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Dispersion and Nonlinearity Identification for
Single-mode Fibers using the Nonlinear Fourier

Transform
Pascal de Koster and Sander Wahls, Senior member, IEEE

Abstract—Efficient fiber-optic communication requires precise
knowledge of the fiber coefficients, but these often change over
time due to factors such as aging or bending. We propose a novel
algorithm that identifies the average second-order dispersion and
Kerr nonlinearity coefficient of a fiber, without employing any
special training signals. Instead, ordinary input and output data
recorded during normal operation is used. To the best of our
knowledge, this is the first such algorithm. The algorithm is
based on the nonlinear Fourier spectrum of the signal, which
is known to evolve trivially as the signal propagates through an
idealized model of the fiber. The algorithm varies the values of
the fiber coefficients until the corresponding nonlinear Fourier
spectrum at transmitter and receiver match optimally. We test the
algorithm on simulated transmission data over a 1600 km link,
and accurately identify the fiber coefficients. The identification
algorithm is in particular well suited for providing a fiber model
for nonlinear Fourier transform-based communication.

Index Terms—Fiber identification, chromatic dispersion, Kerr
nonlinear effect, nonlinear Fourier transform, fiber-optic com-
munications, digital signal processing.

I. INTRODUCTION

D IGITAL signal processing has become increasingly more
important in fiber-optic communication systems with

high data rates, as it allows to compensate for transmission im-
pairments such as chromatic dispersion and the Kerr nonlinear
effect [1]–[3]. In order to digitally compensate such effects,
the fiber is often modelled with a lossy and noisy nonlinear
Schödinger equation, in which the second-order dispersion
coefficient β2 and the Kerr nonlinearity coefficient γ are
assumed to be known. The values of these two coefficients
are usually supplied by the manufacturer of the fiber link,
but it often occurs that the supplied values do not exactly
fit the fiber anymore after installation of the fiber due to
bending, aging, and splicing [1]. It may also occur that the
fiber coefficients are not readily available, or lost, as may be
the case in small scale experimental setups. For such scenarios,
we present a novel nonlinear Fourier transform (NFT)-based
fiber identification algorithm to determine the values of β2

and γ, using input-output transmission data only. This paper
improves and extends our earlier NFT-based fiber identification
algorithm [4] in terms of robustness, versatility and accuracy.

Several fiber identification algorithms have already been
developed, but these either identify only β2 (e.g., [5], [6]),
or identify γ using digital back-propagation (e.g., [7]–[10]).

P. de Koster and S. Wahls are with the Delft Center for System and Control,
Delft University of Technology, 2628 CD Delft, The Netherlands (e-mail:
p.b.j.dekoster@tudelft.nl; s.wahls@tudelft.nl).

However, these algorithms using digital back-propagation suf-
fer from at least one of the following shortcomings: β2 has to
be known; a specific modulation format has to be used; the
quality of the estimates depends on the chosen spatial numer-
ical step. Other methods determine γ by measuring self-phase
modulation, cross-phase modulation, or four-wave mixing us-
ing training signals [11]–[13], but these require that normal
operation of the fiber is interrupted, which can be undesirable
in scenarios where the system is in constant operation, or when
the training signals are not straight-forward to generate or
analyze. Furthermore, several of these identification algorithms
were demonstrated for short fibers, and may therefore be
less suitable for identifying long links. Finally, we remark
that applying standard black-box machine learning techniques
for fiber parameter identification is not straight-forward. Due
to their black-box nature, known physical models are not
exploited. Instead, one has to provide large representative data
sets that cover a wide range of real-world scenarios, which is
a challenging problem in itself.

To overcome these drawbacks of current identification meth-
ods, we present a novel algorithm that identifies average
values for both β2 and γ, by comparing the nonlinear Fourier
spectrum of transmitted and received signals. Theory predicts
that the NFT spectrum at the transmitter and the NFT spectrum
at the receiver are linearly related for a noiseless lossless
link [14]. Since additional loss and noise effects occurring
in realistic links can be taken into account using proper
transformations, it is possible to use the NFT spectrum for
identification.

