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Abstract

The ability to compute models that correctly predict the trajectories of a nonlinear system can
become a significant challenge in systems and control. The introduction of Koopman operator
theory helped to deal with this challenge. The Koopman operator is a composition operator
that globally describes a nonlinear system in an infinite-dimensional linear framework. To
implement this theory, the usual approach is to approximate the Koopman operator through
data-driven methods. These algorithms use measurements of the nonlinear system to compute
the approximated operator.

Generally, noise can be present in real-world scenarios. Noisy measurements can have a con-
siderable deteriorating effect on the data-driven approximation of Koopman operators. The
approximation of this operator in presence of noisy training data is a necessary step for its
implementation to a wider spectrum of real-world applications. Many robust numerical meth-
ods were designed to solve this issue. Koopman subspace identification (KSI) is a promising
approach. As the name suggests, this algorithm employs subspace identification modeling
to compute the matrix approximation of the Koopman operator. In this work, we test KSI
against other state-of-the-art techniques. Additionally, we improve its performance in predict-
ing the state trajectories of the nonlinear system in the presence of noisy measurements. To
this end, we propose a reducing-order routine that computes the most robust model against
measurement noise. Furthermore, a randomized singular value decomposition is adopted to
reduce computational times. The improved KSI is then compared against the other state-of-
the-art algorithms in the presence of noisy data sets. We will show that the upgraded KSI
outperforms most of the other techniques.
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Chapter 1

Introduction

The abundance of nonlinear systems in the real world has attracted a lot of attention from
the scientific community. The analysis and computation of such systems is, still our days,
a major goal in research. Many of the adopted solutions are based on linear control theory
which approximates the local dynamics of a system to the linearization around a hyperbolic
equilibrium point (see [2, Section 8.2]). Additionally, as stated in [3, Section 1], this local ap-
proximation may not describe the entire dynamics in the state space. This disadvantage might
prevent the application of linear control techniques for certain nonlinear systems, depending
on the needs of the user.

With the increased abundance of data in the last decade, new techniques were developed to
analyze and model the properties and dynamics of real systems. Many of these techniques
come from the field of machine learning [4]. Among these approaches, the Koopman operator
framework started to gain attention for its ability to globally describe a nonlinear system in
a linear infinite-dimensional framework. First proposed by Bernard Koopman [5] in 1931 and
then extended by Koopman and Von Neumann [6], the Koopman operator initially did not
attract much interest from the scientific community. This disinterest was due to the impossi-
bility of implementing it numerically because of the low computational power present at the
time. Most of the attention given to the topic in the last decade is due to the pioneering work
of Mezić et al. [7, 8]. They introduced the concept of Koopman operator theory to mod-
ern engineering problems, such as model reduction and big data applications for dynamical
systems.

At the core of the Koopman operator theory lies the concept of observables. The observables
are functions of the states of the underlying system. They play a crucial role as they “lift”
the dynamics of the states into an infinite-dimensional space. If the observables are correctly
chosen, then their evolution is linear. The computation of the trajectory evolution in this ob-
servables space is usually carried out through approximations. This made the computation of
an approximated version of the Koopman operator a pivotal goal. Many numerical methods
were developed to achieve this. The most famous one is the dynamic mode decomposition
(DMD), defined by Schmid [9], and connected to the Koopman operator theory by Rowley et
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2 Introduction

al. [10]. The DMD has been improved in many different ways. A few examples are the ex-
tended dynamic mode decomposition (EDMD) by Williams et al. [1] and the dynamic mode
decomposition with control (DMDc) by Proctor et al. [11]. The field of subspace identifica-
tion modeling also helped the design of algorithms for the computation of the approximated
Koopman operator. The most important examples are the subspace dynamic mode decom-
position (subDMD) of Takeishi et al. [12] and the subspace-based method of Lian et al. [13].
These techniques rely on the assumption that the lifted dynamics of the nonlinear system
lie in a linear space. In this thesis, we will make a reformulation of the algorithm of [13]
following the book of Verhaegen et al. [14]. We refer to this algorithm as the Koopman
subspace identification (KSI) method. Additionally, we improve KSI with two modifications.
First, we introduce a reduced-order technique to compensate for possible noise in the training
data set. Second, we adopt the randomized singular value decomposition (rSVD) to reduce
computational times without excessively affecting performance.

One of the standard issues in machine learning is the presence of noise in the training data
[15]. Noisy data can drastically deteriorate the predictive performance of the model. This is-
sue is present also in the computation of the approximated Koopman operator. In particular,
the presence of noisy training data can negatively impact DMD [16]. To model a system with
noisy measurements, the development of an algorithm robust to noise is needed. Numerical
methods like total dynamic mode decomposition (tDMD) of Hemati et al. [17] and subDMD
[12] were designed to overcome noise-corrupted training data. In this thesis, we benchmark
the performances of some of the algorithms above mentioned with noisy data sets. In partic-
ular, we want to analyze the effect of two types of noise: Additive noise in the observables
measurements and additive noise in the measurements of the states of the underlying system.
To the best of our knowledge, this is the first work that realizes a benchmark framework to
test the listed algorithms in the presence of the additive noise mentioned above.

This thesis is organized as follows: In Chapter 2 we introduce the theory behind the Koopman
operator framework. Chapter 3 lists and describes all the state-of-the-art numerical methods
that we chose to evaluate. More in detail: tDMD, EDMD along with a noise-free version of it
named NFEDMD, subDMD, and KSI are explained. In Chapter 4 the evaluation results of the
above-mentioned algorithms are showed and discussed. The improvements on KSI designed
during this thesis are proposed and described in Chapter 5, along with an examination of
their performance. Finally, in Chapter 6 the conclusions based on the showed results are
presented.
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Chapter 2

The Koopman Operator Framework

The theory behind dynamical systems was first defined by Henry Poincaré through his geo-
metric viewpoint [7], which originated from his work on the three-body problem in celestial
mechanics. Poincaré’s geometric viewpoint, or qualitative approach, focuses on the study of
the overall behavior of a system’s dynamics in the state space. The dynamic behaviour is
ruled by ordinary differential equations (ODEs). This was a leap forward from the classic
computation of single ODE trajectories from specific initial conditions (see Section 1 of [18]).
In this work we will use the following notation to define systems states trajectories:

ẋ(t) = f(x(t)), t ∈ R+, for continuous time, and (2-1)

x[k + 1] = T (x[k]), k ∈ N0, for discrete time, (2-2)

where x belongs to the state space M of the system1, ẋ = dx
dt , and f : M → M as well

as T : M →M are possibly nonlinear transformations in the state space. The dependence
on the time variable might be omitted during the discussions in this thesis, i.e. x = x(t) or
x = x[k] depending on the context. Assuming that a solution for the system in Eq. (2-1)
exists, then the flow map F t is defined as the map that, given the initial condition x0 = x(0),
results the value of x at time t:

F t(x0) = x0 +
∫ t

s=0
f(x(s))ds.

Regarding complex systems, including nonlinear ones, the work of Budisic et al. [7] states:
“However, the geometric viewpoint is ill-suited to many of the situations that are of interest
in real systems.” (Section 1, Page 2). A few examples that the paper makes to emphasize this
issue are: the difficulty in computing the model of a system in presence of noise, uncertainty,
or in the case of a large number of states. Additionally, Section 5 of Jones [18] explains that
traditional modeling methodologies need to be updated to face the complexity of today’s
systems. Finding a solution to this issue has attracted a lot of attention from many research
areas. The large amount of data available today gave the possibility to develop new modeling

1The state space of the system can be, for example, a manifold or an Euclidean space.
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4 The Koopman Operator Framework

techniques. In particular, in the last decade, much attention has been given to employ the
Koopman operator framework in the analysis of nonlinear systems from a theoretical and
practical perspective.
This chapter is taken from Chapter 2 of the author’s literature survey titled “Koopman Oper-
ator Theory: a new way to analyze nonlinear systems”. In the following sections, we will go
through the basics of the Koopman operator along with its spectral analysis, mode decom-
position and the fundamentals on how to approximate it.

2-1 Koopman Operator Theory

The Koopman operator K is a composition operator, where the function composition is be-
tween the observables g :M→ C and the flow map F τ (x(t)), or T (x[k]) in the discrete case.
The operator K describes the “lifted” evolution of the states, i.e. g, in a Hilbert space H [19],
or, more general, an infinite-dimensional space of observables. More in detail, the dynamics
of the underlying system, such as the one in Eq. (2-1) or Eq. (2-2), are lifted through the
use of observables g(x), i.e functions of the states. The dynamics of g(x) are then described
through the Koopman operator. For our case, we will focus on nonlinear dynamics in the
state space.
Definition 2-1.1 (Koopman Operator in continuous time). Let us consider a Hilbert space
H of observables g : M → C where M is the state space of the system in Eq. (2-1).
The Koopman operator Kτ : H → H , with τ ∈ R+ and is associated with the nonlinear
transformation f :M→M, is defined as

Kτg(x(t)) = g ◦ F τ (x(t)) ∀g ∈H , t ∈ R+

where ◦ is the function composition, i.e. f ◦ h(x) = f(h(x)).
Definition 2-1.2 (Koopman Operator in discrete time). Let us consider a Hilbert space
H of observables g : M → C where M is the state space of the system in Eq. (2-2). The
Koopman operator K : H →H , associated with the nonlinear transformation T :M→M,
is defined as

Kg(x[k]) = g ◦ T (x[k]) ∀g ∈H ,

with k ∈ N0.

These definitions were taken from Definition 1.2 and Definition 1.1, respectively, of [20].
A good representation of the Koopman operator framework is present in Fig. 2-1, where
the observables g(x) used to lift the dynamics are chosen to form a suitable basis for the
observables space. On the other side, to return to the state space, the Koopman mode
decomposition (KMD) (λ, ψ, v) is adopted. The KMD elements will be the topic of the next
section.
The linearity of the Koopman operator is one of the main strengths of this approach. As
a matter of fact, describing the behaviour of a nonlinear system in a “lifted” linear space,
gives us the ability to apply already known linear control and identification techniques. For
proving the linearity of K, we can use as an example Eq. (2-2) and take the following steps:

K[g1 + g2](x[k]) = [g1 + g2](T (x[k])) = [g1 + g2](x[k + 1]) = g1(x[k + 1]) + g2(x[k + 1]) =
= Kg1(x[k]) +Kg2(x[k]),

Alessandro Borghi Master of Science Thesis



2-1 Koopman Operator Theory 5

M M

g(x[k])

T :M→M

K : H →H

H

k k + 1

x[k]

x[k + 1]

x[k]

g(x[k]) g(x[k])

g(x[k + 1])

(λ, ψ, v)

H

Figure 2-1: Scheme of the Koopman operator framework based on Figure 1 in Williams et al.
[1]. In the figure, it is possible to see the lifting of the nonlinear dynamics of the state spaceM
into a linear infinite-dimensional framework in the space H through the use of observables g.
As the computation of the next step through the nonlinear mapping T is generally expensive and
complex, the linear operator K can be used to evolve the observables. To come back to the state
space, the Koopman mode decomposition (λ, ψ, v) is needed

Considering the continuous time-invariant system in Eq. (2-1), we have that the Koopman
operator Kτ forms an operator semigroup for τ ≥ 0. The following definition can be found in
Page 6 of [20] and in Slide 9 of [21].

Definition 2-1.3 (Koopman Semigroup). A Koopman operator semigroup in a Hilbert space
H is a family of operators Kτ : H →H such that:

(i) Kτ1+τ2g = Kτ1Kτ2g,

(ii) K0 = I.

Any semigroup Kτ can be described through its infinitesimal generator LK.

Master of Science Thesis Alessandro Borghi



6 The Koopman Operator Framework

Definition 2-1.4 (Infinitesimal Generator). An infinitesimal generator LK of a Koopman
semigroup Kτ is the operator given by the limit

LKg = lim
τ→0

Kτg − g
τ

.

In other words, the infinitesimal generator can be seen as a derivative in the space of observ-
ables. This definition will be useful for the next section in which the spectral properties of
the Koopman operator will be discussed.

2-2 Koopman Spectral Analysis

A strong point of the linear Koopman operator framework is its ability to describe the global
behaviour of a nonlinear system through the spectral decomposition of the linear operator K.
What follows are the definitions of the Koopman eigenvalues and eigenfunctions for continuous
and discrete time systems. The following definitions rely on Definition 1.4 and Definition 1.3,
respectively, of [20].

Definition 2-2.1 (Koopman eigenfunctions and eigenvalues in continuous time). An eigen-
function ψ(x) :M→ C of the Koopman semigroup Kτ , τ ≥ 0, associated with f :M→M
is an observable ψ ∈H \{0} that satisfies the eigenvalue equation

Kτψ(x) = ψ ◦ f(x) = eλcτψ(x),

where λc ∈ C is the corresponding eigenvalue.

