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The amount of data involved in medical volumes, especially in the case of volumes consisting of stacks
of histological sections, tends to be very large. Despite rapid advancements in computer processing power
and storage- and memory capacity in the past years these volumes are simply too large to be transferred to
and visualized on regular workstations. At the same time Internet connectivity is becoming common and
connections are getting faster every day. In this situationa client-server remote visualization can be used
to hand off visualizations to (clusters of) dedicated, well-equipped, servers which can do the heavy work
and send the result, or a part thereof, back to the client whenready.

In this project we developed a client-server framework for remote visualization of histological data.
The framework is designed to be scalable and effectively utilize hardware resources from multiple servers
for each visualization pipeline. The framework uses the concept of strategies to assign resources to each
visualization and to distribute these resources over the available hardware according to predefined rules.

To manage the available data we designed a data scheme in which multiple objects belonging to a
certain dataset, we will define these objects as modalities,can be stored in a relational database. A key
feature of our solution is that the scheme allows appropriate visualizations of the modalities to be stored
along with the data in the same relational database.

Additionally, as part of this project, we developed a reference client application which is able to use the
framework to do remote visualization. This application waspurposely designed to work on many platforms
without the need for state-of-the-art hardware or software. The application currently offers support for
visualizations that require viewing of images, viewing of planes extracted from volumes and viewing of
three-dimensional scenes under control by a camera.

Both the framework and the reference client application aredesigned to be extensible and will be made
available to the public domain so that the software can be used freely and adapted to future demands
whenever needed.
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Chapter 1

Introduction

Recently, a unique and valuable collection of histologicalsections (cross sections of the human orbit with
thickness up to approximately 100µm) has been discovered. These cross sections are now being digitized
at high resolution and used for 3D reconstruction. To visually disclose this data for research and education,
a standard web application would not suffice as it can not dealwith the large amounts of data and processing
that is needed to display 3D volumes.

In this thesis we will describe an architecture and design ofa framework that allows remote rendering
of the volumes on a server using parallel volume rendering. The framework will also provide the means
for remote viewing of high-resolution slices that can be extracted from the volumes and which may be
augmented with annotations if available. Eventually, all software written for this framework will be made
available as open-source software to the public domain.

1.1 Visualization of Histological Data

While MRI 1 and CT2, both in-vivo3 techiques, are often used to examine biological tissue, theresolutions
and color information they offer is rather limited. Despitethese limitations, MRI and CT techniques are
often very useful in helping radiologists determine the cause of medical conditions.

Our project focuses on visualizing histological data. For research purposes the technique of histological
sectioning, in which tissue will be physically sliced, allows real-color (RGB) acquisitions and provides
much more detail with resolutions that will only be limited by either the cutting process or by the optical
equipment used for digitization. With special equipment resolutions of over 100000 dots-per-inch (dpi) can
be reached (for example the BrainMaps project [1] currentlyoffers samples at 55000 dpi, or 0.46µm/pixel).
More information on the process of histological sectioningis provided below. Digitization of histological
sections at these resolutions obviously results in huge amounts of data. Because processing power and
storage capacity have increased rapidly over time, better visualizations of ever-increasing amounts of data
become feasible.

Within the field of computer graphics a substantial amount ofresearch is done on medical visualization,
a field of research that has the potential of supporting physicians and researchers in medicine worldwide.
Our research on a framework capable of visualizing these large volumes, together with technological ad-
vancement, could open the way for use of histological volumes in research- and education environments.

1Magnetic Resonance Imaging, technique visualizing internal structures by measuring magnetic properties of hydrogen atoms.
Especially useful for soft-tissue examination.

2Computed (Axial) Tomography, technique using a large series of X-Ray images with a single axis-of-rotation to visualize internal
structures

3Literally translated ”within the living” and referring to experiments on living organisms as opposed to experiments on dead
organisms or on tissue obtained from a biopsy.

1



2 Introduction

1.2 Dataset Overview

Throughout this thesis two data collections are discussed,both of which are described here to justify their
important role in this project. The datasets share the fact that they are (collections of) histological volumes,
but they each have properties making them interesting subjects for this work of research. These histological
volumes are digitizations of so-called histological (often microscopic) sections. These sections of organic
material are usually obtained in five steps, explained shortly (see [7] and [8]):

1. Fixation: stop life-processes quickly and prevent deformation

2. Embedding: prepare the specimen for the sectioning process

3. Sectioning: the actual cutting of the specimen

4. Staining: colour the section with a ’dye’ or ’stain’ to enhance contrast between different types of
tissue

5. Mounting: preserve the section and prepare it for microscope inspection and/or digitization

In several steps in the sectioning process decisions need tobe made with regard to the technique applied
in that stage, and these decisions will be based on the outcome that is aimed for with a particular type of
research. For the embedding stage for example, several alternatives are available. Embedding the specimen
in paraffin or cellulose and also freezing the specimen are often used techniques for this stage. In the
staining process different dyes can be used to highlight different types of tissue in the sections. Also,
one can choose to have the sections stained with a different dye for every other section (or so), to see
local differences. The combination of the techniques applied will obviously yield different results having
different properties, as the two collections described below will clearly show.

1.2.1 The Orbita Collection

Recently a collection of microscopic sections was discovered at the Netherlands Ophthalmic Research
Institute (which has become part of the Netherlands Institute for Neuroscience) and the Department of
Anatomy and Embryology of the Academic Medical Centre (AMC)in Amsterdam. These sections were
obtained between 1972 and 1986 as part of several studies of the late professors J.A. Los, L. Koornneef, Dr.
M.P. Bergen and Dr. A.B. de Haan. The complete collection (from here on called ”The Orbita Collection”)
consists of approximately 3000 sections, from five human adult orbits, and 30 foetal heads and bodies [9].

In the acquisition process several different stains were applied to the sections. However, in the past
thirty to forty years, these stains have started to fade and in a few decades not much will be left of them,
rendering the collection useless.

A consortium consisting of the NIN, AMC and TU Delft has agreed that this valuable and unique
collection should be preserved for further research and therefore the digitization of the sections has started
a few years ago. Obviously, digitizing 3000 sections is an enormous amount of work, most of which is
currently carried out by Ben Willekens at the Netherlands Institute for Neuroscience (NIN). Details about
this project can be found at the project’s website [10].

1.2.1.1 Digitization

As mentioned above, the collection consists of approximately 3000 sections, cut at various thicknesses.
They have been scanned at a resolution of 2500 dpi. The imagesare currently stored in the PNG format,
which uses a lossless compression method to achieve relatively high compression rates as well as high
quality. The final size of an image depends on the physical size of the section and the compressibility of
the resulting image, but files up to 100MB are no exception. Actually, the largest slice available (pixel-
wise) is approximately 12000x7000 pixels. With 200-700 sections per subject it is easy to see that for a
single specimen multiple gigabytes4 of data are available.

4Throughout this thesis we will refer to either gigabytes (GB) or megabytes (MB), where 1GB = 1024MB and 1MB = 1024x1024
= 1048576 bytes of data.
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1.2.1.2 Reconstruction

In the histological sectioning process, slices of tissue have been fixed between two transparent objects
(glass for example). However, the orientation of the tissuebetween the transparent objects is completely
dependent upon the person fixating the section. Studying therandomly orientated sections is no problem,
but stacking the sections to get a 3D model will not work well,as the sections are not aligned properly.
Also, artefacts in the sections (such as small cuts, overlapping tissue, etc.) as well as the use of different
stains (colourings) in the sectioning make it difficult to use the data.

To get a coherent 3D dataset of a subject, we will have to use techniques taking care of three dimen-
sional reconstructions. Applicable methods for reconstruction have been studied in [11], and a suitable
method for reconstruction of the sectional data in the Orbita collection has been proposed and imple-
mented by Van Zwieten [8]. Prior to the actual reconstruction three pre-processing steps have to be taken:
down sampling (to speed up the reconstruction), segmentation (to separate the object from the background,
which speeds things up as a side effect), and a conversion from RGB data to scalar data (needed because
the reconstruction and its metrics are based on scalar values). After that, an iterative process of image
registration starts. In [8] this is defined as ”the search fora transformation that puts two images of the same
scene, the reference and the floating image, in a common coordinate system such that all corresponding
points are aligned”. So, the aim of process is to maximize thesimilarity between consecutive sections,
resulting in a dataset that will (hopefully) closely resemble the original three dimensional specimen, or try
to get as close as possible.

Figure 1.1: Rendering of an embryo from the Orbita collection after reconstruction from the digitized
sections. Image courtesy of [8].

1.2.2 The Pelvic Dataset

The human pelvic dataset used as source of data for this project was acquired in 2007 as part of research
by the Leids Universitair Medisch Centrum (LUMC) using a technique called frozen-cadaver histological
sectioning, a technique also applied for the well-known Visible Human Project datasets of the National
Library of Medicine (NLM).

1.2.2.1 Acquisition and digitization

The acquisition technique used in the pelvic dataset is fundamentally different from the technique used
with the Orbita collection. First of all, the specimen was embedded using freezing, instead of treating the
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tissue with formaldehyde and embedding in cellulose. An important difference is that the obtained sections
will preserve most of their real-color information insteadof the color resulting after staining with some
given dye. A second major difference with this technique is that the sections are not placed between thin
sheets of glass like the Orbita sections (which were required for examination under a microscope). Instead
of mounting the sections they have been photographed from above using a professional digital camera. The
sections have been cut at a thickness of 25µm and every third section has been photographed, yielding a
slice-thickness of 75µm.

In total 2052 images of 3008x1960 pixels are available for the dataset, and each image is just under
18 megabytes (3008x1960 pixels at 24 bits/pixel), stored inthe lossless TIFF file format. What makes this
dataset interesting (besides the fact that its color information is conserved) is that the sections are well-
aligned. As a consequence of the acquisition process issueswith alignment are already minimal. However,
for the pelvic dataset two frameshifts have occurred, whichhave been properly documented and corrected
manually after the acquisition.

1.3 Objective and Motivation

The objective of this project is to design and implement a framework for remote visualization of histolog-
ical volumes. The system should be able to deal with the largeamounts of data involved in histological
volumes and should therefore offer a scalable visualization solution. The framework should also be able
to efficiently utilize and combine resources from several computer systems in a distributed and parallel
way, to accomplish its resource-intensive task. Supportedvisualization techniques for these large datasets
should include Direct Volume Rendering (DVR), surface extraction and rendering, and Multi-Planar Re-
construction (MPR).

We aim to keep the data in a central location, for three main reasons. In many cases application-data
can be distributed along with the application itself (for example on portable media like CD’s or DVD’s,
or using an internet connection) but for the huge amount of data involved in histological volumes this is
usually infeasible. In case this data would be distributed along with the application anyway every user
would be forced to have a powerful computer system availableto be able to process the data. A third
reason is the delicate matter of protecting the data (data which is often very expensive), a client-server
system layout provides better means for protection of the data.

To allow for remote visualization, the framework will be client/server-based and two separate compo-
nents will be designed. A server component will be designed that is responsible for providing the func-
tionality described above, where we will use the ParaView framework as parallel rendering backend to our
server component. The framework should be able to perform user authentication and will therefore require
some user management capabilities. In addition to the server component, a reference client application
will be implemented (reference, in the sense that implementers of the framework are not limited to this
reference client application). Clients will be able to run the provided visualizations from any location (al-
lowed by the administrator of the system) and the aim is to create a client application requiring very little
installation effort, allowing practically any user to run the application. The client application will support
several elemental histological volume visualizations such as (arbitrary) plane reconstruction, with support
for annotations, and volume rendering.

The idea is to design both the server and the client using open-source components and -protocols to
allow further development of this framework after its initial release (after this thesis), and to enable others
to easily create a custom client application to use the framework.

1.4 Contributions

The work described in this thesis makes the following contributions to visualization frameworks:

• We developed a fully-functional remote visualization framework that is designed to be highly-scalable
and extensible and which can be deployed on a large number of currently common operating sys-
tems (Chapter 3). We built our framework around ParaView, which itself is built on the Visualization
Toolkit (VTK) and offers a large collection of visualization algorithms. Specific aspects of a remote
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framework, such as work-distribution strategies, incremental result transfer and authorization were
incorporated (Chapter 3 and 4). A reference client application was developed to allow use of the
default visualization functionality (Chapter 2).

• To organize the available data we developed an elegant data encapsulation scheme (Section 3.5.3).
Information on available datasets and possible relationships between them is captured in a relational
database. Additionally the scheme will allow definition of visualization routines appropriate for the
data and store these routines along with the data.

• The visualization algorithms are provided by a highly-efficient and proven visualization framework
called ParaView. In our work we show an effective and robust solution to access ParaView’s visual-
ization capabilities in a way that allows visualization pipeline concurrency (Section 3.4).

1.5 Structure

The remaining part of this thesis starts with a discussion ofthe client application that we developed as part
of this project and we show the basic functionality offered to its users. After that Chapter 3 provides a
rather high-level, conceptual overview, discussing the architecture and design of our framework without
going into details. In Chapter 4 we provide more details and discuss implementational aspects of the
framework. The last part of this thesis, Chapter 5 and 6, contains our results and conclusions respectively.
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Chapter 2

The Remote Visualization Client
Application

In this chapter we show what users of the client application written for our project will be able to do and see.
By doing so we anticipate on the discussion of the design and implementation of a framework needed for
remote visualization of large amounts of data. The conceptual and detailed discussion of our framework,
including the client application, can be found in Chapter 3 and Chapter 4 respectively.

2.1 User Audience and Existing Software

Common design rules in Man Machine Interaction (MMI) state that a user interface for an application
should always consider the target audience that will be using the application (for example in [2]). An
interface that is too complex will scare users away, while aninterface that is too simple may not give users
the full potential of the application. Therefore, we made aneffort to define which kind of users would be
using our client application. After defining the target audience we will also review an existing (medical)
application with a slightly similar purpose.

The Orbita project, from which this thesis project has emerged, has one main goal. That goal is to
make the Orbita dataset, which is unique for several reasons, accessible to people from around the world
and allowing them to do research on the data with their own computers, while still keeping control over the
data. An example of research functionality for this kind of data was brought forward by attendees of the
ARVO 1 annual meeting that were interested in this software being able to comparatively visualize an MRI
and histological modality of a recently digitized specimen.

The Pelvis dataset described earlier serves a different purpose. This dataset is used mainly for educa-
tional purposes and in this situation the client application will be used in a classroom-like scenario where
multiple students will be running the same application, using identical, or at least very similar workstations.

An existing application that we had the liberty of experimenting with is the Image Viewer of the EasyVi-
sion system developed by Philips Medical Systems. This viewer is used for viewing CT and MRI data and
patient documents. The interface of the application is verybasic. Few buttons can be found in the inter-
face, and more advanced features are turned off by default. Available datasets are shown on the left side
as icons, and on the right side the data display area is found.This display area can be divided into a 1x1,
2x1 or 2x2 layout. Importing a dataset into (one of) the display area(s) is done by either double-clicking
or dragging-and-dropping the dataset icon. Each display section has a navigation map to give the user an
indication of the current position within the dataset, and to enable fast traversal of the data. The navigation
map in this case is a topogram image, a parallel projection ofall slices, that acts as an overview of the
complete dataset.

