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Abstract

Indoor positioning systems cannot rely on conventional localization methods, such as GPS,
to locate devices because of interference with the structure of buildings. One solution is to
use magnetic positioning, which is based on spatial variations in the patterns of the ambi-
ent magnetic field. To model magnetic fields, Gaussian process regression is used, providing
predictions of the magnetic field at unvisited locations along with uncertainty quantification.
These predictions and their uncertainties are valuable information for probabilistic localiza-
tion algorithms used for magnetic positioning. Full Gaussian process regression has poor
scalability, becoming computationally intractable from roughly 10,000 one-dimensional mea-
surements due to its associated cubic computational complexity. In the existing literature,
approximations for Gaussian process regression have been extensively studied to reduce this
computational complexity. Of these approximations, only approximations involving basis
functions and local experts have been used in the context of scalable magnetic field mod-
eling. A favorable approximation framework from existing literature uses structured kernel
interpolation (SKI), allowing for fast regression through efficient Krylov subspace methods.
The SKI framework is favorable as it allows for fast regression in low dimensions without
introducing boundary effects. In this thesis, the SKI framework is used to approximate two
distinct magnetic field models: the shared model, which considers independence between the
magnetic field components with shared hyperparameters, and the scalar potential model,
which includes physical properties of the magnetic field (Maxwell’s equations) in the model.
The scalability of the approach is shown using simulations and experiments with magnetic
field measurements. Through the simulations, it is shown the SKI framework accurately and
efficiently approximates the models. The applicability of the SKI framework for scalable
magnetic field modeling is investigated using data collected using a motion capture suit, the
Xsens MVN Link Suit. In the final experiment, a magnetic field map is constructed based on
more than 40,000 three-dimensional measurements without splitting the data set, which took
less than one minute on a standard laptop.

Keywords: Magnetic field modeling, Gaussian processes, structured kernel interpolation
(SKI), motion capture suit (Xsens MVN Link Suit).
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Chapter 1

Introduction

Over the recent years, indoor positioning systems have been researched extensively [1, 2].
These systems are used to accurately locate devices in (large) indoor areas, such as shopping
malls, airports, parking garages, etc. In modern devices, such as smartphones or automotive
systems, location services use (combinations of) many different sensors and systems to po-
sition the device. Examples include GPS, cellular networks, inertial sensors, optical sensors
(e.g., cameras, LiDAR), Bluetooth, and Wi-Fi [3, 4]. For indoor positioning, however, the use
of these systems may pose issues. A widely recognized drawback associated with using GPS
and cellular networks for indoor localization is the lack of accuracy indoors, due to signal
interference with the material of the structure of buildings [5]. Dead reckoning techniques
which only rely on the measurements of inertial sensors lack accuracy over time due to cumu-
lative errors [6]. The other methods require additional infrastructure or an undisturbed line
of sight, which may not be present.

One particular solution for indoor localization without required external hardware proposed
in literature is based on the presence of the ambient magnetic field [5, 7]. Ferromagnetic
materials in the structure of indoor locations and objects lead to anomalies in the magnetic
field [2]. These anomalies result in magnetic field patterns throughout an indoor area [7],
which can be modeled and visualized in a map. Models of the magnetic field are a crucial
step for indoor localization and simultaneous localization and mapping (SLAM) algorithms,
which are often based on extended Kalman filters [8] or particle filters [9]. Localization
algorithms require a detailed map of the indoor magnetic field, whereas SLAM algorithms
(additionally) need a method for the development of magnetic field maps.

An established approach for magnetic field modeling is Gaussian process regression [10, 11, 12,
13, 14]. Gaussian processes are a powerful tool for statistical inference of continuous variables,
such as the magnetic field. Interpolation at unvisited locations is performed with observed
measurement data, assuming a non-linear model function over the domain of interest. In
the case of magnetic fields, the measurements of the magnetic field are considered to be the
outputs, whereas the positional data associated with the measurements are the inputs. In
practice, when modeling magnetic fields, a two- or three-dimensional input space is used
for Gaussian process regression. Two-dimensional models generally require less data for a
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2 Introduction

satisfactory model due to the reduced dimensionality, whereas three-dimensional models can
contain more information. A valuable property of Gaussian processes is that they can handle
noise present in the measurements, which occurs naturally when measuring the magnetic field
using magnetometers. Additionally, Gaussian process regression gives a quantification of the
uncertainty of predicted variables. This is valuable information for probabilistic localization
algorithms, such as extended Kalman filters and particle filters, as it can be used to assign
weights to the measurements.

A significant drawback of Gaussian process regression is its (lack of) scalability [15]. Full
Gaussian process regression has an associated cubic computational complexity, O(N3) mean-
ing the time required to perform inference scales cubically with the number of measurements
N . This typically poses issues on a standard computer from 10,000 measurements and above.
As the use of more magnetic field measurements means more information is used to esti-
mate the magnetic field, it is desirable to be able to exceed this threshold. The scalability
of Gaussian processes through approximations is a topic of large interest and has been re-
searched extensively over the past decades [15]. Some of these approximations may be used
for magnetic field modeling depending on their associated properties.

In previous research, the Laplace operator eigenbasis approximation for Gaussian process
regression has been developed for scalable magnetic field modeling, which is based on the use
of basis functions to approximate the kernel function characterizing the predictions [14, 16].
The approach uses the solutions to the negative Laplace equations as the basis functions
on a fixed domain, reducing the computational complexity associated with Gaussian process
regression to O(NM2

bf), where Mbf < N is the number of basis functions, thus allowing more
measurements to be used. A downside of this approach is the presence of boundary conditions,
reverting the predictions and their corresponding uncertainties to the prior near the domain
boundaries. The Laplace operator eigenbasis approach has been used in various magnetic
field SLAM applications [8, 17, 18].

Another favorable approach described in literature for scalable Gaussian process regression is
the structured kernel interpolation (SKI) framework. In this framework, the measurements
are observed through M latent variables, called the inducing variables. By forcing these
inducing variables into a Cartesian grid structure, efficient mathematical formulations – most
notably Krylov subspace methods – may be exploited within this framework for the reduction
of the associated computational complexity [19]. The computational complexity for three-
dimensional magnetic field modeling using the SKI framework is O(K(N + 3M4/3)) [19, 20],
where K ≪ N, M is based on the desired characteristics of the Krylov subspace methods. This
computational complexity is smaller than that of the Laplace operator eigenbasis approach,
although the accuracy of the two approximations is not directly proportionate based on the
numbers of inducing points M and basis functions Mbf. Additionally, the SKI framework
does not introduce a reversion of the predictions and their uncertainties to the prior near the
domain boundaries. Due to the favorable computational complexity associated with the SKI
framework (for low dimensions, D < 5) and the lack of boundary conditions near the domain
boundaries, the SKI framework is a promising approach for scalable magnetic field modeling.

In this thesis, a scalable approach for magnetic field modeling is developed based on the
SKI framework as an alternative to the existing Laplace operator eigenbasis approach. The
SKI framework is integrated into two models for magnetic field estimation from existing
literature: the shared model and the scalar potential model. The shared model assumes
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3

independence between the magnetic field components with shared hyperparameters to prevent
large behavioral differences [14]. The scalar potential model includes Maxwell’s equations
governing the magnetic field in the model by modeling the magnetic field as the negative
gradient of a latent scalar potential function [13]. The following research question is considered
throughout this thesis: How can scalable magnetic field modeling be achieved using the SKI
framework for Gaussian process regression? To answer this question in a structured approach,
three subquestions are formulated, given by

i. How can the SKI framework be integrated in the shared and scalar potential models for
scalable magnetic field estimation?

ii. How does the SKI framework perform for scalable modeling using the shared and scalar
potential models in terms of accuracy and efficiency?

iii. How does the SKI framework for Gaussian process regression perform for large-scale
magnetic field modeling?

The first subquestion concerns the integration of the SKI framework into the shared and
scalar potential models in a mathematical sense, such that the formulations can be used
in numerical implementations. For the second and third subquestions, simulations are con-
ducted and experiments are done using real magnetic field measurements. In the experimental
setup, real data are collected using a state-of-the-art motion capture suit, the MVN Link Suit
(Xsens Technologies B.V.), containing 17 inertial measurement units (IMUs) equipped with
magnetometers distributed over the body. The MVN Link Suit is used as the suit and its ac-
companying software provide the magnetic field measurements with position and orientation
estimates of these 17 sensors at 240 Hz, without requiring additional infrastructure. The po-
sition estimates are beneficial as they are used as the inputs for Gaussian process regression,
whereas the orientation measurements are used to rotate the magnetic field measurements
to a consistent global frame. While it cannot be expected the position estimates are ground
truth, it is assumed no noise is present in the position estimates to prevent the models from
becoming too complex for approximation using the SKI framework. It should be noted that
the use of magnetic field measurements of multiple sensors does not necessarily lead to better
estimation of the magnetic field [21]. Inconsistencies occurring due to improper calibration of
the magnetometers or improper calibration of the body proportions of the person wearing the
suit may be propagated into the training data and thus the predictions. To avoid inconsisten-
cies from occurring, the measurements of only one sensor are used for experimental results.
The use of the suit is still beneficial, as the position and orientation estimates of the sensor
are computed based on the data of all sensors without requiring additional infrastructure.
The organization of the thesis is based on the research question and the order of its subques-
tions. First, related work containing beneficial background information on Gaussian process
regression, magnetic fields, and the MVN Link Suit is presented in Chapter 2. Integration of
the SKI framework in the shared and scalar potential models for magnetic field estimation
and the experimental setup are described in Chapter 3. In Chapter 4, the accuracy and
associated efficiency of the approximated models are investigated through simulations and
the experimental setup. Additionally, large-scale experiments are conducted in this chap-
ter, demonstrating the scalability of magnetic field modeling using the SKI framework for
Gaussian process regression. Lastly, the results are discussed and conclusions are drawn in
Chapter 5, along with suggestions for further research.

Master of Science Thesis M.P.D. Fetter



4 Introduction

Mathematical Notation

To ensure all variables used in this thesis are understood correctly, Table 1-1 provides an
overview of the notations used. Throughout the thesis, the domains of vector and matrix
variables are presented to differentiate the variable types.

Table 1-1: Overview of the notations used, p, q > 1 are arbitrary dimensions.

Description Notation Domain

Scalar g or G g ∈ R
Vector g or G g ∈ Rp

Matrix g or G g ∈ Rp×q

Scalar-valued function g(·) g : Rp → R
Vector-valued function g(·) g : Rp → Rq

M.P.D. Fetter Master of Science Thesis



Chapter 2

Background Information

This chapter provides beneficial background information from related work concerning mod-
eling magnetic fields using Gaussian process regression. This includes full Gaussian process
regression, magnetic fields, their combination, and the experimental setup with the motion
capture suit. Necessary background information on Gaussian process regression is presented
in Section 2-1. Beneficial magnetic field theory is stated in Section 2-2. Modeling magnetic
fields using Gaussian process regression is presented in Section 2-3, where the magnetic field
theory is taken into account. The characteristics of the MVN Link Suit and its accompanying
software are described in Section 2-4.

2-1 Full Gaussian Process Regression

Gaussian process regression is an interpolation method where interpolation is achieved through
Bayesian inference with Gaussian processes. Its most basic form is single-output full Gaussian
process regression using scalar measurements yi. The model for this type of regression assumes
a non-linear model function f(x) over a set of N measurements, Y = [y1 y2 . . . yN ]⊤ ∈
RN . The measurements are observed at inputs Xf = [x1 x2 . . . xN ]⊤ ∈ RN×D, where
xi ∈ RD with input dimensionality D. For this thesis, D = 3 is considered, corresponding to
a three-dimensional measurement space. The model function f(x) is uniquely defined by its
covariance function, κ(x, x′), with f defined as f = [f1 f2 . . . fN ]⊤ ∈ RN . The measure-
ments are assumed to be corrupted by white Gaussian noise, i.e., εi ∼ N (0, σ2

n). This model
is commonly expressed as

f(x) ∼ GP(0, κ(x, x′)),
yi = f(xi) + εi.

(2-1)

The covariance function κ(x, x′), also called the kernel function, describes the covariance
between pairs of inputs. This kernel function is used to construct covariance matrices, which
describe the covariance between sets of inputs. The (i, j)-th entry of a covariance matrix K
is computed as κ(xi, xj).

Master of Science Thesis M.P.D. Fetter



6 Background Information

Inference is achieved using the predictive distribution. This distribution describes the ex-
pected value and variance of the model function at test input x∗ ∈ RD. The N∗ test inputs
are collected in the test input matrix X∗ ∈ RN∗×D. The predictive distribution for full
Gaussian process regression is given by

E [f(X∗)] = K∗,f
(
Kf ,f + σ2

nI
)−1

Y, (2-2a)

V [f(X∗)] = K∗,∗ − K∗,f
(
Kf ,f + σ2

nI
)−1

Kf ,∗. (2-2b)

The subscripts of the covariance matrices denote the sets of inputs used. For example, K∗,f
denotes the covariance between the test inputs X∗ and the training inputs Xf . E [f(X∗)] de-
notes the expected value of the predicted model function at test inputs X∗, whereas V [f(X∗)]
denotes the variance of this prediction at the test inputs.

The predictions are heavily influenced by the choice of the kernel function. A commonly
used kernel function is the squared exponential kernel, which is an infinitely continuously
differentiable and thus smooth function. The squared exponential kernel is well-defined and
is commonly expressed as

κSE(x, x′) = σ2
f exp

(
−||x − x′||2

2ℓ2

)
, (2-3)

containing two characteristic parameters: the length scale ℓ and the variance σ2
f . The length

scale ℓ describes how much two points influence each other based on the distance between
them. The variance σ2

f characterizes the average squared distance of the model function
away from its mean. The latter is also often interpreted as a scale factor, simply scaling the
magnitude of the kernel function. Additionally, a constant kernel function may be added
to the squared exponential kernel to allow the model to recognize non-zero means in the
data [13], such as a constant deviation in Earth’s magnetic field [14]. The constant kernel
function is given by

κconst.(x, x′) = σ2
c . (2-4)

Together with the model noise variance σ2
n and the squared exponential kernel parameters,

these parameters are called the hyperparameters θ, i.e., θ = [ℓ σf σn σc]⊤. If one does not
wish to add a constant kernel for practical reasons, one can alternatively decide to subtract
the mean from the measurements, adding these again after inference [10]. The predictive
mean of equation (2-2a) is then expressed as

E [f(X∗)] = µ(Y) + K∗,f
(
Kf ,f + σ2

nI
)−1

(Y − µ(Y)) , (2-5)

where µ(Y) is the mean of the measurements. This approach is not as complete as adding a
constant kernel, because the uncertainty of the estimation of the mean is not included [10].

As the model is fully defined by the hyperparameters θ, a proper choice is required for
an accurate representation of the underlying model function. One approach to determining
the hyperparameters is to learn them from the available measurements by maximizing the
marginal likelihood function. This function quantifies how well a Gaussian process fits the
available data [10]. For optimization purposes, the log marginal likelihood function is used,
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2-2 Magnetic Fields 7

which, for full Gaussian process regression, is given by

log p(Y|θ) = −1
2Y⊤

(
Kf ,f + σ2

nI
)−1

Y︸ ︷︷ ︸
data fit

− 1
2 log

∣∣∣Kf ,f + σ2
nI
∣∣∣︸ ︷︷ ︸

complexity penalty

−N

2 log 2π. (2-6)

The log marginal likelihood function contains two important terms: the data fit and the
complexity penalty. The data fit ensures the optimized model is accurately represented by
the training data, whereas the complexity penalty avoids overfitting to the specific training
data [10]. To ensure the optimized squared exponential hyperparameters are positive with-
out constraining the optimization problem, exponentiated versions are substituted during
optimization, expressed as

exp(l) = ℓ2,

exp(sf) = σ2
f ,

exp(sn) = σ2
n.