Considering the continuous time-invariant system in Eq. (2-1), Eq. 7 in Section A of Mauroy
et al. [22] shows that the Koopman eigenfunctions and eigenvalues can be computed through
the following partial differential equation (PDE):

LKψ(x) = f(x)∇ψ(x) = λcψ(x). (2-3)

Note that from Eq. (2-3) we have that LK = f(x)∇.

Definition 2-2.2 (Koopman eigenfunctions and eigenvalues in discrete time). An eigenfunc-
tion ψ(x) :M→ C of the Koopman operator K associated with T :M→M is an observable
ψ ∈H \{0} that satisfies the eigenvalue equation

Kψ(x) = ψ ◦ T (x) = λψ(x),

where λ ∈ C is the corresponding eigenvalue.

Furthermore, Let us assume that ψ1 ∈ H and ψ2 ∈ H are two eigenfunctions of the same
Koopman operator K, such that Kψ1(x) = λ1ψ1(x) and Kψ2(x) = λ2ψ2(x). We also as-
sume that their product is ψ1ψ2 ∈ H . Then ψ1ψ2 is an additional eigenfunction of K with
eigenvalue λ1λ2:

K(ψ1ψ2)(x) = ψ1(T (x))ψ2(T (x)) = Kψ1(x)Kψ2(x) = λ1λ2ψ1ψ2.

Alessandro Borghi Master of Science Thesis



2-2 Koopman Spectral Analysis 7

m

g

θ
l

x1 = θ

x2 = θ̇

Figure 2-2: Scheme of a pendulum

Note that, as Arbabi states in Section 4 of [23], the spectrum of the Koopman operator can
be of three types: point, continuous and mixed spectrum. For what regards this thesis, we
will assume that the spectrum present in the considered cases has negligible continuous and
mixed spectrum. [24]
The following is a good example to gain a better understanding of the importance of Koop-
man eigenfunctions and their ability to describe nonlinear systems.

Example 1. This example has been inspired from Example 12 in [4]. Consider the pendulum
in Fig. 2-2 were the dynamics will be described by a nonlinear differential equation

ẋ1 = x2,

ẋ2 = −g
l

sin(x1),
(2-4)

where g is the acceleration of gravity, l is the length of the pendulum wire, x1 is the angle of
the pendulum, and x2 is its angular velocity.
Let us define the mechanical energy of the system in Eq. (2-4) as the sum of the kinetic
(1

2ml
2x2

2) and potential (mg cos(x1)) energies

E = 1
2ml

2x2
2 −mg cos(x1),

where m is the mass at the end of the pendulum. If this system is considered with no friction
and no external forces, other than its weight, then its mechanical energy E will be conserved.
Taking into account that E is a function of the states x1 and x2, we can assume that the
mechanical energy is an eigenfunction of the system with eigenvalue λ (see Definition 2-2.1).
Assuming the energy is conserved, i.e. Ė = 0, then the dynamics of the energy are invariant
to the ones of the pendulum. The invariancy of the eigenfunction mirrors the dynamics of
the system and, as a matter of fact, the states of the pendulum (angle and angular velocity)
stay in the same set for t→∞ as long as Ė = 0.

4
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8 The Koopman Operator Framework

2-2-1 Koopman Modes

The eigenfunctions ψj of the Koopman operator can form a basis of the Hilbert space H of
observables if the continuous and mixed parts of the spectrum are negligible. In that case, it
is possible to define all the observables g ∈H as a linear combination of ψj :

g(x) =
∞∑
j=1

ψj(x)vj =
∞∑
j=1

ψj(x)〈ψj , g〉, (2-5)

where vj ∈ C is the j-th Koopman mode associated with ψj and 〈·, ·〉 is the inner product2.
The Koopman modes vj , as shown in Eq. (2-5), are coefficients of projections of g in the
eigenfunctions ψ (see Section 2 of Georgescu et al. [26]).

Considering the discrete dynamics in Eq. (2-2), then the dynamics of g can be defined through
the spectral properties in Definition 2-2.2 of the Koopman operator K

Kg(x) = g ◦ T (x) =
∞∑
j=1

ψj(T (x))vj =
∞∑
j=1
Kψj(x)vj =

=
∞∑
j=1

λjψj(x)vj .
(2-6)

The sequence of triplets {(λj , ψj , vj)}∞j=0 is also referred to as Koopman mode decomposition
(KMD) in [25]. The evolution of the observables described through KMD is a focal point
in data-driven analysis [27]. This is because the Koopman modes give an insight on the
underlying dynamics of the observables for different eigenvalues. Connections between KMD
and the dynamic mode decomposition algorithm were also established by Rowley et al. [28]
(discussed in Section 3-1). This led to a wide number of applications of the Koopman modes,
from modeling the energy of a building [26] to financial trading strategies [29].

2-3 Approximating the Koopman Operator: Towards Numerical
Implementation

As already mentioned earlier, the Koopman operator evolves observables from an infinite-
dimensional space. The usual way to make this kind of computation is through an ap-
proximation of the Koopman operator. We will define the matrix approximation of K as
K : Cp → Cp, where p is the dimension of the basis of a subspace of H . To do so, the choice
of the basis of the observables space is crucial. As a matter of fact, to be able to approximate
K, the chosen basis must span a subspace of H called Koopman-invariant subspace. The
following definition has been taken from Section 1.4.1 [20].

Definition 2-3.1 (Koopman-invariant subspace). Let AH = span{g1, g2, . . . , gp}, with p
finite, be a finite dimensional linear subspace of a Hilbert space H . Having

g ∈ AH (2-7)
2Note that to be able to describe the Koopman modes through projection (the inner product), we assumed

that the underlying dynamical system in the state space is conservative [25]
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2-3 Approximating the Koopman Operator: Towards Numerical Implementation 9

then AH is Koopman-invariant if ∀g we have

ΠKg ∈ AH , (2-8)

where Π : H → AH is a projection operator.

The Koopman operator restricted to AH can be represented exactly by a finite-dimensional
matrix. We will now review the proof of this statement by following Section 1.4.1.1 of [20].
Let us consider a Koopman operator K acting on the subspace AH spanned by the basis of
observables gT : Cp → AH defined as

gT =
[
g1 g2 . . . gp

]
.

Then the operator in Eq. (2-8) is defined as

ΠK : AH → AH ,

where the projection operator Π : H → AH is equal to

Π = gTΓ. (2-9)

In Eq. (2-9) the operator Γ : H → Cp describes g on the basis gT such that

Γg =


〈g, g1〉
〈g, g2〉

...
〈g, gp〉

 .

Taking into account that ΓgT = I, with I being an identity matrix, we have that Γg = IΓg =
ΓΠg. Knowing the relation between Γ and g, we can state the following:

ΠKg = ΠKΠg = gTΓKgTΓg = gTKΓg

where K = ΓKgT is the matrix approximation of the Koopman operator in AH .

The main problem of constructing a Koopman-invariant subspace for approximating K is
finding a suitable basis. Note that, as stated in [25], any set of Koopman eigenfunctions ψ
will span a Koopman-invariant subspace. Methods have been implemented to compute ψ
so to find a suitable basis and, therefore, K. Some examples of these methodologies are in
Mauroy et al. [22] and Korda et al. [30]. Generally, computing the exact eigenfunctions from
data is practically challenging. As discussed in Section 2.2 of [25], in a real case scenario it is
more probable that we will find an approximated version of the eigenfunctions of K.

Following the discussion in the work of Brunton et al. [31], from a control perspective, the
inclusion of the states as observables, i.e. gi(x) = xi, in the basis for AH can simplify the
computations and help to understand the dynamics of the system inM. The main issue with
this approach is that the approximation of the Koopman operator K would not be able to
represent a system with multiple equilibrium points, restricting the field of applications (see
also Section 3.3 of [25]).
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Chapter 3

Numerical Methods for Approximating
Koopman Operators

In the past decade, the availability of large amounts of data gave the possibility to researchers
to design techniques and algorithms that were able to extract fundamental information on the
properties of dynamical systems. Much attention has been given to the creation of machine
learning algorithms to analyze dynamical systems through Koopman operator theory [4]. As
introduced in Chapter 2, the Poincaré geometric viewpoint needs an analytical model to be
able to analyze the system at hand. With the complexity present in the systems of today, it can
be quite difficult to gain such a model through traditional techniques (see Section 5 of [18]).
The Koopman operator framework can be a helpful modeling technique when large amounts
of data are available. This is because the Koopman operator is a linear operator and it can
be approximated1 through fully data-driven algorithms. The design and implementation of
these numerical approaches gives us the ability to compute the dynamics in the nonlinear
state space from a linear space of observables. The linear description of nonlinear systems
opens the doors to a wide range of applications. A couple of examples are the model predictive
control (MPC) technique developed by Korda et al. [19] and the analysis of power systems
stability by Susuki et al. [32].

In this chapter, we will discuss the state-of-the-art data-driven numerical methods that we
chose to implement and test for the approximation of the Koopman operator. As most of
these applications make use of discrete-time systems, from now on, if it is not explicitly
declared the contrary, our focus will be towards the discrete formulation of the Koopman
operator framework, i.e. Kg(x[k]) = g ◦ T (x[k]). Some sections of this chapter (specifically
dynamic mode decomposition and extended dynamic mode decomposition) were taken from
the literature survey of the author.

1This is true assuming that the basis for the Koopman-invariant subspace is correctly chosen and that the
discrete spectrum dominates the dynamics in the space of observables.
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12 Numerical Methods for Approximating Koopman Operators

3-1 Dynamic Mode Decomposition (DMD)

The most famous and widely used method to compute K, specifically its modes, is the dy-
namic mode decomposition (DMD) algorithm. It was first developed by Schmid [9] in the fluid
dynamics community. DMD was designed to retrieve the dynamics of the system from snap-
shots of high dimensional data in a fully data-driven and equation-free way. As introduced in
[9, Section 2.1], the DMD was developed with two main variants: the Arnoldi-approach-based
method, and the singular value decomposition (SVD) based method. In this work, we will
focus on the SVD based approach. Much of the following definitions and steps were taken
from Kutz et al. [33] in Chapter 1 and 3.

Considering the system in Eq. (2-2), the DMD tries to approximate it such that

x[k + 1] ≈ Kx[k], (3-1)

with x[k] ∈ Rl and K ∈ Rl×l. This method relies on taking snapshots of the states of the
system2 which are defined as follows:

X =

 | | |
x[0] x[1] . . . x[m− 1]
| | |

 , X′ =

 | | |
x[1] x[2] . . . x[m]
| | |

 , (3-2)

creating two l ×m matrices, where x[j] ∈ Rl, j = 0, . . . ,m, is the state at instant j. Now
Eq. (3-1) can be rewritten through the snapshot matrices such that

X′ ≈ KX.

The approximately equal symbol ≈ is used as the system in Eq. (2-1) or Eq. (2-2) is most likely
to be nonlinear, while we are describing it in a linear framework. The main objective now
is to find K so to approximate the nonlinear dynamics. To do so the following minimization
problem is solved:

min
K
‖X′ −KX‖F , (3-3)

where ‖ · ‖F is the Frobenius norm3. The minimization in Eq. (3-3) is easily solvable with the
following equation:

K = X′X†, (3-4)

where † denotes the Moore-Penrose pseudoinverse. From this matrix the DMD extracts the
so called DMD modes ϕi of K, which are its eigenvectors. Each ϕi corresponds to a particular
eigenvalue λi of K.

In many applications, the direct use of Eq. (3-4) can be computationally expensive for the
high amount of data to process. This is solved by analyzing a rank reduced representation of

2To note that the DMD assumes that the states are known and measurable. The inclusion of observables
has been done in the EDMD which will be discussed in the next section.

3The definition of the Frobenius norm for a n×m matrix A is the following:

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

|aij |2 =
√

T r(AAH),

where AH is the Hermitian of A.
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3-1 Dynamic Mode Decomposition (DMD) 13

K, which, from now on, will be defined as K̃. To do so, we first define the concept of singular
value decomposition (SVD) and proper orthogonal decomposition (POD).

What follows is the singular value decomposition theorem taken from Theorem 2.6 of Ver-
haegen et al. [14]:

Theorem 3-1.1. Any matrix X ∈ Rl×m can be decomposed as

X = UΣV T ,

where U ∈ Rl×l and V ∈ Rm×m are orthogonal matrices and Σ ∈ Rl×m has its only nonzero
elements along the diagonal. These elements ςi are ordered such that

ς1 ≥ ς2 ≥ · · · ≥ ςq > ςq+1 = · · · = ςb = 0,

where q = rank(X) and b = min(l,m).

The elements ςi are called the singular values of X, and the columns of U and V are respectively
the left and right singular vectors of X.

