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A Data-Driven 2-Optimal Control Approach
for Adaptive Optics

Karel Hinnen, Michel Verhaegen, and Niek Doelman

Abstract—Adaptive optics (AO) is used in ground-based astro-
nomical telescopes to improve the resolution by counteracting the
effects of atmospheric turbulence. Most AO systems are based on a
simple control law that neglects the temporal evolution of the dis-
tortions introduced by the atmosphere. This paper presents a data-
driven control design approach that is able to exploit the spatio-
temporal correlation in the wavefront, without assuming any form
of decoupling. The approach consists of a dedicated subspace-iden-
tification algorithm to identify an atmospheric disturbance model
from open-loop wavefront sensor data, followed by 2-optimal
control design. It is shown that in the case that the deformable
mirror and wavefront sensor dynamics can be represented by a
delay and a two taps impulse response, it is possible to derive an an-
alytical expression for the 2-optimal controller. Numerical simu-
lations on AO test bench data demonstrate a performance improve-
ment with respect to the common AO control approach.

Index Terms—Adaptive optics (AO), data-driven disturbance
modeling, optimal control, stochastic identification.

I. INTRODUCTION

ADAPTIVE optics (AO) is a technique to actively sense,
estimate, and correct the wavefront distortions introduced

in a light beam as it propagates through a turbulent medium.
It is used in ground-based astronomical imaging to overcome
the loss in resolving power caused by atmospheric turbulence.
Whereas atmospheric turbulence otherwise limits the angular
resolution to that of an amateur telescope, AO may enable the
recording of long-exposure images with resolutions close to the
diffraction limit. For large 8- to 10-m telescopes this may lead
to a 50 improvement in resolving power. The unprecedented
resolution forms an important stimulus for astronomy and gives
rise to many discoveries (see, e.g., [1]).

To explain the principle of AO, consider the AO system in
Fig. 1. When light from a star arrives at the outer atmosphere it
has a perfectly flat wavefront. However, space and time varying
optical path length differences caused by the turbulent mixing of

Manuscript received March 20, 2006; revised January 4, 2007. Manuscript
received in final form April 12, 2007. Recommended by Associate Editor
D. Gorinevsky. This work was supported by TNO Science and Industry, Delft,
The Netherlands.

K. Hinnen is with the Delft Center for Systems and Control, Delft University
of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (e-mail: k.j.g.
hinnen@planet.nl).

M. Verhaegen is with the Delft Center for Systems and Control, Delft Uni-
versity of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

N. Doelman is with the TNO Science and Industry, 26 AD Delft,
The Netherlands.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2007.903374

Fig. 1. Functional relationship between main components of an AO system.

air, disturb the wavefront before it arrives at the telescope. The
AO system uses a deformable mirror (DM) to actively control
the path length differences in the system. The incoming light
with an atmospherically distorted phase profile is directed
to the DM, which applies a phase correction . The re-
flected beam, with a residual phase error , is then
divided in two parts. The first part leaves the AO system to form
an image of the science object, while the second part is directed
to the wavefront sensor (WFS). The WFS provides quantitative
information about the residual wavefront. Based on the WFS
measurements , the controller has to determine the DM actu-
ator commands . The controller should adapt the DM shape
in such a way that it cancels out most of the distortions. For
an extensive overview of field of AO, the reader is referred to
[2]–[4].

This paper focuses on the control aspects of AO. A common
measure of the performance in AO is the Strehl ratio, which
is defined as the on-axis intensity of a point source relative to
that of the diffraction limit. Through the Marechal approxima-
tion [5], maximizing the Strehl is equivalent to minimizing the
mean-square error (MSE) of the phase. The AO control problem
can hence be formulated as finding the controller that minimizes
the mean-square residual wavefront. An important complication
is that the WFS is not able to directly measure the phase but
typically provides some measure of the slope of the wavefront.
The common way to deal with this discrepancy is to include a
separate wavefront reconstruction step. Given the reconstructed
wavefront, the problem of imposing the proper shape on the DM
is seen as a servo control problem. As a result, the majority of the
AO systems are based on a control law that consists of a static
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wavefront reconstruction step, the projection of the estimated
wavefront on the DM actuator space and a dynamic servo com-
pensator responsible for stability and closed-loop performance
[4], [6].

In the simplest case, the wavefront reconstructor and the DM
fitting matrix are obtained as the pseudo-inverse of the phase-to-
slope mapping and the DM influence matrix. Both maximum
likelihood and maximum a posteriori techniques have been used
to improve the estimate by incorporating prior knowledge on the
second order statistics of the spatial distribution of the wavefront
[4], [7]. The modified statistics due to closed-loop operation, are
often neglected. In designing the dynamic servo controller, it is
typically assumed that the control loop can be decoupled in a se-
ries of independent single-input–single-output (SISO) feedback
loops. Common servo controller structures include the leaky in-
tegrator, the proportional-integral (PI) controller and the Smith
predictor. The choice of the control parameters is a trade off be-
tween disturbance rejection, noise propagation, and closed-loop
stability. The higher the control bandwidth, the better the dis-
turbance rejection but also the higher the noise propagation and
risk of instabilities. In the modal control optimization approach
[8], [9], the wavefront is decomposed on a set of basis functions
and the gain of each mode is optimized separately.

Even though the common AO control strategy already does a
remarkable job, there is still a need for improvement. As pointed
out by Roddier [10], the compensation efficiency of large AO
systems is unduly low, and rather than focusing only on systems
with more sensors and actuators, it may be rewarding to search
for ways of improving the performance of current systems. It
is clear that the common AO control approach does not explic-
itly account for the temporal evolution of the wavefront and the
dynamics of the AO system, while the time delay between mea-
surement and correction is known to be one of the dominant
error sources [6], [11]. A promising way to reduce the effect of
the temporal error is to exploit the temporal correlation to an-
ticipate future wavefront distortions. In the spirit of modal opti-
mization, a modal linear predictive controller, whose parameters
are optimized by recursive least-squares, has been introduced
[11]. Since this approach assumes modal decoupling, it is still
not able to take full advantage of the spatio-temporal correlation
in the wavefront.

