A Client/Server Framework for Interactive Remote 3D
Visualization of Histological Data

THESIS

in partial fulfilment of the requirements
for the degree of Master of Science
presented at Delft University of Technology,
Faculty of Electrical Engineering, Mathematics, and Cotap&cience,
department of Mediamatics, section Computer Graphics & {CAM

by
Jeroen E. Verschuur
2009

Supervised by:
Dr. Charl Botha
Ir. Frits Post

(; —
TUDelft & <)

PREFACE

This thesis is the report of my work on designing and deveiggivisualization framework for histological
data aimed at research- and education applications. lttsakeme a while to finish but finally my work
is done! My work ends here with the completion and submissiothis thesis but | really hope that the
framework will be used by many people and be further imprcved extended in the future, as this would
give me the satisfaction of knowing that my work was more thizst’ an academic assignment.

I would like to use this opportunity to thank several peopkg tvere important for my graduation. First
| would like to thank Charl Botha for supervising me throughthis project and for finding time in his
busy schedule. You should also know that he is gifted withrdamious enthusiasm: at certain times you
may come to him for help on some specific problem and you ysgalhome with not only an answer to
your problem but also with an irrepressible urge to explotezen additional, very interesting, ideas.

| also want to thank Huib Simonsz for allowing me to contrébtd the Visible Orbit project and for
providing me with a medical perspective on this projectgolasn his extensive knowledge of the medical
world in general and the human eye in particular. In one ofnleetings we had he also introduced me
to Ben Willekens, who allowed me to look at the actual micopsc sections through a microscope at
the Netherlands Institute for Neurosciences in Amsterdachvaho spent countless hours digitizing the
microscopic sections of the Orbita Collection. Even afisrratirement he continued this laborious work,
which to me is a sign of utmost dedication.

Thanks to Erik Jansen for carefully reading my pre-finalithaad providing me with valuable sugges-
tions to improve the content and structure of my thesis. Ksatso to Frits Post and Alexandru losup, for
joining the committee and thereby accepting the large atofumork involved.

I would like to thank my family, especially my parents, foethcontinued support in the years that |
attended university and for regularly showing their ingtiie my project. Finally, | want to thank Myrthe
for her patience during this longer-than-expected gradnand, more importantly, for her presence in my
life which certainly makes my life more valuable.

Jeroen Verschuur

November 2009
Hoogvliet, The Netherlands

ABSTRACT

Title of thesis; A Client/Server Framework for Interactive
Remote 3D Visualization of Histological Data

Author: Jeroen E. Verschuur
Date: November 2009

Committee: Prof. Dr. Ir. F.W. Jansen
Dr. Ir. A. losup
Prof. Dr. H.J. Simonsz
Ir. F.H. Post
Dr. C.P. Botha

The amount of data involved in medical volumes, especiallthe case of volumes consisting of stacks
of histological sections, tends to be very large. Despipgradvancements in computer processing power
and storage- and memory capacity in the past years thesmeslare simply too large to be transferred to
and visualized on regular workstations. At the same timeri@t connectivity is becoming common and
connections are getting faster every day. In this situadiatient-server remote visualization can be used
to hand off visualizations to (clusters of) dedicated, vegjuipped, servers which can do the heavy work
and send the result, or a part thereof, back to the client wduahy.

In this project we developed a client-server framework famnote visualization of histological data.
The framework is designed to be scalable and effectivelizaethardware resources from multiple servers
for each visualization pipeline. The framework uses thecephof strategies to assign resources to each
visualization and to distribute these resources over théadle hardware according to predefined rules.

To manage the available data we designed a data scheme ih wihikiple objects belonging to a
certain dataset, we will define these objects as modalites,be stored in a relational database. A key
feature of our solution is that the scheme allows appropn&ualizations of the modalities to be stored
along with the data in the same relational database.

Additionally, as part of this project, we developed a refiersclient application which is able to use the
framework to do remote visualization. This application \wagposely designed to work on many platforms
without the need for state-of-the-art hardware or softwarke application currently offers support for
visualizations that require viewing of images, viewing tdnes extracted from volumes and viewing of
three-dimensional scenes under control by a camera.

Both the framework and the reference client applicatiordasdgned to be extensible and will be made
available to the public domain so that the software can be fre=ly and adapted to future demands
whenever needed.

Vi

Contents

viii Contents

Chapter 1

| ntroduction

Recently, a unique and valuable collection of histologgeitions (cross sections of the human orbit with
thickness up to approximately 1Q@0m) has been discovered. These cross sections are now beitigedig

at high resolution and used for 3D reconstruction. To viguditclose this data for research and education,
a standard web application would not suffice as it can notwigalthe large amounts of data and processing
that is needed to display 3D volumes.

In this thesis we will describe an architecture and desiga fobhmework that allows remote rendering
of the volumes on a server using parallel volume renderirfge ffamework will also provide the means
for remote viewing of high-resolution slices that can berastied from the volumes and which may be
augmented with annotations if available. Eventually, aftware written for this framework will be made
available as open-source software to the public domain.

1.1 Visualization of Histological Data

While MRI and CTH, both in-vivad techiques, are often used to examine biological tissueeg@utions
and color information they offer is rather limited. Despitese limitations, MRI and CT techniques are
often very useful in helping radiologists determine theseaof medical conditions.

Our project focuses on visualizing histological data. esearch purposes the technique of histological
sectioning, in which tissue will be physically sliced, a® real-color (RGB) acquisitions and provides
much more detail with resolutions that will only be limitegl bither the cutting process or by the optical
equipment used for digitization. With special equipmesbtetions of over 100000 dots-per-inch (dpi) can
be reached (for example the BrainMaps project [1] curresffisrs samples at 55000 dpi, or 0.a6vVpixel).
More information on the process of histological sectionmgrovided below. Digitization of histological
sections at these resolutions obviously results in hugeuatsmf data. Because processing power and
storage capacity have increased rapidly over time, beiteniizations of ever-increasing amounts of data
become feasible.

Within the field of computer graphics a substantial amoumnéséarch is done on medical visualization,
a field of research that has the potential of supporting pfeyss and researchers in medicine worldwide.
Our research on a framework capable of visualizing thegge laolumes, together with technological ad-
vancement, could open the way for use of histological volimeesearch- and education environments.

IMagnetic Resonance Imaging, technique visualizing intestractures by measuring magnetic properties of hydrogemsto
Especially useful for soft-tissue examination.

2Computed (Axial) Tomography, technique using a large sefi¥sRay images with a single axis-of-rotation to visualizegimal
structures

SLiterally translated "within the living” and referring toxperiments on living organisms as opposed to experiments ot dea
organisms or on tissue obtained from a biopsy.

2 Introduction

1.2 Dataset Overview

Throughout this thesis two data collections are discudsetth, of which are described here to justify their
important role in this project. The datasets share the fedtthey are (collections of) histological volumes,
but they each have properties making them interesting stadjer this work of research. These histological
volumes are digitizations of so-called histological (offaicroscopic) sections. These sections of organic
material are usually obtained in five steps, explained gh¢ste [7] and[[3]):

1. Fixation: stop life-processes quickly and prevent defion
2. Embedding: prepare the specimen for the sectioning psoce
3. Sectioning: the actual cutting of the specimen

4. Staining: colour the section with a 'dye’ or 'stain’ to emfte contrast between different types of
tissue

5. Mounting: preserve the section and prepare it for miapsdnspection and/or digitization

In several steps in the sectioning process decisions ndedit@de with regard to the technique applied
in that stage, and these decisions will be based on the oettloah is aimed for with a particular type of
research. For the embedding stage for example, sevenalatlitees are available. Embedding the specimen
in paraffin or cellulose and also freezing the specimen aenafsed techniques for this stage. In the
staining process different dyes can be used to highliglfi¢rgifit types of tissue in the sections. Also,
one can choose to have the sections stained with a diffegenfat every other section (or so), to see
local differences. The combination of the techniques &gplvill obviously yield different results having
different properties, as the two collections describedwelill clearly show.

1.2.1 TheOrbita Collection

Recently a collection of microscopic sections was discedet the Netherlands Ophthalmic Research
Institute (which has become part of the Netherlands Irstifar Neuroscience) and the Department of
Anatomy and Embryology of the Academic Medical Centre (AMCAmMsterdam. These sections were
obtained between 1972 and 1986 as part of several studiles laite professors J.A. Los, L. Koornneef, Dr.
M.P. Bergen and Dr. A.B. de Haan. The complete collectioonffhere on called "The Orbita Collection”)
consists of approximately 3000 sections, from five humatt adhits, and 30 foetal heads and bodi€s [9].

In the acquisition process several different stains wepiegh to the sections. However, in the past
thirty to forty years, these stains have started to fade aradfew decades not much will be left of them,
rendering the collection useless.

A consortium consisting of the NIN, AMC and TU Delft has agtadat this valuable and unique
collection should be preserved for further research anetbie the digitization of the sections has started
a few years ago. Obviously, digitizing 3000 sections is aor@ous amount of work, most of which is
currently carried out by Ben Willekens at the Netherlandsitate for Neuroscience (NIN). Details about
this project can be found at the project’s website [10].

1211 Digitization

As mentioned above, the collection consists of approxim&e00 sections, cut at various thicknesses.
They have been scanned at a resolution of 2500 dpi. The inzgesurrently stored in the PNG format,
which uses a lossless compression method to achieve edatiigh compression rates as well as high
quality. The final size of an image depends on the physical gizhe section and the compressibility of
the resulting image, but files up to 100MB are no exceptiontuélty, the largest slice available (pixel-
wise) is approximately 12000x7000 pixels. With 200-700tisas per subject it is easy to see that for a
single specimen multiple gigabyffbsf data are available.

4Throughout this thesis we will refer to either gigabytes j®Bmegabytes (MB), where 1GB = 1024MB and 1MB = 1024x1024
= 1048576 bytes of data.

1.2 Dataset Overview 3

1.2.1.2 Reconstruction

In the histological sectioning process, slices of tissueehzeen fixed between two transparent objects
(glass for example). However, the orientation of the tidsesveen the transparent objects is completely
dependent upon the person fixating the section. Studyingatiomly orientated sections is no problem,
but stacking the sections to get a 3D model will not work wadl,the sections are not aligned properly.
Also, artefacts in the sections (such as small cuts, ovegirigptissue, etc.) as well as the use of different
stains (colourings) in the sectioning make it difficult teeuke data.

To get a coherent 3D dataset of a subject, we will have to udeigues taking care of three dimen-
sional reconstructions. Applicable methods for recomsion have been studied in[11], and a suitable
method for reconstruction of the sectional data in the @rbitllection has been proposed and imple-
mented by Van Zwieten [8]. Prior to the actual reconstructiree pre-processing steps have to be taken:
down sampling (to speed up the reconstruction), segmentét separate the object from the background,
which speeds things up as a side effect), and a conversionRGB data to scalar data (needed because
the reconstruction and its metrics are based on scalarsjaludter that, an iterative process of image
registration starts. I [8] this is defined as "the searclafsansformation that puts two images of the same
scene, the reference and the floating image, in a common icatedsystem such that all corresponding
points are aligned”. So, the aim of process is to maximizesthrélarity between consecutive sections,
resulting in a dataset that will (hopefully) closely reséenihe original three dimensional specimen, or try
to get as close as possible.

Figure 1.1: Rendering of an embryo from the Orbita collectiter reconstruction from the digitized
sections. Image courtesy o0f [8].

1.2.2 ThePelvic Dataset

The human pelvic dataset used as source of data for thiscpreges acquired in 2007 as part of research
by the Leids Universitair Medisch Centrum (LUMC) using aheigjue called frozen-cadaver histological

sectioning, a technique also applied for the well-knownibBlesHuman Project datasets of the National
Library of Medicine (NLM).

1.2.2.1 Acquisition and digitization

The acquisition technique used in the pelvic dataset isdorehtally different from the technique used
with the Orbita collection. First of all, the specimen wasbeided using freezing, instead of treating the

4 Introduction

tissue with formaldehyde and embedding in cellulose. Anartent difference is that the obtained sections
will preserve most of their real-color information insteafdthe color resulting after staining with some
given dye. A second major difference with this techniquéét the sections are not placed between thin
sheets of glass like the Orbita sections (which were reddoeexamination under a microscope). Instead
of mounting the sections they have been photographed fravealsing a professional digital camera. The
sections have been cut at a thickness of®band every third section has been photographed, yielding a
slice-thickness of 7pm.

In total 2052 images of 3008x1960 pixels are available ferdhataset, and each image is just under
18 megabytes (3008x1960 pixels at 24 bits/pixel), storaterossless TIFF file format. What makes this
dataset interesting (besides the fact that its color inftion is conserved) is that the sections are well-
aligned. As a consequence of the acquisition process iggtlealignment are already minimal. However,
for the pelvic dataset two frameshifts have occurred, whiabe been properly documented and corrected
manually after the acquisition.

1.3 Objective and Motivation

The objective of this project is to design and implement enfork for remote visualization of histolog-
ical volumes. The system should be able to deal with the lamgeunts of data involved in histological
volumes and should therefore offer a scalable visualinagm@ution. The framework should also be able
to efficiently utilize and combine resources from severahpater systems in a distributed and parallel
way, to accomplish its resource-intensive task. Suppaitadhlization techniques for these large datasets
should include Direct Volume Rendering (DVR), surface aetion and rendering, and Multi-Planar Re-
construction (MPR).

We aim to keep the data in a central location, for three maasamrs. In many cases application-data
can be distributed along with the application itself (foample on portable media like CD’s or DVD's,
or using an internet connection) but for the huge amount td @evolved in histological volumes this is
usually infeasible. In case this data would be distributeth@ with the application anyway every user
would be forced to have a powerful computer system availablee able to process the data. A third
reason is the delicate matter of protecting the data (daiehwik often very expensive), a client-server
system layout provides better means for protection of tha.da

To allow for remote visualization, the framework will beatit/server-based and two separate compo-
nents will be designed. A server component will be desighedl is responsible for providing the func-
tionality described above, where we will use the ParaViemwork as parallel rendering backend to our
server component. The framework should be able to perfoenaighentication and will therefore require
some user management capabilities. In addition to the sebraponent, a reference client application
will be implemented (reference, in the sense that impleerentf the framework are not limited to this
reference client application). Clients will be able to rtwe provided visualizations from any location (al-
lowed by the administrator of the system) and the aim is tatera client application requiring very little
installation effort, allowing practically any user to rumetapplication. The client application will support
several elemental histological volume visualizationshsag (arbitrary) plane reconstruction, with support
for annotations, and volume rendering.

The idea is to design both the server and the client using-sperce components and -protocols to
allow further development of this framework after its ialtrelease (after this thesis), and to enable others
to easily create a custom client application to use the freorie

1.4 Contributions

The work described in this thesis makes the following cbutions to visualization frameworks:

e We developed a fully-functional remote visualization feaork that is designed to be highly-scalable
and extensible and which can be deployed on a large numberrafntly common operating sys-
tems (Chaptdrl3). We built our framework around ParaVievictvitself is built on the Visualization
Toolkit (VTK) and offers a large collection of visualizati@lgorithms. Specific aspects of a remote

1.5 Structure 5

framework, such as work-distribution strategies, incretakresult transfer and authorization were
incorporated (Chaptéd 3 andl 4). A reference client apjtinatvas developed to allow use of the
default visualization functionality (Chapfer 2).

e To organize the available data we developed an elegant daspsulation scheme (Section 315.3).
Information on available datasets and possible relatipsdhetween them is captured in a relational
database. Additionally the scheme will allow definition @ualization routines appropriate for the
data and store these routines along with the data.

e The visualization algorithms are provided by a highly-éfit and proven visualization framework
called ParaView. In our work we show an effective and robahit®on to access ParaView's visual-
ization capabilities in a way that allows visualizationglipe concurrency (Secti¢n 3.4).

1.5 Structure

The remaining part of this thesis starts with a discussichetlient application that we developed as part
of this project and we show the basic functionality offeredts users. After that ChaptEl 3 provides a
rather high-level, conceptual overview, discussing ttehidecture and design of our framework without
going into details. In Chaptéd 4 we provide more details aisduss implementational aspects of the
framework. The last part of this thesis, Chajpfler 5[@nd 6,atnatour results and conclusions respectively.

Introduction

Chapter 2

The Remote Visualization Client
Application

In this chapter we show what users of the client applicatiatten for our project will be able to do and see.
By doing so we anticipate on the discussion of the design lapdeimentation of a framework needed for
remote visualization of large amounts of data. The coneétad detailed discussion of our framework,
including the client application, can be found in Chapiend &haptel ¥ respectively.

2.1 User Audience and Existing Software

Common design rules in Man Machine Interaction (MMI) stdtatta user interface for an application
should always consider the target audience that will begudie application (for example inl[2]). An
interface that is too complex will scare users away, whiléerface that is too simple may not give users
the full potential of the application. Therefore, we madeeéfort to define which kind of users would be
using our client application. After defining the target aurdie we will also review an existing (medical)
application with a slightly similar purpose.

The Orbita project, from which this thesis project has eradydhas one main goal. That goal is to
make the Orbita dataset, which is unique for several reasmegssible to people from around the world
and allowing them to do research on the data with their ownpeders, while still keeping control over the
data. An example of research functionality for this kind afalwas brought forward by attendees of the
ARVO[annual meeting that were interested in this software bditegta comparatively visualize an MRI
and histological modality of a recently digitized specimen

The Pelvis dataset described earlier serves a differepogar This dataset is used mainly for educa-
tional purposes and in this situation the client appligatioll be used in a classroom-like scenario where
multiple students will be running the same applicationngsilentical, or at least very similar workstations.