Following Section 3 of Chattarjee [34], the SVD-based POD describes the dynamics of the
snapshot measurements in X with the following decomposition

XT = QUT (3-5)

where X = UΣV T and Q = V Σ. Each row of UT is a proper orthogonal mode and Eq. (3-5)
is called the POD of X.

Let us now return to the computation of matrix K̃. We first compute a reduced-order SVD
of the snapshot matrix

X ≈ UrΣrV
T
r ,

where Ur ∈ Cl×r, Σr ∈ Cr×r, Vr ∈ Cm×r and r ≤ l is the parameter dictating the chosen
degree of K̃. The rank reduced matrix K̃ is a r× r projection of K onto its POD (see Section
1.3 of [33])). In other words

K̃ = UTr KUr, (3-6)

In other words, the columns of Ur are POD modes of X and, if used as coordinate change for
K, results in the approximate K̃. Now that we have K̃, its eigendecomposition results from

K̃wi = λiwi,

where wi is an eigenvector of K̃ and λi is its corresponding eigenvalue.

The DMD mode corresponding to λi, which are specifically called exact DMD modes in our
case (see also Tu et al. [35]), are computed as follows:

ϕi = 1
λi

X′VrΣ−1
r wi.

Along with the exact DMD modes, there are also the projected DMD modes: ϕi = Uwi, but
we focus on the former as it has been proven in [35, Theorem 1] that these are the exact
eigenvectors of K. Below we will also connect the Koopman modes with the DMD modes.
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14 Numerical Methods for Approximating Koopman Operators

The following algorithm summarizes the DMD steps described above based on [33] and [35].
Algorithm 1: DMD algorithm
Input: X, X′
Output: DMD modes Φ =

[
ϕ1 ϕ2 ... ϕr

]
1 Construct the snapshot matrices X and X′;
2 Compute a reduced order SVD for X ≈ UrΣrV

T
r ;

3 Set K̃ = UTr KUr = UTr X′VrΣ−1
r which has the same non zero eigenvalues of K;

4 Compute the spectrum of K̃ by solving K̃wi = λiwi;
5 Set ϕi = 1

λi
X′VrΣ−1

r wi for i = 1, . . . , r.

Assuming that a solution for Eq. (3-3) exists, it is possible to approximately reconstruct the
state dynamics by writing

x[k + 1] = T (x[k]) ≈
r∑
j=1

ϕjλ
k
j bj = ΦΛka, (3-7)

where Λ is a diagonal matrix with the eigenvalues λj of K as entries and a = Φ†x[0] are the
initial coefficients values. Let us now assume that the snapshot matrices X and X′ are linearly
consistent. Additionally, let us assume that the direct measurements of the states, i.e. g(x) =
x, construct a suitable basis for a Koopman-invariant subspace. If these two assumptions are
true we have that the DMD modes φi and eigenvalues λi computed in Algorithm 1 are the
same as K (see Section 4.1 of Tu et al. [35]). A deeper study can be seen in Rowley et al. [28]
and an overview can be seen in Chapter 3 of Kutz et al. [36]. The main issue of this approach
lies in the fixed choice of observables g(x) = x and on the assumption that the direct state
measurements are linearly consistent. Indeed, this restricts the applicability of the algorithm
for real case scenarios as it is probable that the observables do not build a suitable basis
for a Koopman-invariant subspace (see Section 2-3). For the reason above mentioned, the
extended dynamic mode decomposition (EDMD) was designed. EDMD includes a library of
nonlinear observables functions of x to have a higher probability of approximating the right
Koopman operator of T (x[k]). The implementation of this algorithm will be discussed in the
next section.

3-1-1 Total Dynamic Mode Decomposition (tDMD)

Introduced by Hemati et al. [17] the total dynamic mode decomposition (tDMD) improves
the performances of DMD in the presence of measurement noise in the states snapshots X,
X′ ∈ Rl×m. The tDMD algorithm solves a total least squares problem that takes into account
the presence of noise in both the snapshots matrices. Let us rewrite the least squares problem
of Eq. (3-3) for the overconstrained case, i.e. l < m, as follows [17, Section 2.2]

min
K,∆X′

‖∆X′‖F , subject to X′ + ∆X′ = KX, (3-8)

which considers a residual term ∆X only in the X′ side of the equation. This leads to an
asymmetrical treatment of the noise in the measurements (see Section 2.2 of [17]). To solve
this issue, the following total least squares formulation of Eq. (3-8) is given

min
K,∆X′,∆X

∣∣∣∣∣
∣∣∣∣∣
[
∆X′
∆X

]∣∣∣∣∣
∣∣∣∣∣
F

, subject to X′ + ∆X′ = K(X + ∆X). (3-9)
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3-1 Dynamic Mode Decomposition (DMD) 15

The framework of Eq. (3-9) can be also generalized to snapshot matrices of observables. Let
us have an observables library g(x) ∈ Rn defined as

g(x[k]) =


g1(x[k])
g2(x[k])

...
gn(x[k])

 ,

with gj : Rl → R, j = 1, 2, . . . , n. The observables snapshot matrices are arranged as follows

g(X) =

 | | |
g(x[0]) g(x[1]) . . . g(x[m− 1])
| | |

 , g(X′) =

 | | |
g(x[1]) g(x[2]) . . . g(x[m])
| | |

 ,
with g(X),g(X′) ∈ Rn×m and n < m. Assuming the dynamics of the observables are approx-
imately linear, the total least square problem of Eq. (3-9) can then be formulated as

min
K,∆g(X′),∆g(X)

∣∣∣∣∣
∣∣∣∣∣
[
∆g(X′)
∆g(X)

]∣∣∣∣∣
∣∣∣∣∣
F

, subject to g(X′) + ∆g(X′) = K(g(X) + ∆g(X)). (3-10)

The solution of Eq. (3-10) is based on constructing an augmented snapshot matrix (see [17,
Section 2.3])

Z :=
[

g(X)
g(X′)

]
,

and project the snapshot matrices g(X) and g(X′) into a subspace of Z called Zr, where r ≤ n
is the parameter indicating the best rank approximation. In this way we have a projection Z
that depends on both g(X) and g(X′), treating the two data matrices symmetrically in the
total least squares framework of Eq. (3-9). The subspace of dimension r ≤ n is computed in a
data-driven way through POD. In particular, the parameter r is chosen by looking for spectral
gaps in the POD analysis (see Section 2.4 of [17]). The computation of r is fundamental in
case the problem in Eq. (3-9) is underconstrained, i.e. n > m. As a matter of fact, the use of
a subspace Zr can make Eq. (3-9) overconstrained again such that r < m < n.

What results from the projection of the data matrices in Zr is the following

g(X′)PZr = Kg(X)PZr (3-11)

where PZr is the projection operator into the range of Zr. This projection operator can be
computed as PZr = QQT where Q has the first r right-singular vectors of Z as columns.
In order to solve Eq. (3-11), one can simply compute K = g(X′)PZr (g(X)PZr )† or observe
the steps of the next algorithm to determine the spectral properties of the approximated
Koopman operator.

In what follows we introduce the algorithm of tDMD in [17]. We will make use of the Matlab
notation that is: having a matrix A then A(1 : i, 1 : j) is a matrix that has the first i rows
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16 Numerical Methods for Approximating Koopman Operators

and j columns of A.
Algorithm 2: tDMD algorithm
Input: g(X), g(X′)
Output: tDMD modes Φ =

[
ϕ1 ϕ2 ... ϕr

]
1 Construct the augmented snapshot matrix Z = [g(X)T g(X′)T ]T ;
2 Compute an SVD for Z = Ũ Σ̃Ṽ H and set Q = Ṽ (:, 1 : r);
3 Compute the projections of the snapshot matrices as ĝ(X) = g(X)Q, ĝ(X′) = g(X′)Q;
4 Compute the SVD of ĝ(X) = UΣV T ;
5 Compute the matrix K̂ = UT ĝ(X′)V Σ−1 from which is possible to have the DMD

eigenvalues λi and modes wi as K̂wi = λiwi.

If we want to restrict the tDMD to solely the states snapshot matrices, we simply set g(X) = X
and g(X′) = X′.

3-2 Extended Dynamic Mode Decomposition (EDMD)

The extended dynamic mode decomposition (EDMD) was first designed by Williams et al.
in [1] to specifically approximate Koopman operators. The connection between the Koopman
operator framework and EDMD was already established in the work of Rowley et al. [28,
Section 3.2]. The EDMD can be seen as a generalization of the DMD algorithm. As a matter
of fact, the DMD computes regression with direct measurements of the states as basis, i.e.
g(x) = x with x ∈ Rl, while EDMD computes it on a library of observables g chosen by
the user. These chosen observables are generally nonlinear functions of the states [25]. It
has to be pointed out that the choice and number of functions in the EDMD is fundamental
to compute the approximated Koopman operator intrinsic to the system under study. As
stated in [1, Section 2.2] the bigger the library of observables, the higher the chances to well
approximate the Koopman eigenfunctions ψ. Unfortunately, the increase in the number of
functions in g, increases also the complexity of the algorithm.
The procedure of the overall algorithm is similar to DMD, the only main difference is that
the snapshots are made through the observables chosen by the user. As we introduced for
tDMD in Section 3-1-1, the observables snapshot matrices are defined as

g(X) =

 | | |
g(x[0]) g(x[1]) . . . g(x[m− 1])
| | |

 , g(X′) =

 | | |
g(x[1]) g(x[2]) . . . g(x[m])
| | |

 ,
where

g(x[k]) =


g1(x[k])
g2(x[k])

...
gn(x[k])

 , (3-12)

is the library of observables, with gj : Rl → R, j = 1, 2, . . . , n. Taking into account that
g generally does not span a Koopman-invariant subspace [1, Section 2.2.1], the Koopman
framework can be rewritten as

Kg(x[k]) = Kg(x[k]) + e[k],
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3-2 Extended Dynamic Mode Decomposition (EDMD) 17

where, again, g(x[k]) : Rl → R, g ∈ AH with AH being a Koopman-invariant subspace of
the Hilbert space H , K ∈ Rn×n and e[k] ∈H is the residual term. As with the DMD, linear
regression can be used in order to compute K using the snapshots g(X) and g(X′):

min
K
‖g(X′)−Kg(X)‖F . (3-13)

The nomenclature and passages are taken from [25] and Chapter 10 of [33]. The solution for
Eq. (3-13) is

K = g(X′)g(X)†, (3-14)

where † is the Moore-Penrose pseudoinverse. The computation of Eq. (3-14) let us approx-
imate the Koopman operator with a finite dimensional matrix K. Now, the approximated
triplet of the Koopman mode decomposition, i.e. (λj , ψj , vj), can be computed. The approx-
imated eigenfunctions ψj are computed through the left eigenvectors ξTj ∈ R1×n of K, i.e.
ξTj K = λjξ

T
j , such that

ψj(x[k]) ≈ ξTj g(x[k]), (3-15)

where ξj is related to the eigenvalue λj (see Section 2-2). The Koopman modes are then
computed by

ϕj = bTwj ,

where wj ∈ Rn×1 is the right eigenvector of K and b is a vector of weights. The parameter
b ∈ Rn×l is defined such that

gx(x[k]) = bTg(x[k]),

where b =
[
b1 b2 . . . bl

]
and

gx(x) =


gx1 (x[k])
gx2 (x[k])

...
gxl (x[k])

 =


eT1 x[k]
eT2 x[k]

...
eTl x[k]

 ,

where ej is the j-th unit vector, and eTj x[k] = xj [k] is a full j-th state observable (see Eq. 15
in Williams et al [1]). In other words, the matrix b contains the weights needed to retrieve
the states of the systems from the chosen library of observables. If the measurements of the
full state observables and library of observables are available, then bT = gx(x[k])g(x[k])†.

The following algorithm summarizes the EDMD procedure:
Algorithm 3: EDMD algorithm
Input: X,X′

Output: EDMD modes Φ =
[
ϕ1 ϕ2 ... ϕr

]
1 Define a library of observables g(x) as basis;
2 Construct the snapshot matrices g(X) and g(X′);
3 Compute the approximated Koopman operator: K = g(X′)g(X)†;
4 Compute the Koopman eigenfunctions: ψj(x[k]) ≈ ξTj g(x[k]), ∀k ∈ N0, where

ξTj K = λjξ
T
j ;

5 Compute the modes: ϕj = bTwj where Kwj = λjwj for j = 1, . . . , r, and
gx(x[k]) = bTg(x[k]).
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18 Numerical Methods for Approximating Koopman Operators

The choice of the library of observables g should take into account the properties of the
system. However, generally, the properties of the system are unknown. To solve this issue,
there are a few standard sets of functions dictionaries that can be used. Some examples
of these predefined functions are monomials, Hermite polynomials, Fourier basis, Legendre
polynomials, and radial basis functions. The problem of choosing a suitable dictionary for
specific problems is still an important issue. In this regard, many techniques have been
developed, a few of which are from the machine learning field. A summary of these solutions
can be found in Section 3.3.2 of Parmar et al. [37].