This paper presents a data-driven control design approach that
takes advantage of the spatio-temporal correlation. In contrast to
the previous approaches, it does not assume any form of decou-
pling between the spatial and temporal dynamics. The proposed
control design approach consists of two steps (block 1 and 2
in Fig. 2). In the first step, a dedicated subspace identification
algorithm is used to identify a multivariable atmospheric distur-
bance model on the basis of open-loop WFS data. The identified
atmospheric disturbance model is then used to compute the op-
timal controller by formulating the AO control problem in an

-optimal control framework. The -optimization problem
is equivalent to linear quadratic Gaussian (LQG) control design,
but provides a more elegant framework for formulating the dis-
crepancy between measurement and control objective. The LQG
framework has been used by Paschall and Anderson [12] to de-
sign an AO controller under the simplifying assumption that the
first 14 Zernike modes of the atmospheric wavefront distortions

Fig. 2. Flowchart of control strategy. This paper discusses the identification
and controller design steps (shaded box). To guarantee a good performance over
long time scales an updating scheme might be necessary (dashed lines).

can be described by independent first-order Markov processes.
Looze et al. [13] have used LQG to design a diagonal modal
controller based on an atmospheric disturbance model in which
each individual modes is described by an autoregressive moving
average (ARMA) model. The LQG control approach has proven
to be suitable for both classical and multiconjugated AO sys-
tems [14]. Since each of these LQG approaches assumes either
modal decoupling or uses only a first-order autoregressive (AR)
atmospheric disturbance model, they are not able to exploit the
spatio-temporal correlation imposed by for instance the Taylor
hypothesis [2], [4]. From the Taylor hypothesis, which states
that the atmospheric turbulence evolves at a time-scale much
longer than the time it takes for the inhomogeneities to cross
the line of sight, it is clear that the upper wind WFS channels
provide direct information on the future development of the tur-
bulence elsewhere in the aperture. Gavel and Wiberg [15], re-
cently proposed an optimal control approach which is explicitly
based on the Taylor hypothesis. A disadvantage of this approach
is that the Taylor hypothesis may only be partially satisfied in
practice.

The proposed control approach is sufficiently general to ex-
ploit the spatio-temporal correlation imposed by the Taylor hy-
pothesis, but does not depend on it. Furthermore, the data-driven
modeling approach has the advantage that it yields a good match
with the prevalent turbulence conditions and it does not require
accurate estimates of physical parameters like the wind speed of
the frozen layers. Apart from using a more general atmospheric
disturbance model, this paper shows that the special structure
of the AO control problem can be exploited in computing the

-optimal controller. In general, computing the optimal con-
troller requires the numerical solution of two Riccati equations.
Since the number of channels in an AO system is large, this may
be computationally demanding [13]. Due to the special struc-
ture of the identified disturbance model, in the worst case only
one Riccati equation needs to be solved. Furthermore, it will
be shown that in certain cases an analytical expression can be
derived.

The remainder of this paper is organized as follows. Section II
provides an accurate description of the AO control problem.
The subspace identification algorithm used to obtain a control-
relevant atmospheric disturbance model from open-loop wave-
front sensor data is considered in Section III. Given the identi-
fied disturbance model, Section IV considers how to compute
the -optimal controller using the special structure of the AO
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problem. Section V presents a validation study in which the per-
formance of the proposed control strategy is compared with the
common AO control law. The simulations are performed on the
basis of open-loop WFS data obtained from an AO test bench.
Section VI concludes this paper.

II. AO CONTROL PROBLEM

In this paper, it will be assumed that the phase distortion
profile over the aperture can be represented by a finite-dimen-
sional discrete-time vector signal. At each discrete time instant

, the uncorrected wavefront, the DM phase correction,
and the residual wavefront error are described by the vectors

, , and . Whether the
vectors provide a zonal or modal description of the wavefront is
irrelevant as long as its mean-square error provides a good ap-
proximation of the mean-square wavefront over the aperture. An
important complication in AO is that the wavefront distortion

cannot be measured directly. Only the WFS slope mea-
surements are available for identification and con-
trol. It is generally not possible to reconstruct the entire wave-
front from . To arrive at a well-posed control and identifi-
cation problem it is important to exclude the part of that
cannot be reconstructed. This is achieved by introducing a signal
of lower dimension.

The block scheme in Fig. 3 illustrates the relation between
the physical signals and their reduced counterpart. The reduced
representation is obtained by considering the WFS model

(1)

where is the cascade of a scalar linear time
invariant (LTI) system , which accounts for the WFS dy-
namics, and a geometry matrix , which describes
the optical transformation from phase to slopes. The additive
term represents the measurement noise and is assumed to
be zero-mean, white, and uncorrelated with . From (1), it is
clear that only the part of the wavefront that is in the row space
of can be reconstructed from . The part of that is in
the null space of does not contribute to and can hence
never be reconstructed. A reduced basis for the observable part
of can be obtained by considering the singular value de-
composition (SVD)

where and are orthonormal matrices and the partitioning of
is such that contains all nonzero

singular values. Substituting the SVD in (1) and premultiplying
both sides with , gives the reduced WFS model

(2)

where , ,
and . The signal can be inter-
preted as a filtered reduced representation of the observable part
of . This can be seen by noting that due to the orthogo-
nality of , can be decomposed as

. Whereas the first term has a direct influence on
, the second term does not contribute as it lies in the null-

Fig. 3. Block scheme of closed-loop AO system. The dashed lines denote the
borders between physical signals and the reduced signals.

space of . Furthermore, it is clear that the signals
and have the same 2-norm. Hence, can be regarded as
a reduced representation of the informative part of , while

denotes the measurement noise in the range space of .
The part of that is not in the range space of can never be
caused by the wavefront distortions and is removed by the pro-
jection . Since is generally tall, the reduced representation
leads to a reduction of the dimension of the signal that has to be
modeled.

In accordance with the previous definitions, the reduced rep-
resentation of the applied phase correction and residual phase
error are defined as and

. Linearity of the WFS implies that the reduced WFS
signal corresponding can be expressed as

, where and denote the contributions due to
atmospheric turbulence and the DM. It will be assumed that the
relation between the actuator inputs and the DM
wavefront correction , can be described by a LTI
system with state-space realization

(3)

The absence of a direct feed-through term in the DM model is
not restrictive as there is always at least one sample delay be-
tween measurement and correction. Without loss of generality
this delay can be included in the DM model. Furthermore, note
that by the definition of the WFS dynamics are im-
plicitly included in the DM model. Because of this, (2) is free
of any dynamics. The reason for this choice will be discussed
after defining the cost function in (5).

Optimizing the AO system performance requires accurate
knowledge of the statistical properties of the uncorrected wave-
front. The basic assumption in this paper is that the uncorrected
wavefront , and hence also , can be modeled as a
regular process. This is to say that the second-order statistics of
these signals are modeled as the output of an LTI system with
a zero-mean white noise input. The assumption of stationarity
is implicit in most AO literature and the proposed control
strategies are typically not able to respond to changes in the
turbulence statistics. An exception to this is formed by the
class of adaptive control approaches to AO (see, e.g., [16]).
Modeling the wavefront distortions as a regular stochastic
process is reasonable on sufficiently short time-scales as the
statistical properties of the turbulence evolve much slower than
the wavefront fluctuations themselves. To guarantee a good
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performance over longer time periods, it is necessary to update
the disturbance model on a regular basis. This represented
schematically by the update loop in Fig. 2. Such a model
updating scheme can for instance be used to deal with gradual
changes in the wind speed and wind direction. Fast changes,
like wind gusts, on the other hand can only be accounted for in
a stochastic setting by regarding them as a part of the stochastic
distortion. In fact, wind gusts may be seen as one of the driving
forces of atmospheric turbulence.

