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Abstract

Pixel art relies on carefully constructed color
ramps to simulate shading and depth within limited
palettes. However, editing these ramps remains a
tedious and error-prone manual process. This re-
search introduces a semi-automatic tool that sup-
ports the detection and modification of color ramps
in pixel art. The system builds a graph to model re-
lationships between image colors based on percep-
tual similarity and spatial adjacency, then extracts
and validates color ramps using customizable cri-
teria. Afterwards, if a user edits a color, changes
propagate consistently along the defined ramps,
preserving their visual structure. The method
streamlines palette editing while respecting artistic
intent, offering both automation and control.

1 Introduction

Pixel art originated during the early days of digital graph-
ics, when hardware limitations imposed strict constraints on
memory and resolution [1]. These restrictions strongly af-
fected the art, for instance, in the number of colors that could
be displayed simultaneously. Artists were forced to work
with very small palettes, often with less than 32 colors, requir-
ing careful control to achieve the desired visual effects [2].
Even as modern hardware eliminated these limitations, pixel
art has remained popular. Many contemporary artists still
choose very small color palettes voluntarily, seeing it as a way
to preserve a nostalgic style or stimulate their creativity [1].

The most common and widely adopted strategy for build-
ing minimalistic pixel art palettes involves the construction of
color ramps: sequences of colors forming meaningful pro-
gressions, often from dark to light or through subtle shifts
in hue (Figure 1). These ramps enable artists to simulate
depth, shading, and material changes within tightly con-
strained palettes. For many pixel artists, ramps are fundamen-
tal organizational units for gaining the biggest visual impact
with very few colors [3-6].

Figure 1: Example of a pixel art palette built from color ramps. Pixel
artists often organize their palettes as grids where each horizontal
and vertical segment is seen as a separate ramp. However, any path
through the grid that does not repeat steps can be considered a ramp.

Despite their popularity, ramp design remains laborious
and mentally demanding. Selecting appropriate colors is sel-
dom straightforward and often requires ongoing refinement
as the artwork evolves. Altering even a single color typ-
ically triggers adjustments across entire ramps to preserve
their intended progression. The challenges are further am-
plified when multiple ramps overlap within the palette. In
some cases, artists work with existing images where the orig-
inal ramps are no longer known, requiring them to manually

trace and reconstruct color relationships. As a result, modify-
ing the colors without compromising the artwork’s integrity
can be a painstaking process [6, 7].

Previous efforts to enable automatic ramp management re-
main limited in scope. Existing pixel art tools typically rep-
resent palettes as unstructured lists or grids of colors, without
support for organizing them into ramps or propagating ed-
its across related colors [8, 9]. Image recoloring and palette
management methods from other fields—such as photo edit-
ing or data visualization—cannot typically operate on seman-
tically meaningful subsets like color ramps, or do not fa-
cilitate fine-grained user control, which is critical to pixel
art. General-purpose palette extraction methods similarly fall
short when it comes to identifying color ramps [10, 11].

This leads us to the main research question of this work:
How can we automate the detection and modification of color
ramps in pixel art to streamline palette editing?

We propose a novel tool that enables the identification of
color ramps in pixel art through a semi-automatic pipeline
and simplifies their editing. Ramp detection begins with the
construction of a Color Connectivity Graph, which captures
relationships between image colors based on perceptual sim-
ilarity, spatial adjacency, or a combination of both. From this
graph, the system extracts candidate ramps using flexible val-
idation strategies aimed at identifying meaningful color tran-
sitions. These candidates are then filtered and clustered to
remove redundancy and resolve overlaps. Once the final set
of ramps is selected, the tool enables intuitive editing through
ramp-aware change propagation—a mechanism that auto-
matically distributes changes made to a single color across all
associated ramps, preserving their original structure.

Key contributions include graph-based strategies for mod-
eling color relationships in pixel art using perceptual and spa-
tial connections; methods for identifying and evaluating color
ramps aligned with artistic goals; and a change propagation
mechanism that simplifies ramp editing.

2 Related Work

This section surveys prior work relevant to our approach,
spanning color theory and perception models, pixel art con-
ventions, editing software, ramp detection strategies, and
palette-based recoloring methods.

2.1 Color Models and Perception

Color can be represented using different models, each opti-
mized for specific tasks. The RGB (Red, Green, Blue) model
is the most common one in digital systems, describing colors
as additive mixtures of primary light intensities. While effi-
cient for rendering and storage, RGB does not align well with
how humans perceive or reason about color differences [12].

For this reason, many artistic workflows and color editing
tools use the HSV (Hue, Saturation, Value) model, which rep-
resents colors through more perceptually meaningful compo-
nents [12]. HSV is particularly popular among pixel artists
because it enables intuitive control over color ramps and tran-
sitions [6]. However, it is not perceptually uniform, i.e.
changes in the HSV components do not always translate to
equally perceivable changes for the human eye [13].



To compensate for the limitations of RGB and HSV, color
science introduces perceptual color models like CIELAB,
which aim to better reflect human vision. The LCH (Light-
ness, Chroma, Hue) model is a cylindrical transformation of
CIELAB that separates lightness from chromatic attributes.
While not perfectly uniform, LCH offers greater perceptual
consistency than HSV, and its structure makes it easier to un-
derstand and manipulate than CIELAB [14].

The CIEDE2000 formula builds upon CIELAB by intro-
ducing a refined definition of color difference. It computes a
single A E value that quantifies how perceptually distinct two
colors are, factoring in complex interactions between light-
ness, chroma, and hue [10].

In our tool, HSV, LCH, and CIEDE2000 serve complemen-
tary roles. HSV offers interpretability and fine-grained con-
trol aligned with pixel art workflows; CIEDE2000 excels at
measuring overall perceptual difference between colors; and
LCH provides a perceptually aligned framework for analyz-
ing directional trends in color transitions.

2.2 Pixel Art Color Practices

There is little academic literature on pixel art and its use of
color. Most knowledge comes from community contributions
such as tutorials [5, 15, 16], forum posts [3], and blogs [4,
6]. These materials, often written by experienced artists, form
the practical foundation of pixel art. They emphasize the
use of limited palettes and offer best practices for building
color ramps, such as avoiding excessive saturation or value
that might “burn” the viewer’s eyes [3]. While there is no
formal definition of what makes a good color ramp, artists
commonly advise that ramps should be smooth and consis-
tent, with a clear direction of change in hue, saturation, and
value. Ramp construction is typically done through trial and
error, relying on intuition rather than formal rules [4, 6].