(2-7)

The hyperparameter of the constant kernel, σ2
c , is not exponentiated, as the constant deviation

of Earth’s magnetic field may be negative. Solving the optimization problem is done using
the hyperparameters θexp = [l sf sn σc]⊤. The problem is generally solved using efficient
gradient-based optimization algorithms for unconstrained non-linear problems, such as the
conjugate gradient optimization method.

A widely recognized drawback of full Gaussian process regression is its cubic computational
complexity with respect to the number of measurements N , i.e., O(N3). This complexity
occurs due to the inversion of the Kf ,f + σ2

nI matrix [10]. Common practice is to compute
the Cholesky decomposition LL⊤ of Kf ,f + σ2

nI to solve linear systems involving the matrix.
This approach allows for numerically stable solutions and avoids the recomputation of the
inverse. Inconveniently, the computation of the Cholesky decomposition retains a computa-
tional complexity of O(N3). Consequently, full Gaussian process regression is impractical for
large data sets (N > 10, 000).

2-2 Magnetic Fields

For accurate modeling of the magnetic field based on the measurements, magnetic field theory
is presented. The magnetic field is a three-dimensional vector field that can be described by
two distinct definitions: the B-field and the H-field. B ∈ R3 is the magnetic flux density,
measured in tesla (T), whereas H ∈ R3 is the magnetic field strength, measured in ampere
per meter (A/m). The B-field and the H-field are related through the expression

H ≡ 1
µ0

B − M, (2-8)

where µ0 is the vacuum permeability, equal to 1.25663706212 × 10−6 N A−2. M ∈ R3 is the
magnetization vector, often assumed to be zero in the context of magnetic field modeling,
considering the material around the sensor is non-magnetic [13]. This is assumed to hold
as the casing of the IMUs of the MVN Link Suit is purposely chosen to be made of plastic,
preventing interference with the magnetometer. A second assumption considers the absence of
free currents (e.g., wires), meaning Maxwell’s equations governing the magnetic field’s physics
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8 Background Information

lead to the statements that the B-field is divergence-free and the H-field is curl-free [13]. These
statements can be expressed as two field equations, given by

∇ · B = 0, (2-9a)
∇ × H = 0. (2-9b)

Lastly, the assumption that M = 0 leads to the field equations being infinitely continuously
differentiable, implying smoothness [13]. This justifies the use of the smooth squared expo-
nential kernel to model small-scale variations in the magnetic field. Considering M = 0, B
and H are directly related through H = 1

µ0
B. As the relation scales through the constant µ0,

either of the divergence- and curl-free properties may be exploited.

Throughout this thesis, the curl-free property of the H-field is considered for the inclusion of
physical knowledge in Gaussian processes. An important property of a curl-free vector field is
that it can be written as the negative gradient of a scalar potential, in this case, the magnetic
scalar potential φ [13], i.e.,

H = −∇φ. (2-10)

2-3 Modeling Magnetic Fields Using Gaussian Process Regression

Modeling magnetic fields using Gaussian process regression requires a different model than the
basic single-output model of equation (2-2). As stated in the previous section, the magnetic
field is a vector field, which can be observed through vector-valued measurements yi ∈ R3. In
this thesis, two notable models are considered for magnetic field estimation: the shared model
and the scalar potential model, which both have been used in existing literature concerning
magnetic field modeling. The shared model assumes independent regression between the
three components of H, i.e., h(d) for d = 1, 2, 3, with shared hyperparameters to prevent
large behavioral differences per component [14]. This model has been previously used in a
magnetic field SLAM application [22]. The shared model is presented in Section 2-3-1. The
scalar potential model assumes the magnetic field satisfies the curl-free constraint given by
equation (2-9b), by modeling the magnetic field as the negative gradient of a latent scalar
potential function [13]. It has been used for magnetic field estimation and in various SLAM
applications [8, 12, 14, 17]. The scalar potential model for magnetic field modeling is presented
in Section 2-3-2.

The N magnetic field measurements used for Gaussian process regression are denoted by the
variables Y ∈ RN×3 and Y(d) ∈ RN , where the superscript (d) denotes the different magnetic
field components. The variables are related through

Y =
[
Y(1) Y(2) Y(3)

]
=


y

(1)
1 y

(2)
1 y

(3)
1

y
(1)
2 y

(2)
2 y

(3)
2

...
...

...
y

(1)
N y

(2)
N y

(3)
N

 =


y⊤

1
y⊤

2
...

y⊤
N

 . (2-11)
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2-3 Modeling Magnetic Fields Using Gaussian Process Regression 9

2-3-1 Shared Modeling of the Magnetic Field

As mentioned previously, the shared model assumes independent regression between the com-
ponents of the magnetic field with shared hyperparameters, to avoid large behavioral differ-
ences per component. This can be modeled using a multi-output Gaussian process with a
diagonal kernel function [12]. To allow for different constant deviations of Earth’s magnetic
field per component, the hyperparameters associated with the constant kernel are not shared
between the components. This model is given by

H(x) ∼ GP(0, κconst.(x, x′) + κSE(x, x′)I3),
yi = H(xi) + ei, ei ∼ N (0, σ2

nI3),
(2-12)

where κconst.(x, x′) is a 3 × 3 diagonal kernel describing the constant deviations of Earth’s
magnetic field per component. Due to the diagonal kernel function, this model can also be
written as three separate Gaussian processes [14], expressed as

h(d)(x) ∼ GP(0, κ
(d)
const.(x, x′) + κSE(x, x′)),

y
(d)
i = h(d)(xi) + ε

(d)
i , ε

(d)
i ∼ N (0, σ2

n).
(2-13)

For shared learning of the hyperparameters, a modified log marginal likelihood function is
required [14], which is given by

log p(Y|θ) = −1
2

3∑
d=1

((
Y(d)

)⊤ (
K(d)

f ,f + σ2
nI
)−1

Y(d)
)

− 3
2 log

∣∣∣K(d)
f ,f + σ2

nI
∣∣∣− 3N

2 log 2π,

(2-14)
where K(d)

f ,f changes per component due to the added constant kernel.

For inference with the shared model, the predictive distribution of equation (2-2) is computed
for each magnetic field component, requiring the solution to three N × N systems. As the
predictive variances are only dependent on the inputs and not the measurement values, the
predictive variances are equal for each component and thus only need to be computed once.

2-3-2 Modeling the Magnetic Field Using a Scalar Potential Function

The scalar potential model for magnetic field modeling considers the curl-free assumption,
derived from Maxwell’s equations governing the magnetic field’s physics. As described in
Section 2-2, the assumption of the curl-free constraint means the magnetic field can be written
as the negative gradient of the magnetic scalar potential. By considering the magnetic field
measurements to be the negative gradients of this scalar potential with added white Gaussian
noise, the magnetic scalar potential can be modeled instead of the H-field directly [13, 14].
This single-output model is expressed as

φ(x) ∼ GP
(
0, κlin.(x, x′) + κSE(x, x′)

)
,

yi = −∇φ(xi) + ei, ei ∼ N (0, σ2
nI3),

(2-15)

where κlin.(x, x′) = σ2
lin.x⊤x′ represents the constant deviations of the magnetic field com-

ponents [14]. Predictions of the magnetic field are computed as the negative gradient of
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10 Background Information

the magnetic scalar potential. The predictive distribution can be derived following Särkkä’s
approach for Gaussian process regression models with linear operators [23], as the gradient
operator is a linear operator given the linearity of differentiation. It is given by

E [H(X∗)] = ∂2(K∗,f )
(
∂2(Kf ,f ) + σ2

nI
)−1

vec
(
Y⊤

)
, (2-16a)

V [H(X∗)] = ∂2(K∗,∗) − ∂2(K∗,f )
(
∂2(Kf ,f ) + σ2

nI
)−1

∂2(Kf ,∗), (2-16b)

where ∂2(·) denotes the elementwise computation of the covariance matrix with the outer
product of the gradient with itself, i.e., ∇xκ(x, x′)∇⊤

x′ . This elementwise computation for the
linear kernel leads to the 3 × 3 diagonal kernel function κconst.(x, x′), describing the constant
deviations of Earth’s magnetic field. For the squared exponential kernel, this leads to a curl-
free extension of the squared exponential kernel of equation (2-3) capable of learning curl-free
vector fields [13]. This kernel function is given by

κcurl(x, x′) = σ2
f

ℓ2 exp
(

−||x − x′||2

2ℓ2

)(
I3 −

(x − x′

ℓ

)(x − x′

ℓ

)⊤)
. (2-17)

Using the derived 3 × 3 kernel functions κconst.(x, x′) and κSE(x, x′), the scalar potential
model can equivalently be written as a multi-output Gaussian process model [13], given by

H(x) ∼ GP
(
0, κconst.(x, x′) + κcurl(x, x′)

)
,

yi = H(xi) + ei, ei ∼ N (0, σ2
nI3),

(2-18)

For hyperparameter learning with the scalar potential model, the scalar kernel functions in
equation (2-6) are substituted by the 3×3 kernel functions κconst.(x, x′) and κSE(x, x′). This
leads to the log marginal likelihood function

log p(Y|θ) = −1
2 vec

(
Y⊤

)⊤ (
∂2(Kf ,f ) + σ2

nI
)−1

vec
(
Y⊤

)
︸ ︷︷ ︸

data fit

− 1
2 log

∣∣∣∂2(Kf ,f ) + σ2
nI
∣∣∣︸ ︷︷ ︸

complexity penalty

−N

2 log 2π.

(2-19)
For inference with the scalar potential model, the solution to a 3N × 3N system is required.
Consequently, predictions with the scalar potential model with full Gaussian process regres-
sion will already prove to become prohibitive from roughly 3,300 three-dimensional mea-
surements. Previous research has focused on approximating the scalar potential model for
magnetic field modeling, for which the Laplace operator eigenbasis approximation has been
developed [14]. The approach is based on the eigendecomposition of the Laplace operator,
where the eigendecomposition of the Laplace operator subject to Dirichlet boundary condi-
tions is solved in the domain of interest [16]. The eigenfunctions and eigenvalues are used as
the basis functions and the inputs of the spectral density function of the squared exponential
kernel respectively, which are both used to approximate the squared exponential kernel [14]
and thus Gaussian process regression. Due to the Dirichlet boundary conditions, the ap-
proximation reverts to the deviation of Earth’s magnetic field near the domain boundaries
with zero uncertainty. The Laplace operator eigenbasis approach reduces the computational
complexity associated with Gaussian process regression to O(NM2

bf), where Mbf < N is the
number of basis functions. The accuracy of the approach can be increased by increasing the
number of basis functions, thus trading accuracy for efficiency. The approximation can also
be integrated into the shared model [14], although this has not been done in the existing
literature.
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2-4 MVN Link Suit 11

2-4 MVN Link Suit

To conduct experiments with real magnetic field measurements, data are collected using
the MVN Link Suit, shown in Figure 2-1. The MVN Link suit is a motion capture suit
containing 17 IMUs equipped with magnetometers distributed over the body. These IMUs
provide accelerometer, gyroscope, and magnetometer data at a maximum sample rate of
240 Hz, thus providing up to 4,080 measurements per second. The magnetometers measure the
magnetic field in arbitrary units, which are normalized to 1 during calibration as an absolute
reference to Earth’s magnetic field [24]. As the measurements are normalized and the B-field
and the H-field are proportionate assuming no magnetization (equation (2-8), M = 0), the
measurements can be interpreted as scaled measurements of either field. Given the use of the
scalar potential model, the measurements are assumed to be scaled measurements of the H-
field. For interpretability, Xsens expects a conversion rate of approximately 0.49 µT for each
arbitrary unit in the Netherlands [24], which corresponds to the World Magnetic Model [25].
Assuming no magnetization, this translates to approximately 0.39 A/m per arbitrary unit for
the H-field.

Figure 2-1: MVN Link suit [26].

The accelerometer and gyroscope data provided by the IMUs are not directly useful for
modeling magnetic field maps using Gaussian process regression, as position estimates are
required and double integration of the IMU data lacks accuracy due to significant cumulative
errors [6]. Fortunately, new insights may be obtained by combining the IMU data. The MVN
Analyze software, also developed by Xsens, uses sensor fusion algorithms and biomechanical
(human motion) models to provide supplementary data, including the position and orienta-
tion estimates of 23 segments of the body, found to be consistent for data sets spanning large
amounts of time [27]. The MVN Analyze software allows for two types of processing modes:
live and reprocessed HD [27, 28]. With live processing, the data are processed frame by frame,
using the sensor fusion algorithms and biomechanical models to provide the supplementary
data. The mode reprocessed HD enables more consistent estimates through post-processing
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12 Background Information

algorithms that require future information, such as filters and smoothers. As such, both
processing modes can be used for applications where one wishes to model the magnetic field
through batch estimation. If sequential estimation is desired, as is the case for SLAM algo-
rithms, the use of the reprocessed HD mode is not justified, as it relies on future information
that is assumed not to be available yet in a sequential scheme.

The raw IMU data and the supplementary data can be extracted from the MVN Analyze
software in an MVNX file. A complete overview of the available data is presented in the
MVN User Manual provided by Xsens [28], summarized in Table 2-1. Unfortunately, the
position and orientation estimates are only provided for the 23 segments of the body and
not for the sensors. While the MVN Analyze software provides no way of extracting the
position and orientation estimates of the sensors, Xsens provided them directly using an in-
house software tool. These data are provided in FT files, which can be parsed using Apache
Arrow’s libraries [29]. An overview of the data available in the FT files is given in Table 2-2.

Table 2-1: Overview of the available data provided by the MVN Analyze software.

Segments (23 total) Variable space

Position R3

Velocity R3

Acceleration R3

Orientation R4

Angular velocity R3

Angular acceleration R3

Sensors (17 total) Variable space

Free acceleration R3

Magnetic field R3

Orientation R4

Joints (22 total) Variable space

Joint angle (Euler) R3

Miscellaneous Variable space

Position of center of mass R3

Binary foot contact data {0, 1}4

Table 2-2: Overview of the available data provided in the FT files.

Sensors (17 total) Variable space

Position R3

Velocity R3

Acceleration R3

Orientation R4

Angular velocity R3

Magnetic field R3
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Chapter 3

Scalable Magnetic Field Modeling
Using Structured Kernel Interpolation

In this chapter, the integration of the SKI framework into the shared and scalar potential
models is presented, answering the first research subquestion. By integrating the SKI frame-
work the cubic computational complexity associated with modeling magnetic field maps using
full Gaussian process regression is reduced while retaining sufficient accuracy. This leads to
faster inference and thus allows for the use of more measurements. In Section 3-1, inducing
variables are introduced that provide the required fundamentals of the SKI framework. The
SKI framework itself is presented in Section 3-2, tailored to the shared and scalar potential
models for magnetic field modeling that were discussed in Section 2-3. The computation
of SKI-specific interpolation matrices is described in Section 3-3. Fast computation of the
predictive distributions of the shared and scalar potential models using the SKI framework is
discussed in Section 3-4. Lastly, the collection of magnetic field measurements for the experi-
ments is described in Section 3-5. Hyperparameter optimization in the SKI framework is not
described in this chapter as it has not been used in the experiments. For more information
on hyperparameter optimization in the SKI framework, see Appendix B.

