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1
Introduction

Linear crossed roller bearings play an essential role in the high tech industry, this kind of bearing is
used for precision applications such as microscopes, optical systems and semiconductor production
equipment. The performance of all these systems is related to the ability to produce and control a
certain motion of a body. Bearings facilitate this motion, they are designed such that the resistance in
the direction of movement is minimal. Generally, in all other directions, the bearing should be as stiff
as possible as a high bearing stiffness is beneficial for controlling the motion. Stiffness is beneficial
as it contributes to achieving a high control bandwidth and minimizes sensitivity to external forces or
vibrations.

Mechatronic systems have to meet very strict targets in terms of positioning accuracy and settling
times. The dynamics of mechatronic systems is dominantly dependent on the performance of their
bearings [1]. Nowadays, the performance of a machine is predicted before building the physical ma
chine through virtual prototyping. Virtual prototyping is becoming increasingly important: an accurate
model in an early stage of a development project minimizes the risk of not achieving specifications in
a later stage. For accurate modelling of precision machines using linear cross roller bearings, reliable
data on the stiffness characteristics of these bearings is required. This thesis aims to assist mecha
tronic system integrators with virtual prototyping by providing a method to predict the stiffness of linear
(crossed) roller bearings.

Rob Eling’s doctoral thesis ”Towards robust design optimization of automotive turbocharger rotor
bearing systems” [2] has been of enormous help, it inspired both the project approach as the structuring
of this Thesis.

1



2 1. Introduction

1.1. Bearings
A bearing is a machine element which constrains the degrees of freedom of a mechanical system. A
bearing has a dual function, it prevents motion in specific directions by bearing a load and it allows
movement in the other direction by minimizing friction.

1.1.1. Bearing principles
Minimizing friction in a bearing is vital for its efficacy. It reduces wear, facilitates operation at high speeds
for longer periods of time, prevents excessive heat generation andminimizes premature bearing failure.
Essentially, there are five working principles for bearings [3]:

Material This principle relies on the surface friction of the bearing materials. Using a material with low
surface friction enables a sliding contact. This is the simplest, oldest and often least expensive bearing
principle. The large contact area between the bearing surfaces makes sliding bearings extremely stiff
and capable of carrying high loads. However, this bearing principle yields higher resistance and stick
compared to other principles, making it less suitable for high speed or precision applications.

Fluid This principle relies on moving a pressurized fluid between the two bearing surfaces, creating
a thin low viscosity fluid film. As the two components are not in mechanical contact, there is no dry
friction. The load is supported by the pressure of the moving fluid. The friction in fluidbased bearings
is low, constant and predictable. Together with a high stiffness and load capacity, these bearings
are advantageous for particular highend applications. However, the need for auxiliary apparatus and
power to pressurize and recirculate the fluid makes this type of bearing costly and only suitable for
certain applications. In hydrostatic bearings, the pressure is maintained externally (e.g. a pump). In
hydrodynamic bearings the pressure is created by the velocity of the bearing surfaces themselves.

Gas This principle is similar to that of a fluid bearing but uses pressurized air instead of fluid. The low
viscosity of air causes the friction of this type of bearing to be low, thus making them suitable for high
speed and high precision applications. Unlike fluids, gas is a compressiblemedium, making this bearing
principle substantially more compliant. On the other hand, using air makes in many applications a the
use of a recirculatory system superfluous. In aerostatic bearings, the bearing is externally pressured. In
aerodynamic bearings, the gas is brought under pressure by the relative velocity between the bearing
surfaces.

Electromagnetism This principle relies on the exploitation of electromagnetic fields to actively levi
tate bearings surfaces. In the absence of physical contact, there is no mechanical wear and very low
friction. These types of bearings are capable of handling high speeds. However, the use of electromag
nets makes this type of bearing costly and complex. Instead of electromagnets, permanent magnets
can also be used.

Shape This principle utilizes geometry. The relative motion of bearing surfaces is converted into the
rotation of rolling elements, in this way the friction is reduced to rolling friction. As rolling elements,
either balls (spheres) or rollers (cylinders) are used. The geometries of the rolling element and bearing
surfaces are nonconforming1, the contact is concentrated as the contact area is small compared to the
dimensions of the rolling element. For a spherical rolling element (ball bearings) an initial point contact
grows as the load increases into an elliptical or circular contact area. For cylindrical rolling elements
(roller bearings), an initial line contacts develops into an infinite strip or elliptical contact area. Typically,
roller bearings are stiffer and have a higher loadrating than ball bearings, at the cost of a slight increase
of friction. Rolling bearings are the most common type of bearings, both for rotation and linear motion,
as they possess a favourable tradeoff between cost, loadrating, stiffness, speed rating and durability.

1

In contact mechanics a distinction is made between conforming and nonconforming
contacts. A contact is conforming when the surfaces of bodies ”fit” without defor
mation, the initial contact is extended over an extended region. Bodies with mis
matched profiles are nonconforming, the contact is initiated at one or more isolated
points and the eventual contact area is dependent on the deformations of the bod
ies. Figure 1.1a shows a sphere in a conforming contact with a cavity of the same
radius. Figure 1.1b shows a sphere in nonconforming contact with a plane surface.

(a) Conforming (b) Nonconforming
Figure 1.1: A conforming and
nonconforming contact.
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1.1.2. Types of rolling bearings
Figure 1.2 shows different types of rolling bearings. A main distinction is made between bearings where
the principal degree of freedom is continuous rotation about an axis and those wherein the principal
degree of freedom is continuous translation along an axis; these are called rotation rolling bearings and
linear motion rolling bearings respectively.

Rotation rolling bearings Figure 1.2a and 1.2b show two rotation rolling element bearings. Gener
ally, these consist of two bearing rings that incorporate a rolling track which is called a raceway. The
rings are separated by a number of rolling elements. A cage ensures the distribution of these rolling
elements, it prevents them from touching each other. Two distinctions are made. The first depends on
the type of rolling element used; roller or ball bearings. The second depends on the direction in which
the bearings are designed; to primarily support a load, perpendicular to or along the axis of rotation;
these are called radial and thrust bearings respectively. Rolling bearings that support a combination of
radial and axial load, are called angular contact rolling bearings.

(a) Deep groove ball
bearing.

(b) Cylindrical roller
bearings.

(c) Nonrecirculating linear ball bearing,
deep groove type.

(d) Nonrecirculating linear roller bearing,
flat type.

Figure 1.2: Example of two rotation and two linear bearings.

Linear motion rolling bearings Figure 1.2c and 1.2d show two linear motion rolling bearings. These
bearings are based on the same working principle as rotation bearings, but facilitate translation instead
of rotation. The rolling elements are placed between the two bearing guide ways. The rolling elements
are pressed against the races and transmit the load.

Linear motion rolling bearings fall into two categories, recirculating and nonrecirculating. Recircu
lating bearings have rolling elements that pass through the bearing and recirculate. This circulation
allows for travel over the full length of the rail (unlimited stroke) and facilitates compact design. When
the elements do not recirculate, the rollers travel half the distance of the moving rail, such that the
stoke is limited to less than half of the rail length (limited stroke). The rolling elements in recirculating
bearings move from the circulation zone to the loaded zone, the transition of elements between these
zones causes vibration.

In limited stroke bearings all rolling elements are loaded continuously, providing an extremely smooth
motion. Figure 1.3 shows the most prevalent types of nonrecirculating linear motion bearings. Flat
type bearings provide extremely high rigidity and high linear motion accuracy in one direction but only
constrain motion in that same direction, they are mainly used on flat surfaces. The rolling elements of
these bearings are often called needles as the diameter of is often small relative to their length. As
needles are more compact, more needle rollers can used in a cage to distribute the load, making the
bearing more rigid and capable of carrying high loads.

Crossed roller bearing configurations are often used for accurate linear motion. Here, cylindrical
rolling elements are positioned between two linear guide ways. Each guide way has Vgroove race
ways, having each roller positioned with its axis crosswise in relation to adjacent rollers. Effectively,
the crossed roller bearings combines two sets of bearings and races at right angles to each other.
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(a) Nonrecirculating linear roller bearing,
flat type.

(b) Nonrecirculating linear roller bearing,
crossed roller type.

(c) Nonrecirculating linear roller bearing,
Vangle type.

Figure 1.3: Example of three linear roller bearings.

1.2. The relevance of bearing stiffness quantification
It is important to have a good understanding of the stiffness of a bearing. Generally, bearing stiffness
should be as high as possible. A limited bearing stiffness leads to deformations that cause machine
errors. Furthermore, it also affects the dynamic behaviour of the machine, causing eigenfrequencies
to be lower than desired, that trigger undesirable resonances [1]. In feedback controlled applications,
the dynamic bandwidth is often limited by bearing stiffness [1].

1.2.1. The definition of stiffness
Stiffness is the extent to which a structure resists a certain deformation in response to an applied force.
Hookes law defines the relationship for elasticity of an object. It equals the incremental change in
force Δ�⃗� that an elastic element produces in reaction to an incremental deformation Δ�⃗�. This force and
displacement vector act in opposite direction. Expressed in generalised coordinates, Hookes law is
defined as: 𝛿�⃗� = −K(�⃗�) ⋅ Δ�⃗�. Here K(�⃗�) is the stiffness matrix consisting of the elasticity terms for all
generalized coordinates. If the stiffness of the element is independent of the deformation, the relation
becomes linear and when acting in one single degree it can be written as: �⃗� = −K ⋅ �⃗�.

As the degrees of freedom of a system increase, the stiffness matrix becomes increasingly compli
cated. For bearings the stiffness in the degrees of freedom that it constrains is of interest, here stiffness
is a measure of how well these degrees are constrained.

1.2.2. The role of stiffness in mechatronic system performance
Mechatronic systems performance of is often related to the ability to produce and control a certain
motion of a body. As external forces are exerted on the body, reaction forces need to be generated to
keep the body on track, i.e. it requires a stiffness. Constant external forces pose no real problems. In
practice however, these forces are not constant, this makes controlling them difficult. The movements
and forces vary in different ways both periodic and as a random process, therefore they are analysed
by studying the system response to input forces of different frequencies.

Despite many decades of fine engineering, improving the mechanical construction in strength, life
time and mass, the mechanical aspect of a mechatronic system is still the limiting factor of the perfor
mance of any mechatronic system [1]. It is therefore first and foremost essential to fully understand the
system mechanics. The overall performance of a mechatronic system regarding speed and precision
is determined by the static and dynamic properties of all elements making up the system.

https://onnowijnberg.nl/MasterThesis/TableAnimation.mp4
D.O. Wijnberg

All QR codes are clickable hypertext links.
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1.2.3. Stiffness in relation to static system performance
Stiffness is a highly important property for reaching certain performance levels regarding positioning
accuracy. Stiff systems will deform less in response to an exerted force. A high stiffness is often
necessary for precision, minimizing random errors resulting from variations in forces.

An example of a system where a high stiffness is essential for performance is a motion stage in a
wafer inspection machine, as shown in figure 1.4. Depending on the stiffness of the motion stage, the
wafer moves away further from the targeted position due to the force of the load exerted on the stage.
The force and related offset are rarely constant and accurately known. This limits both the accuracy
and precision of this machine. In case a maximum deviation (positioning error 𝑥𝑒) of 1 µm is specified,
and a force of 20N is exerted by the load in 𝑥direction, a minimum for the stiffness between motion
stage and support frame of 2 ⋅ 107 N/m directly results from this requirement.

1.2.4. Stiffness in relation to dynamic system performance
Going back to the example of the wafer inspection equipment in figure 1.4, when performing the a task
faster, the increased acceleration, together with the inertia of the moving components will generate
higher internal force. These pseudoforces directly pose aminimum on the stiffness between themotion
stage and the support frame to limit the maximum error:

𝑘 ≥ 𝐹
𝑥 =

𝑚 𝑎
𝑥 (1.1)

For harmonic motions, the minimal stiffness is directly coupled with the undamped natural frequency
𝜔𝑛. A system in balance, consisting of a body with a certain mass and compliance, will resonate in
its natural frequency. The inertial force 𝐹𝑎 will always be in balance with the reaction force from the
bearing 𝐹𝑏, this can be written as:

𝐹𝑎(𝑡) + 𝐹𝑏(𝑡) = 𝑚
d2𝑥
d𝑡2 + 𝑘 𝑥(𝑡) = 0

(1.2)

When in resonance, the element has a harmonic movement of the form 𝑥(𝑡) = 𝑥𝑝 ⋅ sin(𝜔0𝑡). Here,
𝑥𝑝 is the peak amplitude. When substituting the harmonic movement in Equation 1.2, the following
equation can be formulated:

−𝑚 𝑥𝑝 𝜔2𝑛 sin (𝜔𝑛𝑡) + 𝑘 𝑥𝑝 sin (𝜔𝑛𝑡) = 0 (1.3)

Equation 1.3 results in:

𝜔𝑛 = √
𝑘
𝑚

(1.4)

From Equation 1.1 it can be understood that a smaller positioning error requires a higher stiffness.
Which implies that the undamped natural frequency, Equation 1.4 has to increase. This illustrates
how the natural frequency of a system is linked to its performance with regards its ability to deal with
vibrations.

The eigenfrequency relates in a similar way to the performance of a feedback system tracking a
reference. The maximum tracking frequency of a mechatronic system is called the control bandwidth.
In the example of the wafer inspection machine, if the motion stage is perturbed with a high frequency;
above the bandwidth, the error caused by this vibration adds up to the measurement error and the
stage is not able to react on this input.

𝑚

scanner

𝑘fra
m
e 𝑥𝑒

𝑥
Figure 1.4: A wafer inspection machine tracing a waver along the microscope lens.
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1.3. Research goal
Section 1.2 explained the relevance of quantifying bearing stiffness. This thesis aims to assists mecha
tronic systems integrators in performing virtual prototyping by providing stiffness estimations of linear
crossed roller bearings. The final goal of this master thesis is stated as follows:

To create and validate a model for predicting the static stiffness of a linear crossed roller
bearing as a function of its key design variables within a range of 20%.

The scope of this thesis is limited to nonrolling, conditions, consequently excluding the effects as Elas
tohydrodynamic Lubrication and spin creepage. Furthermore, this thesis will not cover the mechanisms
for applying preload and their corresponding error.

1.4. Structure of this Thesis
• Chapter 2 provides a literature review of fundamental concepts of rolling element bearings rele
vant for this study. It summarizes current knowledge of stiffness modelling for roller bearings and
identifies open questions.

• Chapter 3 presents a first modelling effort of the rollerrail contact. The purpose of this study
is twofold, first to determine which physical effects determine behaviour of rollerrail contacts.
Secondly, to develop a method to accurately and computationally efficiently predict the stiffness
of an individual rollerrail contact as part of a system.

• Chapter 3 validates this method with experiments on normally loaded rollers between two rails.

• Chapter 5 extends the model of the normally loaded situation of Chapter 3 and 4 to a configu
ration in which the rollers are loaded with an angle of 45°. Here the role of tangential stiffness
components is investigated and quantified.

• Chapter 6 extends the model from single rolling elements to a full linear roller bearing assembly.
This Chapter presents both a parametric and numeric multi body dynamics model based on the
method and experimental data obtained in the previous chapters. Experiments on crossed roller
slides evaluate the accuracy of this model.

• Lastly, an overview of the developed insights is given in Chapter 7, these conclusions are followed
by recommendations on any further research.

Chapter 2 Literature
How well is the stiffness of linear roller bearings currently understood?

Chapter 3 Theoretical
description of rollerrail
contact stiffness

Chapter 4 Stiffness of
a normally loaded roller
between two flat rails

Chapter 5 Stiffness of
a roller between two
rails at 45°

Chapter 6 Stiffness of
a linear crossed roller
bearing

Chapter 7 Conclusions and recommendations

Figure 1.5: Structure of this thesis.



2
Literature

How well is the stiffness of linear roller bearings currently understood?

This literature review will elaborate on this question. First it will provide a brief history on rolling element
bearings. Secondly, Section 2.2 covers the different methods for modelling the loaddeflection relation
of individual rollers. This includes the analytic fundamentals of Hertz Theory and its extension to 2D line
contacts. This Section will cover the most common analytic models of the rollerrail contact in 2D. The
study is extended to 3D, it will cover the effects such as roller profiling, endeffects, and misalignment.

After this, factors that influence the stiffness as surface roughness, lubrication and traction are
covered. Section 2.7 elaborates on the modelling and experimental validation of bearing assemblies.
Finally, Section 2.8 identifies open research questions.

7
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2.1. A brief history of rolling element bearings
Efforts to replace sliding with rolling contact appear to have started already in the prehistoric age. Round
wooden logs were used to transport stones for the construction of Megaliths like the Dolemens found
in the Netherlands. This can be considered the first utilisation of a ”linear roller bearing”. It is disputed
whether the Egyptians used a similar technique to transport stones up their pyramids. According to
Rossi [4], the Celts used rolling elements in hubs of war chariots where the bearings consisted of a
series of rollers placed between the hub and the axle. Larger rolling element bearings were used by the
Romans as the finding of several roller bearings and ball bearings on the remains of Nemi’s ships [4]
indicated. Here the elements were installed between two horizontal circular platforms which appeared
to function as a mobile base for valuable statues or used as a platform in a cargo crane.

The first concepts for rolling elements bearings in the form as we know today date back to the
Renaissance; they were found in the work of Leonardo da Vinci [5]. In 1757 the first caged roller bearing
was used in the H3 marine timekeeper which was invented by John Harrison [6]. The first patent for
a roller bearing was granted to Philip Vaughan in 1794; UK Patent No 2006, London. 1794. ”Iron ball
bearings for carriage wheelaxles” [7]. However, the general, widespread use of rolling bearings did not
occur until the Industrial Revolution as rolling element bearings could initially not compete in durability
with hydrodynamic sliding bearings [8].

In 1907 SKF was founded by Sven Wingqvist who invented the selfaligning radial ball bearing that
revolutionized the rolling element bearing. This is a type of bearing in which misalignment does not
cause excessive wear [9]. Today, SKF is the world’s largest bearing manufacturer. Throughout the
20th century rolling element bearings improved substantially with the development of superior rolling
bearing steels and improvements in manufacturing that led to the production of extremely accurate
geometries. Many variations of the rolling element bearing were developed during this period, linear
and recirculating rolling element bearing were found in widespread applications. Standardization, auto
mated mass production and global competition drove prices down which led roller bearings to become
the most commonly used motion bearing. In 1941 the first patent for a linear crossed roller bearing was
granted to Zwick [10], in 1948 the company Schneeberger started the first production of crossed guide
ways and crossed roller slide tables [11].

Since the 90s a trend can be observed that linear roller bearings are reduced considerably in size.
This follows the miniaturization in precision applications such as microscopes, optical systems, and
semiconductor production equipment. Up to this day, this miniaturization demands higher requirements
on the accuracy and predictability of linear rolling bearings.

2.2. Individual rollerrail contact models
The relationship between load and deformation is one of the most important issues in the field of rolling
element bearing modelling [12]. For nonconforming contacts, the stresses very close to the point of
contact are extremely large compared to the rest of the bodies. Therefore, when studying contact
mechanics, the focus is usually confined to this section of the bodies. In contact stress theory it is
common to treat the concentrated stress near the surface and the distributed load throughout the bodies
separately [13].

In general, there are three methods that are widely used to determine the loaddeflection relation in
individual rollerrail contacts:

• Analyticmodels are typically extensions of Hertz Theory and a 2D analytic solution of the simpli
fied mechanics problem based on the geometry and mechanics of the materials. Analytic models
provide an elegant equation for the loaddeflection relation but do so at the cost of many assump
tions and simplifications.

• Numeric models allow to take into account the complex geometry and capture (local) effects
including lubrication, surface roughness, and misalignment. These comprehensive models can
model the many factors that govern the rollerrail contact. But they require an exact description of
the geometry and are computationally expensive as they need to be numerically solved for each
unique condition. These computational costs can limit the practical use of numeric models.

• Empiricmodels take into account all effects that influence the contact in practice thus no assump
tions on the rollerrail contact have to bemade. Thismethod requires extensive experimental work
which consumes time and labour. In addition, experiments introduce measurement errors, and
interor extrapolation for all configurations not tested for.
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2.2.1. Analytic models
A simplified geometry of an individual roller in a bearing assembly is a cylinder compressed between
two rails. The most simplified model is to consider the situation where a cylindrical body is compressed
between two rectangular bodies. When neglecting dynamics, lubrication, and surface asperities, only
the geometry and mechanics of the materials determine the behaviour.

Heinrich Hertz with his paper Ueber die Berührung fester elastischer Körper [14] (On the contact of
elastic solids [15]) is considered the founder of the subject of contact mechanics. As a result, these
type of contacts are called Hertzian contacts (even when Hertz Theory cannot be applied). His interest
in the problem of contact mechanics was aroused by optical interference experiments on contacting
glass lenses. He was interested the influence of the load on the lenses on the interference pattern. He
derived the formulae for calculating contact pressures and the dimensions of the concentrated contacts
between two elliptical nonconforming bodies.

For point contacts Hertz provided an analytic solution for the loaddeflection relationship. A cylinder
is treated using Hertz Theory as the limit of an elliptical body where one radius goes to infinity, cre
ating a line contact in plane strain. For this contact, the loaddeflection relationship falls outside the
realm of Hertz Theory. Here, it merely allows for calculation of the stress and strains in the vicinity of
the contact. Over time, many authors addressed contact problems involving cylindrical bodies, all with
slightly different assumptions and boundary conditions. A standard reference on the subject of contact
mechanics is written by Johnson [13].

Tripp [16] derived a solution for the deformation of a 2D cylinder compressed between two halfspaces,
a semiinfinite bodies bounded by a plane surfaces. The deformation of this infinitely deep half space
can only be calculated in relation to a chosen evaluation depth. Nakhatakyan [17] derived a load
deflection relation identical to Equation 3.33 by means of a different but very clear model. This model
is more commonly known as Johnson’s model [13], however Johnson credits Tripp for this model.
Throughout this Thesis it will be referred to as the Tripp model.

One major simplification of the Tripp model is the assumption of plane strain, this reduces the problem
to 2D as a result this model does not consider effects at the roller ends. The Tripp model accurately
models the bulk of the length of the roller, however rollers in bearings are of finite length, at the roller
ends significant deviations are found. In most applications, the edge stresses have an important effect
[13]. The stresses at a sharp edge as shown in Figure 2.1a are often more than twice the stress at the
rest of the length [18]. These stress concentrations strongly influence the fatigue life of roller bearings
as they initiate fatigue cracks [3]. To reduce the effect of the discontinuity at the end of the straight profile
and distribute the load more consistently across the length of the bearing, roller profiles are modified,
this is also known as crowning. Rollers have various lengths and profiles, different types of profiles are
shown in Figure 2.1. These profiles, together with the assumptions for the boundary conditions of the
rail consitute the basis of the differences between the many loaddeflection models available.

𝑃

(a) Straight

𝑃

(b) Logarithmic

𝑃

(c) Simple radius

𝑃

(d) Fillet

Figure 2.1: Different roller profiles. The profiles are only present at the micrometer scale, this is an exaggeration.
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In 1939, Lundberg [19] was the first to suggest a profile to distribute the stress as uniform as possi
ble, he proposed a logarithmic profile as shown in Figure 2.1b. Doing so, he assumed that the pressure
distribution is constant along the roller axis. He uses deflection differences in order to obtain this profile.
Lundberg also presented a loaddeflection relation corresponding to this profile. An essentially iden
tical profile is included in ISO/TS 16281 (see Section 2.5). Kunert [20] proved Lundberg’s profile as
part of his dissertation in 1961. Kunert also presented a greatly simplified approximation of Lundberg’s
loaddeflection relation. In addition, he also described how, when also considering subsurface stress
concentrations and not only contact pressure, it is not possible to have a completely uniform stress
distribution along the cylinder’s axes. The optimum profile depends the loading conditions, therefore
the logarithmic profile is of limited practical use.

The pressure distribution resulting from a barrel type roller with a simple radius (Figure 2.1c) is
an elliptically distributed pressure, that can be solved using Hertz Theory. The disadvantage of this
profile is that under light loads the circular crowned profile does not fully utilize the roller length. The
loaddeflection relation is given by Kowalsky 1.

The foregoing loaddeflection relationships were compared by Teutsch and Sauer [21], in their case
study only Lundberg’s and Kunert’s results deviate noticeably. This is expected since both relationships
assume an optimized roller profile.

2.2.2. Numerical models
Many numerical models have were developed to estimate the interaction forces in rollerrail contacts.
FEM models allow to model the complex geometry, capture local effects such as lubrication [23], sur
face roughness [24], misalignment [25], creep [26], spin, friction and wear. Each of the mentioned
aspects can be solved with different methodologies; over the years many alternative methods were
proposed. Typically, the most accurate and comprehensive models come with higher computational
costs while simplified models come with larger errors. Most of these aspects are interdependent, such
that complex models require simultaneous evaluation of the relevant subproblems. These compre
hensive models can model the many factors that determine the rollerrail contact, but require an exact
description of the geometry and are computationally expensive as they need to be numerically solved
for each unique condition.

The first successful numerical model of wheelrail rolling program was proposed by Kalker [27] in the
1970’s. He is the initial developer of CONTACT [28], a software tool for the numerical simulation of
rolling contact situations, focused on railway applications. A standard reference on the subject of nu
merical contact modelling is written by Kalker [29].

The slicing method [21] is a method combining analytic and numerical models, the roller–rail contact
region is sliced into a number of sections. The total contact forces and deformations are then calculated
by the summation of deformations and loads in the individual slices. This is a relatively cheap method
to include aspects such as misalignment and endeffects. The use of some slicing method can be
advantageous when many contacts have to be solved simultaneously such as in a bearing assembly.
However, compared to full numerical modelling, the accuracy may be reduced considerably.

1Teutsch and Sauer [21] stated that Kowalsky considered an elliptically distributed pressure, they refer to Rothbart’s book Me
chanical Design and Systems Handbook [22]. Unfortunately after lending this book at the library, no single reference to Kowal
sky. Neither is he mentioned in any other literature.
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2.2.3. Experimental work
The classic method for measuring the loadcompression relation is by statically loading a roller between
two bodies with a flat surface, followed by measuring the deformation for different loads. A schematic of
a typical test setup for this measuring method is shown in Figure 2.2a. This method is used by various
authors (Nikpur et al. [30], Hoeprich and Zantopulos [31]) and has shown good agreement with analytic
work in some situations. However, often large discrepancies were measured with errors of over 40%
[31]. The rollers used were profiled [30] and the quality of the rollers and rail was not specified.

H. A. Sherif [32] proposed and demonstrated an elegant and promising experimental method to mea
sure the stiffness of a roller between two plates using modal analysis. A schematic of his test setup
is shown in 2.2b. His results were promising for small rollers. However, the asymmetric setup design
inherently led to misalignment, resulting in large measurement errors. In addition, the limited mass
led to the roller mass influencing the measurements for larger rollers. He used profiled rollers with a
large diameter and length. The paper documents the rail and roller roughness, and material hardness,
however the roller cylindricity is not specified. This setup requires the assumption of zero deformation
of the setup base.

(a) Schematic of the test setup used by Hoeprich
[31].

(b) Schematic of the test setup used by Sherif [32].

Figure 2.2: Schematics of test setups used for measuring the stiffness of individual rollers.

Palmgren [33] (head of SKF’s technical department between 1937 and 1955 [34]) presented a load
deflection relation which by many authors [8, 12, 21, 32, 35] is believed to be based on laboratory
testing of rollers loaded against raceways. However, as Nikpur et al. [30] point out, this loaddeflection
relation is2 only a simplification of the analytic solution presented by Lundberg [19].

2All authors refer to Ball and roller bearing engineering, 3rd edition. After lending this book at the library, both in German and
in English, it becomes clear that no experimental verification is mentioned. The relation Assumes a cylindrical body of infinite
length, while the relation itself depends the roller length.
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2.3. Surface roughness
Both Hertz contact theory as the extensions for rollers assume perfectly smooth contacting surfaces.
These models are incomplete for realworld situations where two rough nonconforming bodies are
brought into contact. Whether the assumption of smooth surfaces is justifiable, depends on the width
of the contact relative to the dimensions surface asperities. For a contact concerning a rolling element
with a large radius, high load, and small surface asperities, the influence of these asperities is relatively
small.

In smooth nonconforming contacts, the stress is continuously distributed over the contact area.
While in rough contacts only the asperity peaks are in contact, such that the contact occurs at a finite
number of asperities. This reduces the effective contact area which ultimately results in a lower stiff
ness.

Surface roughness is predominantly studied in relation to the ways in which it influences surface
stresses that impact the wear and fatigue life of rolling contacts. A classical study published by Green
wood and Tripp studied the influence of surface roughness on the elastic contact between smooth
spheres and rough surfaces [36]. Here the Greenwood–Williamson [37] contact mechanics theory is
applied to Hertz contacts. They found that the influence of surface roughness with regards to the stiff
ness scales dominantly with ( 𝑅𝑃2 )

1
3 .

Greenwood and Tripp assumed:

• The asperities have spherical crests with a specified constant

• The crest heights follow a Gaussian distribution with a specified standard deviation

• There are taken to be specified number of asperities per unit area

• The deformations are elastic, there is no plastic flow

Machined surfaces after runin are often assumed to have profiles that are described by a Gaussian
distribution [37]. For bearings it is reasonable to assume plastic flow during the runin. Since bearings
make millions of traversals during their lifetime, it is logical to assume a steady state in which the rolling
element is supported elastically. Kagami et al. [38] provided an analysis of this problem and found that
the effect of the mode of deformation, the assumption of elastic, plastic or mixed deformation was of
little importance.

The abovementioned models exclusively considered spheres and none of these measured defor
mation. Solely the relation between roughness and contact area is measured, all other contact charac
teristics were deduced from this measurement. The majority of the studies on roughness is concerned
with the effects on wear and failure of the bearing.