An existing application that we had the liberty of experiregwith is the Image Viewer of the EasyVi-
sion system developed by Philips Medical Systems. Thisetiesvused for viewing CT and MRI data and
patient documents. The interface of the application is ve&sic. Few buttons can be found in the inter-
face, and more advanced features are turned off by defaudtilable datasets are shown on the left side
as icons, and on the right side the data display area is folinig.display area can be divided into a 1x1,
2x1 or 2x2 layout. Importing a dataset into (one of) the digmrea(s) is done by either double-clicking
or dragging-and-dropping the dataset icon. Each displetjasehas a navigation map to give the user an
indication of the current position within the dataset, amdnable fast traversal of the data. The navigation
map in this case is a topogram image, a parallel projectiaallaflices, that acts as an overview of the
complete dataset.

For our application, two things are worth mentioning heiiestfor our application the main user base
will be made up of medical specialists, researchers, andaalestudents, and for this group of users com-

1The Association for Research in Vision and Opthalmolidyt p: 7 7 Www. ar vo. or g

7

http://www.arvo.org

8 The Remote Visualization Client Application

puter fluency should not be taken for granted. The second ®ihat hospitals nowadays are depending
on computer science and software has become an essentialfaorting the medical field. Tools for
visualization of X-Ray, MRl and CT images are already in ws®it is likely that expectations regarding
the behavior of such applications are already set.

Note that this thesis is not focused on (graphical) userfate design but on the architecture making
remote visualization of this data possible. However, wenaekedge the fact that application usability is
often a key factor in the acceptance of this kind of applarai Applying an interface philosophy which is
similar to that of existing visualization applications sel like the best way to go.

2.2 General Design Philosophy

One of the main design goals while creating the client appta was to keep the thresholds for users as
low as possible (for running the application as well as forkireg with the application). With the user
audience mentioned above we decided to try to keep the afiplicclean, simple and intuitive. Slightly
lower on the priority list, but nevertheless an importaefit was to give the user an interactive experience.
In an ideal situation we would like to provide interactivééyen within visualization requests so that users
can request the server to start on a new visualization whee\aogpis visualization task is still running.
Unfortunately, this would require that visualizations d@naborted and for the approach we have chosen
this is not possible. In our solution interactivity is achéd by using client-side representations of the
remote object (a bounding box of a volume for example) ta &itialization parameters on the client-side
without much delay. Examples of this functionality will Hristrated below.

Another decision made to keep things simpler was to allowy onk dataset to be visualized at a time,
and with 'dataset’ we mean the collection of data for one cbjd-or each dataset multiple modalities
with multiple visualizations may be available, which weleiplain later. The restriction of only allowing
(simultaneous) visualization of modalities of one databeuld keep the user from getting disoriented, for
example when similar-named visualizations are availatiedifferent datasets. We chose to let the user
first select any of the datasets available on the serverrdegfsualizations for that specific dataset may be
started (FigurE2]1).

E Select a dataset

Dakaset Madalities Description
Pelvis dataset Histology, Bowel Structure, High-resolution slices, Cylinder Histalogical pelvis data walum. ..
Orhita DEZS97L Histalogy Orhita dataset For specimen ...
DkZ304L High-resalution slices Orbita Collection specimen DK, ..

Figure 2.1: Before any visualization can be started theisggompted to select a specific dataset from the
list of datasets available on the server.

In order to prevent users from having to make too many corseitiches mentally we tried to minimize
the number of screens needed to start visualizations asicettwith them, and we think that three sources
of information are needed at any given moment. Obviousi/ntlost important is the actual visualization.
We expected that users will need to be able to access thableailisualizations quickly and we did this
by arranging the dataset’s modalities and visualizatiare tree structure. Also, an orientation view was
thought to be essential, to help the user determining thetwiewpoint, location in the data, or whatever
is suitable for the visualization at hand (see Figuré 2.2imchption for an explanation of the views in the
interface, and Figule 2.5 and Figlire]2.6 for 'live’ exampléthe orientation view).

Based on already available tools for medical visualiza(lixe the EasyVision tool described above)
we decided to support multiple simultaneous views, for Whtee default behavior is to tile horizontally
in case the visualization area is wider than it is high, otigally in any other case. The EasyVision tools

2.3 Functionality 9

VYiewer 1.0 - Orbita DK2897L

File Actions

o Orbita DE2597L
EI]j Histology
L @ Orbita slice
L # Volume Visualization with transfer Function

| Connected to: 10.0.4.194:8,.. | 1] | 1]

Figure 2.2: The client interface showing the three basiasue the main screen: the orientation area
(top-left), the modality- and visualization-selectiomarbottom-left) and the visualization area (right).

limits the layout of the visualization to be 2x2 but we dedde give the user the freedom of choosing how
many simultaneous visualizations are opened and how tleegraanged (note that the maximum number
of simultaneous visualizations can be limited by the sérver

2.3 Functionality

Although the client application we developed should be see@a proof-of-concept or reference client
implementation, we tried to create an application contagjrsupport for common (types of) visualizations,
making the reference application usable to a substantiabeu of users. In this section we will describe
the functionality that is offered by the client applicatiatthis time.

2.3.1 Modality-Visualization Selection

After the user has connected to a server and chosen a dataswktwith, the application will look largely
similar to Figurd 2ZR. The root node of the tree in the bottefhpanel will show which dataset the user
has selected, and sub-nodes will show which modalities\atiéable for the dataset. Modality nodes may
be expanded which will then show the available visualizegifor each of the modalities as leaves in the
tree. Clients can easily start a visualization for a giverdatity either by double-clicking the visualization
node in the tree or by dragging-and-dropping the tree itethaovisualization area on the right. It is also
possible to select multiple visualizations in the tree, drady all of them to the visualization area to start all
the selected visualizations in one action. In case all Vizatzons of a modality (or even all visualizations
for all modalities) are needed a user can drag-and-drop taality tree node, or the dataset (root) tree
node respectively. Note that starting many visualizatiginsultaneously may cause a heavy load on the
server. Figur&2]5 shows a situation in which a single vizatibn of a single modality is activated.

10 The Remote Visualization Client Application

2.3.2 Supported Data Types

Results of visualizations are retrieved (entirely or @dlgt) from the server in a certain format after ren-
dering has finished. The client application currently ateépo types of data from the server: image data
(more specifically: image data in JPEG, PNG, GIF and BMP foymad Zoomify daté, the data format
also used in the well-known BrainMaps projEctThe support for Zoomify images was implemented to
experiment with an option to provide users with a more irtiéva experience. These Zoomify images can
be seen as pyramids of tiles of the original image with rdsmiuincreasing per layer. The application can
start with retrieving only the top layer of the pyramid, tashthe client a low-resolution version of the
result as soon as possible. More tiles can be fetched whesliéimé remains idle to increase the resolution
of the result. The result is that we can view very large imagesballow interactive panning and zooming
much like Google Maps. For more detailed information wenredeSectio 4.514.

2.3.3 Supported Visualization Types

For our client application we have defined and implementeekttypes of visualizations. Because many
different visualizations can be defined it is simply infédesito implement viewing algorithms and interac-
tion models for each of those visualizations. In our framéwee have tried to group visualizations into
visualization types and implemented the necessary logiedoh type. We have implemented three types
of visualizations which will cover many of the possible \atizations, as you can see below, but certainly
not all. When needed support for additional visualizatiqretycould easily be implemented at a later time.

The three visualization types we have defined and implerdeare image visualizations, plane visu-
alizations and view visualizations. The main input intéiatmodel (i.e. the rules for behavior of mouse-
and keyboard actions) is based on the VTK interaction madet¢ on VTK can be found in Chapfér 3). In
the client application, all views except the parameter gieve built using OpenGL functionality. OpenGL
stands for Open Graphics Library and is a cross-platformrfate for writing applications that produce
2D or 3D graphics, basically a software interface to graphirdware [4]. Advantage of using this library
is that views built on OpenGL can use hardware-accelerataidg. Currently we use this functionality
to provide hardware-supported image panning and -zoornmdgleawing of geometrical primitives for the
visualizations (overlaying interactive bounding boxed antting planes for example, as mentioned in the
next paragraph).

Image visualization The image visualization type is rather basic in the sengetieenumber of ways to
interact with the data is limited. This type is functiongliwise comparable with common image
viewers and supports interactions like zooming (right-se)uand panning (left mouse). This type
is accompanied by an orientation view that shows the parhefimage that is currently visible
in the visualization view. An example scenario for this tygmuld be the visualization of high-
resolution slices. Combining the image visualization typth the Zoomify data type will provide
a smoothly panning and zoomable view on large images, wideiser can keep an overview using
the orientation view provided.

Planevisualization Plane visualization types can be used for visualizationahich users need to be
able to specify planes through a volume. Visualizationgraffy functionality to define arbitrary
slices can be created. The plane type has two ways of ini@naaine for navigating the result of
the visualization, e.g. a reconstructed plane (where ttezantion is the same as with the image
visualization type), and one for manipulating the orieotatand position of the plane (shift+left-
mouse for rotating the plane normal, shift+right-mouse rfaving the plane position along the
normal). To keep an interactive user experience we impléadhe interaction model in such a way
that the effect of manipulations will be visible at inteiigetrates on the client-side. Only after the
mouse-buttons are released the altered plane parametebe wkchanged with the server. After a
plane manipulation the orientation view belonging to thgualization will show the selected plane
through a bounding box of the volume. In Figlire]2.3 an exarspshiown of what a user might see
when manipulating a plane through a volume.

2http://www.zoomify.com
Shttp://www.brainmaps.org

2.3 Functionality 11

¥iewer 1.0 - Pelvis dataset
Eile Actions Lookmarks

4 B Histology - Plane reconstruction with Bowel Struct... @E|@

Oriertation | Parameters

) Pelvis dataset
-7 Histology

i @ Bowel Structure coloured by histology data
L WFlane reconstriction with Bowel Structure annata
Yolume Yisualization |
owel Structure
+M, High-resolution slices

Requesting render

Ready | connectedto; 10.0.4.1948..[1 |0

Figure 2.3: An example of interaction on a plane visual@atiWhen a plane manipulation interaction
begins the old visualization result is greyed-out and aerattive, client-side representation of the new
plane orientation is projected on top. While the user-irtiioa continues the visualization will not be
updated.

3DView visualization The third visualization type supported is used for camevara visualizations in
which a three-dimensional view is rendered. The same ’laggraction as with the plane visual-
ization is used, where the user will manipulate (rotate nzoetc) the scene by only manipulating
a bounding-box of the subject on the client-side. Afterasleg the mouse button the altered cam-
era settings are sent to the server and a new visualizati@yigested. The orientation view of the
view visualization type will show the current orientatioftioe volume in space. Figuke 2.4 shows a
screenshot of the manipulation of the three-dimensioreiec

2.3.4 Annotations

Particularly useful in the case of medical applications edioal educational environments is the support
for annotations. Annotations can provide additional infation on images by showing texts about and/or
shapes of interesting objects in the data as an overlay odettaeitself. For our reference application we
have added basic client-side support for overlays of atiootausing the plane visualization type described
above. In Figuré2]5 an example is shown of what annotaticmslook like. Our reference application
will currently only outline the annotation objects on thesige data, along with the object name placed top-
right, relative to the outline. Without going into details bow the support for annotations is accomplished
on the server-side (see Section 41.5.2) it may be useful tav kihat these visualizations are actually done in
two steps: first, the image data for the selected plane ia@el from the volume. Second, the annotation
is requested from the server and drawn over the image data.

2.35 Linked Views

In comparative studies it can be important to be able to limidifferent modalities of a dataset using the
same visualization parameters. Consider an example whgneMRI and histology volumes are available
for a certain object. In this case comparative visualizatian be used for example to navigate to a certain
slice in the histology volume, and see what the slice lodéesdin an MRI.

12 The Remote Visualization Client Application

¥iewer 1.0 - Pelvis dataset
Eile Actions Lookmarks

4 B Histology - Volume Visualization

Orientation |

) Pelvis dataset
-7 Histology
i @ Bowel Structure coloured by histology data

® Flane reconstruction with Bowel Structure annota

o
owel Structure
+-{ 7 High-resolution slices

Ready | connectedto; 10.0.4.1948..[1 |0

Figure 2.4: When a (three dimensional) view visualizatiomanipulated the old result is greyed-out like
in the plane example above, but an interactive representafithe new orientation of the volume (using
a bounding box), is displayed over the visualization areke the screenshot above the visualization will
not be updated as long as the user is interacting.

To support this we implemented the concept of 'linked viearssynchronization’. In[[5] linked views
are defined as an interaction mechanism between views ohaetavhere interaction with one view will
modify the display of data in the linked views. Also, sevevalys of linking between views are discussed.
For information on the implications linked views may haweg §6]. The general idea of the application of
linked views in our framework is that a user can start two &i@ations, say A and B, select A and then
synchronize the visualization to B, or vice versa (synchriog A to B and then B to A at the same time
is not possible). When two visualizations are synchronizachemanipulation of the parameters of the
primary visualization will be propagated to the second@he result can be seen in Figlrel2.6.

2.3.6 Lookmarking

When browsing on the Internet the term 'bookmarking’ is oftised to refer to storing an Internet address
for later use. The term 'lookmarking’ is used much in the savag, like a bookmark of what one is looking
at. The term lookmarking was actually borrowed from Pare\&].

The first step in using the lookmarking functionality is teate a lookmark for a visualization that
is displaying some interesting features for example. InFEP.6 the action menu shows the menu item
that is needed to create a lookmark. For each defined lookthargerver will explicitly record the used
dataset, modality, visualization and parameters. Aftéeramg a description the lookmark will be added
by the server (by default available only to the user), andetne be made available for retrieval later on.
Opening a lookmark can be done by selecting the appropdateriark from the 'Lookmarks’ menu, after
which the application will instruct the server to restore session to the way it was at the time of lookmark
creation.

2.3 Functionality 13

Cylinder

T —

Figure 2.5: A sagittal plane reconstructed from a volumehwhe outlines of two objects-of-interest as
overlay on the extracted plane. First object is the rectEmghape on the plane, resulting after cutting
a sagittal plane through a cylinder, and second is bowettstre, showing as white outlines of the dark-
brown areas of the slice.

ewer 1.0 - Pelvis dataset E@@

Filz - Lookmarks

Create lookmark
N A Histology - Volume Visualization

[N B g
T4 v Histology - Bowel Structure coloured by histology data

data
ure annoka

7 High-resolution slices

Ready |Connected toi 10.0.4.194:8,..| 2 !0

Figure 2.6: An example of two simultaneous visualizatiomere the lower visualization is synchronized
to the upper visualization. As can be seen from the screg¢nsie functionality is available from the
'Action’ menu.

14

The Remote Visualization Client Application

Chapter 3

Architecture and Design of a Remote
Visualization Framewor k

In this section we provide a high-level overview of the bad@mnents that our framework consists of. Prior
to this thesis research [12] was done on existing visuatizatystems. We also suggested an architecture
for which we expected that it would meet our objectives andiyraf the design decisions made in this
section are based on this suggested design.

3.1 Architecture Overview

From a high-level point of view our framework contains tw@ég of components: server- and client
components. Although a client component was developech®ptirpose of this project, the idea was to
have the communication between client and server done wsigsupported protocols, which ensures
that our reference implementation can be easily replacéid avcustom implementation by anyone who
wishes to do so. As the reference application is open-sparcgtom implementations may extend or
alter this implementation instead of completely rewritthg application. Obviously, choosing a different
programming language for implementation will require anitaof the client application.

Most important for this thesis and most relevant for thispthais the architecture of the server com-
ponents. The Client component will therefore be discusseddre detail in the implementation chapter,
Chaptef 4.

To aid the reader in getting an idea of the design of the fraonlewve will provide a system design
overview, showing all architectural components, alondwlite relations between them. In Figlirel 3.1 one
can see that the framework consists of four componentseatelimiddleware-, visualization- and database
component.

In the remaining part of this chapter we discuss the serv@poments on an architectural level while
not addressing implementation details yet. The RDBMS campt the relational database that is used to
store data, is a standard third-party relational databadevél not be discussed here.

3.2 Requirements

Before the actual development of the (custom) componentsaembled a list of requirements to see what
the server components should be capable of in order to balusefs [12] (chapter 7). We briefly describe
these requirements here and afterwards discuss majomddsijsions, which are largely based on those
requirements.

Globally reachable As we want to provide a public domain service, the serviceikhbe globally reach-
able and allow access to everyone that has an internet dimmaad is allowed access to the service.

15

16 Architecture of a Remote Visualization Framework

3 Middleware “

'y SOAP
RDBMS % (SwA)
o)
17
Visualization
v

PvPython

« ParaView servers

- J

Figure 3.1: High-level system diagram showing the main comepts in the framework.

Support for Iso-surfacing, Direct Volume Rendering (DVR) and Multi Planar Reconstruction (M PR)
These three types of visualizations are considered reégsifsir the framework and should therefore
be supported.