3-1 Inducing Point Methods

The SKI framework is based on inducing point methods, which are used to approximate the
exact kernel function for fast computation [19]. These methods rely on the introduction of
M new latent data points, the inducing points. The inducing points consist of the inducing
variables u = [u1 u2 . . . uM ]⊤ ∈ RM at inducing inputs Xu ∈ RM×D [30]. Information
of all N measurements can be captured in the inducing points. The inducing points are also
directly related to the test points at inputs X∗ ∈ RN∗×D. Methods that rely on inducing
points for faster inference are inspired by the Nyström approximation [31], which aims to
approximate the N ×N covariance matrix KN,N through Mrs randomly sampled data points,
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14 Scalable Magnetic Field Modeling Using Structured Kernel Interpolation

where Mrs ≪ N . The approximation is given by

KN,N ≈ KN,MrsK−1
Mrs,Mrs

KMrs,N , (3-1)

where KN,Mrs and KMrs,N are the cross-covariance matrices between the N measurement
points and the Mrs randomly sampled data points. While the Nyström approximation can re-
duce the computational complexity associated with Gaussian process regression to O(NM2

rs),
a significant disadvantage of it is that it may produce negative predictive variances [15].

The Nyström approximation led to many other inducing point approaches [30], such as the
common Subset of Regressors (SoR) and Fully Independent Training Conditional (FITC)
approximations. The fundamental approximation for these methods is that the training and
test variables, f and f∗, are conditionally independent given the inducing variables u, mean-
ing information about the test variables f∗ can only be derived from the training variables f
through the inducing variables u. The approximation of interest within the SKI framework
is the Subset of Regressors (SoR) approximation [32], which assumes a deterministic relation
between the training and inducing variables, and between the test and inducing variables [30].
A graphical model showing the relation between the variables for full Gaussian process regres-
sion and the SoR approximation is shown in Figure 3-1. Figure 3-1a represents full Gaussian
process regression, where the training and test variables are directly related. The condi-
tional independence between the training and test variables given the inducing variables u
for the SoR approximation is represented by Figure 3-1b. The SoR approximation can be
implemented similarly to the predictive distribution for full Gaussian process regression of
equation (2-2) using a modified kernel function [30], given by

κSoR(xi, xj) = κ(xi, u)K−1
u,uκ(u, xj). (3-2)

The modified kernel function results in new covariance matrices, which are given by

Kf ,f = Kf ,uK−1
u,uKu,f , (3-3a)

K∗,∗ = K∗,uK−1
u,uKu,∗, (3-3b)

K∗,f = K∗,uK−1
u,uKu,f . (3-3c)

The SoR approximation has an associated computational complexity of O(NM2), similar
to the Nyström approximation, allowing for faster inference if M < N . The computational
complexity of the SoR approximation is dominated by multiplications involving the N × M
and N∗×M cross-covariance matrices Kf ,u and K∗,u [19]. By placing the inducing variables on
a Cartesian grid, efficient mathematical formulations may be exploited in the SKI framework
for faster inference, as described in the next section.

3-2 Structured Kernel Interpolation for Magnetic Field Modeling

The SoR approximation can be used to efficiently model magnetic fields in the case of M < N .
However, as this case relies on a low-rank approximation, deterioration in the accuracy of the
predicted magnetic field is expected compare to full Gaussian process regression. The SKI
framework aims to reduce the computational complexity associated with the SoR approx-
imation while retaining accuracy. This requires the inducing points to be structured in a

M.P.D. Fetter Master of Science Thesis



3-2 Structured Kernel Interpolation for Magnetic Field Modeling 15

(a) Full Gaussian process regression; the training
and test variables are directly connected.

(b) SoR approximation; the training and test
variables are conditionally independent.

Figure 3-1: Graphical model of the relation between the training and test function values given
inducing variables u [30].

Cartesian grid of size m(1) × m(2) × · · · × m(D), equally spaced in every dimension, for a total
of M =

∏D
d=1 m(d) inducing inputs. By further reducing the computational complexity, more

inducing variables can be used, even M > N , such that more accurate estimates of the mag-
netic field are attained without conceding computational speed. Within the SKI framework,
the cross-covariance matrices Kf ,u and K∗,u are approximated using sparse interpolation
matrices, Wf ∈ RN×M and W∗ ∈ RN∗×M , through the interpolation scheme

Kf ,u ≈ Wf Ku,u, (3-4a)

K∗,u ≈ W∗Ku,u. (3-4b)

The choice of Wf and W∗ is further described in Section 3-3. The interpolation matrices
lead to approximated versions of the SoR covariance matrices of equation (3-3), expressed as

Kf ,f = Kf ,uK−1
u,uKu,f

≈ Wf Ku,uK−1
u,uKu,uW⊤

f

= Wf Ku,uW⊤
f ,

(3-5a)

K∗,∗ = K∗,uK−1
u,uKu,∗

≈ W∗Ku,uK−1
u,uKu,uW⊤

∗

= W∗Ku,uW⊤
∗ ,

(3-5b)

K∗,f = K∗,uK−1
u,uKu,f

≈ W∗Ku,uK−1
u,uKu,uW⊤

f

= W∗Ku,uW⊤
f .

(3-5c)

The approximated covariance matrices can be substituted into the predictive distributions
for the shared and scalar potential models, given by equations (2-2) and (2-16) respectively.
The entries of the interpolation matrices are only based on the training inputs, so for shared
modeling the same interpolation matrices are used for each magnetic field component. The
predictive distribution for shared modeling within the SKI framework is given by

E
[
h(d)(X∗)

]
= W∗Ku,uW⊤

f

(
Wf Ku,uW⊤

f + σ2
nI
)−1

Y(d), (3-6a)

V
[
h(d)(X∗)

]
= W∗Ku,uW⊤

∗ − W∗Ku,uW⊤
f

(
Wf Ku,uW⊤

f + σ2
nI
)−1

Wf Ku,uW⊤
∗ . (3-6b)
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16 Scalable Magnetic Field Modeling Using Structured Kernel Interpolation

As the predictive distribution of the scalar potential model is based on the derivatives of
the magnetic scalar potential, the elementwise computation ∂2(·) of the covariance matrices
can be approximated using SKI with derivatives (D-SKI) [33]. Using D-SKI, ∂2(·) can be
simplified through differentiation of the interpolation scheme, given by

Kf ,u ≈ (∂Wf ) Ku,u, (3-7a)
K∗,u ≈ (∂W∗) Ku,u, (3-7b)

where ∂Wf ∈ R3N×M and ∂W∗ ∈ R3N∗×M , due to the three components of the magnetic
field. The computation of the differentiated interpolation matrices is described in Section 3-3.
The predictive distribution of the scalar potential model for magnetic field modeling using
D-SKI is given by

E [H(X∗)] = (∂W∗) Ku,u (∂Wf )⊤
(
(∂Wf ) Ku,u (∂Wf )⊤ + σ2

nI
)−1

vec
(
Y⊤

)
, (3-8a)

V [H(X∗)] = (∂W∗) Ku,u (∂W∗)⊤ −

(∂W∗) Ku,u (∂Wf )⊤
(
(∂Wf ) Ku,u (∂Wf )⊤ + σ2

nI
)−1

(∂Wf ) Ku,u (∂W∗)⊤ .

(3-8b)

To have the (D-)SKI predictive distributions accurately represent the full predictive distribu-
tions, the (differentiated) sparse interpolation matrices must lead to good approximations of
the covariance matrices. Depending on the interpolation method used, the number of non-
zero entries per row of Wf and W∗ changes and thus the sparsity. The developers of the
(D-)SKI framework suggest using convolution interpolation algorithms for good accuracy with
retained computational speed [19, 33]. The computation of the sparse interpolation matrices
using convolution interpolation algorithms is discussed in the next section.

3-3 Sparse Convolution Interpolation Matrices

For accurate estimation of the magnetic field using the SKI framework, proper sparse inter-
polation matrices Wf and W∗ are needed. Computation of their differentiated alternatives
∂Wf and ∂W∗ follows from the definition of Wf and W∗. The interpolation matrices Wf
and W∗ consist of interpolation weights for each training or test input with respect to the
inducing inputs Xu. As such, Wf and W∗ consist of N and N∗ row-concatenated row vectors
wi and w∗,i respectively, i.e.,

Wf =


w1(x1)
w2(x2)

...
wN (xN )

 , W∗ =


w∗,1(x∗,1)
w∗,2(x∗,2)

...
w∗,N∗(x∗,N∗)

 . (3-9)

The number of interpolation weights for each input depends on the dimensionality of the
inputs, D, and the interpolation method used. As the inducing inputs are structured on a
Cartesian grid, equispaced in each dimension, the interpolation weights can be computed as
a Kronecker product over the D input dimensions [34], i.e.,

wi(xi) =
D⊗

d=1
w(d)

i

(
x

(d)
i

)
, wi ∈ R1×m(d)

, i = 1, 2, . . . , N. (3-10)
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The interpolation weights can thus be computed separately for every dimension of the input
space, requiring independent computation on each component x(d) of the training or test input
x ∈ RD. The differentiated interpolation matrices ∂Wf ∈ RDN×M and ∂W∗ ∈ RDN∗×M

consist of the row-concatenated gradients of the row vectors wi, i.e.,

∂Wf =


∇w1(x1)
∇w2(x2)

...
∇wN (xN )

 , ∂W∗ =


∇w∗,1(x∗,1)
∇w∗,2(x∗,2)

...
∇w∗,N∗(x∗,N∗)

 . (3-11)

As the interpolation weights are computed as a Kronecker product over the dimensions,
the gradient in a specific dimension can be computed as the derivative of the interpolation
weights in that direction, Kronecker multiplied with the regular interpolation weights in the
other directions. Given the SKI framework is used to approximate the predictive distributions
for magnetic field modeling in a three-dimensional input space (D = 3), the gradient can be
expressed as

∂w(x)
∂x(1) = ∂w(1)(x(1))

∂x(1) ⊗ w(2)
(
x(2)

)
⊗ w(3)

(
x(3)

)
,

∂w(x)
∂x(2) = w(1)

(
x(1)

)
⊗ ∂w(2)(x(2))

∂x(2) ⊗ w(3)
(
x(3)

)
,

∂w(x)
∂x(3) = w(1)

(
x(1)

)
⊗ w(2)

(
x(2)

)
⊗ ∂w(3)(x(3))

∂x(3) .

(3-12)

This formulation is generalizable to any arbitrary dimensionality D.
To efficiently estimate the magnetic field while retaining accuracy, convolution interpola-
tion algorithms are used to compute the sparse interpolation matrices and their derivatives.
These algorithms use an interpolation kernel to achieve accurate interpolation, which ide-
ally is given by the sinc-function, following the Nyquist-Shannon sampling theorem (see the
Whittaker-Shannon interpolation formula [35]). This ideal interpolation kernel cannot be
used in practice, however, so nth-order polynomial kernels resembling the sinc-function are
used as a strong alternative [36]. The developers of SKI suggest the use of cubic (third order)
convolution interpolation for good accuracy while retaining computational speed [19]. Cubic
convolution interpolation requires up to four interpolation weights per dimension d for each
training or test input depending on the proximity to the boundaries [37]. The total number of
interpolation weights per training or test input scales as 4D, which is easily observed through
the Kronecker product of equation (3-10). For higher accuracy, the developers of D-SKI
suggest the use of quintic (fifth order) convolution interpolation [33]. Quintic convolution
interpolation requires six interpolation weights per dimension d, resulting in a total number
of 6D weights per training or test input, thus requiring more operations per matrix operation.
For magnetic field modeling with a three-dimensional input space, matrix multiplications with
quintic convolution interpolation matrices require 216 elementwise computations per training
or test input, whereas cubic convolution interpolation matrices require up to 64 elementwise
computations (may be less due to the boundary conditions).

3-3-1 Convolution Interpolation

Considering the rows of the sparse interpolation matrices wi are computed through the Kro-
necker product over w(d)

i ∈ R1×m(d) for all d, only the one-dimensional convolution interpo-
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lation algorithms are required. The algorithms rely on the computation of the interpolation
weights for one dimension of a training or test input, x

(d)
i of xi ∈ RD, based on its location

x
(d)
i with respect to the locations of the inducing points in that dimension, X(d)

u ∈ Rm(d) . To
determine the interpolation weights, the assumption is made that x

(d)
u,k is the inducing point of

X(d)
u = [x(d)

u,1 x
(d)
u,2 . . . x

(d)
u,m(d) ]⊤ ∈ Rm(d) prior to the training or test input x

(d)
i in dimension

d, i.e.,
x

(d)
u,k ≤ x

(d)
i < x

(d)
u,k+1. (3-13)

The interpolation function for nth-order convolution interpolation with equally spaced induc-
ing points can be written as a weighted sum of the nth-order interpolation kernel γn(·) [37],
i.e.,

gn

(
x

(d)
i

)
=
∑

k

ckγn

x
(d)
i − x

(d)
u,k

δ(d)

 , (3-14)

where δ(d) is the distance between the equispaced inducing points in dimension d. The kernel
coefficients ck do not need to be computed explicitly as they are the values of the covariance
matrix Ku,u. The interpolation weights are multiplied with Ku,u in the interpolation scheme
of equation (3-4), thus fitting the interpolation function of equation (3-14). The interpolation
kernel is computed as γn(s), where the interpolation variable s is defined as

s =
x(d) − x

(d)
u,k

δ(d) . (3-15)

Considering equations (3-13) and (3-15), the relation 0 ≤ s < 1 holds. The interpolation ker-
nels for cubic and quintic convolution interpolation are respectively given by equations (3-16a)
and (3-16b) [36]. These functions are third- and fifth-order polynomial kernels resembling the
sinc-function, which are required to be continuous, equal to one at s = 0, and zero at other
integer values of s [37].

γ3(s) =


3
2 |s|3 − 5

2 |s|2 + 1 0 ≤ |s| < 1,

−1
2 |s|3 + 5

2 |s|2 − 4|s| + 2 1 ≤ |s| < 2,

0 2 ≤ |s|.
(3-16a)

γ5(s) =


−27

32 |s|5 + 63
32 |s|4 − 17

8 |s|2 + 1 0 ≤ |s| < 1,
13
64 |s|5 − 21

16 |s|4 + 85
32 |s|3 − 7

8 |s|2 − 165
64 |s| + 61

32 1 ≤ |s| < 2,
3
64 |s|5 − 21

32 |s|4 + 117
32 |s|3 − 81

8 |s|2 + 891
64 |s| − 243

32 2 ≤ |s| < 3,

0 3 ≤ |s|.

(3-16b)

For the computation of the derivative matrices ∂Wf and ∂W∗ for the scalar potential model,
the derivatives of the interpolation kernels are additionally needed. Both interpolation kernels
have continuous first derivatives, which can be derived using the chain rule and are respectively
given by

∂γ3(s)
∂x(d) = 1

δ(d)


9
2 |s|s − 5s 0 ≤ |s| < 1,

−3
2 |s|s + 5s − 4 s

|s| 1 ≤ |s| < 2,

0 2 ≤ |s|,
(3-17a)
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3-3 Sparse Convolution Interpolation Matrices 19

∂γ5(s)
∂x(d) = 1

δ(d)


−135

32 |s|3s + 63
32 |s|2s − 17

4 s 0 ≤ |s| < 1,
65
64 |s|3s − 21

4 s3 + 255
32 |s|s − 7

4s − 165
64

s
|s| 1 ≤ |s| < 2,

15
64 |s|3s − 21

8 s3 + 351
32 |s|s − 81

4 s + 891
64

s
|s| 2 ≤ |s| < 3,

0 3 ≤ |s|.