The NFT is typically computed with respect to a normalized
nonlinear Schrödinger equation (NLSE), which requires the
provided input-output data to be normalized. Our algorithm
uses the fact that the NFT spectrum at input and output only
match if the input and output signal are normalized with the
correct amplitude normalization constant cq and normalized
fiber length Z, which both depend on β2 and γ. First, an
initial estimate for cq is determined by comparing the third
conserved quantities of the NLSE of the input and output
signals [15]. Starting from this initial guess, cq is varied first
and then Z until we find the normalization at which the NFT
spectrum at input and output match optimally. Assuming that
the attenuation, fiber length, and amplifier spacing are known,
we can derive β2 and γ from the identified normalization cq
and Z.

Another application of our proposed algorithm is the iden-
tification of a suitable model for NFT-based communication
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systems [16], without any prior knowledge of the fiber. NFT-
based transmission systems typically only require the correct
normalization constant cq and normalized length Z, and can
therefore be calibrated, even if no information of the fiber link
is available at all.

This paper is structured as follows. Sec. II gives an overview
of the fiber model and the nonlinear Fourier transform.
Sec. III provides two identification algorithms, based on the
continuous NFT spectrum and the discrete NFT spectrum,
respectively. Sec. IV combines both algorithms into one final
robust algorithm. Sec. V evaluates the final algorithm with
simulated test cases and Sec. VI concludes the paper.

II. FIBER MODEL AND NONLINEAR FOURIER TRANSFORM

The propagation of light through an optical single-mode
fiber under the influence of anomalous dispersion, self-
focusing, attenuation, lumped amplification, and noise can be
modelled by the focusing nonlinear Schrödinger equation [1,
Ch. 9.1.1]:

Al = −iβ2

2
Aττ + iγ|A|2A− α

2
A

+

N∑
n=1

(rA+G(r, n))δ(l − nLspan), (1)

in which τ denotes retarded time, l the position in the fiber,
A (τ, l) the complex field envelope, β2 < 0 the dispersion
coefficient, γ the Kerr nonlinearity coefficient, α the attenua-
tion coefficient, i the unit imaginary number, and δ the Dirac
delta function. Subscripts indicate partial derivatives. The link
of length L consists of N equidistant fiber spans, each with
length Lspan = L/N . At the end of each span, l = nLspan, an
Erbium Doped Fiber Amplifier (EDFA) is used to amplify the
signal with a factor r = eαLspan/2 (lumped amplification) to
compensate the loss. Additive white Gaussian noise G(r, n)
enters the system through Amplified Spontaneous Emission
(ASE) during amplification, with noise power dependent on
the noise figure of the EDFA and the amplification factor r.

Within each fiber span, the amplifiers can be ignored, and
we may change to the variable Q(τ, l) = eαl/2A(τ, l), which
yields a lossless NLSE with varying Kerr effect:

Ql = −iβ2

2
Qττ + iγe−αl|Q|2Q. (2)

Assuming that the wave envelope does not change much
within each fiber span, we may approximate Eq. 2 with a
lossless path-averaged (LPA) NLSE [17], in which the varying
nonlinearity coefficient is approximated with its path average,
γ1. This leads to the LPA-NLSE:

γ1 =
1

Lspan

∫ Lspan

0

γe−αl dl = γ
1− e−αLspan

αLspan
, (3)

Ql ≈ −i
β2

2
Qττ + iγ1|Q|2Q. (4)

When distributed Raman amplification is applied instead of
lumped amplification, path averaging can also be applied
using an integral with l-dependent attenuation. A link with
distributed Raman amplification is typically approximated

better by the LPA-NLSE than a similar link with lumped
amplification [18]. In this paper, we therefore focus on the
more challenging case of lumped amplification.

The proposed fiber identification algorithm in this paper is
based on comparing the NFT of input and output signals, for
which the NLSE is required in normalized form. Let T0 be a
free time scaling parameter. We will only consider T0 = 1 s
for the identification algorithm, as increasing T0 only linearly
scales the nonlinear frequency λ in the NFT. We then switch
to the normalized variables [19]

t =
1

T0
τ, q = T0

√
γ1

−β2︸ ︷︷ ︸
cq

Q, z =
1

T 2
0

−β2

2︸︷︷︸
cz

l, (5)

This results in the normalized NLSE:

qz = iqtt + 2i|q|2q. (6)

Note that β2 appears in the denominator of cq . Small mis-
matches in β2 might therefore result in large changes in the
normalized signal q. Hence, the proposed NFT-based identi-
fication algorithm may be less suited for dispersion managed
links with near-zero average dispersion.

