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ABSTRACT
Migration velocity analysis with the constant-density acoustic wave equation can be
accomplished by the focusing of extended migration images, obtained by introducing
a subsurface shift in the imaging condition. A reflector in a wrong velocity model will
show up as a curve in the extended image. In the correct model, it should collapse
to a point. The usual approach to obtain a focused image involves a cost functional
that penalizes energy in the extended image at non-zero shift. Its minimization by a
gradient-based method should then produce the correct velocity model. Here, asymp-
totic analysis and numerical examples show that this method may be too sensitive to
amplitude peaks at large shifts at the wrong depth and to artefacts. A more robust
alternative is proposed that can be interpreted as a generalization of stack power and
maximizes the energy at zero-subsurface shift. A real-data example is included.
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1 INTRODUCT I ON

The exponential growth of seismic data volumes follows that
of computing power but at a slower rate. As a result, seis-
mic processing and imaging algorithms allow for increasingly
more accurate and realistic modelling of wave propagation.
We are seeing a move from ray-based algorithms via one-way
wave equations to fully acoustic modelling of wavefields, with
elastic propagators as the next step. At the same time, staff lev-
els remain fairly constant over time. This poses two challenges:
(1) how can we apply the more realistic wave propagators for
seismic processing, velocity model building and imaging and
(2) how can these procedures be automated? This paper deals
with one aspect, automatic velocity building with a constant-
density acoustic ‘two-way’ wave equation.

One approach to migration velocity analysis with a wave
equation is to build extended migration images with a sub-
surface spatial (MacKay and Abma 1992; Rickett and Sava
2002; Biondi and Sava 2004a, b) or temporal shift (Faye and
Jeannot 1986; Sava and Fomel 2006; Brown, Higginbotham
and Clapp 2008; van Leeuwen and Mulder 2010) and to focus

them at zero shift (Shen, Symes and Stolk 2003; Shen et al.

2005; Mulder 2008; Symes 2008; Shen and Symes 2008). The
spatial or temporal shift compensates velocity errors. Because
reflectors may be observable in the extended image as curved
events, even with the wrong velocity, it is easier to improve
their focusing than to maximize their stack power. With the
latter, if the velocity model is too far away from the correct
one, there is nothing that stacks, so nothing to use for velocity
updating.

In practice, the focusing of extended images produces re-
sults of mixed quality. Sometimes, the method works very
well, sometimes it has difficulties. The data should be free of
multiples, otherwise, the method may converge to the wrong
model (Mulder and van Leeuwen 2008). Point scatterers,
diffractions and discontinuities in the background velocity
model may cause problems (Vyas, Geco and Tang 2010).
Artefacts in extended images may lead gradient-based opti-
mization methods astray.

Asymptotic analysis and numerical tests show that the
usual penalization of energy at non-zero shift may give velocity
updates that are biased by amplitude peaks at large shifts
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and incorrect depths and by artefacts in the gathers. Here,
a modification of the focusing cost functional is proposed
that improves the robustness of the method. Instead of pe-
nalizing energy at non-zero shift, amplitudes at zero shift are
maximized.

In the next section, the cost functional for the extended
image will be reviewed. Section 3 presents the result of a high-
frequency asymptotic analysis applied to the simple case of a
horizontal reflector in a constant velocity model. Section 4
compares the result of the asymptotic analysis with numer-
ical examples. To improve the robustness of the method, a
modification of the focusing cost functional is proposed. Sec-
tion 5 contains a real-data example. Additional aspects of the
method are discussed in Section 6.

2 C OST FUNCTI ON A L

Before defining the cost functional for migration velocity anal-
ysis based on extended migration images, the equations gov-
erning migration will be reviewed. Migration appears natu-
rally in the setting of least-squares data fitting governed by
the Born approximation of the wave equation. This approxi-
mation turns the non-linear full waveform inversion problem
into a linear inverse problem. Migration is then the gradient of
the least-squares cost functional with respect to perturbations
in a given fixed background velocity model.

Classic migration

In the frequency domain, the constant-density acoustic wave
equation is

L(m)ps = fs, L = −ω2m − �, (1)

with pressure ps(x, ω) as a function of position x and angular
frequency ω. The operator L depends on the model parameters
m(x) = 1/c2(x) with c(x) the velocity. The source term fs is
usually taken as fs(x, ω) = w(ω)δ(x − xs) with wavelet w(ω)
and a delta function centred at the shot position xs for shot
number s. Least-squares fitting of modelled to observed data
involves minimization of the cost functional

J LS = 1
2

∑
ω

∑
s

∑
r (s)

∣∣∣Sr (s) ps − pobs
r (s)

∣∣∣2
. (2)

Here, pobs
r (s) are the observed data for receiver number r (s) and

shot s, Sr (s) is a sampling or detection operator that reads
off the wavefield ps(x, ω) at the receiver position xr (s) and
the summation involves all shots and receivers and relevant
frequencies. The gradient of the functional J LS with respect

to the model, m(x), can be expressed as (Virieux and Operto
2009; Hak and Mulder 2011)

∇mJ = Re
∑

ω

∑
s

(
ω2 ps

)∗
qs, (3)

where qs follows from the adjoint or ‘reverse-time’ problem

LHqs =
∑
r (s)

ST
r (s)

[
Sr (s) ps − pobs

r (s)

]
. (4)

The asterisk denotes the complex conjugate, the superscript
(·)T the transpose and the superscript (·)H the conjugate
transpose.