2.3 Software Support for Color Ramps

Modern pixel art editors such as Asepritel, Pro Motion2, and
GraphicsGale® offer robust palette management features, in-
cluding gradient generators. However, they provide little sup-
port for organizing colors into ramps, treating palettes as un-
ordered lists or grids, and relying on the artist to infer color
relationships.

Some attempts have been made to automate color ramp de-
tection. The Aseprite extension Color Ramp Sort [9] clus-
ters colors into linear ramps using RGB collinearity heuris-
tics. While effective for simple, disjoint ramps, it struggles
with overlapping or complex structures and only groups col-
ors visually, without supporting ramp-level modifications. In
contrast, Kensler’s blog post Mapping Pixel Art Palettes [8]
models palettes as directed graphs based on perceptual dis-
tance and lightness order. Although more structurally insight-
ful, this method does not isolate individual ramps. While both
approaches are valuable early contributions, they remain lim-
ited and do not enable dynamic ramp editing.

"https://www.aseprite.org/
Zhttps://www.cosmigo.com/promotion
3https://graphicsgale.com/us/

2.4 Palette Extraction and Image Recoloring

Palette extraction from natural images is a well-established
research area. Techniques such as k-means clustering, me-
dian cut, and mean-shift are commonly used to identify
representative colors by reducing the full color range to a
smaller, usable set. More recent methods leverage deep learn-
ing to infer more complex palettes [10, 17]. However, these
approaches are designed for tasks like image abstraction,
style transfer, or color theme generation [10, 18, 19], and
do not meet the specific demands of pixel art, which already
uses limited color palettes. In pixel art, palette extraction
means preserving all unique colors and ideally organizing
them in a way that reflects their visual relationships.

Related to this is image recoloring, which involves ad-
justing image colors while preserving structure or content.
Palette-based recoloring methods often work by decompos-
ing the image into layers and remapping the palette [11, 20].
Some tools propagate changes based on color similarity or
texture boundaries [19]. This project introduces a ramp-based
propagation strategy, where edits automatically affect all re-
lated colors within associated color ramps.

3 Methodology

Our tool enables the detection and editing of color ramps
in pixel art through a semi-automatic pipeline (Figure 2).
The process begins with the construction of a Color Con-
nectivity Graph (Section 3.1), which links colors that are
likely to form ramp sequences based on perceptual similar-
ity, spatial adjacency, or both. The tool then extracts candi-
date ramps from the graph using one of two validation strate-
gies: one based on HSV components, and the other combin-
ing CIEDE2000 and LCH color metrics (Section 3.2). The
extracted candidates are refined by filtering out redundant
ramps (Section 3.3) and clustering similar ones to select rep-
resentative examples (Section 3.4). After choosing the final
ramp set, the user can apply ramp-aware color modifica-
tions (Section 3.5), where changes to a single color automat-
ically propagate across all associated ramps while preserving
their structure. User-defined parameters guide key decisions
throughout the pipeline, allowing flexible adaptation to dif-
ferent palette structures and artistic goals.

3.1 Building a Color Connectivity Graph

To identify color ramps, we start by constructing a Color
Connectivity Graph G = (V, E), where each node v € V
corresponds to a unique color in the input image. An edge
(u,v) € E exists if the color pair satisfies a predicate R(u, v),
meaning v and v are likely to form successive steps in a ramp.
The graph narrows the search space for ramp extraction: in-
stead of evaluating all color sequences, we only need to ex-
plore paths through connected nodes. Depending on the con-
struction strategy chosen by the user, R may reflect color sim-
ilarity, spatial adjacency, or a combination of both. Illustra-
tive examples are shown in Figures 4-5 in the Results section.
The following sections define each predicate variant.

Color Similarity Graph
The first graph construction strategy connects colors that are
perceptually similar, regardless of their spatial arrangement
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Figure 2: Overview of the semi-automatic pipeline for ramp-based color modification. The process consists of five steps: (1) constructing a
Color Connectivity Graph based on similarity and spatial adjacency; (2) extracting candidate color ramps; (3) filtering out redundant results;
(4) clustering similar ramps to select representative examples; and (5) applying ramp-aware modifications, where edits to one color propagate
across all related ramps. Input image was inspired by Daniel Silber’s work [21].

in the image. Similarity can be evaluated using either the
HSV color space or the CIEDE2000 perceptual difference
metric, depending on the selected method.

In the HSV-based approach, bounds are applied to each
component individually. Let c(u) = (h(u),s(u),v(u))
denote the HSV vector of color u, with separate thresh-
olds 8 = (0,,0s,60,). The predicate is defined as:

RISV (u,0) = A2 (es(u) — ¢;(v)] < ;).

In the CIEDE2000-based approach, similarity is mea-
sured using the perceptual difference AE(u,v) with a single
threshold 05.7: RAE (u,v) = (AE(u,v) < 05F)

Both methods identify perceptually similar colors but dif-
fer in behavior and suitability (see Section 2.1). CIEDE2000
provides perceptual uniformity and a single scalar threshold,
making it useful for general similarity detection. HSV of-
fers more targeted, component-wise control that aligns with
artistic workflows, but may behave unpredictably in certain
regions of color space. In both cases, the thresholds that de-
fine similarity can be configured by the user to reflect desired
sensitivity.

Similarity graphs are useful for capturing perceptual rela-
tionships between colors, but they may also connect colors

from unrelated regions, as they ignore spatial context.

Spatial Adjacency Graph

In pixel art, colors that appear adjacent on the canvas are often
functionally related. To capture this, the second graph strat-
egy adds an edge (u,v) € E if the colors u and v frequently
appear next to each other in the image.

For each pixel of color u, its four immediate neighbors
are examined. If a neighbor has color v # wu, the adja-
cency count for the pair (u,v) is incremented. Let A(u,v)
denote the number of adjacent occurrences of (u,v), and
T'(u) the total number of pixels of color u. The Relative

Adjacency (RA) is defined as RA(u,v) = %. Since
the graph is undirected, an edge is added if the maximum
RA in either direction exceeds the user-defined threshold 8,4;:
Ruj(u,v) = (max (RA(u,v), RA(v,u)) > Ou) -

RA is more robust than using A(u, v) alone, as it accounts
for under-represented colors and normalizes across image
size. However, it cannot detect relationships between colors
that never appear directly adjacent. As such, important ramp
connections may be missed in highly segmented art styles.