3-3 Noise-Free Extended Dynamic Mode Decomposition (NFEDMD)

In Chapter 1 we mentioned that this thesis will evaluate and compare state-of-the-art algo-
rithms in the presence of noise. To have a reference during the benchmarking experiments of
Chapter 4 we decided to implement also a noise-free version of the EDMD (NFEDMD). Let
us have the following noisy observable measurement:

gγ [k] = g(x[k]) + γ[k], g(x[k]), γ[k] ∈ Rn, (3-16)

where γ is additive noise. In terms of snapshot matrices, this becomes

Gγ = g(X) + Γ, G′γ = g(X′) + Γ′,

where

Γ =

 | | |
γ[0] γ[1] . . . γ[m− 1]
| | |

 ,Γ′ =
 | | |
γ[1] γ[2] . . . γ[m]
| | |


In this case, the normal EDMD would use snapshots of Gγ . This means that the training data
used to compute the matrix approximation of the Koopman operator will be noisy, leading
to

K = G′γG†γ .

This can result into wrong approximations of the Koopman operator and degrade the perfor-
mance of the model. NFEDMD, instead, has knowledge of the noise-free observables snapshot
matrices g(X) and g(X′) making it possible to compute K as follows:

K = g(X′)g(X)†.

We will use NFEDMD to compare the other algorithms, which will compute K with noisy
observables, against a noise-free version of EDMD. This will give us insights on how robust
the other numerical methods are against noise.

3-4 Subspace Dynamic Mode Decomposition (subDMD)

Designed by Takeishi et al. [12], subspace dynamic mode decomposition (subDMD) exploits
the advantages of dynamic mode decomposition and subspace identification to model random
dynamical systems in the presence of noise in the observables.
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3-4 Subspace Dynamic Mode Decomposition (subDMD) 19

Let us consider the following random dynamical system

x[k + 1] = T (x[k], v[k]),

where x[k] ∈ Rl are the states and v[k] ∈ V is the process noise. The process noise lies in
a probability space defined as (V, SV , µV ), where V is the sample space, i.e. the set of all
possible outcomes, SV is the event space, i.e. the set of the outcomes in V we want to consider,
and µV : SV → [0, 1] is the probability function, i.e. a function assigning a probability to
each event in SV . In addition, v[k] is independent from the states and is independent and
identically distributed (i.i.d.). If these criteria on the process noise are met, then we are able
to apply just DMD or EDMD in order to compute the approximated Koopman operator (see
Assumption 2 in [12]).

Now let us add measurement noise to the observables as follows

gα(x[k], α[k]) = g(x[k]) + α[k],

where gα : Rl ×W → Rn and α : W → R is a random variable lying in the probability space
(W,SW , µW ). Additionally, let us assume that α is white noise, i.e. a noise signal that has
zero mean, finite variance and is temporally uncorrelated [38]. The observables measurement
noise drastically degrades the performances of DMD or EDMD algorithms in computing K.
This is showed in the experiments discussed in Chapter 4.

In order to define the necessary assumptions to compute K, we introduce two matrices: R and
G. Matrix R is defined as the covariance matrix between the measurement noise α and the
linearization error e in the Koopman operator framework, i.e. g(x[k + 1]) = Kg(x[k]) + e[k].
In other words:

EV,W [e[i]α[j]T ] = Rδ(i− j),

where

δ(i− j) =
{

1, for i− j = 0
0, for i− j 6= 0.

Matrix G, instead, is defined as
G = ERl [Gk,k],

where Gk,k = EΩ[g(x[k])g(x[k])T ] and Gi,j = EΩ[g(x[i])g(x[j])T ].

Now that the nomenclature is fully defined, we can introduce the concept of subspace DMD.
Let us define a matrix of lifted snapshots

gα(Xk) =

 | | |
gα(x[k]) gα(x[k + 1]) . . . gα(x[k +m− 1])
| | |

 ∈ Rn×m,

from which we construct two matrices

gp =
[
gα(X0)
gα(X1)

]
, gf =

[
gα(X2)
gα(X3)

]
.
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20 Numerical Methods for Approximating Koopman Operators

If rank(gp) = 2n then we are able to construct a matrix O = gfgTp (gpgTp )−1gp (see proof of
Theorem 1 in [12]4). In the next step, the compact SVD of O is computed

O = UrΣrV
T
r ,

where r = rank(O) is the truncation parameter of the matrices, i.e. Ur ∈ R2n×r, Σr ∈ Rr×r
and Vr ∈ Rm×r. Based on Theorem 1 of [12], if rank(gp) = 2n and rank(KG+R) = n, then
for m→∞ we have that

Ur1U
†
r2 → K, where U =

[
Ur2
Ur1

]
,

with Ur1, Ur2 ∈ R2n×n. This means that, with enough samples data of gα, we can compute the
approximated Koopman operator K arbitrarily well, even with the presence of measurement
noise in the observables.

The entire subDMD algorithm can be then summarized as follows. As for tDMD, we will
make use of the Matlab notation.
Algorithm 4: subDMD algorithm

Input: X0 =

 | | |
x[0] x[1] . . . x[m− 1]
| | |

 , X1 =

 | | |
x[1] x[2] . . . x[m]
| | |

 ,
X2 =

 | | |
x[2] x[3] . . . x[m+ 1]
| | |

 , X3 =

 | | |
x[3] x[4] . . . x[m+ 2]
| | |

 .
Output: subDMD modes Φ =

[
ϕ1 ϕ2 ... ϕr

]
1 Define a library of observables g(x) as basis;
2 Construct the snapshot matrices gp and gf ;
3 Compute the matrix O = gfgTp (gpgTp )−1gp;
4 Compute the compact SVD of O = UrΣrV

T
r and take

Ur1 = U(1 : n, :), Ur2 = U(n+ 1 : 2n, :);
5 Compute the compact SVD of Ur1 = UΣV T and define the following matrix

A = UTUr2V Σ;
6 Compute the eigenvalues Λ and eigenvectors w of A from which we derive the dynamic

modes Φ = Λ−1Ur2V Σ−1w

For the sake of this work, we will use this algorithm only to compute a matrix approximation
of the Koopman operator K ≈ Ur1U †r2 which follows from Theorem 1 of [12].

3-5 Koopman Subspace Identification (KSI)

The first implementation of a subspace identification algorithm to compute K was done by
Lian et al. [13]. More in detail, Lian et al. used a subspace identification algorithm named
sequential PARSIM algorithm (see Algorithm 2 in Qin et al. [39]) to solve a least squares

4As defined in [12], matrix O can be seen as the orthogonal projection of the rows of gf into the row space
of gp.

Alessandro Borghi Master of Science Thesis



3-5 Koopman Subspace Identification (KSI) 21

problem in the observables space and compute K. In this section, we will introduce the
Koopman subspace identification (KSI), an algorithm based on [13], that uses the subspace
identification technique described in the book of Verhaegen et al. [14, Section 9.2.2 ]. It
has to be noted that Lian et al. in [13] did not introduce any noise in its implementation.
Consequently, for this section, we will not consider noise in the design of KSI.

To apply subspace identification techniques in the space of observables AH , we assume that
the dynamics in it can be described through the following linear predictor:

y[k + 1] = Ay[k]
g(x[k]) = Cy[k],

(3-17)

where g(x[k]) ∈ Rn is the library of observables chosen as basis for the Koopman-invariant
subspace AH and y[k] ∈ Rny is what we will define state observables. All the measurements
from Eq. (3-17) are then gathered in the following data equation (see section 9.1 of [14])

H(x) = OY, (3-18)

where x =
[
x[0] x[1] . . . x[m− 1]]

]
is a single trajectory in the state space and H(x) is a

Hankel matrix of the observables measurements, i.e.

H(x) =


g(x[0]) g(x[1]) . . . g(x[m− 1])
g(x[1]) g(x[2]) . . . g(x[m])

...
... . . . ...

g(x[s− 1]) g(x[s]) . . . g(x[m+ s− 1])

 . (3-19)

In Eq. (3-19), the parameter s is the number of sets of n rows and m is the number columns,
i.e. the samples of g. Matrix O is the observability matrix

O =


C
CA
CA2

...
CAs−1

 , (3-20)

and Y is defined as
Y =

[
y[0] y[1] . . . y[m− 1]]

]
.

It has to be taken into account that the above data equation matrices H(x),O and Y are
suitable only if one trajectory in the space of observables is measured.

We will now present a generalization of the framework in Eq. (3-18) for multiple trajectories.
To do so we follow the procedure introduced by Duchesne et al. [40], where subspace identi-
fication is adapted to work with multiple data sets. Let us have Nt trajectories picked in the
state space. Each i-th trajectory will be defined as

x(i) =
[
x(i)[0] x(i)[1] . . . x(i)[m− 1]]

]
, where i = 1, . . . , Nt.

The Hankel matrix for multiple trajectories is defined as

H(X) =
[
H(x(1)) H(x(2)) . . . H(x(Nt))

]
, (3-21)
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where

H(x(i)) =


g(x(i)[0]) g(x(i)[1]) . . . g(x(i)[m− 1])
g(x(i)[1]) g(x(i)[2]) . . . g(x(i)[m])

...
... . . . ...

g(x(i)[s− 1]) g(x(i)[s]) . . . g(x(i)[m+ s− 1])

 .

The observability matrix will remain the same as in Eq. (3-20), while the matrix of state
observables measurements will be defined as follows

Y =
[
y(1)[0] . . . y(1)[m− 1] y(2)[0] . . . y(Nt)[m− 1]

]
.

where y(i)[k] is the k-th sample of the i-th trajectory in the space of state observables. The
data equation in Eq. (3-18) then becomes

H(X) = OY. (3-22)

Now that the framework is introduced, we can move to the procedure of identifying K through
subspace identification. Looking at Eq. (3-22), we can see that the column space of H(X)
is contained in the column space of the observability matrix [14, Section 9.2.2]. If the two
column spaces are equal, we are then able to compute the linear predictor matrices in Eq. (3-
17) from H(X). In order to have the two ranges equal, we first choose the number of state
observables ny, columns s and samples m such that ny < s � m. Assuming that Y is full
rank, and that the realization of the predictor in Eq. (3-17) is minimal, then we can affirm
that range(H(X)) = range(O).

Lemma 3-5.1. Let H(X) ∈ R(n·s)×β be a Hankel matrix of measurements g(x[k]) ∈ Rn from
the linear predictor

y[k + 1] = Ay[k]
g(x[k]) = Cy[k].

Let also O ∈ R(n·s)×ny and Y ∈ Rny×β be the observability matrix of the predictor, and the
matrix containing all the measurements of y[k] ∈ Rny . If the following points are true

(i) ny < s� m;

(ii) Y is full rank;

(iii) The realization of the predictor (A,C) is minimal5;

then we have that range(H(X)) = range(O).

In what follows we will give a proof of what just stated in Lemma 3-5.1 (see also Section 9.2.2
of [14]).

5Meaning that (A, C) in Eq. (3-17) is controllable and observable [41, Theorem 2.2].
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Proof. Being Y a full rank matrix of rank ny and assuming that the system described Eq. (3-
17) is minimally realized, we can state that rank(O) = ny. Knowing that H(X) = OY from
Eq. (3-22), we can apply Sylvester’s Inequality6

rank(O) + rank(Y)− ny ≤ rank(OY)︸ ︷︷ ︸
rank(H(X))

≤ min(rank(O), rank(Y)).

This results in
ny + ny − ny ≤ rank(OY)︸ ︷︷ ︸

rank(H(X))

≤ min(ny, ny),

from which we can conclude that rank(H(X)) = ny leading to range(H(X)) = range(O).

If the two column spaces are the same, then we are able to obtain the observability matrix O
up to a similarity transformation by computing the SVD of H(X). In other words, from the
measurements of the library of observables g(x), we can compute the predictor matrices A
and C, from Eq. (3-17), up to a similarity transformation (AT , CT ). By computing the SVD
of H(X) we get the following

H(X) = UΣV T ,

from which we have

Uny = OT =


CT

CTAT
...

CTA
s−1
T

 ,
where Uny is the matrix resulting by taking the first ny columns of U , and T is the similarity
transformation. From Uny we can find CT by taking the first n rows, i.e. using Matlab
notation CT = Uny (1 : n, :). Matrix AT can be found by solving the following overdetermined
equation

Uny (1 : (s− 1)n, :)AT = Uny (n+ 1 : sn, :) ⇒ AT = Uny (1 : (s− 1)n, :)†Uny (n+ 1 : sn, :).

Now that the predictor matrices are available, it is possible to compute the matrix approxi-
mation of the Koopman operator

K = CTATC
†
T .

