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Abstract—We consider the problem of dispatching a fleet of
distributed energy reserve devices to collectively meet a sequence
of power requests over time. Under the restriction that reserves
cannot be replenished, we aim to maximise the survival time of
an energy-constrained islanded electrical system; and we discuss
realistic scenarios in which this might be the ultimate goal of the
grid operator. We present a policy that achieves this optimality,
and generalise this into a set-theoretic result that implies there
is no better policy available, regardless of the realised energy
requirement scenario.

Index Terms—DER, aggregation, robust optimisation, set-
theoretic optimisation, ancillary service

I. INTRODUCTION

A. Background

Recent years have seen an increasing abundance of dis-
tributed energy resources (DERs) connected to electricity
grids. Many of these resources are energy-constrained, such
as batteries with a limited capacity, or flexible demand that
can postpone power consumption within limits set by users.
Collectively, such resources can provide a range of valuable
services to the system, such as supporting the real-time bal-
ancing of supply and demand. System operators are offering
frameworks for the commercial delivery of such services, e.g.
the California Independent System Operator (CAISO) [1] and
the Pennsylvania-New Jersey-Maryland Interconnection RTO
(PJM) [2] in the US. We consider a control framework as ex-
emplified by PJM, which broadcasts a system-wide regulation
signal that is to be tracked. Note that by considering such
a regulation signal, we are able to generalise our approach
to cover the full range of network configurations, includ-
ing the pre-existence of distributed intermittent generation
or additional demand response. This approach represents a
centralised control of the aggregate response of a collection
of resources, which for the purposes of description we assume
to be delivered by an aggregator. We assume that there is an
agreement between the network operator and the aggregator
whereby the amount of power requested is updated at regular
intervals and the aggregator must make a decision as to which
of its resources to deploy to meet that request. We consider the
aggregator to be offering the service of system support during
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periods of supply shortfall, and do not restrict our devices
to perfect efficiency. We also assume the absence of cross
charging between devices, which corresponds to a regime in
which operational losses are minimised. Hence we restrict all
devices to discharging operation only.

Within this contractual framework we focus on the decision
making of the aggregator. There has been significant literature
to date on aggregator-based control approaches, across a wide
range of devices. These vary from electric vehicles [3] to ther-
mostatically controlled loads (TCLs) [4], [5] and pool pumps
[6]. Of particular relevance to this paper are considerations
of how best to dispatch devices in the presence of uncertain
demand. This has been explicitly considered in [7], [8], [9],
applied in the latter to arbitrage as well as buffering. Within the
field of DER allocation more specifically, prior work has taken
into account uncertainty in the form of achieving optimality in
expectation [10], [11]. Other authors have considered robust
approaches that apply a minimax optimality condition in order
to achieve the smallest cost of operation across all possible
scenarios [12]. In addition, authors have investigated ways
of obtaining probabilistic capacity-duration relationships, as a
means of capturing the uncertainty present [13], and demon-
strated the effects of such uncertainty on the actual capabilities
of distributed resources [14]. We take a more general approach,
aiming to maximise the set of power requests in the future,
currently unknown to the aggregator, that can be successfully
satisfied by the fleet. Under the restriction that devices are able
to discharge only, we consider the problem of maximising time
to failure of the fleet in the absence of any information about
future request signals. To this end, the contribution of this
work is twofold. Our approach firstly yields the result that a
maximal solution of a set-inclusion form exists. Secondly, we
present an explicit feedback policy and show that this achieves
optimality in this set-theoretic sense. Hence, we show that
optimality holds regardless of the actual request profile that
the aggregator receives.

The remainder of this paper is organised as follows. Sec-
tion II describes the motivation behind this research and the
modelling of the problem. Section III presents our explicit
policy and results relating to its optimality (note that proofs of
the Lemmas and Theorem can be found in the Appendix). This
is followed by an interpretation of these results in Section IV.
Comparative policies are introduced in Section V, followed by
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representative simulation results. Finally, Section VI concludes
the report and discusses relevant future work.

II. PROBLEM FORMULATION

A. Assumptions

The problem framework within which our investigation
takes place can be summarised as follows:

1) A resource controller has an ensemble of devices avail-
able to it at the starting time.