Parallel and distributed rendering Given the large amount of data and the calculation-intengisual-
izations possible it is essential to use as many server res®@s possible as efficient as possible
and the support for parallel rendering is a key factor in ogpuvith this amount of data. Supporting
distributed rendering would create an additional benefihessmeans that work can also be divided
among multiple physical servers.

Besides the requirements above we also proposed secordaryements in our earlier research: the
support for watermarked or fingerprinted transmission afgedata, support for annotations and operat-
ing system independency for the server-side componentstigthe first requirement means that security
risks may be further reduced. Annotations are commonly usatkedicine as a way of clarifying raw im-
ages by adding information like shapes and textual explamafor certain structures in the data. Therefore
they can be useful tools in educational environments. BepgFating system independent, together with
support for distributed rendering, would mean that a morsatée collection of servers (versatile in the
sense of computer architectures and/or operating systemng) be integrated in the chain of computers
systems available for rendering tasks.

3.2.1 Discussion

Fairly early in the project the choice was made to go for renvigualization (as opposed to visualization
on a local workstation) and to provide the required funaldy as a service over the Internet. Although
this way the framework requires an Internet connection di ltioe server and the client side, this can
hardly be seen as an issue nowadays. Added benefit of thitsosolsithe central storage of the data and of
easily providing means for user authentication. To circantirewall issues we looked for a solution that
would use default network ports instead of arbitrary portéciv are often blocked by default firewalls, in

company and institute networks for example.

For the actual visualization work we chose to use an existisigalization system instead of develop-
ing our own solution, for which would then need to incorperaisualization routines for at least the basic
visualizations mentioned in the requirements above. Ajpamh the huge amount of development work,
this custom visualization solution would probably not b&ifie and would have to be actively maintained.
Existing solutions are far more flexible and are updatedlegtyufor bugfixes and new functionality. In
order to meet our requirements we had to find a visualizatjstesn having parallel- and distributed ren-
dering capabilities, which would be capable of providing &#forementioned visualizations and a system
that would allow other applications to control the system.

3.3 The Visualization Components 17

3.3 The Visualization Components

Choosing a visualization system is important in this progecthis choice will affect many of the properties
of the resulting framework. Prior research [[12] on appraterivisualization systems available for this
project has shown that ParaView [13] 14], a parallel vigaaion framework developed by Kitware Inc. and
Los Alamos National Laboratory, is a very suitable candidatbe used as foundation for the visualization
component of this project.

331 VTK

The ParaView framework is built on top of VTK (the Visualizat ToolKit) [15] which is also under
development by Kitware and supported by many people in tle&-@ource society, Los Alamos National
Labs, Sandia National Labs and many more. VTK has become fotie= anost popular toolkits for all
kinds of visualization-related tasks such as scientificafization, image processing, volume rendering
and many more. The toolkit is open-source and written in tgklh efficient programming language C++,
allowing for fast graphical processing, and VTK is desigteedun on multiple operating system platforms.

3.3.2 ParaView

In the design of ParaView three major requirements wereiderexd, as explained in_[14]. The first of
them is usability, as the VTK framework which is used as thgidaf ParaView is merely a toolkit, and
is not exactly easy to use. The second is scalability. As #maenof the framework already explains,
work should be done in a parallel way, to improve performangcetilizing more resources concurrently.
Providing scalability is therefore essential to the susaddaraView. The last requirement considered is
extensibility: although ParaView already has a lot of VTKdntes incorporated, it is possible to register
additional components after specifying their interfacéhdugh the top layer of the application is written
in C++ most other things (from the widgets to inter-proceipglne synchronization) are done in Tcl/TK,
which is a scripting language which makes extending theiegpdn easier.

Summarizing, we can say that the aim of ParaView is to takesxttensive and efficient VTK visualiza-
tion functionality, add a layer for parallel processing tfualization pipelines on top of this functionality
and make the system more accessible and extendible for ¢he us

Several properties of ParaView, besides the ones alreadjioned above, should be mentioned here
in order to further justify the use of ParaView for our prdjedust like VTK, Paraview is open-source
software and under active development. Actually, at the sfathis project we used ParaView version
3.2.1. During this project two major product updates (\@1si3.3 and 3.4 respectively) were released and
successfully migrated into our project, while version BWwas released very recently.

By far the most important feature of ParaView over VTK is thport for both distributed and parallel
processing. In this sense, Parallel processing is the trosfng multiple processors in a single computer
system, where distributed processing is used to define thefunultiple systems. The difference between
the two may not seem that big, but with parallel processing koow beforehand which architecture
(32-bit or 64-bit, Big Endian or Little Endiﬁn etc.) you will be running on because all processors in
a single system are obviously based on the same architechureontrast, distributed computing may
include systems with various architectures and Operatygge®hs, including uncommon supercomputer
architectures like in the Cray XT3 supercomputer[17]. Faraiel processing in ParaView the Message
Passing Interface (MPI) is used, which is a high-perforregmotocol for message exchange in parallel
computing.

ParaView also has some limitations and unfortunately itdresspecific limitation that may adversely
affect our framework. Where VTK supports the concept of stieg, i.e. the chunk-wise reading and
processing of data to handle arbitrarily large data strestin a limited memory footprint, ParaView is,
at this time, not capable of supporting this. This basicalBans that the size of the data to be visualized
should never exceed the combined total amount of memonr (ogsical and virtual) available to all of
the computers cooperating in the visualization.

1Big Endian refers to the way of storing numbers in memory sigiith the lower bytes of the number, where Little Endian
stores them the from high to low bytes

18 Architecture of a Remote Visualization Framework

Two remarks should be made on this limitation. The first is tha current state of technology allows
a single server to be equipped with hundreds of gigabyteseofiony. Combining several of these servers
will allow for volumes of several hundred gigabytes in siadich is very large for a single volume or
even a collection of volumes. Besides this practical argurmévolume size, KitWare has also recently
released an updated version of ParaView (3.6.1) that iste@idntain an application called StreamingPar-
aView, which should support the streaming processing afmals. Because ParaView 3.6.1 and Stream-
ingParaview were announced at the time of writing of thisth@and because of the experimental phase
the StreamingParaView project seems to be in (there isyargl documentation available, there are no
pre-built executables) we have decided not to try to incateothese in our framework at this time.

As ParaView is specifically designed to run on a distribupedallel set of computers it supports sev-
eral modes of operation [18]. The basic components of tha\kaw framework are the dataserver, the
renderserver and the client, which can be combined for abset-ups. In[[12] we described which render-
ings set-ups are possible with ParaView, but only three medk apply for our project: the client-server,
client-distributed server, and the client-distributetiadistributed render modes. For this project the sec-
ond option was chosen, which we will explain in Chapter 4. iéeev, any of the other rendering modes
could be supported and will only require small modificatitmghe framework.

3.4 Interfacing with Paraview

To be able to use the functionality of ParaView we need to lenaimmunication between ParaView and
our middleware. Although this section has a large implel#onal aspect it is also a vital element of the
design of the framework and would leave a gap if not discusBedthis reason we placed this section in
the current chapter instead of in the implementation chiapte
Interfacing the two components did not turn out to be trividthough the final solution is relatively

simple and flexible. We mentioned earlier that ParaView ispan-source framework, therefore there are
many entry points to interface with ParaView, and severéibop have been tried before a final solution
was chosen. The solutions that were tried can be dividedtimée directions and they were examined in
the following order:

¢ Implementing the ParaView protocol
e Creating a shared object for loading by the middleware

e Exploiting ParaView's Python support

I mplementing the ParaView protocol

The basic idea behind the first approach is simple: if we aeetahmplement the underlying protocol that
ParaView uses (called 'CSS’ or Client/Server Streamind)[®& can basically do what ParaView does,
with minor overhead. If our middleware would have been impated using C++ this issue could be
solved by linking our project to parts of the ParaView souhmmvever, for reasons stated above, we are in
a different position. Implementation of the protocol in davas the only way to accomplish our task, but
several things make this solution infeasible. First oftak, protocol is not well-documented, and extracting
the protocol from the source code would be very time-conagmi second, and even larger, objection to
this approach is that it is very low-level and has its limdas. The CSS protocol will only enable remote
invocation of methods implemented in ParaView, and do trefqrm independently. 1r.[18], section 4.2
the limitations of only using the CSS protocol are clearlgnsued up and they will be paraphrased here.

Complexity of use The work required to be done in order to invoke just a singléhoetis rather tedious:
prepare a network stream, gather method name, argumentssethe target server and node and
send the stream.

Lack of state As the CSS protocol keeps no state information, clientsireguinformation on the state
of server-side objects will need additional method invimret to get up-to-date. Besides this incon-
veniency, the authors state that this can easily lead torregjvork loads.

3.4 Interfacing with Paraview 19

Lack of data gathering A stream can only send and receive data from a single nod&hdptotocol itself
cannot gather information from all nodes working togetheaspecific visualization operation.

To cope with these limitations of the CSS protocol, ParaViias implemented a ServerManager mod-
ule providing a higher-level interface to the functionalitHowever, we would have to implement this
module in Java too, making this implementation a projectsobivn and clearly an unfeasibly approach for
our project.

Creating a ParaView shared object

Another attempt at interfacing with ParaView was to crealibrary (or shared object), compiled against
the ParaView source, which can be loaded into the Java repase. All methods provided by the library
can then be invoked from the middleware using the Java Nattesface (INI). For detailed information
on JNI have a look at [19]. In short NI allows Java programexe&cute native, platform-dependent code.
To accomplish the task of creating a library we have usedlacted SWIG (which stands for Simplified
Wrapper and Interface Generator). SWIG is capable of come&@iC++ projects with a large variety of
other high-level programming languages (PERL, PHP, Pythohalso Java for example). To use SWIG
one has to define an interface file describing the native ndstho expose to the target programming
language. After running SWIG with Java as target language,GGWiIl generate a C/C++ wrapper (to
be compiled with your native application), along with sona&alfiles containing the JNI calls and the
definitions of the objects referenced. Using SWIG we were tbloth create a library compiled against
ParaView and to load that library in a Java project.

Unfortunately, several issues of this approach becamerapipaFirst, all functionality available in
ParaView must be exposed somehow by the library we were usiaging this solution inflexible. Also,
loading a library (or basically using JNI in general) in arpligation container environment like Tomcat
is rather difficult, in providing paths to shared objects ésample, but also because of the on-demand
nature of deploying and using web services. Last but cdytaiot least, we ran into a general issue of
parallelization. ParaView uses several managing and @dinty objects that are referred to in a static way,
following the singleton pattern. These objects are resptnor keeping the state of a pipeline but are
not designed to keep the states of multiple pipelines sanelbusly. Basically, if you would like to have
multiple pipelines running next to eachother in a giveneays{for example one for each client accessing
the middleware), you would need to have multiple ParaViestainces running. But with the approach
taken, loading the self-compiled ParaView library in thealarocess space, it is not possible to load this
library multiple times, making it impossible to have mulépipelines running concurrently. Even this last
issue alone made this approach useless, because it vithatetea of our framework to service multiple
clients at the same time.

Exploiting ParaView’s Python Support

While VTK provides wrapping of its functionality in three @hprogramming languages (Tcl, Python and
Java to be precise) ParaView offers only Python wrappin{j [Rython support is available after enabling
the wrapping with a parameter in the ParaView building pssceThe by-product of this build consists
of two additional command-line tools: pvpython and pvbatehich both offer a fully functional Python
interpreter, with the difference that pvpython can worlerattively. In the process of wrapping ParaView
for Python, the ServerManager module mentioned earlids@ienplemented in Python by the ParaView
developers. The ServerManager module applies the proxgrdeattern([13] where each (distributed)
server-side object is represented by a proxy object on ibateside which is responsible for managing
the server-side object’s lifecycle and properties. As SesverManager module and much of the logic for
accessing the ParaView functionality is already wrapped$ousing these Python-enabled ParaView tools
will provide us with a simple and clean solution to accesaWiw's functionality from our middleware.
As an added benefit, these tools are also MPI-enabled, ngetira@hthey can be started concurrently using
the MPI protocol (as described above in Seclion 3.3.2) asmanication between them.

The command-line tools can be executed by starting one dfytieon-enabled executables, with a tool
(called 'mpirun’) that will start one or more MPIl-enabledpesses concurrently. Starting the execution

20 Architecture of a Remote Visualization Framework

from our middleware will create a subprocess which has ita pwocess space and therefore its own
singleton objects, avoiding the limitations of the earapproach. Summarizing what this solution means
for our project:

e We can have multiple pipelines running simultaneously.

e We can have fine-tuned control over the number of ParaVievesiogbrking together on a given
pipeline.

All processes are in their own process space, introduciegahustness that if a process crashes for
some reason, it will not crash the parent process (whichrismddleware).

We get all default Python functionality and the functiohabf third-party Python libraries for free.

As this turned out to be a suitable solution for our projectdeeided to implement our framework
using the Python interface provided with ParaView. To be ablset up ParaView pipelines from Python
we have developed a Python script (a 'glue’ component) thiktbe run by the 'pvbatch’ executable
and that is responsible for providing the ParaView fundidy to the middleware. To enable two-way
communication between this Python component and the nviddiewe will have the Python component
publish its functionality through a SOAP service. The resuthat the middleware will access the Python
components’ SOAP service to access ParaView functionatity the Python component will access the
middleware’s SOAP service to provide updates on pipeling@ss.

Additional advantages of this solution are rapid developim{each client connection will run the
Python script so changes to the script will only require aneect), and providing a common location
to add re-usable pieces of Python code to be used from vavisualization pipelines. In Figuie 3.2 we
zoom in on the part of the system diagram that is showing theection between our middleware and the
ParaView visualization system.

Visualization Pipeline

(ParaView (ParaView (ParaView

Node 0 Node 1 Node n

SOAP
(Middleware)« PvPython) € (PvPython

ParaView

A
\ 4

B

PvPython

ParaView ParaView

i
(o

- J

Figure 3.2: For each visualization session the middlewaltestart one or more ParaView nodes that will
be working together on the visualization. The middlewaréavily communicate with the ParaView nodes
through node 0. This means that node 0 will be responsibledimpositing the output from all nodes and
that all Operating System interaction (such as loading amthg of data) will be relative to the system on
which node 0 is running.

3.5 TheMiddleware Component

The middleware component we developed is the most impoctanttibution of our project. The compo-
nent is a server process that takes client requests and aoicates with the visualization back-end. It is
responsible for serving clients with visualizations, apging visualization server resources and for con-
trolling those resources (the visualization server preegswhile hiding ParaView’s complexity from the
user. In this section we will motivate important decisiored@ain the process of developing this component.
Some additional terminology will be provided as backgrowinére needed for a correct understanding of
the information given.

3.5 The Middleware Component 21

3.5.1 Server-Client Communication

One of the project’s main objectives was to provide clienith wemote rendering capabilities and this re-
guirement forces the framework to be designed in a clientesdashion. A major decision in the general
design of client-server systems is the choice for a certaiynof communication between client and server.
One possibility would be to implement a custom communicagiootocol but this would needlessly com-
plicate the development of a custom client application amebiuld also mean rewriting functionality for
which better solutions are available.

Over the past few years the concept of Web Services has beanpopular (see [20] for a discussion
on the Web Service paradigm). Web services can provideradiskof services to clients, like retrieving or
processing information, doing heavy calculations on bettpiipped servers, etc. They are implemented
as Remote Procedure Calls (RPC's) that can be invoked rgmmter the HTTP protocol that is used by
web servers. Older web services implemented Remote Proeé&diis by using XML (eXtensible Markup
Language), a common format to describe structural data imalndreadable text. Large disadvantage of
XML is that it is rather inefficient for transferring binaryath. Because we expect to be transferring
much binary data through the web service required for ouméssork XML is not a viable option. More
recent implementations of web services wrap the remots aatl responses into messages according to the
Simple Object Access Protocol (SOAP) which addresses ttiiiciency in an extension called 'SOAP-
with-Attachments® (SwA). In [16] SOAP and SwA are compared, showing that SOAf-Attachments
has lower processing overhead and higher throughput tegaolar’ SOAP.

Attempts to create a common web service interface haveteeksin the construction of the Web Ser-
vices Definition Language (WSDL). With WSDL one can abstracied wervice into endpoints and oper-
ations on those endpoints, along with the definition of is@rd outputs to those operations.

Because of the versatility and the (ongoing) standardinadf web services we have chosen webser-
vices as the basis for the client-server communication mflaamework. Many implementations of web
service frameworks are available but our attention hassfeed on an implementation by the Apache Soft-
ware Foundation (ASF) called Apache Afisar short: Axis. The Axis framework is both a client and
a server implementation of a web service engine that is base@DAP and which is implemented in the
programming language Java.

The last step to create a web service using Axis is writingva $&rvlet based on an Axis Servlet and
to deploy this servlet in a Servlet Container, along with &nitdon of the functionality that needs to be
exposed through the web service. Servlet Containers, or@gglainers, are responsible for providing an
execution environment to servlets by taking care of deplgystarting and stopping servlets, and receiving
and sending request and response messages. Many Serviein€mare available, but we have chosen
to use Apache Tomcat, another project of the Apache Softwavmdation, to deploy our Axis servlet,
mainly because of interoperability.

Note that, while Tomcat will by default run in stand-alonedwaoit is also possible to integrate a Tomcat
configuration into the popular Apache web sdﬂvenaking the web service transparently available over
the default network port for web traffic, port 80. This may bwbrtant when firewalls (or organizational
policies for example) prevent Tomcat to act as a web servetloer ports when the default port is already
in use.