Migration can be viewed as a minimization problem sim-
ilar to full-waveform inversion but governed by the Born
approximation of the wave equation (Østmo, Mulder and
Plessix 2002; Mulder and Plessix 2004). The latter is ob-
tained by splitting the model m(x) into a smooth background,
m0(x) = c−2

0 (x) and an oscillatory part m1(x) = c−2
1 (x) that

represents the reflectivity. The background velocity model
should not produce reflections in the seismic frequency band.
The wavefield can be split as p = p0 + p1 just as the model is
split into m = m0 + m1. Dropping the cross-term with m1 p1

leads to the Born approximation

L0 p0 = fs, L0 p1 = ω2m1 p0, (5)

with operator L0 = −ω2m0 − � defined by the background
model. The data error in the cost functional is replaced by
Sr (s) p1,s − pobs

1,r (s), where the observed data now should only
contain the primary reflections. The gradient with respect to
m1 becomes

∇m1 J = Re
∑

ω

∑
s

(
ω2 p0,s

)∗
q1,s, (6)

with

LH
0q1,s =

∑
r (s)

ST
r (s)

[
Sr (s) p1,s − pobs

1,r (s)

]
. (7)

The first iteration with the Born approximation, assuming an
initial guess with zero reflectivity, m1 = 0, leads to a right-
hand side with p1,s = 0.

Migration velocity analysis with extended images

Least-squares fitting or full-waveform inversion suffers from
local minima in the cost functional, due to the absence or unre-
liability of low frequencies in the data. To prevent a gradient-
based minimization algorithm from ending up in the wrong
minimum, the starting model needs to be accurate within half
a wavelength. Migration velocity analysis attempts to con-
struct such a model by exploiting the redundancy in the data,
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Figure 1 Migration of data with a surface offset h between shot s and
receiver r involves the correlation of the forward wavefield from the
shot and the time-reversed wavefield from the receiver. The dashed
arrows indicate the point where this correlation would result in a peak
at the reflector if the velocity model was correct and after summation
of many shots and receivers. If the velocity in the upper layer is too
small, constructive interference can still occur by following the black
drawn lines and making up for lost time with an immediate jump
along the dotted line, over a subsurface distance hx.

requiring that subsurface images do not change for different
subsets of the data that illuminate the same structure. With
ray-tracing algorithms, the surface offset between sources and
receivers, for instance, may be used to form different images
for different offsets, which should be the same in the correct
velocity model. In a wave-equation method, this would re-
quire solving for qr (s) in equation (4) or (7) one receiver at
a time, which is far more costly than treating all receivers
for one shot at once. However, in this way, we cannot easily
use parameters like offset or scattering angle to describe the
redundancy in the data.

One alternative is the introduction of a shift at depth
(MacKay and Abma 1992; Rickett and Sava 2002; Shen et al.

2003; Biondi and Sava 2004a, 2004b), leading to the extended
reflectivity

R(x; h) = Re
∑
s,ω

ω2 p∗
s

(
x − 1

2
h, ω

)
qs

(
x + 1

2
h, ω

)
. (8)

Compared to equations (6) and (7), the subscripts 0 and 1 have
been dropped. The wavefield ps(x, ω) is generated for a shot
with index s, whereas qs(x, ω) is the reverse-time wavefield due
to the observed data at the receivers that correspond to this
source, as in equation (4) or (7) with modelled data ps = 0.
To avoid a data explosion, we can restrict the choice of h to
one of the coordinate directions. The subsurface shift can be
interpreted as an action at distance, as sketched in Fig. 1. If the
velocity model is incorrect, the reflectors will be mapped to
the wrong subsurface location and will not focus. The spatial
shift compensates velocity errors and may produce a reflector

at non-zero shift. Defining a cost functional that moves these
events to zero shift should enable automatic velocity analysis.

A cost function for migration velocity analysis with sub-
surface shifts in two-space dimensions can be taken as the
weighted sum Jx + γ Jz of

Jx = 1
2

∑
x,z,hx

W(x, z)η(hx)|�x R(x, z; hx, 0)|2, (9)

and

Jz = 1
2

∑
x,z,hz

W(x, z)η(hz)|�z R(x, z; 0, hz)|2. (10)

The functional Jz may be necessary in the presence of
steep dips (Biondi and Shan 2002). The filters �x and �z

should remove long-wavelength components and events with
large or small dip, respectively, as proposed earlier (Mulder
2008). The long-wavelength migration artefacts can be re-
moved by a spatial low-cut filter (Mulder and Plessix 2004).
A dip filter can easily be constructed in 2D with a spa-
tial FFT in x and z on the extended images R(x, z; hx, 0)
and R(x, z; 0, hz). If the wavenumber domain has wavenum-
bers kx and kz, then the Fourier symbol of �x can be
taken as �̂x(kx, kz) = √

k2
z /(k2

x + k2
z ) and for �z as �̂z(kx, kz) =√

k2
x/(k2

x + k2
z ). Weibull (2011) introduced a simpler but pos-

sibly more noise-sensitive filter, involving a first derivative in
the orthogonal direction, so �x = ∂/∂z and �z = ∂/∂x.

To update a velocity model in such a way that the mi-
gration image is focused for zero shift, a common choice is
to penalize larger shifts by letting η(hx) = h2

x and η(hz) = h2
z

(Shen et al. 2003, 2005; Symes 2008; Mulder 2008; Shen
and Symes 2008). The cost functional is then minimized by
a gradient-based optimization algorithm. In this paper, an al-
ternative weighting function will be proposed.

A spatial weighting function W(x, z) can be used to bal-
ance the amplitudes of shallower and deeper reflectors. In the
real-data example, it will be taken as a simple depth weight-
ing of the form W(x, z) = max(0, z − zmin)p, with a power
p > 0, rather than more complicated true-amplitude migra-
tion weights based on an approximation of the Hessian (Shin,
Jang and Min 2001; Plessix and Mulder 2004).