For our application, two things are worth mentioning here. First, for our application the main user base
will be made up of medical specialists, researchers, and medical students, and for this group of users com-

1The Association for Research in Vision and Opthalmology,http://www.arvo.org

7
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puter fluency should not be taken for granted. The second point is that hospitals nowadays are depending
on computer science and software has become an essential tool supporting the medical field. Tools for
visualization of X-Ray, MRI and CT images are already in use,so it is likely that expectations regarding
the behavior of such applications are already set.

Note that this thesis is not focused on (graphical) user interface design but on the architecture making
remote visualization of this data possible. However, we acknowledge the fact that application usability is
often a key factor in the acceptance of this kind of applications. Applying an interface philosophy which is
similar to that of existing visualization applications seemed like the best way to go.

2.2 General Design Philosophy

One of the main design goals while creating the client application was to keep the thresholds for users as
low as possible (for running the application as well as for working with the application). With the user
audience mentioned above we decided to try to keep the application clean, simple and intuitive. Slightly
lower on the priority list, but nevertheless an important item, was to give the user an interactive experience.
In an ideal situation we would like to provide interactivityeven within visualization requests so that users
can request the server to start on a new visualization when a previous visualization task is still running.
Unfortunately, this would require that visualizations canbe aborted and for the approach we have chosen
this is not possible. In our solution interactivity is achieved by using client-side representations of the
remote object (a bounding box of a volume for example) to alter visualization parameters on the client-side
without much delay. Examples of this functionality will be illustrated below.

Another decision made to keep things simpler was to allow only one dataset to be visualized at a time,
and with ’dataset’ we mean the collection of data for one object. For each dataset multiple modalities
with multiple visualizations may be available, which we will explain later. The restriction of only allowing
(simultaneous) visualization of modalities of one datasetshould keep the user from getting disoriented, for
example when similar-named visualizations are available for different datasets. We chose to let the user
first select any of the datasets available on the server, before visualizations for that specific dataset may be
started (Figure 2.1).

Figure 2.1: Before any visualization can be started the useris prompted to select a specific dataset from the
list of datasets available on the server.

In order to prevent users from having to make too many context-switches mentally we tried to minimize
the number of screens needed to start visualizations and interact with them, and we think that three sources
of information are needed at any given moment. Obviously, the most important is the actual visualization.
We expected that users will need to be able to access the available visualizations quickly and we did this
by arranging the dataset’s modalities and visualizations in a tree structure. Also, an orientation view was
thought to be essential, to help the user determining the current viewpoint, location in the data, or whatever
is suitable for the visualization at hand (see Figure 2.2 andits caption for an explanation of the views in the
interface, and Figure 2.5 and Figure 2.6 for ’live’ examplesof the orientation view).

Based on already available tools for medical visualization(like the EasyVision tool described above)
we decided to support multiple simultaneous views, for which the default behavior is to tile horizontally
in case the visualization area is wider than it is high, or vertically in any other case. The EasyVision tools
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Figure 2.2: The client interface showing the three basic areas of the main screen: the orientation area
(top-left), the modality- and visualization-selection area (bottom-left) and the visualization area (right).

limits the layout of the visualization to be 2x2 but we decided to give the user the freedom of choosing how
many simultaneous visualizations are opened and how they are arranged (note that the maximum number
of simultaneous visualizations can be limited by the server).

2.3 Functionality

Although the client application we developed should be seenas a proof-of-concept or reference client
implementation, we tried to create an application containing support for common (types of) visualizations,
making the reference application usable to a substantial number of users. In this section we will describe
the functionality that is offered by the client applicationat this time.

2.3.1 Modality-Visualization Selection

After the user has connected to a server and chosen a dataset to work with, the application will look largely
similar to Figure 2.2. The root node of the tree in the bottom-left panel will show which dataset the user
has selected, and sub-nodes will show which modalities are available for the dataset. Modality nodes may
be expanded which will then show the available visualizations for each of the modalities as leaves in the
tree. Clients can easily start a visualization for a given modality either by double-clicking the visualization
node in the tree or by dragging-and-dropping the tree item tothe visualization area on the right. It is also
possible to select multiple visualizations in the tree, anddrag all of them to the visualization area to start all
the selected visualizations in one action. In case all visualizations of a modality (or even all visualizations
for all modalities) are needed a user can drag-and-drop the modality tree node, or the dataset (root) tree
node respectively. Note that starting many visualizationssimultaneously may cause a heavy load on the
server. Figure 2.5 shows a situation in which a single visualization of a single modality is activated.
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2.3.2 Supported Data Types

Results of visualizations are retrieved (entirely or partially) from the server in a certain format after ren-
dering has finished. The client application currently accepts two types of data from the server: image data
(more specifically: image data in JPEG, PNG, GIF and BMP format) and Zoomify data2, the data format
also used in the well-known BrainMaps project3. The support for Zoomify images was implemented to
experiment with an option to provide users with a more interactive experience. These Zoomify images can
be seen as pyramids of tiles of the original image with resolution increasing per layer. The application can
start with retrieving only the top layer of the pyramid, to show the client a low-resolution version of the
result as soon as possible. More tiles can be fetched when theclient remains idle to increase the resolution
of the result. The result is that we can view very large imagesand allow interactive panning and zooming
much like Google Maps. For more detailed information we refer to Section 4.5.4.

2.3.3 Supported Visualization Types

For our client application we have defined and implemented three types of visualizations. Because many
different visualizations can be defined it is simply infeasible to implement viewing algorithms and interac-
tion models for each of those visualizations. In our framework we have tried to group visualizations into
visualization types and implemented the necessary logic for each type. We have implemented three types
of visualizations which will cover many of the possible visualizations, as you can see below, but certainly
not all. When needed support for additional visualization types could easily be implemented at a later time.

The three visualization types we have defined and implemented are: image visualizations, plane visu-
alizations and view visualizations. The main input interaction model (i.e. the rules for behavior of mouse-
and keyboard actions) is based on the VTK interaction model (more on VTK can be found in Chapter 3). In
the client application, all views except the parameter views are built using OpenGL functionality. OpenGL
stands for Open Graphics Library and is a cross-platform interface for writing applications that produce
2D or 3D graphics, basically a software interface to graphics hardware [4]. Advantage of using this library
is that views built on OpenGL can use hardware-accelerated drawing. Currently we use this functionality
to provide hardware-supported image panning and -zooming and drawing of geometrical primitives for the
visualizations (overlaying interactive bounding boxes and cutting planes for example, as mentioned in the
next paragraph).

Image visualization The image visualization type is rather basic in the sense that the number of ways to
interact with the data is limited. This type is functionality-wise comparable with common image
viewers and supports interactions like zooming (right-mouse) and panning (left mouse). This type
is accompanied by an orientation view that shows the part of the image that is currently visible
in the visualization view. An example scenario for this typecould be the visualization of high-
resolution slices. Combining the image visualization typewith the Zoomify data type will provide
a smoothly panning and zoomable view on large images, while the user can keep an overview using
the orientation view provided.

Plane visualization Plane visualization types can be used for visualizations inwhich users need to be
able to specify planes through a volume. Visualizations offering functionality to define arbitrary
slices can be created. The plane type has two ways of interaction: one for navigating the result of
the visualization, e.g. a reconstructed plane (where the interaction is the same as with the image
visualization type), and one for manipulating the orientation and position of the plane (shift+left-
mouse for rotating the plane normal, shift+right-mouse formoving the plane position along the
normal). To keep an interactive user experience we implemented the interaction model in such a way
that the effect of manipulations will be visible at interactive rates on the client-side. Only after the
mouse-buttons are released the altered plane parameters will be exchanged with the server. After a
plane manipulation the orientation view belonging to this visualization will show the selected plane
through a bounding box of the volume. In Figure 2.3 an exampleis shown of what a user might see
when manipulating a plane through a volume.

2http://www.zoomify.com
3http://www.brainmaps.org
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Figure 2.3: An example of interaction on a plane visualization. When a plane manipulation interaction
begins the old visualization result is greyed-out and an interactive, client-side representation of the new
plane orientation is projected on top. While the user-interaction continues the visualization will not be
updated.

3DView visualization The third visualization type supported is used for camera-aware visualizations in
which a three-dimensional view is rendered. The same ’lazy’interaction as with the plane visual-
ization is used, where the user will manipulate (rotate, zoom, etc) the scene by only manipulating
a bounding-box of the subject on the client-side. After releasing the mouse button the altered cam-
era settings are sent to the server and a new visualization isrequested. The orientation view of the
view visualization type will show the current orientation of the volume in space. Figure 2.4 shows a
screenshot of the manipulation of the three-dimensional scene.

2.3.4 Annotations

Particularly useful in the case of medical applications or medical educational environments is the support
for annotations. Annotations can provide additional information on images by showing texts about and/or
shapes of interesting objects in the data as an overlay on thedata itself. For our reference application we
have added basic client-side support for overlays of annotations using the plane visualization type described
above. In Figure 2.5 an example is shown of what annotations may look like. Our reference application
will currently only outline the annotation objects on the image data, along with the object name placed top-
right, relative to the outline. Without going into details on how the support for annotations is accomplished
on the server-side (see Section 4.5.2) it may be useful to know that these visualizations are actually done in
two steps: first, the image data for the selected plane is extracted from the volume. Second, the annotation
is requested from the server and drawn over the image data.

2.3.5 Linked Views

In comparative studies it can be important to be able to visualize different modalities of a dataset using the
same visualization parameters. Consider an example where both MRI and histology volumes are available
for a certain object. In this case comparative visualization can be used for example to navigate to a certain
slice in the histology volume, and see what the slice looks like on an MRI.



12 The Remote Visualization Client Application

Figure 2.4: When a (three dimensional) view visualization ismanipulated the old result is greyed-out like
in the plane example above, but an interactive representation of the new orientation of the volume (using
a bounding box), is displayed over the visualization area. Like the screenshot above the visualization will
not be updated as long as the user is interacting.

To support this we implemented the concept of ’linked views’or ’synchronization’. In [5] linked views
are defined as an interaction mechanism between views of a dataset where interaction with one view will
modify the display of data in the linked views. Also, severalways of linking between views are discussed.
For information on the implications linked views may have, see [6]. The general idea of the application of
linked views in our framework is that a user can start two visualizations, say A and B, select A and then
synchronize the visualization to B, or vice versa (synchronizing A to B and then B to A at the same time
is not possible). When two visualizations are synchronized each manipulation of the parameters of the
primary visualization will be propagated to the secondary.The result can be seen in Figure 2.6.

2.3.6 Lookmarking

When browsing on the Internet the term ’bookmarking’ is oftenused to refer to storing an Internet address
for later use. The term ’lookmarking’ is used much in the sameway, like a bookmark of what one is looking
at. The term lookmarking was actually borrowed from ParaView [3].

The first step in using the lookmarking functionality is to create a lookmark for a visualization that
is displaying some interesting features for example. In Figure 2.6 the action menu shows the menu item
that is needed to create a lookmark. For each defined lookmarkthe server will explicitly record the used
dataset, modality, visualization and parameters. After entering a description the lookmark will be added
by the server (by default available only to the user), and thereby be made available for retrieval later on.
Opening a lookmark can be done by selecting the appropriate lookmark from the ’Lookmarks’ menu, after
which the application will instruct the server to restore the session to the way it was at the time of lookmark
creation.
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Figure 2.5: A sagittal plane reconstructed from a volume, with the outlines of two objects-of-interest as
overlay on the extracted plane. First object is the rectangular shape on the plane, resulting after cutting
a sagittal plane through a cylinder, and second is bowel structure, showing as white outlines of the dark-
brown areas of the slice.

Figure 2.6: An example of two simultaneous visualizations where the lower visualization is synchronized
to the upper visualization. As can be seen from the screenshot, the functionality is available from the
’Action’ menu.
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Chapter 3

Architecture and Design of a Remote
Visualization Framework

In this section we provide a high-level overview of the basicelements that our framework consists of. Prior
to this thesis research [12] was done on existing visualization systems. We also suggested an architecture
for which we expected that it would meet our objectives and many of the design decisions made in this
section are based on this suggested design.

3.1 Architecture Overview

From a high-level point of view our framework contains two types of components: server- and client
components. Although a client component was developed for the purpose of this project, the idea was to
have the communication between client and server done usingwell-supported protocols, which ensures
that our reference implementation can be easily replaced with a custom implementation by anyone who
wishes to do so. As the reference application is open-source, custom implementations may extend or
alter this implementation instead of completely rewritingthe application. Obviously, choosing a different
programming language for implementation will require a rewrite of the client application.

Most important for this thesis and most relevant for this chapter is the architecture of the server com-
ponents. The Client component will therefore be discussed in more detail in the implementation chapter,
Chapter 4.

To aid the reader in getting an idea of the design of the framework we will provide a system design
overview, showing all architectural components, along with the relations between them. In Figure 3.1 one
can see that the framework consists of four components: a client-, middleware-, visualization- and database
component.

In the remaining part of this chapter we discuss the server components on an architectural level while
not addressing implementation details yet. The RDBMS component, the relational database that is used to
store data, is a standard third-party relational database and will not be discussed here.

3.2 Requirements

Before the actual development of the (custom) components weassembled a list of requirements to see what
the server components should be capable of in order to be useful to us [12] (chapter 7). We briefly describe
these requirements here and afterwards discuss major design decisions, which are largely based on those
requirements.

Globally reachable As we want to provide a public domain service, the service should be globally reach-
able and allow access to everyone that has an internet connection and is allowed access to the service.

15
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Figure 3.1: High-level system diagram showing the main components in the framework.

Support for Iso-surfacing, Direct Volume Rendering (DVR) and Multi Planar Reconstruction (MPR)
These three types of visualizations are considered requisites for the framework and should therefore
be supported.

Parallel and distributed rendering Given the large amount of data and the calculation-intensive visual-
izations possible it is essential to use as many server resources as possible as efficient as possible
and the support for parallel rendering is a key factor in coping with this amount of data. Supporting
distributed rendering would create an additional benefit asthis means that work can also be divided
among multiple physical servers.

Besides the requirements above we also proposed secondary requirements in our earlier research: the
support for watermarked or fingerprinted transmission of image data, support for annotations and operat-
ing system independency for the server-side components. Meeting the first requirement means that security
risks may be further reduced. Annotations are commonly usedin medicine as a way of clarifying raw im-
ages by adding information like shapes and textual explanations for certain structures in the data. Therefore
they can be useful tools in educational environments. Beingoperating system independent, together with
support for distributed rendering, would mean that a more versatile collection of servers (versatile in the
sense of computer architectures and/or operating systems)could be integrated in the chain of computers
systems available for rendering tasks.

3.2.1 Discussion

Fairly early in the project the choice was made to go for remote visualization (as opposed to visualization
on a local workstation) and to provide the required functionality as a service over the Internet. Although
this way the framework requires an Internet connection on both the server and the client side, this can
hardly be seen as an issue nowadays. Added benefit of this solution is the central storage of the data and of
easily providing means for user authentication. To circumvent firewall issues we looked for a solution that
would use default network ports instead of arbitrary ports which are often blocked by default firewalls, in
company and institute networks for example.