McCallion [39] presented a procedure to predict the deformation of a roughturned circular cylinder
compressed between smooth flat surfaces of two hard blocks. He verified his model by performing
experiments with rough turned rollers and smooth rails. He found a good agreement between the
predicted and measured influence on stiffness. His model is based on the assumption of plastic defor
mation of the asperities. Plastic deformations however do not create a stiffness as this requires elastic
deformation. The hardness of the rollers used, were between 30 HRC and 77 HRB while a harness of
60 HRC is typical for rolling bearings.

The influence of surface roughness on rollerrail contacts has been studied with regards to the vibrations
induced by the rolling over a rough surface [40], the relation with EHL [23] and roughness and with
regards of wear of trainwheels [41].

summarized, there are many analytic and numerical theories that predict the behaviour of rough
contacts. Yet, adequate experimental verification of these models is lacking. The influence of surface
roughness of balls is not directly measured yet. For roller contacts the verification is very limited and
performed with large and relatively soft rollers.
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2.4. Lubrication
Lubrication of rolling contacts reduces the friction caused by micro slip [3]. Elastohydrodynamic lubri
cation (EHL) is present in all lubricated components whose elements roll together. Properly lubricated
rolling bearings have a thin lubricant film with a height in the order of 0.1–0.5µm while in motion. This
film separates the contacts and protects the surfaces against wear and pressure concentrations caused
by surface roughness [23]. The high contact pressures (order 1–4GPa in roller contacts) increase the
viscosity such that the film layer behaves rather as a solid instead of a liquid [3]. Spikes [42] gives a
good overview of EHL for both point and line contacts.

Two relevant properties of EHL contacts are the film thickness of the and friction [3]. These two prop
erties can be determined with numerical models of the elastohydrodynamic problem. Yet this requires
detailed knowledge of the geometry, rheology and can be computationally expensive. A dry contact
roller is stiffer than the lubricated roller, since the lubricant oil film adds a layer with a finite stiffness
in series. No useful analytic solutions of the EHL problem exist to this day, instead regressionfitted
equations have been developed from repeated numerical models and run over a wide range of contact
and material conditions [43]. A often used film thickness equation is given by Dowson [44] which is
based on three dimensionless parameters for the speed, material and load respectively:

�̄� = 𝑈𝐷/2𝜂0
𝐸′ , �̄� = 𝛼𝑝𝐸′, �̄� = 𝑃

𝐸′𝐷/2𝐿𝑤𝑒
(2.1)

With 𝑈 the velocity of the contact, base viscosity 𝜂0 and pressureviscosity coefficient 𝛼𝑝.
And a central film thickness ℎ𝑐 of:

ℎ𝑐
𝐷/2 = 3.11�̄�

0.69 ⋅ �̄�0.56 ⋅ �̄�−0.1 (2.2)

It shows that these relations the film thickness is only marginally dependent on the load 𝑃. Taking the
derivative towards the load gives:

𝑘𝐸𝐻𝐿−1 =
d
d𝑃(−ℎ𝑐) =

𝐷/2 ⋅ 0.311 ⋅ �̄�0.69 ⋅ �̄�0.56(𝐸′𝐷/2𝐿𝑤𝑒)0.1 ⋅ 𝑃−1.1 (2.3)

Tsuha and Cavalca [45] compared EHL for different roller profiles, they found only moderate deviations.
Furthermore, they showed that the film stiffness may be approximated as independent of load. For
linear crossed roller bearings the stiffness of the lubrication is two to three orders of magnitude stiffer
than the contacting solids [46]. The presence of an EHL film is often verified by measuring the electrical
conductivity of the contact and the thickness is experimentally determined with capacitance, ultrasonic,
optical interference and fluorescence measurements.
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2.5. Standards for linear motion rolling bearing
Most rolling bearings are specified according to standard specifications, this enables comparison of
bearings among manufactures. The design of rolling bearings is, in part, based on ISO and DIN stan
dards, here semiempirical formulas are used for computing the expected bearing performance [47].
A technical committee on rolling bearings (TC4) in the International Organization for Standardization
(ISO) is concerned with the standardization of all types and sizes of bearing elements based on the
principle of rolling motion. The focus of ISO standards is mainly towards rotational bearings, nine of the
80 standards published under this technical commission are concerned with linear motion bearings. Six
of these nine standards regard linear ball bearings, while only three also cover linear motion bearings
with rollers.

ISO 24393:2008 defines terminology applied in the field of linear rolling bearings and their compo
nents. The terms used throughout this thesis are chosen in accordance with this standard.

ISO 5593:2019 is the rotation bearing counterpart of this standard.

ISO 147281:2017 specifies methods of calculating the basic dynamic load rating (𝐶) and basic rating
life (𝐿10) for steel linear motion rolling bearings. The life of a linear bearing is the distance travelled
before any evidence of fatigue develops in the bearing material. The basic rating life is defined as the
life (distance) associated with 90% reliability using the Weibull Distribution. The basic dynamic load
rating of a linear bearing is the stationary load for which it could theoretically endure for a basic rating
life of 1 ⋅ 105m. For linear roller bearings, the basic dynamic load rating depends the dimensions of the
bearing, manufacturing tolerances, and the number of rollers. Manufacturers often specify correction
factors to account for temperature, material hardness, and lubrication.

ISO 281:2007 is the rotation bearing counterpart of this standard. This standard is more detailed,
it takes into account various reliabilities, lubrication condition, contaminated lubricant, and fatigue load
of the bearing. This standard can be extended with ISO/TS 16281:2008 which covers additional influ
encing parameters such as radial clearance and tilt.

ISO 147282:2017 specifies methods of calculating the basic static load rating (𝐶0) for steel linear
motion rolling bearings. The basic static load rating is the load such that approximately a total perma
nent deformation of 0.0001 of the rolling element diameter occurs. At this load, the most heavily loaded
rolling elementraceway contact experiences a theoretical peak surface pressure of 4000MPa, this is
roughly the yield point of hardened bearing steel.

ISO 76:2006 is the rotation bearing counterpart of this standard.

ISO 12090:2011 establishes the boundary dimensions and tolerances for a series recirculating bear
ings, this allows for interchangeability among manufacturers.
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2.6. Preload
The majority of all highprecision applications required a preload to improve their performance. Ac
cording to ISO 24393:2008, preload is the continuous application of force on a bearing independent of
the active service load. As the loadstiffness relation has a nonlinear nature, rolling element bearings
perform poorly under light or noload conditions. Applying a preload yields a higher stiffness for loaded
bearings and thus improves their performance.

Besides stiffness, other reasons to apply a preload include:

• Reduce noise level and running vibrations

• Remove clearances caused by manufacturing precision

• Extend bearing fatigue life

• Improve running accuracy

• Prevent skidding in highspeed applications with heavy acceleration

• Minimize cage creep

However, excessive preload results in increased friction, wear and fatigue; a good balance is therefore
important.

In linear motion roller bearings, three major methods to apply preload are used: oversized rollers,
set screws or applying an external load [12].

• Using oversized rollers ensures a playfree and preloaded bearing assembly. Yet this requires
extremely tight tolerances such that the preload is in the desired range.

• Instead, a preload screw can be used. For this method, the rails are compressed against the
rollers with set screws. A specific torque is applied to the preload set screws before completely
fixating the guide rails to the rest of the assembly. Earlier investigations (unpublished data) into
the exact relationship between set screw torque and resulting guide way preload have been con
ducted. It was found that no definite relation between axial preload force and set screw torque can
be found through the assumption of a static, invariant screw thread friction coefficient. Nonethe
less, this is the method of choice for most crossed roller slides.

• An external load is sometimes used. This is often a continuous load present in the application
such as the weight of a part of the system the bearing is incorporated in.

2.7. Stiffness descriptions of bearing assemblies
The fundamental differences between the geometry of rotational and linear bearings makes them differ
ent fields of study. All assemblies are composed of individual contacts and are influenced by the factors
that influence individual roller contacts. Despite the similarities, there is a distinction between bearings
when comparing the stiffness of rotational and linear movement. Extensive research has been con
ducted on rotation rolling element bearings and recirculating roller guide ways. However, very limited
information is found that investigates the stiffness behaviour of crossed roller guide ways. This section
will review the current knowledge of the stiffness of various linear motion rolling bearing assemblies.

2.7.1. Rotation rolling bearings
The modelling and analysis of rotation rolling element bearings has been discussed extensively in a
review by Hong and Tong [12]. This literature review covers both quasistatic (steady state operation)
and dynamic models. They compare 24 different dynamic rotational bearing models, the different soft
ware tools provided by manufacturers. For rotational bearings the focus is often on the influence of the
rotational speed on the dynamic characteristics of a bearing. A standard reference on the modelling of
rotational rolling bearings is Essential Concepts of Bearing Technology, written by T.A. Harris [8]. The
more numerical aspects are covered by H. NguyenSchäfer in his work Computational design of rolling
bearings.
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2.7.2. Linear motion rolling bearings
Table 2.1 lists different models for linear recirculating rolling element guides. The straightforward nature
of a point contacts and the tendency of authors to focus on modelling recirculating ball bearings, has
led to fairly accurate stiffness predictions. However, for recirculating roller bearings no such accurate
predictions have been presented yet.
Table 2.1: Models for linear recirculating rolling element guides.

Ref. Authors Year Elements 𝐷 mm 𝐿𝑤𝑒 mm Contact Experiment

[48] Hung 2009 Balls 2.778  Hertz Modal analysis, hammer impact
[49] Ohta & Hayashi 2000 Balls 4.7625  Hertza Modal analysis, dynamic measurements
[50] Otha & Tanaka 2010 Balls 4.7625  Hertz Static displacement measurements
[51] Majda 2012 Balls 4.7625  Hertz Static displacement measurements
[46] Soleimanian et al. 2020 Cylindrical 4.7625 2.5 Numerical Modal analysis, dynamic measurements
[52] Wu et al. 2007 Balls 4.763  Hertz Modal analysis, hammer impact
[53] Li & Zhang 2011 Balls 8  Hertz Modal analysis, hammer impact
[54] Toa et al. 2013 Cylindrical 5 5 Palmgren Static displacement measurements
[55] Kwon et al. 2019 Logarithmic 5.5 4.3 Palmgren None, comparison with BEARINX® [56]
[57] Jiang et al. 2019 Logarithmic 6 5 Palmgren Static displacement measurementsb
aThis may be presumed as a linear stiffness for each element is presented as a fixed bearing characteristic.
bExperimental data from external reference in Chinese, which could not be accessed.

Hung [48] found that modelling rolling elements as spring or surface elements would be an efficient
way to build a multi body model with sufficient accuracy. Moreover, it was also demonstrated that the
mass of the rolling elements may be neglected in such a model.

Rolling vs nonrolling conditions Otha & Hayashi [49] studied the influence of the running velocity
on the eigenmodes of lubricated recirculating ball bearings. No substantial influence of the running
velocity on the main eigenfrequencies was observed.

Slide body deformations Mostmodels neglect the deformation of the slide body, for ball linear guides
this simplification is not problematic, the compliance of the Hertzian point contacts are such that they
dominate the overall bearing compliance. Yet, for linear roller guides, with stiffer line contacts, the
influence of slide body compliance is considerate. Otha & Tanaka [50] found that, for their specific
guide, the influence of the slide body accounts for more than 20% of the total compliance.

Geometric errors Majda [51] investigated the influence of geometric errors on of slide body and rail.
It was shown how straightness error in the raceway could lead to a reduced stiffness. Yet a method for
predicting the influence of error on the stiffness is still an open question.

Lubrication Soleimanian et al. [46] developed a dynamic model incorporating EHL that focuses on
friction. Experimental testing validated that the film thickness always remains in the submicron region,
exhibiting a mixedEHL regime. This model does not consider the presence of a tangential stiffness
component when no EHL is in place. The stiffness variation during a cycle of sliding velocity was less
than 1%, this is in line with the effect based on Dowson [44] covered in Section 2.4.

2.7.3. Experimental stiffness validation methods
Wu et al. [52] presented a model for linear recirculating ball guides. This study challenges the use of
linear springs as contacts, it considers the nonlinear characteristics of the Hertz loadstiffness relation.
The rail and carriage are taken as rigid bodies. In their experiments no external mass is added to the
guide. Both ceramic and steel balls were tested, the use of ceramic balls compared to steel showed to
slightly increase the overall stiffness.

In the work of Hung [48] on recirculating ball bearings, the differences between the finite element pre
dictions and experimental measurements are less than 10%. The preload is applied with oversized
balls.
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Li & Zhang [53], developed a MBDmodel based on Hertz Theory and the assumption of a rigid carriage.
Hammer impact measurements are performed on a recirculating ball guide with the goal of identifying
the stiffness. The system is tested both with and without constraint, i.e. one side fixed to a table and
suspended in mid air. With the suspended experiment mainly the flex modes of the rail were measured.
Yet the exact model of bearing used is not specified, making this study not reproducible. The math in
paper could be incorrect, the mass and eigenfrequency do not add up to the stiffness is given. This
could be a result of specifying the stiffness with 3 significant figures while mass is given with only a
single significant figure. They claim that the model is correct within 5% compared to modal measure
ments. It is unknown how the preload, based on oversized rolling elements, is exactly known.

Toa et al. [54] studied the influence of wear loss on the displacement of the linear guide. They also
measured the loaddisplacement relation of a slide without wear. Static measurements with a dial
gauge indicator are performed in horizontal, vertical, and roll direction. Their static displacements al
most exactly match the predicted displacements without incorporating the deformation of the carriage
in his model. The measurement instruments used have a measuring accuracy of 1 µm and are used
to compare displacements of 2 µm with predictions.

Kwon et al. [55] took a systematic approach to developing a 5DOF model for the static analysis of
linear roller bearings subjected to external loading. The model uses Palmgren’s loaddeflection rela
tion as the basis for a slicing technique since rollers with a logarithmic profile are used. It takes into
account the deformations of the carriage. Yet, the tangential stiffness of the rollers is not considered.
The model is compared to results obtained with the commercial program BEARINX®, developed by
Schaeffler Technologies AG [56]. The calculated displacements using the proposed model have a good
correlation with those from the commercial program. Unfortunately no experimental data is available
for this configuration.

Jiang et al. [57] created a model in a way analogue to Kwon et al. Again Palmgren’s  thought to be
empirical  loaddeflection relation is used. The model is verified via a case study, the simulation re
sults are compared with experimental data based on static measurements taken from a doctoral thesis
written in Chinese. Their results show that the general trend of both models is similar, for nearly all
measurements the difference between experiments and model is less than 40%.

When comparing the work of Hung [48] with other work it is seen that adding a large mass to the guide
is beneficial for making the relevant eigenmodes distinct.

Linear crossed roller bearings
Literature on the topic of linear crossed roller bearings is very limited. Liu et al. [58] developed a para
metric 5DOF multi body dynamics model of a linear crossed roller bearing. In this model the body is
assumed rigid. Each roller element is represented by a horizontal and vertical stiffness element, this
indirectly allows for incorporating tangential roller stiffness. The equations of motions are derived using
Lagrangian mechanics. The stiffness and damping parameters are identified experimentally through
hammer impact modal testing. Additional experiments with twice the preload show a 14.5% stiffness
increase, while the preload, applied with set screws, increased from 10% to 20% of C0.

The exact model of bearing used and the roller diameter are not specified, making this study not re
producible. In the introduction the slide body is assumed to be rigid, however, in the following finite
element modelling they also consider the stiffness of this component. Only the first two eigenmodes
could be identifies, no mass had been added to the system to bring down the eigenfrequencies. This
paper successfully identifies the parameters for the used though unspecified linear bearing.
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2.8. Status quo and identification of open challenges
Modelling a roller is fundamentally more complex than a ball. Hertz contact theory is an accurate an
alytic solution to model the stiffness of most real ball rail contacts. On the other hand, for a rollerrail
contact many factors come into play. In particular, roller profiling, misalignment, traction, and requires
the arbitrary choosing of an evaluation depth. Currently, many researchers assert to present a good
model for predicting the stiffness of line contacts. Yet, the experimental validation of these models is
limited. A well documented empiric loadstiffness relation for cylindrical rollerrail contact is lacking.

Different methods for experimentally determining the loadstiffness relation of a rollerrail contact have
been developed with varying success. No comparison between static displacement measurements
and modal testing is performed. The work of H. A. Sherif [32] presents modal analysis as a promising
method for measuring the contact of a rollerrail contact despite some fundamental design flaws in this
test setup that hindered accurate results. Ohta et al. [49] demonstrates the benefit of adding inertia to
the test setup to isolate the modes of interest from flex modes. Finally, the reliance on a perfectly fixed
reference appeared to limit accuracy in most of these papers[54].

Based on experimental work with balls, the effects of surface roughness on stiffness may be ex
pected to be in the range of 1–10%. However, experimental validation with high quality rollers is
missing. The presence of EHL would in only marginally influence the normal stiffness as the nature
of the EHL is two to three orders of magnitude stiffer than the contacting solids [46]. Yet it could have
larger consequences as it reduces the tangential stiffness to the shear stiffness of the lubrication film.
The tangential stiffness of rolling elements is measured for balls [59]. For rollers this stiffness is still an
open question.

The modelling efforts for linear ball bearings using Hertz Theory resulted in accurate stiffness pre
dictions within 10% of the measured stiffness. However, for linear roller bearings no such accurate
predictions have been presented yet.

Recent linear roller bearing models claim to be able to predict the stiffness within 40% of the mea
sured stiffness. Incomplete documentation of the experimental methods limits the reproducibility of
these claims [60]. Moreover, the basis of these most recent models is Palmgren’s  presumed to be
empirical  loaddeflection relation. However, as Nikpur et al. [30] pointed out, this relation is not em
pirical but a fit of an analytic solution.

Instead of extending or altering existing linear roller bearing models, this Thesis will perform a step
bystep validation of models. Starting with an empiric determination of the loadstiffness relation for
an individual cylindrical rollerrail contact as this is not affected by the uncertainties present in bearing
assemblies. This is followed by an analysis of the tangential effects that come into play when a roller is
loaded at 45°. Once the rollerrail model at 45° is validated, this empirical rollerrail model will be used
to develop a model that predicts the stiffness of linear roller bearing assemblies.



3
Theoretical description of rollerrail

contact stiffness
A single roller compressed between two rails is the fundamental building block for modelling bearing
assemblies. It is essential to understand the behaviour of a single roller to arrive at a model of full
bearing assemblies.

The literature review of Chapter 2 showed that the following physical effects determine the stiffness of
rollerrail contacts:

• Load

• Roller profiling

• Dimensions

• Young’s modulus

• Poisson’s ratio

• Lubrication

• Surface roughness

Most of the analytic loaddeformation relations assume plane strain, are based on halfspace theory
and rely on the choice of an evaluation depth in this halfspace. Teutsch [21] and Hoeprich [31] com
pared different deflectionload relationships and found only a modest discrepancy. The Tripp model
[16] will be derived as it is the most common analytical solution to this problem up to this day. This
model is used by many authors [3, 8, 13, 61, 62].

This chapter investigates how to practically apply the Tripp model to the finite dimensions of linear roller
bearings.

First, the chapter describes the system of a normally loaded rollerrail contact.
Section 3.3 will provide an explanation and derivation of Tripp’s analytical model, this model con

siders a 2D cylinder compressed between two halfspaces and is thus based on the assumption of
planestrain and a halfspace.

Section 3.4 introduces the boundary conditions of a finite rail width (𝑊𝑟𝑎𝑖𝑙) and thickness (𝑇𝑟𝑎𝑖𝑙) with
a 2D FEM model. It challenges the halfspace of Tripp’s model.

Section 3.5 introduces the boundary conditions of a finite roller length (𝐿𝑟) and rail length (𝐿𝑟𝑎𝑖𝑙) with
a 3D FEM model. It challenges the planestrain of Tripp’s model. This Section covers endeffects and
the different roller profiles introduced in Subsection 2.2.1.

Section 3.6 presents a method to efficiently model more complex rail geometries.

19
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3.1. Description of the rollerrail system
The geometry considered in this chapter is shown in Figure 3.1a. The total deformation of the system
is the sum of the deformation in the rails and the deformation of the roller. Figure 3.1b represents the
rollerrail contact modelled as a set of nonlinear springs in series.

𝑦
𝑧

𝑥

𝑦𝑧

(a) Free body diagram.

𝑘𝑟𝑜𝑙𝑙𝑒𝑟(�⃗�)

𝑘𝑟𝑎𝑖𝑙(�⃗�)

𝑘𝑟𝑎𝑖𝑙(�⃗�)𝑦
𝑧

(b) Modelled as a series of nonlinear springs.

Figure 3.1: Schematic of a roller normally loaded roller between two flat rails.

The investigations in this chapter will disregard friction, tangential loading, surface roughness, and mis
alignment. The size of the rolling element used in this study is typical for linear bearing applications.
Table A.1 lists the specifications of all roller types used throughout this Thesis. This is a simple radius
(as in Figure 2.1c), made out of bearing steel (1.3505). The dimensions of the rail are shown in Figure
B.1, and is also made out of bearing steel (1.3505). In models, the load is varied in steps identical as
in the test setup.

The lead roller type is 1; unless stated otherwise the following parameters are used:

• Diameter 𝐷 =3mm

• Roller length 𝐿𝑟 =2.2mm

• Contact length 𝐿𝑤𝑒 =1.793mm

• Young’s modulus 𝐸 =210GPa

• Poisson’s ratio 𝜈 =0.29 (−)

• Rail thickness 𝑇𝑟𝑎𝑖𝑙 =22mm

• Rail width𝑊𝑟𝑎𝑖𝑙 =100mm

• Rail length 𝐿𝑟𝑎𝑖𝑙 =15mm

The measured contact length of 1.793mm is rounded during modelling to 1.80mm for convenience.
For numerical models, when appropriate, symmetry planes are used to stabilize the model and

limit computational complexity. For all symmetry planes, an identical model, but without that symmetry
is constructed to verifying the conditions at these boundaries and assure if their use is appropriate.
COMSOL Multiphysics 5.6 is used for all numerical models.
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3.2. Modelling steps
The model is created in steps, in each step new boundary conditions are introduced.

1. The basis of the model is the analytic Tripp model [16] this is covered in Section 3.3.

2. A 2D FEM model with an actual width and thickness challenging the infinite depth and width
assumed in Tripp’s model. It evaluates the influence of varying these dimensions.

3. Extending the 2D FEM model to 3D introduces a finite length for the roller and rail. It tests the
assumption of plane strain and it briefly covers the effects of roller profiling.

4. Subsequently, a more reallife geometry of the rail is considered and an efficient method for mod
elling these systems is proposed.

5. Finally this method to model contacts is applied to entire assemblies, this method is used for
modelling the test setups in Section 4.

1 Section 3.3 2 Section 3.4

Wrail/2

Trail

3 Section 3.5

𝑊𝑟𝑎𝑖𝑙
/2

𝐿𝑟𝑎𝑖𝑙 /2

𝑇𝑟𝑎𝑖𝑙

𝑅
𝐿𝑟 /2𝐿𝑤𝑒 /2

4 Section 3.6 5 Subsection 4.1.3

Figure 3.2: Chapter structure.
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3.3. 2D analytical model
The following Section will derive Tripp’s model [16]. Before doing so, it will lay down the kinematics of
contact mechanics, the concept of a halfspace in plane strain, and the stress and strains for distributed
normal loads. Using this background, the Hertz contact theory for cylinder plane contact is derived to
find the dimensions and pressure distribution of the contact region. Provided that the conditions at
the contact are defined, the stresses and strains throughout the bodies can be found using Tripp’s
derivation.

Kinematics of contact mechanics
A frame of reference needs to be established in order to describe the kinematics of the contact. A
quasistatic situation is chosen; no rolling, sliding or spin are present.

Consider the two bodies in contact as shown in Figure 3.3, the initial point of contact is taken as the
origin of a Cartesian coordinate system 𝑂𝑥𝑦𝑧. With bodies 1 and 2 being smooth, the common tangent
is the 𝑥𝑦plane with the 𝑥axis to the right and the 𝑧axis pointing down into body 2. With regards to
symmetry, it is convenient to chose the 𝑥 and 𝑦axis appropriately. So for a cylinder the 𝑦axis is
parallel with the axis of the cylinder and the 𝑥axis is parallel with the cross section.

The undeformed shapes of bodies 1 and 2 are respectively:

𝑧1 =𝑓1(𝑥, 𝑦)
𝑧2 =𝑓2(𝑥, 𝑦)

(3.1)

𝑧

𝑥𝑦

𝑣𝑥𝑣𝑦

𝑜

body 1

body 2

(𝑥, 𝑦)
𝑧1
𝑧2

Figure 3.3: Two nonconforming surfaces in contact at O.

𝑧1 and 𝑧2 represent the distance from a point on the surfaces to the 𝑥𝑦plane. The separation between
the bodies at initial contact is given by:

ℎ = 𝑧1 + 𝑧2 = 𝑓(𝑥, 𝑦) (3.2)

If the bodies are pushed together with a normal force 𝑃 acting in the 𝑧direction, a reaction force of the
same magnitude of 𝑃 would arise in the 𝑥𝑦plane. If both bodies would be rigid, the contact pressure
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at 𝑂 would become infinite as the contact area is zero. Real materials will deform, resulting in a finite
contact region 𝐴. This contact region is defined as the region where the gap ℎ(𝑥, 𝑦) = 0, as given in
Equation 3.3. The distributed normal forces between the bodies in this region are 𝑝(𝑥, 𝑦), as given in
Equation 3.4, the distributed traction forces are 𝑞(𝑥, 𝑦). The integral of 𝑝(𝑥, 𝑦) over 𝐴 is 𝑃. Likewise;
the integral of 𝑞(𝑥, 𝑦) over 𝐴 is 𝑄, with the fraction coefficient limiting the friction i.e. 𝑄 ≤ 𝑃𝜇.

The integral of these distributed loads over 𝐴 can also result in a moment, in dynamic rolling prob
lems this is the rolling friction. For static practical problems, this is small enough to be ignored [13].

ℎ(𝑥, 𝑦) = 0 (𝑥, 𝑦) ∈ 𝐴 (3.3)

𝑝(𝑥, 𝑦) = 0 (𝑥, 𝑦) ∈ 𝐴 (3.4)

The elastic halfspace
When nonconforming bodies are in contact, 𝐴 will be small relative to their overall dimensions. The
stresses and strains will be highly concentrated in a small region. As for calculating the stresses and
strains near the contact, the rest of the geometry of the bodies are of less importance since these
regions experience mostly a rigidbody motion.

In some cases the assumption of a halfspace can bemade, i.e. replacing the body by a semiinfinite
body bounded by a plane surface. This assumption simplifies the boundary conditions and allows for
the use of elasticity theory developed for the elastic halfspace. This approximation does not hold up if
the radii of curvature near the contact are small or in the presence of any sharp corners.

Figure 3.4 shows the crosssection of a halfspace. At the surface there is a normal load 𝑝(𝑥) and
a tangential load 𝑞(𝑥) in the region −𝑏 < 𝑥 < 𝑎. No loads are applied to the rest of the surface. In the
following calculation a state of plane strain (𝜖𝑦 = 0) is assumed. This assumption is justifiable if the
thickness of the solid is large compared to the width of the loaded region.

𝑞(𝑥)
𝑥

𝑧

𝑂

𝑎 𝑏

𝑝(𝑥)

𝜏𝑥𝑧

𝜎𝑥

𝜎𝑧

𝑧
𝑥

𝑢𝑧

𝑢𝑥𝑟

𝜃

𝜎𝑟

𝜎𝜃
𝜏𝑟𝜃

𝑢𝑟

𝑢𝜃

Figure 3.4: A halfspace in a state of plane strain loaded by 𝑝(𝑥) and 𝑞(𝑥).

If the material properties are constant throughout the body, continuum mechanics may be applied.
Furthermore the material is assumed to be homogeneous isotropic and perfectly elastic. Infinitesimal
strain theory is here the mathematical tool of continuum mechanics to model the mechanical behaviour
in the halfspace, i.e. to calculate the deformations caused by the surface forces 𝑝(𝑥) and 𝑞(𝑥).

Using the static continuum description, only three sets of equations have to be handled. The first set
ensures continuity or compatibility; it ensures that the material remains connected such that no gaps or
overlaps arise. It establishes the connection between the displacements field 𝑢 and local deformations
i.e. strains. The second set reflects the equilibrium, as it links the stress distribution in the material with
the external forces on the surface. It ensures that the body is in static equilibrium such that the material
will not (locally) accelerate.Lastly, the set that describes the relationship between the deformations and
stresses is the material model. The material model is also called the constitutive relations.

A detailed derivation of the elastic equilibrium equations is given by Timoshenko and Goodier [63].
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For the stress distribution caused by the loads the following equilibrium has to be satisfied throughout
the body:

𝜕𝜎𝑥
𝜕𝑥 + 𝜕𝜏𝑥𝑧𝜕𝑧 = 0
𝜕𝜎𝑧
𝜕𝑧 +

𝜕𝜏𝑥𝑧
𝜕𝑥 = 0

(3.5)

For 𝜎𝑦, such an equilibrium is already in place as the stresses are not a function of 𝑦.