With this setup we have a solution with standardized comptneith proven technology and which are
already actively maintained. Figure B.3 shows the basiagtfucture of the web service for our framework
when embedded in a regular web server.

3.5.2 Management

The middleware component will not be producing any resultdaia but it is responsible for managing
most aspects of the framework, as explained in the intraoluct this section. We have recognized four

25eent t p: // www. W3. or g/ TR/ SOAP- at t achment s|for information on the extension

3The AXIS2 Framework of the Apache Software Foundation (ABE.p: /7 Ws. apache. or g/ axi s2/

4“The Apache web server has the highest market share for web erserv running on approxi-
mately 47% of all web servers around the world (based on essnabf NetCraft in June 2009 at
http://news. netcraft.conifarchives/ web server_survey. htm .

http://www.w3.org/TR/SOAP-attachments
http://ws.apache.org/axis2/
http://news.netcraft.com/archives/web_server_survey.html

22 Architecture of a Remote Visualization Framework

Apache Webserver :80

Tomcat Serviet Engine

Company
or institute
website

Middleware

Figure 3.3: An overview of our middleware-and-webservideew embedded inside an Apache webserver
(which is also serving some website). In case the Tomcatl&@ebontainer is used in stand-alone mode
Tomcat will serve requests to the webservice by startinglasesver of its own.

types of management activities, and we chose to define a gearfar each of these activities, to be able
to cleanly separate the activities in the source code of tidellaware. In Figuré_3]4 we show how the
middleware component can be broken down into smaller coemisnthe web service and the managers.
Specific tasks for these managers is mentioned below, aldhgavehort explanation of the functionality
provided.

Middleware

UserManager

SessionManageHJobManageD

DataManager

Web Service

Figure 3.4: The middleware component in more detail, shgwfie different managers and the (flow of)
communication between the web service and the managers.

Data Manager The Data Manager is responsible for keeping track of theseétdaand visualizations avail-
able on the server and of the relations among them. This nearsdsp deals with reserving space
for jobs and storing job results, both on disk and in the deab When a job is finished, the Data
Manager will also retrieve the data for these results omtliequest.

Job Manager The Job Manager will maintain a pool of workers, which are#us in the middleware
that can carry out work. This pool has a fixed size, and its wiledefine the number of sessions
that can be served simultaneously. Each session startedcligné (through the web service), is
submitted as a separate thread in the pool. The most impdttactionality offered by the Job
Manager is running the jobs that are submitted. Each jobnigsldo a session, and these sessions
will be appointed to workers in the pool when there are wakeailable. When a worker picks up
a session the visualization pipeline needed for this segsiassembled. A new ParaView instance
is started and ordered to start on the first job. The workdraeittinue to run jobs until the session
is either closed or idle for too long.

User Manager The user manager takes care of retrieving users and (higcalcgroups from the database,
and performing user authentication. The User Manager atsages functionality to specify exactly
which groups have access to which dataset or visualizati@msed on the concept of Access Control
Lists (ACL's). A detailed explanation of this functionglitan be found in Sectidn 4.4.

Session Manager The other managers are relatively passive, compared to éksidh Manager. The
largest part of the calls to the web service are handled bys#ssion Manager. This manager is

3.5 The Middleware Component 23

in charge of setting up and closing instances and sessiodsenih request. A 'session’ in this sense
is the sequence of renders for a specific visualization ofegifip dataset for a specific client. A
client can start multiple sessions from a client appliggtiohich are then considered sessions in a
single 'instance’. A user starting two or more client apations will also have two or more instances
on the server. Besides managing sessions and instanc&egshimn Manager will also appoint all
jobs submitted by users to the session that they belong to.

Another important piece of functionality offered by the Sea Manager is the collection of a status
report for a given instance. Such a status report contamsipldates for all changed jobs for all
changed sessions for a given instance. Because of the mditareeb service, all information that

is exchanged will be exchanged in messages, going from it tb the server and with a response
from the server back to the client. We discuss this limitatid the web service concept in more
detail in Sectiof 4.5]1.

Client Instance Worker Pool
Server Session

D

Figure 3.5: Relation between client-side visualizationd server-side sessions, and between sessions and
workers. Each separate client visualization has one seesithe server side (in the middleware) and each
session will be handled by one worker.

3.5.3 Data Management

A substantial amount of time and effort was spent on findingast v effectively manage the available
data (we more strictly define the term 'available data’ bgland in this section we report on the results of
this effort. Besides that we consider the chosen solutidatse for our framework, we also consider the
solution a valuable contribution to this thesis. An essgratigument in the reasoning towards our solution
is that datasets and visualizations are highly related hodlg not be seen as separate entities. We will
show that, despite the tight relation between datasetsiandlizations, careful division of the visualization
pipeline still offers a flexible solution.

3.5.3.1 Datavs. Meta-data

When defining the 'available data’ we should specify two kinflslata. First we have the actual image-
or volume data acquired in some digitization process, ldanging or photographing histological sections,
doing MRI scans, etc. Besides this type of data we also hava-tdata, which contains properties like a
description of the object examined, information on the &itjan technique used, location of the actual
data, etc.

3.5.3.2 Dataset vs. Modality

In medicine the term 'modality’ is used to refer to the metlioat is applied to treat or examine a pa{ﬁant
and in imaging applications a modality would refer to the vilag acquisition has been done. For our
purpose we consider a modality to be some appearance or foenmdataset. MRI and CT scans and
histological volumes for instance are examples of modsljtacquired by MRI and CT scanning devices
or by scanning or photographing histology sections regpgt

The idea to define a modality in this section is to create thssipdity of comparative visualization
between different modalities and therefore we will consiithe fact that multiple modalities of a single
object (human orbit, pelvis, etc) can belong to the samesdataMore specifically, in our framework

SIn[htt p: /7 en. wi ki pedi a. or g/ wi ki / Mbdal i t y|for example

http://en.wikipedia.org/wiki/Modality

24 Architecture of a Remote Visualization Framework

we consider modalities to be sub-elements of a dataset indihection of data that we have to manage
(Figure[3:6).

Dataset 1N Modality

Figure 3.6: To support multiple modalities we added a 'Mdagabbject with a one-to-many relationship
between the dataset and the modality.

3.5.3.3 Dataset vs. Visualization

A conceptual visualization pipeline is usually separated three steps (see [21]):

1. Data Enrichment/Enhancement: preparing and filteriegdlw data through interpolation, smooth-
ing, error-correcting, etc into 'derived data’

2. Visualization Mapping: mapping the 'derived data’ to &Abst Visualization Objects (AVO’s), rep-
resenting graphical primitives with attributes such asu, positions, etc

3. Rendering: drawing the Abstract Visualization Objeota tendering context using the optical mod-
els that are available

In practice (i.e. in ParaView) the conceptual pipeline iteadled (prefixed) with a step to supply the
raw data to the pipeline. This means that in order to run Vizsaigons in our framework any pipeline must
consist of at least these four steps. In the first argumentealve stated that datasets and visualizations
are highly related and should not be considered separates ré&lation exists because the input to the
visualization, the visualizations’ raw data’, is commht defined by the modality that we would like to
visualize.

3.5.3.4 Solution and Design

In a relational database it is straight-forward to modeldhtaset- and modality objects, and the one-to-
many relation between them. We used a standard third-patabese (in our case MyS(ﬁ_to manage
this information, but any relational database would suffieart of the power and flexibility of our solution
is that we were also able to include the (objects of) the pipaeh our relational model. A naive solution
could approach the issue by predefining complete pipelimesdch modality, like in (Figufe3.7).

Visualization
Pipeline

=

Dataset 1N Modality 1:

Figure 3.7: A naive solution could predefine a visualizafimneach available modality, a solution that is
rigid and lacks re-use.

Our approach addresses the issue of lack of re-use by sepaita pipeline into a 'Source’ and a
'Visualization’, where the 'Source’ is responsible for piding input for the pipeline (based on the chosen
modality) and where the "Visualization’ contains all themkents of the conceptual pipeline. The proposed
scheme is illustrated in Figure 3.8.

Shttp: /7 www. mysql . cont

http://www.mysql.com/

3.5 The Middleware Component 25

Pipeline

Dataset 1N N:1—

NM oo e e e o

Visualization

Figure 3.8: Our proposed solution splits the modality-dateed part of the pipeline (which we will call
the 'Source’) from the visualization logic (the 'Visualim@n’) and models the pipeline elements as separate
objects. Source objects will be used to provide input to thealization, while the 'Visualization’ provides
the output.

In Section[3.¥ we discussed our choice to use Python to dorigwalizations in ParaView and in
Figure[3.8 the 'Source’ and 'Visualization’ parts of the glipe are depicted as objects with relations to
the modality object. A contribution of our approach is thatlke pipeline object is stored in the relational
database as a snippet of Python code that is responsibledessing the required ParaView functionality.
Any 'Source’ pipeline object will contain the Python codecassary to load the data for a given modality
compatible to the source. All 'Visualization’ objects wilbntain code necessary to transform the input
data into some defined visualization.

3.5.3.5 Conclusion

With the definition of datasets and modalities, and the defimof separate pipeline objects using Python
snippets, we have obtained a highly flexible solution fordaualization framework. Several interesting
properties of our approach can be mentioned, which we caruguas follows.

e Multiple modalities can be specified for each dataset.

e For each type of modality data only one 'Source’ object ndeds written and maintained, which
can be re-used for other modalities with the same data-type.

e For a modality multiple visualization routines ('Visuaditon’ objects) can be stored, and these ob-
jects can be used by one or more modalities.

e Arbitrarily complex pipeline objects can be created in tighHevel programming language Python,
which is well-documented and well-supported and many tpady additions to Python are freely
available.

e Our approach encapsulates datasets and appropriateizasiagis in a single relational database
model, where all pipeline objects for the visualizationdl Wwe stored in the database along with
the data. This means that the database will contain both @kee @hd the visualization routines
appropriate for that data on a single location.

In this section we tried to provide a high-level overview afr scheme of data encapsulation and
motivated the process of getting to this scheme. Becausactiial scheme is slightly more complex we
will supply further details of the data encapsulation in Gied4.2.

26

Architecture of a Remote Visualization Framework

Chapter 4

Framework | mplementation

In this chapter we discuss implementational topics andesshat we faced in the development of our
framework. We start with a more detailed discussion of thentlapplication. Although we could have

included this discussion in the previous chapter on the donk architecture we chose to discuss the
component in this chapter. This choice was based on two n@isiderations: the architecture of the

client component does not (substantially) contribute ®adhchitecture of the framework. Also, it is an

expandable part of our implementation that can be easilaced by a custom implementation.

4.1 TheClient Component

We mentioned earlier that we developed a (reference) dlipptication for this project. The basic idea

of this client application is to interface with the middla@wacomponent and submitting user requests,
retrieving the results from the server and displaying therthe users’ screen when partially or completely
transferred.

4.1.1 Requirements

In the introduction of this thesis we already mentioned sofrtee design goals for the client application.
As decisions made in the design of the client applicatiowviemfluence the usability and appearance of
the application we will discuss them here, starting withriguirements that were recognized beforehand,
like we did above while discussing the server design deussio

In the prior research mentioned earlierl[12] we discussedracommended several requirements ap-
propriate for the client application. All of these requiremts have been adopted in the design of the
client application. All of the requirements are relatedhe general idea that as many clients as possible
should be able to use the application (without making heawgahds on the user's computer resources and
-environment).

Small installation effort While applications are usually available on the client cotapafter performing
some installation routine, this installation will only mreathe application available on the workstation
it is installed on and usage on any other workstation williega new installation. Also, we should
keep installation as short as possible, by keeping the ahwdulata installed to a minimum.

(Nearly) Operating System independent To conform to the general idea above we tried to avoid crgatin
an application that depends on some specific operatingrsyshile in general the Microsoft
Windows operating system dominates the other availableatipg systems, the actual numbers on
operating systems used by our audience may well be different

No persistent storage of data Many applications install application data (or store dhtd tvas previously
fetched over a netwerk connection) alongside the applicath the target computer. Locally stored
data has the advantage of providing easier and faster aocdata. However, for most histological

27

28 Framework Implementation

datasets that advantage is hardly beneficial because oémigghly installation process (not even
regarding of the large amount of free space required on teetatomputer). In addition, persistent
storage of valuable datasets involves security risks, vbiimuld obviously be minimized.

L ow internet connection bandwidth Although high-bandwidth internet connections are becaneiom-
mon, for example for researchers in academic instituteis, still essential that users are able to
access the data collections from their homes, using their(agually limited) internet connection.

Interactive, simple and intuitive interface The last requirement mentioned here basically contains two
parts (an interactive interface and a simple and intuititerface), were both elements are related
to the user experience. Interactivity is essential in phing a good user experience because an
unresponsive interface will surely demotivate users. Bjmwasiveness in this sense can mean two
different things. First, unresponsiveness can occur inpafication where a lot of work is done but
progress is not reported back often enough, by means ofrsaptates, progress bars, etc. Another
kind of unresponsiveness can be found in the process of (e3nisualization. The actual task of
visualization, or the transfer of the result of the visualian, may take long and cause the client to
get the feeling of a slow and unresponsive interface.

In Chapte 2.l we defined what we consider the target audifancthis client application, with
the amount of computer fluency that can be expected for thispyof users. A simple interface
will probably be most efficient for this group of users. Nobattthis requirement as stated here,
containing words like 'simple’ and 'intuitive’, is ratheubjective. Although it is possible to provide
measures of simplicity and intuitivity, by conducting adfwsing people from the target audience,
we consider this to be out of our scope.

412 Decisions

From a design point of view, the choice for a client applizatimplementation language is important.
Several options are available, the most promising of whigh/A&JAX, Adobe Flash, C/C++ and Java.
The first two options are web-based programming environsnant those languages are designed for
applications that run inside a (compatible) browser andgudavaScript in the case of AJAX or a plug-in
from Adobe in the case of Flash. An application written usang of the two languages can be considered
a thin client. The term ’thin client’ is used for a (remotingpplication which has a very small resource
footprint, and which relies heavily on a server componetmglthe more intensive work. Fat clients on the
other hand have a larger footprint, can do more work themasednd usually provide more functionality to
the user. Applications in C++ are compiled from code to aveatbde supported by the platform, where
Java code is compiled to intermediate code, therefore niegua so-called JVM (or Java Virtual Machine)
to run. In this case C++ has the advantage of running natijwétirout an interpreter), but the disadvantage
that the code has to be compiled per platform, while Java cadéde run on any platform for which a JVM
is available. Applications in C++ and Java can be anywhetwds®n thin and fat clients.

For several reasons we chose Java as the programming lanfpwaaur client application. Although
thin clients are often used as means to provide web-actéeszibtent they can easily become limiting
factors in the functionality of the application, an exampé&ng the lack of support for dedicated graph-
ics hardware. Because C++ applications run natively andbeaaptimized further (because the target-
architecture is known at compile time) they will usually laster than similar Java applications. However,
most of the heavy work will be carried out by a visualizatiem®r as explained earlier in this chapter, and
they are not platform independent. Java applicafl@as be run on any platform for which a Java Virtual
Machine is available, meaning that these applications eetipally platform independent. On top of this
platform independence, an additional advantage is théadititly of an automatic deployment mechanism
called Java WebStart, available on any workstation thatfmadava Runtime components installed. This
mechanism will take care of loading, verifying and cachingiponents of an application. After success-
fully loading the application it will be started as a staridr& application (as opposed to the well-known
Java Applet which is very limited and which only runs insiderawser).

1We assume pure-Java applications, which conform to the ailpsrtability, and which will not include code, or referento
components, that make them platform dependent.

4.2 Data Encapsulation Scheme 29

4.1.3 Modéd-View-Controller (MVC)

In Chaptef®2 we showed that we defined multiple views for eggb of visualization (the view containing
the visualization itself, an orientation view and a paraneiew). Because of the tight cooperation of these
views with a single source of data we applied the well-knowsd®l-View-Controller architectural pattern
(for example in[[22], chapter 14). For a correct understagdif the inner workings of the application we
briefly explain the pattern and afterwards discuss the re$applying the pattern to our client application.

The pattern defines three components, the model, the view¢s)he controller, and an MVC applica-
tion is made up of a collection of these triplets. Each of theponents in the pattern represents a role in
the interface interaction of the application.

Controller

Model

Figure 4.1: The Model-View-Controller pattern componearts interaction.

In short the separate components can be described as follows

Model A model contains the domain-data of the application and tiaain-logic needed to manipulate
the data. For our application, we have a model containingithelization’s data and its parameter.

View A model can have multiple views, of which the model has no Kedge. A view is a certain
representation of the data, which does not necessarily teabe visual. In our application for
each visualization views are created containing the vizat#bn result, an orientation view and a
parameter view.

Controller The controller is the central element which processes sy@mtexample mouse clicks in the
interface, and which is capable of invoking changes on theéehd@ur application has controllers for
each type of visualization (for example for dealing witheirdimensional visualizations in which
you can rotate the object, plane reconstruction visudétimah which you will not rotate the object,
but the cutting plane, etc.)

The pattern has proven itself to be useful in dealing with d&eign issues we faced. First, the pattern
cleanly separates data from visualizations-with-inteoacovhich is beneficial for the readability and main-
tainability of the source code, two properties that are ehgimportance in open-source projects. Besides
improved readability, the clear separation of the patte&gments (specifically the separation between view
and controller, and the separation of the model from therdthe elements) makes it easier to implement
support for other types of visualizations or other data faisn And, when properly followed, the pattern
will make sure that views on the model are independent of etdur.