For the actual visualization work we chose to use an existingvisualization system instead of develop-
ing our own solution, for which would then need to incorporate visualization routines for at least the basic
visualizations mentioned in the requirements above. Apartfrom the huge amount of development work,
this custom visualization solution would probably not be flexible and would have to be actively maintained.
Existing solutions are far more flexible and are updated regularly for bugfixes and new functionality. In
order to meet our requirements we had to find a visualization system having parallel- and distributed ren-
dering capabilities, which would be capable of providing the aforementioned visualizations and a system
that would allow other applications to control the system.
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3.3 The Visualization Components

Choosing a visualization system is important in this project as this choice will affect many of the properties
of the resulting framework. Prior research [12] on appropriate visualization systems available for this
project has shown that ParaView [13, 14], a parallel visualization framework developed by Kitware Inc. and
Los Alamos National Laboratory, is a very suitable candidate to be used as foundation for the visualization
component of this project.

3.3.1 VTK

The ParaView framework is built on top of VTK (the Visualization ToolKit) [15] which is also under
development by Kitware and supported by many people in the open-source society, Los Alamos National
Labs, Sandia National Labs and many more. VTK has become one of the most popular toolkits for all
kinds of visualization-related tasks such as scientific visualization, image processing, volume rendering
and many more. The toolkit is open-source and written in the highly efficient programming language C++,
allowing for fast graphical processing, and VTK is designedto run on multiple operating system platforms.

3.3.2 ParaView

In the design of ParaView three major requirements were considered, as explained in [14]. The first of
them is usability, as the VTK framework which is used as the basis of ParaView is merely a toolkit, and
is not exactly easy to use. The second is scalability. As the name of the framework already explains,
work should be done in a parallel way, to improve performanceby utilizing more resources concurrently.
Providing scalability is therefore essential to the success of ParaView. The last requirement considered is
extensibility: although ParaView already has a lot of VTK modules incorporated, it is possible to register
additional components after specifying their interface. Although the top layer of the application is written
in C++ most other things (from the widgets to inter-process pipeline synchronization) are done in Tcl/Tk,
which is a scripting language which makes extending the application easier.

Summarizing, we can say that the aim of ParaView is to take theextensive and efficient VTK visualiza-
tion functionality, add a layer for parallel processing of visualization pipelines on top of this functionality
and make the system more accessible and extendible for the user.

Several properties of ParaView, besides the ones already mentioned above, should be mentioned here
in order to further justify the use of ParaView for our project. Just like VTK, Paraview is open-source
software and under active development. Actually, at the start of this project we used ParaView version
3.2.1. During this project two major product updates (versions 3.3 and 3.4 respectively) were released and
successfully migrated into our project, while version 3.6.1 was released very recently.

By far the most important feature of ParaView over VTK is the support for both distributed and parallel
processing. In this sense, Parallel processing is the term for using multiple processors in a single computer
system, where distributed processing is used to define the use of multiple systems. The difference between
the two may not seem that big, but with parallel processing you know beforehand which architecture
(32-bit or 64-bit, Big Endian or Little Endian1, etc.) you will be running on because all processors in
a single system are obviously based on the same architecture. In contrast, distributed computing may
include systems with various architectures and Operating Systems, including uncommon supercomputer
architectures like in the Cray XT3 supercomputer[17]. For parallel processing in ParaView the Message
Passing Interface (MPI) is used, which is a high-performance protocol for message exchange in parallel
computing.

ParaView also has some limitations and unfortunately it hasone specific limitation that may adversely
affect our framework. Where VTK supports the concept of streaming, i.e. the chunk-wise reading and
processing of data to handle arbitrarily large data structures in a limited memory footprint, ParaView is,
at this time, not capable of supporting this. This basicallymeans that the size of the data to be visualized
should never exceed the combined total amount of memory (both physical and virtual) available to all of
the computers cooperating in the visualization.

1Big Endian refers to the way of storing numbers in memory starting with the lower bytes of the number, where Little Endian
stores them the from high to low bytes
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Two remarks should be made on this limitation. The first is that the current state of technology allows
a single server to be equipped with hundreds of gigabytes of memory. Combining several of these servers
will allow for volumes of several hundred gigabytes in size,which is very large for a single volume or
even a collection of volumes. Besides this practical argument of volume size, KitWare has also recently
released an updated version of ParaView (3.6.1) that is saidto contain an application called StreamingPar-
aView, which should support the streaming processing of volumes. Because ParaView 3.6.1 and Stream-
ingParaview were announced at the time of writing of this thesis and because of the experimental phase
the StreamingParaView project seems to be in (there is hardly any documentation available, there are no
pre-built executables) we have decided not to try to incorporate these in our framework at this time.

As ParaView is specifically designed to run on a distributed,parallel set of computers it supports sev-
eral modes of operation [18]. The basic components of the ParaView framework are the dataserver, the
renderserver and the client, which can be combined for several set-ups. In [12] we described which render-
ings set-ups are possible with ParaView, but only three modes will apply for our project: the client-server,
client-distributed server, and the client-distributed data-distributed render modes. For this project the sec-
ond option was chosen, which we will explain in Chapter 4. However, any of the other rendering modes
could be supported and will only require small modificationsto the framework.

3.4 Interfacing with Paraview

To be able to use the functionality of ParaView we need to enable communication between ParaView and
our middleware. Although this section has a large implementational aspect it is also a vital element of the
design of the framework and would leave a gap if not discussed. For this reason we placed this section in
the current chapter instead of in the implementation chapter.

Interfacing the two components did not turn out to be trivial, although the final solution is relatively
simple and flexible. We mentioned earlier that ParaView is anopen-source framework, therefore there are
many entry points to interface with ParaView, and several options have been tried before a final solution
was chosen. The solutions that were tried can be divided intothree directions and they were examined in
the following order:

• Implementing the ParaView protocol

• Creating a shared object for loading by the middleware

• Exploiting ParaView’s Python support

Implementing the ParaView protocol

The basic idea behind the first approach is simple: if we are able to implement the underlying protocol that
ParaView uses (called ’CSS’ or Client/Server Streaming [18]) we can basically do what ParaView does,
with minor overhead. If our middleware would have been implemented using C++ this issue could be
solved by linking our project to parts of the ParaView source, however, for reasons stated above, we are in
a different position. Implementation of the protocol in Java was the only way to accomplish our task, but
several things make this solution infeasible. First of all,the protocol is not well-documented, and extracting
the protocol from the source code would be very time-consuming. A second, and even larger, objection to
this approach is that it is very low-level and has its limitations. The CSS protocol will only enable remote
invocation of methods implemented in ParaView, and do that platform independently. In [18], section 4.2
the limitations of only using the CSS protocol are clearly summed up and they will be paraphrased here.

Complexity of use The work required to be done in order to invoke just a single method is rather tedious:
prepare a network stream, gather method name, arguments, choose the target server and node and
send the stream.

Lack of state As the CSS protocol keeps no state information, clients requiring information on the state
of server-side objects will need additional method invocations to get up-to-date. Besides this incon-
veniency, the authors state that this can easily lead to highnetwork loads.
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Lack of data gathering A stream can only send and receive data from a single node, butthe protocol itself
cannot gather information from all nodes working together on a specific visualization operation.

To cope with these limitations of the CSS protocol, ParaViewhas implemented a ServerManager mod-
ule providing a higher-level interface to the functionality. However, we would have to implement this
module in Java too, making this implementation a project of its own and clearly an unfeasibly approach for
our project.

Creating a ParaView shared object

Another attempt at interfacing with ParaView was to create alibrary (or shared object), compiled against
the ParaView source, which can be loaded into the Java process space. All methods provided by the library
can then be invoked from the middleware using the Java NativeInterface (JNI). For detailed information
on JNI have a look at [19]. In short JNI allows Java programs toexecute native, platform-dependent code.
To accomplish the task of creating a library we have used a tool called SWIG (which stands for Simplified
Wrapper and Interface Generator). SWIG is capable of connecting C/C++ projects with a large variety of
other high-level programming languages (PERL, PHP, Python, but also Java for example). To use SWIG
one has to define an interface file describing the native methods to expose to the target programming
language. After running SWIG with Java as target language, SWIG will generate a C/C++ wrapper (to
be compiled with your native application), along with some Java files containing the JNI calls and the
definitions of the objects referenced. Using SWIG we were ableto both create a library compiled against
ParaView and to load that library in a Java project.

Unfortunately, several issues of this approach became apparent. First, all functionality available in
ParaView must be exposed somehow by the library we were using, making this solution inflexible. Also,
loading a library (or basically using JNI in general) in an application container environment like Tomcat
is rather difficult, in providing paths to shared objects forexample, but also because of the on-demand
nature of deploying and using web services. Last but certainly not least, we ran into a general issue of
parallelization. ParaView uses several managing and controlling objects that are referred to in a static way,
following the singleton pattern. These objects are responsible for keeping the state of a pipeline but are
not designed to keep the states of multiple pipelines simultaneously. Basically, if you would like to have
multiple pipelines running next to eachother in a given system (for example one for each client accessing
the middleware), you would need to have multiple ParaView instances running. But with the approach
taken, loading the self-compiled ParaView library in the Java process space, it is not possible to load this
library multiple times, making it impossible to have multiple pipelines running concurrently. Even this last
issue alone made this approach useless, because it violatesthe idea of our framework to service multiple
clients at the same time.

Exploiting ParaView’s Python Support

While VTK provides wrapping of its functionality in three other programming languages (Tcl, Python and
Java to be precise) ParaView offers only Python wrapping [17]. Python support is available after enabling
the wrapping with a parameter in the ParaView building process. The by-product of this build consists
of two additional command-line tools: pvpython and pvbatch, which both offer a fully functional Python
interpreter, with the difference that pvpython can work interactively. In the process of wrapping ParaView
for Python, the ServerManager module mentioned earlier is also implemented in Python by the ParaView
developers. The ServerManager module applies the proxy design pattern [18] where each (distributed)
server-side object is represented by a proxy object on the client-side which is responsible for managing
the server-side object’s lifecycle and properties. As thisServerManager module and much of the logic for
accessing the ParaView functionality is already wrapped for us, using these Python-enabled ParaView tools
will provide us with a simple and clean solution to access ParaView’s functionality from our middleware.
As an added benefit, these tools are also MPI-enabled, meaning that they can be started concurrently using
the MPI protocol (as described above in Section 3.3.2) as communication between them.

The command-line tools can be executed by starting one of thePython-enabled executables, with a tool
(called ’mpirun’) that will start one or more MPI-enabled processes concurrently. Starting the execution
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from our middleware will create a subprocess which has its own process space and therefore its own
singleton objects, avoiding the limitations of the earlierapproach. Summarizing what this solution means
for our project:

• We can have multiple pipelines running simultaneously.

• We can have fine-tuned control over the number of ParaView nodes working together on a given
pipeline.

• All processes are in their own process space, introducing the robustness that if a process crashes for
some reason, it will not crash the parent process (which is our middleware).

• We get all default Python functionality and the functionality of third-party Python libraries for free.

As this turned out to be a suitable solution for our project wedecided to implement our framework
using the Python interface provided with ParaView. To be able to set up ParaView pipelines from Python
we have developed a Python script (a ’glue’ component) that will be run by the ’pvbatch’ executable
and that is responsible for providing the ParaView functionality to the middleware. To enable two-way
communication between this Python component and the middleware we will have the Python component
publish its functionality through a SOAP service. The result is that the middleware will access the Python
components’ SOAP service to access ParaView functionalityand the Python component will access the
middleware’s SOAP service to provide updates on pipeline progress.

Additional advantages of this solution are rapid development (each client connection will run the
Python script so changes to the script will only require a reconnect), and providing a common location
to add re-usable pieces of Python code to be used from variousvisualization pipelines. In Figure 3.2 we
zoom in on the part of the system diagram that is showing the connection between our middleware and the
ParaView visualization system.
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SOAP
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Figure 3.2: For each visualization session the middleware will start one or more ParaView nodes that will
be working together on the visualization. The middleware will only communicate with the ParaView nodes
through node 0. This means that node 0 will be responsible forcompositing the output from all nodes and
that all Operating System interaction (such as loading and saving of data) will be relative to the system on
which node 0 is running.

3.5 The Middleware Component

The middleware component we developed is the most importantcontribution of our project. The compo-
nent is a server process that takes client requests and communicates with the visualization back-end. It is
responsible for serving clients with visualizations, appointing visualization server resources and for con-
trolling those resources (the visualization server processes) while hiding ParaView’s complexity from the
user. In this section we will motivate important decisions made in the process of developing this component.
Some additional terminology will be provided as backgroundwhere needed for a correct understanding of
the information given.
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3.5.1 Server-Client Communication

One of the project’s main objectives was to provide clients with remote rendering capabilities and this re-
quirement forces the framework to be designed in a client-server fashion. A major decision in the general
design of client-server systems is the choice for a certain way of communication between client and server.
One possibility would be to implement a custom communication protocol but this would needlessly com-
plicate the development of a custom client application and it would also mean rewriting functionality for
which better solutions are available.

Over the past few years the concept of Web Services has becomevery popular (see [20] for a discussion
on the Web Service paradigm). Web services can provide all kinds of services to clients, like retrieving or
processing information, doing heavy calculations on better-equipped servers, etc. They are implemented
as Remote Procedure Calls (RPC’s) that can be invoked remotely over the HTTP protocol that is used by
web servers. Older web services implemented Remote Procedure Calls by using XML (eXtensible Markup
Language), a common format to describe structural data in human-readable text. Large disadvantage of
XML is that it is rather inefficient for transferring binary data. Because we expect to be transferring
much binary data through the web service required for our framework XML is not a viable option. More
recent implementations of web services wrap the remote calls and responses into messages according to the
Simple Object Access Protocol (SOAP) which addresses this inefficiency in an extension called ’SOAP-
with-Attachments’2 (SwA). In [16] SOAP and SwA are compared, showing that SOAP-with-Attachments
has lower processing overhead and higher throughput than ’regular’ SOAP.

Attempts to create a common web service interface have resulted in the construction of the Web Ser-
vices Definition Language (WSDL). With WSDL one can abstract a web service into endpoints and oper-
ations on those endpoints, along with the definition of inputs and outputs to those operations.

Because of the versatility and the (ongoing) standardization of web services we have chosen webser-
vices as the basis for the client-server communication in our framework. Many implementations of web
service frameworks are available but our attention has focussed on an implementation by the Apache Soft-
ware Foundation (ASF) called Apache Axis23, or short: Axis. The Axis framework is both a client and
a server implementation of a web service engine that is basedon SOAP and which is implemented in the
programming language Java.

The last step to create a web service using Axis is writing a Java Servlet based on an Axis Servlet and
to deploy this servlet in a Servlet Container, along with a definition of the functionality that needs to be
exposed through the web service. Servlet Containers, or WebContainers, are responsible for providing an
execution environment to servlets by taking care of deploying, starting and stopping servlets, and receiving
and sending request and response messages. Many Servlet Containers are available, but we have chosen
to use Apache Tomcat, another project of the Apache SoftwareFoundation, to deploy our Axis servlet,
mainly because of interoperability.