Hybrid Graph
The two previous strategies capture complementary aspects
of how ramp relationships arise in pixel art. Similarity-based
graphs connect perceptually close colors, even across disjoint
regions, while spatial adjacency focuses on local usage pat-
terns within the image. Since each method has limitations
when used in isolation, the proposed hybrid approach com-
bines both strategies to mitigate their respective weaknesses.
An edge (u,v) € E is added based on either the intersec-
tion or union of the similarity and adjacency graphs:

Rl?ybrid(uv 1)) = Rsim(u, U) A Radj (U, ’U)

thﬁybrid(uv U) = RSim(“? ’U) \ Radj (u’ U)'

Intersection mode retains only edges between colors that
are both perceptually similar and frequently adjacent, reduc-
ing noise and ambiguity, but it may exclude valid ramp con-
nections if either condition is not met. In contrast, union
mode includes all edges from both graphs, offering broader
coverage but potentially introducing more irrelevant links.

Together, these strategies define four graph construction
modes: color similarity, spatial adjacency, intersection,
and union. Each emphasizes different color relationships,
and their suitability depends on the palette structure and im-
age layout. The tool does not impose a fixed choice—users
can select the method and thresholds that best align with their
artistic intent and the image style. The resulting graph then
forms the foundation for extracting candidate color ramps.

3.2 Extracting Cadidate Ramps

Once a graph has been constructed, the next step is to extract
sequences of connected colors that form valid ramps. To do
this, the tool performs multiple runs of depth-first search,
each starting from a different node in the graph and recur-
sively exploring paths through neighbouring nodes. At each
step, the current path is evaluated against ramp validation cri-
teria: smoothness, monotonicity, and meaningfulness. If the
path satisfies the criteria, the search continues; otherwise, the
longest valid prefix is stored as a candidate ramp, and the al-
gorithm backtracks. This process repeats until all nodes have
been used as starting points, resulting in a comprehensive set
of candidate ramps.

To ensure the extracted sequences represent visually coher-
ent ramps, we define the three validation criteria as follows:



smoothness ensures that step sizes between colors are consis-
tent; meaningfulness ensures that steps are neither impercep-
tibly small nor excessively large; and monotonicity requires
a clear direction of change without reversals [4, 5]. Figure 3
shows examples of ramps that violate these principles.

- Not smooth
_ Not monotonous

Figure 3: Examples of invalid ramps. The top-left ramp satisfies
all validation criteria, while the others each violate one: smoothness
(inconsistent step sizes), meaningfulness (steps that are too small or
too large), or monotonicity (directional reversals).

The three criteria can be evaluated using either an HSV-
based approach or a combination of CIEDE2000 and LCH
perceptual metrics. While both enforce the same underly-
ing principles, they rely on different models and evaluation
strategies, which are detailed in the following sections.

Ramp Validation Using HSV

The first validation method checks whether a sequence of col-
ors forms a valid ramp by independently evaluating changes
in hue, saturation, and value. It relies on simple, interpretable
parameters defined by the user, each corresponding to one of
the three ramp quality criteria. This makes it straightforward
to extract ramps that follow specific HSV progressions, which
are common in pixel art workflows.

Each component is evaluated using four tunable parame-
ters: the minimum and maximum step sizes, which enforce
meaningfulness by filtering out steps that are either too sub-
tle to perceive or too extreme to remain coherent; the maxi-
mum variance, which ensures smoothness by limiting fluc-
tuations in step size along the ramp; and a monotonicity con-
straint, which optionally requires that a specific component
(e.g., value) consistently increases or decreases throughout
the sequence.

Ramp Validation Using CIEDE2000 and LCH

The second validation method combines CIEDE2000 and
LCH to evaluate ramps in a way that reflects human color
perception more accurately than HSV. CIEDE2000 provides
a precise measure of perceived color difference, making it
well-suited for evaluating step size and consistency. How-
ever, it treats differences as scalar values and does not capture
the direction of color change. To address this, we supplement
CIEDE2000 with LCH, which enables geometric assessment
of directional trends in lightness, chroma, and hue. Com-
pared to HSV, LCH offers a more perceptually meaningful
structure, although it is still less accurate than CIEDE2000
for judging overall color difference.

This method uses four tunable parameters to evaluate the
ramp quality criteria. Meaningfulness is enforced through
the minimum and maximum step sizes in AF, filtering out
transitions that are either too subtle or too abrupt. Smooth-
ness is ensured by limiting the maximum variance in AF,
promoting consistent spacing throughout the ramp. Mono-
tonicity is enforced by constraining the maximum angular

deviation in LCH space, ensuring a consistent direction of
change.

While this method is robust and simplifies the validation
of ramps with complex multidimensional changes, the HSV-
based approach remains valuable when finer control is needed
over ramp progression and the behavior of individual color
components.

3.3 Filtering Out Redundant Ramps

Due to the repetitive nature of the extraction process, the re-
sulting set of candidate ramps often contains redundant or
overlapping sequences. Many candidates differ only slightly
in order, direction, or length, which inflates the results and
complicates ramp management. In response, the system ap-
plies filtering and clustering to consolidate similar candidates
and produce a cleaner, more manageable set.

The filtering stage removes two main types of redun-
dancy. First, it eliminates permutations—ramps that con-
tain the same set of colors but in a different order. Sec-
ond, it discards subsequences that are fully contained within
longer ramps. While some shorter ramps may be meaningful
on their own, filtering out subsequences effectively reduces
noise while preserving longer ramps that are equally—or
more—important.

3.4 Clustering Similar Ramps

To further consolidate the candidate ramps and ensure a di-
verse final set, we cluster them using a perceptually-aware
edit distance. Each ramp is treated as a sequence of col-
ors, and pairwise distances are computed using a modified
Damerau—Levenshtein metric [22]. Color substitutions are
allowed at zero cost when the perceptual difference AF is
below 10 (relatively similar) [23], reducing the distance be-
tween visually similar ramps. Insertions, deletions, and trans-
positions are assigned fixed costs, with transpositions allowed
for adjacent color swaps. The recursive distance is defined as:

D(i—1,5)+1 (deletion)
. . ) D@, —-1)+1 (insertion)
D =
(7, 7) = min D(i—1,j—1)+d(ci,d;) (substitution)
D(i—2,7—2)4+05 (transposition)

with base cases D(0,5) = j, D(4,0) = i, and D(0,0) = 0.
The substitution cost d(c;, d;) is set to 0 if AE(¢;,d;) < 10,
and 1 otherwise.