The Koopman subspace identification can be summarized with the following algorithm
Algorithm 5: KSI algorithm
Input: X
Output: Matrix approximation K of the Koopman operator

1 Choose g(x) ∈ Rn and construct H(X) ;
2 Compute the SVD for H(X) = UΣV T and take the first ny columns of U resulting in Uny ;
3 Assuming range(H(X)) = range(O) then compute

CT = Uny (1 : n, :), AT = Uny (1 : (s− 1)n, :)†Uny (n+ 1 : sn, :);
4 Compute K = CTATC

†
T .

6The Sylvester’s Inequality (given in Lemma 2.1 in [14]), states that having two matrices A ∈ Rm×n and
B ∈ Rn×p then

rank(A) + rank(B)− n ≤ rank(AB) ≤ min(rank(A), rank(B)).
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Chapter 4

Evaluation of the Numerical Methods

The algorithms defined in Chapter 3 have not yet been compared to one another. There are
cases like subDMD where its performances are presented against tDMD in [12]. Nevertheless,
the remaining numerical methods listed in Chapter 3 are not considered. Additionally, KSI
has not been evaluated in the presence of noise yet1. Therefore, to the extent of our knowledge,
the first comprehensive comparison of these algorithms in the presence of noisy training data
is given here. Moreover, the first performance results with noise in the measurements of the
states are shown and discussed.

In this chapter, we will discuss the design and results of the experiments carried out to test
the algorithms mentioned in Chapter 3. These experiments were designed to evaluate and
compare the numerical methods for changing values of different parameters. More in detail
we will show the results for an increasing number of training trajectories and an increasing
standard deviation of additive noise in the observables and the measurement of the states.

4-1 Design of the Experiments

The design of the experiments to benchmark the algorithms described in Chapter 3 relies on
three main steps:

1. Collecting and gathering the measurements of the system trajectories;

2. Computing the matrix approximation K of the Koopman operator;

3. Validating K with respect to the noise-free trajectories of the underlying nonlinear
system.

For small amounts of data, the performances of matrix K can drastically change depending
on the position of the randomly picked initial conditions of the training and validation data.

1In [13] the validation of their algorithm does not include the presence of noise in the measurements.
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26 Evaluation of the Numerical Methods

To get a clear picture of matrix K performance, we decided to implement the experiments
with the Monte Carlo method (see Raychaudhuri et al. [42]). More in detail, the methodology
is based on repeating steps 1, 2, and 3 for c times. Each time with different sets of initial
conditions. This is because the collection of states measurements in step 1 comes from Nt

trajectories, each of which has a randomly picked initial condition. To test the algorithms we
chose a low number of initial conditionsNt to analyze their behaviour in this critical condition.
The low amount of Nt will not cover the entire state space domain under observation. For
this reason, the performance of K can considerably vary. A more in deep discussion regarding
the Monte Carlo method is in Section 4-1-2.

In the following subsections, steps 1, 2, and 3 will be described. For the sake of simplicity
in analyzing the trajectories of the underlying system, we decided to adopt bi-dimensional
nonlinear systems in the experiments, i.e. x ∈ R2. Additionally, we will make use of the
nomenclature below:

• x: state of the system governed by ẋ = f(x) with x ∈ R2

• n: number of observables used as library of functions, i.e. g(x) =
[
g1(x) . . . gn(x)

]T
,

where gi : R2 → R, i = 1, . . . , n

• mt: number of samples per trajectory for training

• Nt: number of trajectories for training

• mv: number of samples per trajectory for validation

• Nv: number of trajectories for validation

• VAF: mean of the variance accounted for (marked line in the plots)

• VAFσ: standard deviation of the variance accounted for (filled area in the plots)

• RMSE: mean of the root mean square error

• RMSEσ: standard deviation of the root mean square error

4-1-1 Collecting and Gathering Measurement Data

Let us consider a general bi-dimensional system in continuous time such as Eq. (2-1):

ẋ(t) = f(x), x ∈ R2. (4-1)

To gather measurements of the states, the system is solved through the Runge-Kutta method
(RK4) [43]. This method relies on discretizing the continuous time system and solving it for
the initial condition x(0). More in detail, knowing the function f and the initial condition
x(0) we can write

x[k + 1] = x[k] + 1
6∆t(κ1 + 2κ2 + 2κ3 + κ4), with k = 0, . . . ,mt
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where

κ1 = f(x[k]),

κ2 = f(x[k] + ∆tκ1
2 ),

κ3 = f(x[k] + ∆tκ2
2 ),

κ4 = f(x[k] + ∆tκ3),

with ∆t = 0.01 s. The method RK4 is then used to compute the trajectory evolution of Nt

initial conditions. These initial conditions are confined in X[0] ∈ U2×Nt where U = {x ∈
R | − 1 ≤ x ≤ 1}. In this work, we uniformly randomly picked the initial conditions from
U. The choice of U was made to limit the computational power needed for computing the
observables2. For each k-th time step, the samples of each trajectory are placed in snapshot
matrices X[k] ∈ R2×Nt . When all the mt snapshot matrices are computed with RK4 they are
then gathered in

X =
[
X[0] X[1] . . . X[mt]

]
. (4-2)

When all the state samples are measured, the data is lifted. In this process, matrix X is given
as input to a library of functions g : R2 → Rn. In this thesis, for the construction of g we
chose to use a basis of monomials of the form xi1x

j
2 with 0 ≤ i+j ≤ d where d is the monomial

degree. For a chosen parameter d, and having x ∈ R2, the number of observables n in g is
equal to

n =
d+1∑
j=1

j.

The choice of the monomial basis was made to conform with Parmar et al.3 [37, Table 1] and
to easily retrieve the estimated states (see Section 4-1-2). The lifting step is used to bring the
measurements of the dynamics of the states to the higher-order space of observables. If the
choice of the library of observables forms a basis that spans a Koopman-invariant subspace,
then we can correctly compute the matrix approximation K of the Koopman operator (see
Section 2-3).

After the lifting step, the lifted state measurements are gathered into two types of matrices,
depending on the used algorithm. For EDMD, NFEDMD, and tDMD, the data is gathered
in matrices of the form

g(X) =
[
g(X[0]) g(X[1]) . . . g(X[mt − 1])

]
,

g(X′) =
[
g(X[1]) g(X[2]) . . . g(X[mt])

]
.

For subspace-identification-based algorithms (subDMD and KSI), we adopted the technique
of Duchesne et al. [40] in which multiple trajectories are considered. To do this we construct

2The library of observables chosen is of monomial type (see below). If the measured dynamics of the system
are higher than 1, then, for a high enough monomial degree, the computed values of the library can become
quite impractical.

3As we will see in Section 4-2 the nonlinear systems under test are both polynomial based. Following [37,
Table 1], a monomial basis is a good choice for the library of observables.

Master of Science Thesis Alessandro Borghi



28 Evaluation of the Numerical Methods

each Hankel matrix with different single trajectories in the state space. In other words, let us
consider the i-th state trajectory

x(i) =
[
x(i)[0] x(i)[1] . . . x(i)[mt − 1]]

]
, where i = 1, . . . , Nt.

Here x(i)[0] is a single initial condition in the state space. After passing x(i) through the
vector of observables g, the lifted data is placed in the following Hankel matrix

H(x(i)) =


g(x(i)[0]) g(x(i)[1]) . . . g(x(i)[mt − s− 1])
g(x(i)[1]) g(x(i)[2]) . . . g(x(i)[mt − s])

...
... . . . ...

g(x(i)[s− 1]) g(x(i)[s]) . . . g(x(i)[mt − 1])

 . (4-3)

This step is repeated for all the Nt trajectories. At the end of this process, all the Hankel
matrices are stored in

H(X) =
[
H(x(1)) H(x(2)) . . . H(x(Nt))

]
.

In this thesis, according to Takens’ embedded theorem, we chose the number of row ele-
ments in Eq. (4-3) to be s = 2n + 1. Before describing the theorem, let us define what
a delay coordinate embedding is. Section 2.3 of Kamb et al. [44] explains that the de-
lay embedding of the entire trajectory of g(x(i)) is defined as a new observable g∆(x(i)) =
(g(x(i)[0]), g(x(i)[1]), . . . , g(x(i)[s− 1])). It is possible to infer that this is equal to the first
column of the Hankel matrix in Eq. (4-3). The Takens’ embedded theorem shows that it is
possible to reconstruct the original state dynamics of the underlying nonlinear system through
delay coordinate embedding g∆(x(i)) of the states if s ≥ 2n+ 1 (see [44, Section 2.3]).

Once all the training data is correctly gathered inside the matrices g(X) and H(X), we can
apply the algorithms to compute K from them. An overview scheme of the training data
generation is shown in Fig. 4-1.

Introducing Noise in the Measurements

One of the main objectives of this thesis is to test the chosen algorithms in presence of noise
in the measurements of both observables and states. In what follows we describe two types
of noisy measurements for the training of the numerical methods.

Let us have the following observable

gωi [k] = gi(x[k]) + ω[k], i = 1, . . . , n, (4-4)

where ω[k] is additive white Gaussian noise. More in detail we refer to ω[k] as an i.i.d. random
variable with zero-mean normal distribution, i.e. ω[k] ∼ N (0, σ2

ω). The noise ω in Eq. (4-4)
is defined as observable measurement noise. In case ω is introduced, we have that the basis
of observables g is defined as g(x[k]) =

[
gω1 (x[k]) . . . gωn (x[k])

]T
which becomes

g(x[k]) =

g1(x[k]) + ω[k]
...

gn(x[k]) + ω[k]

 .
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Figure 4-1: Scheme of the measurement, lifting and gathering of the training data

The second measurement noise that we consider acts directly on the states such that

gvi [k] = gi(x[k] + v[k]), i = 1, . . . n, (4-5)

where v[k] is additive white Gaussian noise with v[k] ∼ N (0, σ2
v). Noise v[k] is referred to as

state measurement noise. Let us introduce v in the state measurements. For the i-th state
trajectory we have

x(i) =
[
x(i)[0] + v(i)[0], x(i)[1] + v(i)[1], . . .

. . . x(i)[mt − 1] + v(i)[mt − 1]
]
, where i = 1, . . . , Nt.

In terms of snapshot matrices, we have that Eq. (4-2) becomes

X =
[
X[0] + V [0], X[1] + V [1], . . . X[mt] + V [mt]

]
,

where
V [k] =

[
v(1)[k], v(2)[k], . . . v(Nt)[k]

]
, k = 1, . . .mt.

The introduction of v then influences the library of observables which becomes g(x[k]) =[
gv1(x[k]) . . . gvn(x[k])

]T
. The values of state measurement noise will be nonlinearly changed

by the observables. We expect that this deformation will drastically deteriorate the perfor-
mance of the algorithms.
The above-defined measurement noises will be introduced in the training data for the numer-
ical methods, and the results will be discussed in Section 4-2.
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...

Figure 4-2: Summary scheme of the implemented numerical methods of Chapter 3
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4-1-2 Validation

To benchmark the algorithms, we decided to validate their performances on replicating the
noise-free trajectories of the underlying nonlinear system. In other words, the benchmark re-
sult is based on the error between the model and the nonlinear system trajectories. With this
in mind, the algorithms of Chapter 3 are implemented to determine only the approximated
Koopman operator K ∈ Rn×n, disregarding the computation of eigenvalues and modes. Ma-
trix K is then used as a linear operator to compute the next step in the space of observables
such that

z[k + 1] = Kz[k]
z[0] = g(x[0]),

(4-6)

with g(x[0]) ∈ Rn and z[k] ∈ Rn. The objective is to compute a K such that z[k] is equal
to g(x[k]). A summary scheme of the implemented algorithms in Chapter 3 is showed in
Fig. 4-2.

Once the implemented algorithms of Chapter 3 compute their respective approximated Koop-
man operator K, a validation step is carried out. The validation is based on first computing
mv samples of the trajectories of the underlying nonlinear system for each of the Nv ran-
domly picked initial conditions in Xv[0] ∈ U2×Nv . When all the Nv states trajectories are
determined, Xv[0] is lifted, resulting in g(Xv[0]). We then use g(Xv[0]) as initial condition
z[0] in Eq. (4-6) and solve it. If the computed approximated Koopman operator is satisfactory,
then z[k] ≈ g(x[k]). This is done for each numerical method. When all the mv trajectory
samples are computed, the estimated states x̂ ∈ R2 are retrieved from z. Since we chose a
monomial basis, there exists a matrix B such that x[k] = Bg(x[k]). Hence, the estimated
state can be easily recovered from Eq. (4-6) with x̂[k] = Bz[k]. More in detail, the monomial
basis z of degree d will be as follows (see Section 4-1-1)

z[k] =



1
x̂1[k]
x̂2

1[k]
...

x̂d[k]
x̂2[k]
...

x̂i1[k]x̂j2[k]


, k = 0, . . .mv, (4-7)

with 0 ≤ i + j ≤ d. From Eq. (4-7) it is possible to recover x̂1 and x̂2 by taking the second
element and the (2 + d)-th element of z[k] respectively. In other words, by using the notation
of Matlab we have

x̂1[k] =
[
z[k]

]
(2, :),

x̂2[k] =
[
z[k]

]
(2 + d, :), k = 0, . . .mv.