(3-17b)

Considering γ3(s) = 0 for |s| ≥ 2, only the coefficients ck−1, ck, ck+1 and ck+2 are needed
for input x(d) with cubic convolution interpolation. For quintic convolution interpolation, the
coefficients ck−2 and ck+3 are additionally needed. Following the relation x(d) − x

(d)
u,k−1 =

(x(d) − x
(d)
u,k) + (x(d)

u,k − x
(d)
u,k−1) = δ(d)s + δ(d), the interpolation functions for cubic and quintic

convolution interpolation are given by

g3(s) = ck−1γ3(s + 1) + ckγ3(s) + ck+1γ3(s − 1) + ck+2γ3(s − 2), (3-18a)

g5(s) = ck−2γ5(s + 2) + ck−1γ5(s + 1) + ckγ5(s) + ck+1γ5(s − 1)+
ck+2γ5(s − 2) + ck+3γ5(s − 3).

(3-18b)

An advantage of cubic over quintic convolution interpolation is that it has well-defined bound-
ary conditions [37]. The boundary conditions are given by

c0 = 3c1 − 3c2 + c3, (3-19a)

cm(d)+1 = 3cm(d) − 3cm(d)−1 + cm(d)−2. (3-19b)

These boundary conditions allow the chosen inducing input grid to closely contain the training
and test inputs of interest, only requiring one inducing point outside the training and test
inputs on each side. For quintic convolution interpolation, two additional inducing inputs are
needed, thus covering a larger D-dimensional space when using the same number of inducing
inputs, resulting in a loss of accuracy. The impact of both cubic and quintic convolution
interpolation is studied using simulations and the experimental setup in Chapter 4.

3-3-2 Constructing the Sparse Interpolation Matrices

Construction of the sparse interpolation matrices Wf and W∗ for the shared model is de-
scribed by equation (3-9). For the scalar potential model, computation of ∂Wf and ∂W∗ is
described by equation (3-11). Computation of the interpolation weights vectors wi and their
derivatives is described by Tables 3-1 and 3-2 for cubic and quintic convolution interpolation
respectively. The interpolation weights γ3(·) and γ5(·) are inserted into the interpolation
vector w(d)

i at their corresponding indices. The interpolation weights for cubic convolution
interpolation include the boundary conditions, whereas the quintic convolution interpolation
weights are constrained to the interval 3 ≤ k ≤ m(d) − 3. For D-SKI, the derivative inter-
polation weights are inserted into the derivative interpolation weights vectors at the same
indices as the regular interpolation weights. As mentioned previously, the gradient of wi in
a specific dimension can be computed as the Kronecker product of the derivative interpola-
tion weights in that dimension with the regular interpolation weights in the other dimension
(equation (3-12)).

Computation of Wf and W∗ for the shared model is described by Algorithm 1. The inter-
polation matrices ∂Wf and ∂W∗ for the scalar potential model can be computed following
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20 Scalable Magnetic Field Modeling Using Structured Kernel Interpolation

Algorithm 2. The sparse interpolation matrices, combined with the grid-specific structure
in Ku,u, allow for fast computation of the predictive distributions of the shared and scalar
potential models of equations (3-6) and (3-8) through efficient formulations as described in
the next section.

Table 3-1: Overview of where to insert the cubic convolution interpolation weights into w(d)
i .

Condition Weights Indices

k = 1

 γ3(s) + 3γ3(s + 1)
γ3(s − 1) − 3γ3(s + 1)
γ3(s − 2) + γ3(s + 1)




k
k + 1
k + 2



2 ≤ k ≤ m(d) − 2


γ3(s + 1)

γ3(s)
γ3(s − 1)
γ3(s − 2)




k − 1
k

k + 1
k + 2


k = m(d) − 1

 γ3(s + 1) + γ3(s − 2)
γ3(s) − 3γ3(s − 2)

γ3(s − 1) + 3γ3(s − 2)




k − 1
k

k + 1


k = md

[
γ3(s)

] {
k
}

Table 3-2: Overview of where to insert the quintic convolution interpolation weights into w(d)
i .

Condition Weights Indices

3 ≤ k ≤ m(d) − 3



γ5(s + 2)
γ5(s + 1)

γ5(s)
γ5(s − 1)
γ5(s − 2)
γ5(s − 3)





k − 2
k − 1

k
k + 1
k + 2
k + 3



M.P.D. Fetter Master of Science Thesis
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Algorithm 1 Computation of W with input dimensionality D

Input: X(d) ∈ RN , X(d)
u ∈ Rm(d) for d = 1 to D

Output: W ∈ RN×M

1: for i = 1 to N do
2: for d = 1 to D do
3: define x

(d)
i as the ith value of X(d)

4: find x
(d)
u,k in X(d)

u nearest x
(d)
i that satisfies x

(d)
u,k ≤ x

(d)
i

5: compute s
6: compute γ(·) using the cubic or quintic interpolation kernel (equation (3-16))
7: insert γ(·) into w(d)

i as described by either Table 3-1 or Table 3-2
8: end for
9: compute wi using the Kronecker product (equation (3-10))

10: end for
11: row-concatenate all wi to find W (equation (3-9))

Algorithm 2 Computation of ∂W with input dimensionality D

Input: X(d) ∈ RN , X(d)
u ∈ Rm(d) for d = 1 to D

Output: ∂W ∈ RDN×M

1: for i = 1 to N do
2: for d = 1 to D do
3: define x

(d)
i as the ith value of X(d)

4: find x
(d)
u,k in X(d)

u nearest x
(d)
i that satisfies x

(d)
u,k ≤ x

(d)
i

5: compute s
6: compute the cubic or quintic interpolation kernel γ(·) (equation (3-16))
7: insert γ(·) into w(d)

i (x(d)
i ) as described by either Table 3-1 or Table 3-2

8: compute the partial derivatives of γ(·) (equation (3-17))
9: insert derivatives into ∂(w(d)

i (x(d)
i ))/∂(x(d)) as described by Table 3-1 or Table 3-2

10: end for
11: compute ∇wi(xi) using D partial derivative Kronecker products (equation (3-12))
12: end for
13: row-concatenate all ∇wi(xi) to find ∂W (equation (3-11))
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22 Scalable Magnetic Field Modeling Using Structured Kernel Interpolation

3-4 Scalable Magnetic Field Modeling

Following the computation of the sparse interpolation matrices using convolution interpolation
in the previous section, the predictive distributions of the shared and scalar potential models
(equations (3-6) and (3-8)) can be computed using efficient mathematical formulations. The
formulations used in the SKI framework are part of a family called Krylov subspace methods,
which are used to find approximate solutions to large linear systems [38]. Krylov subspace
methods make use of the Krylov subspace of a square N × N matrix A and an arbitrary
vector v ∈ RN . The definition of the arbitrary vector is dependent on the Krylov subspace
method. The Krylov subspace for square matrix A and vector v is given by

K(A, v) = span
{

v, Av, . . . , AN−1v
}

. (3-20)

The potential of Krylov subspace methods is easily observed through the structure of the
subspace, where each vector spanning the subspace is iteratively found through matrix-vector
multiplication (MVM) of A with the previous vector, starting with probe vector v. This
avoids matrix-matrix multiplications involving the powers of A. Within the SKI framework,
Krylov subspace methods are used to efficiently solve systems involving the matrix inverse.
To simplify notation, the matrices A and ∂A are defined as the matrix to be inverted in the
predictive distributions of the shared and scalar potential models respectively. Additionally,
the matrices C and ∂C are defined as the precomputable parts of the predictive variances
of the shared and scalar potential models, which are only based on training points (not test
points). The matrices A and C are expressed within the predictive distribution of the shared
model (equation (3-6)) as

E
[
h(d)(X∗)

]
= W∗Ku,uW⊤

f

(
Wf Ku,uW⊤

f + σ2
nI
)

︸ ︷︷ ︸
A

−1
Y(d), (3-21a)

V
[
h(d)(X∗)

]
= W∗Ku,uW⊤

∗ − W∗ Ku,uW⊤
f

(
Wf Ku,uW⊤

f + σ2
nI
)−1

Wf Ku,u︸ ︷︷ ︸
C

W⊤
∗ .

(3-21b)

The matrices ∂A and ∂C are expressed for the scalar potential model within its corresponding
predictive distribution (equation (3-8)) as

E [H(X∗)] = (∂W∗) Ku,u (∂Wf )⊤
(
(∂Wf ) Ku,u (∂Wf )⊤ + σ2

nI
)

︸ ︷︷ ︸
∂A

−1
vec(Y⊤), (3-22a)

V [H(X∗)] = (∂W∗) Ku,u (∂W∗)⊤ −

(∂W∗) Ku,u (∂Wf )⊤
(
(∂Wf ) Ku,u (∂Wf )⊤ + σ2

nI
)−1

(∂Wf ) Ku,u︸ ︷︷ ︸
∂C

(∂W∗)⊤ .

(3-22b)

Both predictive distributions rely on solutions of large systems, involving the matrices A
and ∂A respectively. In numerical implementations, the solutions to these systems are often
computed using numerically stable decompositions, such as the Cholesky decomposition or
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3-4 Scalable Magnetic Field Modeling 23

the QR decomposition [38]. Certain Krylov subspace methods can be used to iteratively find
the solutions to these problems through MVMs with the matrices A and ∂A. The desire to
use Krylov subspace methods becomes apparent when analyzing the structure of A and ∂A.
MVMs involving the matrix A can be expressed as

Av =
(
Wf Ku,uW⊤

f + σ2
nI
)

v

= Wf Ku,uW⊤
f v + σ2

nv.
(3-23)

Any equation involving ∂A can be similarly expressed, simply substituting ∂Wf for Wf . As
the interpolation matrices Wf and ∂Wf are very sparse, only containing 4D or 6D non-zero
entries per row with cubic and quintic convolution interpolation respectively, MVMs involving
these matrices can be computed very efficiently. Additionally, the grid-specific structure in
the covariance matrix Ku,u may be used to further speed up MVMs involving A or ∂A. This
is further discussed in Section 3-4-1.

For fast estimation of the magnetic field in the SKI framework, the predictive means of equa-
tions (3-21a) and (3-22a) can be computed efficiently using the conjugate gradient method [10].
In this Krylov subspace approach, MVMs are used to iteratively find the solution α to the
linear system (

Wf Ku,uW⊤
f + σ2

nI
)

︸ ︷︷ ︸
A

α = Y(d), (3-24)

or the linear system (∂A)α = vec(Y⊤) for the scalar potential model. Further elaboration
on the conjugate gradient method is given in Section 3-4-2, including preconditioning for
faster computation. This approach can be extended for the predictive variances of equa-
tions (3-21b) and (3-22b), computing C and ∂C by solving the systems A−1 (Wf Ku,u) and
∂C((∂Wf ) Ku,u) for each column of Wf Ku,u and (∂Wf ) Ku,u sequentially. However, C and
∂C can be estimated in a much more efficient manner using the Lanczos tridiagonalization
algorithm [20]. This algorithm is also a Krylov subspace method, only requiring MVMs with
the system matrices A and ∂A. Efficient computation of the predictive variances using the
Lanczos tridiagonalization algorithm is discussed in Section 3-4-3. Fast test-time predictions
of the magnetic field using the results of the preconditioned conjugate gradient method and
the Lanczos tridiagonalization algorithm is described in Section 3-4-4.

3-4-1 Fast Kronecker Matrix-Vector Multiplication

The grid-specific structure in the covariance matrix Ku,u can be used to speed up magnetic
field estimation by efficiently computing MVMs involving the matrix A or ∂A described by
equation (3-23). MVMs involving A or ∂A consist of two separate terms, of which the first
term can be computed in three separate MVMs. The first MVM is efficiently computed in the
SKI framework as W⊤

f v = vf ∈ RM , exploiting the sparsity of Wf ∈ RN×M . As vf ∈ RM

is a vector, Ku,uvf is a dense MVM, which has a computational complexity of O(M2).
However, the grid-specific structure in Ku,u may lead to a reduced MVM computational
complexity. For magnetic field modeling, the covariance matrix Ku,u is computed on a D-
dimensional Cartesian grid equispaced in each dimension using the composite kernel functions
κconst.(x, x′) + κSE(x, x′) for the shared model (equation (2-13)) and κlin.(x, x′) + κSE(x, x′)
for the scalar potential model (equation (2-15)). As the inducing inputs are structured in a
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24 Scalable Magnetic Field Modeling Using Structured Kernel Interpolation

Cartesian grid and the squared exponential and constant kernels (equations (2-3) and (2-4))
decompose as a product kernel over the grid dimensions, their covariance matrices can be
expressed as Kronecker products [19, 39], i.e.,

KSE
u,u =

D⊗
d=1

(
KSE

u,u

)(d)
, (3-25a)

Kconst.
u,u =

D⊗
d=1

(
Kconst.

u,u

)(d)
, (3-25b)

where the covariance matrices per dimension are scaled versions of the kernels over scalar
inputs with amplitudes σ

2/D
f and σ

2/D
c [39]. Unfortunately, the linear kernel cannot be de-

composed as a product kernel as it is a dot product kernel. Dot product kernels do not result
in any favorable structure in the covariance matrix Klin.

u,u [39, 40], so the linear kernel cannot
be used for fast inference with the scalar potential model involving exploitation of the struc-
ture of Ku,u. As mentioned in Section 2-1, non-zero means in the training data may also be
handled by subtracting the mean from the training data and using the shifted measurements,
although this loses the uncertainty estimation of the constant deviation of Earth’s magnetic
field. As the linear kernel cannot be used within the SKI framework involving fast MVMs,
only the squared exponential kernel is considered for both the shared and scalar potential
models from here on for consistency. Fast MVMs with the shared model using an added
constant kernel are still feasible, however, which are described in Appendix A.