Note that, while Tomcat will by default run in stand-alone mode, it is also possible to integrate a Tomcat
configuration into the popular Apache web server4, making the web service transparently available over
the default network port for web traffic, port 80. This may be important when firewalls (or organizational
policies for example) prevent Tomcat to act as a web server onother ports when the default port is already
in use.

With this setup we have a solution with standardized components with proven technology and which are
already actively maintained. Figure 3.3 shows the basic infrastructure of the web service for our framework
when embedded in a regular web server.

3.5.2 Management

The middleware component will not be producing any results or data but it is responsible for managing
most aspects of the framework, as explained in the introduction of this section. We have recognized four

2Seehttp://www.w3.org/TR/SOAP-attachments for information on the extension
3The AXIS2 Framework of the Apache Software Foundation (ASF):http://ws.apache.org/axis2/
4The Apache web server has the highest market share for web servers, running on approxi-

mately 47% of all web servers around the world (based on estimates of NetCraft in June 2009 at
http://news.netcraft.com/archives/web_server_survey.html.

http://www.w3.org/TR/SOAP-attachments
http://ws.apache.org/axis2/
http://news.netcraft.com/archives/web_server_survey.html


22 Architecture of a Remote Visualization Framework
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Figure 3.3: An overview of our middleware-and-webservice when embedded inside an Apache webserver
(which is also serving some website). In case the Tomcat Servlet Container is used in stand-alone mode
Tomcat will serve requests to the webservice by starting a webserver of its own.

types of management activities, and we chose to define a ’manager’ for each of these activities, to be able
to cleanly separate the activities in the source code of the middleware. In Figure 3.4 we show how the
middleware component can be broken down into smaller components: the web service and the managers.
Specific tasks for these managers is mentioned below, along with a short explanation of the functionality
provided.

Middleware

UserManager

JobManagerSessionManager

DataManager

Web Service

Figure 3.4: The middleware component in more detail, showing the different managers and the (flow of)
communication between the web service and the managers.

Data Manager The Data Manager is responsible for keeping track of the datasets and visualizations avail-
able on the server and of the relations among them. This manager also deals with reserving space
for jobs and storing job results, both on disk and in the database. When a job is finished, the Data
Manager will also retrieve the data for these results on client request.

Job Manager The Job Manager will maintain a pool of workers, which are threads in the middleware
that can carry out work. This pool has a fixed size, and its sizewill define the number of sessions
that can be served simultaneously. Each session started by aclient (through the web service), is
submitted as a separate thread in the pool. The most important functionality offered by the Job
Manager is running the jobs that are submitted. Each job belongs to a session, and these sessions
will be appointed to workers in the pool when there are workers available. When a worker picks up
a session the visualization pipeline needed for this session is assembled. A new ParaView instance
is started and ordered to start on the first job. The worker will continue to run jobs until the session
is either closed or idle for too long.

User Manager The user manager takes care of retrieving users and (hierarchical) groups from the database,
and performing user authentication. The User Manager also provides functionality to specify exactly
which groups have access to which dataset or visualization,based on the concept of Access Control
Lists (ACL’s). A detailed explanation of this functionality can be found in Section 4.4.

Session Manager The other managers are relatively passive, compared to the Session Manager. The
largest part of the calls to the web service are handled by theSession Manager. This manager is
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in charge of setting up and closing instances and sessions onclient request. A ’session’ in this sense
is the sequence of renders for a specific visualization of a specific dataset for a specific client. A
client can start multiple sessions from a client application, which are then considered sessions in a
single ’instance’. A user starting two or more client applications will also have two or more instances
on the server. Besides managing sessions and instances, theSession Manager will also appoint all
jobs submitted by users to the session that they belong to.

Another important piece of functionality offered by the Session Manager is the collection of a status
report for a given instance. Such a status report contains the updates for all changed jobs for all
changed sessions for a given instance. Because of the natureof a web service, all information that
is exchanged will be exchanged in messages, going from the client to the server and with a response
from the server back to the client. We discuss this limitation of the web service concept in more
detail in Section 4.5.1.

Worker Pool
Server Session

Jobs
Workers

Client Instance

Visualizations Internet

Figure 3.5: Relation between client-side visualizations and server-side sessions, and between sessions and
workers. Each separate client visualization has one session on the server side (in the middleware) and each
session will be handled by one worker.

3.5.3 Data Management

A substantial amount of time and effort was spent on finding a way to effectively manage the available
data (we more strictly define the term ’available data’ below) and in this section we report on the results of
this effort. Besides that we consider the chosen solution suitable for our framework, we also consider the
solution a valuable contribution to this thesis. An essential argument in the reasoning towards our solution
is that datasets and visualizations are highly related and should not be seen as separate entities. We will
show that, despite the tight relation between datasets and visualizations, careful division of the visualization
pipeline still offers a flexible solution.

3.5.3.1 Data vs. Meta-data

When defining the ’available data’ we should specify two kindsof data. First we have the actual image-
or volume data acquired in some digitization process, like scanning or photographing histological sections,
doing MRI scans, etc. Besides this type of data we also have meta-data, which contains properties like a
description of the object examined, information on the acquisition technique used, location of the actual
data, etc.

3.5.3.2 Dataset vs. Modality

In medicine the term ’modality’ is used to refer to the methodthat is applied to treat or examine a patient5

and in imaging applications a modality would refer to the waythe acquisition has been done. For our
purpose we consider a modality to be some appearance or form of a dataset. MRI and CT scans and
histological volumes for instance are examples of modalities, acquired by MRI and CT scanning devices
or by scanning or photographing histology sections respectively.

The idea to define a modality in this section is to create the possibility of comparative visualization
between different modalities and therefore we will consider the fact that multiple modalities of a single
object (human orbit, pelvis, etc) can belong to the same dataset. More specifically, in our framework

5In http://en.wikipedia.org/wiki/Modality for example

http://en.wikipedia.org/wiki/Modality
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we consider modalities to be sub-elements of a dataset in thecollection of data that we have to manage
(Figure 3.6).

Dataset Modality1:N

Figure 3.6: To support multiple modalities we added a ’Modality’ object with a one-to-many relationship
between the dataset and the modality.

3.5.3.3 Dataset vs. Visualization

A conceptual visualization pipeline is usually separated into three steps (see [21]):

1. Data Enrichment/Enhancement: preparing and filtering the raw data through interpolation, smooth-
ing, error-correcting, etc into ’derived data’

2. Visualization Mapping: mapping the ’derived data’ to Abstract Visualization Objects (AVO’s), rep-
resenting graphical primitives with attributes such as colours, positions, etc

3. Rendering: drawing the Abstract Visualization Objects to a rendering context using the optical mod-
els that are available

In practice (i.e. in ParaView) the conceptual pipeline is extended (prefixed) with a step to supply the
raw data to the pipeline. This means that in order to run visualizations in our framework any pipeline must
consist of at least these four steps. In the first argument above we stated that datasets and visualizations
are highly related and should not be considered separate. This relation exists because the input to the
visualization, the visualizations’ ’raw data’, is completely defined by the modality that we would like to
visualize.

3.5.3.4 Solution and Design

In a relational database it is straight-forward to model thedataset- and modality objects, and the one-to-
many relation between them. We used a standard third-party database (in our case MySQL6 to manage
this information, but any relational database would suffice. Part of the power and flexibility of our solution
is that we were also able to include the (objects of) the pipeline in our relational model. A naive solution
could approach the issue by predefining complete pipelines for each modality, like in (Figure 3.7).

1:NDataset Modality
Visualization 

Pipeline
1:N

Figure 3.7: A naive solution could predefine a visualizationfor each available modality, a solution that is
rigid and lacks re-use.

Our approach addresses the issue of lack of re-use by separating the pipeline into a ’Source’ and a
’Visualization’, where the ’Source’ is responsible for providing input for the pipeline (based on the chosen
modality) and where the ’Visualization’ contains all the elements of the conceptual pipeline. The proposed
scheme is illustrated in Figure 3.8.

6http://www.mysql.com/

http://www.mysql.com/
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Pipeline

N:M

N:1Dataset Modality Source1:N

Visualization

Figure 3.8: Our proposed solution splits the modality-determined part of the pipeline (which we will call
the ’Source’) from the visualization logic (the ’Visualization’) and models the pipeline elements as separate
objects. Source objects will be used to provide input to the visualization, while the ’Visualization’ provides
the output.

In Section 3.4 we discussed our choice to use Python to control visualizations in ParaView and in
Figure 3.8 the ’Source’ and ’Visualization’ parts of the pipeline are depicted as objects with relations to
the modality object. A contribution of our approach is that each pipeline object is stored in the relational
database as a snippet of Python code that is responsible for accessing the required ParaView functionality.
Any ’Source’ pipeline object will contain the Python code necessary to load the data for a given modality
compatible to the source. All ’Visualization’ objects willcontain code necessary to transform the input
data into some defined visualization.

3.5.3.5 Conclusion

With the definition of datasets and modalities, and the definition of separate pipeline objects using Python
snippets, we have obtained a highly flexible solution for ourvisualization framework. Several interesting
properties of our approach can be mentioned, which we can sumup as follows.

• Multiple modalities can be specified for each dataset.

• For each type of modality data only one ’Source’ object needsto be written and maintained, which
can be re-used for other modalities with the same data-type.

• For a modality multiple visualization routines (’Visualization’ objects) can be stored, and these ob-
jects can be used by one or more modalities.

• Arbitrarily complex pipeline objects can be created in the high-level programming language Python,
which is well-documented and well-supported and many third-party additions to Python are freely
available.

• Our approach encapsulates datasets and appropriate visualizations in a single relational database
model, where all pipeline objects for the visualizations will be stored in the database along with
the data. This means that the database will contain both the data and the visualization routines
appropriate for that data on a single location.

In this section we tried to provide a high-level overview of our scheme of data encapsulation and
motivated the process of getting to this scheme. Because theactual scheme is slightly more complex we
will supply further details of the data encapsulation in Chapter 4.2.
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Chapter 4

Framework Implementation

In this chapter we discuss implementational topics and issues that we faced in the development of our
framework. We start with a more detailed discussion of the client application. Although we could have
included this discussion in the previous chapter on the framework architecture we chose to discuss the
component in this chapter. This choice was based on two main considerations: the architecture of the
client component does not (substantially) contribute to the architecture of the framework. Also, it is an
expandable part of our implementation that can be easily replaced by a custom implementation.

4.1 The Client Component

We mentioned earlier that we developed a (reference) clientapplication for this project. The basic idea
of this client application is to interface with the middleware component and submitting user requests,
retrieving the results from the server and displaying them on the users’ screen when partially or completely
transferred.

4.1.1 Requirements

In the introduction of this thesis we already mentioned someof the design goals for the client application.
As decisions made in the design of the client application heavily influence the usability and appearance of
the application we will discuss them here, starting with therequirements that were recognized beforehand,
like we did above while discussing the server design decisions.

In the prior research mentioned earlier [12] we discussed and recommended several requirements ap-
propriate for the client application. All of these requirements have been adopted in the design of the
client application. All of the requirements are related to the general idea that as many clients as possible
should be able to use the application (without making heavy demands on the user’s computer resources and
-environment).

Small installation effort While applications are usually available on the client computer after performing
some installation routine, this installation will only make the application available on the workstation
it is installed on and usage on any other workstation will require a new installation. Also, we should
keep installation as short as possible, by keeping the amount of data installed to a minimum.

(Nearly) Operating System independent To conform to the general idea above we tried to avoid creating
an application that depends on some specific operating system. While in general the Microsoft
Windows operating system dominates the other available operating systems, the actual numbers on
operating systems used by our audience may well be different.

No persistent storage of data Many applications install application data (or store data that was previously
fetched over a netwerk connection) alongside the application on the target computer. Locally stored
data has the advantage of providing easier and faster accessto data. However, for most histological

27



28 Framework Implementation

datasets that advantage is hardly beneficial because of the lengthy installation process (not even
regarding of the large amount of free space required on the client computer). In addition, persistent
storage of valuable datasets involves security risks, which should obviously be minimized.

Low internet connection bandwidth Although high-bandwidth internet connections are becoming com-
mon, for example for researchers in academic institutes, itis still essential that users are able to
access the data collections from their homes, using their own (usually limited) internet connection.

Interactive, simple and intuitive interface The last requirement mentioned here basically contains two
parts (an interactive interface and a simple and intuitive interface), were both elements are related
to the user experience. Interactivity is essential in providing a good user experience because an
unresponsive interface will surely demotivate users. Unresponsiveness in this sense can mean two
different things. First, unresponsiveness can occur in an application where a lot of work is done but
progress is not reported back often enough, by means of screen updates, progress bars, etc. Another
kind of unresponsiveness can be found in the process of (remote) visualization. The actual task of
visualization, or the transfer of the result of the visualization, may take long and cause the client to
get the feeling of a slow and unresponsive interface.

In Chapter 2.1 we defined what we consider the target audiencefor this client application, with
the amount of computer fluency that can be expected for this group of users. A simple interface
will probably be most efficient for this group of users. Note that this requirement as stated here,
containing words like ’simple’ and ’intuitive’, is rather subjective. Although it is possible to provide
measures of simplicity and intuitivity, by conducting a study using people from the target audience,
we consider this to be out of our scope.

4.1.2 Decisions

From a design point of view, the choice for a client application implementation language is important.
Several options are available, the most promising of which are AJAX, Adobe Flash, C/C++ and Java.
The first two options are web-based programming environments and those languages are designed for
applications that run inside a (compatible) browser and using JavaScript in the case of AJAX or a plug-in
from Adobe in the case of Flash. An application written usingany of the two languages can be considered
a thin client. The term ’thin client’ is used for a (remoting)application which has a very small resource
footprint, and which relies heavily on a server component doing the more intensive work. Fat clients on the
other hand have a larger footprint, can do more work themselves and usually provide more functionality to
the user. Applications in C++ are compiled from code to a native code supported by the platform, where
Java code is compiled to intermediate code, therefore requiring a so-called JVM (or Java Virtual Machine)
to run. In this case C++ has the advantage of running natively(without an interpreter), but the disadvantage
that the code has to be compiled per platform, while Java codecan be run on any platform for which a JVM
is available. Applications in C++ and Java can be anywhere between thin and fat clients.

For several reasons we chose Java as the programming language for our client application. Although
thin clients are often used as means to provide web-accessible content they can easily become limiting
factors in the functionality of the application, an examplebeing the lack of support for dedicated graph-
ics hardware. Because C++ applications run natively and canbe optimized further (because the target-
architecture is known at compile time) they will usually be faster than similar Java applications. However,
most of the heavy work will be carried out by a visualization server as explained earlier in this chapter, and
they are not platform independent. Java applications1 can be run on any platform for which a Java Virtual
Machine is available, meaning that these applications are practically platform independent. On top of this
platform independence, an additional advantage is the availability of an automatic deployment mechanism
called Java WebStart, available on any workstation that hasthe Java Runtime components installed. This
mechanism will take care of loading, verifying and caching components of an application. After success-
fully loading the application it will be started as a stand-alone application (as opposed to the well-known
Java Applet which is very limited and which only runs inside abrowser).