The modeled dynamics of x̂ are then validated with respect to the noise-free x of the un-
derlying nonlinear system. This is done by using the root mean square error (RMSE) and
the variance accounted for (VAF) between the two trajectories. The RMSE is proportional
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to the error between the real and the estimated state trajectory. The VAF computes, on
a percentage scale, how much the dispersion of the error is with respect to the variance of
the real trajectory. We chose to use both RMSE and VAF for two main reasons. The first
reason is that VAF does not count for biases in the model estimated trajectory while RMSE
does. The second is because VAF gives results on a scale from 0 to 100. This is particularly
useful to have an overall qualitative measure of the correctness of a model, making it easier
to compare the algorithms. The RMSE and VAF for a single trajectory are defined as follows

RMSEp =

√∑mv−1
k=0 (xi[k]− x̂i[k])2

mv
, (4-8)

VAFp =
(

1− var(xi − x̂i)
var(xi)

)
100%, i = 1, 2; p = 1, . . . Nv (4-9)

where var(xi) is the variance of the trajectory xi such that

var(xi) = 1
mv

mv−1∑
k=0

(xi[k]− µ)2

with µ as the mean of xi (see [14, Page 383]). We recall that the entire process of validation
is repeated for Nv trajectories. The overall RMSEj and VAFj , of the j-th Monte Carlo
simulation, result from the mean of all the Nv VAFp and RMSEp computed with Eq. (4-8)
and Eq. (4-9) such that

RMSEj = 1
Nv

Nv∑
q=1

RMSEq,

VAFj = 1
Nv

Nv∑
q=1

VAFq.

Additionally, the standard deviation of both VAFp and RMSEp, with p = 1, . . . Nv, is com-
puted as follows

RMSEσj =

√√√√∑Nv
q=1(RMSEq − µRMSE)

Nv
,

VAFσj =

√√√√∑Nv
q=1(VAFq − µVAF)

Nv
.

where µRMSE and µVAF are the mean of the RMSEp and VAFp (∀p = 1, . . . Nv) respectively.
This process will be repeated c times, i.e. the chosen number of Monte Carlo experiments.

The number of initial conditions Nt used for training the numerical methods might not be
enough to cover the entire state subspace under analysis4. In real case scenarios, it is generally
the case to have a high, medium, and low amount of training data. For low amounts, the
performance of the algorithms can strongly fluctuate with randomly chosen initial conditions.
An example can be that the initial conditions Xt[0] ∈ U2×Nv are positioned in a section of

4We remind the reader that this section of the state space is a square of dimension 2 and centered at the
origin of the state space (see Section 4-1-1).
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Figure 4-3: Summary scheme of the benchmark framework

the state space that has a certain behaviour. When validating, the picked initial conditions
in Xv[0] ∈ U2×Nv are, instead, on another section with completely different behaviour. In
these cases, the numerical algorithms can have a drastic deterioration of their performances
leading to unsatisfactory values of VAF and RMSE. In summary, given the two sets of random
initial conditions Xv[0] and Xt[0], the models’ performances can drastically vary depending
on them. With this in mind, we chose to adopt the Monte Carlo method by averaging the
performance results over several experiments.

To cover as many resulting outputs as possible, the Monte Carlo method is adopted [42].
Its implementation is based on simply repeating, with different sets of initial conditions, the
steps described in Section 4-1-1 and Section 4-1-2 for c times. The parameter c is chosen by
the user. Having a set of fixed parameters mt, Nt,mv and Nv, a matrix containing all VAFj
and RMSEj , j = 1, . . . c, is computed. When the Monte Carlo experiment is concluded the
final VAF and RMSE, along with their standard deviations, are given by

RMSE = 1
c

c∑
j=1

RMSEj , RMSEσ = 1
c

c∑
j=1

RMSEσj ,

VAF = 1
c

c∑
j=1

VAFj , VAFσ = 1
c

c∑
j=1

VAFσj .
(4-10)
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The values in Eq. (4-10) are considered the final performance values of the numerical algo-
rithms for the chosen parameters mt, Nt,mv, and Nv.

A summary scheme of the benchmark procedure is given in Fig. 4-3

4-2 Benchmark Results of the Numerical Methods in Chapter 3

This section discusses the results of the benchmark experiments. For each subsection, the
performances of the numerical algorithms for different bi-dimensional nonlinear systems will
be shown. The benchmark results are presented as trajectories of the VAF and RMSE for an
increasing parameter. For the VAF, both the mean (dark line) and the standard deviation
(light area) are shown in the same plot, while the RMSE mean and its standard deviation
(RMSE σ) are shown in different plots. This choice was made because there are cases in
which RMSE σ is too high, making it difficult to present it in a plot like the filled one of the
VAF.

4-2-1 Brusselator

In this subsection we will discuss the performances of the various numerical algorithms applied
to the Brusselator, a nonlinear system described with

ẋ1 = 1− (b− 1)x1 + ax2
1x2,

ẋ2 = bx1 − ax2
1x2,

(4-11)

with x1, x2 ∈ U, a = 1, and b = 0.7. After centering the stable equilibrium point at the origin
of the state space, the dynamics of Eq. (4-11) behave like in Fig. 4-4. We chose this system so
to analyze the behaviour of the numerical algorithms in the presence of a stable equilibrium
point.

Changing the Number of Training Trajectories

This experiment is designed to analyze the behaviour of the algorithms for an increasing
number of training trajectories Nt. In other words, when the validation of the algorithms is
finished for a certain value of Nt, the latter is increased and a new cycle of evaluation starts.
The term cycle of evaluation refers to the process described in Section 4-1-1 and Section 4-1-
2. This procedure is done while keeping all the other parameters fixed. In this way, we can
analyze the dynamics of the VAF and RMSE with respect to Nt. The results showed in this
subsection were computed with the fixed parameters in Table 4-1. The results of the first
experiment are shown in Fig. 4-5, where no noise was introduced in neither the observables
nor the states measurements. It is possible to see from Fig. 4-5 that the performances of the
algorithms in replicating the trajectories of the Brusselator are quite the same apart from KSI.
The KSI method has worse VAF and RMSE with respect to the other algorithms. The biggest
difference can be seen with a low number of training trajectories (Nt ≤ 40). Nevertheless, the
performances between the various numerical methods are very similar after Nt = 40. Looking
at the VAF variance of KSI in Fig. 4-5 it is possible to see that it is higher than the other
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Figure 4-4: Phase portrait of the Brusselator

Parameter Value
Number of observables used in the library (n) 15
Number of samples per training trajectory (mt) 300
Number of validation trajectories (Nv) 10
Number of samples per validation trajectory (mv) 1000
Number of Monte Carlo cycles (c) 50

Table 4-1: Fixed parameters for the experiment with changing Nt

algorithms even for Nt ≥ 40. A possible explanation is that the KSI model overfits the given
training data sets due to its high VAF variance (see [45, Page 32]).

Now that the case with no noise is covered, we introduce the observables measurement noise ω
(see Eq. (4-4)) with σω = 0.1. For this experiment, we simply add the white Gaussian noise ω
to the observables g. The result of this addition is showed in Fig. 4-6. The difference with the
previous case in Fig. 4-5 is quite significant. The predicted state trajectories of the algorithms
have a considerable deterioration in presence of ω. However, two numerical methods still
give very promising results: KSI and NFEDMD. Even with a low number of trajectories
(Nt < 60) NFEDMD is the best performing algorithm. This is due to its availability of noise-
free observables. This lets NFEDMD create a satisfactory model even with a small amount
of training data. For Nt ≥ 60 also KSI reaches a satisfactory prediction quality similar to
NFEDMD. This is because KSI only uses the noisy observables measurements as training
data. This makes it unaware of the noise ω. To overcome this drawback KSI needs more
data than NFEDMD to compute an acceptable model. The similar performance of KSI and
NFEDMD for Nt ≥ 60 means that we can reach a satisfactory level of robustness even without
noise-free measurements of the observables.
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Figure 4-5: Dynamics of the VAF and RMSE for different values of training trajectories Nt.
Here, no noise is applied to the measurements, i.e. ω[k] = 0 and v[k] = 0 ∀k = 0, . . . ,mt. The
following parameters were set: n = 15, mt = 300, Nv = 10, mv = 1000 and c = 50

The RMSE dynamics of subDMD and tDMD are not shown in Fig. 4-6 as their error mag-
nitude is too high5 with respect to the other algorithms. These two algorithms might need
a larger training data set to be comparable to the KSI and NFEDMD. The low amount of
training data can considerably influence the quality of the algorithms in the presence of noise.

Let us now add noise v directly in the measurement of the states (see Eq. (4-5)) with σv = 0.1.
In other words, we add v to the snapshot matrices X. This means that the additive white
Gaussian noise is introduced before lifting the data, a process that will distort it. The result
of this addition is shown in Fig. 4-7. It is possible to see that the distortion of v drastically
deteriorates the performances of all the algorithms apart from NFEDMD.

Similarly for Fig. 4-6, in the RMSE plots of Fig. 4-7 the subDMD and tDMD are not present
because their error values are too high to be displayed. This can be due to the high amplitude
of the measurement noise. We remind the reader that the state space under consideration is
x ∈ U2 and the standard deviation of the noise is σv = 0.1. This strong presence of noise in the

5The steady value of RMSE is around 105
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Figure 4-6: Dynamics of the VAF and RMSE for different values of training trajectories Nt.
Here, only the observables measurement noise was introduced with σω = 0.1. The following
parameters were set: n = 15, mt = 300, Nv = 10, mv = 1000 and c = 50

training data can result in unsatisfactory models. Additionally, during the implementation of
these two algorithms, we chose an order r = n. In both subDMD and tDMD the parameter r
is used to truncate the order of the SVD step (see Section 3-1-1 and Section 3-4). The value
of r can greatly influence the resulting model. The choice of setting r = n is done to comply
with the implementation of KSI that does not have any order truncation.

Changing the Standard Deviation of the Measurement Noises

With this experiment, we want to confirm the results above and see how robust the algorithms
are for different values of the standard deviation of v and ω. The fixed parameters for this
test category are listed in Table 4-2.
We start this second type of experiment by increasing the standard deviation σω of the
observable measurement noise ω every time the evaluation cycle finishes. Looking at the
plot of Fig. 4-8 it is possible to see that KSI performance is very similar to NFEDMD up
to σω = 0.07. After σω = 0.07, the deterioration of the KSI model becomes quite relevant.
Nevertheless, these robustness results make KSI a promising technique capable to reach the
level of NFEDMD.
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Figure 4-7: Dynamics of the VAF and RMSE for different values of training trajectories Nt. Here,
only the states measurement noise was introduced with σv = 0.1. The following parameters were
set: n = 15, mt = 300, Nv = 10, mv = 1000 and c = 50

Now let us analyze the behaviour of the models in case of an increasing standard deviation
σv of the state measurement noise v. The results of this experiment are given in the plots
of Fig. 4-9. The NFEDMD shows again excellent performances, followed by the EDMD and
subDMD. For what regards the other techniques, the introduction of v drastically deterio-
rates their ability to replicate the noise-free trajectories. As we assumed for the previous
experiment category, this is due to the distortion of v from the lifting process. To conclude
the observations, the VAF plot of Fig. 4-9 shows that the subDMD performance should be
better than KSI, while its RMSE is worse. The better performance of VAF with respect to
RMSE might be due to a bias in the computation of the model of subDMD introduced by
the distorted noise.
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Parameter Value
Number of observables used in the library (n) 15
Number of samples per training trajectory (mt) 300
Number of training trajectories (Nt) 50
Number of validation trajectories (Nv) 10
Number of samples per validation trajectory (mv) 1000
Number of Monte Carlo cycles (c) 50

Table 4-2: Fixed parameters for the experiment with a changing standard deviation of the
measurement noises
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Figure 4-8: Dynamics of the VAF and RMSE for different values of observables measurement
noise standard deviation σω. The following parameters were set: n = 15, mt = 300, Nt = 50,
Nv = 10, mv = 1000 and c = 50
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Figure 4-9: Dynamics of the VAF and RMSE for different values of state measurement noise
standard deviation σv. The following parameters were set: n = 15, mt = 300, Nt = 50, Nv = 10,
mv = 1000 and c = 50
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4-2-2 Van Der Pol Oscillator

This subsection briefly covers the benchmark experiments applied to the Van Der Pol oscil-
lator. This nonlinear system is described by the following 2-dimensional ordinary differential
equation

ẋ1 = x2,

ẋ2 = ζ(1− x2
1)x2 − x1,

(4-12)

with x1, x2 ∈ U, and ζ = 0.5. The behavior of Eq. (4-12) is shown in the phase portrait
of Fig. 4-10. We chose this system for three main reasons. The first is the presence of a
limit cycle. The second is that if we choose x[0] ∈ U the trajectories will follow an unstable
behaviour due to the equilibrium point at the origin. The third is, because of this unstable
behaviour, the state trajectories will evolve outside U. For a too high monomial degree,
this can drastically increase the values of the observables library. Nevertheless, the chosen
monomial degree is 4 which still gives appreciable lifted dynamics. Testing the algorithms on
the Van der Pol oscillator will give us insights into their performance in the presence of the
three characteristics listed above.
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Figure 4-10: Phase portrait of the Van Der Pol oscillator

Changing the Number of Training Trajectories

In this experiment category we check the dynamics of VAF and RMSE for an increasing
amount of training trajectories with the fixed parameters of Table 4-3. The resulting perfor-
mances, given the fixed parameters in Table 4-3, are showed in Fig. 4-11 and Fig. 4-12 for
σω = 0.1 and σv = 0.1 respectively. We can see from these plots that subDMD replicates the
real trajectories of the Van der Pol oscillator better than the Brusselator. As a matter of fact,
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Parameter Value
Number of observables used in the library (n) 15
Number of samples per training trajectory (mt) 300
Number of validation trajectories (Nv) 10
Number of samples per validation trajectory (mv) 1000
Number of Monte Carlo cycles (c) 50

Table 4-3: Fixed parameters for the experiment with a changing Nt

in Fig. 4-6 and Fig. 4-7 subDMD was not even displayed as its RMSE was too high. Apart
from the improvement of subDMD, we can see an overall worsening in the performances of the
algorithms. Nevertheless, NFEDMD is still the best performing solution, followed by KSI.