The Kronecker structure present in Ku,u constructed with the squared exponential kernel can
be exploited to reduce the load of computing Wf Ku,u(W⊤

f v). The MVM can be expressed
using the Kronecker product as

Wf Ku,u
(
W⊤

f v
)

= Wf Ku,uvf = Wf

(
D⊗

d=1
K(d)

u,u

)
vf (3-26)

Computation of the Kronecker MVM for efficient implementation is described by Algo-
rithm 3 [41]. The algorithm iteratively solves the equation

Ku,uvf =
(

D⊗
d=1

K(d)
u,u

)
vf = vec

([
K(1)

u,u, . . .
[
K(D−1)

u,u ,
[
K(D)

u,u , V(D)
]]])

, (3-27a)

where the bracket notation is defined as[
K(d)

u,u, V(d)
]

= reshape
((

K(d)
u,uV(d)

)⊤
, m(d),

M

m(d)

)
, (3-27b)

with initial V(D) defined as

V(D) = reshape
(

vf , m(D),
M

m(D)

)
. (3-27c)

The MVM Ku,uvf is computed with a complexity of O(DM1+1/D) for grids with an equal
number of inducing points per dimension [41], which is generalizable to O(M

∑D
d=1 m(d))

for arbitrarily sized grids. This computational complexity is much lower than the O(M2)
computational complexity of standard dense MVM with full covariance matrix Ku,u ∈ RM×M .
The remaining MVM with Wf is again very efficient due to the sparsity of Wf .
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Algorithm 3 Kronecker matrix-vector multiplication (MVM)

Input: K(d)
u,u ∈ Rm(d)×m(d) for d = 1 to D, vf ∈ RM

Output: Ku,uvf ∈ RM

1: V(D) = reshape
(
vf , m(D), M

m(d)

)
2: for d = D to 1 do
3: compute V(d−1) = reshape

((
K(d)

u,uV(d)
)⊤

, m(d), M
m(d)

)
(equation (3-27b))

4: end for
5: Ku,uvf = vec

(
V(0)

)

3-4-2 Predictive Mean Estimation Using Conjugate Gradients

The linear system Aα = Y(d) of equation (3-24) and the corresponding D-SKI alternative
for scalar potential modeling are solved using iterative conjugate gradients. The conjugate
gradient method is a Krylov subspace method, which, for the system Aα = Y(d), is based on
the Krylov subspace

K(A, Y(d)) = span
{

Y(d), AY(d), . . . , AN−1Y(d)
}

. (3-28)

The matrix A is required to be a symmetric positive-definite matrix, which is given considering
A is a covariance matrix [38]. The optimal solution α∗ of the system Aα = Y(d) is given by
the unique minimum of the quadratic function ϕ(α) = 1

2α⊤Aα−α⊤Y(d). Iteratively solving
linear systems using the conjugate gradient method is faster compared to numerically stable
decompositions, such as Cholesky or QR, if J < N , where J is the number of iterations.
In practice, J ≪ N for accurate solutions, although the convergence rate depends on the
conditioning of A [38].
To increase the convergence rate, both sides of Aα = Y(d) are left-multiplied with a pre-
conditioner P−1, i.e., P−1Aα = P−1Y(d). This preconditioner modifies the system to have
superior conditioning. Solving this system for optimal α∗ using the preconditioned conjugate
gradient method is given by Algorithm 4 with an arbitrary α0; either an approximate initial
solution or 0 [42]. The loop is constructed such that the algorithm returns αJ when the
residual r⊤

J zJ is below a desired tolerance. The modified system requires fewer iterations to
get the residual below the desired tolerance compared to the unmodified system Aα = Y(d).
However, every iteration is slower due to the computation of P−1r. By choosing an appropri-
ate preconditioner, Pz = r can be solved quickly in each iteration, minimizing the additional
time per iteration.
An efficient preconditioner involves the pivoted Cholesky decomposition, which computes a
low-rank approximation LLL⊤

L of the positive-definite matrix Ku,u [43], where LL ∈ RM×L.
Computation of the pivoted Cholesky decomposition has a complexity of O(ML2), and, sim-
ilar to Ku,u, decomposes as a Kronecker product [44], i.e.,

LL =
D⊗

d=1
L(d)

l(d) , (3-29)

where L =
∏D

d=1 l(d). Computation of the l(d)-rank pivoted Cholesky decomposition of K(d)
u,u is

described by Algorithm 5 [43, 45], allowing for more efficient computation over D dimensions
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Algorithm 4 Preconditioned conjugate gradient method

Input: K(d)
u,u ∈ Rm(d)×m(d) for d = 1 to D, Wf ∈ RN×M , Y(d) ∈ RN , α0 ∈ RN , LL ∈ RM×L

Output: α∗ ∈ RN

1: compute r0 = Y(d) − Aα0 (equations (3-23) and (3-26), and Algorithm 3)
2: z0 = P−1r0 (equation (3-31))
3: p0 = z0
4: for i = 1 to N do
5: compute Api (equations (3-23) and (3-26), and Algorithm 3)
6: ρi = r⊤

i zi

p⊤
i Api

7: αi+1 = αi + ρipi

8: ri+1 = ri − ρiApi

9: zi+1 = P−1ri+1 (equation (3-31))
10: if r⊤

i+1zi+1 is sufficiently small then
11: exit loop
12: end if
13: pi+1 = zi+1 + r⊤

i+1zi+1

r⊤
i zi

pi

14: end for
15: α∗ = αi+1

through equation (3-29). By choosing P to approximate A, but with low-rank approximation
LLL⊤

L , the preconditioner is given by

P =
(
Wf LLL⊤

L W⊤
f + σ2

nI
)

. (3-30)

Computing P−1r still retains a computational complexity similar to O(M3) due to the matrix
inverse. The Woodbury matrix identity is used to reduce this computational complexity [38,
45], which efficiently computes P−1r according to

P−1r =
(
Wf LLL⊤

L W⊤
f + σ2

nI
)−1

r

= 1
σ2

n
r − 1

σ4
n

Wf LL

(
I + 1

σ2
n

L⊤
L W⊤

f Wf LL

)−1
L⊤

L W⊤
f r.

(3-31)

As the linear system is now of size L × L, the computational complexity of computing P−1r
is reduced to O(ML2), dominated by matrix multiplications. This computational complexity
is negligible if L is chosen reasonably low [45], such that iteratively solving A−1Y(d) to find
α∗ is more efficient using the preconditioned version of the conjugate gradient method. The
computation of the predictive mean of equation (3-21a) is then straightforward, computed
as W∗Ku,uW⊤

f α∗. As a = Ku,uW⊤
f α∗ ∈ RM is only based on the training data, it can be

efficiently precomputed using the structure of Ku,u and Wf without knowledge of the test
inputs. The only requirement for the test inputs is that they are confined within the same
inducing input grid as the training inputs. Computing a has an associated computational
complexity of O(J(N + M

∑D
d=1 m(d))) if L is chosen to be appropriately low. The predictive

mean of the scalar potential model of equation (3-22a) can be computed similarly, alternatively
solving (∂A)−1 vec(Y⊤) using the preconditioned conjugate gradient method and substituting
∂Wf for Wf .
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Algorithm 5 l(d)-rank pivoted Cholesky decomposition of K(d)
u,u [45]

Input: K(d)
u,u ∈ Rm(d)×m(d) , l(d) subject to l(d) < m(d)

Output: Ll(d) ∈ Rm(d)×l(d)

1: S0 = K(d)
u,u

2: Ll(d) = [Ø]
3: for k = 1 to l(d) do
4: find Sjj , the maximum diagonal element of Sk−1
5: swap rows and columns of Sk−1 with πkSk−1πk such that Sjj is the upper-left entry

6: parameterize Sk−1 as
[
S11 S⊤

21
S21 S22

]
, where S21 ∈ Rm(d)−k and S22 ∈ R(m(d)−k)×(m(d)−k)

7: bk =
[ √

S11
1√
S11

S21

]
8: Sk = S22 − 1

S11
S21S⊤

21

9: b̂k =
[

0
bk

]
such that b̂k ∈ Rm(d)

10: π̂k =
[

I 0
0 πk

]
such that π̂k ∈ Rm(d)×m(d)

11: Pπ̂,k =
∏k

j=1 π̂j

12: Ll(d) =
[
Ll(d) Pπ̂,kb̂k

]
13: end for

3-4-3 Predictive Variance Estimation Using Lanczos Variance Estimates

For the efficient computation of the predictive variances of the shared and scalar potential
models within the SKI framework (equations (3-21b) and (3-22b)), fast computation of the
precomputable C and ∂C matrices is required. While using the preconditioned conjugate
gradient method to efficiently compute A−1Y(d) and (∂A)−1 vec(Y⊤) for the predictive means
works very well, sequentially solving A−1(Wf Ku,u) and (∂A)−1((∂Wf )Ku,u) for each column
is not particularly efficient. An efficient method for estimation of the C and ∂C matrices is
thus desired. In one such method researched within the SKI framework [40], the variance
is stochastically estimated by drawing samples from the predictive distributions [46]. While
this approach can reduce the computational complexity associated with the computation of
the predictive variances, it introduces significant accuracy losses.

The LanczOs Variance Estimates (LOVE) approach aims to address these shortcomings [20].
This approach is based on the Lanczos tridiagonalization algorithm, which is used to find a
low-rank approximation for the A and ∂A matrices by computing an orthonormal basis of
a Krylov subspace [38]. It is thus also based on MVMs, which can be efficiently computed
as described in Section 3-4-1. The Krylov subspaces used in LOVE are based on the probe
vectors qprobe = Wf Ku,u1 ∈ RN and ∂qprobe = (∂Wf )Ku,u1 ∈ RDN , given by K(A, qprobe)
and K(∂A, ∂qprobe) [20]. Similar to the use of the conjugate gradient method to compute
the predictive mean, only estimation of the predictive variance for the shared model of equa-
tion (3-21b) is described throughout this section. For the predictive variance for the scalar
potential model of equation (3-22b), simply substitute ∂A for A and ∂Wf for Wf .
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28 Scalable Magnetic Field Modeling Using Structured Kernel Interpolation

For the symmetric covariance matrix A ∈ RN×N , the Lanczos tridiagonalization algorithm
factorizes A as QTQ⊤ if ran for N iterations [38]. In this factorization, T ∈ RN×N is a
symmetric tridiagonal matrix whose eigenvalues correspond to those of A, whereas Q ∈ RN×N

is an orthogonal matrix. While the Lanczos tridiagonalization algorithm results in a useful
factorization, execution is expensive, up to the point where it is prohibitive in implementations
where computation speed is of importance.

The advantage of the Lanczos tridiagonalization algorithm comes from the properties of the
algorithm. As the algorithm is executed iteratively and the eigenvalues of T converge to the
extreme eigenvalues of A first over iterations, a sufficient factorization A ≈ QT TT Q⊤

T may
be computed given T ≪ N [47]. Only the first T orthonormal vectors QT ∈ RN×T of Q
are then computed, together with all α and β coefficients of TT ∈ RT ×T [38]. The sparse
tridiagonal structure of TT is given by

TT =



α1 β1 . . . 0

β1 α2
. . . ...

. . . . . . . . .
... . . . . . . βT −1
0 . . . βT −1 αT


. (3-32)

The matrices QT and TT are used to efficiently estimate the predictive variance through the
estimation of C. Using the factorization A ≈ QT TT Q⊤

T , C is approximated as

C = Ku,uW⊤
f

(
Wf Ku,uW⊤

f + σ2
nI
)−1

Wf Ku,u

≈ Ku,uW⊤
f

(
QT T−1

T Q⊤
T

)
Wf Ku,u

= Ku,uW⊤
f QT︸ ︷︷ ︸

R⊤

T−1
T Q⊤

T Wf Ku,u︸ ︷︷ ︸
R′

.

(3-33)

The Lanczos tridiagonalization algorithm used to find QT and TT for T iterations is given by
Algorithm 6 [20, 38]. As mentioned previously, iterations of the Lanczos algorithm are based
on MVMs, thus enabling efficient computation through the exploitation of the favorable Kro-
necker structure present in Ku,u as described in Section 3-4-1. While the Lanczos algorithm
computes the orthonormal vectors of QT , roundoff errors occur during the orthogonalization
of qt in numerical implementations using inexact arithmetic (e.g., floating-point arithmetic).
These roundoff errors result in numerical instability of the Lanczos algorithm, which can be
resolved using reorthogonalization. Through full reorthogonalization of qt against all receding
vectors, Qt−1, orthogonality and thus numerical stability are ensured [48].

For efficient computation of R⊤ = Ku,uW⊤
f QT ∈ RM×T , fast MVMs can be exploited

sequentially for all T columns of QT . Subsequently solving R′ = T−1
T R⊤ can be performed

efficiently given TT is a very sparse symmetric tridiagonal matrix. Estimation of C through R
and R′ has an associated computational complexity of O(2T (N +M

∑D
d=1 m(d))) for magnetic

field modeling [20]. In numerical implementations, the complexity is higher due to the full
reorthogonalization required for the Lanczos tridiagonalization algorithm, also scaling linearly
with the number of training points N and Lanczos iterations T . Similar to the computation
of the predictive mean, the matrices R and R′ can be precomputed as they are only based
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3-4 Scalable Magnetic Field Modeling 29

on the training data. For fast estimation of the predictive variances of the shared and scalar
potential models for magnetic field modeling, R and R′ can be used to rewrite the predictive
variance equations for fast test-time predictions, as described in the next section.

Algorithm 6 Lanczos tridiagonalization for T iterations (with full reorthogonalization)

Input: Ku,u ∈ Rm(d)×m(d) for d = 1 to D, Wf ∈ RN×M , σn, T
Output: TT ∈ RT ×T , QT ∈ RN×T

1: compute qprobe = Wf Ku,u1 using Kronecker MVM (equation (3-26) and Algorithm 3)
2: r0 = qprobe
3: β0 = ||qprobe||2
4: Q0 = [Ø]
5: for t = 1 to T do
6: qt = rt−1/βt−1
7: if t > 1 then // full reorthogonalization
8: qt = qt − Qt−1Q⊤

t−1qt

9: qt = qt/||qt||2
10: end if
11: Qt = [Qt−1 qt]
12: compute Aqt using Kronecker MVM (equation (3-26) and Algorithm 3)
13: αt = q⊤

t Aqt

14: rt = Aqt − αtqt − βt−1qt−1
15: βt = ||rt||2
16: end for
17: construct TT using all αt and βt (excluding β0)

3-4-4 Fast Test-Time Predictions of the Magnetic Field

In the previous sections, the SKI framework is used for efficient computation of the precom-
putable matrices for magnetic field modeling based on training data only. As mentioned in
Section 3-4-2, the test inputs are only required to be confined within the same inducing input
grid as the training inputs. With the preconditioned conjugate gradient method and LOVE,
the structure in Ku,u and the sparse interpolation matrices is exploited for efficient computa-
tion of a = Ku,uW⊤

f A−1Y(d), R, and R′. For the fast computation of the predictive mean,
a only needs to be left-multiplied with W∗ for the shared model. Fast computation of the
predictive variance of the shared model can be achieved by rewriting equation (3-21b) using
R and R′, expressed as

V
[
h(d)(X∗)

]
= W∗Ku,uW⊤

∗ − W∗ Ku,uW⊤
f

(
Wf Ku,uW⊤

f + σ2
nI
)−1

Wf Ku,u︸ ︷︷ ︸
C

W⊤
∗ (3-34)

≈ W∗Ku,uW⊤
∗ − W∗R⊤R′W⊤

∗ (3-35)

= W∗Ku,uW⊤
∗ −

(
RW⊤

∗

)⊤
R′W⊤

∗ (3-36)

A significant computational bottleneck for magnetic field modeling using large numbers of
inducing points may be the computation of W∗Ku,uW⊤

∗ , which, for large numbers of inducing
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and test points, may be computationally intractable. The full computation can be avoided
however, as the predictive variances are given by just the diagonal of the test covariance
matrix. To this end, the diagonal of the test covariance matrix can be computed through the
expressions

diag
(
W∗Ku,uW⊤

∗

)
i

= w∗,i(x∗,i)Ku,uw∗,i(x∗,i)⊤, (3-37a)

and
diag

(
(∂W∗)Ku,u(∂W∗)⊤

)
i

= diag
(
∇w∗,i(x∗,i)Ku,u∇w∗,i(x∗,i)⊤

)
. (3-37b)

Explicit computation of the covariance matrix Ku,u ∈ RM×M can be avoided as the rows of
W∗ and ∂W∗ are computed as a Kronecker product over the interpolation weights per dimen-
sion (equations (3-10) and (3-12)). Consequently, Ku,uw⊤

∗ can be computed as a Kronecker
product over grid dimensions. Its computation is given by

Ku,uw⊤
∗ =

(
D⊗

d=1
K(d)

u,u

)(
D⊗

d=1

(
w(d)

∗
)⊤
)

=
D⊗

d=1
K(d)

u,u
(
w(d)

∗
)⊤

,

(3-38)

where w(d)
∗ only contains the interpolation weights computed for dimension d. The test

covariance matrix computed with ∂W∗ can be computed similarly, exploiting the Kronecker
formulations in ∇w∗ as described by equation 3-12.