The gradient of the cost functional with respect to the
model is given in Appendix B.

3 A SYMPTOTIC A NALYSIS

To study the behaviour of the extended reflectivity, a sin-
gle horizontal reflector in a constant velocity model will be
considered for a marine acquisition with positive surface
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offsets in the high-frequency limit using the stationary phase
approximation. A derivation is given in Appendix A and the
main results are summarized next.

For a delta-function reflector at depth z0, the observed
data are pobs(h̄, ω) = A0 exp(2ik0r0), where r0 = (h̄2 + z2

0)1/2,

with amplitude A2D
0 = (i−1)

8z0

√
ωc3

0r0
2π

in 2D or A3D
0 = iωc0

16πz0
in

3D as a function of surface half-offset h̄ = 1
2 h for a source

and receiver at zero depth and for a constant velocity c0 and
wavenumber k0 = ω/c0. Note that in 2D, the amplitude in-
creases with offset.

If we consider only a horizontal subsurface shift hx =
2h̄x, the stationary phase approximation shows that the ex-
tended reflectivity in a model with constant velocity c �= c0

follows the curve

z = zc,0 = γ

√
z2

0 − h̄2
x/β, h̄x = −βh̄, (11)

where γ = c/c0 and β = γ 2 − 1 > −1. If β > 0, the curve
truncates at z0 = h̄

√
β or h̄x = −z0

√
β, assuming h̄ > 0. Note

that the surface and subsurface offsets are related via β, which
depends on the velocity error.

The amplitude along curve (11) is

A2D = γ 5

128z0z2
c,0

√
2πc9

0r5
c,0

|β| , (12)

when using the 2D Green function, whereas in the 3D case,
we have

A3D = (γ c0)3rc,0

512πz0z2
c,0

√
2
|β| . (13)

Here, rc,0 =
√

z2
0 + (h̄x/β)2.

This stationary-phase estimate assumes an infinite acqui-
sition. Truncation at the shortest or longest offset yields a
curve

z =
√

γ 2(h̄2
m + z2

0) − (h̄x − h̄m)2, (14)

where h̄m denotes either the shortest or longest surface half-
offset.

4 EXAMPLES

Extended image for a horizontal reflector

Figure 2 shows the curves (a) and amplitude (b) along the
main curve for a velocity of 1450 m/s using data obtained for a
velocity of 1500 m/s and a horizontal reflector at 750 m depth
in the 2D case. Surface offsets ranged from 10 to 4000 m with
a 10-m interval in a marine-type acquisition (positive offsets to
the right of the source) and shots ran from −3000 to 3000 m
at a 25-m interval. The dash-dotted and dashed curves are
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Figure 2 (a) Extended image at a fixed lateral position x as a function of horizontal subsurface offset hx = 2h̄x and depth z for too low a velocity
of 1450 m/s. The dash-dotted line corresponds to the shortest offset, the dashed line to the longest and the drawn line to the stationary phase
curve. The colours show the result of a numerical simulation, with positive values in red and negative values in blue. (b) Observed amplitude
behaviour (black), measured in a window around the stationary curve, together with the asymptotic result (red), using arbitrary scaling.
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Figure 3 As Fig. 2 but for too high a velocity of 1550 m/s.

caused by truncation of the acquisition at the shortest and
longest offsets, respectively, as described by equation (14).

Figure 3 shows similar results for a velocity of 1550 m/s.
Again, the curve for the predicted amplitude is truncated at the
subsurface shift that corresponds to the maximum surface off-
set. The amplitude in Fig. 3(b) increases with subsurface off-
set until it truncates at the point where the maximum surface
offset is reached, at hx = −217 m and z = 558 m, obtained
from equation (14) with z = zc,0. The curve obtained from
the numerical simulation continues beyond with a smaller am-
plitude, due to the truncation of the surface offset range and
eventually will vanish. Note that the truncation point given by
h̄x = −z0

√
β would occur further away at hx = −391 m. The

differences between the numerical and asymptotic results near
the minimum and maximum offsets are most likely caused by
the finite ranges for frequency, shot and offset. The truncation
of the stationary phase integral provides additional contribu-
tions at the endpoints that were not included in the asymptotic
estimates.

At the correct velocity of 1500 m/s, the curve z = zc col-
lapses to a single point at a zero shift, hx = 0 and at the
correct depth of the reflector. Only the endpoint contribu-
tions of the truncated acquisition remain, as can be seen in
Fig. 4(a). Their effect can be mitigated by a suitable offset taper
that smoothly decreases the data amplitudes towards the end-
points of the seismic line and the shot range, as illustrated in
Fig. 4(b). In this case, the recorded data were multiplied by the
window function wr = [4ξ (1 − ξ )]pw , with ξ = j/(nr + 1) for
j = 1, . . . , nr corresponding to offsets hj = hmin + ( j − 1)�h,

with hmin = �h = 10 m. For the power, we used pw = 1. Also,
we used a shot taper 10% of the full shot range at the begin-
ning and at the end.