2) These devices are energy constrained.
3) The resource controller has agreed to comply with

an externally imposed reference signal, if technically
feasible.

4) They have no prior information about the requests they
will receive, and must instantaneously meet any request
(communication and calculation delays are assumed
negligible for demonstration).

5) If the demand persists prior to replenishing the available
energy, it is inevitable that at some point in the future
they will be unable to meet a request, given their finite
reserves. However, they would like to postpone this
output shortfall as far as possible into the future. We
take this to be the cost functional in our optimisation
problem: maximise time to failure.

B. Motivation

The assumptions above are reflective of a number of real-
world scenarios, albeit in stylised form. A straightforward
example is that of a physically isolated network with a
finite supply of energy, e.g. diesel generators on an offshore
platform. If the actual consumption pattern is unpredictable
to some extent, it is prudent to maximise the ‘mission time’
of the network by dispatching scarce resources in an optimal
way.

In a more general sense, the assumptions can reflect the
problem faced by a network operator after the occurrence of an
event that threatens security of supply. The operator’s objective
is to meet demand on the network for as long as possible until
the event naturally finishes or more permanent mitigation can
be implemented. For example, when an unexpectedly large
peak in demand or shortfall in wind output is experienced,
purely surviving until the end of this event would be sufficient
to maintain normal grid operation; and, in this case, the grid
operator should employ any battery resources it has available
to it according to the optimal policy that we propose. As a
second example, when an islanded microgrid is formed due to
fault conditions, either in the case of a microgrid that is tied
to the main network losing this connection or the unexpected
islanding of a portion of the main grid, the objective of the grid
operator would be to maintain functionality of the islanded
microgrid up to the point in time at which reconnection could
be achieved. Both scenarios result in a situation where the
grid operator would like to maintain operation for as long
as possible given its newly-limited reserves, in line with the
assumptions outlined above.

In the following, we present a policy for energy-limited
distributed resources that maximises the survival time (time
before forced outages or incurring non-compliance penalties).
From this point on, in the interests of clarity, we will discuss
the dispatch decisions as being undertaken by an aggregator.
Note, however, that in scenarios where significant loss of load
is at stake, the grid operator itself may take on the role of
central dispatcher.

C. Mathematical formulation

Given this set-up, we denote by n the number of DER devices
available to the aggregator, and define the set of all devices as
follows:

N .
= {D1, D2, ..., Dn}. (1)

We model these devices as energy-constrained generating
units, for example generators with limited fuel stored or batter-
ies that discharge only (during the time frame of interest). We
do not impose any restrictions on homogeneity of devices and
allow each device to have a unique discharging efficiency ηi.
For convenience we incorporate this into the model implicitly
by considering the extractable energy of a device,

Ei(t)
.
= ηiE

s
i (t), (2)

in which Es
i (t) denotes the total stored energy by device Di

at time t. From this point onwards we will solely consider
the extractable energy, referred to simply as the energy. We
choose the power delivered by each device to be the control
input ui(t), and assume that this is measured externally so that
efficiency is once again accounted for. This leads to integrator
dynamics on the energy of each device

Ėi(t) = −ui(t), (3)

subject to the physical constraint

Ei(t) ≥ 0. (4)

Resulting from the choice of exclusive discharging ability, the
power of each device is constrained as

ui(t) ∈ [0, p̄i], (5)

in which p̄i denotes the maximum discharge rate of device Di,
and with the convention that discharging rates are positive.
Note, once again, that there is no homogeneity imposed on
energy or power constraints across the ensemble of devices.
We define the time-to-go of device Di to be the time remaining
for which this device can run at its maximum power, i.e.

xi(t)
.
=
Ei(t)

p̄i
, (6)

and represent the state of each device by its time-to-go. We
then form a state vector by stacking this value across all the
devices

x(t)
.
=
[
x1(t) . . . xn(t)

]T
, (7)

and define the state space

X .
= [0,+∞)n. (8)
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We similarly stack the control inputs across devices to give a
vector input

u(t)
.
=
[
u1(t) . . . un(t)

]T
. (9)

For clarity we employ the notation

p̄
.
=
[
p̄1 . . . p̄n

]T
, (10)

and form the product set of our constraints on all the inputs,

Up̄
.
= [0, p̄1]× [0, p̄2]× ...× [0, p̄n], (11)

so that we can compactly write our input constraints as

u(t) ∈ Up̄. (12)