As mentioned in Sections 3-4-2 and 3-4-3, efficient computation of the predictive distribution
for the scalar potential model is achieved by substituting ∂A for A and ∂Wf for Wf during
training computations (conjugate gradients and LOVE). For fast test-time predictions, ∂W∗
can be substituted for W∗ for the multiplications with ∂R and ∂R′. The method presented in
this chapter can be used to efficiently model curl-free vector fields using the shared and scalar
potential models. In Chapter 4, the performance of the method is studied using simulations
and experiments with real magnetic field measurements. The collection of the magnetic field
measurements for the experiments is described in the next section.

3-5 Collecting Magnetic Field Measurements

To show the applicability of the described approach for the estimation of magnetic fields with
the shared and scalar potential models, experiments are conducted with magnetic field mea-
surements collected using the MVN Link Suit. The experiments are presented in Sections 4-3
and 4-4. As stated in Section 2-4, the MVN Link Suit and its accompanying software provide
the magnetic field measurements with the corresponding position and orientation estimates of
17 sensors at 240 Hz. The position and orientation estimates are dependent on the processing
mode used: live or reprocessed HD. As the reprocessed HD mode provides more consistent
estimates and sequential estimation of the magnetic field is not desired, this mode is used
for the collection of experimental data. Previous work has shown that the use of magnetic
field measurements of multiple sensors does not necessarily lead to better estimation of the
magnetic field [21] (see Chapter 1), so the magnetic field measurements of one only sensor are
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used for experimental results. The sensor located at the pelvis is chosen for the experiments,
as it is roughly located at the center of all sensors.

To model magnetic fields using Gaussian process regression based on suit data, the magnetic
field measurements and their corresponding position estimates are required in a consistent
frame of reference, the so-called global frame G. Conveniently, the position estimates provided
by the suit are already given in the global frame, whereas the magnetic field measurements
need to be mapped from the pelvis sensor frame S to the global frame G via their orien-
tation estimates. The variables required from Table 2-2, recorded at measurement index
i ∈ {1, 2, . . . , N}, are denoted by

• Gxi ∈ R3 denotes the position estimate of the pelvis sensor,

• Syi ∈ R3 denotes the three-dimensional magnetic field measurement of the pelvis sensor
in arbitrary units, interpreted as a scaled measurement of the H-field,

• GqS
i ∈ R4 denotes the orientation estimate of the pelvis sensor as a unit quaternion,

describing the rotation from pelvis sensor frame S to global frame G.

To map a magnetic field measurement Syi from the pelvis sensor frame S to the global frame
G, a 3 × 3 rotation matrix is used, GRS

i . The measurement in the global frame is given by

Gyi=GRS
i Syi, (3-39)

where the 9-entry rotation matrix R can be constructed from a 4-entry quaternion q ∈ R4 [49],
defining q = [q0 q1 q2 q3]⊤. The quaternion-derived rotation matrix is given by

R(q) =

2q2
0 + 2q2

1 − 1 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q2

0 + 2q2
2 − 1 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q2
0 + 2q2

3 − 1

 . (3-40)

The position estimates and magnetic field measurements of the pelvis sensor in the global
frame are then collected into the input matrix Xf ∈ RN×3 and measurement matrix Y ∈
RN×3, respectively given by

Xf =
[
X(1)

f X(2)
f X(3)

f

]
=


Gx⊤

1

Gx⊤
2

...
Gx⊤

N

 , Y =
[
Y(1) Y(2) Y(3)

]
=


Gy⊤

1

Gy⊤
2

...
Gy⊤

N

 . (3-41)

These matrices are used as the input matrix and measurement matrix for the estimation of
the magnetic field using the shared and scalar potential models in the experiments with real
magnetic field data as described throughout this chapter. An important property of data
sets used in the experiments is that they do not contain loop closures, meaning the pelvis
sensor does not return to previously visited locations. This is important as drift present in
the position estimates can introduce inconsistencies in the data, possibly having undesirable
effects on the estimation of the magnetic field (see Chapter 1). Experiments with magnetic
field data collected with the suit are presented in Sections 4-3 and 4-4.
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Chapter 4

Experimental Results

In this chapter, experiments are presented to show the applicability of the SKI framework
to the shared and scalar potential models stated in Section 2-3 for scalable magnetic field
modeling. For the results, the shared and scalar potential models are estimated using the SKI
framework as described in Chapter 3. The accuracy and efficiency of magnetic field modeling
are studied through simulations and magnetic field measurements collected with the MVN
Link Suit, answering the second research subquestion. For the third research subquestion, the
scalability of the approach is investigated through two large-scale experiments with data sets
that are too large for full Gaussian process regression. As stated in Section 2-3, the shared
model considers the magnetic field to be a three-dimensional vector field with independent
components and shared hyperparameters, given by equation (2-13). The scalar potential
model considers the magnetic field to be the negative gradient of the magnetic scalar potential
function φ, given by equation (2-15). The magnetic field components then satisfy the curl-
free constraint imposed by Maxwell’s equations. All implementation is done in the Julia
programming language on a 2016 HP ZBook Studio G3 laptop (Intel Core i7 @ 2.60 GHz, 8
GB RAM).
For interpretation of the results, the metrics used to quantify the quality of trained models
are introduced first in Section 4-1. The conducted simulations are presented in Section 4-2,
which show the SKI framework accurately and efficiently approximates the shared and scalar
potential models under similar simulated circumstances. A first experiment with magnetic
field measurements collected with the suit is presented in Section 4-3, used to show the
SKI framework can be used to accurately and efficiently model magnetic fields. Lastly, to
demonstrate the scalability of the approach for magnetic field modeling, the two large-scale
experiments are presented in Section 4-4.

4-1 Experiment Metrics

Throughout this chapter, four metrics are used to assess the accuracy and efficiency of trained
magnetic field models. These metrics are the root-mean-square error (RMSE), the mean stan-
dardized log loss (MSLL), the relative error (RE), and the computation time. The first three
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metrics are used to determine the accuracy of the approximated magnetic field models for
the second research subquestion. The computation time is used to determine the efficiency of
magnetic field modeling using the SKI framework for the last of the three research subques-
tions.
The RMSE is used to compare the shared and scalar potential models trained on the same
data set and is given by

RMSE =

√∑N∗
i=1 (E [f(x∗,i)] − f∗,i)2

N∗
, (4-1)

where E [f(x∗,i)] is the predictive mean and f∗,i is the reference value at x∗,i.
As the RMSE does not consider the predictive variances to quantify the quality of the model,
the MSLL is introduced. This metric computes the average negative log probability of the
predicted test point considering the model [10], thus including the predictive variance. It is
given by

MSLL = 1
2N∗

N∗∑
i=1

(
log

(
2πσ2

∗,i

)
+ (E [f(x∗,i)] − f∗,i)2

σ2
∗,i

)
, (4-2)

where σ∗,i = V [f(x∗,i)] + σ2
n.

The relative error is used to quantify the approximation error between magnetic field esti-
mation using full Gaussian process regression and approximation within the SKI framework.
The relative error is formulated as

RE = ||E [f(X∗)] − f∗||
||f∗||

, (4-3)

where E [f(X∗)] contains the predictive means of all test points and f∗ contains the reference
values at all test points.
Lastly, the time required to estimate the magnetic field using the shared and scalar potential
models is computed. This can be compared to the computation time of full Gaussian process
regression, to quantify the efficiency of magnetic field modeling using the SKI framework.
The computation time is considered to consist of the computation of the relevant covariance
matrices and the sparse interpolation matrices, precomputation of the matrices based on
training data using the preconditioned conjugate gradient method and LOVE, and predictions
based on the test inputs. All computation times are determined using Julia’s BenchmarkTools
package.

4-2 Simulated Estimation of a Curl-Free Vector Field

To show the SKI framework can be used to accurately and efficiently approximate the shared
and scalar potential models for magnetic field modeling, simulations are conducted under
similar circumstances. To this end, a three-dimensional curl-free vector field, which the
magnetic field is assumed to be, is simulated in this experiment using synthetic data generated
from an arbitrary curl-free vector field. The scalar potential function of this arbitrary curl-free
vector field (x ∈ R3) is given by

φsim.(x) = x(1)
(
x(2)

)2 (
x(3)

)3
, (4-4)
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with corresponding curl-free vector field −∇φsim.(x) ∈ R3. The curl-free property is easily
verified through the expression ∇×(−∇φsim.(x)) = 0. The domain of interest for simulations
is chosen to be the cube of size [−2.0, 2.0] × [−2.0, 2.0] × [−2.0, 2.0] with its center in the
origin. In the simulations, the curl-free vector field is estimated with both the shared and
scalar potential models, based on sampled measurements of −∇φsim.(x) with added white
Gaussian noise. The hyperparameters used in the simulations are given by Table 4-1, which
are optimized on 1,000 random samples of −∇φsim.(x) ∈ R3 using the full log marginal
likelihood functions of equations (2-14) and (2-19).

Table 4-1: Optimized hyperparameters for estimation of the simulated curl-free vector field.

Model ℓ σf σn

Shared 2.0132 58.4945 4.9902

Scalar potential 2.7834 345.0215 4.9865

The first simulation, presented in Section 4-2-1, is conducted to show the approximation
quality of the SKI framework along with the required computation times as the number of
inducing points increases. The second simulation is presented in Section 4-2-2, in which
the effects of an increasing data set size on the accuracy and efficiency of estimating the
curl-free vector field using the SKI framework are shown. The results of the simulations
imply the described approach is useful for scalable magnetic field modeling, which is further
demonstrated using real magnetic field data in Sections 4-3 and 4-4.

4-2-1 Effects of an Increasing Number of Inducing Points

In the first simulation, 1,000 random samples are taken of the curl-free vector field −∇φsim.(x)
with added white Gaussian noise with standard deviation σn = 5.0. The curl-free vector field
is then estimated using both full Gaussian process regression and the SKI framework on an
equispaced test grid of size 10 × 10 × 10. The experiment is conducted multiple times with an
increasing number of inducing points to show the change in accuracy and efficiency as more
inducing points are used. The inducing point grid is of size m × m × m for a total of M = m3

inducing points, where m ∈ {8, 9, . . . , 24, 25}. For computation of the predictive mean within
the SKI framework using the preconditioned conjugate gradient method (Algorithm 4), a
residual tolerance of r⊤

i+1zi+1 = 10−8 and a pivoted Cholesky decomposition rank of l(d) = 2
for d = 1, 2, 3 are specified. For estimation of the predictive variance using LOVE, T = 200
Lanczos iterations are used (Algorithm 6).

For quantification of the accuracy and the efficiency, the relative errors between full Gaussian
process regression and the SKI framework approximation, and the times required for estima-
tion of the curl-free vector field are computed. For consistent quantification of the accuracy
and efficiency, the curl-free vector field is estimated 30 times for each number of inducing
points using different randomly sampled data sets. The average of the relative errors over
the 30 runs with corresponding standard deviations are shown in Figure 4-1 for the shared
model and in Figure 4-2 for the scalar potential model. The use of more inducing points
results in lower relative errors and thus better estimates. Relative errors of less than 1%
(10−2) are reached quickly, so the approximated estimations of the curl-free vector field are

Master of Science Thesis M.P.D. Fetter



36 Experimental Results

of good quality. The times required to estimate the vector field are shown in Figure 4-3. For
the shared model, the use of the SKI framework with cubic convolution interpolation shows a
significant speedup up to a total of 6,000 inducing points used, while using SKI with quintic
convolution interpolation does not result in more efficient estimation. The benefits of using
the SKI framework are more apparent with the scalar potential model, where even relatively
large numbers of inducing points result in lower computation times compared to full Gaus-
sian process regression. As the number of training points in this simulation is relatively low
and the SKI framework is expected to result in more significant speedups with more training
points, the effects of an increasing data set size are investigated in the next simulation.

4-2-2 Effects of an Increasing Data Set Size

In the previous simulation, it was shown the shared and scalar potential models are efficiently
approximated using the SKI framework with proper accuracy given sufficient inducing points.
To investigate the scalability of the approach, the same curl-free vector field is modeled with
an increasing number of training points, ranging from N = 250 to N = 10,000 measurements.
The training data are generated by taking N samples of the curl-free vector field −φsim.(x) ∈
R3 with added white Gaussian noise with standard deviation σn = 5.0. The inducing point
grid is now fixed at 20 × 20 × 20, for a total of 8,000 inducing points. For the preconditioned
conjugate gradient algorithm (Algorithm 4), a residual tolerance of r⊤

i+1zi+1 = 10−8 is used
with a pivoted Cholesky decomposition rank of l(d) = 5, along with T = 200 Lanczos iterations
for the estimation of the predictive variance (Algorithm 6).

To show the effects of the increasing data set size on the accuracy and efficiency of the esti-
mated curl-free vector field, the RMSE and MSLL are determined together with the required
computation times. As was done in the previous simulation, the simulation is repeated 30
times with different randomly sampled training data sets for consistent quantification. The
average of the RMSEs and MSLLs over the 30 runs with corresponding standard deviations
are shown in Figure 4-4 for the shared model and in Figure 4-5 for the scalar potential model.
Both metrics decrease as the number of training points increases, indicating better predic-
tions. The scalar potential model results in lower error metrics than the shared model, which
is to be expected as the simulated vector field is curl-free. The computation times required
to estimate the vector field are shown in Figure 4-6. The use of the SKI framework for faster
estimation is beneficial, as the computation times are only similar to full Gaussian process
regression for low numbers of training points. Again, using quintic convolution interpolation
requires significantly longer computation times compared to cubic convolution interpolation
while producing similar error metrics.

4-3 Accurate and Efficient Magnetic Field Modeling

In the previous section, it was shown the SKI framework can be used to accurately and ef-
ficiently approximate the shared and scalar potential models for a simulated curl-free vector
field, which the magnetic field is assumed to be. To show the applicability of the SKI frame-
work for efficient magnetic field modeling using real magnetic field data, a moderately sized
experiment is conducted with data collected using the MVN Link Suit. The data set consists
of N = 2,500 measurements, allowing for magnetic field estimation using both full Gaussian
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(a) x-component (b) y-component (c) z-component

Figure 4-1: The relative errors of the SKI approximation for the shared model as a function of
the number of inducing points.

(a) x-component (b) y-component (c) z-component

Figure 4-2: The relative errors of the SKI approximation for the scalar potential model as a
function of the number of inducing points.

(a) Shared model (b) Scalar potential model

Figure 4-3: The average computation times of the first simulation over 30 runs for both models
with an increasing number of inducing points, including the corresponding standard deviations.
Note the discrepancy in the values on the time axis.
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(a) x-component (b) y-component (c) z-component

Figure 4-4: The RMSE and MSLL of the SKI approximation for the shared model as a function
of the number of training points.

(a) x-component (b) y-component (c) z-component

Figure 4-5: The RMSE and MSLL of the SKI approximation for the scalar potential model as
a function of the number of training points.

(a) Shared model (b) Scalar potential model

Figure 4-6: The average computation times of the second simulation over 30 runs for both
models with an increasing number of inducing points, including the corresponding standard
deviations. Note the discrepancy in the values on the time axis.
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process regression and the SKI framework. For this experiment, the relative errors and the
computation times are determined to quantify the accuracy and efficiency of using the SKI
framework for magnetic field modeling. The data are collected as described in Section 3-5,
measured along a path walked in the motion capture lab of Delft Center for Systems and
Control (DCSC, 3mE building), Delft University of Technology. A two-dimensional top view
of the walked path and the height of the pelvis sensor with respect to the ground are shown
in Figure 4-7. The data set does not contain loop closures to avoid any inconsistencies in the
data, which can have undesirable effects on the estimation of the magnetic field as stated in
Section 3-5.

