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Abstract 
In this study, we use a complex network analysis approach to investigate the topological structure of container shipping networks 
in the Indonesia archipelago to understand the network topology. Containerized cargo is responsible for more than half of the 
inter-island trade volume, making it one critical freight transport mode in the Indonesia archipelago. We summarize the network 
topological structure by measures such as degree distribution, average path length, and average clustering coefficient. Based on 
the initial result, we find that the degree distribution of the container shipping network in archipelago fits a hybrid distribution. 
The distribution proves the studied network is not scale-free. With regards to the network structure, the archipelago’s shipping 
network exhibits a short path length and a low value of the clustering coefficient, potentially rejecting the small-world structure 
hypothesis. These initial findings provide evidence that the maritime shipping network in a large-scale archipelago shows a 
distinctive pattern compared to other maritime shipping networks in the existing literature. 

Keywords: maritime shipping network, complex network, large-scale archipelago, network topology, Indonesia 
 
 

1. Introduction 

The maritime transport network is the backbone of 
both international and domestic seaborne trade, which 
shapes global economic growth. According to the 
statistics from the United Nations (2018), global 
seaborne trade continuously expands at 4 percent 
annually with total trade volumes reaching 10.7 billion 
tons in 2018. Overall, seaborne transportation carries 
70 percent of the value and around 80 percent of the 
global trade volume. Container shipping has a 
significant role in shaping the network, as 70% of total 
seaborne trade volume is being moved in containers. 
From this perspective, Hu & Zhu (2009) argues that 
container shipping networks are the backbone of 

maritime transport for freight movement, thus 
improving its quality can remove global and regional 
trade barriers to accelerate economic growth 
(Veenstra, 2015). 

Container shipping networks consist of various 
elements that form a complex transport network 
system. Multiple elements contribute to defining the 
container shipping network: seaports as nodes, 
container shipping services as links, the volume of 
goods transferred as flows, and the organization of 
container transport chains as interconnected shipping 
corridors (Rodrigue, 2020). The complexity of 
networks, which provide inevitable challenges for 
transport authorities to design them efficiently, 
contributes to increasingly long time delays and high 
maritime logistics costs in container shipping line 
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operations (Yercan & Yildiz, 2012). 

As the increasing demand of container shipping 
creates a growth in the network load, scholars and 
transport analysts should find a way to obtain an 
accurate overview of the network complexity, which 
later allows them to address specific transport-policy 
problems in the network. Watts & Strogatz (1998) 
suggest the identification of network topology as a 
starting point to understand a complex real-world 
network. A notable work by Strogatz (2001) found that 
different network topology could affect particular 
network functions and performance, which implies the 
importance of network topology identification in 
transport systems. 

Previous studies showed great efforts have been 
devoted to empirically find containership network 
topology in the maritime transportation system. Peng 
et al. (2018), Li et al. (2015), Ducruet & Notteboom 
(2012), Kaluza et al. (2010), and Hu & Zhu (2009) 
unveiled the topology of global containership network 
to achieve an understanding of global trade patterns 
and ports hierarchical structure worldwide. The works 

by Liu, Wang, & Zhang (2018) and Fraser et al. (2016) 
analyzed the network topology of regional 
containership networks in Asia and Southern Africa to 
analyze the topological evolution and its functional 
position in the global maritime network. On a national 
level, we found that the topological analysis of 
container shipping networks is dominated by studies 
on maritime transport in China (Changhai, Shenping, 
Fancun, & Shaoyong, 2020; B. Hu & Zong, 2013).  

This article investigates for the first time, according 
to the best of our knowledge, a national-level 
topological analysis in a large-scale archipelago. In this 
study, we used empirical data from Indonesia which is 
a large-size archipelago with six main islands and 
17,508 small-islands divided into 34 administrative 
provinces. Indonesia is heavily dependent on maritime 
transport network since up to 89% of its domestic trade 
is carried out by seaborne transportation (Hanafi, 
2018). Besides, Indonesia has more than 10,043 
national vessels, 1,415 routes, and 191 connected ports 
that form the complex containership network, of which 
a simplified illustration is shown in Figure 1.  

 
Figure 1. A simplified illustration of the Indonesia container shipping network. Note this illustrates less than 5% of total routes in reality 

 

This study aims to unveil the network topology of a 
large-scale archipelago country. A comprehensive 
topological analysis of a large-scale archipelago using 
complex network analysis is presented to enrich the 
existing literature, which mainly focuses on global or 
multi-national scale network analysis. We expect that 
the result of our study could provide insight for related 
transport authorities to identify what kind of network 
topology exists in a large-scale archipelago maritime 
network and use the given information to address more 

specific transport-policy problems. 