The displacements can be obtained by integrating the strains as they are the partial derivatives i.e.:

𝜖𝑥 =
𝜕𝑢𝑥
𝜕𝑥 , 𝜖𝑧 =

𝜕𝑢𝑧
𝜕𝑧 , 𝛾𝑥𝑧 =

𝜕𝑢𝑥
𝜕𝑧 + 𝜕𝑢𝑧𝜕𝑥 (3.6)

So, for the strains following the stresses the following twodimensional compatibility condition applies:

𝜕2𝜖𝑥
𝜕𝑧2 +

𝜕2𝜖𝑧
𝜕𝑥2 =

𝜕2𝛾𝑥𝑧
𝜕𝑥𝜕𝑧

(3.7)

The third set of equations, the material model, is Hooke’s law. With the condition of plane strain and
Hooke’s law for a strain tensor:

𝜖𝑦 =
1
𝐸 {𝜎𝑦 − 𝜈(𝜎𝑥 + 𝜎𝑧)} = 0 (3.8)

From Equation 3.8 it follows that:
𝜎𝑦 = 𝜈(𝜎𝑥 + 𝜎𝑧) (3.9)

Such that the other strain tensors become:

𝜖𝑥 =
1
𝐸 {(1 − 𝜈

2)𝜎𝑥 − 𝜈(1 + 𝜈)𝜎𝑧}

𝜖𝑧 =
1
𝐸 {(1 − 𝜈

2)𝜎𝑧 − 𝜈(1 + 𝜈)𝜎𝑥}

𝛾𝑥𝑧 =
1
𝐺𝜏𝑥𝑧 =

2(1 + 𝑣)
𝐸 𝜏𝑥𝑧

(3.10)

The stress distribution, i.e stress function 𝜙(𝑥, 𝑧) in the material is defined as:

𝜎𝑥 =
𝜕2𝜙
𝜕𝑧2 , 𝜎𝑧 =

𝜕2𝜙
𝜕𝑥2 , 𝜏𝑥𝑧 = −

𝜕2𝜙
𝜕𝑥𝜕𝑧

(3.11)

When thematerial model (3.10) and the equilibrium equations (3.5) are substituted into the compatibility
condition (3.7), it follows that the stress function 𝜙(𝑥, 𝑧) satisfies the biharmonic equation:

{ 𝜕
2

𝜕𝑥2 +
𝜕2
𝜕𝑧2 }{

𝜕2𝜙
𝜕𝑥2 +

𝜕2𝜙
𝜕𝑧2 } = 0 (3.12)

The following boundary conditions need to be satisfied (overbar denotes variables at the surface 𝑧 = 0):

�̄�𝑧 = �̄�𝑥𝑧 = 0, 𝑥 < −𝑏 ∨ 𝑥 > 𝑎
�̄�𝑧 = 𝑝(𝑥)
�̄�𝑥𝑧 = −𝑞(𝑥)} −𝑏 ≤ 𝑥 ≤ 𝑎

(3.13)

Distanced from the loaded region, (𝑥,𝑧 → ∞), the stresses must become negligible (𝜎𝑥,𝜎𝑧,𝜏𝑥𝑧 → 0). �̄�𝑥
and �̄�𝑧 are the normal and tangential displacements respectively.
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Normal line loading in the halfspace To solve the stress distribution caused by a distributed load
the superposition of concentrated normal loads at lines along the 𝑦axis can be used. Firstly the case
of a concentrated normal load along the 𝑦axis is considered. The intensity of the load is 𝑃 per unit
length. This problem was solved by Flamant [64] (explained in [63]). It is convenient to express the
stress distribution in polar coordinates:

𝜙(𝑟, 𝜃) = 𝑃
𝜋𝑟𝜃 sin𝜃 (3.14)

The biharmonic function can be derived in a similar fashion to that in Equation 3.12 which gives
the stress components [63]:

𝜎𝑟 =
1
𝑟
𝜕2𝜙
𝜕𝜃2 =− 2𝑃𝜋

cos𝜃
𝑟

𝜎𝜃 =
𝜕2𝜙
𝜕𝑟2 = 0

𝜏𝑟𝜃 =
𝜕
𝜕𝑟(

1
𝑟
𝜕𝜙
𝜕𝜃 ) = 0

(3.15)

This system of stresses is a simple radial distribution directed towards the point of application. All
the boundary conditions are satisfied as at the surface (𝜃 = ±𝜋2 ) the normal stress �̄�𝜃 = 0 holds (apart
from origin). Far away from the point of application (𝑟 → ∞) the stresses become vanishingly small. At
the origin the stresses go to infinity, this is a logical consequence of the load being concentrated in a line.

Expressing the stress tensors of Equation 3.15 in Cartesian coordinates gives:

𝜎𝑥 =𝜎𝑟 sin2 𝜃 = − 2𝑃𝜋
𝑥2𝑧

(𝑥2 + 𝑧2)2

𝜎𝑧 =𝜎𝑟 cos2 𝜃 = − 2𝑃𝜋
𝑧3

(𝑥2 + 𝑧2)2

𝜏𝑧𝑥 =𝜎𝑟 cos𝜃 sin𝜃 = − 2𝑃𝜋
𝑧2𝑥

(𝑥2 + 𝑧2)2

(3.16)

The strains given this stress distribution will be:

𝜖𝑟 =
𝜕𝑢𝑟
𝜕𝑟 = − (1 − 𝜈

2)
𝐸

2𝑃
𝜋

cos𝜃
𝑟

𝜖𝜃 =
𝑢𝑟
𝑟 +

𝜕𝑢𝜃
𝑟𝜕𝜃 = 𝜈(1 + 𝜈)

𝐸
2𝑃
𝜋

cos𝜃
𝑟

𝛾𝑟𝜃 =𝑟
𝜕𝑢𝑟
𝜕𝜃 + 𝜕𝑢𝜃𝜕𝑟 − 𝑢𝜃𝑟 = 0

(3.17)

Integrating the previous first two equations gives, respectively [63]:

𝑢𝑟 =−
(1 − 𝜈2)
𝐸

2𝑃
𝜋 cos𝜃 ln 𝑟 − (1 − 2𝜈)(1 + 𝜈)𝜋𝐸 𝑃𝜃 sin𝜃 + 𝐶1 sin𝜃 + 𝐶2 cos𝜃

𝑢𝜃 =
(1 − 𝜈2)
𝐸

2𝑃
𝜋 sin𝜃 ln 𝑟 + 𝜈(1 + 𝜈)𝜋𝐸 2𝑃 sin𝜃 − (1 − 2𝜈)(1 + 𝜈)𝜋𝐸 𝑃𝜃 cos𝜃

+ (1 − 2𝜈)(1 + 𝜈)𝜋𝐸 𝑃 sin𝜃 + 𝐶1 cos𝜃 − 𝐶2 sin𝜃 + 𝐶3𝑟

(3.18)

In case the material does not tilt, it only displaces in 𝑧direction, 𝐶1 = 𝐶2 = 0. The last integration
constant depends on the choice of a reference for the displacement.
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Distributed normal loading When considering a load that is distributed such as is depicted in Figure
3.4 with a load 𝑝(𝑥) over the strip −𝑏 < 𝑥 < 𝑎 the stresses and displacements can be found by super
position of the results of the line loading problem. The normal load on an elemental surface element
𝑑𝑠 can be considered a line load with magnitude 𝑝𝑑𝑠. The stresses at a location in the material due to
the normal line load are given by Equation 3.16.

The displacements at the surface are:

�̄�𝑥(𝑥) = −
(1 − 2𝜈)(1 + 𝜈)

𝐸 {∫
𝑥

−𝑏
𝑝(𝑠) 𝑑𝑠 − ∫

𝑎

𝑥
𝑝(𝑠) 𝑑𝑠} + 𝐶1

�̄�𝑧(𝑥) = −
2(1 − 𝜈2)
𝜋𝐸 ∫

𝑎

−𝑏
𝑝(𝑠) ln |𝑥 − 𝑠| 𝑑𝑠 + 𝐶2

(3.19)

Again 𝐶1 and 𝐶2 depend on the choice of a datum for calculating the displacements. The displacements
can be differentiated with respect to the horizontal position 𝑥 such that the integration constants are
eliminated:

𝜕�̄�𝑥
𝜕𝑥 = − (1 − 2𝜈)(1 + 𝜈)𝐸 𝑝(𝑥)
𝜕�̄�𝑧
𝜕𝑥 = − 2(1 − 𝜈

2)
𝜋𝐸 ∫

𝑎

−𝑏

𝑝(𝑠)
𝑥 − 𝑠 𝑑𝑠

(3.20)

Here the gradient 𝜕�̄�𝑥(𝑥)/𝜕𝑥 represents the tangential component of the strain at the surface and the
gradient 𝜕�̄�𝑧(𝑥)/𝜕𝑥 is the slope of the deformed surface.

Hertz Theory applied to cylinders
Assumptions in Hertz Theory When two nonconforming bodies come into contact they initially
touch at a single point or line. The contact grows with increasing load into an elliptical or strip shaped
contact area respectively. An elliptical contact has radii 𝑎1 and 𝑎2, a strip has length 𝑙 and width 2𝑎. A
theory of contact allows for the prediction of the dimensions of this contact area, this theory is based
on several assumptions and elastic theory.

Hertz Theory makes the following assumptions:

• The surfaces are smooth and nonconforming

• The shape of the bodies in the region of contact (Equation 3.1) is continuous up to the second
derivative

• 𝑎 is small compared with the geometry of the body

• Strains are small, thus linear theory is applicable

• No friction (𝑞𝑥 = 𝑞𝑦 = 0)

• Each body can be considered as an elastic halfspace (see requirements in Subsection 3.3)

Kinematics of the Hertz contact The second and third assumption together allow for a reasonable
approximation of the surface close to the origin as a second order Taylor polynomial of the surface. For
elliptical bodies, this is a function of their principal 𝑥 and 𝑦 radii of curvature 𝑅′ and 𝑅” respectively. The
𝑥𝑦 terms can be eliminated by aligning symmetry planes of the body with the axis of the coordinate
system, for the two bodies in Figure 3.3, Equation 3.1 becomes:

𝑧1 =
1
2𝑅′1

𝑥21 +
1
2𝑅″1

𝑦21

𝑧2 =
1
2𝑅′2

𝑥22 +
1
2𝑅″2

𝑦22
(3.21)

In the following section, the situation shown in Figure 3.5 is considered, here body 1 and 2 are a half
space and an infinitely long roller of radius 𝑅 respectively, equivalent derivations can be performed for
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spheres or ellipsoids. The bodies are compressed with a load 𝑃 (applied at infinity). In this situation
𝑅′1 = 𝑅″1 = 𝑅″2 = ∞ and 𝑅′2 = 𝑅.

Figure 3.5 shows the cross section near the contact between the bodies. The undeformed separa
tion between two surface points 𝑆1(𝑥, 𝑧1) and 𝑆1(𝑥, 𝑧1) (Equation 3.2) becomes: ℎ =

1
2𝑅𝑥

2.

𝑥

𝑧

𝑜𝛿
𝛿1
𝛿2

𝑇1𝛿1
𝑃

𝑇2𝛿2
𝑃

𝑎𝑎

𝑢𝑧1
𝑢𝑧2 𝑧2

𝑆1

𝑆2

Figure 3.5: Displacements in a rollerrail contact.

As the bodies are compressed, the distant points 𝑇1 and 𝑇2 move in 𝑧direction towards 𝑂 by displace
ments 𝛿1 and 𝛿2 respectively, if the bodies do not deform they will overlap (see the dashed lines in
Figure 3.5). The surface pressure compresses the surfaces points 𝑆1(𝑥, 𝑧1) and 𝑆1(𝑥, 𝑧1) in 𝑧direction
by an amount �̄�𝑧1 and �̄�𝑧1 relative to 𝑇1 and 𝑇2 respectively. If after deformation the following is true for
the elastic displacements:

�̄�𝑧1 + �̄�𝑧2 = 𝛿1 + 𝛿2 − ℎ, (𝑥, 𝑦) ∈ 𝐴
�̄�𝑧1 + �̄�𝑧2 > 𝛿1 + 𝛿2 − ℎ, (𝑥, 𝑦) ∈ 𝐴

(3.22)

Solution and limitations of the Hertz problem in plane strain At this point, the problem is reduced
to finding the mutual distribution of the pressure on the surfaces. This distribution should result in
elastic displacements that satisfies Equation 3.22. The integral of this distribution is load 𝑃 transmitted
between the two surfaces.

In 2D, the elastic compression of the bodies cannot solely be derived from the Hertz stress distribu
tion. As shown in Subsection 3.3, the displacement of a twodimensional loaded halfspace, can only
be expressed relative to an arbitrary datum. Hertz Theory can still be used to find the dimensions and
pressure distribution along the contact area.

Differentiating Equation 3.22 for 𝑥 ∈ 𝐴 gives:

𝜕�̄�𝑧1
𝜕𝑥 + 𝜕�̄�𝑧2𝜕𝑥 = −𝑥𝑅 , 𝑥 ∈ 𝐴 (3.23)
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Using Equation 3.20 and the notion that the contact pressures on both bodies are equal, Equation 3.23
can be written as:

𝜕�̄�𝑧1
𝜕𝑥 + 𝜕�̄�𝑧2𝜕𝑥 = − 2(1 − 𝜈

2
1)

𝜋𝐸1
∫
𝑎

−𝑎

𝑝(𝑠)
𝑥 − 𝑠 𝑑𝑠 −

2(1 − 𝜈22)
𝜋𝐸2

∫
𝑎

−𝑎

𝑝(𝑠)
𝑥 − 𝑠 𝑑𝑠

= − 2
𝜋𝐸∗ ∫

𝑎

−𝑎

𝑝(𝑠)
𝑥 − 𝑠 𝑑𝑠 = −

𝑥
𝑅

(3.24)

Where 𝐸∗ denotes the effective elasticity modulus defined as [14]:

𝐸∗ = 1 − 𝜈21
𝐸1

+ 1 − 𝜈
2
2

𝐸2
(3.25)

The following integral has to be solved:

2
𝜋𝐸∗ ∫

𝑎

−𝑎

𝑝(𝑠)
𝑥 − 𝑠 𝑑𝑠 =

𝑥
𝑅 (3.26)

The initially smooth continuous surface has to remain continuous, thus, the pressure distribution should
fall continuously to zero at the boundary. The integral that follows has been solved byMikhlin [65], which
results in 𝑝(𝑠) of the form:

𝑝(𝑥) = −𝜋𝐸
∗

2𝑅
𝑥2 − 𝑎2

2
𝜋√𝑎2 − 𝑥2

+ 𝑃
𝜋√𝑎2 − 𝑥2

(3.27)

As the pressure has to be positive throughout the contact area (only compression) and the pressure
should be finite we get:

𝑃 = 𝜋𝑎2𝐸∗
4𝑅

(3.28)

Thus:

𝑝(𝑥) = − 2𝑃𝜋𝑎2
√𝑎2 − 𝑥2 with 𝑎 = √4𝑃𝑅𝜋𝐸∗

(3.29)

The compression of a halfspace relative to a datum 𝑑 can be calculated by integrating Equation 3.19
with the pressure distribution of Equation 3.27. When evaluated at 𝑥 = 0:

𝛿ℎ𝑎𝑙𝑓−𝑠𝑝𝑎𝑐𝑒 = 𝑃
1 − 𝜈2
𝜋𝐸 {2 ln (2𝑑𝑎 ) − 𝜈

1 − 𝜈 }
(3.30)

Now the dimensions and pressure distribution along the contact area are found. Furthermore, it is
possible to calculate the stresses within the bodies given this pressure distribution. However, to find
the stiffness of a rollerrail contact this is less relevant.

Deflection in the rollerrail contact
The loaddeflection relationship cannot be calculated solely on Hertz Theory. Here the shape and
dimensions of the bodies are considered to obtain a loaddeflection relationship. With the conditions
at the contact defined, the stresses and strains throughout the bodies can be found using Johnson’s
derivation [13].
The stress distribution at a point 𝐴 in the cross section of the roller between two halfspaces, as shown
in Figure 3.6, is given by Timoshenko & Goodier [63]. It is a combination of the stress field due caused
by load 𝑃 at points 𝑂1 and 𝑂2 and the biaxial tension:

𝜎𝑧 = 𝜎𝑥 =
𝑃
𝜋𝑅 (3.31)

The biaxial tension ensures that the section of the roller boundary not in contact, is free from stress.
As 𝑂2 is far from 𝐴 it can be considered a concentrated load, such that the stressed at 𝐴 are:

𝜎𝑥 =
𝑃
𝜋 {

1
𝑅 −

2(𝑎2 + 2𝑧2)
𝑎2√𝑎2 + 𝑧2

+ 4𝑧𝑎2 }

𝜎𝑧 =
𝑃
𝜋 {

1
𝑅 −

2
2𝑅 − 𝑧 +

4𝑧
𝑎2 }

(3.32)
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Figure 3.6: A roller between two halfspaces in a state of plane strain, compressed by load per length 𝑃.

Integrating the strain, Equation 3.9, from 𝑂1 to 𝐶 gives the compression for the upper part of the roller,
compression of the lower part can be done in a similar fashion, such that the total compression of the
cylinder between 𝑂1 and 𝑂2 becomes:

𝛿𝑟𝑜𝑙𝑙𝑒𝑟 = 4𝑃
1 − 𝜈2
𝜋𝐸 {ln (4𝑅𝑎 ) −

1
2} (3.33)

Now the simplification can be made that the compression of rail in a bearing assembly, taking the shape
of a rectangular block of thickness 𝑡, can be calculated by modelling it as a halfspace evaluated at a
depth 𝑑 = 𝑡. Such that the compression becomes:

𝛿𝑟𝑎𝑖𝑙 = 𝑃
1 − 𝜈2
𝜋𝐸 {2 ln (2𝑡𝑎 ) −

𝜈
1 − 𝜈} (3.34)

As 𝑎 ≪ 𝑡, this assumption is an appropriate estimate, though arbitrary when the objective is to exactly
solve the problem. The majority of the strain will take place in the vicinity of the contact; the impression
scales with ln 𝑡. In practical assemblies a datum of zero impression does not exist as the whole system
has some compliance.
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3.4. 2D finite element model
This Section introduces a 2D FEM model with the boundary conditions of a finite rail Width (𝑊𝑟𝑎𝑖𝑙) and
thickness (𝑇𝑟𝑎𝑖𝑙), it challenges the halfspace assumption of Tripp’s model.

The basic geometry for the 2D Tripp model is presented Figure 3.6, in this figure the reflectional
symmetry axes around roller center 𝐶 are also depicted. These symmetries allow for modelling merely
one fourth of the geometry, as is shown in Figure 3.7.

𝐶

𝑂

𝐴
𝑊𝑟𝑎𝑖𝑙/2

𝑇𝑟𝑎𝑖𝑙

𝑅

𝐸𝑟𝑎𝑖𝑙 , 𝜈𝑟𝑎𝑖𝑙

𝐸𝑟𝑜𝑙𝑙 ,𝜈𝑟𝑜𝑙𝑙

Contact
Fixed
Free
Symmetry
Symmetry with
prescribed load 𝑃

2
Refined mesh

𝑥

𝑧

Figure 3.7: 2D finite element model: a roller of radius 𝑅 compressed between rails of thickness 𝑇𝑟𝑎𝑖𝑙 and width𝑊𝑟𝑎𝑖𝑙.

In this FEM model, the roller mesh is composed of triangular elements with a maximum size of 2.35µm
near the contact. The rail is meshed with quadrilateral elements in the hatched refinement region with
a maximum element size at the contact of 1.28µm. The rest of the rail is meshed with a triangular
elements. The meshes have been checked for convergence.

The analysis is performed in two consecutive steps. First the contact is initiated in a sweep in which
a load is increased to the lowest tested load. Simultaneously a weak spring element is phased out to
ensure a stable closing of the initial gap between the roller and rail. In a second step, the spring is
removed and the load is varied. For the contact model, the penalty method is used. For validation,
analysis with analytically prescribed pressure distributions were performed, this brought about identical
results.

3.4.1. Contact pressure and internal stress
Fist the contact pressure and internal stress are examined and compared with the analytic model.

Figure 3.8a compares the contact pressure along the 𝑥axis resulting from the FEM analysis with
Equation 3.29. Figure 3.8b shows the von Mises stress in close proximity of the contact.
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(a) Graph of contact pressure along 𝑥 (boundary):
Numerical and analytic results for roller type 1 under different loads.
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(b) Graph of von Mises stress in the vicinity of the contact:
roller type 1 under a load of 617.4N.

Figure 3.8: Graphs of contact pressure and von Mises stress of 2D FEM model.
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The analytic and numerical contact pressures highly correspond over the load range studied, the
max discrepancy at an individual node is 3.5%. It also demonstrates how the analytic and numerical
contact widths correspond.

The maximum von Mises stress in the FEM analysis is 1646MPa. An analytic calculation of this
situation yields a peak pressure of 1631MPa.

3.4.2. Compression of the roller
Second, the compression of the roller is presented as the compression of the roller is not dependent
on an arbitrary datum. This is in contrast to the compression of a halfspace.

Figure 3.9 shows the compression of the roller along the symmetry axis as a function of load for
different values of𝑊𝑟𝑎𝑖𝑙.
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Figure 3.9: Graph of compression of the roller along the symmetry axis: 2D Numerical and analytic results for roller type 1 and
rail thickness 𝑇𝑟𝑎𝑖𝑙 =22mm with variation of rail widths𝑊𝑟𝑎𝑖𝑙.

The found roller compression and Tripp (Equation 3.33) are equal within 1.0% for the entire load range.
Varying𝑊𝑟𝑎𝑖𝑙 has no influence on the compression of roller.

3.4.3. Compression of the rail
Last, the influence of the finite dimensions on the compression of the rail is studied. Both the rail width
and thickness are varied and compared to the Tripp model.

Rail width variation It is expected that narrow rails have a lower stiffness as the rest of the material
cannot support and distribute the load and will partially act as a body in compression with stiffness 𝐸𝐴/𝐿.

Figure 3.10 shows the compression of the rail center (distance 𝑂𝐴 in Figure 3.7) a function of load
for different values of𝑊𝑟𝑎𝑖𝑙.
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Figure 3.10: Graph of compression of the rail along the symmetry axis: 2D Numerical and analytic results for roller type 1 and
rail thickness 𝑇𝑟𝑎𝑖𝑙 =22mm; variation of rail widths𝑊𝑟𝑎𝑖𝑙.
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The rail stiffness increases as 𝑊𝑟𝑎𝑖𝑙 increases. For the widest rail geometry, the compression ap
proaches and Tripp (Equation 3.34) by an offset of 3.3%. For 𝑊𝑟𝑎𝑖𝑙 = 10mm and the highest load,
the compression of the rail exceeds Tripp by 20.5%. At a width of 39.8mm this difference is already
reduced to 4.0%.

By setting the outer boundary of the rail to rigid it is verified that a further widening of the rail does
not influence the stiffness. On the other hand, setting the outside boundary of the rail to rigid for small
widths, results in a stiffness that exceeds Tripp.

Rail thickness variation The analytic function for compression of the halfspace, Equation 3.30 can
not be used to calculate the relative strain at all depths as it evaluates to a negative values near the
surface, this is physically not meaningful. The influence of rail thickness is investigated with a logarith
mic sweep for 𝑇𝑟𝑎𝑖𝑙.

Figure 3.11 presents the compression along the vertical axis (𝑧), as illustrated in Figure 3.7, relative
to the initial contact point 𝑂 with a marker indicating the compression of point 𝑂 relative to 𝐴.
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Figure 3.11: Graph of compression of the rail along the symmetry axis: 2D Numerical and analytic results for roller type 1 and
load 617.4N; variation of rail thickness 𝑇𝑟𝑎𝑖𝑙.

The influence of rail thickness is minimal for the dimensions and loads modelled. It is important that
the fraction 𝑊𝑟𝑎𝑖𝑙

𝑇𝑟𝑎𝑖𝑙
> 1 as otherwise the width is insufficient to distribute the load through the body.

3.4.4. Synopsis of the 2D model
These results show that the 2D finite element model is highly in line with Tripps model for the deforma
tion of the roller, and for the rail as well, provided that 𝑊𝑟𝑎𝑖𝑙 relative to 𝑇𝑟𝑎𝑖𝑙 is sufficient. In a situation
where multiple rollers are placed in an assembly,𝑊𝑟𝑎𝑖𝑙 is shared with other rollers. An adequate model
for this situation would be to set the width of the roller to roller pitch and add a symmetry plane on
the free end of the rail. These experiments are performed in 4.2 using rails with 𝑇𝑟𝑎𝑖𝑙 =22mm and
𝑊𝑟𝑎𝑖𝑙 =100mm. For these dimensions, good accordance between the FEA and Tripp is found for
these specific dimensions.

The next Section will investigate the validity of the plain strain assumption made in the 2D models
by extending the model to 3D.
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3.5. 3D finite element model
This Section introduces a 3D FEM model with the boundary conditions of a finite rail length (𝐿𝑟𝑎𝑖𝑙) and
roller length (𝐿𝑟), it challenges the plane strain assumption of Tripp’s model.

Figure 3.12a shows the 3D geometry of a roller compressed between two rails, the symmetries
around the roller center allow for modelling one eighth of the geometry, as shown in Figure 3.12b.
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Figure 3.12: Geometry of the 3D finite element model; a roller of radius 𝑅, length 𝐿𝑟 compressed between rails of thickness 𝑇𝑟𝑎𝑖𝑙
and width𝑊𝑟𝑎𝑖𝑙. The roller and rail are in contact over the length 𝐿𝑤𝑒.

The mesh of the 3D model is built like that of the 2D model. The roller mesh consists of Tetrahedral
elements with a maximum size of 3.26µm near the contact. The rail is meshed with quadrilateral
elements in the refined area (maximum element size at contact of 5 µm). Outside the refinement area
a mapped and swept mesh is implemented. This mesh is also checked for convergence. The Analysis
is performed in two consecutive steps, similar to the 2D FEM model. Again the penalty method is used
as the contact model.

3.5.1. Contact pressure and internal stress
Section 2.2.1 covered the assumption of plane strain, roller profiling and its influence on stress con
centrations.

Four different roller profiles have been modelled:

1. Rounded profile with fillets of 0.2mm, and a total roller length of 2.2mm, as depicted in Figure
2.1d.

2. Straight profile of 1.8mm with a symmetry plane at both ends, enforcing a state of plane strain,
as assumed by Tripp.

3. Straight profile of 1.8mm with sharp edges, as depicted in Figure 2.1a.

4. Logarithmic profile of 1.8mm, according to Fujiwara [66], as shown in 2.1b and assumed by
Lundberg [19].
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Figure 3.13 shows the von Mises stress in the internal symmetry plane for these four different profiles.
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Figure 3.13: Graph of von Mises stress in the vicinity of the contact: different roller profiles subjected to a normal load of 617.4N.

The maximum stress in Figure 3.13b is 1652MPa, this is in line with 1631MPa found when evaluating
Equation 3.29 at 𝑥 = 0. The pressure concentration is minimal at the end of the logarithmic roller in
Figure 3.13d.

Figure 3.14 shows the contact pressure along the rail profile (𝑦) for the four different rollers.
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109  Contact pressure for 3D FEM model; different roller profiles
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Figure 3.14: Graph of contact pressure along roller profile: different roller profiles subjected to a normal load of 617.4N.

For the logarithmic roller, the contact pressure along the rail profile shows a small peak at higher loads,
for lower loads no peak is seen. This underlines that the optimum profile depends on the loading
conditions.
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3.5.2. 3D compared to 2D
The 2D model can be compared to the 3D model by means of the profile with the double symmetry at
the sides. When restricting the normal displacement of the symmetry plane, this boundary condition
prescribes a state of plane strain. This allows for a direct comparison with the 2D model.

Figure 3.15 shows the compression of the rail center a function of load for both the 2D and 3D FEM.
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Figure 3.15: Graph of compression of the rail along the symmetry axis: Numerical and analytic results for roller type 1 and rail
thickness 𝑇𝑟𝑎𝑖𝑙 =22mm;3D compared to 2D.

The transition from 2D to 3D does not influence the results provided that the same conditions are in
place; plane strain. Once this condition is loosened by allowing a translation of the symmetry plane,
the rail relaxes and the compression increases by 3.7% for the highest load. The rail width was limited
to 𝑊𝑟𝑎𝑖𝑙 =10mm to limit the computational cost, for each roller profile the calculation of the 3D model
took more than 5 hours, this would increase with rails of greater width, it would also take more runs to
add a parametric sweep.

3.5.3. Compression of the roller
Figure 3.16 depicts shows the compression of different rollers along their symmetry axes as a function
of load.
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Figure 3.16: Graph of compression of the roller along the symmetry axis: 3D Numerical and analytic results for rail width and
length𝑊𝑟𝑎𝑖𝑙 = 𝐿𝑟𝑎𝑖𝑙 =10mm and rail thickness 𝑇𝑟𝑎𝑖𝑙 =22mm; variation of roller profile.

With a maximum deviation below 1.0% for the entire load range, the Tripp accurately models the FEA
compression of both the roller profiles with sharp ends and with two symmetry planes. The influence
of loosening the plane strain condition and endeffects at the roller with the sharp edges appear to be
insignificant, the compression difference between the two aforementioned profiles is 0.3%. A logarith
mic roller will yield a low stiffness at initial loading due to its profiling as the contact length has to grow
with load. This was also seen in the model where it results in the offset observed in Figure 3.16.
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This offset will not necessarily influence the roller stiffness at practical loads as the slope is in line with
Equation 3.33. Remarkably, the compression of the roller with rounded edges with length 𝐿𝑟 =2.2mm
coincides with that of a roller of length 2.2mm. Here, the fillets at the end limit the contact length to
𝐿𝑤𝑒 =1.8mm. As the bulk of the compression takes place near the surface it would be expected that
the compression corresponds with a length equal to the contact length.

3.5.4. Compression of the rail
Figure 3.10 shows the compression of the 3D rail as a function of load for the four different roller profiles.
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Figure 3.17: Graph of compression of the rail along the symmetry axis: 3D Numerical and analytic results for rail width
𝑤𝑟𝑎𝑖𝑙 =10mm and rail thickness 𝑇𝑟𝑎𝑖𝑙 =22mm; variation of roller profile.