(a) Path pelvic sensor (b) Height pelvic sensor along path

Figure 4-7: Position estimates of the magnetic field measurements of the pelvis sensor in the
motion capture lab of DCSC, Delft University of Technology. The left figure shows the walked
path from above. On the right, the height of the pelvis sensor is shown as a function of the
distance along the path.

The magnetic field of the motion capture lab is estimated with all 2,500 measurements, using
both full Gaussian process regression and the SKI framework. The magnetic field is predicted
on a two-dimensional test grid of 50 × 50 points structured in the square [−5 m, −1 m] ×
[−1.6 m, 1.0 m] located at a height of 1.1088 m, which is the average of the measured height
of the pelvis sensor (see Figure 4-7b). The hyperparameters are determined by maximizing
the log marginal likelihood functions for full Gaussian process regression of equations (2-14)
and (2-19) with all 2,500 measurements. An overview of the optimized hyperparameters is
given in Table 4-2. For estimation of the magnetic field using the SKI framework, the sparse
interpolation matrices are computed using cubic convolution interpolation on an inducing
point grid of size 40 × 25 × 4, for a total of M = 4,000 inducing points. Quintic convolution
interpolation is avoided as the simulations showed its use only results in slight accuracy gains
with significant efficiency losses (see Section 4-2). For the preconditioned conjugate gradient
method (Algorithm 4), a residual tolerance of r⊤

i+1zi+1 = 10−8 is specified together with a
pivoted Cholesky decomposition rank of l(d) = 6 for d = 1, 2, 3. The predictive variances are
estimated using T = 200 Lanczos iterations (Algorithm 6).
The magnetic field estimated with the shared model is shown in Figure 4-8. It is easily ob-
served the approximation resembles the magnetic field estimated using full Gaussian process
regression well, with few noticeable differences. This is very similar for magnetic field estima-
tion with the scalar potential model, shown in Figure 4-9, although more minor differences
can be observed. Note the lack of boundary conditions near the domain regions, not requiring
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Table 4-2: Optimized hyperparameters for magnetic field estimation with motion capture suit
data.

Model ℓ σf σn

Shared 0.5319 m 0.0434 0.0266

Scalar potential 0.5799 m 0.0313 0.0266

the predictive mean and variance to revert to the prior mean and zero respectively, as is the
case with the established Laplace operator eigenbasis approximation for scalable magnetic
field modeling. The approximation errors for both models are quantified in Table 4-3 using
the relative error metric. To reduce the approximation errors further, more inducing points
can be used. The times required to make the predictions are shown in Table 4-4, which are
averaged over 30 runs. The use of the SKI framework results in significant speedups while
retaining acceptable accuracy levels. Its use is thus beneficial for magnetic field modeling
even for cases where full Gaussian process regression is computationally tractable.

Table 4-3: Approximation errors of the estimated magnetic field of the motion capture lab.

Model Component RE mean RE variance

x 2.32 × 10−4 7.09 × 10−4

Shared y 1.31 × 10−4 7.09 × 10−4

z 1.22 × 10−4 7.09 × 10−4

x 8.30 × 10−3 1.41 × 10−2

Scalar potential y 4.34 × 10−3 1.89 × 10−2

z 4.31 × 10−4 6.74 × 10−4

Table 4-4: Average computation times with corresponding standard deviations of the predictions
of the magnetic field in the motion capture lab over 30 runs.

Model Full SKI Average speedup

Shared 7.40 s ± 0.23 s 1.27 s ± 0.03 s 5.83×

Scalar potential 88.53 s ± 2.00 s 7.47 s ± 0.19 s 11.9×

4-4 Large-Scale Magnetic Field Modeling

In the previous experiment, it was shown the SKI framework can be used to efficiently estimate
magnetic fields using Gaussian process regression while retaining accuracy. The efficiency of
regression with the SKI framework allows for the use of larger data sets compared to full
Gaussian process regression, which becomes computationally intractable from roughly 10,000
measurements for the shared model and 3,300 for the scalar potential model. This feature of
the SKI framework is important for scalable magnetic field modeling, which is emphasized in
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(a) x-component: full (b) y-component: full (c) z-component: full

(d) x-component: SKI (e) y-component: SKI (f) z-component: SKI

Figure 4-8: The magnetic field of the motion capture lab estimated with the shared model.
The black dashed box shows the prediction boundaries.

(a) x-component: full (b) y-component: full (c) z-component: full

(d) x-component: SKI (e) y-component: SKI (f) z-component: SKI

Figure 4-9: The magnetic field of the motion capture lab estimated with the scalar potential
model. The black dashed box shows the prediction boundaries.
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this section through two experiments. In both experiments, the magnetic field in the hallway
of the 3mE building of Delft University of Technology is estimated with two large data sets
that are too large for full Gaussian process regression. The experiments are conducted with
the full data sets (no splitting for faster regression), so no transition regions are present in
the estimated magnetic fields. The data sets are collected as described in Section 3-5. The
first experiment is presented in Section 4-4-1, in which the magnetic field in one of the wings
of the 3mE hallway is estimated based on N = 21,931 measurements. In the second and final
experiment, presented in Section 4-4-2, the magnetic field of the full 3mE hallway is estimated
based on N = 41,383 magnetic field measurements.

4-4-1 Estimating the Magnetic Field of the Hallway Wing

In the first large-scale experiment, the magnetic field of one of the 3mE hallway wings is
estimated based on N = 21,931 magnetic field measurements along a two-way path in the
wing. The area of interest for this experiment is [−34 m, 34 m] × [−5.25 m, 5.25 m] located at
a height of 1.0677 m, requiring many inducing points to ensure good accuracy due to its size.
The magnetic field is estimated using the SKI framework with cubic convolution interpolation
on an inducing point grid of size 400 × 40 × 4, for a total of 64,000 inducing points. The
number of inducing points per dimension is chosen such that several inducing points are
present per characteristic length scale ℓ, which is the same as in the previous experiment.
The other hyperparameters are also the same, given by Table 4-2. These hyperparameters
are expected to result in a good estimation of the magnetic field, as the measurement sample
rate is the same (240 Hz) and the characteristics of the magnetic field are expected to be
similar. For estimation of the magnetic field using the SKI framework, the pivoted Cholesky
decomposition rank is set at l(d) = 5 along with a residual tolerance of r⊤

i+1zi+1 = 10−8 for
the preconditioned conjugate gradient method (Algorithm 4). A total of T = 500 Lanczos
iterations is used for the computation of the predictive variances (Algorithm 6).

The magnetic field is estimated on a two-dimensional test grid of 200 × 25 points (5,000
total) at a height of 1.0677 m. The magnitude of the magnetic field estimated with both
models is shown in Figure 4-10. The transparency of the predicted magnetic field denotes
the uncertainty at that location. The figures clearly show that the predictions near the
measurements are more certain than those further away, as can be expected. The shared
and scalar potential models result in similar estimated magnetic fields with minor differences.
Interesting features in the results are the low-value (blue) areas. The large low-value area in
the middle occurs due to the presence of lockers in the 3mE hallway wing. The small low-
value area at the start of the path is an elevator. The time required to estimate the magnetic
field with both models is given in Table 4-5. Due to the large number of test points, the time
associated with the computation of the test points is a significant part of the total time. The
computation times can be reduced by lowering the number of inducing points, although this
will result in a loss of accuracy. Contrarily, the accuracy of the estimated magnetic field can
be increased by increasing the number of inducing points at the cost of longer computation
times.
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Table 4-5: Computation times of the estimation of the magnetic field in the hallway wing.

Model Train Test

Shared 31.92 s 3.28 s

Scalar potential 58.46 s 17.48 s

4-4-2 Estimating the Magnetic Field of the Full Hallway

To further emphasize the scalability of modeling magnetic field using SKI for Gaussian process
regression, the magnetic field of the full hallway of the 3mE building is estimated based on
N = 41,383 measurements. The data are collected along a one-way weaving path covering
an area of interest of [−100.75 m, 100.75 m] × [−4.5 m, 4.5 m] located at a height of 1.0637 m.
The same hyperparameters are used for the estimation of the magnetic field again, given by
Table 4-2. Also, the same inducing point grid of size 400 × 40 × 4 is used for a total of 64,000
inducing points, ensuring at least one inducing point is present per characteristic length scale
ℓ. For estimation of the magnetic field, a residual tolerance of r⊤

i+1zi+1 = 10−8 is specified
for the preconditioned conjugate gradient algorithm (Algorithm 4) with a pivoted Cholesky
decomposition rank of l(d) = 5 for d = 1, 2, 3, and T = 500 Lanczos iterations (Algorithm 6).

In this experiment, the magnetic field is estimated at a height of 1.0637 m with a two-
dimensional test point grid again of size 200 × 25 for a total of N∗ = 5,000 test points.
The magnitude of the estimated magnetic field is shown in Figure 4-11 with the transparency
indicating the uncertainty of the prediction at that location. Similar to the previous experi-
ment, the models return the predictions with more certainty near the measurement path. The
right wing of the hallway is the area modeled in the previous experiment, where the low-value
(blue) areas occur due to the lockers and the elevator. The locations of these low-value areas
do not directly coincide with those in the previous experiment due to drift present in the
position estimates. The required computation times are given in Table 4-6. For estimation
with the shared model, three systems are solved with over 40,000 measurements and 5,000
test points per system in less than one minute. For the scalar potential model, effectively
solving a system with over 120,000 measurements and 15,000 test points in less than two
minutes.

Table 4-6: Computation times of the estimation of the magnetic field in the full hallway.

Model Train Test

Shared 44.77 s 3.05 s

Scalar potential 97.04 s 17.49 s
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(a) Shared model

(b) Scalar potential model

Figure 4-10: The magnitude of the predicted magnetic field of the 3mE hallway wing at a height
of 1.0677 m with both models. The red line shows the walked path. The transparency of the test
values indicates the uncertainty of the predictions.
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(a) Shared model

(b) Scalar potential model

Figure 4-11: The magnitude of the predicted magnetic field of the full 3mE hallway at a height
of 1.0637 m with both models. The red line shows the walked path. The transparency of the test
values indicates the uncertainty of the predictions.

Master of Science Thesis M.P.D. Fetter



46 Experimental Results

M.P.D. Fetter Master of Science Thesis



Chapter 5

Conclusions

Indoor positioning systems based on the magnetic field require accurate models of the mag-
netic field. An established approach for magnetic field modeling is Gaussian process re-
gression, which estimates the magnetic field at unvisited locations based on magnetic field
measurements with corresponding positions. Gaussian process regression is used as it is a
powerful approach for predicting non-linear data and it is modifiable depending on the ap-
plication. Additionally, uncertainty information of the predicted magnetic field is provided,
making Gaussian process regression suitable for use with (extended) Kalman filters and par-
ticle filters, both commonly used in magnetic field localization and SLAM algorithms. A
significant drawback of Gaussian process regression is the associated scalability issues, which
generally occur when over 10,000 measurements are used on a standard computer. Over the
past decades, scalable Gaussian process regression approximations have been researched ex-
tensively, of which only a few have been applied in the context of magnetic field modeling:
the Laplace operator eigenbasis approximation [14], which uses a limited number of basis
functions to approximate the kernel function, and approximations based on local experts [17],
estimating the magnetic field using several Gaussian process models on split data sets.

A favorable approach from literature for scalable Gaussian process regression which has not
been used for magnetic field modeling is the structured kernel interpolation (SKI) framework.
The SKI framework aims to speed up regression through M inducing points, forced into a
Cartesian grid structure for kernel interpolation. This grid structure allows for the exploita-
tion of fast matrix-vector multiplications (MVMs) through efficient Krylov subspace methods
for fast inference. The SKI framework has a lower computational complexity for magnetic
field modeling compared to the Laplace operator eigenbasis approach, reducing the computa-
tional complexity from O(NM2

bf) to O(K(N +3M4/3)) (for equal numbers of inducing points
per dimension; see Section 3-4-1 for further elaboration). K = J +2T ≪ N, M is based on the
numbers of conjugate gradient iterations J and Lanczos iterations T . However, the accuracy
of magnetic field estimation is not directly proportionate between the number of inducing
points M and the number of basis functions Mbf . Additionally, the SKI framework does not
require the prediction to revert to the prior near the boundaries. In this thesis, the SKI
framework has been applied to two distinct magnetic field models: the shared model, which
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predicts the three components of the magnetic field using three separate Gaussian processes
with shared hyperparameters, and the scalar potential model, which follows from Maxwell’s
equations assuming no magnetization and free currents are present in the domain of interest.
For the first research subquestion, the integration of the SKI framework in the shared and
scalar potential models for scalable magnetic field modeling is described in Chapter 3. The
squared exponential kernel used for magnetic field modeling is interpolated on the struc-
tured inducing points using cubic or quintic convolution interpolation. Additionally, the
grid-specific structure in the inducing points together with the squared exponential kernel
enable fast MVMs with the inducing point covariance matrix. Through the use of Krylov
subspace methods, most notably the preconditioned conjugate gradient method (Algorithm 4,
Section 3-4-2) and Lanczos tridiagonalization (Algorithm 6, Section 3-4-3), the fast MVMs
are exploited for efficient and scalable inference with the shared and scalar potential models.
Within the framework, the number of inducing points can be increased for more accurate
results at the cost of computation time.
For the second research subquestion concerning the performance of the SKI framework for
scalable magnetic field modeling in terms of accuracy and efficiency, the models were nu-
merically implemented and compared to full Gaussian process regression through simulations
and experiments with data collected with the motion capture suit in Sections 4-2 and 4-3.
It is shown the use of the SKI framework significantly speeds up magnetic field estimation
using Gaussian process regression while retaining accuracy, even for relatively small data sets
(∼ 5.8× and ∼ 11.9× for the shared and scalar potential models respectively with 2,500 three-
dimensional measurements at good accuracy levels). The speedups get exponentially larger
when more training points are used due to the cubic computational complexity associated
with full Gaussian process regression (O(N3)). For the simulations, both cubic and quintic
convolution interpolation were used for kernel interpolation, where quintic convolution inter-
polation is expected to have a higher accuracy at the cost of computation time when using the
same inducing point grid. In the simulations, however, it is shown the use of quintic convo-
lution interpolation does not necessarily lead to better results due to the two extra inducing
points required outside the domain of interest on each side per dimension (cubic convolution
interpolation has well-defined boundary conditions). For the experiments with magnetic field
measurements collected with the motion capture suit, only cubic convolution interpolation
was used.
For the final research subquestion concerning the scalability of the SKI framework for mag-
netic field modeling, experiments were conducted with magnetic field data sets that are too
large for full Gaussian process regression in Section 4-4. The first large-scale experiment
was conducted with a data set consisting of 21,931 three-dimensional magnetic field mea-
surements. The magnetic field was estimated at 5,000 test locations using 64,000 inducing
points. Estimation of the magnetic field only took about 35 seconds with the shared model
and roughly 75 seconds with the scalar potential model. To further demonstrate the scal-
ability, a second experiment was conducted using 41,383 three-dimensional magnetic field
measurements. Again, the magnetic field was estimated at 5,000 test locations using 64,000
inducing points. In this experiment, estimation of the magnetic field took about 48 seconds
with the shared model and roughly 115 seconds with the scalar potential model. While the
number of measurements was approximately doubled in the second large-scale experiment,
the computation time scaled less due to the split computational complexity (between the
number of training and inducing points) of the SKI framework for magnetic field modeling.
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To answer the main research question, scalable magnetic field modeling can be achieved
within the SKI framework through structured kernel interpolation with cubic convolution in-
terpolation and efficient Krylov subspace methods. Due to the low computational complexity
associated with the SKI framework for magnetic field modeling, many training points can be
used, more than the computational threshold for full Gaussian process regression. Through
experiments, it was demonstrated the framework can be used to construct magnetic field
maps based on over 40,000 three-dimensional magnetic field measurements in less than one
minute on a standard laptop.