The resulting distance matrix is used for hierarchical clus-
tering with average linkage, grouping visually similar ramps
based on structure and color content.

To select a representative ramp from each cluster, we apply
a quality scoring function based on four factors: smooth-
ness, meaningfulness, monotonicity, and length. CIEDE2000
is used to assess perceptual step sizes and their consis-
tency, while HSV is used to evaluate monotonicity, reflect-
ing its alignment with artistic workflows and leveraging the
strengths of each color model.

The scoring function consists of the following components.
First, the step size penalty is calculated by comparing each
AF step to an ideal perceptual range (10-50) [23], and com-
puting the root mean square (RMS) of the deviations. This



favors ramps with perceptually meaningful transitions. Sec-
ond, the step consistency penalty measures the uniformity
of step sizes along the ramp, computed as the RMS of dif-
ferences between consecutive AE values and scaled by 0.1
to normalize its weight. Third, monotonicity is assessed in
HSV space by counting direction changes in each channel.
Each component contributes a score of 1/(changes + 1), and
the three values are summed to yield the overall monotonic-
ity score. Finally, a small length bonus (0.05 per step) is
added for ramps longer than the shortest ramp in the cluster,
promoting longer ramps when quality is otherwise compa-
rable. The monotonicity score and length bonus are added,
while the two penalties are subtracted, to compute the final
score.

Scoring is applied only within clusters, rather than across
the full candidate set, to avoid favoring trivial structural vari-
ations. This ensures that the final output includes one high-
quality, visually distinct ramp per group.

3.5 Final Ramp Selection and Color Modification

The tool presents the final candidate ramps—one from each
cluster—for user inspection and optional refinement. Users
may make small adjustments, such as adding or removing
steps, to fine-tune the ramp structure before proceeding to
color modification.

Once ramps are finalized, individual colors can be edited
in RGB, HSV, or hexadecimal formats. When propagation
mode is enabled, the tool automatically applies changes to all
ramps containing the edited color.

Propagation is performed in HSV space, aligning with
how artists typically understand ramps—as progressions in
hue, saturation, and value. When a user modifies a color
ci = (hy, sk, vx) to a new value cj, = (h},, s}, v},), the tool
computes propagation for each color ¢; = (h;, s;,v;) in the
ramp (with ¢ # k). The hue shift is preserved relative to the
original color, using Ah; = (h; — h, +0.5) (mod 1) — 0.5,
and the propagated hue is computed as b, = (h}, + Ah;)
(mod 1). Saturation and value are scaled proportionally:
s; = sp - ot and v = vp - ok

The ramp’s style is preserved, while the user’s adjustment
redefines the base from which the colors are derived.

3.6 Implementation Details

The tool is implemented in Python 3.13 and uses PyQt6
for the graphical user interface (GUI). Its modular archi-
tecture separates functionality into distinct components for
image viewing, color manipulation, and graph visualization.
Core scientific libraries—including NumPy, Matplotlib, and
NetworkX—are employed for color space calculations and
graph-based operations. Data persistence is managed through
JSON serialization, enabling saving and loading of color
ramps. The application supports real-time color updates via
an event-driven architecture built on Qt’s signal mechanism,
and maintains global state using dedicated manager classes
for color and ramp data. While the tool includes a functional
GUI for interaction and editing, interface design is not the
focus of this research.

4 Results

We evaluate three core components of the proposed method:
Color Connectivity Graph construction, ramp identifica-
tion, and ramp-aware color modification. The evaluation is
conducted on a set of ten pixel art images, either created in-
house or sourced from public repositories [13] and pixel art
communities [3]. For each image, we have access to the orig-
inal color ramps used by the artist, allowing us to assess how
effectively the tool identifies meaningful ramps. These im-
ages are relatively small (up to 120x120 pixels), each using
5-15 colors across 1-4 ramps, with ramp lengths up to 14.
Additionally, for two images, we include artist-modified ver-
sions to compare against the results produced by our propa-
gation mechanism.

In this section, we present selected examples that illustrate
key behaviors and trade-offs. The full dataset, including all
ten test cases and their corresponding parameter settings, is
provided in Appendix B.

4.1 Comparison of Graph Construction Strategies

We evaluate graph strategies across ten pixel art images, us-
ing the number of relevant (Rel) and irrelevant (Irr) edges
as the primary criteria. An edge is considered relevant if it
connects two consecutive colors from a known ramp. Rele-
vant edges aid ramp extraction, while irrelevant ones add am-
biguity and overhead. The best graph for each image is the
one that maximizes relevant edges and minimizes irrelevant
ones. In Figures 4 and 5, we highlight the best-performing
graph for each case in green.

Thresholds are tuned by gradually tightening permissive
settings to preserve relevant edges while minimizing irrele-
vant ones. For the color similarity graphs, both HSV- and
CIEDE2000-based methods are tested per image, and the ver-
sion yielding better results is selected.

CIEDE2000
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Figure 4: Comparison of CIEDE2000 and HSV similarity graphs.
(a) Colors are perceptually similar but vary widely in HSV, making
CIEDE2000 less noisy. (b) HSV performs better due to consistent
ramp structure.

Figure 4 illustrates how HSV and CIEDE2000 graphs cap-
ture different types of color relationships, depending on the
structure of the palette. In image (a), the ramps contain large



jumps in hue and saturation that nonetheless appear perceptu-
ally smooth. HSV needs loose thresholds to preserve relevant
edges, resulting in more irrelevant links. CIEDE2000, be-
ing perceptually grounded, retains the intended relationships
with fewer spurious edges. In image (b), the ramps follow
consistent HSV progressions, allowing HSV to apply tighter
thresholds that cleanly isolate ramp sequences. In contrast,
CIEDE2000 tends to overconnect colors in the frame ramps
due to their overall perceptual similarity, even when they form
distinct linear progressions.