These figures demonstrate that the peak amplitude occurs
away from the zero-subsurface offset in the wrong velocity
model and at a depth that can be far away from the true
depth z0. Penalizing this peak by a weighting function η equal
to

η1(hx) = h2
x, (15)

will give a contribution to the gradient that should update
the velocity model at a depth that may be significantly dif-
ferent from where an update is desired. Figure 5 provides an
illustration for a velocity of 1350 m/s, which is too low. The
extended image in Fig. 5(a) at a lateral position of x = 0 ex-
tends to depths beyond the true horizontal reflector depth of
750 m. In this example, the recorded amplitudes at the re-
ceivers were tapered towards the beginning and end of the
receiver line as well as the ends of the shot range. Also, the
dip filter, �x, was applied. Figure 5(b) displays the contribu-
tion to the slowness gradient, with red for positive and blue
for negative values, when the extended image is only com-
puted on the vertical line at x = 0. The downward curving
event in Fig. 5(a) shows up symmetrically as the starting point
of the gradient contribution towards zero depth. It extends
well beyond the true reflector depth. In the general case with
many reflectors, it could potentially harm the deeper layers,
particularly if the reflector amplitude would be much higher
than that of the deeper ones. Adding the contributions from
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Figure 4 As Fig. 2 but for the correct velocity of 1500 m/s. Only the extended image is shown without (a) and with (b) tapers.

all lateral positions provides the full gradient, which should be
translation invariant in the lateral direction for an infinite shot
range. Fig. 5(c) depicts a vertical line of this gradient, mapped
to a spline grid with a 50-m vertical spacing. The part that is
shallower than the reflector will update the velocity in the cor-
rect direction but there is a significant contribution at larger
depths as well. This effect would clearly be less severe if the
amplitudes in the extended image would not increase with the
surface offset. Therefore, an alternative weighting function is
proposed that is less sensitive to large amplitudes far away.
Instead of minimization, the cost function is maximized by

η2(hx) = 1/
[
1 + (hx/�x)2

]p
, (16)

with, for instance, p = 1 or p = 2 and a length scale �x. The
power p should be large enough to reduce the sensitivity to
amplitudes and artefacts at large hx but not so large that
the convexity of the functional is destroyed. With this new
functional, Fig. 5(d), though a bit noisier, has smaller ampli-
tudes at larger depths. As a consequence, the full gradient in
Fig. 5(e) shows a better localization around the true reflector
depth.

In the limit for small �x, the weighting function, η2(hx),
decreases rapidly with hx and the cost function only measures
energy close to zero-subsurface shift. In this case, it starts
to resemble a stack or imaging power maximization (Toldi
1989; Soubaras and Gratacos 2007; van Leeuwen and Mul-
der 2010). The need for including stack power as an additional
term or factor was already noted earlier (Mulder 2008; Shen

and Symes 2008). Note that stack power by itself is com-
putationally far less expensive than working with extended
images.

Velocity scan

To test the quality of the cost functional, a scan over a set
of constant-velocity models was performed, using the same
parameters as before and including source and receiver tapers.
The reference velocity is c0 = 1500 m/s.

Figure 6(a) depicts the peak amplitude of R(x, z; hx, 0) as
a function of the velocity error c/c0 − 1. Note the decrease of
the amplitude followed by an increase for increasing positive
velocity errors. Figure 6(b) displays scans of the cost functional
J1, being Jx in equation (9) to be minimized with η(hx) =
η1(hx) = h2

x. The new functional requires maximization of Jx

with the proposed penalization function η = η2 and will be
denoted by J2.

Note that J1 is more convex but does not have its min-
imum at the correct model. The same is true for J2 but the
discrepancy is much smaller. Given the asymmetry in the ex-
tended image for a one-sided acquisition, this was to be ex-
pected. Less trivial geological structures will also cause asym-
metry.

The convexity of J2 can be controlled by �x. Figure 7
shows examples for different choices of the parameters �x and
p in the penalization function in equation (16). The effective
penalizing weighting function is controlled both by the length
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Figure 5 Gradients for too low a velocity of 1350 m/s and a single reflector at 750-m depth. (a) The extended image at the central lateral
position, x = 0. (b) Contribution to the slowness gradient when only the extended image at x = 0 is considered, for the functional J1 based
on η1(hx) = h2

x. The full gradient is a sum of laterally translated copies of this image. (c) Vertical cross-section of the full slowness gradient at
x = 0. This gradient will not only update the velocity between the depth of the sources and receivers and the true reflector location but also
deeper parts. (d) As for (b) but for the functional J2. (e) For η2(hx), the gradient has less impact on the velocity below the true reflector depth.
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Figure 6 Scan over a set of constant-velocity models. (a) Observed maximum of |R(x, z; hx, 0)| at x = 1.5 km for single-reflector data as a
function of the relative velocity error (c/c0) − 1. (b) Cost functionals J1, to be minimized with η1(hx) and J2, to be maximized as a function of
the velocity error. Note the wrong location of the minimum for J1 and the maximum of J2, indicated by the arrows.

scale �x and the decay power p. If the function is too narrow,
for small �x or large p, convexity is lost but the maximum is
better defined. If the function is too wide, convexity is lost
as well and the maximum moves to the wrong position. In
general, the closer the initial model is to the true model, the
sharper the weighting function can be. At the same time, the
maximum value for |hx| can be decreased.

5 R E A L D A T A E X A M P L E

The method was applied to a marine seismic line, courtesy
of Saga Petroleum A.S., now part of Statoil. The data were
acquired above the Haltenbanken terrace, offshore Norway,
where the sea bottom is fairly hard. The direct arrival through
the seawater as well as multiple reflections were removed with
the method described by Verschuur and Berkhout (1997). The
coordinates in that paper were changed here, with x replaced
by (17200 − x) m, to have positive surface offsets as in the
earlier sections.