Without loss of generality, it will be assumed that the atmo-
spheric disturbance model is in innovation form [17] with re-
spect to . This in combination with (2) gives rise to the
model structure

(4)

where and are
stable, and is a zero-mean white process
with covariance . Also, the signal

is zero-mean and white. Its covari-
ance and cross-covariance with , respectively, are denoted
by and . The
atmospheric disturbance model is assumed to be minimal in the
sense that output signals cannot be described by an LTI model
of order less than . In this way, provides a minimum-phase
spectral factor of the stochastic process , which will appear
to be a very useful property in computing the optimal con-
troller. Note that since the atmospheric disturbance model is in
innovation form with respect to , the innovations process

incorporates both the effect of atmospheric turbulence
and measurement noise. From the WFS model (2), however, it
is clear that by the definition of , the signal becomes
independent from the measurement noise , as it should.

The problem considered in this paper can be divided into two
parts. Given a batch of open-loop WFS observations

, the first subproblem is to estimate the system matrices
, , and . This

part of the problem is referred to as the stochastic identification
problem. After identifying the system matrices of , the second
subproblem is to find the optimal controller that minimizes
the cost function

(5)

where is a regularization matrix which makes a
tradeoff between the expected mean-square residual phase
error and the expected amount of control effort

. By increasing the control effort weighting it
is possible to reduce the amount of energy dissipated by the DM
and make the controller more robust to model uncertainties.
The matrix will be typically chosen diagonal, allowing for a
penalty on the control effort on each of the actuators separately.
Furthermore, it is important to recall that signal has been
defined in such a way that it incorporates the WFS dynamics

. Minimizing the first term of (5) is therefore equivalent
to minimizing the mean-square error of the observable part
of the filtered signal . Even though it is possible to

explicitly account for the WFS dynamics in the definition of
cost function, this is usually not sensible because the WFS
usually has low-pass characteristics. This implies that the WFS
dynamics mainly distorts the high frequency region of , while
the turbulence is dominant at the low frequencies. Moreover by
inverting the WFS dynamics one risks the chance of high-fre-
quency noise amplification.

III. DATA-DRIVEN DISTURBANCE MODELING

In this section, we present a dedicated subspace identification
algorithm that is able to deal with the stochastic identification
problem. Based on open-loop WFS data , the algorithm pro-
vides a full atmospheric disturbance model , without assuming
any form of decoupling between the channels. A consequence
of this extensive description is that even for small AO systems
a huge identification problem has to be solved. Computational
efficiency is therefore an important issue.

Based on numerically robust matrix operations, subspace
algorithms bypass the need for model parameterization and
nonlinear optimization. This is an important advantage over
the more traditional maximum likelihood and prediction error
methods [18], which rely on the optimization of a cost function
of model parameters. Apart from the risk of ending up in a local
minimum, the computational complexity of these algorithm
grows rapidly with the number of parameters. This is especially
a problem in the multivariate case where the mapping from each
input to each output is often parametrized independently. With
subspace identification, the multivariate case can be handled
within the same framework.

The subspace identification algorithm presented in this paper
is basically an efficient output only implementation of the
SSARX algorithm [19]. In analogy with the name SSARX,
the new algorithm will be called SSAR. An important ad-
vantage of the algorithm is that it provides a direct estimate
of the state-space matrices of the minimum-phase spectral
factor. Most subspace identification algorithms for stochastic
identification, are based on a two-step procedure where the
minimum-phase spectral factor is obtained after the factoriza-
tion of some intermediate estimate. Apart from the fact that
such a two-step procedure is computationally more complex,
it has the disadvantage that the spectral factorization might fail
to have a solution. The class of subspace algorithms that first
estimate a rational covariance model [20] is an example of this.
As demonstrated in [21], the spectral factorization problem
has only a solution when the rational covariance model is
positive real. The SSAR algorithm avoids the need for spectral
factorization by directly estimating the system matrices of the
Kalman predictor model. The minimum-phase requirement is
translated to a stability requirement on the system matrices of
the Kalman filter and the minimum-phase spectral factor. This
requirement can be easily checked and if necessary enforced
by using the Schur restabilization procedure in [22].

In estimating the state sequence, the proposed subspace algo-
rithm uses a weighting scheme that differs from SSARX. In this
way, a single factorization of a stacked block-Hankel ma-
trix of past and future data can be used both for computing the
required AR coefficients and for data compression. This leads to
an efficient implementation both in terms of the number of flops
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and the memory requirements. Before providing a detailed de-
scription of SSAR, the SSARX algorithm in [19] will be briefly
reviewed. This will prove to be valuable for explaining the al-
gorithm and in outlining the difference with an output only im-
plementation of SSARX.

The SSARX algorithm is based on an alternative representa-
tion of the stochastic process . Consider the sto-
chastic disturbance model (4). By using the output equation to
eliminate the noise input from the state-update
equation, the stochastic process can be represented as

(6)

where , , and where is de-
fined as to achieve uniformity in notation. The pre-
vious representation of can be seen as the Kalman predictor
model corresponding to (4). Furthermore, it is clear that the min-
imum-phase requirement on the stochastic disturbance model is
equivalent to demanding that is asymptotically stable. Let the
vectors of past and future outputs and future innovations be de-
fined as

with some user defined parameters, whose selec-
tion will be discussed later on. Then, by iteratively applying the
state-update equation in (6), it can be shown [19], [23] that if
is sufficiently large, the state can be approximated as

(7)

where the matrix is defined as

(8)

Here, it should be noted that the ordering of the output data in
the vector of past observations differs form the one
used in [19]. While in the previous definition all observations are
ordered forward in time, the vector of past observations in the
original presentation of SSARX is ordered backward in time.
This will appear to be advantageous in achieving an efficient
implementation. Furthermore, by using (6), the past and future
outputs can be related as

(9)

where the extended observability matrix and Toeplitz matrix
of Markov parameters are defined as

...

. . .
...

. . .
. . .

...

