering powerful learning policies and hyperparameters across
different scenarios.

Additionally, Chaplot et al.[8] utilized PBT to train agents
for 3D navigation tasks. Their study demonstrated PBT’s

1https://github.com/INestorov/overcooked pbt



ability to devise strategies that are robust against environmen-
tal changes.

The aforementioned studies support the use of PBT for
training agents in multi-agent reinforcement learning tasks,
establishing it as a promising direction for future exploration.
As discussed by Carroll[4], the combination of PBT with
PPO in the Overcooked environment, has further underlined
the effectiveness of PBT, but also highlighted opportunities
for improvement when agents are paired with human players.
Building on this foundation, our research will not only seek to
validate these findings but also explore modifications to PBT
to potentially enhance its performance.

6.2 Ad-Hoc Teamwork
Population-based training (PBT) holds the potential to sig-
nificantly enhance robust ad-hoc cooperation in multi-agent
environments, a capability that sets it apart from other ap-
proaches like zero-shot coordination[9]. While both meth-
ods aim to ensure compatibility with diverse agent types, it
is important to examine the concepts of ad-hoc cooperation
and zero-shot coordination to provide a comprehensive un-
derstanding of their differences.

Ad-hoc cooperation refers to the ability of agents to col-
laborate spontaneously without prior coordination or explicit
communication. In the context of the Overcook environ-
ment, it involves agents dynamically adapting their behaviors
to work together towards a common goal, such as efficiently
preparing meals in a chaotic kitchen. This type of coopera-
tion is essential for agents to effectively tackle unpredictable
situations, where the composition and objectives of the agent
team may vary over time.

On the other hand, zero-shot coordination primarily fo-
cuses on enabling agents to coordinate their actions without
prior knowledge about each other’s behavior or capabilities.
It relies on predefined coordination mechanisms or communi-
cation protocols to establish a common understanding among
agents. While this approach can be effective for short-term
interactions, it may lack the adaptability required in evolving
and dynamic cooperative environments, where new agents
with unfamiliar behavior might join or existing agents may
change their strategies.

In this context, PBT stands out as a powerful technique for
training agents capable of robust ad-hoc cooperation. PBT
not only emphasizes compatibility with diverse agent types
but also offers long-term adaptability. This adaptability is
particularly valuable when unfamiliar agents enter the scene,
as PBT allows the agents to continuously adapt and improve
their cooperation strategies over time. Consequently, agents
trained through PBT have the potential to cooperate more re-
liably with humans in real-world scenarios, although further
experimentation is needed to verify this hypothesis.

7 Conclusions and Future Work
7.1 Conclusion
Although agents utilizing self-play methods during training
excel when paired with similar agents, their performance sig-
nificantly declines when collaborating with human players.
A study conducted using the cooperative game Overcooked

demonstrated that population-based training (PBT) falls short
compared to agents trained with human models. Neverthe-
less, PBT shows improvement over purely self-play tech-
niques. This suggests that incorporating a population of in-
dependent policies has partially succeeded in enhancing per-
formance when simulating human players. PBT also exhibits
higher sample efficiency, requiring less data to optimize poli-
cies in scenarios with frequent collisions and demanding co-
ordination.

In an effort to enhance generalization in gameplay with
human players, the initial PBT population has been supple-
mented with custom mutation factors. Additionally, changes
have been made to increase the population size, aiming to
improve the exploitation-exploration balance that PBT relies
on. However, it was observed that the inclusion of noise and
larger population sizes had minimal impact on the final per-
formance of PBT itself in layouts with high collision risks,
such as the ’Coordination Ring’ layout. Conversely, these
changes had a significant positive effect on layouts where col-
lisions are highly improbable, such as the ’Asymmetric Ad-
vantages’ layout.

To determine whether incorporating high-variance popu-
lation members and exploring different population sizes can
enhance PBT’s overall performance, further research is re-
quired.

7.2 Limitations
The primary restrictions encountered during the research
stemmed from limited computational resources and a re-
stricted timeline for the study. Whenever PBT’s performance
had to be evaluated, we needed to train a collection of agents
numerous times across different seeds, each instance consum-
ing many hours. Given the short period for the research, this
process significantly increased the burden on the parameters
(such as seeds, population size, and mutation factors) and re-
duced the number of experiments that could be conducted.

7.3 Future Work
Future research should continue investigating the potential
impact of incorporating high-variance agents into the PBT
population to determine whether it consistently improves
overall performance. Exploring more sophisticated methods
for introducing variability beyond simple population muta-
tion could also yield advantages.

Another area of interest for future research is examining
the integration of a human-modeled agent, such as the BC
agent, into the PBT population. PBT’s suboptimal perfor-
mance against agents trained on human models may be at-
tributed to the absence of human data during training. By
introducing a human model to PBT, we can ascertain whether
this is the underlying cause and whether PBT could outper-
form agents like PPOBC if trained on a population of poli-
cies. Validating this would reinforce the notion that diversity
within the population enhances performance against human
players.

Additionally, it is important for future research to inves-
tigate the implications of varying population sizes on agent
training and performance. Due to the constraints of our study,



we were unable to fully explore this aspect. Conducting ex-
periments on different layouts would also be valuable in order
to evaluate the benefits of using higher population sizes and
custom mutation factors in a broader context.

Overall, further research in these areas would contribute
to a deeper understanding of PBT’s capabilities and potential
improvements in training and performance.

A Mutation Factors

Mutation Mutation
Probability

Mutation
Factors

Baseline Mutation
Factors 0.33 [0.75, 1.25]

Custom Mutation
Factors 0.45 [0.5, 0.75, 1.25, 1.5]

B PBT Pseudo code
Initialize a population of N agents with random
policies

Repeat until convergence:
Evaluate the current population of agents by
running them in the Overcooked environment

Sort the population based on their performance

Select the top-performing agents for exploitation
Select the bottom-performing agents for exploration

For each agent in the exploitation group:
Mutate the agent’s policy using small perturbations

For each agent in the exploration group:
Copy the policy of a randomly selected agent from the exploitation group

Train each agent using Proximal Policy Optimization (PPO):
For a fixed number of epochs:

Collect trajectories by running the agent in the Overcooked environment
Compute advantages and value estimates using the collected trajectories
Update the agent’s policy using PPO’s update rule

Replace the current population with the updated agents

Return the best-performing agent from the final population
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