2. Literature review 

Network topological analysis has emerged as a research 
topic in maritime transport since the advances in 
network theory and computational capabilities in the 
mid-2000s. The advances of network theory allow 
scholars and transport analysts to measure some basic 
topological properties, such as the average path length, 
clustering coefficient, and degree distribution of a 
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complex network (Newman, 2003). As the further step 
of basic properties analysis, scholars are interested in 
comparing the topological properties with theoretical 
models that can be useful to identify the real-world 
network structure. 

Some theoretical models in network theory, such as 
random, scale-free, small-world, and broad-scale 
models, were found to be particularly relevant in 
explaining the topological properties of transport 
system structure. In random networks, a new link 
between any pair of nodes occurs randomly with an 
equal probability (Erdös & Rényi, 1959). A scale-free 
network has a degree distribution that follows a power 
law, which implies the high-degree nodes in a network 
connect preferentially with other nodes with high-
degree properties (Barabási & Albert, 1999). Small-
world networks are densely connected in local regions, 
generally exhibiting a small path length and high 
clustering coefficient value (Watts & Strogatz, 1998). 
Last, broad-scale networks are characterized by the 
power-law degree distribution covering some limited 
nodes, followed by a sharp cutoff for the others 
(Amaral, Scala, Barthelemy, & Stanley, 2000). 

Previous research often mentioned that scale-free 
and small-world models are fit to describe real-world 
maritime networks. Peng et al. (2018) stated that the 
scale-free characteristics exist in the global container 
shipping network, supporting the works by Li et al. 
(2015) and Ducruet & Notteboom (2012). Liu et al. 
(2018) described the maritime network communities in 
Asia, Europe, North America, and Africa belong to a 
scale-free network class, while South America and 
Oceania networks belong to small-world networks. 
Another topological study in East-west container 
shipping corridor, which connects North America, 
Europe, and East Asia, confirms that the studied 
network is scale-free (Tran & Haasis, 2014). Scale-free 
properties also can be found in the China shipping 
network (Hu & Zong, 2013). The work by Tsiotas & 
Polyzos (2015), who analyzed the topology of the Greek 
maritime network (GMN), is the only study on 
archipelago maritime networks using a complex 
network approach and it confirms that the Greek 
maritime network exhibits scale-free properties.  

In this study, we focus on network analysis of 
Indonesia as an opportunity to capture and understand 
the maritime network characteristics in a large-scale 
archipelago. As a large-scale archipelago country, 
Indonesia's total area is about 9.8 million square 
kilometers, of which 1.9 million square kilometers 
consist of land areas that scattered into more than 
17,508 islands, and the rest are sea territory. As a 
consequence of its heavily fragmented land, Indonesia 
has considerable challenges of removing trade barriers 
between islands. Hence, the container shipping 
network plays critical roles as a primary freight 
transport mode to facilitate inter-regional trade, in 

which absence of transportation could isolate 
particular islands in the network (Tu, Adiputranto, Fu, 
& Li, 2018).  

Given the scarcity of studies on maritime network 
topology in large-scale archipelagos, our main 
contributions are to provide an in-depth analysis to 
find its network topological patterns. Afterward, we 
compare its network properties with several network 
models in complex network theory to identify the 
similarities and differences to our network. Different 
from an earlier topological analysis of the archipelago 
network (Tsiotas & Polyzos, 2015) that utilized official 
statistics record to model the network topology, we 
extracted and analyzed the trajectories of individual 
containerships from the automatic identification 
system (AIS) data. Hence, we could identify Indonesia’s 
containerships sailing schedules with a more accurate 
description of movements and therefore provide a 
better preparation for describing its complexity. The 
analysis based on the real containership trajectories is 
thus more informative to unveil the maritime network 
structure and to provide insightful knowledge for 
national policy decisions in transportation systems 
concerning the efficiency, stability, and growth of 
inter-regional trade. 