The compression of the rail when loaded with a logarithmic profile shows similar characteristics as that
same roller. An initial lower stiffness results in shifted loaddeflection relationship, though the load
deflection relationship is nearly parallel to the rollers with a length of 1.8mm. The filleted roller shows a
slightly stiffer behaviour in comparison with the profile with sharp edges, though this difference becomes
insignificant when compensating for the difference in length over which the two bodies are in contact
(Figure 3.14). The most significant outcome of this 3D finite element analysis is evident when the
results are compared to Tripp. The finite element model is much stiffer with a 33% lower compression
for the straight profile with sharp ends. It is important to emphasize that this behaviour was seen for
a rail with 𝑊𝑟𝑎𝑖𝑙 = 𝐿𝑟𝑎𝑖𝑙 =10mm. Conversely, the 2D finite element modelling in the situation of plane
strain and𝑊𝑟𝑎𝑖𝑙 =10mm, exceeds the compression found with Tripp by 20.5%. An explanation of this
behaviour is that in the 3D model, the roller and rail do not have equal lengths, as is the case for the
analytic and 2D model. As drawn in Figure 3.18, rail length which is not in contact provides support for
the roller. This stiffening effect of the sides diminishes with either a small rail thickness or large roller
lengths, in these situations the geometry does not allow for an ideal distribution of the load.

𝐿𝑟𝑎𝑖𝑙

𝐿𝑟

𝑦

𝑧

Figure 3.18: Geometry of the 3D model, hatch pattern shows the part of the rail length without loading, but which is providing
support for the roller.
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3.5.5. Synopsis of the 3D model
Figure 3.15 shows that the results of the 2D and 3D model are equivalent, provided that the same
situation is modelled, i.e. two symmetry planes as boundary conditions prescribing plane strain. The
compression of the rail depends, similar to the 2D numerical models, on 𝑤𝑟𝑎𝑖𝑙. The stiffness of the rail
decreases slightly when plane strain conditions are loosened, although this loosening is insignificant
with regards to the roller stiffness. Removing the symmetry conditions from the roller and rail end
introduces a discontinuity at the roller ends. This discontinuity causes stress concentrations as shown
in Figure 3.13 where the von Mises stress is up to three times as high as in the rest of the profile.
Different roller geometries (profiles) cause different stress distributions as shown in Figure 3.14.

Regarding the roller, the 3D FEM model and Tripp yield identical compression for different profiles,
granted that 𝐿𝑟, and not 𝐿𝑤𝑒, is used in Tripp. The endeffects at the roller without any profiling appear
to be insignificant, as presented in Figure 3.16.

Logarithmic roller profiles have a reduced stiffness which shows predominantly at the initial loading.
At higher loads, the gradient of the load compression relation becomes similar to that of other profiles.
This corroborates Teutsch’s [21] findings that the loaddeflection relation of Lundberg [19] and Kunert
[20] deviate noticeably from Tripp.

In the 3D model, the rail length is not equal to the roller length as observed in Figure 3.12. The
stiffness of the roller is not influenced by the rail length, comparable to how the roller stiffness is not
influenced by the rail width in 2D. The additional material on both sides of the rail has a stiffening effect
on the rail, resulting in almost double the stiffness than what was modelled when symmetry is in place
at the roller ends, as shown in Figure 3.17.

Therefore, although the Tripp model is effective for modelling the roller compression, it is inaccurate
for modelling the compression of an entire rail as the geometry depicted in 3.1a.

3.6. Compression of a full 3D rail geometry
The 2D numerical model showed the influence of the presence of material in the width (𝑥) and thickness
(𝑧) direction, the 3D model extended its insights into the length (𝑦) direction. In order to accurately
model the compression of a rail with an identical geometry to the one used in the experiments, that
exact geometry will have to be modelled. The dimensions of the rails used in experiments are given
in Figure B.1. On the other hand, the compression of the roller was found to be successfully modelled
using Tripp.

Incorporating contact conditions in numerical models is computationally expensive. Since the ge
ometry of interest is solely the rail, a pressure distribution, equal to what was found in earlier models,
is prescribed on a full rail geometry. This method was verified to yield equal results for a contact sim
ulation of the rectangular rail geometry. The bottom of the rail is fixed and a symmetry plane allows to
model half of the rail width. The meshed geometry is shown in Figure 3.19 with the region where the
pressure is applied marked in blue. In this blue boundary a mapped mesh is defined, the mesh in the
rail material is made out of tetrahedral elements.

𝑊𝑟𝑎𝑖𝑙
/2

𝐿𝑟𝑎𝑖𝑙

𝑇𝑟𝑎𝑖𝑙

𝑥
𝑦𝑧

Figure 3.19: Rail Geometry of 3D finite element model; compression of a rail of thickness 𝑇𝑟𝑎𝑖𝑙, length 𝐿𝑟𝑎𝑖𝑙 and width 𝑊𝑟𝑎𝑖𝑙.
The rail is loaded over a length of 𝐿𝑤𝑒 by an applied pressure.
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Even with an applied pressure, the computation of this rail is still too expensive for a multibody dynam
ics analysis. The mesh is the most refined near the contact, this region has the greatest contribution
to the computational cost. The compression along the thickness (𝑧) is shown in Figure 3.20.
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Figure 3.20: Graph of compression of the rail along the symmetry axis: 3D Numerical and analytic results for roller type 1
variation of load.

Figure 3.20 shows how in region near the contact, the numerical and Tripps model greatly agree. Here
strains are dominantly prescribed by the concentrated contact. Outside of this region, the stress is
more distributed and the influence of the geometry becomes significant, this is also corroborated by
Figure 3.21 where an isoline is plotted at 10% of the maximum displacement. This means that 90%
of the displacement in the thickness (𝑧) direction takes place in the region enclosed by the isoline.
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To efficiently and accurately model an assembly containing rollerrail contacts the following is proposed:

1. Place a simple domain in the two contact regions where the roller contacts the rest of the assem
bly.

2. Set the bodies to rigid and model a spring element between these two rigid bodies.

3. Set the spring element the load compression relation equal to the Tripp compression of a roller
(Equation 3.33) and two rigid elements (Equation 3.34 with the thickness equal to the thickness
of the rigid region).

The choice of this thickness is arbitrary. The thickness is set to 3mm which is the depth at which
90% of the displacement has taken place for the highest considered load. At this isoline, the Mises
stress reduces to less than 1% of the peak stress, the elastic strain energy density is reduced to less
than 0.01% of its peak value. For this specific model a thickness of 3mm and a radius of 4mm gives
satisfactory results for all conditions tested.

Figure 3.22: Rail geometry of 3D finite element model with a rigid inlay with a thickness of 3mm and a diameter of 8mm.

Figure 3.23 shows the compression of both the full numerical model and the combination of the rigid
inlay with analytic compression. The geometry of the model with the rigid inlay is shown in Figure 3.22.
The compression along the thickness (𝑧) is shown in Figure 3.20.
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Figure 3.23: Graph of compression of the rail along the symmetry axis: 3D Numerical of full rail geometry vs combination of a
rigid inlay and analytical compression.
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3.7. Synopsis
Tripp [16] derived a solution for the deformation of a 2D cylinder compressed between two halfspaces,
semiinfinite bodies bounded by a plane surfaces. This model is thus based on the assumption of
planestrain and a halfspace. The deformation of this infinitely deep half space is calculated in relation
to a chosen evaluation depth.

A 2D finite element model introduces the boundary conditions of a finite rail Width (𝑊𝑟𝑎𝑖𝑙) and thick
ness (𝑇𝑟𝑎𝑖𝑙) challenging the halfspace assumption of Tripp’s model. The 2D FEM model highly agrees
with the Tripp model for the deformation of the roller. Tripp is also accurate for the rail, provided that
𝑊𝑟𝑎𝑖𝑙 relative to 𝑇𝑟𝑎𝑖𝑙 is sufficient. Narrow rails (small 𝑊𝑟𝑎𝑖𝑙) have a stiffness lower than Tripp as the
rest of the material cannot support and distribute the load and will partially act as a body in compres
sion with stiffness 𝐸𝐴/𝐿. The influence of rail thickness is minimal for the dimensions and loads modelled.

A 3D finite element model introduces the boundary conditions of a finite rail length (𝐿𝑟𝑎𝑖𝑙) and roller
length (𝐿𝑟), it challenges the plane strain assumption of Tripp’s model. From modelling different roller
profiles it was found that roller profiling has a large effect on the contact pressure and internal stress
but minimal influence on the stiffness. Regarding the roller, the 3D FEM model and Tripp yield identical
compression for different profiles, granted that 𝐿𝑟, and not 𝐿𝑤𝑒, is used in Tripp. Logarithmic roller pro
files have a reduced stiffness which is predominantly at initial loading. In the 3D model, the rail length
is not equal to the roller length. The additional material on both sides of the rail has a stiffening effect
on the rail, resulting in almost double the stiffness than what was modelled when symmetry is in place
at the roller ends.Therefore, although the Tripp model is effective for modelling the roller compression,
it is inaccurate for modelling the compression of an entire rail.

For the rail, in the region near the contact, the numerical and Tripp model greatly agree. Here strains
are dominantly prescribed by the concentrated contact. However, incorporating contact conditions
in numerical models is computationally expensive. To efficiently and accurately model an assembly
containing rollerrail contacts, it is proposed to place a simple domain in the two contact regions where
the roller contacts the rest of the assembly. Then these two domains are modelled as rigid and spring
elements are placed between them. The loadcompression relation of these springs is based on Tripp,
the stiffness for a roller and two halfspaces with at an evaluation depth equal to the depth of the
rigid bodies. The rest of rail geometry is modelled with a 3D FEA. For this specific rail and roller, the
boundary of the rigid body is set at a location where roughly 90% of the displacement has taken place.
This method yields satisfactory results for all situations modelled.



4
Stiffness of a normally loaded roller

between two flat rails
As outlined in the Chapter 2, relatively little experimental research has been performed on the stiffness
of individual rolling elements, in particular on rollers. The published experimental results have large
measurement errors and concerns rollers with a significantly larger or have very different length to
diameter ratios than rollers commonly used in bearing assemblies.

The goal of the experiments performed in this chapter is to validate the method proposed in Section
3.6. All experiments in this chapter are performed on individual rollers compressed between two rails.

The influence of the following parameters is investigated:

• Load

• Product variations

• Lubrication

• Length

• Diameter

• Material

• Surface roughness

• Number of rollers

This chapter with begins Section 4.1 which describes the test setup, the experiment procedure, and
the means by which the setup is validated. The results are presented and discussed in Section 4.2.
Finally, the chapter concludes with Section 4.3 that synthesizes the model and experiments, it covers
a methodology in which the measurement data on individual contacts can be applied in other complex
geometries.

41
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4.1. Test setup
This section elaborates on and substantiates the setup. First, it will briefly touch upon considerations
when designing a setup for measuring contact stiffness. Secondly, it will lay down the workings of the
setup and outline the test procedure. A list and brief description of the equipment used and its accuracy
is given. All the actions taken to verify the validity of the setup and its characteristics are covered in
Appendix D.

4.1.1. Considerations on a contact stiffness measurement setup
Section 1.2 described how stiffness influences system behaviour in both a static and dynamic way.
These two ways in which stiffness influences a system allow analogical for two methods for measuring
that same stiffness. Either statically; applying a load and measuring the displacement in the contact.
Or by a study of the dynamic properties; performing a modal analysis on a system that incorporates
the rollerrail contact. Traditionally a static method for stiffness measurements is chosen as it entails
simpler measurement equipment. Modal analysis is the most common method for testing full hightech
systems, it allows for very accurate measurements on systems with minimal displacements. It gives
information on the full frequency domain and can easily be extended to multiple directions. The litera
ture showed how this is predominantly relevant for assemblies such as entire motion systems. There
are several methods to do modal testing, hammer impact and shaker testing are the most common.
Mechanical energy is supplied with known frequency content (perfect impulse for an ideal hammer im
pact) and the frequency response function (FRF) is studied. An example of a FRF is plotted in Figure
C.2 in Appendix C.

Equation 3.33 and 3.34 showed that the loaddeflection relation, and therefore the stiffness is non lin
ear. Stiffness will increase with load as the contact width of the rollerrail contact increases. An external
loadingmechanism needs to be in place in order tomeasure the stiffness for different loading conditions.

Figure 3.1b shows, the bottom of the lower rail is considered fixed. In theory this is quite easy, in practice
however this is difficult and not always possible. Even a granite table, which is often considered a rigid
base, will have a finite stiffness, see the halfspace discussed in Subsection 3.3. The rail will have to
be connected to such a base, this connection will add some compliance.

Utilization of symmetry could help here, it eliminates the need for a perfectly fixed point in the setup.
The plane of symmetry could function as a place where the displacement is zero. When looking at
Figure 3.1a, the center of the roller can be seen as a symmetry plane. When considering the rollerrail
system as a mass spring system with the contact stiffness as the spring. With symmetry, a single mass
spring system becomes a two mass spring system where the natural frequency goes from 𝜔0 = √𝑘/𝑚
to 𝜔0 = √2𝑘/𝑚 (with 𝑚 the mass of a single moving component). It could be seen as having the center
of the roller fixed and a spring of only half the length and thus double the stiffness. The mass of the
rollers is insignificant compared to the mass of the rails and may be neglected in regards to the mass
spring system.

When designing a setup for measuring contact stiffness it is desirable that the stiffness of the setup
is higher than the stiffness of what is to be measured. The setup dynamics ought to be such that the
eigenfrequencies of the setup itself are much higher than those to be measured. The eigenmodes
should be distinctive and not interfere. The equipment used to capture the FRF poses limits on the
frequency of the eigenmodes of interest.
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4.1.2. Description of the setup
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Figure 4.1: The test setup used for the experiments in this section. Three pairs of rails are bolted to the two masses. The
rollers are placed between the rails. The green springs exert load on the rollers and rails. The distance between the masses is
measured with a capacitive probe (bright green). The frequency response is measured with accelerometers. The setup isolated
from the external world by a suspension with a tube (both not in CAD).

The setup shown in Figure 4.1 allows for two concurrent measurements, both a static measurement
where a load is applied and the displacement is measured and a dynamic measurement where the FRF
is determined. The setup consists of two steel disks 1 with the rails 2 between which the rollers are
compressed. The dimensions of the rails used are given in Figure B.1. The load is applied by four pairs
of compression springs 7 which are compressed by threaded rods 3 . All components are specified
in Appendix B.

Three pairs of rails and rollers are used in parallel to form a statically determinate structure, this ensures
alignment of the rollerrail contacts and allows for measuring the distance between the two masses 1 .
The masses bring the eigenfrequency of the system down to what is desirable for the measurement
equipment. The three rail pairs are bolted to the disks such that they are oriented with each 120° rela
tive rotation around the center of the disk. This orientation results in an equal load distribution among
the rollers. The point symmetry also warrants that the three other dominant modes have the same
eigenfrequency. The radius at which the rollers are mounted is such that the eigenmode with normal
translation of the disks is separated as far as possible from the three other eigenmodes where the two
disks tilt relative to eachother. The disks are robust and ensure that the setup is an order of magnitude
stiffer than the contacts measured, flex modes are isolated in the FRF. The contact faces of both the
disks and rails are ground to ensure a conforming and stiff contact between the components. The setup
is placed on a tube to isolate the setup from its surroundings. A mask is taped on the rails, this mask
has a rectangular pocket such that the axis of the roller is parallel to the grinding direction at the rail,
as this is the orientation found in bearing assemblies. The FRF is determined with Muller BBM’s PAK
measurements system. The static displacement between the flanges is measured with a Lion Precision
capacitive displacement probe.

All setup components are standard machine elements, such that this setup can easily be reproduced.
The total costs are only a few hundred euros. All machining operations consist of drilling holes in the
flange for mounting the rails, and grinding the surface for smooth contact with the rails. The mea
surement equipment used for determining the FRF is overspecified, performing a FFT on a webcam
microphone identifies the eigenfrequencies of interest.
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A schematic of the setup is shown in Figure 4.2. The setup is modelled as a two mass spring system
in which the mass of the roller may be neglected. Total mass is the sum of the mass of the rails, bolts
and the two disks as nearly all displacement happens near the contact. The influence of the tube is
insignificant, the system may be assumed to be isolated. The stiffness of the load springs are of such
magnitude that they do not influence the eigenfrequency significantly. The stiffness of all the load spring
pairs combined is 1.6 ⋅ 105 N/m, whereas for example three pairs of roller of type 1 in series have a
stiffness in the order of 7.5 ⋅ 107 N/m in the situation where the lowest load is applied.

𝑚

𝑚

𝑘 𝑘 𝑘

To be measured contacts
Load from load springs
Vibration isolation
External world

Figure 4.2: Schematic depiction of the normally loaded setup.

The stiffness 𝑘 in Figure 4.2 is the sum of the elements in Figure 3.1b, i.e. Equation 4.1. This setup
has three roller contacts parallel, the stiffness sum of the measured contacts is 3𝑘 with 𝑘:

1
𝑘 =

1
𝑘𝑟𝑎𝑖𝑙

+ 1
𝑘𝑟𝑜𝑙𝑙𝑒𝑟

+ 1
𝑘𝑟𝑎𝑖𝑙

(4.1)

The natural frequency of this idealized two mass spring system is 𝜔0 = √
6𝑘
𝑚 , with 𝑚 the mass of one

solid steel disk with attached rails and bolts.

4.1.3. Numeric multi body dynamics analysis of the setup
A rigid setup does not exist, it will always have some compliance and therefore influences the frequency
response. The goal of this model is to verify if the eigenmodes are distinguishable and to determine the
stiffness of the setup itself. The stiffness of this setup is calculated with a multibody FEM model. The
contacts in this FEA are modelled as proposed in section 3.6. Spring elements are placed between
the created rigid inlays. The stiffness of these elements is swept over the range expected during the
experiments. The multi body dynamics analysis is described in more detail in Appendix C.

The stiffness was found to be 1.45 ⋅ 109 N/m, and properly modelled to be in series with the three rail
pairs. All themeasurements discussed in this chapter are compensated for the finite setup stiffness. Yet
insignificant, the stiffness of the load springs is also deducted from themeasurements for completeness.
Appendix C specifies how the measured FRF is linked to a rollerrail contact stiffness.

4.1.4. Test procedure
All rollers are sorted and stored in assortment boxes such that each individual roller can be uniquely
identified, this allows for measurements with the same rollers in different conditions or setups. Prior to
a test, the rollers and rails are cleaned with isopropanol. When the rollers are stored after a test, oil is
once again applied to inhibit corrosion. Clean rollers are always handled with tweezers.

All measurements are repeated three times. Except for the precision measurements of Subsection
4.2.1 which is repeated 10 times. This entails: for each configuration the load is increased stepwise to
30% of C0 three times. Inbetween the repetitions, the upper disk is removed from the lower disk and
rollers are lifted with tweezers and placed back, this ensures a new contact every repetition. Initially
the load is solely the weight of the upper half of the setup, after this initial setting the load is increased
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by fastening the star knobs in steps of 180∘. For each load setting within a repetition, three hammer
impacts are applied. All hammer impacts are aimed at the center of the upper disk and normal to the
surface. In case of an incorrect impact, e.g. a double tap, the impact data is removed and the impact
is repeated.

The PAK software saves the average FRF based on three impacts. The measurement data of
the captive probe is saved for the duration of the sampling window, the RMS value of the distance is
determined for each impact based on the last 2.5 seconds of the sampling window. This is such that
the vibration energy of the system is already dampened out.

4.1.5. Test equipment
Both the modal analysis and the static displacement measurement are logged using a PAK MKII mea
surement system. The vibrations are measured with four triaxial accelerometers from PCB Piezotron
ics, model 356A16. The modes are excited with a PCB Piezotronics impact hammer model 086D05
and 084B04 hammer tip. The distance between the two masses is measured with a Precision Lion C8
capacitive sensor. This sensor is driven by a Precision Lion CPL350 whose output is connected to the
PAK MKII. A sampling window is set to 3.2 s with a sampling rate of 20 480Hz. The PAK Measurement
system is connected to a laptop running PAK software. Both the FRF as the raw time data are saved
and after the experiment converted and exported to MATLAB for data analysis. The equipment used
to verify the setup is covered in Appendix D. The PAK software visualizes measured eigenmodes such
that the eigenshape can be compared with the FEM model.

4.2. Test results and discussion
This section presents and discusses the results of the experiments performed with the normal setup.
Table A.1 lists the specifications of the rollers used. Table A.2 lists the surface roughness, roundness,
and cylindricity of these rollers. All the results in this section account for, and deduct, the stiffness of
the rest of the geometry. The all stiffness plotted represent the stiffness of the rolling element and two
times the highlighted region of Figure 3.22.

4.2.1. Precision of the setup
The goal of this experiment is to verify the test–retest reliability of the setup.

Figure 4.3 shows the stiffness per roller as a function of the normal load on a set rollers of type 1
that are tested 10 times. The spread of the data is expressed as a percentage of the mean stiffness
for a certain load level.
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107 Stiffness for roller D=3mm L=2.2mm; repeating the same experiment 10 times
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Figure 4.3: Hammer impact data: Loadstiffness relation of roller type 1 under normal conditions; 10 runs, estimating repeatability.

When a load is applied, the total spread of the measured stiffness is less than 5% and at higher loads
this spread decreases to 1% (𝜎 =5 ⋅ 104 N/m). This increase of accuracy is probably caused by a
decrease in the error arising from setting the load knobs by hand (±10°), which decreases relatively
with the total load. Furthermore, as given by the loaddeflection relationships from Section 3.3, the
sensitivity of the stiffness to load variations is higher at light loads. This explains the high spread of a
just under 11% (𝜎 =106 N/m) when only the weight is present as load.
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The rollerrail contact stiffness is also calculated by means of taking the derivative of the absolute
distance measured with the capacitive probe. The results obtained with the capacitive probe are given
in Appendix E. The precision of this method is lower, the mean loadstiffness relation of both methods
highly agree. A regression on the static stiffness measurements shows that all single hammer impact
measurements lie in the 95% confidence interval. A lower accuracy for stiffness calculated through the
capacitive probe is expected as a consequence of the error propagation. Subsequent results will only
consider the hammer impact data.

The high sampling rate of the capacitive measurement allow studying the frequency spectrum of
the time data. The found peak frequencies match the eigenfrequencies obtained with accelerometers.

4.2.2. Accuracy of the setup
The goal of this experiment is to verify the accuracy of the setup. Experiments should be performed
with elements for which the stiffness is known. From Section 2.2.1 it is evident that the stiffness of a
rollerrail contact is arbitrary. However, for a ballrail contact there is general consensus, under small
strains, Hertz Theory is unambiguous and accurate for dry and smooth contacts [13].

Figure 4.4 shows the stiffness per ball as a function of the normal load for bearing steel balls with a
diameter of 3, 6, and 9 mm, rolling element 10, 11, and 12 in Table A.1.
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Figure 4.4: Hammer impact data: Loadstiffness relation of balls of 3, 6 and 9mm under normal conditions; 3 runs, estimating
setup accuracy.

The measured stiffness is close to the stiffness expected from theory, the difference between the rough
and smooth contact model is more significant than the discrepancy between the rough model and rough
measurements. Following from this experiment, and the uncertainty and error analysis measurements
in Appendix D it can be assumed that the measurements are accurate.

4.2.3. Product variations of rollers
All rollers are manufactured according to predefined tolerances, dimensions range within these toler
ances. Surface typologies and grain structures are unique and vary from roller to roller. As a con
sequence, every roller will have an unique mechanic behaviour. Studying the spread in loadstiffness
relationships for the same roller type gives an upper limit for the accuracy of meaningful roller modelling.

Figure 4.5 shows the stiffness per roller as a function of the normal load for three different sets of
type 1 rollers.
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Figure 4.5: Hammer impact data: Loadstiffness relation of roller type 1 under normal conditions; Mean values roller to roller
variation.
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Themeasured roller set to roller set variation is greater than the variation among repetitions of the same
set. Themean data presented for roller set 1 is themean of the data shown in Figure 4.3. For the highest
load, the difference in stiffness between the sets is small, 1%. A Oneway ANCOVA is conducted to
determine whether there is a statistically significant difference between the roller to roller variations on
the stiffness while controlling for the load. This analysis is reported in Appendix F. From the analysis,
it is evident that there a significant effect of roller set to roller set variation on the measured stiffness
after controlling for load, F(3, 199) = 4.941, p = 0.002. Since there is already a significant difference
measured between rollers of the same type, performing statistical tests on the mean of different roller
types will yield uninterruptible results as roller to roller variation is highly significant already. Even if the
difference in their type would not cause a significant effect, the fact that they are not the same rollers
will likely already result in a significant result.

4.2.4. Influence of lubrication
The presence of lubrication might influence the damping in the rollerrail contacts. Experiments are
performed using both grease and oil, Lubcon Thermoplex ALN 1001/00 [67] and Klüber Summit SH
32 [68] respectively. It is important to point out that these experiments are performed under nonrolling
conditions so no EHL layer can be formed.

Figure 4.6 shows the stiffness per roller as a function of the normal load for rollers of various lubri
cation conditions.
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Oil; Klüber Summit SH 32
Grease; Thermoplex ALN 1001/00
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Figure 4.6: Hammer impact data: Loadstiffness relation for roller type 1 under normal conditions; Mean values for rollers with
different lubrication conditions.

Figure 4.6 shows that applying oil or grease to the rollerrail contact does not significantly influence the
stiffness, Oneway ANCOVA F(2, 188) = 1.182, p = 0.309. This analysis is reported in Appendix F. The
mean Q factor for the dry contacts form experiments of Subsection 4.2.1, is 47. The average damping
coefficient for grease and oil are 43 and 48 respectively. The standard deviation of the Q factors are
such that these differences are not significant.
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4.2.5. Variation of contact length
Section 2.2.1 discussed the influence of roller profiling and endeffects. Experiment are performed
using rollers type 1, 5, 6, and 7 with length 𝐿𝑟 = 2.2, 2, 2.8, and 4mm, and contact length 𝐿𝑤𝑒 =
1.793, 1.947, 2.569, and 3.734mm respectively.

Figure 4.7 shows the stiffness per contact length (𝐿𝑤𝑒) as a function of the normal load for rollers of
various contact length.
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Roller L=2.2mm
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Roller L=4mm (other manufacturer)
Trend rollers L=2, 2.2 & 2.8mm ±2.5%

Figure 4.7: Hammer impact data: Loadstiffness relation for roller types 1, 5, 6, and 7 under normal conditions; Mean values for
rollers of various contact length.

A trend is noticeable, the stiffness per contact length decreases with contact length. A logarithmic
curve fit of roller types 1, 5, and 6 has been fitted with a ±2.5% offset to illustrate the spread among the
different roller lengths. Interestingly, the results demonstrated a substantial lower stiffness per contact
length for the roller of type 6. This roller is produced by a different manufacturer as the other rollers.
When inspecting this roller with an optical comparator (i.e. a profile projector as done in Appendix D),
it is evident that this roller has more surface defects compared to the other rollers. Table A.2 quantifies
the contrast in roller quality. These results suggest it is important include roller quality when modelling
rollerrail contacts.

4.2.6. Variation of roller diameter
There no consensus as to whether there is an effect of roller diameter on loadstiffness relationship.
For some relationships, such as the Tripp model, the influence of the roller diameter cancels out when
the rail and roller have identical mechanic material properties. The relative influence of surface defects
is expected depend on roller diameter. To investigate the role of roller diameter on the stiffness, exper
iments are performed using rollers with diameters of 1.50, 3, 6 & 9mm. Due to availability, the contact
length is not held constant during this experiment.

Figure 4.8 shows the stiffness per contact length (𝐿𝑤𝑒) as a function of the normal load for rollers of
various diameter.
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Figure 4.8: Hammer impact data: Loadstiffness relation for roller types 1, 2, 3, and 4 under normal conditions; Mean values for
rollers for the various diameters.
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A decreasing in the stiffness per contact length is seen when comparing the different diameters. How
ever, no conclusions can be drawn as in the rollers measured, as the diameter is coupled with contact
length. The static load rating C0 scales linear with roller diameter so for larger diameters measure
ments could be performed with greater loads, yet the springs limited the maximum applied per contact
length for the 𝐷 =9mm rollers. Measurements on the 𝐷 =9mm rollers are difficult as the FRF and
showed multiple peaks, as can be seen in Figure C.3. This data is not as clean as measurements with
the other rollers as depicted in Figure C.2.

4.2.7. Variation of the number of rollers
Experiments with an increased number of rollers allow for the investigation of the influence of misalign
ment and parallelism and the tolerance on roller diameter. Therefore experiments are performed with
3, 6, and 9 rollers in the setup. The rollers used are of type 1. Individual MBD FEA are performed for the
different number of rollers. The stiffness values for the setups with 3, 6, and 9 rollers are 1.45 ⋅ 109 N/m,
2.25 ⋅ 109 N/m and 2.05 ⋅ 109 N/m respectively.

Figure 4.9 shows the stiffness per roller as a function of load applied for 3, 6, and 6 type 1 rollers.
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107 Stiffness for roller D=3mm L=2.2mm; different number of rollers: 3, 6 and 9 rollers

3x Roller D=3mm L=2.2mm
6x Roller D=3mm L=2.2mm
9x Roller D=3mm L=2.2mm

Figure 4.9: Hammer impact data: Loadstiffness relation for roller type 1; Mean values for different number of rollers.

The effective stiffness per roller decreases with the number of rollers. The stiffness for a load of around
475N is 4.72 ⋅ 107 N/m, 4.44 ⋅ 107 N/m and 4.30 ⋅ 107 N/m for 3, 6, and 9 rollers respectively.
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4.2.8. Influence of roller material
Existing empiric loadstiffness relations are based on rollers made out of bearing steel. Bearing steel
is the most common material for rolling elements, however, in some situations ceramic and stainless
steel are used. Both stainless steel (1.4034), roller type 9, and ceramic (Si3N4), roller type 8, are
tested. Not only the roller material varied, also the contact length varies slightly due to differences in
roller profiling. To account for this, the stiffness and loads are plotted per contact length. Figure 4.10
shows the measured loadstiffness relation of ceramic (Si3N4), and bearing steel rollers, type 8 and 5
respectively.
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Figure 4.10: Hammer impact data: Loadstiffness relation of rollers of different materials under normal conditions; Mean values
for Ceramic and steel rollers.