In our case we have three views for each visualization: tee eontaining the (result of) the visualiza-
tion, the orientation view and the parameter view. Althowgualization parameters are mostly changed
by user interaction events such as zooming and panning wisbelization view, they may also be altered
manually in the parameter view. Changes to any of the viewsldhbe correctly propagated to the other
views, for which the Model-View-Controller pattern proeslall the needs.

4.2 Data Encapsulation Scheme

4.2.1 Early approaches

In our search for a suitable structure to store our metadatevent through an iterative process. Limita-
tions of a certain solution force the solution into a differdirection, which in turn leads to new insights,
and possibly another iteration after that.

30 Framework Implementation

A promising approach to create a visualization pipelinéhimiPython was based on the fact that visu-
alizations in ParaView (and most visualization systems)caeated by setting up a chain of filters, where
the output of one filter is connected to the input of the next e last filter is used as input to ParaView
rendering helper objects (such as 'representation’ amsvMbbjects which map the objects to a scene).

The idea of solely specifying these chains of filters seemis#b at first and storing them in a database
structure is straight-forward. However, the idea turnettowbe rather complicated for several reasons.
Filters needing slightly more advanced parameters, lod&hfes and programmable filters for example,
always required additional, custom code to set up. Anotbsud is the use of the helper objects: some
pipelines need a representation and a renderview (basalhllisualizations using a camera) while others
will not use representations at all (for example a pipelim teads some input volume, retrieves a slice
from the input and writes that slice to an image file).

4.2.2 The Chosen Approach

In Figure[4.2 a screenshot from the reference client apgjicas shown in which the objects in the en-
capsulation are clearly visible in a tree structure. Theléwpl in the tree defines the dataset selected by
the user and the modalities of the dataset can be found attoed level. All leaf nodes in the tree are
visualizations specified for the available modalities (&mely can be re-used for more than one modality,
the "Volume Visualization’ appears twice in the tree).

[Pelvis dakaset

=7 Histology

i i Bowel Structure coloured by histology data
‘. # Plane reconstruction with Bowel Structure annotations
L volume Yisualization

_ L Yolume Yisualization
+-{7) High-resolution slices

Figure 4.2: The client application screenshot shows theettaisible objects in our 'encapsulation’ scheme:
datasets, modalities and visualizations.

As we explained in the previous chapter, the designed 'datapsulation’ scheme is slightly more
complicated, our scheme uses four data objects which weiexipl more detail in the following sections.
We also explain how the middleware will assemble a pipeloenfthe different data objects, using the
Python snippets we defined for them.

4.2.2.1 Datasetsand Modalities

An important idea in the final structure that we obtained & #lddition of a layer below the top-level
element of a dataset: a modality. Our definition of 'modalgya little broader than the medical definition.
The reason for this is that information derived from the datahould also be used as a modality. This
gives us a convenient and straight-forward way to incorgoaanotations in the structure, which we will
explain later on in Sectidn 4.5.2. It is possible that two arenmodalities within a dataset are aligned to
each other and our framework allows this information to loeest in the database as well.

4.2.2.2 Visualizations and Outputs

Datasets and modalities only define what kind of data is abkglin the system, but not how the data should
actually be visualized. For our framework a combination ofsualization’ and one or more 'outputs’ was
used. This is a minor extension to our definition of the englgi®n scheme in Sectidn 3.5.3 in which we
only mentioned the existence of the 'visualization’ objethe visualization is responsible for specifying
how the data is to be processed (basically, which filters mgllset up) to obtain the visualization. The

4.2 Data Encapsulation Scheme 31

output(s) will be responsible for doing the actual rendgsork from frame to frame and (usually) write
the output to the file system in some format.

To cope with the large variety of visualizations and outgatssible within our encapsulation we require
both a visualization and an output to define their 'type’, thatse types have very different meanings. The
supported visualization types were already listed in $afi3.3.

Visualization type The type of visualization defines the shape of the visuadindiefore rendering. After
rendering it will be an image, like a screenshot, but beferelering it might for example be a 3D
view, a plane reconstruction or just an image.

Output type The output type defines how the result of the visualizatiohlvé stored on the server. For
example we can choose to render and save it to a lossless Pale ion to a heavily compressed
JPEG image, a polygonal model, etc. Note that multiple astmay be defined for a visualization,
leaving it up to the user (actually the client applicatiamnake a decision between them. We will
show an example of this in Sectibn 415.4.

In fact both types are irrelevant for the middleware but they relevant for client applications: the
visualization type implicitly defines the interaction tl@possible with the visualization, where the output
type defines what the client must do in order to successfuliyvdhe visualization output to the client
screen.

4.2.2.3 Building a Visualization Pipeline

We now defined all building blocks for our data structure,lbak the final step needed to setup a complete
visualization pipeline in ParaView. As mentioned earlieBectiori 3.4 we have introduced an intermediate
layer of Python between our middleware application and thea¥ew server. In order to construct a
complete pipeline we need three pieces of information:

1. The modality to be visualized (usually chosen by the user)
2. The visualization required (usually chosen by the user)

3. The output of the visualization (usually chosen by thertlapplication)

Each of the pieces of information above defines a snippet thfdPycode to carry out the work, as we
explained in Section 3.5.3. In our intermediate layer oheptwe assemble pipelines from the pieces by
executing the Python snippets in-order. A crucial detaihmimplementation is that we make sure that the
running context (or the 'scope’) of these pieces is mairtdiamong all the snippets during the lifetime of
the pipeline. By running all snippets inside the same scopeam make sure that each of the snippets will
have access to objects (parameters, functions, etc) tiegtathor altered in any of the previously executed
snippets. The process is depicted in Fiduré 4.3.

Initialization

Visualization
Snippet

Modality
Snippet

Output
Snippet

Figure 4.3: The consecutive steps of the pipeline when dseenfrom the three pipeline objects that we
have defined earlier. Loading of data is done in the modatifypet, visualization setup in the visualization
snippet, rendering (and frame-to-frame changes) in theubshippet.

32 Framework Implementation

4.3 Resource Sharing

4.3.1 ParaView Processes

In order to successfully manage server resources it is if@apbto know, in slightly more detail, how
ParaView works under the hood when requested to run in par&lle mentioned earlier that ParaView is
started by running the pvbatch or pvpython executables iklBhenvironment (and MPI is responsible
for starting the actual ParaView processes in a distributay across the servers). This distribution of
processes can be controlled by the person or process gtBdnaView. MPI needs two things in order to
start the processes: a parameter specifying the numberdefsnmeeeded, and the location of a so-called
'machinefile’. In this file a list of the available machinedahe number of nodes allowed to run on each
of them can be specified. What MPI does next is iterate throoglspecified machines in the machinefile
and start the requested number of nodes.

All the processes started know their ID in the chain of coapieg nodes (in MPI terms: the 'ring’).
In Chaptef B (Figure_312) we already showed the sitation ilagrdm and made a distinction between the
so-called 'NodeO’ and the remaining nodes. It is essenbiattfe understanding of this section to know
the difference between NodeO (basically the master prpeeskthe other nodes. There are many tasks for
which this process is responsible, but the following aretmalsvant:

The middleware communicates with ParaView through thisenod

All nodes exchange data (for example for results) with theteranode.

Both reading and writing of data is done by the master node filesystem actions in the pipeline
are therefore always local to that node.

In case a ParaView reader is not capable of parallel reatlingnbde might be used to distribute the
data.

Some logical consequences follow from this list of progextiFirst of all, it is important to note that
each machine in the cluster might be running the mastefh®iesults of a job are usually stored on disk
and the framework should be able to access these resultsabldéo send them back to the client. This
means that each server should be able to access a sharéahdoastorage.

In certain situations it may be beneficial to distribute rapsbdes evenly across the cluster. Consider
a situation where it is common to run visualizations thatiema lot of /O activity from harddisks (large
datasets stored in raw file formats, for example). In thisasibn it makes sense to duplicate the data to
each machine and have the master nodes distributed evemntysathe machines. As each NodeO will have
access to a locally stored copy of the data the total dataigiimaut can increase.

Each of the machines in the cluster will be inter-conneciesidme kind of network technology. Bottle-
necks in a network are common for data-intensive visuatinat but knowing that all nodes exchange data
with the master node could help us prevent these bottlenddies idea is that, when you are distributing
processes, you could try to keep as many processes as pdssifil to (i.e. on the same machine as) the
master node. Each of these local processes can communiithteitna network, effectively minimizing
the amount of data transferred over (limited) network catinas.

4.3.2 Distribution Strategies

The previous section contains some remarks that can actoalseen as recommendations and for our
framework we tried to wrap recommendations like these ingtridution strategies. These strategies are
implemented as objects containing the logic to specify tmheworker how many ParaView processes it
is allowed to start and where to start these processes. ugththe framework can easily be extended to
include more strategies we have currently implemented tvadegjies: a Simple strategy and a Locality
Strategy.

2|t is possible to force the master node to a certain machine, tyngaure that the first entry in the machinefile always points
to that machine, however, this scales badly because angpsésghe framework will have at least one ParaView processingion
this machine

4.4 User Management and Object Authorization 33

Simple Strategy The Simple strategy is a default strategy in which the adstiaior of a framework can
control most of the distribution properties. In its configtion you can define how many ParaView
nodes are allowed to start in total and also how many are allqrer session. The configuration also
specifies the location of the MPI machinefile, and the adriatisr can predefine which machines
are available and the number of slots available on theseimexhBecause the machinefile is fixed,
the Simple strategy cannot prescribe where the processasaated, but it will prescribe how many
processes are started. This number always obeys the fojaveit of rules:

e Assign the number of nodes requested by the user (not magyatootherwise half of all
ParaView nodes available.

e Never allow more than the maximum number of nodes per session
e Never allow to leave less nodes available than there areviditkers.

Locality Strategy The Locality strategy was created with the idea in mind thatay be more efficient to
keep nodes local to the master node. This strategy is moenadu as the Simple strategy for several
reasons. The strategy can be made aware of which machineapable of running ParaView, how
many (physical) cores are available for each of them, andvafige of preference for each machine.
With this information, and the fact that the strategy keepeard of running processes the following
behavior is obtained:

¢ In case the user requested a certain number of threads fisdrars that have at least this
number available, otherwise pick the server(s) with thetrawailable threads and assign this
number. Still obey the second and third rules of the stratdmye.

o If multiple machines are left as candidates choose the maghith the lowest 'overbook’ ratio
(i.e. the lowest ratio between running processes and pdiljysavailable cores).

o If still there are multiple candidates choose the serven thie highest preference value (which
is usually the server that has the fastest processor cores).

4.4 User Management and Object Authorization

Datasets can be very expensive and they can be the subjettgafing research and may therefore not be
freely available to the public. For those reasons it is ingrarto have some way of specifying who may
or may not use the services provided by our framework. Twelseaf control were implemented for our
project, with the first level being user verification. At lageach user can be asked to supply a username
and password, which will be verified against the server. rAdteccessful authorization, the server will
check if the maximum number of sessions (visualization gjesr instances (client applications running)
for this user has not been reached yet.

On a second level, a more advanced authorization scheme bag&CLs or Access Control Lists was
implemented for the framework. With ACLs the framework adistrator will have fine-grained control
over the visibility of certain objects in the framework. @bis in this case are relevant elements of the data
encapsulation structure explained earlier in Sedfioh AQLs are always linked to groups, not to users.
Users can be in one or more groups, and groups themselveg ¢ammibe or more other groups, where the
'Global’ group is a predefined group that is the parent of t#leo groups, either directly or indirectly.

For the framework several so-called privileges can be defibat currently only one privilege was
implemented: the 'select’ privilege. Examples of additibprivileges could be a 'modify’ privilege if
functionality would be added to support altering inforroaton database objects, or an ’annotate’ privilege
if support for client-side image-annotating would be addéote that adding privileges will always require
changes to the code of the framework, while adding ACLs vatl n

Each ACL can contain zero or more privileges, and for eachbioation of ACL-and-privilege multiple
groups can be added. To clarify the general idea we providexample. For a given system, two groups
are defined, 'researchgroupl’ and 'researchgroup?’, thel dave a dataset available in the framework.
For our example, the first group should be allowed to accefs datasets, where the second group will

34 Framework Implementation

only be allowed to access their own dataset. To enforce é¢iisiction, a system administrator should add
an ACL (say ResearchDatasetACL), and add the privilegecseto the ACL. For this combination of
ResearchDatasetACL with the 'select’ privilege we add omeig: the researchl’ group. The last step is
to connect the newly created ACL to the 'dataset’ object ef'tesearchgroupl’ group.

From that moment on, only the researchgroupl’ group willdhthe 'select’ privilege on the dataset
object for this group, where the dataset object for the otheup has no ACL enforced, and will be
accessible by both groups in the system. Note that, withowt@L, all groups in the system would be
able to access the dataset of the researchgroup2’ groalpding other groups besides the two groups
mentioned. It would certainly make sense to add another AChe second dataset, allowing only the two
research groups to access it.

The current framework implementation enforces ACLs onelokthe data objects mentioned earlier:
datasets, modalities and visualizations. For the outpjgtcdlt does not seem to be useful at this time to
restrict access for clients based on ACLs.

4.5 Additional Functionality

In the development of our framework we addressed many diftéssues, but some of these issues are not
related to just the server components or just the client arapt. In this section we report on topics that
do not fit in any of the previous sections of this thesis butohldre important implementational aspects of
our framework and which we consider essential for a disoussi our project.

451 A Full-duplex Web Service: Semi-polling

A web service using Remote Procedure Calls (RPC's) will ghvexchange messages as question-and-
answer. Because of network-issues such as firewalls and Nafwprk Address Translation) protocols
requests are always initiated by the client and each regaasonly be followed by a single response (as
opposed to either a full-duplex connection, where bothiggatan communicate at the same time, or even
a half-duplex connection, where only one of the two parties ¢onversation can communicate at the same
time but still both ways). This pattern of communication,iethis characteristic for web services, has
some obvious drawbacks and is most apparent in our case Whesgetver needs to signal the client that
a job has finished. Some jobs may take a long time to finish améytalso be possible that clients want
to submit a batch of jobs. For these reasons the framewoudsrtedoe asynchronous: the client submits a
request and the server will not respond with the result ofahdout rather with a message that the job was
successfully received.

Because only the client can initiate communication withglerer the concept of 'polling’ is required
to provide the client with information on outstanding job$ie idea of polling is that a request will be sent
to the server on which the server may respond with the latatisof the job(s). In our framework we
approached the issue by implementing semi-polling. THemifice is that the server will block a response
to the client for as long as possible until either the reqbest timed out or the job status has actually
changed. This is an efficient way of exchanging the requirddrination with low response times (a
blocking request will immediately unblock when new infoitioa is available) and low amounts of traffic.

Recall that we defined a client instance as the collectiorl gkasions belonging to a single client ap-
plication (in Sectiol 3.5]2). With this definition in mind wréed to further reduce the number of messages
exchanged between clients and server. Instead of requr{sgmi-)polling thread for each of the clients’
sessions in an instance a single request to the server adkhintil either the request times out or until any
of the sessions in the instance have changed status. Thisaeéyclient application will require only one
polling thread to collect status updates for each of the@essvithin that application.

45.2 Visualization Annotations

Most definitions of 'annotation’ describe an annotation aeta or remark added to some document at some
location (see [23] for example). In visualization an antiotais usually represented as a label (with some
color and size for example) on an object, which is used toigeoadditional information about the object.

4.5 Additional Functionality 35

In a framework capable of 3D visualizations we think an aation should be more than just a label and we
came up with a solution which nicely integrates annotatiatsour encapsulation model, by considering
annotations to be modalities of a dataset. This solutionskasral advantages: annotations can now be
arbitrary objects (text, images, 3D polygonal models, ata) they can be connected to visualizations, just
like 'regular’ modalities.

In the discussion of our encapsulation scheme above we ometithat two modalities can be aligned
to each other in our relational database model. To suppadtations the middleware is capable of adding
the (data of) aligned modalities to the Python scope of aalization pipeline. This means that any
visualization of a modality that has modalities alignedttoan use the data of the aligned modalities to
add annotations to the visualization.

Consider the following example. In a certain situation ¢heste two data objects available, a histological
volume of a human orbit, and a polygonal model of the optie@evithin the same volume. We would like
to create a visualization which extracts arbitrary plamemfthe volume on which the outlines are drawn
of the intersection of the plane with the optic nerve. In ottdecreate this visualization we would add the
two data objects as modalities to a dataset and in the datahbadel we specify that the polygonal model
is aligned to the volume modality. Finally we add a visudlaafor the volume modality, which extracts
a plane from the volume and cuts the polygonal model with #meesplane, after which the output of both
the extraction and the cut is rendered into a single scene.

453 Linked Viewsand Synchronization

In Chapte 2 we described client functionality to suppog ttoncept of linked views for comparative
purposes, but until now we did not define any of the preretpgsif linking two views. In this sense the
term view’ will refer to a complete visualization pipelineo basically it will refer to the window a user
will see in the client application when starting a visudiiaa on a modality.