1We assume pure-Java applications, which conform to the rulesof portability, and which will not include code, or reference to
components, that make them platform dependent.
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4.1.3 Model-View-Controller (MVC)

In Chapter 2 we showed that we defined multiple views for each type of visualization (the view containing
the visualization itself, an orientation view and a parameter view). Because of the tight cooperation of these
views with a single source of data we applied the well-known Model-View-Controller architectural pattern
(for example in [22], chapter 14). For a correct understanding of the inner workings of the application we
briefly explain the pattern and afterwards discuss the result of applying the pattern to our client application.

The pattern defines three components, the model, the view(s)and the controller, and an MVC applica-
tion is made up of a collection of these triplets. Each of the components in the pattern represents a role in
the interface interaction of the application.

Model

View Controller

Figure 4.1: The Model-View-Controller pattern componentsand interaction.

In short the separate components can be described as follows.

Model A model contains the domain-data of the application and the domain-logic needed to manipulate
the data. For our application, we have a model containing thevisualization’s data and its parameter.

View A model can have multiple views, of which the model has no knowledge. A view is a certain
representation of the data, which does not necessarily haveto be visual. In our application for
each visualization views are created containing the visualization result, an orientation view and a
parameter view.

Controller The controller is the central element which processes events, for example mouse clicks in the
interface, and which is capable of invoking changes on the model. Our application has controllers for
each type of visualization (for example for dealing with three dimensional visualizations in which
you can rotate the object, plane reconstruction visualization in which you will not rotate the object,
but the cutting plane, etc.)

The pattern has proven itself to be useful in dealing with twodesign issues we faced. First, the pattern
cleanly separates data from visualizations-with-interaction which is beneficial for the readability and main-
tainability of the source code, two properties that are of great importance in open-source projects. Besides
improved readability, the clear separation of the pattern elements (specifically the separation between view
and controller, and the separation of the model from the other two elements) makes it easier to implement
support for other types of visualizations or other data formats. And, when properly followed, the pattern
will make sure that views on the model are independent of eachother.

In our case we have three views for each visualization: the view containing the (result of) the visualiza-
tion, the orientation view and the parameter view. Althoughvisualization parameters are mostly changed
by user interaction events such as zooming and panning in thevisualization view, they may also be altered
manually in the parameter view. Changes to any of the views should be correctly propagated to the other
views, for which the Model-View-Controller pattern provides all the needs.

4.2 Data Encapsulation Scheme

4.2.1 Early approaches

In our search for a suitable structure to store our meta-datawe went through an iterative process. Limita-
tions of a certain solution force the solution into a different direction, which in turn leads to new insights,
and possibly another iteration after that.
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A promising approach to create a visualization pipeline within Python was based on the fact that visu-
alizations in ParaView (and most visualization systems) are created by setting up a chain of filters, where
the output of one filter is connected to the input of the next and the last filter is used as input to ParaView
rendering helper objects (such as ’representation’ and ’view’ objects which map the objects to a scene).

The idea of solely specifying these chains of filters seems logical at first and storing them in a database
structure is straight-forward. However, the idea turned out to be rather complicated for several reasons.
Filters needing slightly more advanced parameters, lookuptables and programmable filters for example,
always required additional, custom code to set up. Another issue is the use of the helper objects: some
pipelines need a representation and a renderview (basically all visualizations using a camera) while others
will not use representations at all (for example a pipeline that reads some input volume, retrieves a slice
from the input and writes that slice to an image file).

4.2.2 The Chosen Approach

In Figure 4.2 a screenshot from the reference client application is shown in which the objects in the en-
capsulation are clearly visible in a tree structure. The top-level in the tree defines the dataset selected by
the user and the modalities of the dataset can be found at the second level. All leaf nodes in the tree are
visualizations specified for the available modalities (andthey can be re-used for more than one modality,
the ’Volume Visualization’ appears twice in the tree).

Figure 4.2: The client application screenshot shows the three visible objects in our ’encapsulation’ scheme:
datasets, modalities and visualizations.

As we explained in the previous chapter, the designed ’data encapsulation’ scheme is slightly more
complicated, our scheme uses four data objects which we explain in more detail in the following sections.
We also explain how the middleware will assemble a pipeline from the different data objects, using the
Python snippets we defined for them.

4.2.2.1 Datasets and Modalities

An important idea in the final structure that we obtained is the addition of a layer below the top-level
element of a dataset: a modality. Our definition of ’modality’ is a little broader than the medical definition.
The reason for this is that information derived from the dataset should also be used as a modality. This
gives us a convenient and straight-forward way to incorporate annotations in the structure, which we will
explain later on in Section 4.5.2. It is possible that two or more modalities within a dataset are aligned to
each other and our framework allows this information to be stored in the database as well.

4.2.2.2 Visualizations and Outputs

Datasets and modalities only define what kind of data is available in the system, but not how the data should
actually be visualized. For our framework a combination of a’visualization’ and one or more ’outputs’ was
used. This is a minor extension to our definition of the encapsulation scheme in Section 3.5.3 in which we
only mentioned the existence of the ’visualization’ object. The visualization is responsible for specifying
how the data is to be processed (basically, which filters willbe set up) to obtain the visualization. The



4.2 Data Encapsulation Scheme 31

output(s) will be responsible for doing the actual rendering work from frame to frame and (usually) write
the output to the file system in some format.

To cope with the large variety of visualizations and outputspossible within our encapsulation we require
both a visualization and an output to define their ’type’, butthese types have very different meanings. The
supported visualization types were already listed in Section 2.3.3.

Visualization type The type of visualization defines the shape of the visualization before rendering. After
rendering it will be an image, like a screenshot, but before rendering it might for example be a 3D
view, a plane reconstruction or just an image.

Output type The output type defines how the result of the visualization will be stored on the server. For
example we can choose to render and save it to a lossless PNG image or to a heavily compressed
JPEG image, a polygonal model, etc. Note that multiple outputs may be defined for a visualization,
leaving it up to the user (actually the client application) to make a decision between them. We will
show an example of this in Section 4.5.4.

In fact both types are irrelevant for the middleware but theyare relevant for client applications: the
visualization type implicitly defines the interaction thatis possible with the visualization, where the output
type defines what the client must do in order to successfully draw the visualization output to the client
screen.

4.2.2.3 Building a Visualization Pipeline

We now defined all building blocks for our data structure, butlack the final step needed to setup a complete
visualization pipeline in ParaView. As mentioned earlier in Section 3.4 we have introduced an intermediate
layer of Python between our middleware application and the ParaView server. In order to construct a
complete pipeline we need three pieces of information:

1. The modality to be visualized (usually chosen by the user)

2. The visualization required (usually chosen by the user)

3. The output of the visualization (usually chosen by the client application)

Each of the pieces of information above defines a snippet of Python code to carry out the work, as we
explained in Section 3.5.3. In our intermediate layer of Python we assemble pipelines from the pieces by
executing the Python snippets in-order. A crucial detail inthe implementation is that we make sure that the
running context (or the ’scope’) of these pieces is maintained among all the snippets during the lifetime of
the pipeline. By running all snippets inside the same scope we can make sure that each of the snippets will
have access to objects (parameters, functions, etc) instantiated or altered in any of the previously executed
snippets. The process is depicted in Figure 4.3.

Visualization 

Snippet

Modality 

Snippet

Output

Snippet

Initialization Initial Render

Re-Render

Figure 4.3: The consecutive steps of the pipeline when assembled from the three pipeline objects that we
have defined earlier. Loading of data is done in the modality snippet, visualization setup in the visualization
snippet, rendering (and frame-to-frame changes) in the output snippet.
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4.3 Resource Sharing

4.3.1 ParaView Processes

In order to successfully manage server resources it is important to know, in slightly more detail, how
ParaView works under the hood when requested to run in parallel. We mentioned earlier that ParaView is
started by running the pvbatch or pvpython executables in anMPI environment (and MPI is responsible
for starting the actual ParaView processes in a distributedway across the servers). This distribution of
processes can be controlled by the person or process starting ParaView. MPI needs two things in order to
start the processes: a parameter specifying the number of nodes needed, and the location of a so-called
’machinefile’. In this file a list of the available machines and the number of nodes allowed to run on each
of them can be specified. What MPI does next is iterate through the specified machines in the machinefile
and start the requested number of nodes.

All the processes started know their ID in the chain of cooperating nodes (in MPI terms: the ’ring’).
In Chapter 3 (Figure 3.2) we already showed the sitation in a diagram and made a distinction between the
so-called ’Node0’ and the remaining nodes. It is essential for the understanding of this section to know
the difference between Node0 (basically the master process) and the other nodes. There are many tasks for
which this process is responsible, but the following are most relevant:

• The middleware communicates with ParaView through this node.

• All nodes exchange data (for example for results) with the master node.

• Both reading and writing of data is done by the master node, and filesystem actions in the pipeline
are therefore always local to that node.

• In case a ParaView reader is not capable of parallel reading this node might be used to distribute the
data.

Some logical consequences follow from this list of properties. First of all, it is important to note that
each machine in the cluster might be running the master node2. Results of a job are usually stored on disk
and the framework should be able to access these results to beable to send them back to the client. This
means that each server should be able to access a shared location for storage.

In certain situations it may be beneficial to distribute master nodes evenly across the cluster. Consider
a situation where it is common to run visualizations that require a lot of I/O activity from harddisks (large
datasets stored in raw file formats, for example). In this situation it makes sense to duplicate the data to
each machine and have the master nodes distributed evenly accross the machines. As each Node0 will have
access to a locally stored copy of the data the total data throughput can increase.

Each of the machines in the cluster will be inter-connected by some kind of network technology. Bottle-
necks in a network are common for data-intensive visualizations, but knowing that all nodes exchange data
with the master node could help us prevent these bottlenecks. The idea is that, when you are distributing
processes, you could try to keep as many processes as possible local to (i.e. on the same machine as) the
master node. Each of these local processes can communicate without a network, effectively minimizing
the amount of data transferred over (limited) network connections.

4.3.2 Distribution Strategies

The previous section contains some remarks that can actually be seen as recommendations and for our
framework we tried to wrap recommendations like these into distribution strategies. These strategies are
implemented as objects containing the logic to specify for each worker how many ParaView processes it
is allowed to start and where to start these processes. Although the framework can easily be extended to
include more strategies we have currently implemented two strategies: a Simple strategy and a Locality
strategy.

2It is possible to force the master node to a certain machine, by making sure that the first entry in the machinefile always points
to that machine, however, this scales badly because any session in the framework will have at least one ParaView process running on
this machine
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Simple Strategy The Simple strategy is a default strategy in which the administrator of a framework can
control most of the distribution properties. In its configuration you can define how many ParaView
nodes are allowed to start in total and also how many are allowed per session. The configuration also
specifies the location of the MPI machinefile, and the administrator can predefine which machines
are available and the number of slots available on these machines. Because the machinefile is fixed,
the Simple strategy cannot prescribe where the processes are started, but it will prescribe how many
processes are started. This number always obeys the following set of rules:

• Assign the number of nodes requested by the user (not mandatory) or otherwise half of all
ParaView nodes available.

• Never allow more than the maximum number of nodes per session.

• Never allow to leave less nodes available than there are idleworkers.

Locality Strategy The Locality strategy was created with the idea in mind that it may be more efficient to
keep nodes local to the master node. This strategy is more advanced as the Simple strategy for several
reasons. The strategy can be made aware of which machines arecapable of running ParaView, how
many (physical) cores are available for each of them, and of avalue of preference for each machine.
With this information, and the fact that the strategy keeps arecord of running processes the following
behavior is obtained:

• In case the user requested a certain number of threads find allservers that have at least this
number available, otherwise pick the server(s) with the most available threads and assign this
number. Still obey the second and third rules of the strategyabove.

• If multiple machines are left as candidates choose the machine with the lowest ’overbook’ ratio
(i.e. the lowest ratio between running processes and physically available cores).

• If still there are multiple candidates choose the server with the highest preference value (which
is usually the server that has the fastest processor cores).

4.4 User Management and Object Authorization

Datasets can be very expensive and they can be the subject of on-going research and may therefore not be
freely available to the public. For those reasons it is important to have some way of specifying who may
or may not use the services provided by our framework. Two levels of control were implemented for our
project, with the first level being user verification. At logon each user can be asked to supply a username
and password, which will be verified against the server. After successful authorization, the server will
check if the maximum number of sessions (visualization views) or instances (client applications running)
for this user has not been reached yet.

On a second level, a more advanced authorization scheme based on ACLs or Access Control Lists was
implemented for the framework. With ACLs the framework administrator will have fine-grained control
over the visibility of certain objects in the framework. Objects in this case are relevant elements of the data
encapsulation structure explained earlier in Section 4.2.ACLs are always linked to groups, not to users.
Users can be in one or more groups, and groups themselves can be in one or more other groups, where the
’Global’ group is a predefined group that is the parent of all other groups, either directly or indirectly.

For the framework several so-called privileges can be defined, but currently only one privilege was
implemented: the ’select’ privilege. Examples of additional privileges could be a ’modify’ privilege if
functionality would be added to support altering information on database objects, or an ’annotate’ privilege
if support for client-side image-annotating would be added. Note that adding privileges will always require
changes to the code of the framework, while adding ACLs will not.

Each ACL can contain zero or more privileges, and for each combination of ACL-and-privilege multiple
groups can be added. To clarify the general idea we provide anexample. For a given system, two groups
are defined, ’researchgroup1’ and ’researchgroup2’, that each have a dataset available in the framework.
For our example, the first group should be allowed to access both datasets, where the second group will
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only be allowed to access their own dataset. To enforce this restriction, a system administrator should add
an ACL (say ResearchDatasetACL), and add the privilege ’select’ to the ACL. For this combination of
ResearchDatasetACL with the ’select’ privilege we add one group: the ’research1’ group. The last step is
to connect the newly created ACL to the ’dataset’ object of the ’researchgroup1’ group.

From that moment on, only the ’researchgroup1’ group will have the ’select’ privilege on the dataset
object for this group, where the dataset object for the othergroup has no ACL enforced, and will be
accessible by both groups in the system. Note that, without an ACL, all groups in the system would be
able to access the dataset of the ’researchgroup2’ group, including other groups besides the two groups
mentioned. It would certainly make sense to add another ACL to the second dataset, allowing only the two
research groups to access it.

The current framework implementation enforces ACLs on three of the data objects mentioned earlier:
datasets, modalities and visualizations. For the output object it does not seem to be useful at this time to
restrict access for clients based on ACLs.

4.5 Additional Functionality

In the development of our framework we addressed many different issues, but some of these issues are not
related to just the server components or just the client component. In this section we report on topics that
do not fit in any of the previous sections of this thesis but which are important implementational aspects of
our framework and which we consider essential for a discussion of our project.