Figure 4.10 shows that ceramic roller is stiffer than a steel roller of the same length, this is expected
as deformation is a function of the effective elasticity modulus defined in Equation 3.25. Quantifying
the expected difference between the two materials is difficult as no accurate data is available on the
material properties of the ceramic roller.

Figure 4.11 shows the measured loadstiffness relation of stainless and steel rollers, type 9 and 1
respectively.
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Figure 4.11: Hammer impact data: Loadstiffness relation of rollers of different materials under normal conditions; Mean values
for stainless and steel rollers.

Figure 4.11 shows that the stainless steel roller is considerably stiffer than a bearing steel roller of
the same length. This is surprising as the Young’s modulus of the stainless steel used is 200GPa,
this is lower than the 210GPa for bearing steel. The roller profiling and contact length are identical
for the two roller types. The variance of the stainless steel measurement was similar to that of other
measurements. One possible explanation is the difference in hardness. The lower hardness of the
stainless steel roller allows it to deform plastically and conform to the roughness profile of the rail,
and thus increase the effective contact area. The difference between the two roller materials is further
assessed in Subsection 4.2.9 where the influence of different surface finishes is studied.
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4.2.9. Influence of the rail surface finish
Section 2.3 covered the influence of surface roughness on the contact stiffness. While prior research
thoroughly investigated the theoretical influence, especially for spheres, experimental validation for
rollers is limited large roughturned rollers [39] or train wheels [41]. Experiments are performed with
mirror finish treated rails with a surface roughness of Ra=0.03µm, while initially the rails had a ground
surface with a roughness of Ra=0.2µm.

Balls Firstly, steel balls are measured as there exists a widely accepted model for modelling the
influence of surface roughness on balls [69]. The influence of surface roughness scales with ( 𝑅𝑃2 )

1
3 .

Figure 4.12 shows the results both for the original rails as themirror finished rails for balls of diameter
3, 6, and 9mm. Both the Hertz model for smooth contacts and the Greenwood stiffness are plotted as
this allows for incorporating the influence of the surface roughness.
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Ball 3mm run 1, 2 & 3 standard finish
Ball 6mm run 1, 2 & 3 standard finish
Ball 9mm run 1, 2 & 3 standard finish
Ball 3mm run 1, 2 & 3 mirror finish
Ball 6mm run 1, 2 & 3 mirror finish
Ball 9mm run 1, 2 & 3 mirror finish
Hertz Theory (Smooth)
Hertz Theory (Smooth)
Hertz Theory (Smooth)
Greenwood Theory (Rough) Ra=0.2
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Greenwood Theory (Rough) Ra=0.2
Greenwood Theory (Rough) Ra=0.03
Greenwood Theory (Rough) Ra=0.03
Greenwood Theory (Rough) Ra=0.03

Figure 4.12: Hammer impact data: Loadstiffness relation of balls of 3, 6, and 9mm under normal conditions; Mean values for
different surface finishes.

The magnitude of the influence of the surface finish change on the stiffness is in line with what is
expected from the theory presented by Greenwood et al. [69].

Rollers Figure 4.13 shows that similar effect is measured for rollers, the stiffness increases with a
smoother surface.
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Figure 4.13: Hammer impact data: Loadstiffness relation of roller type 1 under normal conditions; different surface finishes.

The initial variance of the measurements is lower, in this region the influence of surface topology
prevails. The smaller the contact area is, the larger the influence of individual roughness peaks.
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Roller length Figure 4.14 shows the influence of the surface finish on the loadstiffness relation for
different roller lengths.
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Figure 4.14: Hammer impact data: Loadstiffness relation for roller types 1, 5, 6, and 7 under normal conditions; Mean values
for different surface finishes.

At a load of 30% of C0, with Ra=0.03µm a stiffness increase between 2% and 3% relative to the
standard finish is measured. The largest influence of the surface finish is measured for the longest
rollers and the lowest load, this is expected as this is the lowest load per contact length. At a load of
10% of C0, a typical preload in linear bearing assemblies, the measured stiffness increase is between
6% and 8%.

Roller material The influence of the rail surface finish for ceramic and stainless steel rollers is also
tested.

Figure 4.15 shows the standard and mirror finish data for ceramic rollers.
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Figure 4.15: Hammer impact data: Loadstiffness relation of Ceramic and steel rollers under normal conditions; Mean values for
different surface finishes.

The surface finish has the similar effect on ceramic rollers as on steel rollers.
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Figure 4.16 shows the standard and mirror finish data for stainless steel rollers.
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Figure 4.16: Hammer impact data: Loadstiffness relation of Stainless steel and steel rollers; Mean values for different surface
finishes.

For stainless steel, only a small difference between the standard and mirror finish is measured. Again,
stainless steel shows a higher stiffness at high loads compared to bearing steel. The hypothesis posed
in Subsection 4.2.8 is backed by the measurements on mirror finish rails, as here the difference be
tween stainless steel and bearing steel recedes.

When considering the results for all rollers it becomes clear that the stiffness increases with a smoother
surface. This is in accordance with McCallion and Truong [39]. Considering Greenwood and Tripp it
may be expected to see larger fluctuations in the measured loadstiffness relation for rough contacts
as the number of asperities is small, this is most dominantly at lower loads, this was also measured.

4.3. Relating the experimental data to theory
With all the data presented in the previous section, a comparison can be drawn with the modelling in
Section 3 and the experimental data obtained in this Chapter. The main question of this chapter is
how to practically apply the Tripp solution to the finite dimensions in linear roller bearings. This section
will make an effort to answer this question. No data on direct stiffness measurements of cylindrical
rollerrail contacts is present in the literature yet. Based on the experiments presented in Section 4.2,
two empiric loadstiffness relations are given, each of a simple logarithmic form.

Section 3.6 introduced amethod for numerically modelling a complex geometry with nonconforming
contacts as the same geometry with the contacts replaced by rigid inlays and stiffness elements, with
the stiffness set using the Tripp solution.

The experimental results showed a clear distinction between the two surface finishes, these two
conditions are also parted when comparing the data to the theory.
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Standard finish Figure 4.17 presents all normal steel measurements performed on rails with a normal
surface finish combined in one figure. The stiffness obtained by taking the derivative of the Tripp solution
is also depicted. The compression of a roller and two halfspaces with a depth of the rigid inlays as
modelled according to 3.6.
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Figure 4.17: Hammer impact data: Loadstiffness relation of all steel rollers and normal surface finish under normal conditions;
Mean values for different geometries and conditions. Curve fit of Equation 4.2.

The Tripp solution shows to be an upper limit for the stiffness measured, this is in line with what may be
expected from the literature as the model assumes ideal conditions. Especially for low loads a reduced
stiffness is measured, this lower stiffness is likely a result of the surface roughness. It is important
to point out that the roller of type 1 is overrepresented in this data set as most measurements are
performed with this roller type. A least squares logarithmic fit of the data is also plotted, almost all data
points fall in a ±10% range around this fit which is described in Equation 4.2.

𝑘𝑅𝑎0.2 = 5.15 ⋅ 109 N/m2 ln
𝑃/𝐿𝑤𝑒

1.80 ⋅ 103 N/m
𝐿𝑤𝑒 (4.2)

Mirror finish Figure 4.18 shows the combined data of all steel measurements with a mirror finish.
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1010 Stiffness for all steel measurements with mirror surface finish
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Figure 4.18: Hammer impact data: Loadstiffness relation of all steel rollers and mirror surface finish under normal conditions;
Mean values for different geometries and conditions. Curve fit of Equation 4.3.

Here the measured stiffness aligns more closely with Tripp, it still can be seen as an upper limit, this is
reasonable as Tripp does not account for the surface roughness which is most dominantly present in
rough contacts. In this data set all roller types are represented with an equal weight, the lower quality
of roller type 6 lowers the overall stiffness fit given in Equation 4.3. Overall, the Tripp solution appears
to be a reasonable approximate for modelling the stiffness of rollers in contact with mirror finished rails.

𝑘𝑅𝑎0.03 = 3.23 ⋅ 109 N/m2 ln
𝑃/𝐿𝑤𝑒

1.00 ⋅ 102 N/m
𝐿𝑤𝑒 (4.3)
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4.4. Synopsis
These experiments have shown that the test setup is a method with great precision and accuracy for
measuring the stiffness of rollerrail contacts.

• Experimental quality
– Modal analysis experiments have a high precision, especially at higher loads with variations
smaller than 1%, see Table F.3.

– Stiffness calculated using the capacitive probe shows the same loadstiffness relation as
modal analysis experiments but with a lower precision, see Appendix E.

– Measurements with steel balls as known reference yield good results on the absolute accu
racy of the setup, see Subsection 4.2.2.

– The repeatability of the setup is greater than the product variations within a roller batch,
statistically significant, see Table F.1.

• Roller geometry
– Longer rollers of the same diameter show lower stiffness per contact length, this is a logic
result when comparing to Figure 3.18 in Subsection 3.5.4. This view might be distorted due
to the low roller quality of the longest roller, or this could be a nonlinearity in the setup.
Another cause could be the limited straightness of rollers, which results in a nonuniform
contact for longer rollers.

– No direct conclusions can be drawn from varying the roller diameter, as it was not varied
independent of roller length, these measurements support the claim that the stiffness per
contact length reduces with contact length, see Subsection 4.2.6.

– Measurements with an increased number of rollers placed parallel in the setup resulted in
a lower effective stiffness per roller. This could be a result of an overconstrained geometry
such that the contacts are less than ideal. This reduced effective stiffness could also be
attributed to roller to roller variations in roller diameter which makes rollers with a slightly
smaller diameter less contributing. Again nonlinearity in the experiment setup cannot be
ruled out. See Subsection 4.2.7.

• Lubrication
– In static conditions no significant change in behaviour was measured by adding either oil or
grease. see Table F.2. Note that static conditions do not allow for the formation of an EHL
Film.

• Roller material
– Ceramic rollers are 6% stiffer compared to steel rollers, this is in line with literature as ce
ramic has a higher Youngs modulus, see Table A.1.

– Stainless steel rollers are stiffer than steel rollers of same length, this could be explained
by the difference in material hardness. A lower hardness of the roller can result in better
conformation in the contact, see Subsection 4.2.8.

• Surface roughness
– The Influence of the rail surface finish has been studied by comparing mirror finish rails with
standard ground rails.

– For balls the influence of the surface finish on the stiffness is in line with what is expected
from the theory of Greenwood.

– Figure 4.13 shows how a similar effect is measured for rollers, the stiffness increases with a
smoother surface. An increase in stiffness was measured for all measurements performed
with mirror finish rails.

– A smoother surface results in a lower stiffness variance, especially for low loading conditions.

• Modelling
– The Tripp model is an upper limit for measurement on real rollers with tolerances.
– Equation 4.2 predicts the stiffness of a rough (Ra=0.2µm) rollerrail contact within 10% for
all rollers measured1.

1one outlier, the largest rollers of type 12





5
Stiffness of a roller between two rails at

45°
Chapter 4 investigated the modelling and experimental validation of individual rollers normally com
pressed between two flat rails. The step to a full bearing assembly, a complex geometry with multiple
rollers loaded at 45°, is too complex without further comprehending the characteristics of the individual
components.

This Chapter bridges this gap by studying individual rollers loaded at 45°. It identifies a practical model
for this geometry and investigates how normal and tangential stiffness components coexist.

As discussed in Chapter 2, there is no consensus on how to model a roller loaded at 45°. Some
authors [46, 52, 54, 54, 55] solely rotate the normal load components and do not account for any tan
gential effects. Some model the geometry as a ”black box” with both a horizontal and vertical stiffness
[58]. No experimental data on the stiffness of individual rollers loaded at an angle exists yet.

Experimental data on the tangential stiffness of normally loaded rolling elements does exist for
spheres [59], yet data is not extended to cylinders. The effect of the tangential contact force component
is greatly discussed in train wheelrail contact, though the profiling or train rails is such that no line
contact is present.

This Chapter will discuss performed experiments on individual rollers compressed between two rails
at an angle of 45°. The goal of the conducted experiments is to extend the insights gained with the
normal experiments of Chapter 4 and determine how this extended system should be modelled. The
traction stiffness of normally loader rollers is measured.

In this chapter, the influence of the following parameters is investigated:

• Load

• Roller orientation

• Product variations

• Lubrication

• Length

• Diameter

• Material

• Number of rollers

First, this Chapter describes the system of rollerrail contact at an angle. Section 5.2 covers the ex
perimental setup on which the experiments are performed. Section 5.3 address the results, first it
presents the measurements at 45°and second the traction stiffness of normally loaded rollers. Section

57
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5.4, draws a comparison between the normal and 45° conditions, shows the significance of the results
and presents a model to predict the stiffness of a roller in a 45° orientation.
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5.1. Description of the rollerrail system at 45°
Figure 5.1a shows a schematic of the geometry considered in this chapter. This geometry is an exten
sion of the normal system shown in Figure 3.1a of Chapter 4.

Merely loading the rollerrail contact at 45° results in a situation shown in Figure 5.1b. The applied
load (𝐹𝑧, ) is supported by the roller. The reaction force of the roller (𝐹𝑛, ) has to act in a direction
normal to the rail surface, as the reaction forces have to share a line of action not to cause a couple
that rotates the roller.

The reaction force of the roller expressed as a function of the vertically applied load is 𝐹𝑛 =
𝐹𝑧

cos (𝛼) ,
with 𝛼 the angle between the load and the rail surface. Here the stiffness in the direction of the applied
load is 𝑘𝑧 = 𝑘𝑛 cos2(𝛼).

In bearing assemblies, the roller axis is oriented parallel to the rolling direction, as shown in Figure
5.1a. With friction in place, the applied load is here also supported by tangential components (𝐹𝑡, ).
The sum of the normal and tangential load projected in the 𝑧direction form the equilibrant force for the
applied load i.e. 𝐹𝑧 = 𝐹𝑛 cos (𝛼) + 𝐹𝑡 sin (𝛼) with 𝛼 the angle between the load and the rail surface.
The total deformation of the system is the sum of the deformation in the rails and the deformation of
the roller in both the normal and the tangential direction.

The stiffness in the 𝑧direction, the direction of the applied load is 𝑘𝑧 = 𝑘𝑛 cos2(𝛼) + 𝑘𝑡 sin2(𝛼).
The tangential components create a couple on the roller, a nonuniform normal load ( ). Misalignment
will emerge to ensure a static equilibrium. It is assumed that the rails are supported such that the normal
and tangential components do not need to cancel out in 𝑦direction.

𝑦
𝑧

𝑥

𝑦𝑧

(a) Parallel orientation

𝑦
𝑧

𝑥

𝑦𝑧

(b) Perpendicular orientation

Figure 5.1: Schemetic of a rollers compressed between two rails at an angle of 45°.

Besides the factors that determine a normally loaded contact, preliminary research found the fol
lowing effects to come into play when loading at an angle:

• Friction

• Creep

• Misalignment

The consequences of including the tangential contact interactions are far reaching and complicated.
The applied load is supported by both tangential and normal components of the reaction force. The
reaction forces in turn interact with the stiffness and the slip limit. Developing a numerical model of this
problem would require many assumptions on the contact conditions and behaviour at asperity level.
There is a high probability of developing a model with little connection to reality, hence no numerical
model is made here.
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5.1.1. LEGO demonstration
Friction is required for the tangential load, in the case of slip no tangential stiffness component can
exist. An LEGO mockup as shown in Figure 5.2 demonstrates the fundamental influence of friction.
A roller (a rubber LEGO tire) is loaded between two 45° rails (two LEGO roof tiles) and compressed.
The left rails have been polished and lubricated while the right is a rough and dry contact as shown
in Figure 5.2a. In the deformed situation of Figure 5.2b, there exists a clear difference between the
lubricated and dry contact. The lubricated roller maintains a rectangular shape, while the dry roller be
comes a parallelogram, this shear deformation results in a tangential reaction force and corresponding
tangential stiffness.

(a) Undeformed

 

 

Video

(b) Deformed

Figure 5.2: LEGO demonstration of a roller (here a rubber Lego tire) loaded between to rails (here LEGO roof tiles) at 45°. The
left rails have been polished and lubricated while the right is a rough and dry contact.

https://onnowijnberg.nl/MasterThesis/Lego.mp4
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5.2. Test setup
This section presents a new test setup, this setup is used to perform experiments of rollers loaded at
an angle of 45°.

5.2.1. Description of the setup
The setup, as shown in Figure 5.3, is nearly identical to the setup used in Chapter 4, except that here
the orientation of the rails is positioned to orientate the rollerrail contact at 45°.

(a) CAD model of 45° loaded setup (b) Picture of 45° loaded setup

Figure 5.3: The test setup used for the experiments in this section. Two pairs of rails are bolted to the two solid disks. The rollers
are placed between the rails in the rolling direction. When compressed, the green springs exert load on the rollers and rails. The
distance between the masses is measured with a capacitive probe (bright green). The frequency response is measured with
accelerometers. The setup isolated from the external world by a suspension with a tube (both not in CAD).

Figure 5.4 shows a schematic of the test setup. The setup is modelled as a suspended two mass
spring system. Here, 𝑘𝑛 and 𝑘𝑡 are each the sum of the components caused by the roller and rails,
i.e. Equation 4.1. This setup has two rollers in parallel, the stiffness sum of the measured contacts is
�⃗�𝑛 + �⃗�𝑡.

𝑚

𝑚

𝑘𝑛

𝑘 𝑡

𝑘 𝑛

𝑘𝑡

To be measured contacts
Load from load springs
Vibration isolation
External world

Figure 5.4: Schematic depiction of the normally loaded setup.
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1
𝑘𝑛
= 1
𝑘𝑟𝑎𝑖𝑙,𝑛

+ 1
𝑘𝑟𝑜𝑙𝑙𝑒𝑟,𝑛

+ 1
𝑘𝑟𝑎𝑖𝑙,𝑛

1
𝑘𝑡
= 1
𝑘𝑟𝑎𝑖𝑙,𝑡

+ 1
𝑘𝑟𝑜𝑙𝑙𝑒𝑟,𝑡

+ 1
𝑘𝑟𝑎𝑖𝑙,𝑡

𝑘𝑧 = 𝑘𝑛 cos2(45°) + 𝑘𝑡 sin2(45°) =
𝑘𝑛
2 + 𝑘𝑡2

(5.1)

5.2.2. Multi body dynamics analysis of the setup
The goal of this model is to verify if the eigenmodes are distinguishable and to determine the stiffness
of the setup itself.

The natural frequency of this idealized two mass spring system is 𝜔0 = √4𝑘𝑧
𝑚 = √2𝑘𝑛+2𝑘𝑡

𝑚 , with 𝑚
the mass of one solid steel disk and attached rails and bolts. The stiffness of the setup is computed
using a multibody FEM model. This allows account for the finite rigidity of this setup. The contacts are
modelled as proposed in section 3.6, with a stiffness only in the normal direction. This is not a problem
since cos2 (45°) = sin2 (45°). Spring elements are placed between the rigid inlays. The stiffness
of these elements is swept over the range used during the experiments.The stiffness is found to be
2.22 ⋅ 108 N/m, and properly modelled to be in series with the three rail pairs. The found stiffness is
significantly (roughly 5 times) lower than the stiffness of the setup used in Chapter 4. Yet, the stiffness
sum of the to be measured contacts is roughly one third of the stiffness sum in the experiments of
Chapter 4; 2 cos2 (45°)/3 cos2 (0°). Although insignificant, the stiffness of the load springs is also deducted
from the measurements for completeness.

5.2.3. Test procedure
The procedure is identical to the process described in Subsection 4.1.4. The load is increased to 30%
of C0 in normal direction, i.e. the load when loading vertical, divided by cos (45°). Gage blocks are
used to align the two disks during assembly.

5.2.4. Test equipment
The same equipment is used as during the experiments in Chapter 4. See Subsection 4.1.5 for a
description of the equipment.
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5.3. Test results and discussion
This section presents and discusses the results of the experiments performed with a roller loaded at
45°. Table A.2 lists the surface roughness, roundness, and cylindricity of the rollers used. All the results
in this section account for and deduct the stiffness of the rest of the geometry. All plots represent the
stiffness of the rolling element and two times the highlighted region of Figure 3.22.

5.3.1. Precision of the setup
The goal of this experiment is to verify the test–retest reliability of this setup.

Figure 5.5 shows the stiffness per roller as a function of the normal load on a set rollers of type 1
that are tested 10 times. The spread of the data is expressed as a percentage of the mean stiffness
for a certain load level.
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107 Stiffness for roller D=3mm L=2.2mm; repeating the same experiment 10 times
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Figure 5.5: Hammer impact data: loadstiffness relation of roller type 1 under 45° conditions; 10 runs, estimating repeatability.

These results show a total spread of the measured stiffness less than 5%, this spread narrows for
higher loads to less than 3% (𝜎 =2.5 ⋅ 105 N/m). This repeatability is less precise compared to the ex
periments performed on the normal setup in Subsection 4.2.1. A few possible reasons for the observed
decrease could include; the use of two instead of three rollers makes the setup underconstrained and
could lead to misalignment. A small offset from the center of the impact location will result in a tilt of
the disk and misalignment of the rollers.

Nevertheless, it may be concluded that the setup and the performed modal analysis experiments
are precise, particularly at higher loads. The mean standard deviation is 1.03% of the mean stiffness
measured. Other experiments show similar measurement precision, see Table H.2.
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5.3.2. Product variations of rollers
All rollers are manufactured according to predefined tolerances, however, dimensions range within
these tolerances. Surface profiles and grain structures are unique and vary from roller to roller. As
a consequence, every roller will have a different mechanic behaviour. Studying this spread in load
stiffness relationships will provide an upper limit for the accuracy of meaningful roller modelling.

Figure 5.6 shows the stiffness per roller as a function of the normal load for different sets of type 1
rollers.
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107 Stiffness for roller D=3mm L=2.2mm; Roller to roller variations

Mean set 2
Mean set 3
Mean set 4
Mean ± 2  set 1

Figure 5.6: Hammer impact data: loadstiffness relation of roller type 1 under 45∘ conditions; Mean values roller to roller variation.

The means presented as roller set 1 is the mean of the data shown in Figure 5.5. The measured roller
set to roller set variations among repetitions of the same set are similar to the variations between sets.
Owing to the increased variance with this setup, the data did not pass a Levene’s test. Hence, no
statistical conclusions can be drawn from this experiment.

5.3.3. Influence of roller orientation
Subsection 5.1 covered how the system behaviour can be influenced by the roller orientation given
there is friction. This experiment investigates the influence of the roller orientation. Two rollers of type
1 were oriented perpendicular to the rolling direction, likewise Figure 5.1b.

Figure 5.7 depicts this measurement against the results of the precision measurements where the
roller is oriented parallel, as shown in Figure 5.1a.
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Parallel to rolling direction
Perpendicular to rolling direction

Figure 5.7: Hammer impact data: loadstiffness relation of roller type 1 under 45° conditions; roller orientation.

Roller orientation has a clear effect on the measured loadstiffness relation, the perpendicular orienta
tion yields 18% lower mean stiffness, see Appendix H. Consequently, this substantiates the hypothesis
that tangential components influence the behaviour of the system at 45°. Additional normal experiments
were performed with a rotated roller direction to assure this effect is not caused by the surface topology
and grinding direction, this measurement is shown in Figure G.3.
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5.3.4. Variation of contact length
Section 2.2.1 discussed the influence of roller profiling and endeffects.

Figure 5.8 shows the stiffness per contact length (𝐿𝑤𝑒) as a function of the normal load for rollers of
various contact length. This experiment uses rollers type 1, 5, 6, and 7 with length 𝐿 = 2.2, 2, 2.8, and
4mm, and contact length 𝐿𝑤𝑒 = 1.793, 1.947, 2.569, and 3.734mm respectively.
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Figure 5.8: Hammer impact data: loadstiffness relation for roller types 1, 5, 6, and 7 under 45° conditions; Mean values for
rollers of various contact length.

The results show a significantly lower stiffness per contact length for roller type 6. This roller is from a
different manufacturer and has lower quality, see Subsection 4.2.5.

The contact length of the rollers with length 𝐿𝑅 = 2.2, 2, and 2.8mm is 𝐿𝑤𝑒 = 1.793, 1.947, and
2.569mm respectively. A logarithmic curve fit of the three other rollers has been plotted with a ±2.5%
offset to quantify the spread in measured stiffness for these rollers. This data lacks a homogeneity of
slopes, such that no statistical test could be performed. Curve fitting the data suggests that the stiffness
per contact length increases with contact length. However, the perceived effect is very small and could
be caused by a nonlinearity of the corrected setup.

5.3.5. Variation of roller diameter
Experiments are performed with various roller diameter to investigate the influence of diameter on the
loadstiffness relation for normal loading conditions.

Unfortunately, roller length is not held constant during this experiment as rollers of constant length
with various diameters were not available. Diameters 1.5, 6, and 9mm were tested and compared with
the existing data for 3 mm rollers.

The static load rating C0 scales linear with roller diameter. Hence, for larger diameters measure
ments could be performed with greater loads. The springs limited the maximum applied per contact
length for the 9 mm rollers.

Figure 5.9 shows the stiffness per contact length (𝐿𝑤𝑒) as a function of the normal load for rollers of
various diameter.



66 5. Stiffness of a roller between two rails at 45°

0 0.5 1 1.5 2 2.5 3 3.5 4

Normal load per contact length [N/m] 105

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
tif

fn
es

s 
pe

r 
co

nt
ac

t l
en

gt
h 

(k
z)

 [N
/m

2
] 1010 Stiffness for rollers of diameter D=1.5, 3 & 6 mm; effect of diameter variation

Roller D=1.5mm L=1.4mm
Roller D=3mm L=2.2mm
Roller D=6mm L=4.4mm

Figure 5.9: Hammer impact data: loadstiffness relation for roller types 1, 2, and 3 under 45° conditions; Mean values for rollers
of various diameters.

The stiffness significantly decreases with roller diameter. Considering the small effect of roller length, as
indicated in Figure 5.8, these results suggest that the observed effect is caused by the roller diameter.
The stiffness per contact length scales roughly with 𝐷−.2𝑤 .

Measurements on the 1.5mm rollers were difficult as the FRF showed multiple peaks, this is shown
in Figure 5.11. The data was not as clean as measurements on the other rollers as depicted in Figure
5.10.
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Figure 5.10: Hammer impact data: Transfer function for rollers type 1 at 45°, under 1.5 turns load; Example of a typical transfer
function
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Figure 5.11: Hammer impact data: Transfer function for rollers type 3 at 45°, under 4.5 turns load; Example of a poor FRF
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5.3.6. Influence of lubrication
The presence of lubrication might influence the damping of the hammer impact measurements. Exper
iments were performed using both grease and oil, Lubcon Thermoplex ALN 1001/00 [67] and Klüber
Summit SH 32 [68] respectively. It is important to point out that these experiments were performed
under nonrolling conditions so no EHL layer could be formed.

Figure 5.12 shows the stiffness per roller as a function of the normal load for rollers of various
lubrication conditions.
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Figure 5.12: Hammer impact data: loadstiffness relation for roller type 1 under 45° conditions; Mean values for rollers with
different lubrication conditions.

Figure 5.12 shows that there is no significant effect of neither lube nor oil on roller stiffness after control
ling for the load (Oneway ANCOVA, F(2, 188) = 1.182, p = 0.309). This analysis is reported in Appendix
H.

5.3.7. Variation of the number of rollers
Experiments with an increased number of rollers allow for the investigation of the influence of misalign
ment and parallelism and the tolerance on roller diameter. Therefore experiments are performed with
2, 4, and 6 rollers in the setup. The rollers used are of type 1. The stiffness values for the setups with
2, 4, and 6 rollers are 2.220 ⋅ 108 N/m, 2.530 ⋅ 108 N/m and 3.480 ⋅ 108 N/m respectively.

Figure 5.13 shows the stiffness per roller as a function of load applied for 2, 4, and 6 type 1 rollers.
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2x Roller D=3mm L=2.2mm
4x Roller D=3mm L=2.2mm
6x Roller D=3mm L=2.2mm

Figure 5.13: Hammer impact data: loadstiffness relation for roller type 1; Mean values for different number of rollers.

The effective stiffness per roller decreases with the number of rollers. This effect is comparable to the
effect measured for the normal measurements in Subsection 4.2.7.
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5.3.8. Influence of roller material
In order to test the influence of roller material, both stainless steel and Ceramic rollers were tested and
compared with bearing steel. Not only the roller material was varied, also the contact length varies
slightly due to differences in roller profiling. To compensate for this as much as possible, the stiffness
and loads are plotted per contact length. The stainless steel (1.4034) rollers, are type 9 in the roller
table. The ceramic, silicon nitride, rollers are type 8 in Table A.1.

Figure 5.14 shows the measured loadstiffness relation of ceramic (Si3N4), and bearing steel rollers,
type 8 and 5 respectively.
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Figure 5.14: Hammer impact data: loadstiffness relation of rollers of different materials under 45° conditions; Mean values for
Ceramic and steel rollers.

The ceramic roller is stiffer than a steel roller of the same length, which is expected as deflection is a
function of the effective elasticity modulus. No accurate data is available on the material properties of
the ceramic roller. This complicates quantification of a difference between the ceramic and steel rollers.

Figure 5.15 shows the measured loadstiffness relation of stainless and steel rollers, type 9 and 1
respectively.
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Figure 5.15: Hammer impact data: loadstiffness relation of rollers of different materials under 45° conditions; Mean values for
stainless and steel rollers.