To obtain an initial guess of the model, a one-dimensional
optimization based on values of the functional Jx for the new
penalizing function η2(hx) was carried out over velocity mod-
els that are linear in depth, of the form c(z) = c0 + α(z − z0),
with c0 set equal to the known water velocity and z0 =
−100 m. Also, a single iteration of full-waveform inversion
in a model with a constant seawater velocity model was per-

formed. The depth of the sea bottom was picked from the
computed gradient and used to insert the seawater velocity
and sea bottom into the earlier velocity model that was linear
in depth, leaving it unaltered below the sea bottom. Starting
from the modified one-parameter result, the velocity model in
Fig. 8(a) was obtained after 20 iterations of gradient-based
optimization with a limited-memory BFGS method (Byrd
et al. 1995). Fig. 8(b) displays the corresponding migration im-
age and Fig. 8(c) the amplitudes of the extended image at one
lateral position. This computation required the gradient of the
functional with respect to the model, listed in Appendix B for
completeness. Wavefields were obtained with a 2D frequency-
domain code (Mulder and Plessix 2004), using a fourth-order
finite-difference discretization (Harari and Turkel 1995) of
the constant-density acoustic wave equation. The model is
represented by cubic splines on a grid that is coarser than
the one used for modelling and imposes some degree of
smoothness.

The method produced the subsurface image R(x, z; 0, 0)
in Fig. 8(b). The first reflector towards the top of the figure is
the sea bottom. The extended image in Fig. 8(c) shows reason-
able though not perfect focusing towards zero shift, hx = 0.
Around a depth of 700 m, there is significant energy at a sub-
surface shift hx around 300 m. This means that, according to
equation (11), β < 0, so the reconstructed velocity is too low.
At the same time, at about 900 m, there is another event that
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Figure 7 Cost functional J2 for various parameters when scanning over a set of constant-velocity models. The length scale �x equals 50, 100,
200, or 400 m, from (a)—(d). The power p is 0.5, 1, 2, or 4 in each figure. Ideally, the curve should peak at zero perturbation and have a convex
shape. If the penalizing weighting function is too narrow, for small �x or large p, convexity is lost. If it is too wide, convexity is lost as well and
the peak moves to the wrong location.

is focused. This suggests that a non-negligible amount of mul-
tiple energy is still present in the data, despite the applied
multiple elimination. Multiples are a well-known problem
for migration-based velocity analysis (Mulder and ten Kroode
2002; Li and Symes 2007). Mulder and van Leeuwen (2008)
introduced an asymmetry in the penalizing function to bias
the optimization towards higher velocities under the assump-
tion that surface multiples tend to lead to a lower velocity.
There are, of course, cases where this assumption does not
hold, for instance, in the presence of strong inversion layers.

The asymmetric version has a penalizing weighting function
of the form η(min(0, hx) + bmax(0, hx)). In the present set-
ting with positive surface offsets, b > 1 will favour the higher
velocities.

Figure 9 shows results obtained for a rather large bias,
b = 8. The velocity model in the shallow part down to a depth
of 1.5 km is substantially different and events in the migration
image are more clearly defined in that part. Fig. 9(c) shows an
asymmetric distribution of energy, with larger amplitudes at
negative values of the subsurface shift, hx.
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Figure 8 (a) Velocity model after 20 iterations, (b) corresponding migration image and (c) amplitudes of the extended image at x = 2.15 km.

Figure 10 provides a comparison between the velocity
models without and with use of the bias and includes a ve-
locity model based on a well log. The latter was obtained
by scanning Fig. 8.12(A) from the thesis of van Wijngaar-
den (1998). The velocity model is based on the well log for
well B at a lateral position of 17 675 m, corresponding to
x = −475 m after the coordinate transform. The drawn line
that represents the reconstructed velocity at the well location
with the bias in the inversion algorithm follows the true veloc-
ity more closely in the shallower part. The velocity inversion

layer around 2-km depth is missed when the bias towards
higher velocities is used but this also happens in the unbi-
ased case. Note that the cubic-spline representation leads to a
model that is much smoother than the model based on the well
log.

6 R E M A R K S

This section contains a discussion of various details and as-
pects of the method.
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Figure 9 (a) Velocity model after 20 iterations, using a bias towards higher velocities in the cost functional, (b) corresponding migration image
and (c) amplitudes of the extended image at x = 2.15 km.

The computational cost of forming the extended images
by far exceeds that of wavefield computations. To solve the 2D
wave equation in the frequency domain, a direct sparse-matrix
solver based on nested dissection (George and Liu 1981) was
used. Its LU-factorization has a relatively high-computational
cost but can be reused for all shots and gradient computations
at each frequency. Because the computation of the extended
images on the same finite-difference takes much longer, it was
accelerated by using a less dense grid. For instance, in the
example in Fig. 8 the modelling was carried out on a grid

with a 10-m spacing, the extended image had a spacing of
100 m in x and 10 m in z and the model was represented by
cubic splines on a grid with a spacing of 400 m in x and 80 m
in z.

The definition of the extended image in equation (8) is
based on the real part of the correlated forward and ‘reverse-
time’ wavefield. One may ask what would happen if the
imaginary part would be included, making R(x; h) complex-
valued. For classic migration, without the extension to non-
zero h, the imaginary part is related to perturbations in the
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Figure 10 Velocity at a lateral position of −475 m obtained without
(dashed line) and with a bias (drawn line) in the penalizing weighting
function, compared to a velocity model based on a well log (dot-
dashed line).