3. Materials and Methods 

We constructed the Indonesia container shipping 
network as a connected graph adopting the notations 
used in graph theory (Diestel, 2017) and analyzed its 
topological properties with complex network analysis 
(Newman, 2003). In this study, a complex container 
shipping network is a graph 𝐺 = (𝑉, 𝐸)  with a set of 
vertices (V) and edges (E). A vertex or node represents a 
container seaport where containerships are taking 
stops to load or unload its cargo, while an edge 
represents a connection that containerships travel 
directly between a pair of seaports. This section 
provides the details of how we collect data to construct 
the network model. In addition, we explain the analysis 
and introduce the quantitative indicators for 
measuring the network structure. 

3.1. Data sources 

Topological analysis of maritime network in 
archipelago required detailed knowledge of ship 
movements, which consist of ships’ departure and 
arrival times at their port of calls. Since 2001, ports and 
vessels have installed the AIS equipment that provides 
the capability of real-time vessel movement tracking. 
The main aim of this technology installation is to avoid 
collisions between vessels and aid ports with 
improving their security. However, this technology 
opens the opportunity to advance maritime transport 
research by providing precise arrival and departure 
records for each registered ship. 
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Figure 2. Workflow of the complex network analysis conducted in this study 

 

In this study, we analyzed Indonesia’s container 
shipping network based on Sea/Net, an online ship 
tracking system available online from Clarksons 
Research (www.clarksons.net), that records the 
departure and arrival time of the vessels in 2019. In 
addition, we also referred to data records from 
Indonesia government, such as Indonesia sea 
transportation statistics and inter-regional trade data 
(BPS, 2019b, 2019a), and a list of registered vessels 
from the Ministry of Transportation to crosscheck the 
validity of data we obtained from AIS.  

We restricted our study to analyze the 
containerships under the Indonesian flag with a 
capacity between 100-6,000 twenty-foot equivalent 
units (TEUs) that make up 78% of the total capacity for 
cargo ship transport in Indonesia. From this filtering, 
we selected all 512 container vessels, taken as 
representatives of Indonesian container traffic, serving 
191 ports within the network where AIS data are 
available. For each containership, we analyzed the 
trajectory from AIS records and found there were 1,415 
round trip journeys linking 400 distinct pairs of ports. 
For each link from port i to j in the network, we assigned 
a weight 𝑤𝑖𝑗 equal to the sum of the containership 
capacity that has traveled on the link measured in TEUs. 
If the containership is sailing more than once from port 
i to j, its capacity contributes multiple times to 𝑤𝑖𝑗. Note 
that we combined trajectories of three different types 
of containership services: domestic commercial, public 
service obligation, and international commercial 
service that connect Indonesia ports with other 
countries to obtain a high-level description of 
complete container shipping networks in a large-scale 
archipelago. 

3.2. Complex network analysis approach 

Complex network analysis is an approach to describe 
the network’s topological structure by using global-
level metrics and comparing its properties with general 
theoretical models (i.e., small-world and scale-free 

networks). In this paper, we use the definition of 
network topology as the arrangement and connectivity 
of network elements, consisting of nodes and links that 
provide an abstract representations of a complex 
transportation system (Zhang, Miller-Hooks, & Denny, 
2015). The conceptual detail of complex network 
analysis procedure in this study is shown in Figure 2. 

In this subsection, we present several essential 
indices that we used to quantify the network properties 
and the reasoning why we choose those metrics as the 
network assessment indicators. In general, we selected 
the metrics because of its powerful features to point out 
the network topology, yet relatively easy to compute. A 
study by Wang et al. (2011) showed how these metrics 
are helpful as a testbed when comparing a real-world 
model to a theoretical one; Therefore, the result can be 
used to uncover what type of topology a network has. 

3.2.1. Degree, average degree and degree distribution 

In complex network theory, a degree 𝑘𝑖 represents the 
number of direct connections that a node i has with 
other nodes in the network. It is defined based on the 
sum of the values in either its respective row or column 
in the adjacency matrix. Note that when there is an edge 
from node i to j, the element 𝑎𝑖𝑗  in the matrix is 
expressed in: 

𝑘𝑖 = ∑ 𝑎𝑖𝑗

𝑗∈𝑉
 

 (1) 

The degrees are straightforward indicators to 
distinguish the centrality level of a node, which 
becomes a fundamental concept for topological 
analysis as demonstrated in social networks (Freeman, 
1977, 1978). Generally, the most central nodes must be 
the ports that provide a high number of direct shipping 
services to the other ports.  