The stainless steel roller is stiffer than a steel roller of the same length. This result is expected from the
normal measurements. While the Young’s modulus of the stainless steel roller is 200GPa, lower than
the 210GPa for the bearing steel roller. The hardness of the stainless steel roller is lower. The lower
hardness of the stainless steel roller allows it (at higher loads) to deform plastically and conform to the
roughness profile of the rail, and therefore increases the effective area.
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5.3.9. Tangential stiffness
The results of the experiments with different roller orientation shown in Figure 5.7, suggests that the
tangential components do play a role in the system behaviour. It is therefore relevant to measure the
individual normal and tangential stiffness components and compare them to the measurements at 45°.
To measure the individual components, an additional setup configuration was constructed. It consists
of two rail pairs that are normally opposed, see Appendix G on this setup. The variance of the tangential
stiffness components is comparable to that of the normal measurements, see Table H.2.

Figure 5.16 presents different normal loadtangential stiffness relationships for roller types 1, 2, 3,
4, 5, 6, and 7.
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(a) Tangential stiffness.
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(b) Tangential vs normal stiffness.

0 1 2 3 4 5 6
Normal load per contact length (F

n
/L

we
) [N/m] 105

0

1

2

3

4

5

6

(k
t/L

w
e

2
) 

[N
/m

2
]

1012 k
t
; normalised for length

(c) Tangential stiffness per contact length squared.
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(d) Tangential stiffness times diameter1.2 per contact length squared.

Figure 5.16: Hammer impact data: loadstiffness relation for roller types 1, 2, 3, 4, 5, 6, and 7; tangential stiffness.

Figure 5.16a shows that the tangential stiffness increases with contact length. In section 5.3 it was
shown that the loadstiffness at 45° scales roughly linearly with contact length. The influence of the
roller diameter appeared to be considerable.

However, Figure 5.16b indicates how the tangential stiffness components does not scale in a similar
manner as the normal stiffness. The tangential stiffness is not a constant fraction of the normal stiffness.

Figure 5.16c shows that in relation to the contact length, the results indicate that the tangential stiff
ness scales approximately with the contact length squared, nonlinear regression estimates its power
2.023. Furthermore, there is an inverse relationship between the roller diameter and the tangential
stiffness. This is in line with the results from Subsection 5.3.5.

Figure 5.16d shows that the tangential stiffness scales roughly with the roller diameter−1.14, a non
linear regression estimates its power 1.141. The tangential stiffness of the rail components is expected
not be influenced by the roller diameter directly, again no conclusions can be made as in the rollers
measured, the diameter is coupled with the roller length.
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5.4. Relating the experimental data to theory
The main endeavour of this chapter is how to practically model individual rollers at a 45° orientation.
No measurement data on rollerrail contacts at an angle is present in literature yet. To start, based on
the experiments presented in Section 5.3.9, an empiric load tangential stiffness relations is given in
Subsection 5.4.1. This model is combined with the fits for the normal loadstiffness relation in Section
4.3 to create a model for a roller at 45° in Subsection 5.4.3.

5.4.1. Quantifying the tangential stiffness
In Subsection 5.3.9 the tangential stiffness measurements are presented and studied their scaling with
respect to roller length and diameter. A least squares regression is conducted on the normalized data,
the resulting fit is given in Equation 5.2.

𝑘𝑡 = 8.157 ⋅ 108 N/m1.86 ln
𝑃/𝐿𝑤𝑒

4.235 ⋅ 103 N/m
𝐿2𝑤𝑒 𝐷−1.14𝑤 (5.2)

It is important to indicate that roller type 1 is overrepresented in this data set as most measurements
are performed with this roller type.

Figure 5.17 compares the load tangential stiffness relation for the rollers of type 1, 2, 3, 4, 5, 6, and 7,
with the fit given in Equation 5.2.
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107 Tangential stiffness for all steel measurements with standard surface finish

Roller D=1.5mm L=1.4mm
Roller D=3mm L=2.2mm
Roller D=3mm L=2.8mm
Roller D=3mm L=2mm
Roller D=3mm L=4mm
Roller D=6mm L=4.4mm
Roller D=9mm L=8.8mm
Fit

Figure 5.17: Hammer impact data: loadstiffness relation for roller types 1, 2, 3, 4, 5, 6, and 7; tangential stiffness with curve fit
of Equation 5.2.

For nearly all data points, the fitted model approximates the experimental data within ±3%. This in
dicates a good fit of the prediction of the tangential stiffnessload relation. This is a better prediction
than the fit presented for the normal stiffness in Section 4.3, yet this is a higher order fit as it also incor
porates the parameters 𝐿𝑤𝑒 and 𝐷𝑤 in a nonlinear manner. The variance of both measurements are
comparable, as is shown in Appendix H.
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5.4.2. Individual stiffness components compared to 45° measurements
The question emerges how the normal, tangential and the measurements at 45° relate.

Figure 5.18 compares the load  individual stiffness components relations for a rollers of type 1.
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107 Stiffness for roller D=3mm L=2.2mm; individual stiffness components: normal and tangential stiffness components

45o Stiffness

Normal Stiffness*cos(45)2

Tangential Stiffness*sin(45)2

Normal Stiffness*cos(45)2 +

Tangential Stiffness*sin(45)2

Figure 5.18: Hammer impact data: loadstiffness relation for roller type 1; individual stiffness components.

This comparison supports the hypothesis that the sum of the individual components add up to the
measurements at 45°. Here its shown how a perpendicular roller orientation, the orientation where
no tangential stiffness can be present, yields a stiffness equivalent to a vector rotation of the normal
stiffness in a normal setup.

Figure 5.19 extends this hypothesis to all steel rollers tested at 45°, it compares the measurements
at 45° with the sum of the individual components for rollers type 1, 2, 5, 6, and 7.
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107 Stiffness for different rollers; individual stiffness components: normal and tangential stiffness components

45o Stiffness - Roller D=1.5mm L=1.4mm

45o Stiffness - Roller D=3mm L=2.2mm

45o Stiffness - Roller D=3mm L=2mm

45o Stiffness - Roller D=3mm L=2.8mm

45o Stiffness - Roller D=3mm L=4mm

45o Stiffness - Roller D=6mm L=4.4mm
(Normal + Tangential Stiffness)*0.5 - Roller D=1.5mm L=1.4mm
(Normal + Tangential Stiffness)*0.5 - Roller D=3mm L=2.2mm
(Normal + Tangential Stiffness)*0.5 - Roller D=3mm L=2mm
(Normal + Tangential Stiffness)*0.5 - Roller D=3mm L=2.8mm
(Normal + Tangential Stiffness)*0.5 - Roller D=3mm L=4mm
(Normal + Tangential Stiffness)*0.5 - Roller D=6mm L=4.4mm

Figure 5.19: Hammer impact data: loadstiffness relation for roller types 1, 2, 5, 6, and 7; 45° measurements compared with
vector sum.

Again it is apparent how the sum of the individual components add up to the measurements at 45°. It
is important to indicate that these measurements are conducted in static condition, no EHL lubrication
can occur in the contact. Additionally, during rolling motion, creep can take place, which is not the case
in these experiments.
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To further support this hypothesis, the measurements performed with a perpendicular roller orienta
tion are compared to the normal measurements with the same number of rollers. As the perpendicular
orientation can only transmit a normal force, no tangential stiffness is measured. For this orientation
only normal forces can be transmitted. If the hypothesis holds up, the normal and 45° measurements
should match after performing the relevant vector transformations.

Figure 5.20 shows on the horizontal axis the normal load on the roller, i.e. 𝐹𝑧/cos (𝛼) with 𝛼 the angle
of the rail.
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107 Stiffness for rollers with different orientations; effect of orientation on roller D=3mm L=2.2mm

Perpendicular to rolling direction

Normal Stiffness*cos(45)2

Figure 5.20: Hammer impact data: loadstiffness relation for roller type 1; 45° measurement with perpendicular orientation
compared to normal measurement.

The vector sum of the normal and tangential stiffness components add up to the stiffness measured at
45°.

5.4.3. Modelling a roller at 45°
Figure 5.21 depicts the stiffness measured at 45° against the vector sum of normal and tangential
loadstiffness relations, equations 4.2 and 5.2 respectively.
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107 Stiffness for all steel measurements

Roller D=1.5mm L=1.4mm
Roller D=3mm L=2.2mm
Roller D=3mm L=2.8mm
Roller D=3mm L=2mm
Roller D=3mm L=4mm
Roller D=6mm L=4.4mm
Sum of fits

Figure 5.21: Hammer impact data: loadstiffness relation for roller types 1, 2, 5, 6, and 7; 45° measurement compared with sum
of fits (Equation 5.3).

This Figure shows how a roller at 45° can practically be modelled as a rotation of a normally loaded
roller where both the normal and tangential stiffness are considered. Such that the stiffness in the 𝑧
direction, the direction of the applied load is 𝑘𝑧 = 𝑘𝑛 cos2(𝛼) + 𝑘𝑡 sin2(𝛼). Given the curve fits for the
loadstiffness relations for 𝑘𝑛 and 𝑘𝑡, the total loadstiffness relation for the roller is:

𝑘𝑧 = cos2 (𝛼) {5.151 ⋅ 109 N/m2 ln
𝑃/𝐿𝑤𝑒

1.800 ⋅ 103 N/m
𝐿𝑤𝑒} +

sin2 (𝛼) {8.157 ⋅ 108 N/m1.86 ln
𝑃/𝐿𝑤𝑒

4.235 ⋅ 103 N/m
𝐿2𝑤𝑒 𝐷−1.14𝑤 }

(5.3)
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5.5. Synopsis
The experiments presented in the chapter have shown to be an accurate and precise method for mea
suring the stiffness of rollerrail contacts at an angle of 45°.

• Experimental quality

– Modal analysis experiments at 45° are less repeatable than experiments loaded normally.
Nonetheless, the mean standard deviation of repeatability experiments is 1.028% of the
mean stiffness measured, as shown in Figure 5.3.1.

– The repeatability of the setup is similar to the product variations within a roller batch, yet, no
statistical significance is shown, see Subsection 5.3.2.

• Roller geometry

– Roller orientation has a significant effect on the stiffness. A perpendicular orientation results
in a 17% lower mean stiffness, see Subsection 5.3.3.

– A small influence on the roller length was observed.
– The stiffness significantly decreases with roller diameter, the stiffness per contact length
scales roughly with 𝐷−.2𝑤 , see Subsection 5.3.5.

– The effects of the number of rollers is comparable to the effect measured for the normal
measurements, see subsection 5.3.7.

• Lubrication

– In static conditions, there is no statistically significant change in stiffness by adding either oil
or grease, see Table H.1.

• Roller material

– Ceramic rollers are stiffer compared to steel rollers, as shown in Figure 5.14.
– Stainless steel rollers show higher stiffness than steel rollers of the same length, which can
be explained by the difference in material hardness. A lower hardness of the roller might
result in better conformation in the contact, see Subsection 5.3.8.

• Tangential stiffness

– Tangential components contribute to in the stiffness at 45°.
– The variance of the tangential stiffness components is comparable to that of the normal
measurements, see Table H.2.

– The tangential stiffness scales with the contact length squared, see Figure 5.16c.
– The tangential stiffness scales with roller diameter−1.14, see Figure 5.16d.

• Modelling

– A roller at 45° with parallel orientation may practically be modelled as a vector rotation of a
normally loaded roller where both the normal and tangential stiffness are considered, see
Figure 5.19.

– Equation 5.2 predicts the tangential stiffness of a normally loaded and rough (Ra=0.2µm)
rollerrail contact within 3% for nearly all rollers measured, see Figure 5.17.

– Equation 5.3 predicts the stiffness of a rough (Ra=0.2µm) rollerrail contact at 45° within
20% for all rollers measured. This is simply the vector sum of the normal and tangential
loadstiffness relations, see Figure 5.21.





6
Stiffness of a linear crossed roller

bearing
Chapters 4 and 5 provided comprehensive insights into the loadstiffness relation of individual roller
rail contacts. Section 3.6 proposed an effective methodology in which individual contacts modelled as
spring elements can be used to model complex assemblies. The method was effectively applied to
the three foregoing test setups with a limited number of rollers. This Chapter applies the methodology
developed to crossed roller slides, a common linear roller bearing assembly.

First, the crossed roller slide is described. Next, in Section 6.2 the setup for measuring slides is pre
sented. Section 6.3 describes the development of a numerical and parametric MBD model to predict
the stiffness of linear cross roller bearings. Finally, Section 6.4 verifies these MBD models by direct
comparison with experimental results.

75
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6.1. Description of the crossed roller slide
Figure 6.1 shows the geometry of the type of linear crossed roller bearing that is considered throughout
this chapter. A crossed roller slide has a stiffness in 5DOF; translation stiffness 𝑘𝑥 and 𝑘𝑧 along the 𝑥
and 𝑧axis respectively and rotational stiffness 𝑘𝜃𝑥, 𝑘𝜃𝑦, and 𝑘𝜃𝑧 around the 𝑥, 𝑦 and 𝑧axis respectively.
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Figure 6.1: Schematic of a crossed roller slide.

One of the largest differences between individual rollers tested and crossed roller slides is the definition
of contact length. For individual rollers the contact length is determined by the roller profile while for
crossed roller slides the contact length is limited by the rail. It has to be verified whether the experimental
results on individual rollers are suitable for the current situation as here the rail is smaller than the roller.

Another caveat of modelling this type of bearing is shown in Figure 6.2, the rails are not directly
opposed to each other leading to a partial overlap of the projected rail lengths. This results in a non
uniform load distribution on the roller and misalignment.

Figure 6.2: Depiction of projected rail length in crossed roller bearing.

In addition, crossed roller slides introduce the arbitrary presence of preload. As in described Section
2.6, crossed roller slides are usually preloaded with set screws. Earlier investigations into the exact
relationship between set screw torque and resulting guide rail preload have been conducted. No ac
curate predictions of the relation between set screw torque and the resulting axial preload could be
found.

https://onnowijnberg.nl/MasterThesis/TableAnimation.mp4
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6.2. Test setup
Figure 6.3 shows the new test setup designed to perform the experiments on slides. The working prin
ciple of this setup is identical to that of the experiments in Chapters 4 and 5, except that a slide is bolted
between the masses instead of rails.

Two crossed roller slides are used in these experiments, PM Bearings RT3150 and RT15100. A
slide holds a large number of loadcarrying rollers, making them considerably stiffer compared to the
three or two rollers presented in Chapter 4 and 5 respectively. Larger masses are used to make sure
the eigenfrequencies are in the correct range for the measurement equipment. To start with, simple
calculations are performed to find a suitable geometry such that the inertia’s ensure that the 𝑧mode is
well separated from the other modes. The dimensions and inertia’s of the masses used in this Chapter,
are given in appendix I. The stiffness measured is a combination of the stiffness of the table and the
rolling contacts. The slides are mounted using 12 bolts to the top mass, 4 bolts connect the slide to the
bottom mass.

(a) CAD model of test setup for measuring crossed roller slides (b) Picture of test setup for measuring crossed roller slides

Figure 6.3: (a) CAD model and (b) picture of the test setup used for the experiments in this section. Crossed roller slides
are bolted between the two masses. When compressed, the green springs exert load on the rollers and rails. The frequency
response is measured with accelerometers. The setup isolated from the external world by a foam block (not in CAD).
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6.2.1. Description of the setup
A schematic of the setup is shown in Figure 6.4. The setup is modelled as a suspended 3D two mass
spring system, with a spring element with a stiffness in 5DOF. The slide has no significant stiffness in
𝑦direction as this is the direction in which movement is facilitated.

The accelerometers are positioned according to Figure 6.5.

𝑚

𝑚

Rollers in assembly
Load from load springs
Vibration isolation
External world

Figure 6.4: Schematic depiction of the setup including a slide.

6.2.2. Test procedure

 

 

Video

The procedure is identical to the process described in Subsection 4.1.4. The load is increased up to
30% of the static load rating C0 calculated for each configuration. The experiments are performed in
an order of decreasing amount of rollers, such that the risk of severe plastic deformation during the
assembly of the setup is minimized. All experiments are repeated three times.

6.2.3. Test equipment
The same equipment is used as for the experiments in Chapter 4. Two additional accelerometers are
used, positions 5 and 6 in Figure 6.5; PCB Piezotronics model 393B05. An engine crane is used to
mount the top mass on the slide in a safe and controlled manner.

1

2

3

4

5

6

𝑦 𝑥𝑧
Figure 6.5: Accelerometer positions.

https://onnowijnberg.nl/MasterThesis/TableExperiment.mp4
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6.3. Model
This Section describes the development of a multi body dynamics model. The goal of this model is to
predict the eigenmodes and corresponding stiffness of the setup shown in Figure 6.3. Both a numeric
and a parametric MBD model are developed.

6.3.1. Numeric multi body dynamics model
A prestressed FEM eigenfrequency analysis has been performed using Comsol. The contacts are
modelled as proposed in Section 3.6. Spring elements are placed between the rigid inlays. The stiff
ness of these elements is defined in Equation 5.3 with 𝛼 = 0°1. The load per roller is taken as specified
in Equation D.1, divided by cos (45°) and the number of loadcarrying rollers 𝑍𝑡.

All bolted connections are modelled as rigid connectors prescribed between the drill and threaded
holes. A penalty contact is set between the mating assembly surfaces. A sweep is performed over all
load and number of roller combinations investigated. For the RT3150 slide this results in 74 sweep
instances if the load is increased in steps of 360°. Even though hammer impact measurements are
performed every 180°, it was only modelled for every full rotation to limit the computational load. For
the RT15100 slide a total of 33 unique load, number of roller combinations are evaluated. A spring
foundation of 4000N/m is added to the masses for stability, this is similar to the stiffness of the foam
suspension of the setup and will confidently be neglected in further calculations.

Fillets of the slide bodies are removed to limit the number of small features and therefore lighten the
computational load. The model is checked for mesh convergence. Additional analysis are performed
with the nonsimplified model to verify the validity of the simplifications. Table J.1 shows the results for
the different models for slide RT3150 with 16 rollers per cage, under 5 turns load. No serious deviation
between the models is found.

Figure 6.6 shows the found relevant eigenmodes for the RT3150 slide with 16 rollers per cage under
5 turns load. More flex modes of the masses exist at higher frequencies, they are not measured with
the PAK system, hence these are not presented here. Eigenmode 1 (Figure 6.6a) is a pure translation
in the 𝑧direction. Eigenmode 2 (Figure 6.6b) corresponds with the pitch mode around the CoM of the
two masses. Eigenmode 3 (Figure 6.6c) corresponds with the yaw mode round the origin of the slide.
The stiffnesseigenfrequency relation is defined in Equation 6.1, all rotation axes go through the CoM.

 

 

Animation

(a) First eigenmode, 𝑧 translation:
713Hz

(b) Second eigenmode, rotation
around 𝑥axis: 351Hz

(c) Third eigenmode, rotation
around 𝑧axis: 329Hz

(d) Fourth eigenmode, combination
of rotation around 𝑦axis and 𝑥
translation: 1077Hz

Figure 6.6: Four first eigenmode shapes for RT3150 slide with 16 rollers per cage, under 5 turns load.

𝑘𝜃𝑥 = (𝑓𝜃𝑥2𝜋)2
𝐼𝑥
2 , 𝑘𝜃𝑧 = (𝑓𝜃𝑧2𝜋)

2 𝐼𝑧
2 , 𝑘𝑧 = (𝑓𝑧2𝜋)

2𝑚
2 (with the inertia’s from Table I.1) (6.1)

1𝛼 is set to 0° as it is orientated at 45° in the FEM model itself.

https://onnowijnberg.nl/MasterThesis/mbdtable.html
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The stiffness of the slide body was found to almost linearly scale with the number of rollers. Conse
quently, the slide body can properly be modelled as an additional stiffness in series with the stiffness
of the rollerrail contacts. This further substantiates the hypothesis that it is feasible to create a model
for predicting the stiffness of a linear crossed roller bearing as a function of its design variables.

Incorporating 𝑘𝑏𝑡𝑜𝑡𝑎𝑙 as a stiffness in series with the rollerrail contacts, i.e. equation 6.3, creates
a model that approaches the stiffness computed with the FEM model within a range of ±3% for all
configurations, for both the RT3150 and RT15100 slide.

𝑘𝑏𝑡𝑜𝑡𝑎𝑙 = 𝑍𝑡 ⋅ 𝑘𝑏 where 𝑘𝑏 = 108 N/m (6.2)

𝑘𝑧𝑆𝑙𝑖𝑑𝑒 =
1

1/(𝑍𝑡𝑘𝑧)+ 1/𝑘𝑏𝑡𝑜𝑡𝑎𝑙
= 𝑍𝑡(𝑘𝑧 + 𝑘𝑏) with 𝑘𝑧 from Equation 5.3 and 𝛼 = 45° (6.3)

6.3.2. Parametric multi body dynamics model
This model extends the model of Liu et al. [58] by incorporating the compliance of the guide body and
the dynamic effects of the rest of the bearing assembly. Symmetric eigenmodes in which the center of
the system is stationary may be modelled as a mass spring system with only a single mass but twice
the stiffness.

This allows the model to only considered the upper half of the setup, as shown in Figure 6.7. In
this model the inertia of the rollers is neglected as it is insignificant compared to the rest of the setup.
The load is assumed to exceed the preload such that only half the rollers are contributing to the system
stiffness, the non contributing rollers are neglected. The bearing is dominantly loaded in 𝑧direction.

. . . . . .
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𝑥
𝑂𝑧

𝐻/2+ 𝑠𝑧

Figure 6.7: The simplified physical model of the upper half of the setup.

The system has 𝑍𝑡 load carrying rollers placed in the guide, the stiffness of each stiffness elements
representing these individual roller is denoted with 𝐾𝑧 and is assumed to have a stiffness as specified
in Equation 5.3.
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Because the stiffness of the slide body (𝑘𝑏𝑡𝑜𝑡𝑎𝑙) is properly modelled as an additional stiffness in series
and it scales almost linear with the number of rollers, it can also be modelled as 𝑍𝑡 individual spring ele
ments in series with a spring element of stiffness 𝑘𝑆 as in Equation 6.2. This allows for the introduction
of an equivalent stiffness 𝑘′:

𝑘′ = 1
1/𝑘𝑧 + 1/𝑘𝑏

(6.4)

The simplified physical model with 𝑘′ is shown in Figure 6.7, the origin of the Cartesian coordinate
system (𝑂𝑥𝑦𝑧) is placed in the CoM.

The equations of motion for the multiDOF problem are obtained through the Lagrange method. The
generalized coordinates are:

�⃗� = [𝑥 𝑦 𝑧 𝜃𝑥 𝜃𝑦 𝜃𝑧]
⊺ (6.5)

The Lagrange Equation 6.6 includes kinetic energy 𝑇, potential energy 𝑉 and nonconservative forces
𝑄𝑛𝑜𝑛𝑐𝑜𝑛𝑠. The nonconservative forces are zero as damping is neglected.

d
d𝑡(
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) − 𝜕𝑇
𝜕𝑞𝑖

+ 𝜕𝑉
𝜕𝑞𝑖

= 𝑄𝑛𝑜𝑛𝑐𝑜𝑛𝑠 (𝑖 = 1, 2, … , 6) (6.6)

With kinetic energy 𝑇:

𝑇 = 1
2(𝑚�̇�

2 +𝑚�̇�2 +𝑚�̇�2 + 𝐼𝑥 ̇𝜃𝑥
2 + 𝐼𝑦 ̇𝜃𝑦

2 + 𝐼𝑧 ̇𝜃𝑧
2) (6.7)

And potential energy 𝑉:

𝑉 = 1
2𝑘

′(
𝑍𝑡
∑
𝑖=1
Δ𝑥2𝑖 +

𝑍𝑡
∑
𝑖=1
Δ𝑧2𝑖 ) (6.8)

Where 𝑥𝑖 and 𝑧𝑖 represent the spring deformation in the 𝑥direction and in 𝑧direction respectively.
The inertia forces are derived from Equation 6.7:
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The elastic forces are derived from Equation 6.8:
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Substituting Equation 6.9 and 6.10 in Equation 6.6 gives the equations of motion:
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(6.11)

The stiffness matrix K can be obtained from Equation 6.11:

K = 𝑘′𝑍𝑡
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12 (𝑍
2
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⎤
⎥
⎥
⎥
⎥
⎥
⎦

(6.12)

The stiffness matrix K, shows how the modes of translation along the 𝑦axis and rotation around the
𝑥axis cannot be expressed by independent differential equations, this is also the case for the setup
used by Liu et al. [58].
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6.4. Test results and discussion
This section presents the results of a load sweep experiment on a RT3150 slide with a variable number
of rollers in nonrolling conditions. These experimental results are compared to the parametric MBD
model. Subsequently, the versatility of this modelling method is evaluated by applying this model to
a RT15100 slide. Lastly the influence of the roller orientation is tested by replacing half of the rollers
with plastic balls.

All experiments are repeated three times, figures present the mean values of the repeated experi
ments. Table K.1 presents the descriptive statistics of the measurements. The graphs present a wide
stiffness range, for clarity the error between the FEM model and measurements is presented in Ap
pendix J.

6.4.1. RT3150, stiffness in zdirection
Figure 6.8 presents the measured loadstiffness relationship in 𝑧direction for a RT3150 slide. The
stiffness measurements are performed for 𝑍𝑡 = 4, 6, 8, 10, 12, 14, 16, 20, and 26.
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108 Stiffness in z-direction: Experiments vs Multi Body Dynamics model
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Figure 6.8: Hammer impact data: Experiments vs parametric MBDmodel of RT3150 crossedroller slide, stiffness in 𝑧direction.

First of all, the method demonstrates to be greatly repeatable, the mean standard deviation 𝑘𝑧 is 3.1%
of the mean stiffness measured. Comparing the measurements to the MBD model, it was found that
the mean absolute difference between model and measurements is 8.1%.

The max discrepancy is measured at the lowest loads, with 𝑍𝑡 = 26. It is likely that due to the high
number or rollers, not all rollers in the other orientation will be fully out of contact for these low loads.
This results in a stiffness increase of 30% and this effect disappears when the load is increased. For
higher loads, the model predicts the measured stiffness well within 20%. The mean absolute difference
betweenmodel andmeasurements is 8.1%. Figure K.3 shows no noteworthy relation between the error
and the number of rollers. The influence of geometric errors, such as the variance in roller diameter and
limited straightness of the guide rails, does not appear to influence the stiffness of the guide noticeably.
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6.4.2. RT3150, stiffness in other directions
Figure 6.9 depicts the transfer function of accelerometer 2 for RT3150 slide with 16 rollers per cage,
under 5 turns load. This corresponds with the eigenmodes depicted in Figure 6.6.
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Figure 6.9: Hammer impact data: Transfer function for the RT3150 slide with 16 rollers per cage, under 5 turns load; Transfer
function of accelerometer 2.

The peak of the first eigenmode of 𝑧 translation is measured at 743Hz. The second eigenmode, ro
tation around 𝑥axis, at 314Hz. At 333Hz, the third eigenmode is measured, rotation around 𝑦axis.
The measurement of the fourth eigenmode, measured at 1361Hz, is less distinctive.

Extending the comparison betweenmodel and measurement to the stiffness in both 𝜃𝑥 and 𝜃𝑧direction
results in loadstiffness relation shown in Figure 6.10a and 6.10b respectively.
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(a) 𝜃𝑥direction.
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Experiments vs Multi Body Dynamics model

Experiment: Zt = 4

Experiment: Zt = 6

Experiment: Zt = 8

Experiment: Zt = 10

Experiment: Zt = 12

Experiment: Zt = 14

Experiment: Zt = 16

Experiment: Zt = 20

Experiment: Zt = 26

MBD model

(b) 𝜃𝑧direction.

Figure 6.10: Hammer impact data: Experiments vs parametric MBD model of RT3150 crossedroller slide, stiffness in 𝜃𝑥 and
𝜃𝑧direction.

Again, the MBD model falls within a 20% range for predicting the loadstiffness relation. See Appendix
J for plots explicitly presenting the errors. All hammer impacts are applied to the center of the top
mass in negative 𝑧direction. As a result the other modes are not directly excited, which makes the
corresponding peaks for some measurements less distinctive in the FRF. This results in outliers due to
selecting the wrong peak. Even when including these outliers, the average absolute difference between
model and measurements is 17.3% and 19.900% for the 𝜃𝑥 and 𝜃𝑧direction respectively.

The combined angular stiffness of the loading springs is roughly 6.500 ⋅ 103 Nm/rad. This is stiffer
than the table stiffness expected by the MBD for 𝑍𝑡 = 4 and 6. The loading springs thus influence
the measured eigenmode in 𝜃𝑥direction. For 𝑍𝑡 = 4, the load rating in the moment directions is low,
to prevent overloading the bearing during assembly, the rollers are placed further apart (additional
cage pocket left empty). This is, as expected, also observed in the stiffness measured in the 𝜃𝑥 and
𝜃𝑧direction.
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6.4.3. RT15100, stiffness in zdirection
Experiments are performed with the RT15100 slide to test the versatility of this MBDmodel to variations
of geometry and dimensions.

Figure 6.11 shows the measured loadstiffness relationship compared to the model for 𝑍𝑡 = 8, 10,
12, 14, 16, 20, and 28.
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Figure 6.11: Hammer impact data: Experiments vs parametric MBD model of RT15100 crossedroller slide, stiffness in 𝑧
direction.

The model is correct within a 20% range for all measurements with an applied load. For low loads
the measured stiffness is stiffer than what is predicted by the MBD model. This is in line with the
measurements on individual rollers as shown in Subsection 5.4.3. Here, for roller type 2, also a stiffness
above the fit was measured at low loads.

6.4.4. RT3150, rollers in tension
Additional experiments are conducted to investigate if rollers in tension in any form affect the stiffness
of the slide. In these experiments only in the compression loaded direction are placed in the setup, the
rollers in the other direction are replaced by POM balls.