Figure 5 presents representative results on four images,
each selected to highlight cases where one of the four graph
construction strategies—color similarity, spatial adjacency,
union, or intersection—performs best. Across the ten-image
test set, the intersection graph performs best on 4 images,
color similarity on 3, union on 2, and spatial adjacency on
1. When a hybrid graph (union or intersection) yields results
equivalent to a base graph, we prefer the simpler option to
reduce computational cost.

Intersection graphs consistently produce the cleanest out-
put with the fewest irrelevant edges but can miss relevant
connections when color or spatial continuity is disrupted, as
in images (b) and (c) of Figure 5, which feature strong out-
lines. Color similarity and union graphs are more inclusive
and reliably capture all relevant edges, though they tend to
introduce more irrelevant links, particularly noticeable in im-
age (c). Spatial adjacency graphs introduce the most noise
and perform poorly on segmented images like (b) and (c), but
work well in simpler cases with sharp color transitions, as
demonstrated in image (d).

4.2 Ramp Identification Results

From the original ten-image dataset, we select six structurally
diverse examples for ramp identification. The remaining four
are excluded as they closely resemble other images in the set.

Figure 6 shows the whole identification process for three
representative cases. In each test case, we apply the best-
performing graph strategy determined earlier, except for im-
ages (a) and (b), where we deliberately use slightly subop-
timal graphs to evaluate the robustness of the identification
pipeline. Despite this, the system successfully recovers the
exact ramps used in the original artwork in all six cases.

Ramp identification begins with extracting many initial
candidates, which are then sharply reduced through filtering
and clustering. For example, in image (c), the system reduces
over 400 initial candidates to just 6. Although this is a sub-
stantial reduction, the final result still includes some clutter,
as only one ramp is actually used in the artwork. In all other
images, only the original ramps are retrieved. This is largely
due to image (c) having the most colors and the longest ramp,
exposing the limitations of filtering and clustering for longer
or more complex palettes. Image (b), by comparison, demon-
strates successful disambiguation from a dense cluster of six
similar ramps.

Figure 7 presents an example of using HSV-based valida-
tion to extract ramps with minimal hue variation. While all
six ramp reconstruction tests use the CIEDE2000 and LCH
method for its simplicity, only the HSV method allows ex-
plicitly constraining hue change, something that is not possi-

Figure 7: Results of ramp extraction using HSV validation with a
hue step threshold of 10. The method isolates ramps that vary mainly
in value, highlighting shading sequences with minimal hue change.

ble with CIEDE2000 alone. By setting a low maximum hue
step, the tool can isolate ramps that lack hue shifts, useful for
identifying shading sequences that diverge from the common
pixel art practice of shifting hue along with value.

Tool interaction also revealed that ramp identification
is highly sensitive to graph quality and parameter set-
tings. Clean graphs with few irrelevant edges consistently
yield more accurate results, while noisier graphs inflate
the candidate set and increase the risk of discarding valid
ramps. Careful parameter tuning is especially important:
the CIEDE2000-based method proved sensitive, with small
changes in perceptual distance (AFE) affecting ramp valid-
ity. The HSV method is more tolerant but has parameters
to tune. These findings emphasize that effective use of the
tool requires thoughtful configuration tailored to each image’s
palette structure.

4.3 Color Modification and Propagation Examples

To evaluate ramp-aware color editing, we selected two images
for which we had access to artist-created modified versions.
In image (a), the artist reduced eye strain by lowering overall
saturation and value. In image (b), the goal was to make the
character’s hair stand out more and adjust the surrounding
colors accordingly for better contrast.

Using our tool, we applied two and four edits respectively,
modifying selected ramp entries with propagation enabled
when applicable. This eliminated the need to adjust each
color individually. After each step, we computed the root
mean square error (RMSE) in SRGB relative to the artist’s
version. As shown in Figure 8, the RMSE decreased con-
sistently with each edit, indicating convergence toward the
intended result. Both sequences concluded with a normalized
RMSE of 0.03 or lower, producing images visually close to
the artist-authored changes.

While ramp-aware propagation streamlines the editing pro-
cess, it cannot fully replicate the nuanced adjustments artists
often apply when modifying a palette. In image (a), for in-
stance, preserving the highlight required manually increasing
the value of the yellow color with propagation turned off. In
image (b), although the main changes were applied automati-
cally, the resulting contrast in some areas—such as the green
shirt and light brown skin—remained lower than in the artist’s
version. These examples illustrate both the strengths and lim-
itations of the method, showing that combining propagation
with occasional manual edits remains important for achieving
artist-level refinements.
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Figure 5: Representative results for four graph construction strategies on selected images. Each subfigure highlights a case where one
method—color similarity, spatial adjacency, union, or intersection—performs best. Images (b) and (c) show challenges with segmentation
and outlining, while (c) and (d) demonstrate cases with sharp color transitions.
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Figure 6: Ramp identification results for three representative images. In each case, the correct ramps used in the artwork are successfully
recovered. Example (b) demonstrates effective disambiguation within a dense candidate cluster, while (c) highlights residual clutter despite
reducing over 400 initial candidates, revealing the limitations of filtering and clustering when handling longer ramps. Image (c) is cropped
from original artwork by Jimison3 [24].
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Figure 8: Ramp-aware color editing results compared to artist-modified target images. In both cases, a small number of edits with propagation
progressively reduces the visual difference, measured as RMSE in sSRGB. Final outputs closely match the artist’s version, with normalized
RMSE at 0.03 or below. A manual adjustment was required in (a) to preserve the highlight, while some contrast differences remain in (b).
Inputs and artist-modified images in (a) are redrawn after a post by Cure [3]; (b) were inspired by Daniel Silber’s work [21].

5 Discussion

This work introduces a semi-automatic tool that supports
the identification and editing of color ramps in pixel art,
addressing a longstanding challenge in palette-based work-
flows. Key contributions include graph-based strategies for
modeling color relationships through perceptual and spatial
connections, allowing the tool to adapt to diverse image struc-
tures and ramp styles. We also define clear validation cri-
teria—smoothness, meaningfulness, and monotonicity—for
identifying and evaluating color ramps in a way that aligns
with artistic intent. Finally, the proposed ramp-aware change
propagation mechanism simplifies the editing process by au-
tomatically distributing color edits across related ramps, re-
ducing manual effort while preserving the intended visual
structure. Together, these components form an integrated
framework, supporting artists in managing complex palettes
with greater efficiency.