We will not restrict linking of two or more views on the basishaving equal modality, visualization
or output. We chose to define the compatibility of two viewslfoking differently. Each object in the
encapsulation scheme has an associated set of parameiers amh used to control the visualization.
For any of these parameters it can be specified whether ohegtare essential for synchronization. To
decide whether or not two visualization pipelines can biedthwe make two subsets of parameters that are
required for synchronization, one for each pipeline. Hinale check whether the lists contain the same
parameters and if they do the views are considered syncaiolei.

An example could be that for two views (say A and B), both simgwiolume rendering visualizations,
the camera’s need to be synchronized to make sure that therénadways viewed from the same eye-point.
For this example it will be sufficient to mark all camera paetens for both visualizations as being required
for synchronization, after which it is possible to link eithview A to view B (thus B becomes the primary
view) or view B to view A (A becomes the primary view). Aftenking any movement to the camera in
the primary view will be propagated to the secondary viewrtsuge that both visualizations are always
viewed from the same eye-point.

45.4 Zoomify Support

A technique called 'Zoomify’, work of Zoomify Ing, was originally developed for interactive browsing of
large images on websites. In our section on the supportedyjzts in the client application (Section 213.2)
we explained that Zoomify images are basically pyramidsle$ of the original image, where each layer
(or 'tier’) in the pyramid is in a different resolution. Thetiom layer of the pyramid contains tiles (all
tiles have a predefined size, by default 256x256 pixels) efithage in the original resolution, while the
top layer is made up of just a single tile with a low-resolati@rsion of the original image. Advantages of
this technique over full-resolution images are that we daweed to transfer the entire image before we see
our result and that we can prioritize fetching certain tdéthe image to allow the user to quickly zoom to
a certain area of the image if needed. More technical infaoman the Zoomify technique can be found
at the Zoomify website, but also inl[1].

Shttp: /7 www. zooni fy. com

http://www.zoomify.com

36 Framework Implementation

The support for Zoomify requires implementation on both ¢hient and the server side. The server
side needs to be capable of 'zoomifying’ the result of theiaiization, where the client needs to be able
to fetch and reconstruct the tiles into a single image. Imglstation of Zoomify on the server-side was
easy because of the availability of an open-source Pytlhmarﬂ to convert regular images into Zoomify
pyramids. Because the pipeline objects are also in Pythde, tbey can easily use the functionality of this
third-party library to convert the result of a ParaView \d@fmation into a Zoomify image.

The client-side implementation required more work. In @bferiented Design (OOD) terms we might
say that we implemented Zoomify image objects as an extensioegular image objects. This gives us
the advantage that every type of visualization (as exptginerrently Image views, Plane views and 3D
Views are available) that is using image data will also be abluse Zoomify image data. Currently all
visualization types use image data as input, which meamnalthasualizations currently supported are also
available with the Zoomify functionality automaticallyjtvout further implementational work.

At this point the advantage of being able to use multiple otgtgoer visualization object becomes
apparent. A system administrator could define two outputa fliven visualization, one output that results
in a (regular) image and one that results in a Zoomify imaden €lient applications that are not capable
of processing the Zoomify data can now select the regulagér@utput, where more advanced client
applications can use the advantages of the Zoomify output.

455 Image Watermarking

Earlier in this thesis we mentioned that medical datasetbeaexpensive, either because of the exclusive-
ness of the data or because of the large amount of work irnv&stecquire and process the data. In [12] we
suggested techniques like fingerprinting and watermartoraddress the issue of protection. As a result
we added a basic visible watermarking algor{ﬁmpable of blending a watermark in tiles into the result
of a job. This algorithm was added to the intermediate Pythger in which the pipelines will run which
makes the functionality available to all pipeline objecte current implementation could certainly be
improved but an example is shown in Figlre|4.4.

456 Lookmarkingand Caching

For each job that is submitted to the system several pieca¥aination (including references to job
results) are stored in a database and this is useful to adewsuo retrieve job results on demand. However,
we have also used this information for two other purposeshvivie will describe in this section.

As explained, the term 'lookmarking’ is the visualizatioguévalent of the term 'bookmarking’. Our
framework supports saving the state of a visualization ssex gan restore or share that visualization
at a later time. From an implementational point of view wech&® store some information to support
lookmarking: the modality and the visualization that wenesen and the complete set of parameter values
for all pipeline objects at the time the lookmark was creat€dese three pieces of information provide
all that is necessary to start a new session and restoredtsesion state. Because we already stored the
required information in a database the implementationdppsrt of lookmarking was straight-forward.

With the job information stored it is also possible to supmarching. The idea behind caching of jobs
is that it can be beneficial to keep results available for stme until a similar job is submitted. When
a similar job is submitted the result is already availablthait doing any work for the job. At first sight
lookmarking and caching do not seem related but in our imphgation they are very much alike. The
similarity is that both lookmarking and caching require la gate to work. Lookmarking requires the state
to restore the session, caching needs the state to verifiheshe similar job was submitted previously. The
difference between the two is that caching also needs tothaeb result available.

45.6.1 Absolute Parameters

Note that in certain cases it is not possible to restore tate gif the session exactly, for example with
visualizations using temporal or temporary (internal)akles, visualizations of a running clock and visu-

4http: /7 sour cef or ge. net/ proj ect s/ zoom f yi mage
5The algorithm is heavily based on code fountht p: // code. acti vest at e. coni r eci pes/ 362879/

http://sourceforge.net/projects/zoomifyimage
http://code.activestate.com/recipes/362879/

4.5 Additional Functionality 37

Figure 4.4: An example of a 3D rendered polygon dataset usimparallel ParaView threads (contribution
of each thread is colored differently). A tiled color-waterrk containing the logo of Delft University of
Technology (TUDelft), and completely independent of theualizations’ parameters, is blended into the
result.

alizations where the coloring of the visualization is basedhe contribution of processors to the rendering
process, to name a few. In these cases the job state doesptitecanough information to be either re-
producible, in the case of lookmarking, or comparable, sndhse of caching. To address this issue all
visualizations should use absolute parameters if posstoleexample a situation of a visualization using a
camera. When a render from another point of view is required, camera properties (azimuth, elevation,
etc) will be specified. However, when relative parameterald/be allowed (i.e. "Rotate the scene by -1
degree” instead of "Rotate the scene to exactly 90 degr@esil) never be possible to restore the session
correctly. Because currently it is not guaranteed thatiogolvill return a correct result on each and every
occasion we chose to disable the caching functionality.eMioiormation can be found in the Future work
section of Chaptdr]6.

38

Framework Implementation

Chapter 5

Results

In this section we report on the results of quantitative meaments that we performed on a running
instance of our framework in an experimental setup. The rgaal of our tests was to assess the perfor-
mance and scaling capabilities of our framework. Due to tiaetically infinite number of tests possible,
we aimed to run tests that are appropriate for two specifinagées which we already mentioned several
times throughout this thesis: a research- and classroonasoe

51 Experimental Setup
5.1.1 Hardware

Because we did not have unlimited hardware resources veettriget up a fairly representative environment
for our tests and therefore we prepared three machines foests. For the sake of comparison we describe
the machines and their (important) hardware specifics below

ParaViewServer1l The first node in our ParaView 'cluster’ was dedicated fora®eaw visualizations
and contained an Intel Core 2 Quad Q8300 processor runni2gb@GHz (4987.41 bogomips)
with 2GB of DDR2-800 memory, using a Western Digital Velagitor B0GB SATA2 harddrive (a
WDB8O00HLFS) as system disk, which was benchmarked at 117.8&&tBnd with 'hdparm’, a tool
included in most Linux distributions.

ParaViewServer2 The second ParaView node was also dedicated for ParaVievajabthis machine con-
tained an Intel Core 2 Duo E4400 processor running at 2.6§&3121.26 bogomips), also with 2GB
of DDR2-800 memory, and using a Western Digital 500GB SATAgddrive (a WDC WD2500KS-
00M) as its system disk, benchmarked at 63.54 MB/second.

FrameworkServer The machine processing client requests was running insidevarel] as a virtual
machinB. The host runs on a dual-core Intel E6850 processor at 3.0@h2GB of memory. The
virtual environment was set up with a system disk of 12GB, gigen 1GB of memory and was
allowed access to both of the host’s processors.

All three machines were connected by a 1Gbit network foreglid, except for those tests that were run
to measure the influence of the network connection on usirlgpieucooperating threads spreaded across
multiple machines.

Although a separate FrameworkServer is not strictly neggsa order to run our tests, the additional
load of running the framework software on either of the ottmachines might influence the test results
and therefore a separate machine was installed. Althoughess efficient to run an operating system in
a virtual environment opposed to running one in a nativesyga environment, the solution seemed more
than adequate for our tests as the FrameworkServer hamlyeached 50% load on either of its two cores.

L-http:/lwww.vmware.com
2vjirtual machines are machines emulated within other machineslaw running a different operating systems inside some host
operating system

39

:

40 Results

Dataset Acquisition Voxels Volume Size

'medium’ Section-images reduced to 10%; 30B6x205 42.9 MB
Only 10% of sections kept;
Converted to single volume file

'large’ Section-images reduced to 10%; 3Q196x2052 413.5MB
All sections available;
Converted to single volume file

Table 5.1: An overview of the datasets used for our tests.

5.1.2 Software

All three systems were installed with a fresh copy of the Kkimlistribution Ubuntu, version 9.04 (the
latest version publicly available), including all softwapackages needed for compiling software from
sourcecode. In addition to the default Ubuntu installatt@nfollowing (system) packages were installed:

e Java (1.6.0), installed from the Ubuntu repositories and needed fondat.
e MySQL (5.0.75), installed to support the database schemeded for the framework.

e Python 2.6, including development components and the Ry#@AP and Python Imaging library,
are needed for running and compiling ParaView with Pythqpsut.

e NFS (Network File System), used to provide a central stocdghared framework components and
for storage of render results.

In addition to the packages mentioned above we needed t&aenawork-specific packages:

e Tomcat (6.0.16), does not require installation and wasexbm the local filesystem.
e MPICH2 (1.1.1plﬁ, an MPI library needed for ParaView inter-process commmatiog.

e Mesa (7.0.2ﬂ, an open-source implementation of the OpenGL specificatinr our framework
we have specifically used the OffScreen Mesa (OSMesa) ingittion, to remove the need for a
desktop window system (the X-window system in case of Lirtox)e active. ParaView is natively
capable of switching to OSMesa when offscreen-renderinggeested.

e ParaView (3.4.0), built from source (including some of courge code changes) and configured to
build using the libraries specified above.

5.1.3 Various

For our tests, we used two histological volumes which werrgfeas the 'medium’ and ’large’ dataset.
These datasets were both downscaled versions of the LUMG mkdtaset, see Talle 5.1 for more infor-
mation.

For all tests performed the results were timed with mill@et precision. Because the times measured
in our experiments were usually over 100ms and certainlysnbtmillisecond it seemed reasonable to use
this precision.

We created a small application which is able to mimic the bighaf a regular client (i.e. the reference
client application). The functionality of the applicati@limited to submitting jobs and receiving results
from the server. The test application does not actuallyhfedsult-data from the server or display data on
the client screen. In the tool we included parameters foersgthings:

3MPICH project page can be found at http://www.mcs.anl.gegarch/projects/mpich2/
4Mesa project page can be found at http://www.mesa3d.org/

5.2 Testing Terminology 41

e The number of sessions

The number of ParaView threads per session

The number of jobs per session

The number of times each test should be repeated (we havéhesealue five as default for all tests)

e The modality
e The visualization

In the experiments described below, where necessary, wanaifition which values were used for
which tests. For our tests we predefined two modalities, onedch dataset mentioned above. We also
predefined a visualization, which is a default volume vigagion without transfer function, with each
iteration rotating the scene by one degree. In a usual framewsualization pipeline some functionality
will be defined to save the output to the filesystem. Howewarptmpare results when increasing the output
resolution, we left this part out of the pipeline becausargpimage data involves significant overhead
(relative to the output resolution). Although this overthexists in practice it will needlessly interfere with
our results and was therefore omitted.

For each job completed on the server we have access to threstdmps: the time of the submit, the
start time (the time of pick-up by a worker) and the end tinfe ¢ime at which a job is either finished or
failed). Two important metrics from the results of the tggplecation will often be shown in the figures
below: the pipeline initialization times, which is the difence between submit- and start-time of the first
job, and the job work time, which is calculated by substragthe job start-time from its end-time. See
Figure[5.1 for an example of the sequence of events in a sefiBiovhich two jobs are submitted and it
shows the appropriate time differences measured in thisteha

Submit
Session Start Job 1 Start Job 1 End Job 1 Submit Job 2 End Job 2 Session End

R R)

— i i |
\ Vo \%

Pipeline Initialization Time Job 1 Work Time

1

Job 2 Work Time

Start Job 2

Figure 5.1: For each job we calculate three timestampsirtteedf submit, start and end of the job. Pipeline
initialization is performed directly after the first job isaeived, therefore the 'pipeline initialization time’ is
the difference between submit- and start-time of the fitst jjche ’job work time’ is the difference between
the job start-time and job end-time, for our tests job wames will be averaged over all jobs in the session.

5.2 Testing Terminology

Before we start describing our tests and results it is esddatexplain some of the terminology needed
for a correct interpretation of the tests. We refer back guFeé[3.2 and Figude 3.5 where we illustrated the
relations between visualizations and sessions, and betsessions and workers. For each visualization
started by a user one session is created which will be segveddworker in the middleware. This worker
will in turn start one or more ParaView nodes to do the viazion. The following terms will be used
frequently in the remaining part of this chapter:

42 Results

core When we refer to 'cores’ we mean physical processor cores. ntihger of physical cores is the
measure for the number of tasks a processor can performafigdawithout resorting to switching
from process to process to mimic multi-tasking.

server, machine The term 'server’ or ‘machine’ is used whenever we refer tanstance of an operating
system that will be running processes, and as explaineceabimese instances may either be physical
(the two ParaViewServers) or virtual (the FrameworkMaelin

client thread, session A ’client thread’ represents one session from one user. Aisesiniquely defines
a modality and a visualization on that modality. For examplieen the reference client application
is used, each visualization window for each user will reguét separate session on the server.

job Each job is used for one frame, or render, of a visualizatimhjabs are always started within a given
session.

node, ParaView thread The middleware decides how many 'ParaView threads’ argestdor a given
session. ParaView itself calls the ParaView thread a 'naaied when doing parallel processing it
basically separates cooperating nodes in two categoriede A (a master node) and node 1-to-n
(satellite nodes). Each of those nodes is a single procesingion any of the ParaView machines
available to the framework.

Strategies. '1-1','2-1', '4-2', etc. In several cases we were interested in the effect of diginigpyprocess-
ing nodes around the servers in different ways. We will oicredly refer to these distributions with
short notations in 'x-y’ form and the idea behind this is alfof@s. The 'x’ stands for the number
of consecutive processes on ParaViewServerl, the 'y’ stiordhe same on ParaViewServer2. If a
certain number of nodes>(1) is selected for a single job, the distribution will follalve strategy
specified. For example, if we would like to run a job on six flatgaraview nodes and we choose
a '2-1’ strategy, the nodes will be distributed as followstr&/iewServerl will get (node0, nodel,
node3, node4) and ParaViewServer2 will get (node2, nodeABrordingly, a '1-1’ strategy will
equally distribute the nodes over the machines and a 'Ordfeggy will only run nodes on the second
server.

As explained earlier, we performed tests based on a reseamdha classroom scenario. As there are
some major differences between these situations we nefededlif kinds of tests and therefore it seemed
useful to go for this two-scenario approach. For a reseamiraament we expect that users will not
request many visualizations of a certain modality, but timégght have more concurrent sessions running
for comparative goals. Besides using more datasets, thépnbably also more often switch between
them.

In a classroom scenario we do not expect that many datasethesj but we certainly expect many
concurrent client sessions doing many visualizations oatasét that is to be the subject of a particular
course for example.

The former scenario will likely benefit from parallel loadimnd processing of the different datasets,
as users in this scenario come equally spread in time. Fdattex scenario we are more interested in
scaling of the job processing times when more clients adbesserver simultaneously. Also, the number
of parallel processes will have to be restrained because thecesses can easily flood the servers in
several ways (at least for memory-accesses and /O opesatio harddrives), when there are many users
doing visualizations at the same time.

5.3 Preliminary Tests

We first carried out some preliminary tests to quantify gahproperties of the framework and its under-
lying visualization system. We also use the results of theses to determine some of the boundaries and
parameters of later tests.

5.3 Preliminary Tests 43

5.3.1 Caching Test

Most of the tests we did involved submitting a series of jalrsaf session and calculating the average time
needed to complete a job. We needed to find a safe boundahefaumber of jobs to start per session. Too
few will result in a large variance in the results becauseosiible caching effects when starting ParaView
processes, too many jobs is not useful because that willowdtibute to the results.

To test the behavior of running series of jobs we ran a tes$t avgingle client which will increase the
number of jobs submitted per session. We did this test on trtum dataset, and used only one ParaView
thread for the sessions. The goal was to find out at which nuwftjebs per session the average job time
would not significantly change anymore.

550
540
530
520
510

500
490 == Average Job Time

Time (ms)

480
470
460

0 5 10 15 20 25 30 35

Jobs per Session

Figure 5.2: Job times when increasing the number of suaeegdis per session.