We also form a diagonal matrix of maximum powers,

P
.
= diag(p̄), (13)

so that our dynamics can be written in matrix form as

ẋ(t) = −P−1u(t). (14)

We denote by P r(·) a power reference signal received by the
aggregator, and in addition denote a truncated trajectory of
such a signal as

P r
[0,t)

.
=

{
P r(τ), if τ ∈ [0, t)
0, otherwise. (15)

For any reference signal to be feasible, it needs to be admis-
sible for all time; in other words satisfiable without violating
any constraints. We define the set of such signals as follows:

Definition II.1. The set of feasible power reference signals
for a system of maximum powers p̄ in state x is defined as

Fp̄,x
.
=

{
P r : [0,+∞)→[0,+∞)

∣∣ ∃u(·)
∣∣ ∀t ≥ 0,

u(t) ∈ Up̄,
1Tu(t) = P r(t),

ẋ(t) = −P−1u(t),

x(0) = x,

xi(t) ≥ 0, i = 1, 2, ..., n

}
,

in which 1 denotes the unity vector of appropriate length, n.

We say that the future flexibility of a system is larger than that
of another system when its feasible set is strictly greater. Any
input trajectory satisfying a feasible reference will result in a
state trajectory that fulfils said reference, defined as follows:

Definition II.2. A state trajectory z(·) can be said to fulfil a
power reference signal P r(·) if

∃u(·) : ∀t ≥ 0,

u(t) ∈ Up̄,
1Tu(t) = P r(t),

ż(t) = −P−1u(t),

z(0) = x,

zi(t) ≥ 0, i = 1, 2, ..., n.

For comparison between different state trajectories, it is also
useful to denote the maximum instantaneous power available
in state x as P̄ r(x), which we define as follows:

P̄ r(x)
.
=

∑
i : xi>0

p̄i . (16)

We consider the scenario in which the ability to satisfy the
power request takes precedence over other objectives. Note
that in an economic context this is equivalent to associating a
very high cost with a failure to meet demand. This assumption
allows us to consider the concept of survival time maximisa-
tion in a general sense, without considering price dynamics in
detail. We denote time to failure as Θp̄,x(P r) and define it as
follows:

Θp̄,x(P r)
.
= sup

{
t | P r

[0,t) ∈ Fp̄,x

}
. (17)

Our interpretation of time to failure as being the objective
function in our optimisation allows us to compare two device
configurations. We are then able to generalise this comparison
into a more powerful set-theoretic maximisation as follows:

Fact II.3. Given the system-state pair (p̄a, xa) with at least
as great a future flexibility as the system-state pair (p̄b, xb),

Fp̄a,xa ⊇ Fp̄b,xb =⇒ Θp̄a,xa(P r) ≥ Θp̄b,xb(P r) ∀P r,

and hence the time to failure of (p̄a, xa) is at least as great
as that of (p̄b, xb), under any reference.

III. OPTIMAL FEEDBACK POLICY

We present the following explicit feedback law. Without
loss of generality, reorder the states by descending value and
group them into collections of equal value (leading to q such
groups),

x1 = x2 = ... = xs1 > xs1+1 = ... = xs2

> ... > xsq−1+1 = ... = xsq .
(18a)

Additionally, form stacked vectors of the inputs and maximum
powers respectively across the devices in each group,

Ui
.
=

usi−1+1

...
usi

 , Ūi
.
=

p̄si−1+1

...
p̄si

 , (18b)

with the convention that s0 = 0. The explicit feedback law
is then calculated as a fraction ri of the maximum power Ūi

according to:

ri =


1, if

∑
j≤i 1T Ūj ≤ P r

0, if
∑

j<i 1T Ūj ≥ P r

P r−
∑

j<i 1T Ūj

1T Ūi
, otherwise,

(18c)

κ(x, P r)
.
=
[
UT

1 . . . UT
q

]T
with Ui = riŪi. (18d)

Denoting by z∗(·) the state trajectory under the application of
(18), the closed-loop dynamics are then

ż∗(t) = −P−1κ
(
z∗(t), P r(t)

)
. (19)
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We will now present relevant results and remarks relating to
this feedback law. Note that for clarity of argument the proofs
of Lemmas III.1 and III.5 and Theorem III.7 can be found in
the Appendix.