Figure 6.12 shows the loadstiffness relationship compared to measurements from Figure 6.8.
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108 Stiffness in z-direction: crossed vs non-crossed roller orientation
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Figure 6.12: Hammer impact data: Experiments with RT3150 crossedroller slide, roller orientation, stiffness in 𝑧direction.

There is no constant difference between the two configurations. Thus, solely the number of load
carrying rollers per guide contributes to the calculation of the stiffness. Rollers loaded in tension do not
contribute to the stiffness of the guide.
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6.5. Synopsis
The setup demonstrates to be greatly repeatable, the mean standard deviation of 𝑘𝑧 is 3.1% of the
mean stiffness measured.

• The parametric MBD predicts 𝑘𝑧 well within 20% for the RT3150 slide. The mean absolute
difference between the MBD FEM model and the measurements is 8.1% for 𝑍𝑡 = 4, 6, 8, 10, 12,
14, 16, 20, and 26

• The parametric MBD gives an accurate prediction of 𝑘𝜃𝑥 for the RT3150 slide. The mean abso
lute difference between the MBD FEM model and the measurements is 17.3% without removing
outliers.

• The parametric MBD gives an accurate prediction of 𝑘𝜃𝑧 for the RT3150 slide. The mean abso
lute difference between the MBD FEM model and the measurements is 19.9% without removing
outliers.

• All hammer impacts are applied at the center of the top mass in negative 𝑧direction, yielding less
distinctive modes in other directions. As a consequence some of the peak frequencies are falsely
identified during the data analysis. This results in outliers in the measured stiffness, especially
for a low number of rollers.

• The parametric MBD has shown to be versatile. Applying themodel to a slide with different dimen
sions, a RT15100 slide, shows correct prediction of 𝑘𝑧 within a 20% range for all measurements
with an applied load.

• Rollers loaded in tension do not contribute to the stiffness of the guide.

• The influence of geometric errors, such as the variance in roller diameter and limited straightness
of the guide rails, appear not to influence the stiffness of the guide noticeably.



7
Conclusions and recommendations

7.1. Conclusions
The goal of this research was stated in Section 1.3 as:

To create and validate a model for predicting the static stiffness of a linear crossed roller
bearing as a function of its key design variables within a range of 20%.

A six degreeoffreedom parametric MBD model of the cross roller guide is presented. In this model,
the stiffness of the crossed roller guide is specified by the stiffness matrix K. The stiffness matrix K
is constructed based on a fitted loadstiffness relation obtained trough measurements on individual
rollers and a FEM model considering the compliance of the slide body. Experimental results verify the
parametric MBD model. The model predicts the stiffness within 20% for all slides, number of rollers,
applied loads, and directions measured.

The stiffness of a linear crossed roller bearing depends on many factors of which some cannot be
measured directly when measuring an entire assembly. Therefore, a stepbystep approach was taken
to build a model, as shown in Figure 7.1.

Chapter 4 Stiffness of a
normally loaded roller between
two flat rails

Chapter 5 Stiffness of a roller
between two rails at 45°

Chapter 6 Stiffness of a linear
crossed roller bearing

Figure 7.1: Stepbystep model development process to describe the stiffness of a crossed roller bearing.
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In the process of working towards the goal of answering this question, multiple other conclusions are
drawn with respect to:

Stiffness of a normally loaded roller between two flat rails

• Modal analysis experiments are an accurate and repeatable method for measuring the stiffness
of rollerrail contacts, especially at higher loads; variations smaller than 1% were measured.

• Stiffness calculated using the capacitive probe shows the same loadstiffness relation as modal
analysis experiments but with a lower precision.

• The Tripp model is an upper limit for measurements on real rollers with tolerances.

• Equation 4.2 predicts the stiffness of a rough (Ra=0.2µm) rollerrail contact within 10% for all
rollers measured1.

• Rollertoroller variations have a small but statistically significant effect on the stiffness, about 1%.

• In static conditions, the influence of adding either oil or grease is not statistically significant at all.

• Experiments performed suggested an influence of the material hardness on the stiffness in rough
rollerrail contacts, a lower hardness of the roller might result in better conformation in the contact.

• The stiffness increases with a smoother surface, the magnitude of the influence of the surface
finish change on the stiffness is in line with what is expected from the theory of Greenwood.
At a load of 10% of C0, a typical preload in linear bearing assemblies, a decrease in surface
roughness from Ra=0.2µm to Ra=0.0µm, results in a stiffness increase between 6–8% 6% and
8%.

• A smoother surface results in a lower stiffness variance, especially for low loading conditions.

• Equation 4.3 predicts the stiffness of a smooth (Ra=0.03µm) rollerrail contact within 10% for all
rollers measured. 2

• The rollerrail stiffness appears not to be dependent on the roller diameter, however no concrete
conclusions can be drawn as the roller diameter was not varied independent of roller length.

• Longer rollers of the same diameter might have a lower stiffness per contact length, this could be
caused by endeffects or the limited straightness of rollers and rails. This view might be distorted
due to the low roller quality of the longest roller, or this could be a nonlinearity in the setup.

Stiffness of a roller between two rails at 45°

• A roller at 45° with parallel orientation may practically be modelled as a vector rotation of a nor
mally loaded roller where both the normal and tangential stiffness are considered.

• Equation 5.3 predicts the stiffness of a rough (Ra=0.2µm) rollerrail contact within 20% for all
rollers measured. This is simply the vector sum of the normal and tangential loadstiffness rela
tions.

• Roller orientation has a significant effect on the stiffness at 45°, a perpendicular orientation re
sulted in a 17% lower mean stiffness.

• The tangential stiffness scales approximately with the contact length squared.

• The tangential stiffness scales roughly with the roller diameter−1.14.

1one outlier, the largest rollers of type 12
2one outlier, the lower quality rollers of type 6
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Stiffness of a linear crossed roller bearing

• The added compliance of the slide body scales nearly linear with the number of rollers.

• The slide is adequately modelled as the stiffness of the rolling elements and the body in series.

• Rollers loaded in tension do not contribute to the stiffness of the guide and may be neglected in
the analysis, as long as the load exceeds the preload applied.

• The influence of geometric errors, such as the variance in roller diameter and limited straightness
of the guide rails, does not appear to influence the stiffness of the guide noticeably.

7.2. Recommendations
• The scope of this study is limited to static conditions. The work of Soleimanian et al. [46] showed
only a marginal effect of EHL on the loadstiffness relation. Based on the findings in this Thesis a
decrease in stiffness equivalent to tangential stiffness component would be expected. Therefore,
the dynamics of crossed roller bearings at a velocity should be investigated in future studies such
that the effects of EHL and spin creepage can be investigated.

• Currently, one of the biggest uncertainties is the preload applied using preload screws. An accu
rate preloading method should be developed to accurately preload a crossed roller bearing. This
would allow the experiments to be performed with all rollers in contact and with small external
loads. This could be done by adding a plastic tip, for which the yield limit is known, to the set
screws. Another approach would be a spring loaded preload mechanism such as developed by
Julian Dekker [70].

• There is a high demand for well documented empiric loadstiffness relations for rolling element
contacts under various conditions. With the methodology presented in this Thesis, the presented
dataset can be expended with relatively little effort. It would be very relevant to test different
roller profiles, sizes, materials and especially qualities.

• This Thesis does not make an effort at analytically solving the problem of a tangentially loaded
roller. Johnson [13] describes traction loading of a halfspace. If this would be combined with the
shear deformation in the bulk of the roller, as covered by Harris et al., an analytic solution for the
tangential stiffness could be derived. This solution could then be verified with the empiric relation
presented in this Thesis.

• Experiments suggested an influence of the material hardness on the stiffness. Current models
do not incorporate material hardness. It would be relevant to further investigate this finding by
performing experiments on rollers which went through different tempering processes, such that
different hardness levels can be tested. This could be suitable for a bachelor research project.





A
Specification of rolling elements

This Appendix presents the parameters of the rollers used throughout this Thesis.

Table A.1 list all parameter specified by the manufacturers. 𝐿𝑤𝑒 is measured, see Table A.2

Table A.1: Parameters of the rolling elements used in the experiments.

Type 𝐷 𝐿𝑤𝑒 𝐿𝑟 (mm) 𝐸 (GPa) 𝜈 () Material Hardness min (HRC)

1 3.00 1.793 2.20 210 0.29 Bearing steel (1.3505) 60
2 1.50 1.104 1.40 210 0.29 Bearing steel (1.3505) 60
3 6.00 3.805 4.40 210 0.29 Bearing steel (1.3505) 60
4 9.00 8.309 8.80 210 0.29 Bearing steel (1.3505) 60
5 3.00 2.569 2.80 210 0.29 Bearing steel (1.3505) 60
6 3.00 3.734 4.00 210 0.29 Bearing steel (1.3505) 60
7 3.00 1.947 2.00 210 0.29 Bearing steel (1.3505) 60
8 3.00 2.756 2.80 300 0.26 Silicon nitride (Si3N4) 90
9 3.00 1.804 2.20 200 0.28 Stainless steel (1.4034) 54
10 3.00 Ball 210 0.29 Bearing steel (1.3505) 60
11 6.00 Ball 210 0.29 Bearing steel (1.3505) 60
12 9.00 Ball 210 0.29 Bearing steel (1.3505) 60
13 3.00 1.232 2.20 210 0.29 Bearing steel (1.3505) 60
14 1.50 0.682 1.40 210 0.29 Bearing steel (1.3505) 60
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92 A. Specification of rolling elements

Table A.2 list all measured geometric parameter. The measurement equipment is described in D.

Table A.2: Measurements on the rolling elements used in the experiments. Means and standard deviation based on measure
ments on three rollers

Type Contact length Surface roughness, Ra Cylindricity Circularity Profile end
𝜇 (mm) SD (µm) 𝜇 (µm) SD (µm) 𝜇 (µm) SD (µm) 𝜇 (µm) SD (µm)

1a 1.793 12 0.028 0.006 0.727 0.006 0.383 0.136 Fillet
2 1.104 8       Chamfer
3 3.805 60 0.031 0.007 0.423 0.163 0.222 0.068 Fillet
4 8.309 59 0.034 0.008 0.463 0.156 0.227 0.104 Fillet
5 2.569 7       Chamfer
6 3.738 21 0.080b  3.467 0.917 2.212 0.667 Chamfer
7 1.947 7       Faced
8 2.756 22       Fillet
9 1.804 16       Fillet
a Based on measurements on 6 rollers
b Based on measurement on a single roller



B
Setup components

This Appendix contains a table with the components of the test setup described in Section 4.1.

Table B.1: Setup components.

Component Description Type Standard Material

1 Blind flange DN150PN16 DIN 2527 Stainless steel (1.4307)
2 Guideway rail, see Figure B.1 PM O92025 x 100  Bearing steel (1.3505)
3 Threaded rod M10  8.8 DIN 976 Steel, galvanized
4 Washer 11X34 (M10) 100 HV ISO 7094 Steel, galvanized
5 Star knob nut BK38.0048.04010  Polyamide, brass insert
6 Hexagon head screw M8x40  12.9 ISO 4762 Steel, black oxide
7 Compression spring FIBRO 241.14.32.038 ISO 10243 Steel 50CrV4
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 50 
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Figure B.1: Dimensions of the rails used in the experiments. PM Bearings O92025 x 100. The rails are made out of bearing
steel (1.3505).
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C
Multi body dynamics analysis of the

normal test setup
This Appendix describes the Multi body dynamics analysis, as used in Chapter 4. The goal of this
model is to verify if the eigenmodes are distinguishable and to determine the stiffness of the setup itself.

A FEM multi body dynamics analysis has been performed using Comsol. The setup stiffness can be
modelled as stiffness in series with the to bemeasured stiffness. Once the setup stiffness is determined,
it can be compensated for when taking measurements. The contacts are modelled such as proposed
in Section 3.6. Spring elements are placed between the rigid inlays. The stiffness of these elements is
swept over range used during the experiments. All but the first eigenmode have identical but symmetric
eigenmodes, these are not plotted. More flex modes of the disks do exist at higher frequencies, they
are not measured with the PAK system, therefore they are not plotted.

The aspect of the model where assumptions have to be made is the connection between the disk
and the rails. The rails are bolted onto the rails, this seems to be not significantly influenced by the
torque applied, tests were performed to verify this, see Appendix D on verification. The bolt connections
are of little interest in the analysis and may be assumed to have a negligible deformation. The bolts are
replaced with virtual rigid bodies with appropriate boundary conditions, i.e. the drill and threaded hole
are assumed to be perfectly rigid and are modelled using rigid connectors. A contact is set between
the rail and flange, a situation with and without friction was modelled, no difference was found. Stress
stiffening increases the setup stiffness by roughly 25%.
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96 C. Multi body dynamics analysis of the normal test setup

(a) First eigenmode, normal translation: 745Hz (b) Second eigenmode type, tilt: 581Hz

 

 

Animation

(c) Third eigenmode type, flex mode: 1873Hz (d) Fourth eigenmode type, flex mode: 2728Hz

Figure C.1: Plots for the different mode shapes. The stiffness per spring element is 4.65 ⋅ 107 N/m.

Figure C.1 shows the found mode shapes of the relevant eigenmodes for a stiffness set equal to what
was measured for 4.5 turns load for roller type 1, the stiffness is shown in Figure 4.3, the corresponding
transfer function is shown in Figure C.2.

It can be seen that the eigenfrequencies of model and measurement greatly correspond. The mode of
with normal translation in the 𝑧direction, shown in Subfigure C.1b, has a frequency of 745Hz, in the
shown transfer function the corresponding mode is measured at 748Hz. The tilt mode has a frequency
of 581Hz in the FEM analysis, in the measured response these modes are centered around 584Hz.
The point symmetry of the setup warrants that the three tilt modes have the same eigenfrequency.The
PAK software provides visualization of the excited eigenmodes, the modes have the mode shape as
what is seen in the FEM model. The flexmodes could not be visualized fully as the number of sensors
were limited.

https://onnowijnberg.nl/MasterThesis/mbdnormal.html
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Plot of FRF: roller D=3mm L=2.2mm, 4.5 turns load
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Figure C.2: Hammer impact data: Transfer function for rollers type 1, under 4.5 turns normal load; Example of a typical transfer
function.
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Plot of FRF: roller D=9mm L=8.8mm, 13.0 turns load
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Figure C.3: Hammer impact data: Transfer function for rollers type 4, under 13.0 turns normal load; Example of a poor FRF.

In this FEM model the stiffness 𝑘 is set and swept. When the final eigenfrequency of the eigenmodes
is calculated, the deviation from a perfect mass spring system can be quantified, the stiffness of the
setup can be extracted. When all the setup components are set to rigid, the system behaves as an
ideal mass spring system, this is an obvious result but has been calculated as a test to make sure
the model parameters are set correctly. The FEM model found that the setup is properly modelled as
a compliance in series with the three rail sets, i.e. Equation C.1. The stiffness of the setup (𝐾𝑠𝑒𝑡𝑢𝑝)
was found to be 1.450 ⋅ 109 N/m. With 𝜔0 found in the analysis and 3𝑘 actively set, 𝑘𝑠𝑒𝑡𝑢𝑝 can be
determined. The damping is insignificant: 𝜔𝑑 = 𝜔0.

𝜔0 = √
2𝑘𝑡𝑜𝑡𝑎𝑙
𝑚 ]

1
𝐾𝑡𝑜𝑡𝑎𝑙

= 1
3𝑘 +

1
𝐾𝑠𝑒𝑡𝑢𝑝

(C.1)





D
Uncertainty and error analysis of the

normal test setup
This Appendix contains an analysis of the uncertainty and error of the normal setup.

Uncertainty defines an interval about the measured values within which the true value is suspected to
fall. Many actions are taken to minimize the uncertainty. Both systematic and random error are mini
mized. The random error is minimized by strictly following the same procedure for all measurements
and by repetition, all measurements are repeated three times to spot outliers and quantify the variance.

Three approaches have been taken to estimate systematic error of the setup.
• Reference measurements were performed by loading the setup with steel balls, they form a ref
erence stiffness as there is scientific consensus on their behaviour. See Subsection 4.2.2

• Two independent measurement techniques and instruments are used to identify the stiffness,
hammer impact measurements and displacement measurements.

• Each setup parameter is measured with more than one instrument, no single parameter was
blindly taken from the datasheet or modelling.

A considerable pitfall in this experiment is in incorrect setting in one of the many equipment configu
rations, this type of mistake will often remain undetected. A healthy dose of common sense and critical
evaluation of (the order of magnitude) all interim results helped in tackling possible errors. Simple tests
as playing a sound on a tone generator app with a smartphone and measuring the frequency response
were one of simple ways to make sure all settings were correct.

It is important to point out that all measurements have been performed with, the same, new rails and
rollers. Though no shift over time was measured, it is likely that some plastic flow did occur during the
measurements.

Drift
To identify whether the setup is subjected to drift, an additional measurement has been performed.
The setup was loaded and halfway through a run the setup was left untouched for both 15 minutes and
overnight. No drift in eigenfrequency was measured at the two time intervals.

Rail disk connection
All connections Ideally the setup is constructed out of two solidmasseswithout any internal connections.
At first it was attempted to place the rollers directly between the two masses, hardening the masses
resulted in unsatisfactory hardness levels and could not be used for the experiments. The surface of
both the rail and the mass are ground to ensure a conforming contact. The rails are bolted on to the
mass with two M810.9 hex bolts and are tightened with 20Nm each. Measurements were performed
with only half the tightening torque to asses its sensitivity to it, this did not influence the eigenmodes
of the setup. Additional measurements were performed with only one bolt per rail, this did significantly
influence the FRF.
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100 D. Uncertainty and error analysis of the normal test setup

Mass and weight of the setup
The mass of the setup has to determined in order to calculate the stiffness of the contact. The weight
of the setup has to be determined to specify the initial loading. The weight of all the components
was specified in the design process, additional measurements were done to verify The mass of the
capacitive probe (12 g) and the four accelerometers (7 g each) is neglected. The load springs are only
included for determining the weight, for the mass they are assumed to be of no influence because of
their low stiffness. Initial measurements were performed on an Inventum WS308 kitchen scale. Finally
all components were weighed with a calibrated, CE063, approved scale at Henk Maas Weegschalen
B.V..

(a) Upper disk. (b) Die springs.

Figure D.1: Weighing the setup at Henk Maas Weegschalen B.V.

Stiffness of the load springs
The stiffness of the load springs is needed to determine the load on the rollers given the compression
of the springs. The ISO 10243 die springs have an analytically specified stiffness. An Alluris FMI
250C2 high precision force gauge is used to measure the stiffness of the individual springs, however
these do not allow for a measurement of the full range in which the springs are used. At Henk Maas
Weegschalen B.V. a calibrated, CE220, loadcell was placed between the two masses, the force num
ber of turns compression relation was logged for 3 runs, the resulting mean values are used as the
input for a definite relation second order polynomial relation. This also accounts for any sensitivity er
ror (non linear error) of the load springs when a single stiffness parameter would be used. The rotation
load relation is given in equation D.1, here 𝑛𝑡𝑢𝑟𝑛𝑠 are the number of turns the knob is compressed and
𝐹𝑤𝑒𝑖𝑔ℎ𝑡 the load caused by the weight of the upper mass in Newton. The maximum disparity between
this fit and the measurements is 12N, this is measured at a load of 900N.
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Figure D.2: Measurement of the spring force at Henk Maas Weegschalen B.V.

𝐹 = 1.763𝑛2𝑡𝑢𝑟𝑛𝑠 + 249.35𝑛𝑡𝑢𝑟𝑛𝑠 + 46.05 + 𝐹𝑤𝑒𝑖𝑔ℎ𝑡 (D.1)

The stiffness of the load springs are parallel with the to be measured contact stiffness. Their stiffness is
sufficiently low that it does not influence the eigenfrequency of the setup. To check this measurements
with only two spring pairs instead of four were carried out, the same stiffness was measured. The
stiffness of the load springs is accounted for in the final results for neatness.

Geometric measurements on the rollers
Though all the roller dimensions are specified in the drawings, they were also verified using mea
surements. The roundness and cylindricity are measured with a Mahr MarForm MMQ. The surface
roughness in length direction, is also measured, see Table A.2.

Using a Nikon profile projector, the contact lengths of the rollers used have been measured at
ART Tooling. From each roller type, two rollers were measured four times, twice diascopic and twice
reflected.

Thermal drift
The measurements are performed in a room that is not temperature controlled. The temperature fluc
tuated throughout the measurements between 18 °C and 30 °C.

Zero order uncertainty
All instruments used have a resolution that us an order of magnitude smaller than needed for the
experiments; the zero order uncertainty at no point dominantly limits the overall uncertainty.

Hysteresis error
All experiments were performed with an increasing load, such that any plastic deformation in the contact
does not influence measurements at lower loads. This also keeps any hysteresis errors constant. An
example of an other hysteresis error that is prevented is the torque produced in the load springs due
to the tightening torque applied with the star knobs.
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Zero shift error
The die springs are secured to the lower mass with epoxy glue, the threaded rods are glued to the
springs such that the rods cannot spin while turning the star knobs. All knobs are labeled and have an
arrow such that no mistakes are made in the measurement procedure. The point where the springs
start to compress is very unequivocal, such that the zero shift error is limited.

When measuring the distance with the capacitive probe, absolute distance of little interest as only
the displacement, change in distance, is used for calculating the stiffness.

Repeatability error
The absolute differences in stiffness between the three impacts of each load position in a single run
are also studied. In case a difference is measured, one could assume that the measurement itself
influences the stiffness, this was not measured. The impacts could lead to a plastic deformation in the
contact, they could also cause slip in the contact such that the roughness profiles would make a new
fit. The distance between the masses is measured after each impact, the average bandwidth between
the impacts is 4.800nm without removing any outliers, the maximum difference between two impacts
was 37 nm, this was an initial impact.

The nonlinearity of the measurement with regards to the impulse amplitude was also studied, two
consecutive impacts with an amplitude of about 50N and 200N were studied, identical eigenfrequen
cies were measured. The damping ratio of the FRF is circa 0.01, this plays part in the linearity of the
mass spring system and lets it act as a harmonic oscillator.

The continuously controllable variable of the load is discretized in steps of 180°, this is not exact,
as it is set by hand. With the assumption that the 180° is met every time with an uncertainty of 20°, this
is 11% uncertainty for the load increase, while roughly 11

#𝑡𝑢𝑟𝑛𝑠+0.5% for the absolute load itself. For the
modal analysis, only the load is needed, while for the capacitive measurement, the load increase also
is needed to perform a numerical differentiation. The uncertainty of the modal measurement is lower
as a result, it also decreases with an increasing number of load turns.

The Lion Precision C8 capacitive sensor has a resolution of 10 nm at 100Hz, in the experiments a
RMS value from a 2.500 s sample is used.

The stiffness is calculated with the capacitive measurement using the following equation:

𝑘 = 𝑑𝐹
𝑑𝑢

= Δ𝐹
Δ𝑠
=
𝑘𝑠𝑝𝑟𝑖𝑛𝑔𝑠 𝑙𝑒𝑎𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

360
𝑠𝑖+1 − 𝑠𝑖

(D.2)

When only considering random errors, the overall uncertainty of the Load increase is:

𝑘𝑠𝑝𝑟𝑖𝑛𝑔𝑠 𝑙𝑒𝑎𝑑 20°
180° = 15N (D.3)

While the overall uncertainty of the distance is 10 nm.
Combining the rootsumsquares of the errors expanded around the first half turn with rollers of type

1 gives:
Δ𝑠 ≈ 4µm, Δ𝐹 ≈ 135N

𝑢Δ𝑠 = √𝑢2𝑠𝑖 + 𝑢2𝑠𝑖+1 ≈ 14.140nm

𝑢Δ𝐹 = 15N

𝑢𝑘,Δ𝑠 = (
𝜕𝑘
𝜕Δ𝑠 )Δ𝑠=4µm 𝑢Δ𝑠 = |

Δ𝐹
Δ𝑠2 | 𝑢Δ𝑠 = 1.190 ⋅ 105 N/m

𝑢𝑘,Δ𝐹 = (
𝜕𝑘
𝜕Δ𝐹 )Δ𝐹=135N 𝑢Δ𝐹 =

1
Δ𝑠 𝑢Δ𝐹 = 3.750 ⋅ 106 N/m

𝑢𝑘 = √𝑢2𝑘,Δ𝑠 + 𝑢2𝑘,Δ𝐹 = 3.750 ⋅ 106 N/m

(D.4)

The uncertainty caused by the probe is insignificant compared to that caused by the manual setting of
the load. With the typical order for 𝑘 at these conditions of 108 N/m, the uncertainty would be about
5% of the measured value, the measured spread in data was significantly larger, approximately 15%.
The modal analysis is on the other hand, is not dependent on the increase of the load, but only on its
absolute value.



E
Results with capacitive sensor for

normal test setup
This Appendix presents the results obtained with the capacitive probe. It presents both a loaddeflection
and a loadstiffness relation.

Figure E.1 shows the distance measured by the capacitive probe as a function of the normal load on a
set rollers of type 1 that are tested 10 times.
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Figure E.1: Capacitive probe data: Loaddeflection relation of roller type 1 under normal conditions; 10 runs, estimating repeata
bility.

The absolute value, and thus the zero shift error, of this measurement is not of any relevance as it
represents at what distance from the mass the probe is mounted. The deflection relative to the initial
distance, the displacements represent the compression of the rollerrail contacts.
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104 E. Results with capacitive sensor for normal test setup

Taking the derivatives of the displacements with respect of the load per roller yields the stiffness per
roller, this allows for a comparison of the data obtained with the hammer impact measurements and
the capacitive sensor data.

Figure E.2 shows the stiffness per roller as a function of the normal load on a set rollers of type 1
that are tested 10 times. Both the hammer impact data (dynamic) and capacitive probe data (static)
are depicted.
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107 Stiffness for roller D=3mm L=2.2mm; repeating the same experiment 10 times
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Figure E.2: Hammer impact data (dynamic) and capacitive probe data (static): Loadstiffness relation of roller type 1 under
normal conditions; 10 runs, estimating repeatability.

The precision of the stiffness calculated by taking the derivative of the absolute distance is an order of
magnitude lower than the hammer impact measurements. However, the mean values of both measure
ments highly agree. A lower accuracy for stiffness calculated through taking the derivative of a distance
is expected as a consequence of the error propagation. See the uncertainty analysis in Appendix D for
an estimation of this error.

The high sampling rate of the capacitive measurement allow studying the frequency spectrum of the
time data.

Figure E.3 shows the stiffness per roller as a function of the normal load on a set rollers of type
1 that are tested 10 times. Both the accelerometer data (FFT) and capacitive probe data (FFT) are
depicted.
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107 Stiffness for roller D=3mm L=2.2mm; repeating the same experiment 10 times

Run 1 FFT of capacitive probe
Run 2 FFT of capacitive probe
Run 3 FFT of capacitive probe
Run 4 FFT of capacitive probe
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Figure E.3: Hammer impact data (dynamic) and capacitive probe data (dynamic): Loadstiffness relation of roller type 1 under
normal conditions; 10 runs, comparing the Stiffness found with the accelerometers with a FFT of the capacitive probe data.
The found peak frequencies match the eigenfrequencies obtained with accelerometers.



F
Post hoc analysis on normal

measurements
This appendix presents the statistical tests performed on the measurements on normally loaded rollers,
as presented in Chapter 4. In addition, the descriptive statistics for all normal measurements are given
in Section F.2.

F.1. Univariate Analysis of covariance
The goal of the experiments conducted is to compare the different experiment conditions in terms of
their stiffness, e.g. answer a question like: ’Is a ceramic roller stiffer than a steel roller?’.

There is random error involved in the measurements, repeating an experiment with the same con
ditions does not result in the exact same data. Thus, it is important for conclusions to be based on a
difference in the underlying true values and not merely a result of coincidence. It is impossible to en
tirely eliminate the probability that a conclusion is based on coincidence, merely claims on the statistical
significance of a result can be made. E.g.:’Given the measured difference between the dry and lubri
cated experiments, the probability of obtaining a result with at least this extreme difference between
the experiment data, given that a dry and lubricated contact have the same stiffness is 𝑥.’. When 𝑥 is
sufficiently low the hypothesis may be rejected.

The stiffness also influenced by the load, a positive covariance between the load and the stiffness
is found. Hence there is a need to control for the effects of the load on the stiffness. An (Univari
ate) Analysis of covariance (ANCOVA) procedure provides regression and analysis of covariance for
a dependent variable (stiffness) by a categorical independent variable (experiment conditions) while
statistically controlling for the effects of an other continuous predictor (load).

F.1.1. Statistical assumptions
A number of assumptions form the basis of an ANCOVA:

Linearity of regression The ANCOVA model assumes a linear relationship between the dependent
variable (𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠) and a covariate (𝑙𝑜𝑎𝑑). Based on Section 4.2 it is clear that the relationship
between the load and stiffness is not linear. A transformation has to be applied to correct for the
problem of nonlinearity. Section 4.3 showed that the loadstiffness relation has the form of a natural
logarithm. Choosing ln (𝑙𝑜𝑎𝑑) as the covariate instead of the 𝑙𝑜𝑎𝑑 directly, yields a linear regression
relationship between the dependent variable and the covariate. To show the linearity, a simple linear
regression is performed on the on the data of repeatability experiments with roller type 1, as plotted in
Figure 4.3. With the stiffness as the dependent variable and ln (𝑙𝑜𝑎𝑑) as the predictor, an Adjusted R
Square of 0.994 with 𝑁 = 120.
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106 F. Post hoc analysis on normal measurements

Homogeneity of error variances I.e. assuming that variance of the residuals (difference between
predicted and measured values) is constant across groups (homoscedasticity). Levene’s Test of Equal
ity of Error Variances is performed to test the null hypothesis that the error variance of the dependent
variable, ln (𝑙𝑜𝑎𝑑), is equal across groups.