4.5.1 A Full-duplex Web Service: Semi-polling

A web service using Remote Procedure Calls (RPC’s) will always exchange messages as question-and-
answer. Because of network-issues such as firewalls and NAT (Network Address Translation) protocols
requests are always initiated by the client and each requestcan only be followed by a single response (as
opposed to either a full-duplex connection, where both parties can communicate at the same time, or even
a half-duplex connection, where only one of the two parties in a conversation can communicate at the same
time but still both ways). This pattern of communication, which is characteristic for web services, has
some obvious drawbacks and is most apparent in our case when the server needs to signal the client that
a job has finished. Some jobs may take a long time to finish and itmay also be possible that clients want
to submit a batch of jobs. For these reasons the framework needs to be asynchronous: the client submits a
request and the server will not respond with the result of thejob but rather with a message that the job was
successfully received.

Because only the client can initiate communication with theserver the concept of ’polling’ is required
to provide the client with information on outstanding jobs.The idea of polling is that a request will be sent
to the server on which the server may respond with the latest status of the job(s). In our framework we
approached the issue by implementing semi-polling. The difference is that the server will block a response
to the client for as long as possible until either the requesthas timed out or the job status has actually
changed. This is an efficient way of exchanging the required information with low response times (a
blocking request will immediately unblock when new information is available) and low amounts of traffic.

Recall that we defined a client instance as the collection of all sessions belonging to a single client ap-
plication (in Section 3.5.2). With this definition in mind wetried to further reduce the number of messages
exchanged between clients and server. Instead of requiringa (semi-)polling thread for each of the clients’
sessions in an instance a single request to the server will block until either the request times out or until any
of the sessions in the instance have changed status. This wayeach client application will require only one
polling thread to collect status updates for each of the sessions within that application.

4.5.2 Visualization Annotations

Most definitions of ’annotation’ describe an annotation as anote or remark added to some document at some
location (see [23] for example). In visualization an annotation is usually represented as a label (with some
color and size for example) on an object, which is used to provide additional information about the object.



4.5 Additional Functionality 35

In a framework capable of 3D visualizations we think an annotation should be more than just a label and we
came up with a solution which nicely integrates annotationsinto our encapsulation model, by considering
annotations to be modalities of a dataset. This solution hasseveral advantages: annotations can now be
arbitrary objects (text, images, 3D polygonal models, etc)and they can be connected to visualizations, just
like ’regular’ modalities.

In the discussion of our encapsulation scheme above we mentioned that two modalities can be aligned
to each other in our relational database model. To support annotations the middleware is capable of adding
the (data of) aligned modalities to the Python scope of a visualization pipeline. This means that any
visualization of a modality that has modalities aligned to it can use the data of the aligned modalities to
add annotations to the visualization.

Consider the following example. In a certain situation there are two data objects available, a histological
volume of a human orbit, and a polygonal model of the optic nerve within the same volume. We would like
to create a visualization which extracts arbitrary planes from the volume on which the outlines are drawn
of the intersection of the plane with the optic nerve. In order to create this visualization we would add the
two data objects as modalities to a dataset and in the database model we specify that the polygonal model
is aligned to the volume modality. Finally we add a visualization for the volume modality, which extracts
a plane from the volume and cuts the polygonal model with the same plane, after which the output of both
the extraction and the cut is rendered into a single scene.

4.5.3 Linked Views and Synchronization

In Chapter 2 we described client functionality to support the concept of linked views for comparative
purposes, but until now we did not define any of the prerequisites of linking two views. In this sense the
term ’view’ will refer to a complete visualization pipeline, so basically it will refer to the window a user
will see in the client application when starting a visualization on a modality.

We will not restrict linking of two or more views on the basis of having equal modality, visualization
or output. We chose to define the compatibility of two views for linking differently. Each object in the
encapsulation scheme has an associated set of parameters which are used to control the visualization.
For any of these parameters it can be specified whether or not they are essential for synchronization. To
decide whether or not two visualization pipelines can be linked we make two subsets of parameters that are
required for synchronization, one for each pipeline. Finally we check whether the lists contain the same
parameters and if they do the views are considered synchronizable.

An example could be that for two views (say A and B), both showing volume rendering visualizations,
the camera’s need to be synchronized to make sure that the twoare always viewed from the same eye-point.
For this example it will be sufficient to mark all camera parameters for both visualizations as being required
for synchronization, after which it is possible to link either view A to view B (thus B becomes the primary
view) or view B to view A (A becomes the primary view). After linking any movement to the camera in
the primary view will be propagated to the secondary view to ensure that both visualizations are always
viewed from the same eye-point.

4.5.4 Zoomify Support

A technique called ’Zoomify’, work of Zoomify Inc.3, was originally developed for interactive browsing of
large images on websites. In our section on the supported data types in the client application (Section 2.3.2)
we explained that Zoomify images are basically pyramids of tiles of the original image, where each layer
(or ’tier’) in the pyramid is in a different resolution. The bottom layer of the pyramid contains tiles (all
tiles have a predefined size, by default 256x256 pixels) of the image in the original resolution, while the
top layer is made up of just a single tile with a low-resolution version of the original image. Advantages of
this technique over full-resolution images are that we do not need to transfer the entire image before we see
our result and that we can prioritize fetching certain tilesof the image to allow the user to quickly zoom to
a certain area of the image if needed. More technical information on the Zoomify technique can be found
at the Zoomify website, but also in [1].

3http://www.zoomify.com

http://www.zoomify.com
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The support for Zoomify requires implementation on both theclient and the server side. The server
side needs to be capable of ’zoomifying’ the result of the visualization, where the client needs to be able
to fetch and reconstruct the tiles into a single image. Implementation of Zoomify on the server-side was
easy because of the availability of an open-source Python library4 to convert regular images into Zoomify
pyramids. Because the pipeline objects are also in Python code, they can easily use the functionality of this
third-party library to convert the result of a ParaView visualization into a Zoomify image.

The client-side implementation required more work. In Object Oriented Design (OOD) terms we might
say that we implemented Zoomify image objects as an extension to regular image objects. This gives us
the advantage that every type of visualization (as explained, currently Image views, Plane views and 3D
Views are available) that is using image data will also be able to use Zoomify image data. Currently all
visualization types use image data as input, which means that all visualizations currently supported are also
available with the Zoomify functionality automatically, without further implementational work.

At this point the advantage of being able to use multiple outputs per visualization object becomes
apparent. A system administrator could define two outputs for a given visualization, one output that results
in a (regular) image and one that results in a Zoomify image. Thin client applications that are not capable
of processing the Zoomify data can now select the regular image output, where more advanced client
applications can use the advantages of the Zoomify output.

4.5.5 Image Watermarking

Earlier in this thesis we mentioned that medical datasets can be expensive, either because of the exclusive-
ness of the data or because of the large amount of work invested to acquire and process the data. In [12] we
suggested techniques like fingerprinting and watermarkingto address the issue of protection. As a result
we added a basic visible watermarking algorithm5 capable of blending a watermark in tiles into the result
of a job. This algorithm was added to the intermediate Pythonlayer in which the pipelines will run which
makes the functionality available to all pipeline objects.The current implementation could certainly be
improved but an example is shown in Figure 4.4.

4.5.6 Lookmarking and Caching

For each job that is submitted to the system several pieces ofinformation (including references to job
results) are stored in a database and this is useful to allow users to retrieve job results on demand. However,
we have also used this information for two other purposes which we will describe in this section.

As explained, the term ’lookmarking’ is the visualization equivalent of the term ’bookmarking’. Our
framework supports saving the state of a visualization so a user can restore or share that visualization
at a later time. From an implementational point of view we need to store some information to support
lookmarking: the modality and the visualization that were chosen and the complete set of parameter values
for all pipeline objects at the time the lookmark was created. These three pieces of information provide
all that is necessary to start a new session and restore the old session state. Because we already stored the
required information in a database the implementation for support of lookmarking was straight-forward.

With the job information stored it is also possible to support caching. The idea behind caching of jobs
is that it can be beneficial to keep results available for sometime until a similar job is submitted. When
a similar job is submitted the result is already available without doing any work for the job. At first sight
lookmarking and caching do not seem related but in our implementation they are very much alike. The
similarity is that both lookmarking and caching require a job state to work. Lookmarking requires the state
to restore the session, caching needs the state to verify whether a similar job was submitted previously. The
difference between the two is that caching also needs to havethe job result available.

4.5.6.1 Absolute Parameters

Note that in certain cases it is not possible to restore the state of the session exactly, for example with
visualizations using temporal or temporary (internal) variables, visualizations of a running clock and visu-

4http://sourceforge.net/projects/zoomifyimage
5The algorithm is heavily based on code found athttp://code.activestate.com/recipes/362879/

http://sourceforge.net/projects/zoomifyimage
http://code.activestate.com/recipes/362879/
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Figure 4.4: An example of a 3D rendered polygon dataset usingten parallel ParaView threads (contribution
of each thread is colored differently). A tiled color-watermark containing the logo of Delft University of
Technology (TUDelft), and completely independent of the visualizations’ parameters, is blended into the
result.

alizations where the coloring of the visualization is basedon the contribution of processors to the rendering
process, to name a few. In these cases the job state does not capture enough information to be either re-
producible, in the case of lookmarking, or comparable, in the case of caching. To address this issue all
visualizations should use absolute parameters if possible. For example a situation of a visualization using a
camera. When a render from another point of view is required, new camera properties (azimuth, elevation,
etc) will be specified. However, when relative parameters would be allowed (i.e. ”Rotate the scene by -1
degree” instead of ”Rotate the scene to exactly 90 degrees”)it will never be possible to restore the session
correctly. Because currently it is not guaranteed that caching will return a correct result on each and every
occasion we chose to disable the caching functionality. More information can be found in the Future work
section of Chapter 6.



38 Framework Implementation



Chapter 5

Results

In this section we report on the results of quantitative measurements that we performed on a running
instance of our framework in an experimental setup. The maingoal of our tests was to assess the perfor-
mance and scaling capabilities of our framework. Due to the practically infinite number of tests possible,
we aimed to run tests that are appropriate for two specific scenarios which we already mentioned several
times throughout this thesis: a research- and classroom scenario.

5.1 Experimental Setup

5.1.1 Hardware

Because we did not have unlimited hardware resources we tried to set up a fairly representative environment
for our tests and therefore we prepared three machines for our tests. For the sake of comparison we describe
the machines and their (important) hardware specifics below.

ParaViewServer1 The first node in our ParaView ’cluster’ was dedicated for ParaView visualizations
and contained an Intel Core 2 Quad Q8300 processor running at2.50GHz (4987.41 bogomips)
with 2GB of DDR2-800 memory, using a Western Digital Velociraptor 80GB SATA2 harddrive (a
WD800HLFS) as system disk, which was benchmarked at 117.82 MB/second with ’hdparm’, a tool
included in most Linux distributions.

ParaViewServer2 The second ParaView node was also dedicated for ParaView jobs and this machine con-
tained an Intel Core 2 Duo E4400 processor running at 2.66Ghz(5311.26 bogomips), also with 2GB
of DDR2-800 memory, and using a Western Digital 500GB SATA2 harddrive (a WDC WD2500KS-
00M) as its system disk, benchmarked at 63.54 MB/second.

FrameworkServer The machine processing client requests was running inside VMWare 1 as a virtual
machine2. The host runs on a dual-core Intel E6850 processor at 3.0Ghzwith 2GB of memory. The
virtual environment was set up with a system disk of 12GB, wasgiven 1GB of memory and was
allowed access to both of the host’s processors.

All three machines were connected by a 1Gbit network for all tests, except for those tests that were run
to measure the influence of the network connection on using multiple cooperating threads spreaded across
multiple machines.

Although a separate FrameworkServer is not strictly necessary in order to run our tests, the additional
load of running the framework software on either of the othermachines might influence the test results
and therefore a separate machine was installed. Although itis less efficient to run an operating system in
a virtual environment opposed to running one in a native, physical environment, the solution seemed more
than adequate for our tests as the FrameworkServer hardly ever reached 50% load on either of its two cores.

1:http://www.vmware.com
2Virtual machines are machines emulated within other machines, to allow running a different operating systems inside some host

operating system
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Dataset Acquisition Voxels Volume Size

’medium’ Section-images reduced to 10%; 301×196×205 42.9 MB
Only 10% of sections kept;
Converted to single volume file

’large’ Section-images reduced to 10%; 301×196×2052 413.5 MB
All sections available;
Converted to single volume file

Table 5.1: An overview of the datasets used for our tests.

5.1.2 Software

All three systems were installed with a fresh copy of the Linux distribution Ubuntu, version 9.04 (the
latest version publicly available), including all software packages needed for compiling software from
sourcecode. In addition to the default Ubuntu installationthe following (system) packages were installed:

• Java (1.6.00), installed from the Ubuntu repositories and needed for Tomcat.

• MySQL (5.0.75), installed to support the database schemes needed for the framework.

• Python 2.6, including development components and the Python SOAP and Python Imaging library,
are needed for running and compiling ParaView with Python support.

• NFS (Network File System), used to provide a central storageof shared framework components and
for storage of render results.

In addition to the packages mentioned above we needed several framework-specific packages:

• Tomcat (6.0.16), does not require installation and was copied to the local filesystem.

• MPICH2 (1.1.1p1)3, an MPI library needed for ParaView inter-process communication.

• Mesa (7.0.2)4, an open-source implementation of the OpenGL specification. For our framework
we have specifically used the OffScreen Mesa (OSMesa) implementation, to remove the need for a
desktop window system (the X-window system in case of Linux)to be active. ParaView is natively
capable of switching to OSMesa when offscreen-rendering isrequested.

• ParaView (3.4.0), built from source (including some of our source code changes) and configured to
build using the libraries specified above.

5.1.3 Various

For our tests, we used two histological volumes which we refer to as the ’medium’ and ’large’ dataset.
These datasets were both downscaled versions of the LUMC pelvic dataset, see Table 5.1 for more infor-
mation.

For all tests performed the results were timed with millisecond precision. Because the times measured
in our experiments were usually over 100ms and certainly notsub-millisecond it seemed reasonable to use
this precision.

We created a small application which is able to mimic the behavior of a regular client (i.e. the reference
client application). The functionality of the applicationis limited to submitting jobs and receiving results
from the server. The test application does not actually fetch result-data from the server or display data on
the client screen. In the tool we included parameters for several things:

3MPICH project page can be found at http://www.mcs.anl.gov/research/projects/mpich2/
4Mesa project page can be found at http://www.mesa3d.org/
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• The number of sessions

• The number of ParaView threads per session

• The number of jobs per session

• The number of times each test should be repeated (we have usedthe value five as default for all tests)

• The modality

• The visualization

In the experiments described below, where necessary, we will mention which values were used for
which tests. For our tests we predefined two modalities, one for each dataset mentioned above. We also
predefined a visualization, which is a default volume visualization without transfer function, with each
iteration rotating the scene by one degree. In a usual framework visualization pipeline some functionality
will be defined to save the output to the filesystem. However, to compare results when increasing the output
resolution, we left this part out of the pipeline because saving image data involves significant overhead
(relative to the output resolution). Although this overhead exists in practice it will needlessly interfere with
our results and was therefore omitted.