Lemma III.1. A unique solution of (19) exists for all initial
conditions.

Remark III.2. Under the application of (18), an increasing
number of devices is utilised up to whichever occurs earlier:
all available devices are utilised or the reference is fulfilled.
It is therefore trivial to see that

1Tκ
(
x, P r

)
= P r ⇐⇒ P r ≤ P̄ r (20)

according to this policy.

Remark III.3. The subset orders are preserved under the
feedback policy (18), i.e., without loss of generality,

xs1(0) ≥ ... ≥ xsq (0)

=⇒ xs1(t) ≥ ... ≥ xsq (t) ∀t ≥ 0.
(21)

Remark III.4. Under the feedback policy (18), devices with
the same initial time-to-go will be run at equal fractions of
their maximum powers forever.

Utilisation of these remarks leads to the following result:

Lemma III.5. Let P r(·) be a feasible reference and z̃(·) a
solution that fulfils P r(t), for all t ≥ 0. Then the solution z∗(·)
arising from feedback (18) and initialised as z∗(0) = z̃(0) is
well-defined for all t ≥ 0, and moreover:

supp[z∗(t)] ⊇ supp[z̃(t)] ∀t ≥ 0, (22)

in which supp[x(t)] denotes the support of state x(t), inter-
pretable as the set of devices that are not empty at time t.

This result then leads to the following Corollary:

Corollary III.6. The policy (18) maximises the instantaneous
power request that can be met by the system, i.e.

P̄ r
(
z∗(t)

)
≥ P̄ r

(
z̃(t)

)
∀z̃(·),∀t ≥ 0. (23)

Arguments making use of these preceding results finally lead
to the main Theorem that we present in this paper:

Theorem III.7. The policy (18) maximises future flexibility.

Fact II.3 then allows us to deduce the following Corollaries:

Corollary III.8. The policy (18) maximises time to failure,
under any reference P r.

Corollary III.9. As the proposed policy is greedy and optimal
for any possible reference, it is the best choice, regardless of
the future reference signal.

IV. INTERPRETATION OF THE RESULTS

In this section we attempt to gain an improved insight
into the relevance of the results from the point of view of a
system operator or aggregator. Firstly, it is worth mentioning
the reasons behind the advantages that the proposed policy
offers. As a result of Lemma III.5 and Corollary III.6, we know
that this policy maintains maximal availability of devices, and
moreover that this is equivalent to the ability to satisfy the
maximal instantaneous power. In fact, so long as the total time
for which the instantaneous power request is above

∑n−1
i=1 p̄i

is no greater than the smallest initial time to go (i.e. xn(0))
then all devices will remain available up to the time-to-failure
of the optimal policy, identically the time instant at which all
devices are depleted under this policy. Under other policies,
for example those discussed in the following section, depletion
of devices may occur earlier than this optimal time, as a result
of which there might be insufficient devices available to meet
an earlier reference value. The major advantage of utilising
the proposed policy is this ability to meet the request for as
long as possible, thereby providing the best prospect of being
able to outlast a shortfall event such as a lack of wind output
or an islanding failure.

V. NUMERICAL DEMONSTRATIONS

A. Alternative policy choices

Having presented analytical results which hold in general,
we now additionally present numerical results to illustrate
optimal discharging behaviour. To this end, in addition to
the previously described optimal policy (OP) we consider
alternative policy choices that one might implement; for a
representative comparison we only consider greedy policies.
These are detailed as follows.

1) Lowest Power First: Given that it is power spikes in the
future that we aim to successfully fulfil, one might intuitively
consider running those devices with the lowest maximum
powers first, thereby attempting to maintain devices with
higher maximum powers in reserve. We denote this policy
Lowest Power First (LPF). It can be enacted by ordering the
devices by maximum power, without loss of generality leading
to

p̄1 ≤ p̄2 ≤ ... ≤ p̄n, (24)

and allocating devices in order from D1 to Dn as

ui = 1{xi > 0} ·min
{
p̄i, P

r −
∑
j<i

uj

}
, (25)

in which 1{·} denotes the indicator function. Note that the
choice of allocation between devices of equal maximum
powers is made arbitrarily.