While ramp-aware editing significantly reduces manual ef-
fort, ramp extraction remains a bottleneck. The process re-
quires careful tuning of the graph and validation parame-
ters, especially for complex or segmented images. Although
ramps only need to be identified once and can be reused, ini-
tial setup can be time-consuming. The current method also
struggles with nuanced artistic edits and lacks automated pa-
rameter tuning or suggestions for corrections.

Although the initial results are promising, our evaluation of
the tool remains limited in scope. The ten test images were se-
lected to reflect a variety of palette structures and challenges,
but they do not capture the full diversity of pixel art styles.
To better understand the tool’s general applicability and lim-
itations, broader testing is needed, both in terms of image
variety and feedback from practicing artists using the tool in
real-world contexts.

Future work will focus on improving both performance and
generalization. This includes optimizing graph traversal and
clustering algorithms, introducing smarter default thresholds,
and exploring data-driven approaches for parameter tuning.
Enhancing the modeling of spatial relationships and integrat-
ing them more effectively with perceptual similarity could
improve ramp detection across a wider range of art styles.
More advanced propagation techniques may also enable com-
plex adjustments, such as selectively enhancing contrast or
reinforcing color harmony. Incorporating guided corrections
or automatic detection of low-quality ramps could further as-
sist users in refining results. Finally, extending the method to
support higher-resolution images could help bridge the gap
between pixel art tooling and broader digital art workflows.

6 Conclusion

This work set out to address a critical gap in software sup-
port for pixel art: the lack of tools that enable structured, in-
tuitive management of color ramps, a central organizational
unit in pixel art palettes. In response, we developed a semi-
automatic system to detect ramps in pixel art images and
streamline their editing. The tool models color relationships
as graphs using perceptual and spatial information, identifies
ramp structures based on artist-aligned criteria, and enables
ramp-aware color adjustments. Our approach offers a practi-
cal solution to the longstanding challenges of manual palette
editing, preserving artistic intent while reducing the required
effort. Although some limitations remain, particularly in pa-
rameter tuning and complex ramp detection, the system rep-
resents a meaningful step toward automating ramp identifica-
tion and simplifying color modifications in pixel art.



7 Responsible Research

This section reflects on the responsible research practices fol-
lowed throughout the project, with a focus on reproducibility,
research integrity, and broader impact.

7.1 Reproducibility and Research Integrity

To support reproducibility, all source code used in this project
has been made publicly available in a GitHub repository*,
along with full documentation. The methods described in the
report include all relevant implementation details, design de-
cisions, and formulas. The algorithm is fully deterministic,
with no random or stochastic components, ensuring that re-
sults are repeatable under the same conditions. The param-
eters used to generate graph results are included in the fig-
ures and all other parameters are in Appendix B. Together,
the code, documentation, and detailed reporting make it pos-
sible for others to reproduce all key findings without requiring
further clarification.

We evaluated our tool on ten pixel art images. Seven
were created specifically for this project. Of the remaining
three, one was a cropped version of an artwork from a pub-
lic gallery, one was inspired by existing work, and one was
a redrawn version of a public tutorial example. All sources
and credits were clearly indicated in figure captions and ref-
erences.

An Al coding assistant (a plugin for PyCharm) was used
during development to support general debugging, code doc-
umentation, refactoring, and the implementation of the tool’s
graphical user interface. The assistant’s role was limited to
practical implementation support and did not influence the
method design or overall research direction. All ideas and
design decisions were original and grounded in insights from
prior related work. A selection of representative Al prompts
is included in Appendix A for transparency.

7.2 Impact on Pixel Art Community

Pixel art is a medium where artists value precision and direct
control over every visual element, including the palette. In
this context, automating ramp-based color modifications may
conflict with the core values of the community. This research
acknowledges that tension and responds by designing a tool
that prioritizes user agency at every stage. Advanced param-
eters are exposed for all major processes, such as ramp detec-
tion, validation, and color propagation. This enables artists to
guide and refine the results according to their intent.

Rather than replacing artistic judgment, the tool aims to
support it. It reduces repetitive tasks while allowing full trans-
parency and customization in how ramps are identified and
edited. By aligning with the creative values of the pixel art
community, the tool has the potential to be adopted as a tech-
nical aid in creative workflows.

The broader influence could include encouraging more
structured palette practices, lowering entry barriers for newer
artists, and potentially inspiring further tool development that
respects artist intent. The goal is not to standardize or auto-
mate artistic decisions, but to give artists better infrastructure
for expressing themselves.

*https://github.com/MineaSolas/AutomatingColorRamps

The tool supports export and import of detected color
ramps, enabling reuse and iterative refinement across edit-
ing sessions. However, this functionality currently relies on a
custom JSON-based format, which is not compatible with ex-
isting pixel art editors such as Aseprite, Pro Motion, or Pyxel
Edit. As a result, integration with other tools is limited at this
stage. Future versions could improve on this by adopting or
translating to widely used palette formats.

References

[1] S. Paez, “A visual renegade: A phenomenological and
aesthetical examination of pixel art,” Master’s thesis,
Vrije Universiteit Amsterdam, 2022.

[2] N. Kylmadaho, “Pixel graphics in indie games,” Bach-
elor’s thesis, Tampere University of Applied Sciences,
2019.

[3] Cure. “The pixel art tutorial.” (2010), [Online]. Avail-
able: https://pixeljoint.com/forum/forum_posts.asp?
TID=11299 (visited on 05/02/2025).

[4] R.Schlitter. “Pixelblog 1: Color palettes.” (2018), [On-
line]. Available: https://www . slynyrd . com/blog/
2018/1/10/pixelblog - 1 - color - palettes (visited on
05/02/2025).

[51 G. Function. “Development workflow — chapter 9:
Creating a color palette (part 2).” (2023), [Online].
Available: https : // gbstudiocentral . com / tips / dwf -
9 - creating - a - color - palette - part - 2/ (visited on
05/02/2025).

[6] Lux. “Color theory for pixel artists: It’s all relative.”
(2020), [Online]. Available: https ://pixelparmesan .
com/blog/ color - theory - for - pixel - artists - its - all -
relative (visited on 05/02/2025).