background attenuation (Mulder and Hak 2009; Hak and
Mulder 2010, 2011). Unfortunately, migration tends to pro-
duce images of the attenuation that are completely unphysical.
Even in the absence of attenuation perturbations of the back-
ground model, the imaginary part of the migration image has
amplitudes that are comparable to its real part. For a hori-
zontally layered medium, the imaginary part approximately
equals a weighted Hilbert transform in depth of the real part
(Mulder and Hak 2009), although this property is lost when
steep dips are present. As a consequence, a smooth migration
image is obtained that resembles the envelope of the true
reflectivity model if the absolute value of the migration re-
sult is taken for a problem without steep dips. In the present
context of migration velocity analysis, including the imagi-
nary part for R(x, z; hx, 0) will result in smoother pictures
for |R(x, z; hx, 0)|. This will affect the reconstructed velocity
model on a small-length scale. For instance, instead of having
a saw-tooth like pattern of the reflector with a zero-crossing at
the position of the impedance contrast, we will obtain a max-
imum there. With the smooth model representation by cubic
splines, however, the effect should not be large. As an illustra-
tion, Fig. 11 shows the amplitudes of the extended image at
a lateral position of 2.15 km when using the complex-valued
extended image during the optimization. Otherwise, the pa-
rameters were the same as for Fig. 9. Figure 11(c) is now much
smoother than Fig. 9(c). Nevertheless, the reconstructed ve-
locity model and the corresponding migration image, based
on only the real part, are similar.

Instead of spatial shifts, a temporal shift ht can be ap-
plied, as already mentioned in the introduction, leading to an
extended image

R(x; ht) =
∑
s,ω

ω2 p∗
s (x, ω)qs(x, ω)e−iωht , (17)

with or without taking the real part. The corresponding func-
tional is

Jt = 1
2

∑
x,z,ht

W(x, z)η(ht)|�t R(x, z; ht)|2, (18)

and can be maximized with a similar weighting function
η(ht) = η2(ht) as before. The stationary-phase analysis for the
time-shifted case was not carried out and may suggest better
weighting functions but the general idea of having a func-
tion that decays with |ht| remains. The filter �t should re-
move long-wavelength migration artefacts. Forming one time-
shifted extended image requires less computational time than
two or even one space-shifted image.

Methods for migration velocity analysis are sensitive to
multiples (Mulder and ten Kroode 2002; Verm and Symes
2006; Mulder and van Leeuwen 2008). Multiple suppression
is therefore important and should be done thoroughly in some
cases. A data-domain approach with shifts in time or offset
may be a viable alternative (van Leeuwen and Mulder 2008),
although this approach still has not been matured to the level
of the full-acoustic wave equation.

From a mathematical point of view, the cost functional
has some less desirable properties. In the limit of an infinitely
wide frequency band, the stationary-phase curve collapses to a
point when the extended image is focused, so there is a singular
limit. A similar behaviour occurs with time shifts, where two
curves collapse to one, not considering the additional curves
due to finite-acquisition effects. The time-shifted images are
less singular than the space-shift extended images. The re-
maining curve in a time-shifted image, which is a straight line
in a constant-velocity model, has an amplitude peak at zero
shift for the correct model. All this leads to quite singular be-
haviour, which also shows up in the gradients that update the
velocity model. With finite frequencies and proper scale sepa-
ration (Claerbout 1985, Fig. 1.4-3) and a sufficiently smooth
velocity model representation, this singular behaviour can be
dealt with. However, given the problems reported by Fei and
Williamson (2010) and Vyas, Geco and Tang (2010) in the
presence of discontinuities in the velocity model, there seems
to be room for improvement.
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Figure 11 As Fig. 9 but including the imaginary part of the extended image.

7 C ONCLUSION

Automatic migration velocity analysis with extended images
based on a subsurface shift can be made more robust by maxi-
mizing the energy around zero shift rather than minimizing en-
ergy at non-zero shift. The approach generalizes stack power
maximization.

The analysis of amplitudes in extended migration images
reveals an increase of amplitudes with subsurface offset along
a curve of varying depth if the velocity model is not correct.
Penalizing these peaks at non-zero subsurface shift may result

in a velocity correction at the wrong depth, possibly harming
reflectors that are already focused. Maximization of ampli-
tudes around zero shift is less sensitive to this effect, because
energy at larger shifts receives less weight.

A 2D marine real-data example confirmed the useful-
ness of the approach. Although the data were preprocessed
to suppress multiples, the velocity model after inversion still
was affected by the remaining energy of multiples. A bias to-
wards higher velocities, imposed by an asymmetric penalizing
weighting function, improved the result.
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APPENDIX A: A SY MPT OT I C A N A L Y SI S

Asymptotic analysis in the high-frequency limit for a constant-
velocity model offers some insight into how the reflectors ap-
pear in the extended image. Below, different velocities for the
data and for the extended migration image will be considered.
First, an expression for the data due to a single horizontal re-
flector in a constant velocity model is derived. Then, the shape
of a reflector and its amplitude in the extended image with a
different constant-velocity model is determined.

Reflection data for horizontal reflectors

The principle of stationary phase yields the approximation

∫ ∞

−∞
dz a(z)eiωφ(z) �

√
π

|ωφ(2)(z0)|a(z0)eiωφ(z0)

× [1 + i sign(ωφ(2)(z0))], (A1)

when ω is large (Bleistein and Handelsman 1975). The phase
φ(z) is expressed as φ(z) � φ(z0) + 1

2 (z − z0)2φ(2)(z0), where
the first derivative φ(1)(z0) = 0 at z = z0. If φ(1) vanishes at
multiple points, z0, j , then a summation over j should be per-
formed.