Independence of error terms The errors are uncorrelated. That is, the error covariance matrix is
diagonal.

Normality of error terms I.e. having the residuals distributed normally around the predicted value.
Performing a normality test, Shapiro Will, or checking the skewdwsity and kurtosis will allow for testing
this. For larger sample sizes, normality of error terms is of less importance. The ANCOVA is in certain
conditions robust to violations of the normality condition [71].

Homogeneity of regression slopes When there is homogeneity of regression slopes, the linear
regression relationships in are all parallel and do not cross. The slopes of the different groups can
be compared by means Interaction terms. The pvalue for the interaction between the experiment
conditions and ln (𝑙𝑜𝑎𝑑) is tested for significance. If interaction is significant, it is very unlikely that the
slopes are parallel and the ANCOVA should not be used.

F.1.2. Results
The data of the three repetitions of the specific configurations are compared to the stiffness data of the
ten repetitions of the standard configuration as plotted in Figure 4.3, this could be seen as the control
group.

Product variations of rollers
The null hypothesis is that all experiment means are equal when controlling for the load.

The covariate by condition interaction is not statistically significant at all: F(3, 196) = 0.520, p =
0.669, thus homogeneity of regression slopes may be assumed. The effect size for the condition is
small, 𝜂2 = 0.009.

A Levene’s test is included to test the homogeneity of variance assumption. The null hypothesis of
equal error variances is not rejected, F(3, 200) = 1.926, p = 0.127. The data meets the homogeneity of
variances assumption. This means that an ANCOVA can be performed confidently.

Table F.1: Analysis of Covariance for stiffness by roller variation at normal conditions with the load as covariate.

Type III Sum Mean
Source of Squares df Square F Sig. 𝜂2

Corrected Model 7.584 ⋅ 1016a 4 1.896 ⋅ 1016 8.466 ⋅ 103 0.000 0.994
Intercept 2.681 ⋅ 1016 1 2.681 ⋅ 1016 1.197 ⋅ 104 0.000 0.984
condition 3.320 ⋅ 1013 3 1.107 ⋅ 1013 4.941 0.000 0.274
ln (𝑙𝑜𝑎𝑑) 7.581 ⋅ 1016 1 7.581 ⋅ 1016 3.385 ⋅ 104 0.002 0.069
Error 4.457 ⋅ 1014 199 2.240 ⋅ 1012
Total 3.214 ⋅ 1018 204
Corrected Total 7.642 ⋅ 1016 203
aR Squared = 0.994 (Adjusted R Squared = 0.994)

The analysis has a significant pvalue and thus rejects the null hypothesis that the conditions result in
equal stiffness, F(3, 199) = 4.941, p = 0.002.

An ANOVA was also performed and the mean differences are statistically significant only when the
covariate is included, the covariate greatly reduces the standard errors for these means. Pairwise com
parison only showed significant difference between set 1 and the other sets, no pairwise significance
between the other sets was measured.
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Influence of lubrication, grease and oil compared with dry contact
The null hypothesis is that all experiment means are equal when controlling for the load.

The covariate by condition interaction is not statistically significant at all: F(2, 186) = 0.059, p =
0.943, thus homogeneity of regression slopes assumption seems to hold almost perfectly. The effect
size for the condition is small, 𝜂2 = 0.001.

A Levene’s test is performed to test the homogeneity of variance assumption. The null hypothesis
of equal error variances is not rejected, F(2, 189) = 1.096, p = 0.336. The data meets the homogeneity
of variances assumption. This means that an ANCOVA can be performed confidently.

Table F.2: Analysis of Covariance for stiffness by lubrication variation at normal conditions with the load as covariate.

Type III Sum Mean
Source of Squares df Square F Sig. 𝜂2

Corrected Model 7.092 ⋅ 1016a 3 2.364 ⋅ 1016 1.173 ⋅ 104 0.000 0.995
Intercept 2.551 ⋅ 1016 1 2.551 ⋅ 1016 1.265 ⋅ 104 0.000 0.985
condition 4.766 ⋅ 1012 2 2.383 ⋅ 1012 1.182 0.309 0.012
ln (𝑙𝑜𝑎𝑑) 7.092 ⋅ 1016 1 7.092 ⋅ 1016 3.518 ⋅ 104 0.000 0.995
Error 3.790 ⋅ 1014 188 2.016 ⋅ 1012
Total 2.954 ⋅ 1018 192
Corrected Total 7.130 ⋅ 1016 191
aR Squared = 0.995 (Adjusted R Squared = 0.995)

The analysis does not reject the null hypothesis that the conditions result in an equal stiffness, F(2, 188)
= 1.182, p = 0.309.
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F.2. Descriptives table for all normal measurements
Table F.3: Statistical data on normal measurements, standard deviation and mean of the stiffness per contact length. The load
condition where the springs are not compressed is disregarded in this calculations. Mean values of stiffness per contact length
for loaded measurements.

Figure Legend entry 𝑆𝐷 (N/m2) 𝜇 (N/m2) %

4.3 Run 𝑋 10.00 ⋅ 107 2.36 ⋅ 1010 0.42%

4.5

Mean set 2 3.31 ⋅ 108 2.40 ⋅ 1010 1.38%
Mean set 3 1.32 ⋅ 108 2.40 ⋅ 1010 0.55%
Mean set 4 8.86 ⋅ 107 2.39 ⋅ 1010 0.37%
Mean ±2𝜎 set 1 See descriptives for Figure 4.3

4.7

Roller L=2.2mm See descriptives for Figure 4.3
Roller L=2.8mm 1.89 ⋅ 108 2.18 ⋅ 1010 0.87%
Roller L=2mm 1.38 ⋅ 108 2.31 ⋅ 1010 0.60%
Roller L=4mm 1.74 ⋅ 108 1.98 ⋅ 1010 0.87%

4.8

Roller D=1.5mm L=1.4mm 8.49 ⋅ 107 2.31 ⋅ 1010 0.37%
Roller D=3mm L=2.2mm See descriptives for Figure 4.3
Roller D=6mm L=4.4mm 1.91 ⋅ 108 2.25 ⋅ 1010 0.85%
Roller D=9mm L=8.8mm 2.48 ⋅ 108 1.72 ⋅ 1010 1.44%

4.6
Oil; Klüber Summit SH 32 2.44 ⋅ 108 2.36 ⋅ 1010 1.04%
Grease; Thermoplex ALN 1001/00 8.48 ⋅ 107 2.35 ⋅ 1010 0.36%
Mean ±2𝜎 dry contact See descriptives for Figure 4.3

4.10 Roller D=3mm L=2.8mm Steel See Roller L=2.8mm in Figure 4.7
Roller D=3mm L=2.8mm Si3N4 1.88 ⋅ 108 2.31 ⋅ 1010 0.81%

4.11 Roller D=3mm L=2.2mm Steel See descriptives for Figure 4.3
Roller D=3mm L=2.2mm Stainless steel 1.81 ⋅ 108 2.41 ⋅ 1010 0.75%

4.9
3x Roller D=3mm L=2.2mm See descriptives for Figure 4.3
6x Roller D=3mm L=2.2mm 1.95 ⋅ 108 2.17 ⋅ 1010 0.90%
9x Roller D=3mm L=2.2mm 8.12 ⋅ 108 2.05 ⋅ 1010 3.95%

4.13 Standard finish See descriptives for Figure 4.3
Mirror finish 1.02 ⋅ 108 2.49 ⋅ 1010 0.41%

4.14

Roller 𝑋 standard finish See descriptives for Figure 4.7
Roller D=3mm L=2.2mm mirror finish See Mirror finish in Figure 4.13
Roller D=3mm L=2.8mm mirror finish 6.30 ⋅ 107 2.30 ⋅ 1010 0.27%
Roller D=3mm L=2mm mirror finish 8.39 ⋅ 107 2.41 ⋅ 1010 0.35%
Roller D=3mm L=4mm mirror finish 1.03 ⋅ 108 2.13 ⋅ 1010 0.48%

4.15
Roller 𝑋 standard finish See descriptives for Figure 4.10
Roller D=3mm L=2.8mm Si3N4 mirror finish 5.36 ⋅ 107 2.46 ⋅ 1010 0.22%
Roller D=3mm L=2.8mm Steel mirror finish See descriptives for Figure 4.14

4.16
Roller 𝑋 standard finish See descriptives for Figure 4.11
Roller D=3mm L=2.2mm Stainless mirror finish 1.33 ⋅ 108 2.49 ⋅ 1010 0.53%
Roller D=3mm L=2.2mm Steel mirror finish See Mirror finish in Figure 4.13



G
Test setup for measuring individual

stiffness components
This Appendix presents a new test setup, this setup is used to perform the experiments such that the
individual normal and tangential stiffness components.

The setup, as shown in Figure G.1, is nearly identical to the setup used in Chapter 4, except that here
two instead of three rails sets are mounted. These rails are mounted such that the axes of the rollers
are colinear.

(a) CAD model of setup with two rail[pairs (b) Picture of 45° loaded setup

Figure G.1: The test setup used for the experiments in this section. Two pairs of rails are bolted to the two solid disks. The rollers
are placed between the rails in the rolling direction. When compressed, the green springs exert load on the rollers and rails. The
distance between the masses is measured with a capacitive probe (bright green). The frequency response is measured with
accelerometers. The setup isolated from the external world by a suspension with an inner tube (both not in CAD).
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110 G. Test setup for measuring individual stiffness components

Figure G.2 shows a schematic of the test setup.

𝑚

𝑚

𝑘𝑛
𝑘𝑡

𝑘𝑛
𝑘𝑡

To be measured contacts
Load from load springs
Vibration isolation
External world

Figure G.2: Schematic depiction of the normally loaded setup.

The setup is modelled as a suspended two mass spring system. The two hammers depicted in Fig
ure G.2 represent the two directions in which eigenmodes are excited. Again a multi body dynamics
FEM analysis is performed to determine the stiffness of the setup. The stiffness was found to be
2.73 ⋅ 108 N/m, and again properly modelled as being in series with the two rail sets.
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G.1. Results
This section presents and discusses the results of the additional experiments performed with this setup.

G.1.1. Influence of roller orientation
Additional normal experiments were performed to assure the effect or roller orientation is not caused
by the surface topology and grinding direction. Two rollers of type 1 were oriented perpendicular to the
rolling direction.

Figure G.3 depicts this measurement against the results of the repeatability measurements where
the roller is oriented parallel.
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107 Stiffness for rollers with different orientations; effect of orientation on roller D=3mm L=2.2mm

Parallel to rolling direction
Perpendicular to rolling direction

Figure G.3: Hammer impact data: Loadstiffness relation of roller type 1 under normal conditions; roller orientation.

G.1.2. Variation of the number of rails
To find the accuracy of the setup, experiments are compared with the measurements of Chapter 4.

Figure G.4 compares the stiffness measured with the setup from Figure 4.1 with that of Figure G.1.
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108 Normal stiffness for all steel rollers; 3 rails vs 2 rails per mass

3 rails - Roller D=3mm L=2.2mm Steel
3 rails - Roller D=3mm L=2.8mm Steel
3 rails - Roller D=3mm L=2mm Steel
3 rails - Roller D=3mm L=4mm Steel
3 rails - Roller D=1.5mm L=1.4mm Steel
3 rails - Roller D=6mm L=4.4mm Steel
3 rails - Roller D=9mm L=8.8mm Steel
2 rails - Roller D=3mm L=2.2mm Steel
2 rails - Roller D=3mm L=2.8mm Steel
2 rails - Roller D=3mm L=2mm Steel
2 rails - Roller D=3mm L=4mm Steel
2 rails - Roller D=1.5mm L=1.4mm Steel
2 rails - Roller D=6mm L=4.4mm Steel
2 rails - Roller D=9mm L=8.8mm Steel

Figure G.4: Hammer impact data: Loadstiffness relation for roller types 1, 2, 3, 4, 5, 6 & 7; 2 rails vs 3 rails.





H
Post hoc analysis on 45° measurements
This appendix presents the statistical test performed on the measurements on rollers loaded at 45°,
as presented in Chapter 5. In addition, the descriptive statistics for all 45° loaded measurements are
given in Section H.2.

H.1. Univariate Analysis of covariance
Influence of lubrication
The null hypothesis is that all experiment means are equal when controlling for the load.
The covariate by condition interaction is not statistically significant: F(2, 90) = 1.478, p = 0.234, thus ho
mogeneity of regression slopes assumption holds. The effect size for the condition is small to medium,
𝜂2 = 0.032.

A Levene’s test is included to test the homogeneity of variance assumption. The null hypothesis of
equal error variances is not rejected, F(2, 93) = 0.513, p = 0.600. The data meets the homogeneity of
variances assumption. This means that an ANCOVA can be performed confidently.

Table H.1: Analysis of Covariance for stiffness by lubrication variation at 45° with the load as covariate.

Type III Sum Mean
Source of Squares df Square F Sig. 𝜂2

Corrected Model 1.652 ⋅ 1020a 3 5.506 ⋅ 1019 1.614 ⋅ 103 0.000 0.981
Intercept 3.614 ⋅ 1019 1 3.614 ⋅ 1019 1.060 ⋅ 103 0.000 0.920
condition 1.728 ⋅ 1017 2 8.639 ⋅ 1016 2.533 0.085 0.052
ln (𝑙𝑜𝑎𝑑) 1.650 ⋅ 1020 1 1.650 ⋅ 1020 4.838 ⋅ 103 0.000 0.981
Error 3.138 ⋅ 1018 92 3.410 ⋅ 1016
Total 1.593 ⋅ 1022 96
Corrected Total 1.683 ⋅ 1020 95
aR Squared = 0.981 (Adjusted R Squared = 0.981)

The analysis does not have a significant pvalue and thus does not reject the null hypothesis that the
conditions result in equal stiffness, F(3, 92) = 2.533, p = 0.085.

113



114 H. Post hoc analysis on 45° measurements

H.2. Descriptives table for all 45° measurements
Table H.2: Statistical data on 45° measurements, standard deviation and mean of the stiffness per contact length. The load
condition where the springs are not compressed is disregarded in this calculations. Mean values of stiffness per contact length
for loaded measurements. First the standard deviations over the repetitions per load level are calculated, then the mean of the
standard deviations is taken. The mean stiffness is the mean value of all measurements per legend entry.

Figure Legend entry 𝑆𝐷 (N/m2) 𝜇 (N/m2) %

5.5 Run 𝑋 1.52 ⋅ 108 1.48 ⋅ 1010 1.03%

5.6
Mean set 2 6.04 ⋅ 107 1.51 ⋅ 1010 0.40%
Mean set 3 1.53 ⋅ 108 1.48 ⋅ 1010 1.03%
Mean ±2𝜎 set 1 See descriptives for Figure 5.5

5.7 Parallel to rolling direction See descriptives for Figure 5.5
Perpendicular to rolling direction 8.12 ⋅ 108 1.22 ⋅ 1010 6.68%

5.8

Roller L=2.2mm See descriptives for Figure 5.5
Roller L=2.8mm 6.85 ⋅ 107 1.50 ⋅ 1010 0.46%
Roller L=2mm 6.17 ⋅ 107 1.48 ⋅ 1010 0.42%
Roller L=4mm 3.04 ⋅ 108 1.48 ⋅ 1010 2.06%

5.9
Roller D=1.5mm L=1.4mm 1.80 ⋅ 108 1.66 ⋅ 1010 1.09%
Roller D=3mm L=2.2mm See descriptives for Figure 5.5
Roller D=6mm L=4.4mm 1.38 ⋅ 108 1.41 ⋅ 1010 0.98%

5.12
Oil; Klüber Summit SH 32 7.76 ⋅ 107 1.46 ⋅ 1010 0.53%
Grease; Thermoplex ALN 1001/00 1.63 ⋅ 108 1.47 ⋅ 1010 1.11%
Mean ±2𝜎 dry contact See descriptives for Figure 5.5

5.14 Roller D=3mm L=2.8mm Steel See Roller L=2.8mm in Figure 5.8
Roller D=3mm L=2.8mm Si3N4 1.05 ⋅ 108 1.68 ⋅ 1010 0.63%

5.15 Roller D=3mm L=2.2mm Steel See descriptives for Figure 5.5
Roller D=3mm L=2.2mm Stainless steel 2.09 ⋅ 108 1.52 ⋅ 1010 1.38%

5.13
2x Roller D=3mm L=2.2mm See descriptives for Figure 5.5
4x Roller D=3mm L=2.2mm 1.81 ⋅ 108 1.41 ⋅ 1010 1.15%
6x Roller D=3mm L=2.2mm 1.32 ⋅ 108 1.34 ⋅ 1010 0.98%

5.16

Roller D=1.5mm L=1.4mm 1.47 ⋅ 105a 5.88 ⋅ 106a 2.50%
Roller D=3mm L=2.2mm 9.95 ⋅ 104a 7.05 ⋅ 106a 1.41%
Roller D=3mm L=2.8mm 3.04 ⋅ 105a 1.49 ⋅ 107a 2.05%
Roller D=3mm L=2mm 1.67 ⋅ 105a 8.46 ⋅ 106a 1.98%
Roller D=3mm L=4mm 1.81 ⋅ 106a 2.83 ⋅ 107a 6.41%
Roller D=6mm L=4.4mm 1.93 ⋅ 105a 1.54 ⋅ 107a 1.25%
Roller D=9mm L=8.8mm 5.51 ⋅ 105a 3.84 ⋅ 107a 1.44%

5.18

45° Stiffness See descriptives for Figure 5.5
Normal Stiffness∗ cos (45)2 1.01 ⋅ 108 1.18 ⋅ 1010 0.86%
Tangential Stiffness∗ sin (45)2 2.77 ⋅ 107 1.97 ⋅ 109 1.41%
Normal ∗ cos (45)2+ Tangential∗ sin (45)2 1.20 ⋅ 108 1.38 ⋅ 1010 0.87%

5.20 Perpendicular to rolling direction See Perpendicular in Figure 5.7
Normal Stiffness∗ cos (45)2 See Normal ∗ cos (45)2 in Figure 5.18

5.19

45° Stiffness  Roller D=3mm L=2.2mm See descriptives for Figure 5.5
45° Stiffness  Roller D=3mm L=2.8mm See Roller D=3mm L=2.8mm in Figure 5.8
45° Stiffness  Roller D=3mm L=2mm See Roller D=3mm L=2mm in Figure 5.8
45° Stiffness  Roller D=3mm L=4mm See Roller D=3mm L=4mm in Figure 5.8
45° Stiffness  Roller D=1.5mm L=1.4mm See Roller D=1.5mm L=1.4mm in Figure 5.9
(Normal + Tangential)*0.5  Roller D=3mm L=2.2mm 2.15 ⋅ 105a 2.47 ⋅ 107a 0.87%
(Normal + Tangential)*0.5  Roller D=3mm L=2.8mm 4.33 ⋅ 105a 3.72 ⋅ 107a 1.16%
(Normal + Tangential)*0.5  Roller D=3mm L=2mm 9.57 ⋅ 104a 2.62 ⋅ 107a 0.37%
(Normal + Tangential)*0.5  Roller D=3mm L=4mm 1.91 ⋅ 106a 5.20 ⋅ 107a 3.68%
(Normal + Tangential)*0.5  Roller D=1.5mm L=1.4mm 1.25 ⋅ 105a 1.70 ⋅ 107a 0.74%

a Stiffness per roller (N/m)



I
Test setup for measuring crossed roller

slides
This Appendix contains the parameters and dimensions of the masses used for the experiments in
Chapter 6.

I.1. Parameters
Table I.1: Parameters for crossed roller slide setup.

Part Name Value Unit Description

Top mass

𝑚 19.284 kg Mass
𝐼𝑥 5.846 ⋅ 10−2 kgm2 Moment of inertia around 𝑥axis
𝐼𝑧 5.890 ⋅ 10−2 kgm2 Moment of inertia around 𝑦axis
𝐼𝑦 7.143 ⋅ 10−2 kgm2 Moment of inertia around 𝑧axis
𝑠𝑧 59.315 mm Distance along 𝑧axis between CoM and mounting face
𝑠𝑧 0.200 µm Surface roughness of rail surfaces

Bottom mass

𝑚 19.280 kg Mass
𝐼𝑥 5.503 ⋅ 10−2 kgm2 Moment of inertia around 𝑥axis
𝐼𝑦 5.650 ⋅ 10−2 kgm2 Moment of inertia around 𝑦axis
𝐼𝑧 6.960 ⋅ 10−2 kgm2 Moment of inertia around 𝑧axis
𝑠𝑧 57.105 mm Distance along 𝑧axis between CoM and mounting face
𝑠𝑧 0.200 µm Surface roughness of rail surfaces

Table I.2: Parameters for crossed roller slide PM Bearings RT3150 and RT15100.

Parameter RT3150 RT1510 Unit Description

𝑚 1.860 0.370 kg Mass
𝑡𝑤 5 3 mm Cage pocket pitch
𝐶𝑑 30 13.5 mm Cage distance
𝐻 28 17 mm Height
Roller 13 14 See element Table A.1
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116 I. Test setup for measuring crossed roller slides

I.2. Drawings

Figure I.1: Drawing of the top mass.

Figure I.2: Drawing of the bottom mass.



J
Multi body dynamics analysis of test

setup for measuring crossed roller slides
This Appendix presents a table with the results of different numerical models to show the model con
vergence.

Table J.1: Result of modal analysis, 16 rollers per cage 5 turns load: different meshes and models.

Variable Unit Standard mesh Refined mesh Refined model

Number of elements  130 466 251266 436431
Volume cm3 5192 5155 5153
Eigenfrequency 𝑧 mode Hz 718.99 718.59 713.57
Eigenfrequency 𝜃𝑥 mode Hz 354.58 353.45 351.14
Eigenfrequency 𝜃𝑧 mode Hz 333.70 331.93 328.82
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K
Post hoc analysis on crossed roller

guide measurements
This appendix presents the error plots of the measurements on crossed roller slides, as presented in
Chapter 6. In addition, the descriptive statistics for measurements on tables are given in Section K.1.

Figure K.1 presents the error between the measured and predicted loadstiffness relationship in 𝑧
direction for a RT3150 slide. The stiffness measurements are performed for 𝑍𝑡 = 4, 6, 8, 10, 12, 14,
16, 20, and 26.
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Stiffness in z-direction: difference between Experiments and Multi Body Dynamics FEM model
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Figure K.1: Hammer impact data: Error between Experiments and FEM model of RT3150 crossedroller slide, stiffness in
𝑧direction.
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120 K. Post hoc analysis on crossed roller guide measurements

Figure K.2 presents the error between the measured and predicted loadstiffness relationship in 𝜃𝑥
direction for a RT3150 slide. The stiffness measurements are performed for 𝑍𝑡 = 4, 6, 8, 10, 12, 14,
16, 20, and 26.
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Stiffness in x-direction: difference between Experiments and Multi Body Dynamics FEM model
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Figure K.2: Hammer impact data: Error between Experiments and FEM model of RT3150 crossedroller slide, stiffness in
𝜃𝑥direction.

Figure K.2 presents the error between the measured and predicted loadstiffness relationship in 𝜃𝑧
direction for a RT3150 slide. The stiffness measurements are performed for 𝑍𝑡 = 4, 6, 8, 10, 12, 14,
16, 20, and 26.
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Stiffness in z-direction: difference between Experiments and Multi Body Dynamics FEM model
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Figure K.3: Hammer impact data: Error between Experiments and FEM model of RT3150 crossedroller slide, stiffness in
𝜃𝑧direction.
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Figure K.2 presents the error between the measured and predicted loadstiffness relationship in 𝑧
direction for a RT15100 slide. The stiffness measurements are performed for 𝑍𝑡 = 8, 10, 12, 14, 16,
20, and 28.
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Stiffness in z-direction: difference between Experiments and Multi Body Dynamics FEM model
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Figure K.4: Hammer impact data: Error between Experiments and FEM model of RT15100 crossedroller slide, stiffness in
𝑧direction.

Figure K.5 shows the difference in loadstiffness relationship compared with measurements from Figure
6.8.
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Stiffness in z-direction: difference between crossed and non-crossed roller orientation
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Figure K.5: Hammer impact data: Difference between roller orientation RT3150 crossedroller slide, stiffness in 𝜃𝑧direction.



122 K. Post hoc analysis on crossed roller guide measurements

K.1. Descriptives table of all measurements with the crossed roller
guides

Table K.1: Statistical data onmeasurements with crossed roller guides, standard deviation andmean of the stiffness in 𝑧 direction.
The mean stiffness is the mean value of all measurements per legend entry.

Figure Legend entry 𝑆𝐷 (N/m) 𝜇 (N/m) %

6.8

Experiment: 𝑍𝑡 = 4 1.15 ⋅ 106 5.88 ⋅ 107 1.96
Experiment: 𝑍𝑡 = 6 1.42 ⋅ 106 7.89 ⋅ 107 1.80
Experiment: 𝑍𝑡 = 8 2.42 ⋅ 106 9.50 ⋅ 107 2.55
Experiment: 𝑍𝑡 = 10 6.66 ⋅ 106 1.11 ⋅ 108 6.01
Experiment: 𝑍𝑡 = 12 7.00 ⋅ 106 1.51 ⋅ 108 4.63
Experiment: 𝑍𝑡 = 14 5.70 ⋅ 106 1.52 ⋅ 108 3.75
Experiment: 𝑍𝑡 = 16 5.92 ⋅ 106 2.01 ⋅ 108 2.94
Experiment: 𝑍𝑡 = 20 6.26 ⋅ 106 2.30 ⋅ 108 2.72
Experiment: 𝑍𝑡 = 26 6.57 ⋅ 106 2.81 ⋅ 108 2.33

6.10a

Experiment: 𝑍𝑡 = 4 1.26 ⋅ 103a 6.80 ⋅ 103a 18.59
Experiment: 𝑍𝑡 = 6 1.95 ⋅ 102a 5.79 ⋅ 103a 3.37
Experiment: 𝑍𝑡 = 8 3.48 ⋅ 103a 1.52 ⋅ 104a 22.96
Experiment: 𝑍𝑡 = 10 1.26 ⋅ 103a 2.43 ⋅ 104a 5.19
Experiment: 𝑍𝑡 = 12 1.29 ⋅ 103a 4.43 ⋅ 104a 2.92
Experiment: 𝑍𝑡 = 14 3.37 ⋅ 103a 5.45 ⋅ 104a 6.18
Experiment: 𝑍𝑡 = 16 6.09 ⋅ 103a 1.05 ⋅ 105a 5.78
Experiment: 𝑍𝑡 = 20 1.31 ⋅ 104a 1.93 ⋅ 105a 6.79
Experiment: 𝑍𝑡 = 26 1.15 ⋅ 104a 3.34 ⋅ 105a 3.45

6.10b

Experiment: 𝑍𝑡 = 4 4.23 ⋅ 102a 5.62 ⋅ 103a 7.52
Experiment: 𝑍𝑡 = 6 1.02 ⋅ 103a 7.63 ⋅ 103a 13.39
Experiment: 𝑍𝑡 = 8 2.38 ⋅ 103a 2.19 ⋅ 104a 10.90
Experiment: 𝑍𝑡 = 10 2.35 ⋅ 103a 3.07 ⋅ 104a 7.65
Experiment: 𝑍𝑡 = 12 6.16 ⋅ 103a 6.13 ⋅ 104a 10.05
Experiment: 𝑍𝑡 = 14 6.21 ⋅ 103a 8.61 ⋅ 104a 7.21
Experiment: 𝑍𝑡 = 16 5.22 ⋅ 103a 1.45 ⋅ 105a 3.59
Experiment: 𝑍𝑡 = 20 5.86 ⋅ 103a 2.61 ⋅ 105a 2.25
Experiment: 𝑍𝑡 = 26 1.29 ⋅ 104a 4.57 ⋅ 105a 2.82

6.11

Experiment: 𝑍𝑡 = 8 7.83 ⋅ 105 6.42 ⋅ 107 1.22
Experiment: 𝑍𝑡 = 10 2.60 ⋅ 106 7.27 ⋅ 107 3.58
Experiment: 𝑍𝑡 = 12 1.48 ⋅ 106 8.85 ⋅ 107 1.67
Experiment: 𝑍𝑡 = 14 7.66 ⋅ 105 1.05 ⋅ 108 0.73
Experiment: 𝑍𝑡 = 16 3.17 ⋅ 106 1.23 ⋅ 108 2.58
Experiment: 𝑍𝑡 = 20 1.20 ⋅ 106 1.41 ⋅ 108 0.85
Experiment: 𝑍𝑡 = 28 7.32 ⋅ 105 1.50 ⋅ 108 0.49

6.12

Experiment: 𝑍𝑡 = 𝑧/2 = 4 1.81 ⋅ 106 5.35 ⋅ 107 3.38
Experiment: 𝑍𝑡 = 𝑧/2 = 8 3.56 ⋅ 106 9.82 ⋅ 107 3.62
Experiment: 𝑍𝑡 = 𝑧/2 = 16 5.92 ⋅ 106 2.01 ⋅ 108 2.94
Experiment: 𝑍𝑡 = 𝑧/2 = 20 6.26 ⋅ 106 2.30 ⋅ 108 2.72
Experiment: 𝑍𝑡 = 𝑍 = 4 1.88 ⋅ 106 5.90 ⋅ 107 3.18
Experiment: 𝑍𝑡 = 𝑍 = 8 1.22 ⋅ 106 9.98 ⋅ 107 1.22
Experiment: 𝑍𝑡 = 𝑍 = 16 1.33 ⋅ 106 1.95 ⋅ 108 0.68
Experiment: 𝑍𝑡 = 𝑍 = 20 1.51 ⋅ 106 2.41 ⋅ 108 0.63

a Radial stiffness(Nm/rad)
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