For each job completed on the server we have access to three timestamps: the time of the submit, the
start time (the time of pick-up by a worker) and the end time (the time at which a job is either finished or
failed). Two important metrics from the results of the test application will often be shown in the figures
below: the pipeline initialization times, which is the difference between submit- and start-time of the first
job, and the job work time, which is calculated by substracting the job start-time from its end-time. See
Figure 5.1 for an example of the sequence of events in a session for which two jobs are submitted and it
shows the appropriate time differences measured in this chapter.

Job 2 Work TimeJob 1 Work TimePipeline Initialization Time

Session Start Session EndSubmit Job 2 End Job 2

Start Job 2

Submit 

Job 1 Start Job 1 End Job 1

Figure 5.1: For each job we calculate three timestamps: the time of submit, start and end of the job. Pipeline
initialization is performed directly after the first job is received, therefore the ’pipeline initialization time’ is
the difference between submit- and start-time of the first job. The ’job work time’ is the difference between
the job start-time and job end-time, for our tests job work times will be averaged over all jobs in the session.

5.2 Testing Terminology

Before we start describing our tests and results it is essential to explain some of the terminology needed
for a correct interpretation of the tests. We refer back to Figure 3.2 and Figure 3.5 where we illustrated the
relations between visualizations and sessions, and between sessions and workers. For each visualization
started by a user one session is created which will be served by one worker in the middleware. This worker
will in turn start one or more ParaView nodes to do the visualization. The following terms will be used
frequently in the remaining part of this chapter:
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core When we refer to ’cores’ we mean physical processor cores. Thenumber of physical cores is the
measure for the number of tasks a processor can perform in parallel, without resorting to switching
from process to process to mimic multi-tasking.

server, machine The term ’server’ or ’machine’ is used whenever we refer to aninstance of an operating
system that will be running processes, and as explained above, these instances may either be physical
(the two ParaViewServers) or virtual (the FrameworkMachine).

client thread, session A ’client thread’ represents one session from one user. A session uniquely defines
a modality and a visualization on that modality. For example, when the reference client application
is used, each visualization window for each user will resultin a separate session on the server.

job Each job is used for one frame, or render, of a visualization and jobs are always started within a given
session.

node, ParaView thread The middleware decides how many ’ParaView threads’ are started for a given
session. ParaView itself calls the ParaView thread a ’node’, and when doing parallel processing it
basically separates cooperating nodes in two categories: node 0 (a master node) and node 1-to-n
(satellite nodes). Each of those nodes is a single process running on any of the ParaView machines
available to the framework.

Strategies: ’1-1’, ’2-1’, ’4-2’, etc. In several cases we were interested in the effect of distributing process-
ing nodes around the servers in different ways. We will occasionally refer to these distributions with
short notations in ’x-y’ form and the idea behind this is as follows. The ’x’ stands for the number
of consecutive processes on ParaViewServer1, the ’y’ stands for the same on ParaViewServer2. If a
certain number of nodes (> 1) is selected for a single job, the distribution will followthe strategy
specified. For example, if we would like to run a job on six parallel paraview nodes and we choose
a ’2-1’ strategy, the nodes will be distributed as follows: ParaViewServer1 will get (node0, node1,
node3, node4) and ParaViewServer2 will get (node2, node 5).Accordingly, a ’1-1’ strategy will
equally distribute the nodes over the machines and a ’0-1’ strategy will only run nodes on the second
server.

As explained earlier, we performed tests based on a research- and a classroom scenario. As there are
some major differences between these situations we need different kinds of tests and therefore it seemed
useful to go for this two-scenario approach. For a research environment we expect that users will not
request many visualizations of a certain modality, but theymight have more concurrent sessions running
for comparative goals. Besides using more datasets, they will probably also more often switch between
them.

In a classroom scenario we do not expect that many dataset switches, but we certainly expect many
concurrent client sessions doing many visualizations on a dataset that is to be the subject of a particular
course for example.

The former scenario will likely benefit from parallel loading and processing of the different datasets,
as users in this scenario come equally spread in time. For thelatter scenario we are more interested in
scaling of the job processing times when more clients accessthe server simultaneously. Also, the number
of parallel processes will have to be restrained because these processes can easily flood the servers in
several ways (at least for memory-accesses and I/O operations on harddrives), when there are many users
doing visualizations at the same time.

5.3 Preliminary Tests

We first carried out some preliminary tests to quantify general properties of the framework and its under-
lying visualization system. We also use the results of thesetests to determine some of the boundaries and
parameters of later tests.
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5.3.1 Caching Test

Most of the tests we did involved submitting a series of jobs for a session and calculating the average time
needed to complete a job. We needed to find a safe boundary for the number of jobs to start per session. Too
few will result in a large variance in the results because of possible caching effects when starting ParaView
processes, too many jobs is not useful because that will not contribute to the results.

To test the behavior of running series of jobs we ran a test with a single client which will increase the
number of jobs submitted per session. We did this test on the medium dataset, and used only one ParaView
thread for the sessions. The goal was to find out at which number of jobs per session the average job time
would not significantly change anymore.
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Figure 5.2: Job times when increasing the number of successive jobs per session.

The results showed that there are no clearly visible effectsof caching. After two or three jobs per
session for the same visualization the times were rather constant. With a total of 30 jobs per session the
average was 488 ms with a standard deviation of less than 13 ms. With these results in mind we considered
it to be safe to use 20 jobs per session in the following tests to get an appropriate average value for our
measurements.

5.3.2 Network Interconnection Test

As mentioned earlier ParaView uses a message-passing library (MPI) to exchange data between cooperating
nodes in a visualization. In earlier test setups we used a Fast Ethernet (100Mbit) network to connect the
ParaView machines. However, we were interested in testing the influence of the underlying network on the
performance of cooperating threads, mainly to prevent a network bottleneck to act as a confounding factor
in our tests. A small test showed us that this connection is actually extremely important. For the test we
(software-)limited the speed of the network card of one of the ParaView machines to 10Mbit, 100Mbit and
1000Mbit respectively (the latter being the actual limit ofthe network cards in our cluster). We used the
medium dataset, set a default output resolution of 1024x1024 pixels and used a ’2-1’ distribution strategy.
Finally, we had the number of cooperating ParaView threads increase from 1 to 12. The actual distribution
is not really important for the outcome of the test but with the ’2-1’ strategy we should notice network
bottlenecks after every third thread that will get added. Measurements of the pipeline initialization time for
each of the network speeds and for each number of cooperatingthreads is shown in Figure 5.3.

When a pipeline is initialized all data for the visualizationis loaded into memory and distributed among
all cooperating nodes. This distribution is managed by the master node and any node that is on a distant
machine will require transfer of data over the network to that machine. When two distant nodes are coop-
erating in the same visualization we expect that data is transferred to both nodes over the same network
connection at the same time.
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Figure 5.3: Test results showing pipeline initialization time with increasing ParaView threads at different
network speeds (the last two runs of the test at 10mbit did notfinish in less than 10 minutes and were
therefore omitted).

The figure clearly shows that with 10mbit connections even a single node on a distant machine (i.e.
distant from node0) will heavily degrade the performance ofthe system which means that the network
connection is slower than the data distribution process. The 100mbit connection performs much better,
until a second distant node is requested, requiring data to two nodes to be transferred over the network. At
the highest speed the influence is not really visible, but note that our test setup only used two machines.

These test results have forced us to make sure that the machines in our test setup were connected at
1000Mbit. In fact, when a larger cluster is used in practice,it is advisable to connect the machines at even
higher speeds, using technologies like Fibre Channel5 (available at speeds up to 20Gbits), to minimize
inter-machine latency and bottlenecks in network throughput.

5.3.3 Output Resolution Parameter Test

During early tests we obtained some odd results in tests where the number of cooperating ParaView threads
was gradually increased, starting at a single thread. Although the time required for pipeline initialization
dropped when adding more nodes, the render time would often be increased when using two or more nodes
(compared to using only a single node). After verifying possible causes of this behavior we found that
the resolution of the output is an important factor in the process. To see whether the output resolution is
of influence to the results we performed the following test. For both the medium and the large volume
we ran the default visualization, while increasing both thenumber of cooperating threads and the output
resolution. For the resolution we started at 256x256 pixelsand increased the resolution in four steps, up to
2048x2048 pixels (note that this means that the output of each next iteration contains four times the number
of pixels). A ’2-1’ distribution pattern was used in the tests. The results are shown below.

We see from Figure 5.4(a) and Figure 5.4(c) that the initialization times for both datasets decrease
when adding (a limited number of) nodes, although the decrease is more prominently visible with the
larger dataset. We examine this behavior in more detail later, but for this test we can say that the pipeline
initialization is not related to resolution output (which means that an equal amount of data is loaded,
regardless of the visualization and its output resolution).

Another conclusion can be drawn from the results which is waymore important and relevant for the
current test. The only case for which the output resolution was of significant importance was the single-
node case. For both datasets for the lowest two resolutions asingle node had a lower ’working time’ than
any other combination of nodes. However, when the resolution was increased a very different behavior

5http://www.fibrechannel.org/
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(a) Pipeline initialization times for the medium dataset.
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(b) Job work times for the medium dataset.
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(c) Pipeline initialization times for the large dataset.
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(d) Job work times the large dataset.

Figure 5.4: Pipeline initialization (left) and job work times (right) for all resolutions.

appeared. The working time for the single-node pipelines scaled almost exponentially with resolution.
When two or more nodes were involved in the visualization the resolution did not really seem to affect the
times. Very likely, although not completely certain, this behavior was the result of a choice of ParaView
for sort-first or sort-last volume rendering. Sort-first andsort-last rendering are choices for a system to
distribute work among multiple processes. With sort-first rendering, the screen space is divided and each
process contributes only to a certain screen area. With sort-last rendering the rendered objects are divided
and the result is composited to a single output (see [12] and [18] for a discussion on sort-first and sort-last
schemes for distributed rendering).

In short the conclusions of the results were as follows. For acombination of low resolutions and small-
to-moderately-sized datasets a single node may in fact be the best solution. However, for most datasets
combined with higher resolutions, both the lower initialization- and lower rendering times obtained by
using more nodes will be an improvement. For the remaining tests we used a resolution of 1024x1024
pixels as default because compared to the other three resolutions the 1024x1024 resolution is the most
appropriate choice considering the currently common screen resolutions for client workstations.
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5.4 Classroom Scenario: Many Concurrent Clients

With the first scenario test in our test-set we tried to illustrate the behavior that is to be expected when
the system is stress-tested using many concurrent client requests, like in a classroom with many students
working at the same time.

The initialization part of the pipeline can be rather time-consuming as this part is dominated by data-
loading and preprocessing. As the first part of this test, we were interested in the pipeline initialization
times when increasing the number of concurrent clients.

Besides the initialization time we are also interested in the average job time once the pipeline initial-
ization has finished, which we will examine in the second partof this test.

Note that this test was actually close to a worst-case scenario as each of the client threads submitted
jobs without delay, while a real user would probably inspectintermediary results before requesting a new
render. However, we did not ’cheat’ by submitting the jobs ina batch, but rather submitted a new job only
after a previous job had finished, like in a real-life scenario.

5.4.1 Test Parameters

The parameter values for the test are mentioned below. We selected the medium dataset as subject for
this test, as the large dataset would exhaust memory quite quickly, thereby reducing the number of tests
possible. In this test we used the Locality strategy becausethe simplistic strategies we used earlier (’1-1’,
’4-2’, etc) have no memory and are therefore only applicablefor distributing ParaView threads (which was
perfectly fine for the tests above).

We explained the Locality strategy earlier in Section 4.3.2. In short the idea of the strategy is to assign
server resources in such a way that multiple ParaView nodes will always be placed on a single machine
(hence the term ’locality’) and that processes are divided equally among the servers (where ’equal’ means
that the ratio between the number of physical cores and processes is similar for all servers).

• Dataset(s): medium

• Client thread(s): 1-40

• ParaView thread(s) per session: 1

• Jobs per session: 20

• Strategy: Locality strategy

5.4.2 Results

We started with a comparison of pipeline initialization times, using the three possible server combinations:
the quad core, the dual core, and both machines combined. Theresults are shown in Figure 5.5. To be able
to see in more detail what happens when the number of physicalcores is exceeded we also provided two
additional figures which can be found in Figure 5.6(a) and Figure 5.6(b).

From the test results we can draw several conclusions. From Figure 5.6(a) we can see that the initial-
ization process was rather limited by the processor. If the initialization process was limited by disk I/O it
is likely that we would have seen an increase in initialization times even when a second concurrent client
would start using the system. However we should not directlygeneralize the fact that pipeline initialization
times are constant as long as the number of parallel clients is below the number of physical cores. Because
many different kinds of readers or preprocessing steps can be configured, results may be different.

What can be seen is that the strategy implemented in the middleware successfully distributed the clients
over the available processor cores when possible, maintaining the ratio between the number of processes
and the number of physical cores of the machines. In the test run where both servers were available to
the cluster the initialization times remained (almost) constant until the number of clients equals the (total)
number of physical processor cores. Another interesting property can be deduced from Figure 5.6(b) where
the number of concurrent clients was greater-or-equal thanthe number of cores. Three linear trends were
drawn over the results, along with their line equations and an additional value (R2) showing the relative
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Figure 5.5: The initialization times for all three server combinations for the concurrencies for which we
were able to get test results without errors due to timeouts.

error of the trend-line. The figure clearly shows that initialization times scaled ’only’ linearly with the
number of clients when all processors were in use.

In the case of our medium dataset the amount of memory required by each visualization pipeline was
close to 130MB. Simple mathematics show that a machine equipped with 2GB of main memory will be
capable of running approximately 16 of these pipelines simultaneously. After main memory has been
used up, the operating system will start moving data and programs from memory to disk (a process called
’swapping’) to free up memory for running processes. The overhead caused by swapping adversely affects
the performance of the system and the result of this can be clearly seen in Figure 5.5 at the point where
approximately 18 client threads are running concurrently.Again, the result of adding a server was very
noticable: adding a second server with the same amount of memory will effectively double the total system
memory, theoretically allowing twice as many client processes to fit in physical memory.

Finally, in Figure 5.7 one can see the job work times for the different configurations. At the beginning
the trend of the job work times were very similar to that of theinitialization times. Even when the initial-
ization times were getting heavily affected by swapping issues the job work times kept scaling linearly.

5.5 Research Scenario: Visualization Parallelization

As we wanted to provide insight into the behavior of parallelization in our framework (i.e. parallelization
within a visualization, in contrast to serving multiple clients in parallel as in the previous test) we performed
several tests to see what would happen when more cores and/ormore servers were added as cooperating
nodes to a single visualization. This is a likely situation for example when highly-detailed information is
to be made available to researchers. The datasets-to-work-with are expected to be larger but less clients are
using the system concurrently.

5.5.1 Test Parameters

To show the effects of parallelization we limited the test toa single client running a single visualization job
to give each job the full potential of the hardware. In addition to performing tests with increasing numbers
of cooperating nodes, we were also interested in observing what happened when we used different node
distribution strategies (to find out if there is a noticable difference between the ’4-2’ and ’2-1’ strategy).
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Figure 5.6: Pipeline initialization times for all the server combinations, with increasing numbers of con-
current clients.