(10)
Consider the state estimate in (7) and the relation between past
and future outputs (9), then the SSARX algorithm consists of
the following steps. In the first step, a high-order AR model is

estimated from the data to get an unstructured estimate of the
Markov parameters for . The esti-
mated Markov parameters are then used to construct an esti-
mate of . In the next step, the estimate is used to define
the signal . Together with the definition

, the approximation of obtained by substituting
(7) in (9) can be expressed as

(11)

This equation can be viewed as a low rank linear regression
problem in and is used to obtain an estimate of . The least
squares estimate of , in the sense that it minimizes the con-
ditional expectation of the mean-square error between and

, is given by , where is the cross-cor-
relation matrix between and and is the cor-
relation matrix of . Given only a finite data set, the
correlation matrices are approximated by their finite sample es-
timates and , with

(12)

and defined accordingly. This gives rise to the following
approximation of . An estimate of the row space
of can now be obtained by factorizing . This is achieved
by computing the SVD

(13)

where and are orthonormal matrices, is a diagonal ma-
trix composed of the singular values arranged in nondecreasing
order, and and are nonsingular weighting matrices. The
estimate of , up to a similarity transformation , is then given
by , where is the matrix composed of the
first columns of . In SSARX the row-space of is esti-
mated by performing a canonical correlation analysis (CCA) on
the signals and . This is equivalent to choosing
the weighting matrices as and . These
weighting matrices have the nice statistical property that they
lead to the maximum likelihood estimate for a Gaussian linear
regression problem with a rank constraint on the coefficient ma-
trix [23]. The next step of SSARX consists of substituting the
estimate of in (7) to obtain an estimate of the corresponding
state sequence . By replacing the true state with the esti-
mate , the system matrices can now
be estimated by finite linear regression in the state space (6).
Here the term finite linear regression refers to the linear regres-
sion problem obtained by replacing the conditional expectation
by finite sample estimates, as was done to obtain . In this way,
an estimate of the system matrices and is obtained by re-
gressing on and . Likewise, the system matrix

is estimated by regressing on .
To arrive at an efficient implementation of the proposed algo-

rithm, the data equations are expressed in terms of block Hankel
matrices. Given samples of the vector of past or future out-
puts , is defined as
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where the first entry of the subscript refers to the time index of
its top left element, the second refers to the number of block
rows, and the third refers to the number of columns. Using
the same notational convention, the block Hankel matrix con-
structed from the vector of future innovations will be de-
noted by . By stacking time-shifted versions of (9), the
equivalent data equation can be expressed as

(14)

Recall that the first step in the SSARX algorithm is to iden-
tify a high-order AR model to get an unstructured estimate of
the Markov parameters . An important
observation is therefore that (14) is nothing but the stacked out-
puts of an AR model. This implies that if the AR model order is
not too high, the problem of identifying the Markov parameters
can be conveniently expressed in terms of the block Hankel ma-
trices in the above equation. By selecting the right block rows,
the block Hankel matrices in (14) contain sufficient informa-
tion for identifying an AR model of order . However,
since exploratory experiments show that for the considered type
of data the choice of the AR model order has no or little influ-
ence on the overall performance, it will be chosen as small as
possible for efficiency reasons. The order of the AR model will
therefore be chosen , which is the minimal amount needed
to construct . The problem of identifying the AR coefficients
can hence be formulated as

(15)

where denotes the Frobenius norm and where, in accor-
dance with (8), the matrix is composed of the first
Markov parameters. The coefficient matrix that solves
the previous optimization is known to be given by

(16)

where denotes the pseudo-inverse. Since the matrices
and correspond to the last and first

block rows of , respectively, the problem of identifying
the Markov parameters can be completely expressed in terms
of the data block Hankel matrices in (14).

Also, the problem of determining an estimate of can be
conveniently formulated in terms of the data block Hankel ma-
trices. By comparing the definitions of the block Hankel and in
(12), it is clear that the finite sample estimate of the correlation
matrices and can be expressed as

(17a)

(17b)

With the correlation matrix expressed in a similar way,
the previous equations could be used to compute the matrix

for CCA weights and defined before. In-
stead of proceeding in this way, the proposed SSAR algorithm
uses a different set of weights. More specifically, the weighting
matrices are chosen as and ,
which corresponds to the weighting scheme used by the MOESP

class of subspace algorithms [24]. This choice is motivated by
the desire to reduce the computational complexity. Even though
the CCA weighting scheme might be more attractive from a
statistical point of view, it involves the additional step of com-
puting the inverse square root of the estimated correlation matrix

. For the MOESP weighting scheme, explicit computation
of square root matrices can be avoided by using a square root
implementation based on a single factorization of the block
Hankel matrices. This will be made more explicit in Theorem 1.
Considering the new weights, the matrix as defined in (13)
becomes equal to . By substituting
the finite sample estimates (17a) and (17b), this gives rise to

(18)

The corresponding estimate of the extended controllability ma-
trix, , can be expressed as

(19)

Given the estimate of the extended controllability matrix ,
the remaining steps of proposed subspace identification algo-
rithm are to reconstruct the approximate state sequence

, from which the system matrices are esti-
mated by finite linear regression in the state-space equations.
By selecting the right block-rows, also the finite linear regres-
sion step can be conveniently expressed in terms of the data
block Hankel matrices and . Using the same no-
tational convention as for the data block Hankel matrices, the
sequence of reconstructed states can be expressed as

. Likewise, the sequence of time-shifted states is given
by . From (6), it is clear that the finite
linear regression problem used to estimate the system matrices

and from the reconstructed state sequences and
, can formulated as

(20)

In the same way, the estimate of the system matrix obtained by
regressing on can be expressed as the minimizing
argument of the least squares optimization problem

(21)

The previous least squares optimization problems and recon-
structed state sequences and , give rise to the
following estimate of the system matrices , , and

(22)

(23)

The obtained estimate of the triple and the singular
values of the geometry matrix, specify the system matrices of
atmospheric disturbance model . By applying the definitions
of , , and it is possible to explicitly compute , , and

. As will be demonstrated in Section IV, this last step is not
always necessary for computing the controller.
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The different steps of the subspace algorithm have all been ex-
pressed in terms of the data block Hankel matrices and

. Even though these expressions provide a way to esti-
mate , , and , this is computationally not attractive since
the number of columns in the data block Hankel matrices is typi-
cally very large. However, due to specific choice of and ,
the solution to each of the subproblems can be computed from
the lower triangular factor of the stacked data block Hankel
matrix . Since the approach avoids the explicit com-
putation of the square root matrices in (18) it will also improve
the numerical robustness. The precise relation between each of
the steps of the subspace algorithm and the factor of the data
block Hankel matrix is summarized in Theorem 1. The use of
a factorization to improve the computational efficiently of
subspace algorithms is by no means new and has been proposed
before in [24].

Theorem 1 (SSAR Via Factorization): Given a signal
, consider the economy size factorization of

the block Hankel matrix

...
...

. . .
...

(24)

where the and factor are partitioned in accordance
with the partitioning of the block-rows of and

. Furthermore, let the matrices and
be defined as in (18) and (19). Then the estimates in (16),

(22), and (23), can be characterized in terms of the factor
only.

1) The solution to optimization problem (15) is given by

2) Let denote the matrix obtained by replacing in
(10) by the th block column of the estimate ,
then

where contains the right singular vectors corre-
sponding to the largest singular values of .

3) Given and , the solutions to the optimization prob-
lems (20) and (21) can be expressed as

Proof: To proof the first statement, note that
and can be expressed in terms of the submatrices
of (24). Substituting these expressions in (16) and using the or-
thonormality of the -factor gives the desired result.