To conclude we want to emphasize that, like in the Brusselator experiments, the addition of
state measurement noise v gives erratic results in the models of the algorithms (see Fig. 4-
7 and Fig. 4-12). This is due to the distortion of v caused by the lifting process, which
significantly influences the computed models.

Changing the Standard Deviation of the Measurement Noises

This experiment analyzes the robustness performance of the algorithms in the presence of
either ω or v. The resulting plots are showed in Fig. 4-13 and Fig. 4-14. To ease the
comparison with the Brusselator we put in Fig. 4-15 the VAF dynamics of both Van der Pol
oscillator and Brusselator. As we discussed in the previous experiment, there is a worsening
of the performances in replicating the Van der Pol oscillator trajectories. This can be seen by
simply looking at the no noise case where the VAF is at around 80% while for the Brusselator
is 100% in Fig. 4-15. This is probably due to the limit cycle of the system which might be
difficult to model. Another possibility is the number of observables used as library. To lift
the Van der Pol oscillator trajectories we chose the same amount of observables (n = 15) used
for the Brusselator. The parameter n is chosen through trial and error, which might give a
non-optimal value, leading to lower quality models.

A lower deterioration rate of subDMD can be seen in Fig. 4-15. More in detail, the VAF has
a lower decrease rate with an increasing standard deviation of the noise (both for v and ω).

Parameter Value
Number of observables used in the library (n) 15
Number of samples per training trajectory (mt) 300
Number of validation trajectories (Nv) 10
Number of samples per validation trajectory (mv) 1000
Number of Monte Carlo cycles (c) 50

Table 4-4: Fixed parameters for the experiment with a changing standard deviation of the
measurements noises
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Figure 4-11: Dynamics of the VAF and RMSE for different values of training trajectories Nt.
Here, only the observables measurement noise was introduced with σω = 0.1. The following
parameters were set: n = 15, mt = 300, Nv = 10, mv = 1000 and c = 50
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Figure 4-12: Dynamics of the VAF and RMSE for different values of training trajectories Nt.
Here, only the states measurement noise was introduced with σv = 0.1. The following parameters
were set: n = 15, mt = 300, Nv = 10, mv = 1000 and c = 50
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Figure 4-13: Dynamics of the VAF and RMSE for different values of observables measurement
noise σω. The following parameters were set: n = 15, mt = 300, Nt = 50, Nv = 10, mv = 1000
and c = 50
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Figure 4-14: Dynamics of the VAF and RMSE for different values of the state measurement
noise σv. The following parameters were set: n = 15, mt = 300, Nt = 50, Nv = 10, mv = 1000
and c = 50
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Figure 4-15: Overall VAF dynamics of numerical methods for the Brusselator (left) and the Van
der Pol oscillator (right) with an increasing standard deviation of observables measurement noise
σω (top) and state measurement noise σv (bottom)
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Chapter 5

Introducing the Reduced Order KSI
with Randomized Singular Value

Decomposition

From Chapter 4 we concluded that KSI is a promising technique against the observables
measurement noise ω (see Fig. 4-8 and Fig. 4-13). To improve this numerical method we
implement two main upgrades. In this chapter, we discuss the enhancements that we de-
signed for KSI during the period of this thesis. More in detail, we introduce a reduced-order
realization of KSI with the purpose to compute a more robust model to measurement noise.
Additionally, we implement a randomized singular value decomposition to compute the ob-
servability matrix up to a similarity transformation. This will decrease the computational
times of KSI.

5-1 Reduced-Order KSI (roKSI) in Presence of Measurement Noise

We saw in Chapter 4 that the presence of measurement noise can have a big influence on the
resulting model computed by KSI. A possible way to solve this issue is based on eliminating
the singular values components ς (see Theorem 3-1.1) that are due to the added measurement
noise. In other words, we reduce the order of the state observables y in the KSI model.

We start by introducing the nomenclature based on Section 3-5. Let us have the KSI system
in Eq. (3-17) with noisy measurements such that

y[k + 1] = Ay[k]
g(x[k]) = Cy[k] + ω[k],

(5-1)

where g(x[k]) ∈ Rn is the library of observables chosen , y[k] ∈ Rny are the state observables
and ω[k] ∼ N (0, σ2

ω) is additive white Gaussian noise. The measurements of the state observ-
ables and additive noise are collected into the matrices Y and W respectively. Matrix W is
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defined as follows
W =

[
W1 W2 . . . WNt

]
where

Wi =

 ω(i)[0] ω(i)[1] . . . ω(i)[mt − s− 1]
ω(i)[1] ω(i)[2] . . . ω(i)[mt − s]

ω(i)[s− 1] ω(i)[s− 2] . . . ω(i)[mt − 1]


gathers the noise measurements of the i-th trajectory. The data equation of Eq. (5-1) is then
defined as

H(X) = OY + W.

where H(X) ∈ Rs·n×mt·Nt is the matrix defined in Eq. (3-21), and O is the observability
matrix. We recall that s indicates the number of groups of n rows present in H(X), i.e. the
number of time delays in the Hankel matrix.

Now we show that it is possible to retrieve the system matrices A and C of Eq. (5-1) even if
the measurements are noisy. We start by stating Lemma 9.3 of Verhaegen et al. [14] for our
current situation:

Lemma 5-1.1. Let us have the system in Eq. (5-1), with the state observables measurements
matrix Y satisfying

rank
(

lim
mt→∞

1
mt

(
YYT

))
= ny,

along with W satisfying
lim

mt→∞
1
mt

(
WWT

)
= σ2

ωIsn,

where Isn is an identity matrix of dimension sn × sn. In the computation of the SVD (see
Theorem 3-1.1) of matrix

lim
mt→∞

1
mt

(
H(X)H(X)T

)
=
[
U1 U2

] [Σ2
ny

+ σ2
ωIsny 0

0 σ2
ωIsn−ny

] [
UT1
UT2

]
(5-2)

we have that the ny × ny diagonal matrix Σ2
ny

contains the nonzero singular values of matrix

O
(

lim
mt→∞

1
mt

(
YYT

))
OT .

Matrix U1 from Eq. (5-2) then satisfies

range(U1) = range(O).

The proof of this lemma is given in [14, Page 308].

We can infer from Lemma 5-1.1 that in case we have additive white noise in the measurements
we can distinguish the disturbed dynamics from noise. In other words, we split the singular
values related to the disturbed states observables y from the ones related to the noise ω. If
we can find the right order ny of the disturbed system, then we can compute from U1 the
column space of the observability matrix. From here the matrices A and C can be computed
up to a similarity transformation through the KSI algorithm in Section 3-5.
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Figure 5-1: Trajectories of KSI and NFEDMD in the presence of observables measurement noise
ω (σω = 0.1) with respect to the Brusselator behaviour

The distinction between the ny disturbed singular values and the sn−ny noise singular values
depends on the gap between ny and ny + 1 (see [14, Page 310]). If the gap is big enough
then the distinction is easily determinable. To help us find this gap, the VAF and RMSE can
be computed for each reduced-order ny, and choose the best performing one. We will see in
the following example that another possible way to determine ny is by looking at when the
singular values become constant.

Example 2. Let us make a practical example by adopting the Brusselator as an underlying
system. In this example, only the observables measurement noise ω with σω = 0.1 is intro-
duced. The training is done with Nt = 10 training trajectories and mt = 1000 samples per
trajectory. Additionally, a 4th order monomial basis is used as library of observables, i.e.
n = 15. In Fig. 5-1 it is possible to see the trajectories result of a full order KSI (n = 15,
ny = 15) along with NFEDMD. The trajectories of KSI show the degrading influence of ω
to the prediction properties of the approximated Koopman operator K. In Fig. 5-2 we can
also see the singular values ς of Eq. (5-2) on a logarithmic scale. After seeing the poor
performance of KSI in Fig. 5-1, we wish to truncate the order ny to decrease the effect of ω
on the computation of K. To do so, we rely on the singular values of Fig. 5-2 along with
the VAF and RMSE for each order ny chosen. These performance measures values are shown
in Fig. 5-3, from which we can conclude that ny = 4 is the best choice for the order of the
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Figure 5-2: Singular values ς of Eq. (5-2)

state observables y. This was already deductible from Fig. 5-2. Now that ny is chosen we
can compare the resulting KSI trajectories with respect to NFEDMD. The trajectories of the
reduced-order KSI (roKSI) are shown in Fig. 5-4, where we can see the improved performance
of roKSI against the full order version in Fig. 5-1.

4

The implementation of the roKSI is based on running the KSI algorithm with different values
of the truncated ny order. After computing the VAF for all the ny, the one with the best
performance is used to compute matrix K of roKSI. As we showed in Example 2, it is also
possible to look at the singular values, like in Fig. 5-2, and truncate the order of ny when ς
becomes low enough and constant.

5-2 Introducing Randomized Singular Value Decomposition in KSI
(KSIrsvd)

One of the most important drawbacks of the deterministic SVD is its high cost in terms of
floating-point operations [46, Section 1.4.1]. Especially in the case of big matrices decompo-
sition, this issue can lead to high computational times. Taking into account that the data
matrices that we work with, e.g. H(X), can be quite big in size (∼ 102 × 104), the programs
running times can become impractical. From Section 5-1 we understood that behind the noisy
lifted measurements we can find dominant dynamics. These can be used to approximately
reconstruct the behaviour of the underlying nonlinear system. In other words, we truncate
the order ny ≤ n of our lifted system (see Eq. (5-1)) creating a low-rank approximation of the
measurement data. With this in mind, we decided to adopt the randomized singular value
decomposition (rSVD) to decrease the computational times of the KSI algorithm.
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Figure 5-3: VAF and RMSE of the KSI trajectories with respect to the true ones of the Brusselator

Before describing the implementation of the rSVD, we introduce the theory of randomized
matrix approximations based on the work of Halko et al. in [46, Section 1.2]. Let us have
a matrix A ∈ Ra×b and its SVD is of the form A = UAΣV T (see Theorem 3-1.1). The
decomposition of A can be seen as a 2 stage process: in the first stage we find a a× r matrix
Q such that

A ≈ QQTA.

We need Q to have all its columns orthonormal, i.e. QQT = I, and with as few columns
as possible. In the second stage we first form a matrix B = QTA, then, by computing its
(deterministic) SVD, we get

B = UBΣV T .

To finish the decomposition we determine the singular left vectors matrix UA = QUB.

The main improvement of introducing randomization in the process discussed above lies in
the computation of matrix Q in the first stage. Assuming that rank(A) = r, the first step is
to find a b× r matrix P , with r a chosen fixed parameter, such that the resulting Z in

Z = AP,

approximately spans the range of A. If we decide to take each column of P as a random
Gaussian vector with each entry i.i.d we have that Z will span the range of A. This is
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Figure 5-4: Trajectories of the reduced order KSI (ny = 4) and NFEDMD in the presence of
observables measurement noise ω (σω = 0.1) with respect to the Brusselator behaviour

because the columns of P are i.i.d. which means that they are also linearly independent with
probability one. This results in the columns of Z being also linearly independent, spanning
the range of A (see [46, Section 1.3.2]). There might be the case where the assumption on the
rank of A is wrong and rank(A) > r. In this situation, we need P to span an r dimensional
subspace of A. To do so, we can increase our chances of spanning this subspace by adding p
columns to P , making it a b×(r+p) matrix. The constant p is called ovsersampling parameter
[2, Section 1.8]. Generally the rule of thumb is to set p = 5 or p = 10 for good results [46].