The results showed that there are no clearly visible effettsaching. After two or three jobs per
session for the same visualization the times were rathestanonh With a total of 30 jobs per session the
average was 488 ms with a standard deviation of less than 1®vittsthese results in mind we considered
it to be safe to use 20 jobs per session in the following testget an appropriate average value for our
measurements.

5.3.2 Network Interconnection Test

As mentioned earlier ParaView uses a message-passing|{iMBI) to exchange data between cooperating
nodes in a visualization. In earlier test setups we used aHthsrnet (100Mbit) network to connect the
ParaView machines. However, we were interested in tedtiagnfluence of the underlying network on the
performance of cooperating threads, mainly to preventw&erétbottleneck to act as a confounding factor
in our tests. A small test showed us that this connectiontisadly extremely important. For the test we
(software-)limited the speed of the network card of one efflaraView machines to 10Mbit, 100Mbit and
1000Mbit respectively (the latter being the actual limittkeé network cards in our cluster). We used the
medium dataset, set a default output resolution of 102441d#zls and used a '2-1’ distribution strategy.
Finally, we had the number of cooperating ParaView thread®ase from 1 to 12. The actual distribution
is not really important for the outcome of the test but witk tB-1' strategy we should notice network
bottlenecks after every third thread that will get addedaMeements of the pipeline initialization time for
each of the network speeds and for each number of coopethtigads is shown in Figuke5.3.

When a pipeline is initialized all data for the visualizatistioaded into memory and distributed among
all cooperating nodes. This distribution is managed by thaster node and any node that is on a distant
machine will require transfer of data over the network td thachine. When two distant nodes are coop-
erating in the same visualization we expect that data isteared to both nodes over the same network
connection at the same time.

a4 Results

7000

6000 —

5000

4000

=@=1000Mbit
== 100Mbit
10Mbit

3000

Time (ms)

2000

1000

01 2 3 4 5 6 7 8 9 1011 12 13

Cooperating ParaView Threads

Figure 5.3: Test results showing pipeline initializatiome with increasing ParaView threads at different
network speeds (the last two runs of the test at 10mbit didfin@h in less than 10 minutes and were
therefore omitted).

The figure clearly shows that with 10mbit connections eveimgls node on a distant machine (i.e.
distant from node0) will heavily degrade the performancéhef system which means that the network
connection is slower than the data distribution processe T®0mbit connection performs much better,
until a second distant node is requested, requiring datadambdes to be transferred over the network. At
the highest speed the influence is not really visible, bug timt our test setup only used two machines.

These test results have forced us to make sure that the neadhimur test setup were connected at
1000Mbit. In fact, when a larger cluster is used in practicis, advisable to connect the machines at even
higher speeds, using technologies like Fibre Chanr{@vailable at speeds up to 20Gbits), to minimize
inter-machine latency and bottlenecks in network throughp

5.3.3 Output Resolution Parameter Test

During early tests we obtained some odd results in testssthemumber of cooperating ParaView threads
was gradually increased, starting at a single thread. Aljhahe time required for pipeline initialization
dropped when adding more nodes, the render time would o&@mdpeased when using two or more nodes
(compared to using only a single node). After verifying plolescauses of this behavior we found that
the resolution of the output is an important factor in thecess. To see whether the output resolution is
of influence to the results we performed the following testr Both the medium and the large volume
we ran the default visualization, while increasing both tiaenber of cooperating threads and the output
resolution. For the resolution we started at 256x256 piaptsincreased the resolution in four steps, up to
2048x2048 pixels (note that this means that the output df raxt iteration contains four times the number
of pixels). A '2-1’ distribution pattern was used in the &sThe results are shown below.

We see from Figurg 5.4(a) and Figure 5.4(c) that the initiion times for both datasets decrease
when adding (a limited number of) nodes, although the deeréma more prominently visible with the
larger dataset. We examine this behavior in more detat, Iaté for this test we can say that the pipeline
initialization is not related to resolution output (whicheams that an equal amount of data is loaded,
regardless of the visualization and its output resolution)

Another conclusion can be drawn from the results which is maye important and relevant for the
current test. The only case for which the output resolutias wf significant importance was the single-
node case. For both datasets for the lowest two resolutisirggée node had a lower 'working time’ than
any other combination of nodes. However, when the resalutias increased a very different behavior

Shttp://www.fibrechannel.org/

5.3 Preliminary Tests 45

9000 1800
8000 1600
7000 1400
6000 1200

w i

E 5000 256 E 1000 —-256

[} ']

E 4000 ~&-512 g 800 =512
3000 - 1024 600 1024
- =3=2048 100 A =5=2048
1000 200 . -

0 0
0123 456 7 8 910111213 00123 456 7 8 910111213
Cooperating ParaView Threads Cooperating ParaView Threads

(a) Pipeline initialization times for the medium dataset. (b) Job work times for the medium dataset.
40000 1800
35000 ,‘ 1600
30000 1400

\ 1200

__ 25000 _

E \ - g 100 256

< 20000 256 < \

£ ” -B-512 E 800 -&-502
15000 \

% 1024 600 1024
10000 =H=2048 400 =H=2048
5000 200
0 0
0123456 7 8 910111213 01 23 456 7 8 910111213
Cooperaring ParaView Threads Cooperating ParaView Threads
(c) Pipeline initialization times for the large dataset. (d) Job work times the large dataset.

Figure 5.4: Pipeline initialization (left) and job work tes (right) for all resolutions.

appeared. The working time for the single-node pipelinedescalmost exponentially with resolution.
When two or more nodes were involved in the visualization gs®lution did not really seem to affect the
times. Very likely, although not completely certain, thishlavior was the result of a choice of ParaView
for sort-first or sort-last volume rendering. Sort-first audt-last rendering are choices for a system to
distribute work among multiple processes. With sort-fiestdering, the screen space is divided and each
process contributes only to a certain screen area. WitHastrtendering the rendered objects are divided
and the result is composited to a single output (sek [12]&8fpr a discussion on sort-first and sort-last
schemes for distributed rendering).

In short the conclusions of the results were as follows. Fmmbination of low resolutions and small-
to-moderately-sized datasets a single node may in factdédht solution. However, for most datasets
combined with higher resolutions, both the lower initialibn- and lower rendering times obtained by
using more nodes will be an improvement. For the remainiststee used a resolution of 1024x1024
pixels as default because compared to the other three tiessluhe 1024x1024 resolution is the most
appropriate choice considering the currently common scregolutions for client workstations.

46 Results

5.4 Classroom Scenario: Many Concurrent Clients

With the first scenario test in our test-set we tried to illat# the behavior that is to be expected when
the system is stress-tested using many concurrent cligoests, like in a classroom with many students
working at the same time.

The initialization part of the pipeline can be rather tim@suming as this part is dominated by data-
loading and preprocessing. As the first part of this test, wesvinterested in the pipeline initialization
times when increasing the number of concurrent clients.

Besides the initialization time we are also interested eaterage job time once the pipeline initial-
ization has finished, which we will examine in the second péthis test.

Note that this test was actually close to a worst-case siceaareach of the client threads submitted
jobs without delay, while a real user would probably inspetgrmediary results before requesting a new
render. However, we did not 'cheat’ by submitting the jobsa imatch, but rather submitted a new job only
after a previous job had finished, like in a real-life scemari

54.1 Test Parameters

The parameter values for the test are mentioned below. Véetsel the medium dataset as subject for
this test, as the large dataset would exhaust memory quit&lguthereby reducing the number of tests

possible. In this test we used the Locality strategy becthessimplistic strategies we used earlier ('1-1',

'4-2’, etc) have no memory and are therefore only applic&dmelistributing ParaView threads (which was

perfectly fine for the tests above).

We explained the Locality strategy earlier in Secfion 4.;&hort the idea of the strategy is to assign
server resources in such a way that multiple ParaView nodleslways be placed on a single machine
(hence the term ’locality’) and that processes are dividpthly among the servers (where 'equal’ means
that the ratio between the number of physical cores and psesds similar for all servers).

e Dataset(s): medium

Client thread(s): 1-40

ParaView thread(s) per session: 1

Jobs per session: 20

Strategy: Locality strategy

5.4.2 Results

We started with a comparison of pipeline initialization éisg using the three possible server combinations:
the guad core, the dual core, and both machines combinede$hks are shown in Figuke 5.5. To be able
to see in more detail what happens when the number of physicas is exceeded we also provided two
additional figures which can be found in Fig{ire 5.p(a) andifép.6(b).

From the test results we can draw several conclusions. Figotdf5.6(d) we can see that the initial-
ization process was rather limited by the processor. If tiitealization process was limited by disk /O it
is likely that we would have seen an increase in initial@atimes even when a second concurrent client
would start using the system. However we should not dirggthyeralize the fact that pipeline initialization
times are constant as long as the number of parallel clietitslow the number of physical cores. Because
many different kinds of readers or preprocessing steps eaobfigured, results may be different.

What can be seen is that the strategy implemented in the midtdesuccessfully distributed the clients
over the available processor cores when possible, maimgaihe ratio between the number of processes
and the number of physical cores of the machines. In the t@stvhere both servers were available to
the cluster the initialization times remained (almost)stant until the number of clients equals the (total)
number of physical processor cores. Another interestingemty can be deduced from Fig{ire 5.6(b) where
the number of concurrent clients was greater-or-equal ti@mumber of cores. Three linear trends were
drawn over the results, along with their line equations amédditional value R?) showing the relative

5.5 Research Scenario: Visualization Parallelization 47

70000

60000

50000

g 40000
E ~4—Both
£ 30000
== Quad core
20000 - Dual core
10000
Adl

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Concurrent Clients

Figure 5.5: The initialization times for all three servenduinations for the concurrencies for which we
were able to get test results without errors due to timeouts.

error of the trend-line. The figure clearly shows that itit@tion times scaled 'only’ linearly with the
number of clients when all processors were in use.

In the case of our medium dataset the amount of memory retjbireeach visualization pipeline was
close to 130MB. Simple mathematics show that a machine pgdiwvith 2GB of main memory will be
capable of running approximately 16 of these pipelines kaneously. After main memory has been
used up, the operating system will start moving data andrprog from memory to disk (a process called
'swapping’) to free up memory for running processes. Thelwad caused by swapping adversely affects
the performance of the system and the result of this can lzelglseen in Figuré5l5 at the point where
approximately 18 client threads are running concurrerilgain, the result of adding a server was very
noticable: adding a second server with the same amount ofomyenill effectively double the total system
memory, theoretically allowing twice as many client praaesto fit in physical memory.

Finally, in Figurd 5.V one can see the job work times for thfedint configurations. At the beginning
the trend of the job work times were very similar to that of thidialization times. Even when the initial-
ization times were getting heavily affected by swappingéssthe job work times kept scaling linearly.

5.5 Research Scenario: Visualization Parallelization

As we wanted to provide insight into the behavior of par&hgion in our framework (i.e. parallelization
within a visualization, in contrast to serving multipleasits in parallel as in the previous test) we performed
several tests to see what would happen when more cores andrferservers were added as cooperating
nodes to a single visualization. This is a likely situation é&xample when highly-detailed information is
to be made available to researchers. The datasets-towititlkare expected to be larger but less clients are
using the system concurrently.

551 Test Parameters

To show the effects of parallelization we limited the tesh&ingle client running a single visualization job
to give each job the full potential of the hardware. In aduditio performing tests with increasing numbers
of cooperating nodes, we were also interested in observira Wappened when we used different node
distribution strategies (to find out if there is a noticabiffedence between the '4-2" and '2-1’ strategy).

48 Results

14000 35000
- y=1835,9x+1018,3 A
12000 [y 30000 R2=0,999V
10000 25000
_ _ == Both
())
£ 8000 £ 20000 =@ Quad core
o =&~ Both v
ig 6000 é 15000 1 Dual core
o =@~ Quad core
4000 10000 —Lineair (Both)
Dual core
——Lineair(Quad core)
2000 5000
——Lineair (Dual core)
0 0 T T T T T T T T 1

01 2 3 4 5 6 7 0 2 4 6 8 10 12 14 16 18

Concurrent Clients Concurrent Clients

(a) The part of the results where the number of od)- The same results, but from the point where the number ofuroert
current threads is below the number of physical mi@nts exceeds the number of physical processors (up to Aéuc@nt
Cessors. clients).

Figure 5.6: Pipeline initialization times for all the sen@mbinations, with increasing numbers of con-
current clients.

Finally, we did our tests on both the medium and the largesgatep see whether any conclusions are
generally applicable for different data sizes.

e Dataset(s): medium, large

Client thread(s): 1

ParaView thread(s): 1-12

Jobs per session: 20

Strategy: Simple strategy ('4-2’, '2-1")

55.2 Resaults

After running all tests and comparing the results we notiteste is hardly any difference between the
'4-2" and the '2-1’ strategies. The only noticable diffecess occured at pipeline initialization times where
the '4-2’ strategy shows a steeper descent than the '2-dfegly, when increasing up to 5 ParaView nodes
(at six cooperating nodes the two strategies only differaxmately 100ms which is not visible from the
diagrams). Because of this indifference we only show redaltthe '2-1’ strategy.

In Figure[5.8(d) and Figuije 5.8[b) the results are shownHermedium dataset. Clearly visible is
that pipeline initialization became significantly lower @hadding ParaView nodes. At approximately five
cooperating nodes a minimum was reached which is close tauheer of physical cores available in
our setup of the framework. With the job work times we obseéree same behavior. Note that the large
decrease in time from one to two nodes is a result of the saf@et @fs discussed earlier in the resolution
test. Although the work times also kept decreasing up to faralfel threads it can be argued whether the
larger number of threads can be justified for a dataset obthés

For the large dataset the results (Figure 5]9(a) and Fjg@(@)$ were better, from our point of view.
To illustrate this we will consider the initialization tirae For the medium dataset the initialization times
dropped from 4708 ms to 3186 ms when increasing from one tanfides: a decrease of approximately
32%. However, the times of the large dataset dropped frorBB&4s to 11748 ms when increasing to six
nodes, a decrease of almost 65%. For the large dataset th@jiltimes decreased until six threads were
cooperating on the visualization.

For both datasets we can conclude that both the initiatinatnd the work times increase rapidly when
more cooperating processes are used for a single visuatizhin there are physical cores available.

5.6 Additional Tests 49

5000
4500
4000
3500
- 3000
13
E 2500 == Both
F 2000 == Quad core
1500 Dual core
1000
500
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Concurrent Clients

Figure 5.7: Average job work times with increasing numbédmsomcurrent clients working on the medium
dataset, where each session uses a single ParaView thread.

5.6 Additional Tests

5.6.1 Memory Footprint

When rendering in parallel or distributed mode (i.e. usindtiple nodes for each visualization pipeline)
we expect ParaView to divide data among the available nodée&n running multiple pipelines simulta-
neously (i.e. multiple clients using one node per client)magy observe a slightly different behavior. To
gain some insight into memory usage in these situations wernpged some tests on both the medium and
the large dataset. First we tested the memory load whenasicrg the number of clients requesting visu-
alizations where each client got a single ParaView threadhé second test we used a single user while
increasing the number of nodes cooperating on a singlelizatian. Note that these two tests are almost
equal to the classroom scenario and the research scenadseussed above. The only difference is that
at the end of the visualization we took a snapshot of the ngnpiocesses on both ParaView machines (we
took the snapshot using a well-known Unix-based procesgevitool called 'Top’).

Several memory-related metrics of the running processedeabtained from the snapslﬁ)tsThe
first idea was to use the total size of the memory image of allpttocesses (this value is called 'VIRT’,
short for 'Virtual Memory’). However, this value is ratheysgem-dependent. For example, this includes a
portion of memory for the process, called 'SHR’, which is #mount of memory that is sharable (which is
not the same as 'shared’) among other processes running @atihe machine. As it is difficult to measure
which part of this memory is actually resident in memory weided to use another metric.

A more precise metric for comparison is the 'DATA’ metric whisolely includes the amount of mem-
ory devoted to program data and -stack (the amount of memeeyled for executable code is excluded
from this value).

In Figure[5.10 we combined the results for each of the daaswt for both tests in a single diagram.
It is clearly visible that in parallel rendering mode (i.en icreasing number of nodes) the data was
distributed over the nodes, with an overhead of approxiin&®& MB per additional node. If we compare
the results of the medium and large datasets for this same medsee that the lines are exactly parallel
which leads us to the conclusion that the overhead is caysBdraView (probably due to some additional
bookkeeping), and not related to the size of the dataset we warking on.

SFor a list of fields in the output of Top sl& t p: // man- wi Ki . net /i ndex. php/ 1: t op

http://man-wiki.net/index.php/1:top

50 Results

8000 500
7000 450
/ 400
6000
/' 350
5000 300
4000 AQAQL o
3000 =& nitialization Time 200 _LWI == Job Work Time
150
2000

100
50

|

250

Time (ms)
Time (ms)

1000

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Cooperating Threads Cooperating Threads

(a) Pipeline initialization times when increasing the numtiefb) Average job work times when increasing the number of Par-
ParaView threads. aView threads.

Figure 5.8: Pipeline initialization and job work times witttreasing numbers of ParaView threads working
for a single client on the medium dataset.

40000 500
35000 450 \ '.._,A_
\ 400
30000 \ w0 \ |
< 25000 \ % 300 Al |
E E
o 20000 o 250 \l
E E
F 15000 %-‘A ~4—Initialization Time F 200 4 Job Work Time
150
10000 100
5000 50
0 0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Cooperating Threads Cooperating Threads
(a) Pipeline initialization times. (b) Average job work times.