The second and third statement can be proved in a similar
way. The matrices and are expressed in terms

of the submatrices of factorization (24) and the resulting
expressions are substituted in (18) and (19). Using the orthogo-
nality of the -factor leads to the given expressions for and

. The condition guarantees that has
at least right singular vectors.

In proving the third statement, , , and
are expressed in terms of the factor and the result

is substituted in (22) and (23). Again, due to the orthogonality
the -factor drops out. Substituting the expression for in
the pseudo-inverse term finally finishes the proof.

The previous theorem shows that the entire SSAR algorithm
can be characterized in terms of the factor of the block Hankel
matrix and that there is no need to actually compute

. Since the computation of is the only operation performed
directly on the data block Hankel matrices, it has a large influ-
ence on the overall computational efficiency of the algorithm.
To arrive at an efficient implementation, the factor is com-
puted by using the fast algorithm described by Mastronardi et
al. [25]. Especially for large matrices, this algorithm is far more
efficient than a standard decomposition based on House-
holder transformations, as it is able to exploit the block Hankel
structure in .

The choice of the user defined parameters and is a difficult
issue in subspace identification [26]. In the SSARX algorithm,
it is assumed that and are always chosen strictly larger than
the system order . With the stochastic disturbance model (4)
being a minimal representation of the stochastic process, this
is a sufficient condition to ensure that the matrix
has rank and can be factorized to find an estimate of the
extended controllability matrix . For multivariable systems,
the requirement may be overly conservative. As
will be demonstrated by the numerical validation experiments
in Section V, it may be useful to choose and much smaller
than . The parameters should, however, be chosen sufficiently
large to guarantee that the rank of the matrix is larger than the
order of the identified disturbance model. A thorough consis-
tency analysis of both the SSARX and the proposed algorithm
is still a topic for future research.

IV. COMPUTING THE OPTIMAL CONTROLLER

Given the WFS model (2), the DM model (3) and the at-
mospheric disturbance model (4), this section considers how
to compute the controller that minimizes cost function (5). To
this end, the AO control problem will be first formulated in a

-framework. Even though this approach is very general, it is
unable to exploit the structure in the AO problem. Computing
the -optimal controller generally involves the need to solve
two Riccati equations. By transforming the AO control problem
in an equivalent feedforward problem, it will be shown that
due to the minimum-phase property of the disturbance model
at least one of the Riccati equations can be avoided. Further-
more, it will be shown that if the DM and WFS dynamics can
be modeled as a delay and a two taps impulse response, an an-
alytical expression can be derived. This is attractive from both
the viewpoint of computational efficiency and numerical robust-
ness. Since the poles of the atmospheric disturbance model typ-
ically cluster in the neighborhood of the point , standard
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Fig. 4. Block-diagram of AO system in generalized plant representation.

Riccati solvers [27] may suffer from convergence problems and
increased numerical sensitivity. Moreover, the analytical solu-
tion provides more insight in the relation with the common AO
control approach.

Consider Fig. 4, which provides a schematic representation
of the AO control problem in the so-called generalized plant
framework. The generalized plant , indicated by the shaded
block, is assumed to have a zero-mean white noise disturbance
input with unit covariance . The ex-
ogenous disturbance inputs and to the atmospheric
disturbance model , however, are zero-mean and white, but
are not uncorrelated and do not have unit covariance. To fit the
AO control problem in the generalized plant framework, the
atmospheric disturbance model is preceded by the static
input weight , which generates the signals and
with the proper covariance and cross-covariance matrices out of

. The input weight should hence be equal to the square
root covariance matrix of the signal obtained by stacking
and . To compute this weight , note that the measurement
noise should be uncorrelated with the wavefront distor-
tions and the state vector . By multiplying the second
output equation in (4) from the right by and substituting
the definition of , we can, therefore, write

where and . From
the above equation we infer that , which gives rise to
the following cross-covariance matrix

In the same way, the covariance matrix can be expressed as
. From these expressions, we infer

that the weighting matrix can be chosen as

(25)

where

and

Note that since is assumed to be minimal and is
nonsingular, has full rank and defines a bijective mapping.
Furthermore, because is upper triangular, the weighting
preserves the minimum-phase property of .

As depicted in Fig. 4, the performance output of the general-
ized plant is defined as .
For this choice, the MSE of is equal to cost function (5).
Let be partitioned in accordance with the partitioning of
the input and output signals, and let the corresponding transfer
functions be denoted by , , , and .
Then by Parseval’s theorem, the MSE of is equal to the

-norm of the closed loop transfer function

This implies that the AO control problem reduces the standard
-optimal problem of finding the controller that mini-

mizes the -norm of . By combining the models of
the WFS, the DM, the atmospheric disturbance model, and the
input weighting, the can be expressed as

- - - -

- - - - - - - - - - - - - - - - - - - - - -

- -

From the previous discussion, it is clear that the AO control
problem can be solved by applying standard -optimal control
theory (see [28] and [29]) to the previous state-space realization.

In order to exploit the structure in the AO control problem,
however, a different strategy will be used. To this end, the AO
control problem is transformed to an equivalent feedforward
problem, which is then solved by using causal Wiener filtering.
This strategy is known as the internal model control (IMC) ap-
proach [30]. Since the WFS and DM mirror models are assumed
to be known, the open-loop wavefront signal can be recon-
structed by subtracting the influence of the DM on the measured
WFS signal , i.e., . In this way,
it is possible to open the feedback loop and replace the original
control problem by that of finding the optimal feedforward con-
troller . Fig. 5 provides a block-diagram of
the equivalent feedforward problem. As can be easily verified,
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Fig. 5. Block-scheme of equivalent feedforward AO control system.

the feedforward controller and feedback controller
are related in the following way

(26)

For stable , the class of stable parametrizes all stabi-
lizing closed-loop controllers . This parameterization is the
so-called Youla parameterization [31]. Considering the perfor-
mance output of , it follows from the Parseval theorem
that the relation between the cost function (5) and the -norm
of the open-loop transfer function is given by

(27)

where denotes the open-loop transfer function from
to . Given the transfer functions , , and

, the solution to the problem of finding the optimal feed-
forward controller that minimizes is given by the causal
Wiener filter summarized in Lemma 1. If is
invertible, the optimal feedback controller can be com-
puted from the Youla parameterization (26).

Lemma 1 (Causal Wiener Filter [32]): Let , and
be strictly stable rational transfer functions, and assume

that and do not loose rank . Then the
feedforward controller that minimizes (27) is given by

(28)

with the causality operator, the
inner-outer factorization of , the
outer-inner factorization of , and the pseudo inverse.
Here is an inner-outer factorization of
if and are strictly stable, and
has a stable right inverse. Likewise, is an
outer-inner factorization of if and are strictly
stable, and has a stable left inverse.