Now that we have a matrix Z spanning the subspace of A that interests us, we need to
compute Q. We remind that the columns of Q need to be orthonormal. With this in mind, a
possible solution is to compute the economized QR decomposition of Z (see [47, Section 2])
such that

Z = QR. (5-3)

From Eq. (5-3) we determine matrix Q which will be used in the second stage to carry
out the SVD of matrix A. In Halko et al. [46, Section 1.2], the number of floating-point
operations, flops, is compared between SVD and rSVD. For a a× b matrix A the SVD has a
number of flops of the order O(rank(A)ab). The rSVD, instead, can reach an order of flops
of O(ab log(rank(A)) + (a+ b)rank(A)2).
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The rSVD algorithm that we implemented was taken from the work of Brunton et al. [2,
Section 1.8] and is shown below. In this algorithm we replace matrix A with matrix H(X) of
Eq. (3-21). This is done to comply with the nomenclature of Section 3-5.
Algorithm 6: Randomized SVD
Input: H(X) ∈ R(s·n)×(Nt·mt), the low-rank parameter ny ≤ n, with ny = r, and the

oversampling parameter p
Output: The SVD of H(X)

1 Construct the random projection P ∈ R(s·n)×(ny+p);
2 Compute Z = (H(X)H(X)T )H(X)P ;
3 Compute QR decomposition of Z = QR;
4 Form B = QTH(X);
5 Compute the SVD of B = UBΣV T ;
6 Compute U = QUB where H(X) = UΣV T .

Step 2 was taken from [2, Eq. 1.40] and is used to have a matrix (H(X)H(X)T )H(X) with a
faster decay of the singular values with respect to H(X). This is done in case the singular
value of H(X) decay slowly, leading to difficulties in finding the right truncation order.

The deterministic SVD of KSI is replaced with rSVD (see Algorithm 5). To see the per-
formance of KSI with rSVD, we tested it on the Brusselator and checked its computational
time with respect to the number of training trajectories Nt given in input. A 4th order
monomial basis is used as observables library. Each training trajectory had 100 samples. No
measurement noise is introduced, and the truncating-order parameter is set at ny = n. The
programming environment used is Matlab 2019b and it was run on an Intel(R) Core(TM)
i7-8565U CPU 1.80GHz-1.99 GHz. With an oversampling of p = 5, the result is shown in
Fig. 5-5 in comparison with KSI using the deterministic SVD. Here it is possible to see the
higher efficiency of the rSVD in terms of computation time.

Figure 5-5: Execution times of the KSI with rSVD compared to KSI with deterministic SVD
with respect to the number of training trajectories Nt given
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5-3 Benchmark Results with Improved KSI

In this section, we will show the performance results of the KSI algorithm updated with the
improvements discussed above. The resulting algorithm has a reducing-order routine, i.e. a
routine that selects the rank parameter ny, and adopts the rSVD for the computation of the
observability matrix. We will refer to this algorithm as the reduced order KSI with randomized
singular value decomposition (roKSIrsvd). The reducing order routine of roKSIrsvd computes
the RMSE1 for different K resulting from different values of ny. We then choose the ny and
K with the lowest RMSE value. Algorithm 7 summarizes the roKSIrsvd by integrating
the concepts introduced in Section 5-1 and Section 5-2. Looking at the results showed in
Chapter 4, we decided to compare roKSIrsvd with KSI and NFEDMD in terms of VAF and
RMSE. This decision was taken as the last two algorithms are the best performing ones
with respect to the others listed in Chapter 3. Here we will evaluate roKSIrsvd applied
to the Brusselator. The VAF and RMSE will be computed with respect to the number of
trajectories Nt, and the standard deviations σv and σω of the measurement noises. The results
of the first benchmark with an increasing Nt are showed in Fig. 5-7 and Fig. 5-8 with the
additions of noise ω and v respectively. Especially in the case of additive noise in the state
measurements (Fig. 5-8) roKSIrsvd outperforms KSI. For what regards Fig. 5-7, roKSIrsvd
computes a better K than KSI until Nt ≈ 50. After that KSI has enough training data to
compute a more performing model. This can be due to the adoption of rSVD which computes
an approximated version of the SVD. The closeness to the NFEDMD performance makes the
roKSIrsvd one of the most robust algorithms in this thesis tested in the framework defined
in Chapter 4. A second proof of the very good robustness of roKSIrsvd is shown in the plots
of Fig. 5-9 and Fig. 5-10. Here the performance values are computed with respect to an
increasing standard deviation of the measurement noises ω and v.

The main drawback of roKSIrsvd is its processing time. The reducing-order routine increases
the time needed to compute the resulting approximated Koopman operator. This is because
there is an internal cycle that validates K for different values of r. Instead of computing K
once, we compute it n − 1 times, therefore increasing the computational times. But if the
optimal reduced-order parameter r is already known, then the roKSIrsvd is faster than the
KSI thanks to the rSVD. In the case of unknown ny, a quantitative result that proves the
higher computational times of roKSIrsvd is given in Fig. 5-6.

In conclusion, we can confirm that reducing the order of the KSI model and computing the
decomposition of H(X) with rSVD improves the robustness of the algorithm to noise and its
computational times2. As the performance of roKSIrsvd is comparable to NFEDMD, we can
also affirm that it outperforms the other listed algorithms of Chapter 3 in the benchmark
framework of Chapter 4.

1The RMSE generally mirrors the VAF, i.e. when the latter increases, the former decreases. We chose to
use the RMSE instead of VAF to take into account possible biases.

2In case ny is already known.
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Algorithm 7: Reduced order KSI with randomized singular value decomposition
(roKSIrsvd)
Input: X
Output: Matrix approximation K of the Koopman operator

1 Set the order truncating parameter r = 2, choose g(x) ∈ Rn, and construct
H(X) =

[
H(X1) H(X2) . . . H(XNt

)
]
, from Eq. (3-21);

2 while r ≤ n do
3 Compute the rSVD (see Section 5-2) of H(X) = UΣV T and take the first r columns

of U resulting in Ur;
4 Assuming range(H(X)) = range(O) then compute

CT = Uny (1 : n, 1 : r), AT = Ur(1 : (s− 1)n, 1 : r)†Ur(n+ 1 : sn, 1 : r);
5 Compute Kr = CTATC

†
T ;

6 Validate Kr and compute the RMSE(r) with respect to the real system trajectories;
7 r = r + 1;
8 end
9 Find ny = arg minr RMSE(r) with r = 2, . . . , n;

10 The resulting Koopman matrix approximation is K = Kny .

Figure 5-6: Execution times of the roKSIrsvd compared to KSI with respect to the number of
training trajectories Nt
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Figure 5-7: Dynamics of the VAF and RMSE for different values of training trajectories Nt.
Here, only the observables measurement noise ω was introduced with σω = 0.1. The following
parameters were set: d = 4 (or n = 15), mt = 300, Nv = 100, mv = 1000 and c = 10
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Figure 5-8: Dynamics of the VAF and RMSE for different values of training trajectories Nt. Here,
only the state measurement noise v was introduced with σv = 0.1. The following parameters
were set: d = 4 (or n = 15), mt = 300, Nv = 100, mv = 1000 and c = 10
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Figure 5-9: Dynamics of the VAF and RMSE for different values of observables measurement
noise standard deviation σω. The following parameters were set: d = 4 (or n = 15), mt = 300,
Nt = 50, Nv = 100, mv = 1000 and c = 10
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Figure 5-10: Dynamics of the VAF and RMSE for different values of state measurement noise
standard deviation σv. The following parameters were set: d = 4 (or n = 15), mt = 300,
Nt = 50, Nv = 100, mv = 1000 and c = 10
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Chapter 6

Conclusions

In Chapter 2 we introduced the main concepts that form the theoretical pillars behind the
Koopman operator framework. This gave us the knowledge needed to describe the algorithms
designed to compute matrix approximations of this composition operator. More in detail, in
Chapter 3 we explained the functioning of tDMD [17], EDMD [1], subDMD [12], NFEDMD,
and KSI. As we introduced in Chapter 1, one of the main issues in the computation of
prediction models with machine learning techniques is noise [15]. The ability to determine
a well approximated Koopman operator is crucial in the case of noisy training data. This
is why this thesis focused on this issue by evaluating the above-mentioned algorithms and
improving the most promising one.

In Chapter 4 we evaluated and discussed the performance of the state-of-the-art numerical
techniques introduced in Chapter 3 in the presence of noisy training data sets. In particular,
we applied additive white Gaussian noise in two different places: state measurements and
observable measurements. While the observable measurement noise will preserve its additive
white Gaussian noise features, the state measurement noise will loose these features because
of the lifting process. This difference is also the reason why we chose to add noise in these two
particular places. The quality of the models was quantified by computing the VAF and RMSE
of the prediction error. We showed that the performance of subDMD, tDMD, and EDMD
can drastically degrade with the introduction of measurement noise (either in the states or
observables). On the other hand, the NFEDMD exhibited outstanding performances as it uses
noise-free training data. KSI, instead, showed good robustness results when white Gaussian
noise was added to the observables, while it computed impractical models in case of noise
in the states. During the overall evaluation analysis, particular attention was given to noisy
state measurements. This proved to be the most model-degrading case. We assumed that
the reason for which the algorithms perform so poorly is that the state measurement noise is
distorted nonlinearly by the lifting process. This can result in a non-white-Gaussian type of
additive noise, which can lead to worse models.

The KSI technique is a promising framework to make improvements on thanks to its good ro-
bustness results against observables measurement noise. With this in mind, we implemented
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two main upgrades on the algorithm: a reduced-order routine, and the randomized singu-
lar value decomposition (rSVD). We named the resulting numerical method reduced order
Koopman subspace identification with randomized singular value decomposition (roKSIrsvd).
With the robustness of a lower order model and the speed of the rSVD, roKSIrsvd reaches the
performance levels of the optimal NFEDMD algorithm. The main advantage of the roKSIrsvd
is that it does not require any knowledge of the noise-free observables. The drawback of using
this algorithm lies in the computational times. The roKSIrsvd needs to run a validation cycle
to check the RMSE for each reduced-order degree value. This drastically increases the time
needed to find the best approximated Koopman operator. But if the reduced-order parameter
is already known before, then the computation times are faster than KSI thanks to the rSVD.

In this thesis, we showed that many state-of-the-art numerical methods can be quite sensitive
to noise and deteriorate significantly, especially in the case of noise in the states. This issue
is solved by designing algorithms with good robustness characteristics such as the proposed
roKSIrsvd. We showed that the best performing technique in this thesis is the NFEDMD
compared to the other algorithms. The main drawback of this numerical method is that it
requires knowledge of the noise-free observables. To overcome this drawback, we chose the
most promising algorithm that needed only noisy observables and improved it. The choice
led to the adoption of KSI which, after the upgrades, became the roKSIrsvd. We tested
the latter against the NFEDMD. The results showed that, without any knowledge of the
noise-free observables, we can almost achieve the appreciable performance of NFEDMD with
roKSIrsvd.

Future Work

The evaluation framework was implemented with a monomial basis as library of observables.
While our choice is fixed, techniques based on neural networks can be used to learn a suitable
function basis that spans Koopman-invariant subspaces. An example is showed in the work of
Takeishi et al. [48]. These techniques can be used to compute a more appropriate observables
library in our framework. Along with this adaptive approach, many other types of functions
can be tested as library. A few examples are the Bernstein polynomials, Hermite polynomials,
radial basis functions, and Fourier basis.

In the paper of Proctor et al. [11] a DMD version with control input was designed and named
DMDc. The book of Verhaegen et al. [14] describes subspace identification considering also
the presence of possible inputs. With this in mind, KSI and roKSIrsvd can be upgraded to
model also the effect of control inputs on the dynamics of the observables. This can lead to a
more real-world-oriented algorithm that can be used on a wider range of practical applications.

The noise adopted in this thesis was always additive white Gaussian noise, apart from the
resulting state measurement noise after the lifting process. It would be interesting to test
these algorithms against other types of noise, e.g. Brownian noise or pink noise.

To finish the future work list, the writer believes that the most effective way to test an
algorithm is by applying it to real-case scenarios. This is to say that it would be interesting
to test the described numerical methods on data sets from actual measurements of a real
system, e.g. neuro-recordings, electric power systems data, and measurements from fluid
dynamics experiments.
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