In the network-level assessment, we adopt the 
average degree 〈𝑘〉  to express the average number of 
direct connections with neighbors that a node has in 

http://www.clarksons.net/
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the network, which can be expressed as: 

〈𝑘〉 =
1

𝑛
 . ∑ 𝑘𝑖

𝑛

𝑖=1

 (2) 

Following the degree and average degree 
calculation, we also enumerate the degree distribution 
to discover the degree heterogeneity of ports. Barabasi 
and Albert (1999) define degree distribution P(k) as a 
mathematical function expressing the occurrence 
probability of nodes in connection to a certain degree 
( 𝑛𝑘 ).  Degree distribution is essential properties to 
unveil which theoretical models the real-network 
belongs to. For instance, the degree distribution of 
network with scale-free features should follow a power 
law, while the degree distribution in a classic random 
network exhibits Poisson distribution. 

3.2.2. Average path length 

The average path length 〈𝐿〉 metric describes the mean 
value of all node-pairs shortest path in the network 
(Watts & Strogatz, 1998). This measure corresponds to 
the average path length of all available port pairs 
connection in the Indonesia container shipping 
network. This metrics is essential to investigate the 
efficiency of freight transport on the network by 
quantifying its scale of distance that this network could 
serve, written as: 

〈𝐿〉 =
1

𝑛(𝑛 − 1)/2
 . ∑ 𝑑𝑖𝑗

 

𝑖>j

 
(3) 

Where 𝑑𝑖𝑗  is the sum of steps along the shortest paths 
from all existing pairs of nodes. The analysis could be 
extended to find network diameter d, where d is the 
maximum value of all 𝑑𝑖𝑗. 

3.2.3. Clustering coefficient 

The clustering coefficient of node i, 𝐶𝑖  expresses the 
number of triangles shaped by the node. This 
coefficient implies the portion of actual links between 
the nodes within its neighborhood divided by the 
maximum possible edges between them (Latapy, 2008; 
Watts & Strogatz, 1998), written as: 

𝐶𝑖 =
𝐸𝑖

𝑘𝑖(𝑘𝑖 − 1)/2
 (4) 

In the context of maritime shipping networks, the 
clustering coefficient is a fundamental metric to 
quantify the local connectivity around a port as it points 
out the intensity of triangles around a node. A higher 
𝐶𝑖  value means that the port has more connections 
within its neighbors, which means that the nodes are 
more likely to reach one another within short transfers. 
For network-level measurement, we use the average 
clustering coefficient 〈𝐶〉, which expresses the average 
value of all individual 𝐶𝑖’s, presented as: 

〈𝐶〉 =
1

𝑛
 . ∑ 𝐶𝑖

 

𝑣𝑖∈𝑉

 (5) 

4. Results and Discussion 

4.1. Descriptive analysis of the network 

In general, the Indonesia container shipping network 
consists of 191 commercial ports where 400 pairs of 
ports are connected with containership services. Table 
1 summarizes the overview of the Indonesia container 
shipping network, including its network size and some 
basic topological properties. 

The shipping network has a maximum node degree 
𝑘𝑚𝑎𝑥(𝐺) = 91 that belongs to the Port of Tanjung Perak 
in Surabaya, making it the most central port in 
Indonesia's domestic seaborne trade. Another high 
degree node is the Port of Tanjung Priok in Jakarta with 
a degree value of 84. This port is a central 
transshipment hub for international trade. The 
minimum degree found in this network is 𝑘𝑚𝑖𝑛(𝐺) = 1, 
implying the existence of lateral ports in remote 
regions, which has a single direct link to another port. 
This single link can be considered as a critical link, in 
which the absence of it could isolate the node from 
trade connection to other regions. 

Table 1. Topological properties of the Indonesia container shipping 

network  

Metric Indonesia container network 
(2019) 

Network Size  
No. nodes (𝑛) 13 
No. edges (𝑚) 400 
Max. degree (𝑘𝑚𝑎𝑥) 91 (Port of Surabaya) 
Min. degree (𝑘𝑚𝑖𝑛) 1 
Average degree 〈𝑘〉 2.094 
Graph density 0.068 
  
Topological properties  
Average clustering 
coefficient 〈𝐶〉 

0.193 

Average path length 〈𝐿〉 2.943 
Modularity 0.314 
Degree distribution 𝑃(𝑘) fit Exponentially truncated 

power-law 
Degree distribution class Broad-scale network 

The average node degree 〈𝑘〉  of the Indonesia 
container shipping network is 2.094, which means the 
average number of direct links between a pair of ports 
is approximately 2 for each node in the network. In 
comparison with the network’s highest degree value 
(𝑘𝑚𝑎𝑥 = 91) , the low average degree score provides 
evidence of extreme degree heterogeneity in the 
network. This low score of average degree contributes 
to a low graph density score of 0.068. This finding 
means the extremely low proportion of all possible 
connections in the network. The rest of Table 1 shows 
the quantitative topological properties, which we 
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discuss in more detail in the following subsection. 