In a constant model with velocity c0, the solution of the
Born approximation (5) is

p1,r (s) =
∫ ∞

−∞
dx G(xs, x)m1(x)G(x, xr ), (A2)

where G(xa, xb) denotes the Green function for the wave op-
erator L0 for a delta-function source at xa and a receiver at xb

as well as a delta-function wavelet w(ω) = 1. In the 3D case,
the Green function is

G3D(r ) = 1
4πr

eikr , k = ω

c
, r = ||xb − xa ||, (A3)

with r the distance between xa and xb. In 2D, we have

G2D(r ) = i
4

H(1)
0 (kr ) ∼ (1 + i)

4
√

πkr
eikr , (A4)

where the approximation holds for large kr . It is assumed
that the reflectors are all horizontal, as may happen in simple
sedimentary geology. The source and receiver are placed on
the surface, at z = 0 and the offset, the horizontal distance
between the source and receiver, is 2h̄. The sources are then
located at xs = (xm − h̄, 0, 0) and the receivers at xs = (xm +
h̄, 0, 0). We integrate over y for the 3D case, with a stationary
point at y = 0, and over the midpoints xm in both the 2D
or 3D case, with a stationary point at xm = 0. The stationary-
phase result for the scattered field, p1 in equation (5), becomes
either

p3D(h̄, ω) � iωw(ω)c0

16π

∫ ∞

0
dz z−1m1(z)e2ik0 r̄ , (A5)

with

r̄ =
√

h̄2 + z2, k0 = ω/c0, (A6)

or, in the 2D case,

p2D(h̄, ω) � (i − 1)w(ω)
8

√
ωc3

0

2π

∫ ∞

0
dz

√
r̄

z
m1(z)e2ik0 r̄ . (A7)

Note that ω ≥ 0 and that real-valued data in the time domain
are obtained with p(−ω, h̄) = p∗(ω, h̄), ω > 0.

In the following, only a delta-function reflector at z =
z0 will be considered, of the form m1(z) = δ(z − z0), which
represents a single horizontal reflector. Recall that m1 = c−2 −
c−2

0 , with c0 the background velocity. Then,

p(h̄, ω) � w(ω)A0e2ik0r0 , r0 =
√

h̄2 + z2
0, (A8)

with

A2D
0 = (i − 1)

8z0

√
ωc3

0r0

2π
, or A3D

0 = iωc0

16πz0
. (A9)

Extended image

If the data are acquired for a seismic line in the plane y = 0
with an infinite and continuous distributions of shots, the
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extended image of equation (8) in this plane becomes

R(x, z; 2h̄x, 0) = Re
∫ ∞

−∞
dω ω2F(ω)

∫
dh̄

×
∫ ∞

−∞
dxm p∗(x − h̄x, z, ω)qh̄(x + h̄x, z, ω), (A10)

where the dependence on y in the 3D case has been dropped.
The wavelet and additional data filters are included as F(ω).
In this expression, the wavefields p and q are determined by
the Green functions for a different model with constant ve-
locity c but the data fed into q correspond to a velocity c0.
We have replaced q(·) by

∫
dh̄ qh̄(·) corresponding to observed

data at half-offset h̄, that is, each receiver is treated separately
in the analysis. The integration interval for h̄ depends on the
acquisition geometry. With a seismic line on land, we typi-
cally have h̄min < 0 < h̄max. For a marine survey with a towed
receiver cable, we can consider 0 < h̄min < h̄max, which will
be assumed to be the case below. The case h̄max < h̄min < 0
follows by symmetry.

The wavefields in equation (A10) are given by

p∗(x − h̄x, z, ω) = G∗
[c](r1), (A11)

with

r1 =
√

{(x − h̄x) − (xm − h̄)}2 + z2, (A12)

and

qh̄(x + h̄x, z, ω) = G∗
[c](r2)p[c0](h̄, ω), (A13)

with

r2 =
√

{(x + h̄x) − (xm + h̄)}2 + z2, (A14)

where the dependence on c and c0 has been made explicit with
the square brackets. Then

R(x, z; 2h̄x, 0) = Re
∫ ∞

−∞
dω

∫
dh̄

∫ ∞

−∞
dxm A1eiψ0 , (A15)

with amplitude

A2D
1 = F(ω) ω3/2 (1 + i)c

64z0

√
c3

0r0

2π3r1r2
, (A16)

or

A3D
1 = F(ω) ω3 ic0

256π3z0r1r2
, (A17)

and phase

ψ0 = ω

(
2r0

c0
− r1 + r2

c

)
. (A18)

Stationarity of the phase requires zero derivatives with respect
to half-offset h̄ and midpoint xm, which happens at

xm = x, h̄x = h̄
(

1 − γ 2 z
zc

)
, (A19)

where γ = c/c0, β = γ 2 − 1, and zc = γ

√
z2

0 − βh̄2. Note that
h̄ is defined implicitly and that we assume z0 ≥ h̄

√
β if β ≥ 0.

At the stationary point, the phase is −ω
2r0(z−zc)

c0zc
. Its Hessian at

this point is diagonal with

∂2ψ0

∂ h̄2
=

2ω
(
γ 4zz2

0 − z3
c

)
c0γ 4r3

0 z
= 2ωz2

0(z − z1)

c0r3
0 z

,

∂2ψ0

∂x2
m

= −2ωz3
c

c0γ 4r3
0 z

< 0, (A20)

where z1 = z3
c /(γ 4z2

0). The amplitudes reduce to

A2D
1 = F(ω)

(1 + i)zc

64zz0

√
ω3c5

0

2π3r0
, (A21)

or

A3D
1 = F(ω)

iω3z2
c c0

256γ 2π3z0z2r2
0

. (A22)

After integration over xm and h̄, the phase is ψ1 = −ω
2r0(z−zc )

c0zc
,

as mentioned above and the amplitudes become

A2D
2 = F(ω)

[1 + i sign(z − z1)]zc

64z3
0

√
ωc7

0r5
0

2πz1|z − z1| , (A23)

or

A3D
2 = F(ω)