The first direction suggested for further research concerns the numerical implementation of
the SKI framework. Algorithms in existing Gaussian process libraries may prove to be useful
for speeding up inference. The main library containing the SKI framework is GPyTorch [45].
While this library unfortunately does not contain all algorithms needed for the estimation of
the magnetic field with the scalar potential model, implemented algorithms can be studied for
faster inference, most notably the modified Batched Conjugate Gradient (mBCG) algorithm.
Additionally, by partitioning the MVMs required for the mBCG algorithm, advantage can be
taken of parallel computing to increase the number of training points that can be used [50].

The second suggested direction for further research direction concerns the desire to use mag-
netic field mapping methods and the suit in online settings, such as SLAM. Online mapping
requires sequential estimation, which, for magnetic field modeling, is currently possible with
the existing Laplace operator eigenbasis approach [14]. This approach has been used in vari-
ous SLAM applications [8, 18]. Sequential estimation within the SKI framework has already
been researched and proposed in existing literature [51], which can be tailored to suit mag-
netic field modeling using the shared and scalar potential models. In an experimental setup
for sequential estimation with suit data, either model may be used, depending on the desired
properties of the model.

The final suggested research direction considers the omission of the constant and linear kernel
functions in the shared and scalar potential models throughout this thesis, removing the
uncertainty estimation of the constant deviation of Earth’s magnetic field. These kernel
functions were omitted as the linear kernel function is a dot product kernel, which does not
lead to any favorable structure in the covariance matrix for fast MVMs. If the linear kernel
function could be approximated for favorable structure, fast MVMs can be enabled similarly
to fast MVMs with an added constant kernel function as described in Appendix A. This allows
for the estimation of the constant deviation of Earth’s magnetic field through hyperparameter
optimization. Scalable hyperparameter optimization for magnetic field modeling using the
SKI framework has not been used in this thesis but is described in Appendix B.
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Appendix A

Additive Composite Kernel
Matrix-Vector Multiplications

When adding the constant kernel to the squared exponential kernel for estimation of the
constant deviation of Earth’s magnetic field, the structure of the covariance matrix Ku,u
changes. As a result, the composite kernel no longer decomposes as a product kernel over
dimensions, supposedly losing the ability to exploit fast MVMs. Fortunately, as summed
kernels mean the covariance matrices can simply be summed, fast MVMs exploiting the
structure of Ku,u are still enabled, following the relation

Ku,uvf =
(
Kconst.

u,u + KSE
u,u

)
vf

= Kconst.
u,u vf + KSE

u,uvf .
(A-1)

One would expect twice the number of MVMs to be required for inference with this composite
kernel. However, multiplication of the constant covariance matrix Kconst.

u,u with vf ∈ RM is
trivial, given Kconst.

u,u vf = vu ∈ RM , where vu can be efficiently formulated as vu = (σ2
c 1⊤vf )1.

To use the composite kernel with the preconditioned conjugate gradient method, a good
preconditioner is required. As mentioned in Section 3-4-2, the preconditioner P is computed
based on the pivoted Cholesky decomposition of Ku,u. For the composite kernel, it is defined
by the pivoted Cholesky decompositions of the constant covariance matrix and the squared
exponential covariance matrix, i.e.,

Ku,u = Kconst.
u,u + KSE

u,u

≈ Lconst.
L

(
Lconst.

L

)⊤
+ LSE

L

(
LSE

L

)⊤
.

(A-2)

Both pivoted Cholesky decompositions decompose as Kronecker products similar to equa-
tion (3-29). Computation of the pivoted Cholesky decompositions of Lconst.

L and LSE
L per

dimension is described by Algorithm 5. While for LSE
L the pivoted Cholesky decomposition

per dimension is computed for the l(d)-rank, Lconst.
L only requires the 1-rank pivoted Cholesky
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decomposition, given Kconst.
u,u is constant matrix. This allows for a new formulation of the

preconditioner P, expressed as

P = Wf

(
Lconst.

1

(
Lconst.

1

)⊤
+ LSE

L

(
LSE

L

)⊤
)

W⊤
f + σ2

nI

= Wf Lconst.
1

(
Lconst.

1

)⊤
W⊤

f + Wf LSE
L

(
LSE

L

)⊤
W⊤

f + σ2
nI

=
[
Wf Wf

] [Lconst.
1 0
0 LSE

L

](Lconst.
1

)⊤ 0
0

(
LSE

L

)⊤

[W⊤
f

W⊤
f

]
+ σ2

nI

= Wf LL⊤W⊤
f + σ2

nI,

(A-3)

where Wf ∈ RN×2M and L ∈ R2M×(L+1). Computation of P−1r then follows similar to
equation (3-31), i.e.,

P−1r =
(
Wf LL⊤W⊤

f + σ2
nI
)−1

r

= 1
σ2

n
r − 1

σ4
n

Wf L
(

I + 1
σ2

n
L⊤W⊤

f Wf L
)−1

L⊤W⊤
f r.

(A-4)

Solving this system has an associated computational complexity of O(2M(L + 1)2).
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Appendix B

Scalable Hyperparameter Optimization
for Magnetic Field Modeling

Similar to the predictive distributions, optimization of the hyperparameters for magnetic
field modeling can also be approximated within the SKI framework. This appendix describes
hyperparameter optimization using the SKI framework for the shared and scalar potential
models. The approach has not been used in the thesis, as it has not been implemented
successfully; Julia’s optimizers did not reach convergence with the described approach. This
appendix provides the necessary theoretical background for future numerical implementations.

Hyperparameter optimization of the shared and scalar potential models in the SKI framework
is done by maximizing modified versions of their log marginal likelihood functions, which are
given by equations (2-14) and (2-19). The modified log marginal likelihood function for the
shared model is given by

log p(Y|θ) = −1
2

3∑
d=1

((
Y(d)

)⊤ (
Wf Ku,uW⊤

f + σ2
nI
)−1

Y(d)
)

−

3
2 log

∣∣∣Wf Ku,uW⊤
f + σ2

nI
∣∣∣− 3N

2 log 2π,

(B-1)

where A = Wf Ku,uW⊤
f +σ2

nI. For the scalar potential model, the differentiated interpolation
scheme of equation (3-7) is used, resulting in the log marginal likelihood function given by

log p(Y|θ) = −1
2 vec

(
Y⊤

)⊤ (
(∂Wf ) Ku,u (∂Wf )⊤ + σ2

nI
)−1

vec
(
Y⊤

)
−

1
2 log

∣∣∣(∂Wf ) Ku,u (∂Wf )⊤ + σ2
nI
∣∣∣− N

2 log 2π,

(B-2)

where ∂A = (∂Wf )Ku,u(∂Wf )⊤ + σ2
nI.

Fortunately, the modified log marginal likelihood functions can be computed efficiently within
the SKI framework. Computation of the data fit requires the same approach as the solution to
the linear system of equation (3-24). The optimal solution to the linear system can be found
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using the preconditioned conjugate gradient method and only needs to be left-multiplied by
(Y(d))⊤ or vec(Y⊤)⊤ for the shared and scalar potential models respectively to find the data
fit. The computation of the complexity penalty is slightly more complicated. Its associated
computational complexity is based on the computation of the log determinant of a matrix of
size N × N for the shared model and 3N × 3N for the scalar potential model. The standard
procedure for full Gaussian process regression is to use the Cholesky decomposition, which is
undesirable due to the associated cubic computational complexity [19]. A scalable approach
for estimation of the log determinant in the SKI framework is based on stochastic trace
estimators, exploiting fast MVMs through the Lanczos tridiagonalization algorithm [52].
This approach relies on the equality between the log determinant and the trace of the matrix
logarithm, expressed as

log |A| = tr(log(A)) (B-3)

The trace of log(A) can also be expressed as

tr(log(A)) = E
[
z⊤ log(A)z

]
, (B-4)

where z ∈ RN is a random probe vector with zero mean and variance one, often chosen
to be vectors with random Rademacher variables as its entries, i.e., zi ∈ {−1, 1} for i =
1, 2, . . . , N [52]. The trace is then stochastically estimated as the mean over Nz random probe
vectors. Estimation of log |A| is done using the connection between the Gaussian quadrature
rule and the Lanczos algorithm [52], and is described by Algorithm 7 [53]. Relatively few
probe vectors and Lanczos iterations are required for a good estimation, where just 5 probe
vectors are needed with 25 Lanczos iterations each for a good approximation on almost 60,000
training points [52]. As the scalable log determinant approach is based on fast MVMs, its
use fits right into the SKI framework. Using the sparse interpolation matrix Wf and the
Kronecker structure in Ku,u for fast MVMs, the log determinant can be computed efficiently.
Again, as was the case for the computation of the predictive distribution of the scalar potential
model, the log determinant for the scalar potential model can be approximated by substituting
∂A for A and ∂Wf for Wf .
In numerical implementations, gradients are often specified so efficient gradient-based opti-
mization algorithms can be used for faster convergence to the optimum. The log marginal
likelihood functions for the shared and scalar potential models in the SKI framework of equa-
tions (B-1) and (B-2) can be differentiated with respect to the hyperparameters θ. These
differentiated log marginal likelihood functions for the shared and scalar potential models are
respectively given by

∂

∂θk
log p(Y|θ) = 1

2

3∑
d=1

((
Y(d)

)⊤
A−1 ∂(A)

∂θk
A−1Y(d)

)
− 3

2 tr
(

A−1 ∂(A)
∂θk

)
, (B-5)

∂

∂θk
log p(Y|θ) = 1

2 vec
(
Y⊤

)⊤
(∂A)−1 ∂(∂A)

∂θk
(∂A)−1 vec

(
Y⊤

)
− 1

2 tr
(

(∂A)−1 ∂(∂A)
∂θk

)
,

(B-6)
which are differentiated using the derivative of inverse and derivative of log determinant
relations [10]. These relations are given by

∂

∂θk
A−1 = −A−1 ∂(A)

∂θk
A−1, (B-7a)
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∂

∂θk
log |A| = tr

(
A−1 ∂(A)

∂θk

)
. (B-7b)

The matrix ∂(A)
∂θk

is computed elementwise using the derivatives of the kernel function. The
derivatives of the squared exponential kernel used for magnetic field modeling are given by

∂

∂ℓ
κSE(x, x′) = σ2

f exp
(

−||x − x′||2

2ℓ2

)
||x − x′||2

ℓ3 , (B-8a)

∂

∂σf
κSE(x, x′) = 2σf exp

(
−||x − x′||2

2ℓ2

)
, (B-8b)

The derivative of the covariance matrix with respect to the noise hyperparameter is given by

∂(A)
∂σn

= 2σnI. (B-9)

For the efficient computation of the gradients of the log marginal likelihood functions, the
only additional requirements are the computation of the gradient of the log determinant and
the specification of an MVM approach with each ∂A

∂θk
(or ∂(∂A)

∂θk
).

For fast MVMs with each ∂A
∂θk

(or ∂(∂A)
∂θk

, the MVM approach is based on the structure in the
differentiated covariance matrix ∂

∂θk
Ku,u. Fast MVMs involving the derivative with respect to

the noise hyperparameter are trivial, given the differentiated covariance matrix is diagonal.
For the signal variance σf , fast MVMs can be achieved as described in Section 3-4-1 with
the modified kernel function of equation (B-8b). Fast MVMs involving the characteristic
length scale ℓ derivative are less straightforward. The kernel function of equation (B-8a)
cannot be expressed as a product over grid dimensions. Fortunately, a favorable structure
in the differentiated covariance matrix is still present as the kernel function is stationary
(κ(x, x′) = κ(x − x′)). This results in a symmetric block-Toeplitz with Toeplitz blocks
(BTTB) matrix [40]. Toeplitz matrices allow for fast MVMs via circulant embeddings, which
are computationally attractive as their eigendecomposition is efficiently computed with the
fast Fourier transform (FFT). This approach can be extended to BTTB matrices using the
multi-dimensional FFT. For further elaboration, see the paper by Wilson et al. [40].

The gradient of the log determinant for the complexity penalty can be computed as a byprod-
uct of the Lanczos tridiagonalization algorithm executed for the non-differentiated log deter-
minant (see Algorithm 7). The differentiated log determinant can then also be stochastically
estimated [52], which can be efficiently computed using the fast MVMs described in the
previous paragraph through the expression

tr
(

A−1 ∂(A)
∂θk

)
= E

[(
A−1z

)⊤
(

∂(A)
∂θk

)
z
]

≈ E
[(

Qk

(
T−1

k

[
1 0 . . . 0

]⊤
||z||

))⊤ (∂(A)
∂θk

)
z
]

,

(B-10)

Fast computation of the data fit, the complexity penalty, and their derivatives allows for scal-
able hyperparameter optimization for magnetic field modeling using efficient gradient-based
optimization algorithms, such as the (L-)BFGS algorithm. Many magnetic field measure-
ments can be used, even above the prohibitive threshold for full Gaussian process regression
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(approximately 10, 000 and 3, 300 for the shared and scalar potential models respectively).
The optimization parameters are θ = [ℓ σf σn]⊤, as the constant and linear kernels are
omitted due to the lack of favorable structure introduced by the linear kernel (see Section 3-
4-1). In numerical implementations, their exponentiated versions are used as described by
equation (2-7) to ensure the found hyperparameters are positive without constraining the
optimization problem.

Algorithm 7 Estimation of the matrix log determinant log |A| [53]

Input: Ku,u ∈ Rm(d)×m(d) for d = 1 to D, Wf ∈ RN×M , σn, Nz

Output: approximated log |A|
1: for k = 1 to Nz do
2: generate random Rademacher vector zk ∈ RN

3: normalize zk to find probe vector zprobe
4: compute TT using the Lanczos algorithm with probe vector zprobe (Algorithm 6)
5: compute the eigenvalues λ and the eigenvectors e of TT

6: define τt as the first element of the tth eigenvector et

7: zk log(A)zk ≈
∑T

t=1 τ2
t log(λt)

8: end for
9: log |A| ≈ N

Nz

∑Nz
k=1 zk log(A)zk
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Glossary

List of Acronyms

BTTB Block-Toeplitz With Toeplitz Blocks

DCSC Delft Center for Systems and Control

D-SKI Structured Kernel Interpolation With Derivatives

FFT Fast Fourier Transform

FITC Fully Independent Training Conditional

GPS Global Positioning System

IMU Inertial Measurement Unit

(L-)BFGS (Limited-Memory) Broyden-Fletcher-Goldfarb-Shanno

LOVE LanczOs Variance Estimates

mBCG modified Batched Conjugate Gradient

MSLL Mean Standardized Log Loss

MVM Matrix-Vector Multiplication

MVNX MVN Open XML Format

RE Relative Error

RMSE Root-Mean-Square Error

SKI Structured Kernel Interpolation

SLAM Simultaneous Localization and Mapping

SoR Subset of Regressors
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