4.2. Topological analysis of the network 

This subsection mainly discusses the topological 
properties of the Indonesia shipping network to 
recognize its pattern and draw a conclusion about its 
structure. The type of network topology is derived from 
its degree distribution 𝑃(𝑘), average path length 〈𝐿〉 and 
average cluster coefficient 〈𝐶〉. 

4.2.1. Broad-scale network characteristics 

The degree distribution is an important metric in 
network analysis once we have obtained a degree for all 
nodes because it is useful to understand how these 
measures are distributed across the network. In the 
context of maritime shipping networks, the degree 
distribution allows us to determine whether our 
network contains hub and lateral ports, thus providing 
understanding in the potential influence that this port 
structure has on the maritime network function and 
performance. Once identified, the degree distribution 
can be compared to theoretical network models 
available in the literature to find out its theoretical 
explanation about network growth mechanism 
processes that have shaped the existing network 
topology. 

At first, the degree distribution of Indonesia 
container shipping network exhibits a right-skewed 
degree distribution and seems to follow the power-law 
distribution 𝑃(𝑘)~ 𝑘−𝛾 , as shown in Figure 3, with 
power-law parameter 𝛾 = 1.055  and coefficient of 
determination 𝑅2 = 0.894. Note that we cannot directly 
conclude that the network is scale-free, as the network 
should retain the power-law parameter to 2 < 𝛾  < 3 
(Barabási, 2009; Barabási & Albert, 1999; Broido & 
Clauset, 2019). To obtain further evidence of power-
law fitness, we plot the corresponding cumulative 
distribution functions on logarithmic scales. As shown 
in Figure 4, the degree distribution of the Indonesia 
container shipping network does not appear as a 
straight line on logarithmic axes, while true scale-free 
networks demonstrate consistent scaling behavior 
across all scales. 

 
Figure 3. Degree distribution in the Indonesia container shipping 
network is right-skewed, with the ‘thin’ tail of distribution 
corresponding to a very low probability of finding high degree nodes 
in the network.  

 
Figure 4. Degree distribution in the Indonesia container shipping 
network plotted on logarithmic axes appears as power-law fit over a 
limited range of degree, before showing an exponential decay above 
the cutoff value. 

Table 2. Result of Chi-Square goodness of fit test for the degree 

distribution of container shipping networks in Indonesia 

Distributi
on 𝑃(𝑘) 

𝑘 ≤ 13 𝑘 > 13 
p-value p-value 

Power-
law 

𝑃(𝑘) =  0.4648𝑘−1.398 0.875 0.001 

Exponent
ial 

𝑃(𝑘) = 0.0569𝑒−0.059𝑘 0.000 0.843 

 
In addition, we conducted the Chi-Square 

goodness of fit test to compare the observed degree 
distribution with the expected theoretical distribution, 
as the determination of power-law characteristics 
through curve fitting has been criticized (Broido & 
Clauset, 2019; Newman, 2003). The statistical test 
result, as shown in Table 2, points out that for the 
degree below around 13 (𝑘 ≤ 13) , the power law 
distribution is a good fit on the network with 𝛾 = 1.398 
and a p-value of 0.875, which means we cannot reject 
the null hypothesis. However, for the degree 
distribution above around 13 (𝑘 > 13) , the 𝑃(𝑘)  better 
fits the exponential than power law distribution with 
p-values of 0.843 and 0.001 respectively. This finding 
provides us with insight that the Indonesia container 
shipping network follows an exponentially truncated 
power-law degree distribution, which is different to 
right-skewed degree distributions in scale-free 
networks. Rather than scale-free, we conclude that the 
maritime shipping network in the archipelago belongs 
to a broad-scale network. 