[1 + i sign(z − z1)](1 + i)r0z2
c c2

0ω
2

512γ 2π2zz3
0

√
z1|z − z1|

. (A24)

For the last step, we have to evaluate

A = 2 Re
∫ ∞

0
dω A2eiωφ1 , φ1 = ψ1/ω = −2r0(z − zc)

c0zc
. (A25)

To obtain simple closed-form expressions, the frequency de-
pendence of the amplitudes is removed by letting F(ω) =
ω−1/2 in the 2D case and F(ω) = √

2/(ω2(1 + i)) = ω−2e−iπ/4

in the 3D case. For the integration, we can use A = ∫ ωmax
0 dω

[A2eiωφ1 + A∗
2e−iωφ1 ] and

lim
ωmax→∞

sin(ωmaxφ1)
φ1

= πδ(φ1) = π
δ(z − zc,0)∣∣ dφ1

dz (zc,0)
∣∣ . (A26)

To evaluate dφ1/dz, we can determine dh̄/dz from h̄x = h̄(1 −
γ 2 z

zc
) and zc = γ

√
z2

0 − βh̄2. Then,

dφ1

dz
(zc,0) = − 2zc,0

γ 2c0rc,0
. (A27)
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On the stationary-phase curve, h̄x = −βh̄, z = zc,0 = γ (z2
0 −

h̄2
x/β)1/2 and r0 = rc,0 = (z2

0 + h̄2
x/β

2)1/2. If β > 0, then h̄x < 0
and we should have (−h̄x) ≤ z0

√
β and h̄ ≤ z0/

√
β. The re-

sulting extended image is R(x, z; h̄x, 0) = A(x, z; h̄x)δ(z − zc,0)
with amplitude

A2D = γ 5

128z0z2
c,0

√
2πc9

0r5
c,0

|β| , A3D = (γ c0)3rc,0

512πz0z2
c,0

√
2
|β| , (A28)

in 2D and 3D, respectively.
So far, an infinite acquisition was assumed. If the offset

range is truncated at h̄m, we can solve z from ψ0 = 0 at xm = x,
resulting in equation (14).

APPENDIX B: GR A DI E N T OF T H E C OST
FUNCTIONAL

The functionals defined in equations (9) and (10) can be
treated simultaneously. The forward problem is Lps = fs and
the ‘reverse-time’ equations are

LHqs = −
∑
r (s)

ST
r (s) pobs

r (s), (B1)

similar to equations (1) and (7). The contributions to the ex-
tended reflectivity per shot and frequency are

Rs(x, h, ω) =
∑
r (s)

ω2 p∗
s

(
x − 1

2
h, ω

)
qr (s)

(
x + 1

2
h, ω

)
, (B2)

with summed versions R(x; h) = ∑
s,ω Rs(x, h, ω). For simplic-

ity, only a single shot and single frequency will be consid-
ered in what follows, given that the required summations are
straightforward. The functional

J = 1
2

∑
x,h

W(x)η(h)|� R(x; h)|2 = 1
2

∑
x,h

RH(x; h)A R(x; h),

(B3)

with

A(x, h) = �H(x)η1/2(h)W(x)η1/2(h)�(x), (B4)

is not analytic, so complex derivatives cannot be used. One
can either resort to the Wirtinger calculus (Wirtinger 1927)
or consider the real and imaginary parts of a complex number
separately. The last approach is followed here. The real part
is denoted by a superscript r , the imaginary part by i .

The adjoint-state approach (Lions and Magenes 1972;
Giles et al. 2003; Plessix 2006) for computing the gradient of
the cost functional with respect to the model parameters starts

with a Lagrangian for J , which in this case for a single shot
and one frequency reads

L = J −<λr , Lr pr − Li pi − f r >−<λi , Lr pi + Li pr − f i >

−<μr , (Lr )Tqr + (Li )Tqi + S T pobs,r > (B5)

−<μi , (Lr )Tqi − (Li )Tqr + S T pobs,i >.

The multipliers are λr , λi , μr and μi and the scalar product
< ·, ·> involves integration over the spatial variables (or sum-
mation in the discretized case on a finite-difference mesh).
Stationarity, with respect to the wavefields p and q, leads to
the forward and reverse-time or adjoint problems

Lμ = Gq, LHλ = Gp, (B6)

respectively. Here,

∂ J
∂pr

(x) = ReGp(x),
∂ J
∂pi

(x) = ImGp(x),

∂ J
∂qr

(x) = ReGq(x),
∂ J
∂qi

(x) = ImGq(x), (B7)

with

Gp(x) = ω2
∑

h

[
A

(
x + 1

2
h, h

)
R

(
x + 1

2
h, h

)]∗
q(x + h),

(B8)

and

Gq(x) = ω2
∑

h

p(x − h)
[
A

(
x − 1

2
h, h

)
R

(
x − 1

2
h, h

)]
.

(B9)

Note that the wave operator L is analytic in the model pa-
rameters m(x), so we can use the Cauchy-Riemann relations
∂Lr/∂mr = ∂Li/∂mi and ∂Lr/∂mi = ∂Li/∂mr . The gradient
of the cost functional with respect to the model becomes

∂ J
∂mr

+ i
∂ J
∂mi

= −<λ,
∂L
∂mr

p>c − <q,
∂L
∂mr

μ>c (B10)

with the complex scalar product <a, b>c = <a, b∗ >. For
velocity updating, only its real part is needed and the sum-
mation over frequencies and shots should be included. Note
that in the above, R(x; h) was assumed to be complex
rather than real-valued, as in equation (8). In this case, the
gradient follows from the same expressions as above but
with the imaginary part of R set to zero in equations (B8)
and (B9).
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