Figure 5.9: Increasing numbers of ParaView threads wor&mthe large dataset.

When considering the test with increasing numbers of cliamsan conclude that the memory foot-
print required scaled linearly with the size of the footpofha single (master) process. In fact the results
of the test show that not only the 'DATA metric of the snapshizreased linearly but all other memory-
related values increased linearly.

5.6.1.1 Discussion

We can see from the test above that memory can be exhaustedyqidkly when serving several clients
concurrently on large datasets. Also, in our results forcthesroom scenario test, specifically Figuré 5.5,
we see that we can reasonably serve approximately 30 cemtwlrents using the Locality strategy with
two servers. But from the same figure we see that both machiegmdependently capable of serving
up to 18 clients at the same time. In an ideal situation we @expect the linear scaling to continue up
to the total number of clients the two servers are capablewfirsg independently, which would be 36.
The answer to the question why this values differ lies in tifiecethat swapping has on the performance,
combined with the fact that the Locality strategy tries tefxehe best ratio between running processes
and available physical cores. Compared to the dual coreuhd gore machine will have twice as much
processes running and will exhaust its memory twice as &ssb6th machines had the same amount of
memory).

Although the Locality strategy shows promising results ur tests, it seems that we may improve

5.7 Conclusions 51

3000

2500
I «4®=|ncreasing Nodes, Medium

2000 1 Dataset
1500 == Increasing Nodes, Large
Dataset
1000 T .
Increasing Clients, Medium
. M potaset
A =>=IncreasingClients, Large

Dataset (3 processes)

'DATA' Size (MB)

0 2 4 6 8 10 12 14

Total ParaView Processes

Figure 5.10: Total size of the 'DATA’ components for incremsnumbers of ParaView processes.

on the results of the classroom scenario (i.e. improve thelipie initialization times, probably not the
job work times, but that is difficult to predict). We could daig by creating a strategy which will not
mainly base its decisions on ratio between running proseaseé physical processor cores, but rather on
the amount of memory available on each of the machines. Thiedotution for this strategy would be
to pick the server that has most (non-virtual) memory atsglat the time of starting the processes, but
this requires the middleware to query the memory statusehthailable ParaView machines. An initial
solution could use the ratio between total memory availabl¢he machines: two servers with the same
amount of memory should be running the same number of presess

5.7

Conclusions

From the results of the tests performed above we can conthedellowing statements:

Network interconnection speed is a major factor in the ¢iffeness of distributed rendering.

With a given numberx1) of ParaView threads cooperating in a visualization théopmance will
depend only on the amount of data and the combination ofdiiad rendering applied to the data,
it will not depend on the resolution of the output.

In a classroom scenario (with many concurrent clients)ritgwout to be useful to add hardware to
the system in order to serve more clients, as long as thetslia correctly distributed over the ma-
chines. Also, it is important to identify which distributios most effective for a given combination
of hardware and visualizations. Our results show that wiebattlenecks are present visualization
pipelines hardly influence each other (no increase in ligtition- or job times). Bottlenecks due
to limited processor resources turn out to make the systate finearly, while memory limitation
bottlenecks make the system scale exponentially.

In a research scenario (with many cooperating ParaViewspdeclient session), it is also benefi-
cial to add hardware to a system and both initialization- jdtimes will usually decrease when
increasing the number of cooperating nodes. Due to the Ergmint of data that needs to be dis-
tributed among cooperating nodes it is useful to correctbfivate decisions for node distribution
strategies.

52

Results

Chapter 6

Conclusions and Future Work

In this thesis we reported on our project to create a framleviarthe remote 3D visualization of large
datasets. In the following section we draw conclusions flamwork and results and compare the final
outcome with our objectives. We also discuss topics thataneidates for future work to this framework.

6.1 Conclusions

The framework we developed is designed around the conceetioly as a web service, to support remote

visualization. We used SOAP (Simple Object Access Projaomessage protocol for this service which

is well-supported in many programming languages. Becawdeservices use regular network transport
mechanisms and are usually transparent to firewalls thegiesean be accessed by a user through any
network- or internet connection. Experiments showed thatweb service can be accessed from a local
network as well as over the internet without notable effort.

Instead of implementing the visualization algorithms freamatch we chose to build our framework
on an existing and proven visualization framework callechWeew. ParaView itself is built on VTK (the
Visualization Toolkit) which includes numerous efficiemtdahighly-optimized visualization algorithms.
ParaView in turn adds parallel and distributed renderingabdities to the VTK functionality and both
VTK and ParaView are under active development.

To allow users to request visualizations, and to assignvRakeresources for those requests efficiently,
we developed a middleware component that is responsibietrfacing client applications with ParaView
while hiding ParaView's complexity from clients. In our fect we investigated several options to establish
communication between our middleware and ParaView and wsecto use a ParaView-enabled Python
interpreter to do this. This Python interpreter is comp#geainst the ParaView framework and practically
all ParaView functionality is available through it. Becawsach instance of the interpreter runs in its own
process this solution creates a reliable solution for coneadly running pipelines: a problem to any specific
ParaView visualization (process) will be restrained ta frcess only and will not interfere with other
running visualizations. This solution was mentioned asséeond contribution in our list of contributions
in the introduction chapter of this thesis.

We aimed to create a solution that would not be limited to qrexiic dataset only. In the list of our
contributions we mentioned our data management scheméwigiclubbed a 'data encapsulation’ scheme
and which is modeled in a relational database. Our schemmwsatomparative visualizations by allowing
different modalities of a dataset to be defined. We also argiiat data and visualization should not be
seen as separate entities because the input to each \ésigalipipeline is determined by the data (of the
modality). As illustrated in this thesis we tried to maximihe amount of re-use in our scheme by splitting
the visualization pipeline into three steps, and, becausénterface to ParaView is based on Python, it
was practical to require a Python snippet in our scheme fon e&those pipeline steps. The elegance of
our solution is that the visualization routines approjgrifatr the available data are stored along with the
data in a relational database.

A crucial task of the middleware component is to assign seasources to clients. As there are several

53

54 Conclusions and Future Work

ways to assign these resources we proposed and implembatedricept of 'strategies’. A strategy in our
framework defines how many ParaView nodes will be startedéperate in a visualization and how they
will distributed over the available hardware. Two specifiategies were implemented and evaluated in
Chaptei’b: a Simple Strategy and a Locality Strategy (sed-there Work in Sectiof 612 below for a
proposal for an additional strategy).

For this project we also developed a reference client agipdia, to enable use of our framework and
to showcase it. Based on the currently recognized targe¢acel we chose to design the application with
a simple and intuitive interface. We purposely created th@ieation in a flexible and extensible way
to allow modifications and additions to the client applioativhen needed, for example by applying the
Model-View-Controller design pattern to ease the impletaton of additional views. Note that, as a result
of using SOAP as protocol to access the web service, thesreferapplication can be easily replaced with
a custom client implementation by anyone who wishes to do so.

In our description of our objectives for this project we menéd that three visualization algorithms
were considered essential for our remote visualizatiofeptoDirect Volume Rendering (DVR), surface
extraction and rendering, and Multi-Planar ReconstructdPR). Because we used ParaView as basis for
our framework we are capable of providing an extensive ctila of visualization algorithms to the user,
including those mentioned in our objectives.

In our objectives we also mentioned that we needed a scalalalization solution. From our results
in Chaptefb (particularly the classroom- and researchesi®tests) we can see that a suitable combination
of distribution strategy and multiple ParaView nodes (@ittoncurrently or simultaneously) is effective in
allowing more clients to the system and reducing data I@atiimes and rendering times.

We should also add some critical remarks to the scalabiéity of our results. Like we mentioned in
Sectior 3.3 P ParaView currently does not support streguffiiece-wise processing of chunks of data) in
its visualizations and this is visible in some of the reswiéssaw. In effect this means that we cannot handle
arbitrarily large datasets. However, the results show ttitmemory footprint of a visualization scales
constantly when adding more nodes to a single visualizafiberefore we could handle larger datasets by
distributing the visualization over multiple servers with signifcant (memory) overhead. Because of this
property we can at least conclude that the total data remeine of a visualization is limited by the total
size of the available physical and virtual memory until atnéng is supported (more on this in the next
section).

An open-source release of the source code of both the frarkema the client application is expected
after this thesis so that the framework- and client softwane be used freely and that future work may
contribute to the current foundation.

6.2 FutureWork

The scope of this project is broad and inherently there arg/itengs we can suggest that may be improved
or added in the future. In this section we share our thoughfsitmre work on existing and new topics for
our framework.

Support for streaming is high on the list of things requirattention. When the visualization com-
ponent gets the ability to process its data in chunks thedfizbe data for visualizations may become
practically unlimited without running into the swappingi®s we have seen in Chagdiér 5. However, as
discussed earlier, recent progress in the developmentra¥/Rav shows that support for streaming is work
in progress. Therefore it is likely that the solution is am@ie as sitting-and-waiting for an upgrade to
ParaView, which adds support for streaming to its exterigvef features.

In Chaptefb we discussed advantages and disadvantageslafaality strategy we implemented. We
also stated that there is room for additional strategiesstinauld base their distribution on other heuristics,
for example a strategy that distributes processes in sucayahat the negative effects of swapping are
postponed for as long as possible.

Job results are stored in the database along with the vistialn parameters used for the given job. It
is possible to cache these results and to try to match in@pjolys against the already cached jobs to see
whether we could skip the job and return the cached resuftads However, it is difficult to estimate the
number of cache ’hits’ that will occur because visualizasi@ften use floating-point parameters, camera

6.2 Future Work 55

angles for example. Another issue is that not all visualzatare reproducible (for example a visualization
of a running clock) like we discussed in Section 4.5.6. Theaathges of caching are obvious but certain
aspects of the solution require further investigation twvprthat caching is both beneficial and flawless in
real-life situations.

The current support of annotations was primarily intenaeprovide the basic functionality (consider
it a proof-of-concept) of overlaying information on a vi$imation. More work could certainly be done to
improve the current implementation and things like sizipigcing and coloring of labels can be valuable
future additions for the end-user.

In our implementation visualization pipeline objects aesibally pieces of Python code which are
assembled by the middleware in order to construct a compip&tine. Although this solution is versatile
and flexible it requires manual user programming and -aglitthich can be prone to errors. Future work
could be done to develop an application to design and edietpgelines graphically or to adapt existing
visualization editors like DeVIDH.

Zoomify support in our client application could also be ket improved. The current solution keeps
the entire image in memory and all operations on the imageydg to screen, improving resolution, etc)
are done on the full-resolution image. When the client woulgp®rt working with tiles it may be possible,
useful for very large images for example, to reduce the mgrfawmtprint by keeping only those tiles in
memory that are currently visible on the screen. Also, theertt implementation fetches the tiles from
left-to-right, top-to-bottom and from low-to-high-resiibn. Improvements could start loading tiles in the
center of the visible area and start working outwards.

ParaView supports movie-recording by defining animatians saving these using a given frame-rate
and output format. Therefore, we could also support thisfuture work is required to add the functionality
to our framework. This work would include thorough investign of the animation facilities in ParaView
and finding a suitable way to transport results back to thentliAlso it would be useful to provide a view
to play the movie in the client application.

Current implementation of middleware and client will onlychange image data, either images or
Zoomify images, as mentioned. For several reasons it caaldseful to support polygonal data in our
framework. This would allow polygonal modalities (exangptef which could be iso-surfaces and anno-
tations) to be drawn completely on the client-side. Thereafee client application views already support
OpenGL (see Sectidn 2.3.3) and creating a view for clieshe-biardware-accelerated rendering of polygo-
nal data is straight-forward using OpenGL.

Thttp://visualisation.tudelft.nl/Projects/DeVl DE

http://visualisation.tudelft.nl/Projects/DeVIDE

56

Conclusions and Future Work

Bibliography

[1] Mikula, S. et al.,Internet-enabled High-resolution Brain Mapping and Vatilicroscopy 2007

[2] Schneiderman, B., Plaisant, C., Cohen, M., JacobsD&sjgning the User Interface: Strategies for
Effective Human-Computer Interactiobth edition, 2009

[3] Stanton, E.T., Kegelmeyer, W.Ereating and Managing "Lookmarks” in ParaViewEEE InfoVis,
pp.p19, 2004 IEEE Symposium on Information VisualizatibridVis 2004), 2004

[4] Segal, M., Akeley, K..The OpenGL Graphics System: A Specificatiiticon Graphics, 2006

[5] Wills, G., Linked Data ViewsHandbook of Data Visualization, chapter 11.9, SpringenHiaooks of
Computational Statistics, Springer, 2008

[6] Baldonado, M.Q.W., Kuchinsky, AGuidelines for Using Multiple Views in Information Visuadtion
2000

[7] Galigher, A.E., Korloff, E.N. Essentials of practical microtechnigqueea and Febiger, 1964

[8] van Zwieten, J.E.Three-dimensional reconstruction from digitised micagsic sectionsM.Sc. The-
sis, Delft University of Technology,

[9] de Haan, A.B., Willekens, B., Klooster, J., Los, A.A.,rwdwieten, J., Botha, C.P., Spekreijse, H.,
IJskes, S.G., Simonsz, H.Jhe Prenatal Development of the Human OrB205

[10] http://www.visible-orbit.org;The Visible Orbit Project website

[11] van Zwieten, J.E., Botha, C. P., Willekens, B., Schuite Post, F. H., and Simonsz, HDigitisation
and 3d reconstruction of 30 year old microscopic sectiorteunfian embryo, foetus and orfit Image
Analysis and Recognition, Proc. 3rd Intl. Conf. on Image Kai and Recognition (ICIAR 2006) (A.
Campilho and M. Kamel, eds.), vol. LNCS 4142 of Lecture Nae£omputer Science, pp. 636-647,
Springer, 2006 Faculty Electrical Engineering, Mathensaéind Computer Science, section Computer
Graphics, 2005

[12] Verschuur, J.E.Remote 3D Visualization of Digitized and Reconstructeddtigical SectionsRe-
search Assignment, Delft University of Technology, Fagtdtectrical Engineering, Mathematics and
Computer Science, section Computer Graphics, 2009

[13] ParaView Homepagéttp://www.paraview.org

[14] Law, C.C., Henderson, A., Ahrens, An Application Architecture For Large Data VisualizatioA:
Case Study2001

[15] Schroeder, W.J., Martin, K.M., Lorensen, W.Hhe Design and Implementation of an Object-
Oriented Toolkit for 3D Graphics and Visualizatioh996

[16] Ying, Y., Huang, Y., Walker, D.W.A Performance Evaluation of Using SOAP with Attachments for
e-Scienceln Proceedings of the UK e-Science All Hands Meeting, 2005

57

58 Bibliography

[17] Moreland, K., Rogers, D., Greenfield, J., Geveci, Barge Scale Visualization on the Cray XT3
Using ParaView

[18] Cedilnik, A., Geveci, B., Moreland, K., Ahrens, J., FayJ.Remote Large Data Visualization in the
ParaView Framework2006

[19] Liang, S., The Java Native Interface, Programmer’s Guide and Spetifica
http://java.sun.com/docs/books/jni/download/jni,pfd399

[20] Sahai, A., Graupner, S., Kim, Wrhe Unfolding of the Web Service Paradig2002

[21] Haber, R.B., McNabb, D.AVisualization Idioms: A Conceptual Model for ScientificddBzation
SystemgsVisualization in Scientific Computing, IEEE Computer SxygiPress, 1990

[22] Fowler, M.,Patterns of Enterprise Application Architectureddison Wesley Signature Series, 2002

[23] Brush, A.J.B., Bargeron, D., Gupta, A., Cadiz, JRopust Annotation Positioning in Digital Doc-
uments Proceedings of the SIGCHI conference on Human factors mmpeing systems p285-292,
Seattle, Washington, United States, 2001

	Introduction
	Visualization of Histological Data
	Dataset Overview
	The Orbita Collection
	The Pelvic Dataset

	Objective and Motivation
	Contributions
	Structure

	The Remote Visualization Client Application
	User Audience and Existing Software
	General Design Philosophy
	Functionality
	Modality-Visualization Selection
	Supported Data Types
	Supported Visualization Types
	Annotations
	Linked Views
	Lookmarking

	Architecture of a Remote Visualization Framework
	Architecture Overview
	Requirements
	Discussion

	The Visualization Components
	VTK
	ParaView

	Interfacing with Paraview
	The Middleware Component
	Server-Client Communication
	Management
	Data Management

	Framework Implementation
	The Client Component
	Requirements
	Decisions
	Model-View-Controller (MVC)

	Data Encapsulation Scheme
	Early approaches
	The Chosen Approach

	Resource Sharing
	ParaView Processes
	Distribution Strategies

	User Management and Object Authorization
	Additional Functionality
	A Full-duplex Web Service: Semi-polling
	Visualization Annotations
	Linked Views and Synchronization
	Zoomify Support
	Image Watermarking
	Lookmarking and Caching

	Results
	Experimental Setup
	Hardware
	Software
	Various

	Testing Terminology
	Preliminary Tests
	Caching Test
	Network Interconnection Test
	Output Resolution Parameter Test

	Classroom Scenario: Many Concurrent Clients
	Test Parameters
	Results

	Research Scenario: Visualization Parallelization
	Test Parameters
	Results

	Additional Tests
	Memory Footprint

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	References