2) Proportion of Power: For an improved allocation based
on comparing the maximum powers across devices, we con-
sider the policy whereby devices are allocated by their pro-
portion of P̄ r(x), the net instantaneous power available. We
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denote this policy Proportion of Power (PoP). In this case, no
ordering is required and each device is run according to

ui = 1{xi > 0} ·min
{
p̄i,

p̄iP
r

P̄ r

}
. (26)

B. Results

We now demonstrate the optimality of the proposed policy
through comparison to the aforementioned alternative choices.
We generate a scenario in which there are 1000 devices
with both initial times-to-go and maximum powers uniformly
distributed, as xi ∼ U(0, 10) h and p̄i ∼ U(0, 1.5) kW
respectively. In an attempt to model a realistic dispatch, we
choose a stepwise reference signal that is updated hourly,
and draw the reference for each hourly value from a normal
distribution. We choose a mean value of 200 kW for this
reference, so that that all devices will be depleted by the end
of a single day according to the optimal policy, and set our
simulation horizon to 1 day. We consider two cases with the
same mean value: one in which the reference signal values
have a high variance and one in which they have a low
variance.

For the high-variance case, the reference distribution is
chosen to be P r[k] ∼ N(200, 80) kW . In response to
a reference signal drawn from this distribution, we plot the
evolution of the the maximum available power over time
resulting from the implementation of each policy in Figure 1.
The reference signal is shown for comparison; where the
output diverges from this reference is the point of failure
of any given policy, as is highlighted. The optimal policy
provides the highest feasible reference up to its time to failure,
as it postpones emptying devices until absolutely necessary,
resulting in the latest time to failure. The practical implications
of this result are as follows. If this scenario represents some
failure mode requiring less than 16 h for resolution, any of the
three policies are capable of maintaining full functionality. If,
however, resolution requires between 18 and 21 h, it is only
the policy we present that is capable of avoiding lost load.
Beyond 21 h we are categorically able to say that no policy
would be capable of avoiding lost load.

For the low-variance case, the reference distribution is
chosen to be P r[k] ∼ N(200, 20) kW , and comparative
results are shown in Figure 2. Once again, the optimal policy
results in an improvement over all others, although the increase
in time to failure is slightly smaller in this case. This is to be
expected, since it is power spikes in particular that cannot
be met through the sub-optimal allocation of devices and the
resulting depletion of a greater number of them.

These results show the benefits of the proposed optimal
policy in two specific scenarios, but it is worth reiterating that
the policy is able to ensure maximum time to failure without
prior knowledge of the actual reference signal.

VI. CONCLUSIONS AND FUTURE WORK

This paper has considered the optimal utilisation of a fleet
of energy-constrained distributed resources. We have presented
a feedback policy that discharges devices in order of their

0 4 8 12 16 20 24

t (h)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P̄
r
(M

W
)

Θ
PoP

 →

Θ
LPF

 →

← Θ
OP

P
r

LPF

PoP

OP

Figure 1: The maximum available power under the implementation
of each policy, with the corresponding high-variance reference signal
shown for comparison. The time to failure under each policy is
highlighted.
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Figure 2: The maximum available power under the implementation
of each policy, with the corresponding low-variance reference signal
shown for comparison. The time to failure under each policy is
highlighted.

times-to-go at maximum output power. Our results then prove
the optimality of this policy in terms of maximising the time
to failure for a given reference signal. We have additionally
generalised this optimality into a set-theoretic sense, which
is to say that there is no trade-off between different future
power reference scenarios; this time-local policy maximises
time to failure, available power and future flexibility under
any possible future power reference.

Future work will consider the increased knowledge a system
operator or aggregator might acquire by utilising the proposed
policy as a proxy for the feasible set. In addition, the authors
plan to consider scenarios in which the bi-directional charging
capabilities of devices should be utilised, including consid-
erations of the additional effects of inefficiencies in these
situations.
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APPENDIX

A. Proof of Lemma III.1

Let P be the set of all partitions of N , and for convenience
of notation denote a single partition as

p =
{
N1,N2, ...,Nk

}
, (A.1a)

p ∈ P. (A.1b)

A corresponding subset of state-space Xp ∈ X can be
introduced as

Xp
.
=

{
x ∈ X

∣∣ ∀i, j ∈ {1, ..., n}, xi = xj

⇐⇒ ∃l
∣∣ Di ∈ Nl & Dj ∈ Nl

}
.