[7] M. Azzi, Pixel Logic: A Visual Guide to Pixel Art. Self-
published, 2017.

[8] A. Kensler, Mapping pixel art palettes, http : / /
eastfarthing . com/blog/2016- 05 - 27 - mapping/, Ac-
cessed: 2025-06-02, 2016.

[9] M. Sagadin, Color ramp sort: An aseprite extension
for sorting palettes by color ramps, https://github.com/
matsagad/color-ramp-sort, Accessed: 2025-06-02.

[10] Y. Gao, J. Liang, and J. Yang, “Color palette genera-
tion from digital images: A review,” Color Research &
Application, vol. 50, no. 3, pp. 250-265, 2025.

[11] S. Yan, S. Xu, W. Yang, et al., “Image recoloring
based on fast and flexible palette extraction,” Multime-
dia Tools and Applications, vol. 82, pp. 47 79347 810,
2023. por: 10.1007/s11042-023-15114-5.

[12] N. Ibraheem, M. Hasan, R. Z. Khan, and P. Mishra,
“Understanding color models: A review,” ARPN Jour-
nal of Science and Technology, vol. 2, Jan. 2012.

[13] J. Lv and J. Fang, “A color distance model based on
visual recognition,” Mathematical Problems in Engi-
neering, vol. 2018, no. 1, p. 4652526, 2018. DOI:
https://doi.org/10.1155/2018/4652526. [Online].
Auwailable: https://onlinelibrary.wiley.com/doi/abs/10.
1155/2018/4652526.


https://github.com/MineaSolas/AutomatingColorRamps
https://pixeljoint.com/forum/forum_posts.asp?TID=11299
https://pixeljoint.com/forum/forum_posts.asp?TID=11299
https://www.slynyrd.com/blog/2018/1/10/pixelblog-1-color-palettes
https://www.slynyrd.com/blog/2018/1/10/pixelblog-1-color-palettes
https://gbstudiocentral.com/tips/dwf-c9-creating-a-color-palette-part-2/
https://gbstudiocentral.com/tips/dwf-c9-creating-a-color-palette-part-2/
https://pixelparmesan.com/blog/color-theory-for-pixel-artists-its-all-relative
https://pixelparmesan.com/blog/color-theory-for-pixel-artists-its-all-relative
https://pixelparmesan.com/blog/color-theory-for-pixel-artists-its-all-relative
http://eastfarthing.com/blog/2016-05-27-mapping/
http://eastfarthing.com/blog/2016-05-27-mapping/
https://github.com/matsagad/color-ramp-sort
https://github.com/matsagad/color-ramp-sort
https://doi.org/10.1007/s11042-023-15114-5
https://doi.org/https://doi.org/10.1155/2018/4652526
https://onlinelibrary.wiley.com/doi/abs/10.1155/2018/4652526
https://onlinelibrary.wiley.com/doi/abs/10.1155/2018/4652526

[14] D. Starov, Perceptual color models, Accessed: 2025-
06-10, 2025. [Online]. Available: https://chromatone.
center/theory/color/models/perceptual/.

[15] Les Forges, Chapter 5: Color palettes, https : / /
opengameart . org/content/chapter- 5 - color - palettes,
Accessed: 2025-06-02, 2023.

[16] A. N. Jansson. “Pixel art tutorial.” (2010), [Online].
Available: https://androidarts.com/pixtut/pixelart.htm
(visited on 05/02/2025).

[17] J. Delon, A. Desolneux, J.-L. Lisani, and A.-B. Petro,
“Automatic color palette,” vol. 2, Jan. 2005, pp. 706—
709. port: 10.1109/ICIP.2005.1530153.

[18] M.-R. Huang and R.-R. Lee, “Pixel art color palette
synthesis,” in Information Science and Applications,
K. J. Kim, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 327-334, 1SBN: 978-3-662-
46578-3.

[19] G. Greenfield and D. House, “Image recoloring in-
duced by palette color associations.,” vol. 11, Jan.
2003.

[20] H. Chang, O. Fried, Y. Liu, S. DiVerdi, and A. Finkel-
stein, “Palette-based photo recoloring,” ACM Transac-
tions on Graphics (Proc. SIGGRAPH), vol. 34, no. 4,
Jul. 2015.

[21] D. Silber, Pixel Art for Game Developers. CRC Press,
2015.

[22] F. J. Damerau, “A technique for computer detection
and correction of spelling errors,” Commun. ACM,
vol. 7, no. 3, pp. 171-176, Mar. 1964, 1sSN: 0001-
0782.

[23] S. Minaker, R. Mason, and D. Chow, “Optimizing
color performance of the ngenuity® 3d visualization
system,” Ophthalmology Science, vol. 1, p. 100054,
Aug. 2021. por: 10.1016/j.x0ps.2021.100054.

[24] Jimison3, Harvest Palette, https://lospec.com/palette-
list / harvest, Accessed: 2025-06-22, Lospec, 2025.
[Online]. Available: https://lospec.com/palette- list/
harvest.

A Use of AI Coding Assistant

During development, an AI-powered coding assistant (a
plugin for PyCharm) was used to support the implementa-
tion of the tool. The assistant provided help with debug-
ging, refactoring, documentation, and graphical user interface
(GUI) development. Its use was limited to practical software
engineering tasks and did not influence the research design,
methodology, or results.

Several built-in AI Actions were applied directly to se-
lected code snippets using the plugin’s options. These in-
cluded:

* Explain Code — to better understand broken logic.

* Suggest Refactoring — to restructure code for improved
readability and maintainability.

* Find Problems — to detect bugs and code smells.

* Write Documentation — to generate docstrings and
brief explanations.

These actions required no written prompts and were used
to improve the quality of the codebase.

The assistant’s chat interface, based on the Claude 3.5 Son-
net model, was also used to support GUI development and
code troubleshooting. It had access to the project codebase
and was queried through natural language prompts. The in-
teraction focused on practical implementation support and Ul
behavior refinement. The used prompts include:

» “I created a project called PixelArtColorProcessor. It
only contains .venv for now. How do I create the basic
Ul and run it using Qt Designer in PyCharm?”

e “The image viewer makes the pixel art blurry. I would
like to either display it in actual size or scale it in a way
that doesn’t blur it.”

* “Give me code that allows the user to select zoom factor
using slider and doesn’t blur images.”