This finding is interesting because it points out that 
the maritime structure in a large-scale archipelago is 
different from the global-scale maritime networks 
which are often scale-free (Hu & Zong, 2013; Peng et al., 
2018). In the international and global maritime 
networks, the volume of trade flows is often higher and 
growing faster than the trade flow of national network. 
This fact encourages strategic international ports in 
each country to evolve sometimes faster than the 
economic growth rates of their countries to induce 
economies of scale in global trade markets.  
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In contrast, the evolution of national maritime 
networks seems to be more endogenously ruled, 
depends on the agenda of national transportation and 
economic policies. The policies reflect the strategy of 
national transport authorities to deal with external 
constraints in expanding national maritime networks. 
Intuitively, transport authorities prioritize the 
development of existing strategic international 
seaports to maximize the network economies of scale 
in the international market rather than developing new 
regional domestic hubs in the underdeveloped area, 
which also forces the authorities to spend budget on 
physical infrastructure in hinterland’s transport and 
industrial development. Hence, we can find in the world 
maritime network that the probability of finding a node 
with a high degree is higher compared to the maritime 
networks in the archipelago. 

Comparing our broad-scale network findings to 
those reported for another topological analysis in the 
GMN archipelago (Tsiotas & Polyzos, 2015), the latter 
shows interesting similarities in its topological 
properties with the result we found. For instance, GMN 
has 𝛾 = 1.745 and the power-law fitting curve does not 
follow a perfect straight line in a logarithmic scale plot. 
By obeying the strict rules of scale-free properties as 
explained in Broido & Clauset (2019) and through the 
network analysis procedure we did, we conjecture that 
the degree distribution of GMN can be broad-scale 
rather than scale-free. 

Last, our findings confirm a recent study that 
concludes scale-free structures are rare in real-world 
networks (Broido & Clauset, 2019). This finding 
implication reinforces the need for a new network 
formation model that can generate a broad-scale 
structure for the maritime network model in the 
archipelago with similar degree distribution and its 
topological properties. 

4.2.2. Small-world properties 

According to Watts and Strogatz (1998), small-world 
networks are a class of networks that are “highly 
clustered, like regular lattices, yet have small 
characteristic path lengths, like random graphs.” In 
general, the characteristics of real-world networks 
that exhibit this network class has efficient 
information transfer between their nodes and has 
strong connections in its network communities. The 
standard quantitative measures are calculating average 
path length and average clustering coefficient to unveil 
the small-world properties in the network. 

We calculated the average path length of the 
Indonesia container shipping network based on 
Equation (3). The average path length 〈𝐿〉  of the 
Indonesia container shipping network is 2.9, or nearly 
3. This number describes the travel of container cargo 
within a given network by 2-4 steps, which below the 
largest small-world ‘six degrees of separation’ 
between any Indonesia’s port origins and destinations. 
We generated a random network with the same size and 

found the average shortest path of our network is larger 
than a random network 〈𝐿𝑟𝑎𝑛𝑑〉 = 2.2126. However, the 
ratio between 〈𝐿〉 and 〈𝐿𝑟𝑎𝑛𝑑〉 indicates a value close to 
one, implies 〈𝐿〉 ≈ 〈𝐿𝑟𝑎𝑛𝑑〉. This means the network has a 
small number of average shortest path similar to the 
properties of the random graph as expected in small-
world networks.  

The average clustering coefficient 〈𝐶〉  of the 
Indonesia container shipping network is close to 0.2. 
This value is much larger compared to the average 
clustering coefficient value from the same size random 
network 〈𝐶𝑟𝑎𝑛𝑑〉 = 0.078. However, Telesford et al. (2011) 
argues that comparing network clustering coefficient 
to that random network can result in anomalous 
findings and that networks once thought to exhibit 
small-world network properties might be not, because 
almost all of the real-world networks have higher value 
of 〈𝐶〉  when comparing to the similar size of 〈𝐶𝑟𝑎𝑛𝑑〉 
although that networks have a very low clustering 
score.  