As demonstrated in [32], the inner-outer and outer-inner fac-
torizations of and can be both expressed in terms
of the solution of a Riccati equation. This implies that also
the approach of computing the optimal feedback controller via
Wiener filtering generally involves the need to solve two Riccati
equations. More specifically, the Riccati equation encountered
in computing the outer-inner factorization of is equal to the
one encountered in determining the state observer in the LQG or

-optimal control setting. The Riccati equation encountered

in computing the inner-outer factorization of , on the
other hand, can be associated with computing the state-feedback
gain. Due to the special structure of the atmospheric disturbance
model, however, it is possible to directly give a valid outer-inner
factorization of . The state-space realization of
is given by

(29)

Since the atmospheric disturbance model is in innovation form
and is nonsingular, is minimum-phase. This implies
that the outer factor can be chosen equal to the transfer function
itself, i.e., . As a result, the outer-inner factor-
ization of does not need to be computed and the cor-
responding Riccati equation drops out. Note that this can also
be understood from a -optimal control perspective. Since the
Kalman gain is already known, no Riccati equation has to
be solved to determine the state-observer.

Like , the state-space realization of can be
immediately read off from the atmospheric disturbance model
(4) and the derived input weighting (25), i.e.,

Furthermore, it follows from the choice of the performance
output that . The previous
state-space realizations of , , and the outer-inner factor-
ization of can be used to compute the optimal controller

. Instead of considering the general DM mirror (3), it is
interesting to focus on the case where the DM can be consid-
ered as approximately static. Since the bandwidth of the DM is
usually much larger than the control bandwidth [14], this is a
reasonable assumption for a large class of AO systems. When
the DM settling time can be neglected with respect to the WFS
exposure-time, the dynamics of transfer function from to

are completely determined by the zero-order hold (ZOH)
nature of the digital-to-analog conversion, the integrating action
related to the finite exposure-time of the WFS and the time
delay caused by data acquisition and processing. With the WFS
exposure-time being smaller than the sampling time , this
implies that the DM, including the WFS dynamics , can be
modeled as

(30)

where , denotes the number of samples pure delay,
and the DM influence matrix. Since there is a
finite delay between measurement and correction, the condition

should always be satisfied.
Considering the previous DM model structure, it is possible

to derive an analytical expression for the optimal controller
. To this end, note that since is time-invariant each of

the channels of can be delayed by an integer number of
samples without modifying the cost function. By introducing a

-samples delay in the channels that correspond to the control
effort, i.e., , all channels of

are delayed by the same amount so that the delay
can be factored out. As can be easily verified, this gives rise to a
valid inner-outer factorization of for . A similar
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strategy can be followed for . Since the cost function
is not influenced by an all-pass filter, the all-pass filter that
contains the non-minimum-phase zero of can be factored
out. This leads to the following factorization:

for

for .

The derived expressions for the inner-outer and outer-inner fac-
torizations of and , can be used to compute the
optimal feedback controller via Lemma 1 and the Youla param-
eterization (26). This leads to the following theorem.

Theorem 2 (Optimal Control Quasi-Static DM): Let the sig-
nals and be characterized by the regular stochastic
process (4) with . Furthermore, assume that the DM
(including the WFS dynamics) can be modeled as (30) and that
either or has full column rank (i.e., is left
invertible). Then the optimal feedforward controller that
minimizes (5), is given by

(31)

where the matrices , , and are defined as
, , and , and where

for

otherwise
(32)

with

for
for

can be interpreted as a regularized left pseudo-inverse of
the influence matrix . Furthermore, let the matrices
and be defined as and

. Then the corresponding optimal
feedback controller has a state-space representation which
can be seen in the equation at the bottom of the page.

Theorem 2 provides an analytical solution to the AO optimal
control problem in case the DM model and the WFS dynamics
can be described by (30). Given the matrix composed of the
nonzero singular values of and the DM influence matrix ,

Theorem 2 can be used to compute the optimal controller from
the system matrices , , and . This in combination with the
proposed subspace identification algorithm gives rise to a direct
and noniterative way to go from open-loop measurement data
to closed-loop controller design. The resulting closed-loop con-
trol design procedure is entirely based on standard matrix op-
erations. Note that due to the presence of the samples
delay in the state-update equations for , the optimal feedfor-
ward and feedback controllers in Theorem 2 are effectively of
order .

To obtain more insight in the structure of the analytical ex-
pressions of the optimal controller, it is useful to consider the
case where the combined DM and WFS dynamics consists of
a pure delay, i.e., . Physically this situation can
be achieved by accurate synchronization of the DM digital-to-
analog converters and the WFS exposure time. When the DM
settling time is negligible and the digital-to-analog converters
are synchronized in such a way that the ZOH output does not
change during the CCD exposure time, the only dynamics that
are left is a pure delay. The expressions for the optimal con-
troller in this case are immediately obtained from Theorem 2
and are summarized in Corollary 1.

Corollary 1 (Multiple-Sample Delay): Consider an AO
system where the only dynamics exhibited by the WFS and DM
is a number of samples delay, i.e., . Furthermore
assume that the conditions in Theorem 2 are satisfied, then the
optimal feedforward controller is given by

(33)

Furthermore, the optimal feedback that internally stabi-
lizes has a state-space representation

where and are defined as in Theorem 2, and reduces to

the expression .
The state-space (33) for allow for a nice physical inter-

pretation. To make this clear, consider the atmospheric distur-
bance model (4) and let denote the conditional mean
of given the past open-loop WFS data .
By using the output equation to eliminate , the conditional
mean at the next sample can be expressed as
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. From this, it is clear that the state in (33)
can be interpreted as . In fact, the state corresponds
to the state in the Kalman predictor model. The unpredictability
of the white noise causes the optimal prediction of future
states to be obtained by iterating (4) with [33]. This
gives rise to the state estimate . By
comparing this with the output equation of , it is clear that
the control signal can be expressed as .
With being the conditional mean of the state of the
atmospheric disturbance model (4),
can be interpreted as the conditional mean of given
the past open-loop WFS data . On the other hand,

can be seen as a regularized version of the pseudo-inverse
of the DM influence matrix and provides a projection of the
estimated phase on the DM actuator space. This
demonstrates that the optimal feedforward controller de-
composes in a multiple step ahead predictor, which is concerned
with estimating the uncorrected wavefront , and a static
matrix projection. This can be well understood in the context of
the feedforward control problem in Fig. 5. Since the feedfor-
ward and feedback control problems are equivalent through the
Youla parameterization, the interpretation of the structure of the

can be extended to the feedback case. For this reason, the
state of the optimal feedback controller can be seen as the
conditional mean given the closed-loop WFS mea-
surements .