(A.2)

Note that all such state-subspaces form a partition of X . In
particular

X =
⋃
q∈P
Xq . (A.3)

Denote by t0 the time at which the state enters the subspace
Xp. Similarly denote by t̄x(t0) the time at which it leaves this
subspace,

t̄x(t0)
.
= sup

{
s ≥ t0

∣∣ x(t) ∈ Xp ∀t ∈ [t0, s]
}
. (A.4)

Now, for any x(t0) ∈ Xp and any t ∈ [t0, t̄x(t0)], define

xi(t) =xi(t0)

−
∫ t

t0

max
{

min
{
P r(θ)−

∑
Dj∈Nk<l

p̄j∑
Dm∈Nl

p̄m
, 1

}
, 0

}
dθ

∀Di ∈ Nl, ∀l.
(A.5)

Consider the partitioning of devices as the state evolves across
Xp according to (A.5). For each subset Nl, (A.5) ensures that
all devices in the subset are instantaneously left idle, run at
full power or at an equal fraction thereof. In each case, the
device state values move in unison and so x(t) belongs to Xp

until two or more groups of devices reach the same time-to-go.
We informally refer to such an event as an equalisation. There
must be a finite positive time between equalisations, hence

t̄x(t0) > t0. (A.6)

Considering right derivatives, i.e.

ẋ(t)
.
= lim

h→0+

x(t+ h)− x(t)

h
, (A.7)

and having shown that the partition is maintained, we are able
to compute the dynamics across one subspace Xp as

ẋi(t) =−max
{

min
{
P r(t)−

∑
Dj∈Nk<l

p̄j∑
Dm∈Nl

p̄m
, 1

}
, 0

}
∀Di ∈ Nl, ∀l.

(A.8)
Thus (A.5) is a solution to (A.8) over the open interval
t ∈ [t0, t̄x(t0)). The dynamics of (A.8) correspond to the
implementation of the policy (18), therefore this policy results

in a continuous state trajectory as in (A.5) across the same time
interval. We are then able to recognise a unique continuous
solution by composing these trajectories across all state-
subspaces.

Note that when solutions enter a new element Xp of the
partition of X , the number of strict inequalities characterising
such a region strictly decreases. Hence at most n switches
occur along any given trajectory, so there is no possibility of an
accumulation point of switches between subspaces. Therefore
a unique solution of the closed-loop dynamics (19) must exist.

B. Proof of Lemma III.5

We first compose a framework as follows. Consider the
partition p, induced at the initial time by z̃(0) ∈ Xp, and
let

Nl, l = 1, 2, ..., q (A.9)

be the corresponding subsets as in (A.1). Then consider, for
an arbitrary positive integer r, the family Q obtained by
joining the Nls corresponding to the devices with the r lowest
(distinct) values of time-to-go:

Qr
.
= Nq−r+1 ∪ ... ∪Nq. (A.10)

In general, we know that the policy (18) chooses to run the
devices contained in Qr as little as possible, and only then
in the case when devices with higher times-to-go are run at
maximum power. Utilising the notation that zQr

denotes the
z-vector truncated to the devices which are elements of Qr,
and likewise that 1Qr and PQr denote the unity vector and
P -matrix truncated to the corresponding elements, we are able
therefore to say that

1TQr
PQr

ż∗Qr
(t) ≥ 1TQr

PQr
˙̃zQr

(t) ∀t ≥ 0,∀r. (A.11)

Now, denote by Qr0 the set of devices empty at time t = 0.
In addition, let t̄1 denote the first time at which one or more
additional devices are emptied along the z∗(·) solution:

t̄1
.
= inf

{
t ≥ 0 | ∃Di ∈ N | z∗i (t) = 0, z∗i (0) > 0

}
. (A.12)

Consider the open interval [0, t̄1). By definition, no devices
are emptied along the z∗(·) solution over this interval, hence

supp[z∗(τ)] = N \ Qr0 = supp[z̃(0)]

⊇ supp[z̃(τ)] ∀τ ∈ [0, t̄1),
(A.13)

where the inclusion follows because the support along the z̃(·)
solution is non-increasing. In addition, since z̃ fulfils P r, then

P r(τ) ≤
∑

Di /∈Qr0

p̄i ∀τ ∈ [0, t̄1), (A.14)

and so z∗ is well-defined and non-negative over the open
interval [0, t̄1).