We adopted the suggestion proposed by Telesford et 
al. (2011) to compare the value of 〈𝐶〉 with the similar 
size of the lattice network. The clustering coefficient of 
similar lattice network to our size is 〈𝐶𝑙𝑎𝑡𝑡〉 = 0.72. We 
found the 〈𝐶〉  value of the Indonesian network 
relatively small compared to 〈𝐶𝑙𝑎𝑡𝑡〉 . This implies the 
weak cohesiveness on the network resulting in the low 
presence of modular structures. Additional 
interpretation can involve the notion of network 
community structure resilience. For instance, the value 
of 〈𝐶〉 ≈ 〈𝐶𝑙𝑎𝑡𝑡〉  implies a well-interconnected 
community: when a port X is connected to ports Y and 
Z, it is highly possible that there is also a link from Y to 
Z. In contrast, 〈𝐶〉 ≪ 〈𝐶𝑙𝑎𝑡𝑡〉  indicates a higher risk of 
local trip isolation in case of disruptions, as the ports in 
communities are disconnected. According to the 
original description of small-world network 
characteristics pointed out by Watts and Strogatz 
(1998), the real-networks are considered small-world 
if the value of 〈𝐿〉 ≈ 〈𝐿𝑟𝑎𝑛𝑑〉 and 〈𝐶〉 ≈ 〈𝐶𝑙𝑎𝑡𝑡〉. Based on this 
finding, we conclude that the container shipping 
network in Indonesia does not fully exhibit small-
world properties, since the values we found are 〈𝐿〉 ≈
〈𝐿𝑟𝑎𝑛𝑑〉 and 〈𝐶〉 ≪ 〈𝐶𝑙𝑎𝑡𝑡〉. 

This finding suggests future research on network 
topological analysis to compare 〈𝐶〉 with 〈𝐶𝑙𝑎𝑡𝑡〉, instead 
of 〈𝐶𝑟𝑎𝑛𝑑〉. It is also worth to re-assess some previous 
claim on small-world network properties in the 
maritime transport network to avoid misclassification 
of the system that is not presenting short path length 
and high clustering coefficient into small-world 
networks class. 

5. Conclusions 

In this study, we analyzed the topological properties 
of the container shipping network in Indonesia, which 
represents the characteristics of a large-scale 
archipelago nation. We modeled the Indonesia 
container shipping network as a non-directed graph, 
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consisting of 191 nodes and 400 links, by using AIS data 
and complex network analysis to identify the network 
topology. Indonesia, the largest archipelagic state in 
the world, has a complex national container shipping 
network. Its unique geographical properties which 
make Indonesia highly dependent on maritime 
transport mode makes the investigation and 
documentation of its topological properties useful as a 
preparation for policy making. 

Our first finding is the absence of a scale-free 
structure in the Indonesia shipping network, which is 
contrary to popular belief that scale-free structure is 
prevalent in the maritime shipping networks, 
including the archipelago, as we have seen in section 2. 
We found that the degree distribution of the network 
exhibits exponentially truncated power-law, which 
makes the network broad-scale rather than scale-free.  

Second, we found that the network neither fully fits 
into the small-world networks category. The 
supporting evidence of small-world characteristics in 
our network is the short path length, which is below six 
steps and approximately similar to the value generated 
from the identical size of a random network. In 
contrast, the value of the average clustering coefficient 
restricts the network to be classified into small-world 
because the score is too low compared to the lattice 
graph with a similar size, which is not expected to exist 
in small-world networks. 

For the modeling and simulation practitioner of the 
large-scale archipelago shipping network, identifying 
the network topology as demonstrated by this study 
could give some benefits. First, the network topology 
can be useful in the conceptual model evaluation 
process. The modeling and simulation approach 
employs the conceptual model as a foundation for 
modeling and simulation design. Modelers can adopt 
this type of topology as the system definition or basic 
network configuration for which the modeling and 
simulation application will be built.  In this end, the 
empirical network topology could be used as the 
benchmark to verify and validate the model to increase 
its credibility.   

Second, identifying the shipping network topology 
in the archipelago can encourage transportation 
modeling and simulation practitioners to investigate 
the role of this topology to the particular network 
performance. For instance, one can assess the influence 
of this type of topology and how it affects the 
connectivity vulnerability when disruption happens, 
such as unexpected events that subtract specific nodes 
or links. The result obtained from this kind of 
simulations can provide insight for network 
transportation planning, whether to retain or 
transform the topology into another one that can more 
fit to achieve specific policy objectives. 

The limitation of our study lies in the data 
completeness, especially the data obtained from AIS. 
AIS devices have not been installed in all containerships 

in Indonesia, although all major Indonesia ports and 
the majority of containerships are included in this 
study. In detail, there are 67 other Indonesia’s pioneer 
containerships, which 32 ships are state-owned and 35 
ships are private, which excluded from the analysis 
because of the limitation of the AIS tracking feature in 
those ships. Future research can address other 
container and cargo ships not registered by AIS, 
especially for shipping network in remote regions of 
Indonesia to obtain a complete high-level 
understanding of the maritime transport network in a 
large-scale archipelago. 
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