“Highlight all pixels with the given color when the user
hovers over a pixel or a color in the palette.”

* “Now, instead of displaying a box with color info on
hover, I would like to have a fixed place on the screen
that displays the hovered color and its information
(RGB, hex, HSV).”

o “With no scaling, the image position is sometimes in the
top left corner, sometimes in the middle.”

* “How do I make palette color squares bigger? I would
like constant spacing that would make them stick to-
gether.”

e “I'want the min and max labels to be above their sliders
and show current value.”

“I want the hue, saturation, value labels to be vertical
before each box instead of above.”

* “Canladd avertically scrollable container for ramps?”

* “Make it so the ramp squares don’t have outlines and
they are completely stuck to each other.”

“I'would like to add a dropdown that allows me to switch
between color extraction mechanisms.”

“I also implemented the graph creation, and ramp sam-
pling algorithm. Now I would like to add a dropdown on
top of the top right section to allow selecting a different
graph generation method.”

“I would like to clean up the codebase to make it more
readable and maintainable. 1 would like to start by defin-
ing a separate widget for each of the 4 regions in the
ramp extraction window.”

e “Zooming still makes the window grow.”

“I would like to add a box around the color details over-
lay with white background and allow the user to copy
the color values.”

“I'would like to disable the ramp extraction button when
there are no nodes in the graph.”

“Instead of printing the ramp extraction updates into the
console, I would like to display a progress bar over the
ramp extraction window.”
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“How do I align the control column contents to the
top?”

“I want the graph type label to hug the text horizontally
and the selector to fill the rest of the space.”

“I want to remove the padding from the control panel
and reduce spacing inside the HSV slider boxes.”

“Above the tool buttons I want a small rectangle filled
with the currently selected color and ‘No color’ label if
none is selected.”

“I changed my mind, I want hover to override selected.
But for some reason hover style is applied to selected
color if  move my mouse outside image.”

“The zoom steps are now very weak. I want 20 to mean
zoom I1x and 40 to mean 4x.”

“Can I add margin to the right of the slider so it’s cen-
tered again?”

“I would like the color square to be a bit bigger and the
RGB, HSV and hex to be below each other.”

“I'would like the user to be able to override the threshold
but how should I decide the initial one?”

“There should be a new section to the right of the image
viewer in the main scene where the resulting ramps will
eventually be displayed.”

“In top left, a smaller version of the image viewer should
be visible with all the functionality including the unique
color palette, scaling, highlighting, selecting and dis-
playing color details.”

“The graph should be displayed in the top right corner
of the new scene.”

“I added the dropdown at the top of the section. But it
drops to the bottom when graph is generated for second
time.”

“That doesn’t help, I need a persistent container for
graph that will remain inside controls, below the drop-
down.”

“I would like to keep the method selector for color sim-
ilarity graph as well but change the options to HSV or
CIEDE2000.”

“The image label should fill all space in the widget but
it shouldn’t make the widget grow if the image overflows
due to scaling.”

“Instead of two checkboxes below each other, [ want one
row starting with label Remove: and then checkboxes
Reverses, Subsequences.”

“I would like a checkbox for removing Similar Ramps.”

“I would like to add a slider to the general part of the
ramp extraction controls to limit the max length of a
ramp with 3-20 range.”

“The buttons seem really small.”

“If I close and reopen ramp extraction window I get
RuntimeError.”

“MouseMoveEvent doesn’t seem to be triggered.”

“I want to put the graph into a box too, but the graph
holder doesn’t seem to fill it in.”

“I would also like to highlight the whole row of the hov-
ered color ramp.”

“I would like broader zoom scale that also allows me to
zoom out.”

“How can I make the width of the zoom label constant?”

“I would like to add some space between method selec-
tion dropdown line and the controls and reduce spacing
between rows inside hue, value, saturation boxes.”

“The background doesn’t seem to be set, it’s white.”

“The _setup_ui seems to have a lot of unresolved at-
tributes, check again.”

“I'want special color highlight just for the hovered color
in ramp if the tool is active.”

“Instead of displaying box with color info on hover, 1
want a fixed location showing RGB, HSV, and hex val-

”»

ues.

“Can I put the hue, saturation, value labels vertically
before each box instead of above?”

“The factor label column is unnecessarily wide, I want
it to hug the labels.”

“The ramp container and the controls panel should be
next to each other.”

“I want the selector to fill the remaining space beside
the graph type label.”

“If the graph has no nodes, the extract ramps button
should be disabled.”

“Instead of printing ramp extraction updates into the
console, I want a progress bar over the entire ramp ex-
traction window.”

“The progress bar should be centered and overlay the
whole ramp extraction panel.”

“I would like to add a zoom control with a slider that
doesn’t blur images and keeps proper pixel scaling.”

“I want hover styles to override selection and reset cor-
rectly when the mouse leaves the image area.”

“Make all graph containers persistent even if the graph
is regenerated.”

“The control panel contents should be aligned to the
top.”



B Full Evaluation Dataset

This appendix contains the complete evaluation dataset used in this project. It includes all ten graph construction results
(Figures 9 and 10) used for ramp detection experiments, as well as the six final ramp extraction results selected for analysis
(Figure 11). Each graph result is presented with its relevant parameters, graph type, and edge statistics. Each ramp extraction
result includes the candidate ramps, filtered results, and final selected ramps. Additionally, all parameter values used in the ex-
traction pipeline are listed in full for each test case (Figure 12). The dataset is provided to support transparency, reproducibility,
and further inspection of the tool’s behavior across diverse pixel art examples.
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Figure 9: Graph construction results for four representative test images (reproduced from the main report). Each subfigure shows the best-
performing graph for a given image (green), along with relevant and irrelevant edge counts. Graph types include color similarity, spatial
adjacency, and hybrid strategies.
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Figure 10: Graph construction results for the remaining six test cases that are not included in the original report. Each subfigure shows the
best-performing graph for a given image (green), along with relevant and irrelevant edge counts. Graph types include color similarity, spatial
adjacency, and hybrid strategies.



Input Image

Figure 11: Ramp extraction results for six structurally diverse images. For each case, the figure includes candidate ramps from the graph,
filtered results after redundancy removal, and the final selected ramps following clustering.
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Figure 12: Validation parameter values used during extraction and evaluation for all six test images.
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