The previous interpretation can be used to obtain more insight
in the structure of the optimal controller in the more general case
that the DM model and WFS dynamics are described by (30). To
this end note that the first state-update equation in (31) and the
state-update equation in (33) are equal. This implies that
can still be interpreted as the conditional mean of the
state . Furthermore, since the second state-update equation
is equal to the output equation, it is clear that the state
is equal to the control signal . Using the previous interpre-
tations, the output of the optimal controller in Theorem 2
can be expressed as

(34a)

(34b)

This shows that the optimal controller still consists of a part that
is concerned with estimating but that the static pro-
jection has been replaced by a dynamic filter. The dynamic
filter makes a tradeoff between the problem of inverting the un-
delayed part of the DM model and the problem
of minimizing the control effort. This can be easily seen for the
case that and . For this specific case

, so that the dynamic filter reduces to , which
is precisely the inverse of . Due to the equivalence
between the feedforward and feedback control problem, also the
output of can be expressed as in (34a), where the condi-
tional mean is now determined on the basis of the
closed-loop WFS measurements .

V. SIMULATION RESULTS

The closed-loop control design approach obtained by com-
bining the subspace algorithm and the analytical solution to the

-optimal control problem, has been validated on the basis of
open-loop WFS data obtained from an AO test bench.

In the simulation experiments, the performance of the pro-
posed control strategy is compared with a control approach
commonly used in AO. Before discussing the simulation ex-
periments, the common AO control approach will be briefly
summarized. For conformity with the rest of the paper, this
discussion will be in terms of the reduced signals introduced in
Section II.

The common AO control approach consists of the cascade of
a static matrix multiplication and a series of parallel feedback
loops [4]. Given a new WFS measurement , the static part
is concerned with the problem of finding the DM actuator inputs

that would provide the best fit to the wavefront. In this step,
the temporal dynamics of both the wavefront disturbance and
the AO system are neglected. This is to say that DM is modeled
as while the WFS is described by the static
WFS model obtained by setting in (1). Considering
the static relation , the problem of finding the
matrix that provides the best fit to the wavefront can now be
formulated as

(35)

where denotes the -norm and is the conditional ex-
pectation given the WFS measurement . Let the covari-
ance matrices of the measured wavefront and the mea-
surement noise be defined as and

, respectively. Then, under the assump-
tion that and are uncorrelated and , the
maximum a posteriori estimate of is given by

where denotes the measurement noise variance. The signal
computed from the reconstruction process cannot be used

directly as the control signal. Since the AO system is oper-
ated in closed-loop, the WFS measures the residual wavefront

instead of . This implies that the
signal obtained from the static reconstruction
provides only an estimate of the correction that has to be applied
to current actuator commands. The parallel feedback loops are
responsible for stability and closed-loop performance and have
to posses integrating action to overcome this shortcoming. In
this paper, the following controller has been used for perfor-
mance comparison:

(36)

where and are user defined control parameters.
As usual, the change in due to closed-loop operation is ne-
glected in the common AO control approach.

The proposed data-driven -optimal control approach has
been validated for the case that the DM and WFS are static
up to a unit-sample delay, i.e., . The open-loop
WFS data used in the simulation experiments have been ob-
tained from an AO test bench. The AO test bench uses a turbu-
lence simulator consisting of a circular glass plate that is rotated
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through the optical beam, emulating a single layer of frozen tur-
bulence satisfying the Taylor hypothesis. One side of the glass
plate has been machined to introduce wavefront distortions with
a Kolmogorov like spatial distribution characterized by a
of 5, where 10 mm is the diameter of the simulated tele-
scope aperture and denotes the Fried parameter [2]. The glass
plate is rotated with such a speed that the Greenwood frequency
of the distortions is 0.95 Hz. Since the temporal error
scales as [2], the AO test bench has the same
temporal error as an AO system with a sample frequency of
296 Hz and a Greenwood frequency of 11.25 Hz. The
open-loop WFS data are recorded by using a Shack-Hartmann
WFS with an orthogonal micro-lens array. After aligning the
setup, 53 micro-lenses are illuminated sufficiently to be used
for wavefront sensing. This gives rise to a WFS signal
of dimension . The geometry matrix in the sim-
ulations was defined defined according to the Fried geometry.
Considering this matrix, has a dimension of

. All simulations are performed on the basis of 10
samples collected at a sampling rate of 25 Hz. The collected
data set is divided into two parts. The first 8000 samples
are used to identify the atmospheric disturbance model, while
the remaining 2000 samples are reserved for performance
evaluation.

Two simulation scenarios have been elaborated. The first
scenario consists of closed-loop simulations with an ideal
DM. Here, the term ideal refers to a hypothetical case that
the DM is able to take the shape of the estimated wavefront
without introducing a fitting error. This means that the DM
influence matrix is assumed to have full row rank. The
ideal DM should therefore have at least as many actuators as
independent WFS channels, i.e., . Even though this
condition is hardly ever satisfied, it is interesting to consider
as it provides a better insight in error sources other than the
fitting error. Note that from the physical interpretation of the
optimal controller in Section IV it is clear that in this case the
residual phase error is equal to the wavefront prediction error,
i.e., . The second simulation scenario
considers a more realistic DM model. In this case, the DM
model is obtained by identifying the influence matrix of the
DM used in the test bench. This is a 37-actuator electrostatic
membrane mirror (i.e., ) provided by OKO tech-
nologies, The Netherlands. The mirror is operated around an
offset and is linear with the applied voltage squared. The DM
influence matrix has been estimated from a least squares fit
on the reconstructed wavefront data obtained by measuring the
steady state WFS response to a set of predefined inputs .
In the simulation experiments, the performance of the proposed
control design strategy has been compared with the common
AO control law in (36). The control parameters and have
been tuned so as to optimize the cost function, which resulted
in the values and . The covariance matrix

has been computed by assuming a perfect Kolmogorov
spatial distribution with a Fried parameter satisfying the
specification of the turbulence simulator. The variance of the
measurement noise has been estimated by computing the
variance of the WFS measurements for a static wave-
front distortion generated by the turbulence simulator.

Fig. 6. Normalized averaged power spectrum P (!) residual wavefront for
closed-loop simulations with an ideal DM.

In testing the proposed control design strategy, the number of
block-rows and used in the subspace identification step has
been chosen equal to 15. These parameters are used to identify
an atmospheric disturbance model of order . The
control-effort weighting in cost function (5) is neglected in the
simulations by choosing .

In evaluating the performance of the controller, two different
performance measures have been computed on the basis of the
simulated residual phase error for . The
first performance measure can be interpreted as a normalized
version of the mean-square residual error and is defined as

The performance index provides a quantitative measure of
the total reduction in the mean-square residual phase error and
is independent of the scaling of the wavefront. Furthermore, to
obtain some more insight in the temporal dynamics of the con-
troller it is useful to consider the normalized averaged power
spectrum of the residual phase error

where is the estimated power spectral density of the
th component of the residual wavefront , evaluated at .

is computed as the Welch averaged periodogram with a
window size of 256.