Now consider the time instant t = t̄1. By continuity of z∗,

z∗i (t̄1) = 0, (A.15)

in which the index i refers to the one or more devices that are
emptied at exactly this time. Moreover, because

z∗i (0) = z∗j (0) =⇒ z∗i (t) = z∗j (t) ∀t ≥ 0, (A.16)
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we are able to say that

∃r1 : z∗i (t̄1) = 0 ∀Di ∈ Qr1 ,

z∗k(t̄1) > 0 ∀Dk /∈ Qr1 .
(A.17)

Now, consider the evolution of the trajectories z∗Qr1
and z̃Qr1

.
From a common initialisation,

1TQr1
PQr1

z∗Qr1
(0) = 1TQr1

PQr1
z̃Qr1

(0), (A.18)

and so (A.11) gives that

1TQr1
PQr1

z∗Qr1
(t) = 1TQr1

PQr1
z∗Qr1

(0)

+

∫ t

0

1TQr1
PQr1

ż∗Qr1
(τ)dτ

≥ 1TQr1
PQr1

z̃Qr1
(0) +

∫ t

0

1TQr1
PQr1

˙̃zQr1
(τ)dτ

= 1TQr1
PQr1

z̃Qr1
(t) ∀t ≥ 0.

(A.19)
Hence

z∗Qr1
(t̄1) = 0 =⇒ z̃Qr1

(t̄1) = 0, (A.20)

and moreover

supp[z∗(t̄1)] ⊇ supp[z̃(t̄1)]. (A.21)

In addition, since z̃ fulfils P r, then

P r(t̄1) ≤
∑

Di /∈Qr1

p̄i, (A.22)

and so z∗ is well-defined and non-negative over the closed
interval [0, t̄1]. Now, to extend this logic further into the future,
denote by t̄i the time at which the ith emptying event occurs,
defined for i > 1 as

t̄i
.
= inf

{
t > t̄i−1 | ∃Dj ∈ N | z∗j (t) = 0, z∗j (t̄i−1) > 0

}
.

(A.23)
Equivalent logic to above leads to at least the result that

supp[z∗(t̄i)] ⊇ supp[z̃(t̄i)]

=⇒ supp[z∗(t̄i+1)] ⊇ supp[z̃(t̄i+1)].
(A.24)

Hence, by induction,

supp[z∗(t)] ⊇ supp[z̃(t)] ∀t ≥ 0. (A.25)

C. Proof of Theorem III.7

Consider a feasible reference P r(·). Denote by z∗(t) the
state resulting from the application of (18) in the interval [0, t]
that meets this reference, and likewise denote by z̃(t) any other
feasible solution. Starting from this state, z̃(t) at time t, pick
any feasible reference, P̂ r(·) ∈ Fp̄,z̃(t). This results in some
trajectory ẑ(·) which we define as below

ẑ(τ) =

{
z̃(τ), if τ ∈ [0, t]
ž(τ), if τ > t.

(A.26)

Denote by ẑ∗(·) the trajectory obtained via the application of
(18) corresponding to the reference

P r�P̂ r(·), (A.27)

in which the � operator denotes the concatenation of two
signals. Resulting from Lemma III.5, we know that

supp[ẑ∗(τ)] ⊇ supp[ẑ(τ)] ∀τ ≥ 0. (A.28)

Hence,

P̄ r
(
ẑ∗(τ)

)
≥ P̄ r

(
ẑ(τ)

)
≥ P r(τ) ∀τ ≥ 0, (A.29)

and therefore the power constraints are satisfied along the
solution ẑ∗, and so

P̂ r ∈ Fp̄,z∗(t). (A.30)

Therefore
Fp̄,z∗(t) ⊇ Fp̄,z̃(t), (A.31)

hence the policy (18) maximises future flexibility.
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