Finally, we did our tests on both the medium and the large dataset to see whether any conclusions are
generally applicable for different data sizes.

• Dataset(s): medium, large

• Client thread(s): 1

• ParaView thread(s): 1-12

• Jobs per session: 20

• Strategy: Simple strategy (’4-2’, ’2-1’)

5.5.2 Results

After running all tests and comparing the results we noticedthere is hardly any difference between the
’4-2’ and the ’2-1’ strategies. The only noticable differences occured at pipeline initialization times where
the ’4-2’ strategy shows a steeper descent than the ’2-1’ strategy, when increasing up to 5 ParaView nodes
(at six cooperating nodes the two strategies only differ approximately 100ms which is not visible from the
diagrams). Because of this indifference we only show results for the ’2-1’ strategy.

In Figure 5.8(a) and Figure 5.8(b) the results are shown for the medium dataset. Clearly visible is
that pipeline initialization became significantly lower when adding ParaView nodes. At approximately five
cooperating nodes a minimum was reached which is close to thenumber of physical cores available in
our setup of the framework. With the job work times we observed the same behavior. Note that the large
decrease in time from one to two nodes is a result of the same effect as discussed earlier in the resolution
test. Although the work times also kept decreasing up to five parallel threads it can be argued whether the
larger number of threads can be justified for a dataset of thissize.

For the large dataset the results (Figure 5.9(a) and Figure 5.9(b)) were better, from our point of view.
To illustrate this we will consider the initialization times. For the medium dataset the initialization times
dropped from 4708 ms to 3186 ms when increasing from one to fivenodes: a decrease of approximately
32%. However, the times of the large dataset dropped from 33487 ms to 11748 ms when increasing to six
nodes, a decrease of almost 65%. For the large dataset the jobwork times decreased until six threads were
cooperating on the visualization.

For both datasets we can conclude that both the initialization and the work times increase rapidly when
more cooperating processes are used for a single visualization than there are physical cores available.
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Figure 5.7: Average job work times with increasing numbers of concurrent clients working on the medium
dataset, where each session uses a single ParaView thread.

5.6 Additional Tests

5.6.1 Memory Footprint

When rendering in parallel or distributed mode (i.e. using multiple nodes for each visualization pipeline)
we expect ParaView to divide data among the available nodes.When running multiple pipelines simulta-
neously (i.e. multiple clients using one node per client) wemay observe a slightly different behavior. To
gain some insight into memory usage in these situations we performed some tests on both the medium and
the large dataset. First we tested the memory load when increasing the number of clients requesting visu-
alizations where each client got a single ParaView thread. In the second test we used a single user while
increasing the number of nodes cooperating on a single visualization. Note that these two tests are almost
equal to the classroom scenario and the research scenario wediscussed above. The only difference is that
at the end of the visualization we took a snapshot of the running processes on both ParaView machines (we
took the snapshot using a well-known Unix-based process viewer tool called ’Top’).

Several memory-related metrics of the running processes can be obtained from the snapshots6. The
first idea was to use the total size of the memory image of all the processes (this value is called ’VIRT’,
short for ’Virtual Memory’). However, this value is rather system-dependent. For example, this includes a
portion of memory for the process, called ’SHR’, which is theamount of memory that is sharable (which is
not the same as ’shared’) among other processes running on the same machine. As it is difficult to measure
which part of this memory is actually resident in memory we decided to use another metric.

A more precise metric for comparison is the ’DATA’ metric which solely includes the amount of mem-
ory devoted to program data and -stack (the amount of memory needed for executable code is excluded
from this value).

In Figure 5.10 we combined the results for each of the datasets and for both tests in a single diagram.
It is clearly visible that in parallel rendering mode (i.e. an increasing number of nodes) the data was
distributed over the nodes, with an overhead of approximately 28 MB per additional node. If we compare
the results of the medium and large datasets for this same mode we see that the lines are exactly parallel
which leads us to the conclusion that the overhead is caused by ParaView (probably due to some additional
bookkeeping), and not related to the size of the dataset we were working on.

6For a list of fields in the output of Top seehttp://man-wiki.net/index.php/1:top

http://man-wiki.net/index.php/1:top
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Figure 5.8: Pipeline initialization and job work times withincreasing numbers of ParaView threads working
for a single client on the medium dataset.
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Figure 5.9: Increasing numbers of ParaView threads workingon the large dataset.

When considering the test with increasing numbers of clientswe can conclude that the memory foot-
print required scaled linearly with the size of the footprint of a single (master) process. In fact the results
of the test show that not only the ’DATA’ metric of the snapshot increased linearly but all other memory-
related values increased linearly.

5.6.1.1 Discussion

We can see from the test above that memory can be exhausted quite quickly when serving several clients
concurrently on large datasets. Also, in our results for theclassroom scenario test, specifically Figure 5.5,
we see that we can reasonably serve approximately 30 concurrent clients using the Locality strategy with
two servers. But from the same figure we see that both machinesare independently capable of serving
up to 18 clients at the same time. In an ideal situation we would expect the linear scaling to continue up
to the total number of clients the two servers are capable of serving independently, which would be 36.
The answer to the question why this values differ lies in the effect that swapping has on the performance,
combined with the fact that the Locality strategy tries to keep the best ratio between running processes
and available physical cores. Compared to the dual core the quad core machine will have twice as much
processes running and will exhaust its memory twice as fast (as both machines had the same amount of
memory).

Although the Locality strategy shows promising results in our tests, it seems that we may improve
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Figure 5.10: Total size of the ’DATA’ components for increasing numbers of ParaView processes.

on the results of the classroom scenario (i.e. improve the pipeline initialization times, probably not the
job work times, but that is difficult to predict). We could do this by creating a strategy which will not
mainly base its decisions on ratio between running processes and physical processor cores, but rather on
the amount of memory available on each of the machines. The best solution for this strategy would be
to pick the server that has most (non-virtual) memory available at the time of starting the processes, but
this requires the middleware to query the memory status of the available ParaView machines. An initial
solution could use the ratio between total memory availableon the machines: two servers with the same
amount of memory should be running the same number of processes.

5.7 Conclusions

From the results of the tests performed above we can concludethe following statements:

• Network interconnection speed is a major factor in the effectiveness of distributed rendering.

• With a given number (>1) of ParaView threads cooperating in a visualization the performance will
depend only on the amount of data and the combination of filters and rendering applied to the data,
it will not depend on the resolution of the output.

• In a classroom scenario (with many concurrent clients) it turns out to be useful to add hardware to
the system in order to serve more clients, as long as the clients are correctly distributed over the ma-
chines. Also, it is important to identify which distribution is most effective for a given combination
of hardware and visualizations. Our results show that when no bottlenecks are present visualization
pipelines hardly influence each other (no increase in initialization- or job times). Bottlenecks due
to limited processor resources turn out to make the system scale linearly, while memory limitation
bottlenecks make the system scale exponentially.

• In a research scenario (with many cooperating ParaView nodes per client session), it is also benefi-
cial to add hardware to a system and both initialization- andjob times will usually decrease when
increasing the number of cooperating nodes. Due to the largeamount of data that needs to be dis-
tributed among cooperating nodes it is useful to correctly motivate decisions for node distribution
strategies.
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Chapter 6

Conclusions and Future Work

In this thesis we reported on our project to create a framework for the remote 3D visualization of large
datasets. In the following section we draw conclusions fromour work and results and compare the final
outcome with our objectives. We also discuss topics that arecandidates for future work to this framework.

6.1 Conclusions

The framework we developed is designed around the concept ofacting as a web service, to support remote
visualization. We used SOAP (Simple Object Access Protocol) as message protocol for this service which
is well-supported in many programming languages. Because web services use regular network transport
mechanisms and are usually transparent to firewalls these service can be accessed by a user through any
network- or internet connection. Experiments showed that our web service can be accessed from a local
network as well as over the internet without notable effort.

Instead of implementing the visualization algorithms fromscratch we chose to build our framework
on an existing and proven visualization framework called ParaView. ParaView itself is built on VTK (the
Visualization Toolkit) which includes numerous efficient and highly-optimized visualization algorithms.
ParaView in turn adds parallel and distributed rendering capabilities to the VTK functionality and both
VTK and ParaView are under active development.

To allow users to request visualizations, and to assign ParaView resources for those requests efficiently,
we developed a middleware component that is responsible forinterfacing client applications with ParaView
while hiding ParaView’s complexity from clients. In our project we investigated several options to establish
communication between our middleware and ParaView and we chose to use a ParaView-enabled Python
interpreter to do this. This Python interpreter is compiledagainst the ParaView framework and practically
all ParaView functionality is available through it. Because each instance of the interpreter runs in its own
process this solution creates a reliable solution for concurrently running pipelines: a problem to any specific
ParaView visualization (process) will be restrained to that process only and will not interfere with other
running visualizations. This solution was mentioned as thesecond contribution in our list of contributions
in the introduction chapter of this thesis.

We aimed to create a solution that would not be limited to one specific dataset only. In the list of our
contributions we mentioned our data management scheme which we dubbed a ’data encapsulation’ scheme
and which is modeled in a relational database. Our scheme allows comparative visualizations by allowing
different modalities of a dataset to be defined. We also argued that data and visualization should not be
seen as separate entities because the input to each visualization pipeline is determined by the data (of the
modality). As illustrated in this thesis we tried to maximize the amount of re-use in our scheme by splitting
the visualization pipeline into three steps, and, because our interface to ParaView is based on Python, it
was practical to require a Python snippet in our scheme for each of those pipeline steps. The elegance of
our solution is that the visualization routines appropriate for the available data are stored along with the
data in a relational database.

A crucial task of the middleware component is to assign server resources to clients. As there are several
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ways to assign these resources we proposed and implemented the concept of ’strategies’. A strategy in our
framework defines how many ParaView nodes will be started to cooperate in a visualization and how they
will distributed over the available hardware. Two specific strategies were implemented and evaluated in
Chapter 5: a Simple Strategy and a Locality Strategy (see theFuture Work in Section 6.2 below for a
proposal for an additional strategy).

For this project we also developed a reference client application, to enable use of our framework and
to showcase it. Based on the currently recognized target audience we chose to design the application with
a simple and intuitive interface. We purposely created the application in a flexible and extensible way
to allow modifications and additions to the client application when needed, for example by applying the
Model-View-Controller design pattern to ease the implementation of additional views. Note that, as a result
of using SOAP as protocol to access the web service, the reference application can be easily replaced with
a custom client implementation by anyone who wishes to do so.

In our description of our objectives for this project we mentioned that three visualization algorithms
were considered essential for our remote visualization project: Direct Volume Rendering (DVR), surface
extraction and rendering, and Multi-Planar Reconstruction (MPR). Because we used ParaView as basis for
our framework we are capable of providing an extensive collection of visualization algorithms to the user,
including those mentioned in our objectives.

In our objectives we also mentioned that we needed a scalablevisualization solution. From our results
in Chapter 5 (particularly the classroom- and research scenario tests) we can see that a suitable combination
of distribution strategy and multiple ParaView nodes (either concurrently or simultaneously) is effective in
allowing more clients to the system and reducing data loading times and rendering times.

We should also add some critical remarks to the scalability part of our results. Like we mentioned in
Section 3.3.2 ParaView currently does not support streaming (piece-wise processing of chunks of data) in
its visualizations and this is visible in some of the resultswe saw. In effect this means that we cannot handle
arbitrarily large datasets. However, the results show thatthe memory footprint of a visualization scales
constantly when adding more nodes to a single visualization. Therefore we could handle larger datasets by
distributing the visualization over multiple servers withno signifcant (memory) overhead. Because of this
property we can at least conclude that the total data requirement of a visualization is limited by the total
size of the available physical and virtual memory until streaming is supported (more on this in the next
section).

An open-source release of the source code of both the framework and the client application is expected
after this thesis so that the framework- and client softwarecan be used freely and that future work may
contribute to the current foundation.

6.2 Future Work

The scope of this project is broad and inherently there are many things we can suggest that may be improved
or added in the future. In this section we share our thoughts on future work on existing and new topics for
our framework.

Support for streaming is high on the list of things requiringattention. When the visualization com-
ponent gets the ability to process its data in chunks the sizeof the data for visualizations may become
practically unlimited without running into the swapping issues we have seen in Chapter 5. However, as
discussed earlier, recent progress in the development of ParaView shows that support for streaming is work
in progress. Therefore it is likely that the solution is as simple as sitting-and-waiting for an upgrade to
ParaView, which adds support for streaming to its extensivelist of features.

In Chapter 5 we discussed advantages and disadvantages of the Locality strategy we implemented. We
also stated that there is room for additional strategies that should base their distribution on other heuristics,
for example a strategy that distributes processes in such a way that the negative effects of swapping are
postponed for as long as possible.

Job results are stored in the database along with the visualization parameters used for the given job. It
is possible to cache these results and to try to match incoming jobs against the already cached jobs to see
whether we could skip the job and return the cached result instead. However, it is difficult to estimate the
number of cache ’hits’ that will occur because visualizations often use floating-point parameters, camera
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angles for example. Another issue is that not all visualizations are reproducible (for example a visualization
of a running clock) like we discussed in Section 4.5.6. The advantages of caching are obvious but certain
aspects of the solution require further investigation to prove that caching is both beneficial and flawless in
real-life situations.

The current support of annotations was primarily intended to provide the basic functionality (consider
it a proof-of-concept) of overlaying information on a visualization. More work could certainly be done to
improve the current implementation and things like sizing,placing and coloring of labels can be valuable
future additions for the end-user.

In our implementation visualization pipeline objects are basically pieces of Python code which are
assembled by the middleware in order to construct a completepipeline. Although this solution is versatile
and flexible it requires manual user programming and -editing which can be prone to errors. Future work
could be done to develop an application to design and edit these pipelines graphically or to adapt existing
visualization editors like DeVIDE1.

Zoomify support in our client application could also be further improved. The current solution keeps
the entire image in memory and all operations on the image (drawing to screen, improving resolution, etc)
are done on the full-resolution image. When the client would support working with tiles it may be possible,
useful for very large images for example, to reduce the memory footprint by keeping only those tiles in
memory that are currently visible on the screen. Also, the current implementation fetches the tiles from
left-to-right, top-to-bottom and from low-to-high-resolution. Improvements could start loading tiles in the
center of the visible area and start working outwards.

ParaView supports movie-recording by defining animations and saving these using a given frame-rate
and output format. Therefore, we could also support this, but future work is required to add the functionality
to our framework. This work would include thorough investigation of the animation facilities in ParaView
and finding a suitable way to transport results back to the client. Also it would be useful to provide a view
to play the movie in the client application.

Current implementation of middleware and client will only exchange image data, either images or
Zoomify images, as mentioned. For several reasons it could be useful to support polygonal data in our
framework. This would allow polygonal modalities (examples of which could be iso-surfaces and anno-
tations) to be drawn completely on the client-side. The reference client application views already support
OpenGL (see Section 2.3.3) and creating a view for client-side hardware-accelerated rendering of polygo-
nal data is straight-forward using OpenGL.

1http://visualisation.tudelft.nl/Projects/DeVIDE

http://visualisation.tudelft.nl/Projects/DeVIDE
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