Figs. 6 and 7 show the normalized averaged power spectra
of the residual phase error obtained in the closed-

loop simulations. The power spectrum obtained with the optimal
control approach and the ideal mirror is approximately white.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:18:24 UTC from IEEE Xplore.  Restrictions apply. 



HINNEN et al.: DATA-DRIVEN -OPTIMAL CONTROL APPROACH FOR AO 393

Fig. 7. Normalized averaged power spectrum P (!) residual wavefront for
closed-loop simulations with realistic DM model.

This means that, at least on average, there is no temporal cor-
relation in the residue that can be used to further improve the
performance of the controller. The residue obtained with the
common AO control law on the other hand has a strong col-
oring and shows that there is still plenty of room for improve-
ment. From the power spectra, it is already clear that the residual
phase error obtained with the optimal control approach is much
smaller than with the common AO control approach. This is con-
firmed by the performance index . The value of obtained
in the simulations with the ideal DM are
for the common control approach and for
the optimal control approach. This is a reduction of 53.5%. The
corresponding values for the simulations with estimated influ-
ence matrix of the AO test bench mirror are
and , which corresponds to a reduction of
38.6%. The simulations show that the performance improve-
ment for the simulation with the estimated DM influence ma-
trix is much smaller. Since both simulations differ only in the
DM influence matrix, it is clear that in the second scenario the
DM fitting error is the limiting factor. As the DM fitting error
is not influenced by the controller, it is to be expected that an
AO system can only benefit from an advanced control strategy
if the DM fitting error is small compared to other error sources.
The simulations with the ideal DM show that the proposed con-
trol strategy is able to significantly reduce the contribution due
to the temporal error. By predicting the future wavefront distor-
tions as , the temporal error caused by the finite time
delay between measurement and corrections is reduced. In the
AO test bench, the ratio between the fitting and temporal error
is very unfavorable because of the relatively small number of
DM actuators compared to the number of WFS channels. It is
therefore to be expected that the performance gain is larger in
AO systems with a smaller fitting error and in situations where
the controller related error is more dominant for instance due to
an increased turbulence wind speed or higher levels of measure-
ment noise.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have presented a data-driven approach to de-
sign a controller for rejecting the wavefront distortions in an AO
system. The proposed control design strategy is able to take full
advantage of the spatio-temporal correlation in the wavefront
and consists of two major steps. In the first step open-loop wave-
front sensor (WFS) measurements are used to identify a multi-
variable atmospheric disturbance model. In the second step, the
identified atmospheric disturbance model is used to compute the
optimal controller.

To identify the multivariable atmospheric disturbance model
from the open-loop WFS data, a dedicated subspace identifica-
tion algorithm has been developed. An important advantage of
the proposed subspace algorithm is that it avoids the need for
spectral factorization by directly estimating the minimum-phase
spectral factor. Since AO systems typically have a large number
of WFS channels and the atmospheric disturbance model should
describe the full spatio-temporal correlation without assuming
any form of decoupling, computational efficiency is an impor-
tant issue. For this reason, special attention has been paid to re-
duce the computational demands of the algorithm. The different
steps of the algorithm are expressed in terms of the factor of
a single factorization of the stacked block Hankel matrices
of past and future data, which is used for data compression. This
leads to an efficient implementation both in terms of the number
of flops and required memory. The resulting algorithm is able
to identify an atmospheric disturbance model for an AO system
with up to a few hundred degrees of freedom on a 3 GHz Intel
Pentium processor, within a matter of minutes.

An important aspect of the AO control problem is that there
is a difference between the objective of minimizing the residual
WFS signal and the actual cost function. Given the identified
atmospheric disturbance model, the -optimal control frame-
work provides an attractive way to deal with this discrepancy.
Formulating the AO problem as a -optimal control problem
provides a general strategy for computing the optimal controller.
Computing the -optimal controller typically involves the so-
lution to two Riccati equations. By using the Youla parametriza-
tion to render the AO control problem into an equivalent feedfor-
ward problem, it has been shown that due to the minimum-phase
property of the atmospheric disturbance model one of the Ric-
cati equations can be avoided. Furthermore, it has been shown
that in the special case that the DM settling time can be ne-
glected with respect to the WFS exposure time an analytical ex-
pression for the optimal controller can be derived. The analytical
expressions show that optimal controller decomposes wavefront
prediction problem followed by a static projection on the actu-
ator space.

The closed-loop controller design procedure obtained by
combining the proposed subspace identification algorithm and
the analytical solutions to the -optimal control problem, is
entirely based on standard matrix operations and provides a
noniterative way to go from open-loop measurement data to
closed-loop controller design. The proposed control strategy
has been demonstrated by means of numerical validation exper-
iments on open-loop WFS data obtained from an experimental
setup. The validation experiments show a performance im-
provement with respect to the common AO control approach.
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Under the assumption that the DM is able to take the shape
of the estimated wavefront, the use of the proposed control
strategy leads to a reduction of the mean-square residual phase
error by more than 70%. Using a realistic DM model, the gain
in performance for the considered experimental setup reduces
to about 14%. The rather drastic reduction in performance can
be explained by the relatively large fitting error. In situations
where the DM fitting error is not limiting, a large gain in
performance is to be expected.

One of the basic assumptions in the data-driven -optimal
control approach is that atmospheric wavefront distortions can
be modeled as a regular process. Even though this may be a
realistic assumption on time-scales in the order of a few min-
utes, it will fail for longer periods because of gradual changes in
the turbulence statistics. This implies that the proposed control
strategy has to be extended to guarantee a close to optimal per-
formance over longer time-scales. One way to proceed would be
to update the atmospheric disturbance model on a regular basis
(see Fig. 2). Ideally, the model updating should be performed
in closed-loop to enable continuous operation. This remains a
topic for further research. Closely related to this is the issue of
robustness with respect to changes in the turbulence statistics.
This includes the possible loss in performance due to unmod-
eled changes like wind gust. Even though a complete robustness
analysis is beyond the scope of this paper two observations can
be readily made.

First, since the wavefront distortions act as a disturbance
input, inaccuracies in the atmospheric disturbance model will
never able to destabilize the loop. This implies that stability
robustness with respect to turbulence changes will never be an
issue. Furthermore, we have seen that the optimal controller can
be interpreted as predicting the future distortions followed by
a projection on the actuator space. For a single layer of frozen
turbulence, it is clear that predicting the future in equivalent
to estimating the wavefront at a position in the windward
direction. A mismatch between the actual wind speed and the
wind speed used to identify the disturbance model can hence be
seen as estimating the wavefront at the “wrong” position. Since
the common AO control approach entirely neglects the time
delay, optimal control is expected to achieve a performance
improvement when the velocity mismatch is small compared
to the wind speed itself. Even though this is not a proof, it
is a clear indicator for a good performance robustness. First
simulations on real WFS data seem to confirm this, however,
further research is still required.
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