The normalized NLSE may be solved exactly in the nonlin-
ear Fourier domain, in which the NFT spectrum of the signal
evolves trivially. The NFT of a signal q(t) can be determined
by solving the Zhakarov-Shabat scattering problem [14], [15]:

d

dt

[
φ1(t, λ)
φ2(t, λ)

]
=

[
−iλ q(t)
−q∗(t) iλ

] [
φ1(t, λ)
φ2(t, λ)

]
,[

φ1(t, λ)
φ2(t, λ)

]
t→−∞−→

[
e−iλt

0

]
, (7)

where (·)∗ denotes the complex conjugate. We then define the
scattering coefficients a(λ) and b(λ) as the normalized limits
of φ1 and φ2 for t→ +∞:

a(λ) := lim
t→∞

eiλtφ1(t, λ), b(λ) := lim
t→∞

e−iλtφ2(t, λ). (8)

The NFT of q(t) consists of a continuous and a discrete
spectrum. We define the continuous spectrum as b(λ), λ ∈ R,
and the discrete spectrum as {λm, bm}Mm=1, in which the
eigenvalues λm are the zeros of a(λ) in the complex upper half
plane, and bm = b (λm). Each eigenvalue λm in the discrete
spectrum corresponds to a solitonic component in the signal, a
shape-retaining, localized wave. The continuous spectrum rep-
resents dispersive components. As the signal q(t, z) propagates
in the z-direction according to the normalized NLSE (6), the
eigenvalues remain invariant, while the scattering coefficients
evolve trivially [14]:

a(λ, z) = a(λ, 0), b(λ, z) = b(λ, 0)e4iλ2z. (9)

III. IDENTIFICATION USING ONLY CONTINUOUS OR
DISCRETE SPECTRUM

In this section, we present two separately executable algo-
rithms to estimate the fiber coefficients, which are combined
into one robust, final algorithm in Section IV. Both algorithms
are based on the simple evolution of the scattering coeffi-
cients in Eq. 9. The first algorithm takes only the continuous
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spectrum into account; the second algorithm considers only
the discrete spectrum. Both algorithms can be split into two
separate single-parameter identification problems: first, the
amplitude normalization cq =

√
γ1/(−β2) is identified, and

second, the normalized link length Z := czL = −β2

2 L.
The amplitude normalization will be determined using a local
optimization technique, starting from an intitial guess. The
third integral of motion of the normalized NLSE can be used
to obtain an initial estimate, c0q , as described in the Appendix.
If other prior knowledge is available of the fiber, this may also
be taken into account for the initialization.

For the proposed algorithm, we have chosen to define the
NFT spectrum as b(λ), although it is also common to define
the continuous spectrum as q̂(λ) := b/a, λ ∈ R, and the
discrete spectrum as {λm, q̃m}Mm=1, with q̃m := b/aλ(λm)
(i.e., the residue of q̂ in λm). We have chosen to use only b(λ),
as it is usually less noisy than b(λ)/a(λ), (see e.g., [20]).

A. Identification from the continuous NFT spectrum

The first identification algorithm considers only the contin-
uous part of the NFT, b(λ), λ ∈ R. Note that the nonlinear
Fourier transform of a signal depends on the applied amplitude
normalization, cq , in Eq. 5. We denote the b-coefficient in (8)
that corresponds to the signal q(t) = T0cqQ(T0t) in (7) by
b(λ, z; cq), where z denotes the normalized position of Q in
the fiber.

We observe from Eq. 9 that the correct value cq = c?q leads
to a constant absolute value of |b| throughout an ideal fiber,
and in particular, the absolute value at input (z = 0) and at
output (z = Z/T 2

0 ) are equal:

|b(λ, Z/T 2
0 ; c?q)| = |b(λ, 0; c?q)|, λ ∈ R. (10)

We may substitute bin(λ; cq) = b(λ, 0; cq) and bout(λ; cq) =
b(λ, Z/T 2

0 ; cq), which are determined from the NFT of the
normalized transmitted signal qin(t) and received signal qout(t)
respectively. Our strategy will be to vary cq , and identify the
normalization for which the |b| of the transmitted and received
signal match as well as possible. As shown in Fig. 1, the
absolute continuous spectrum at input and output are indeed
nearly identical for the optimal amplitude normalization, c?q ,
whereas a sub-optimal cq may cause a significant mismatch.

To quantify the mismatch, we measure the normalized ab-
solute error over a range of nonlinear frequencies [λmin, λmax]:

E|cs|(cq) =

∫ λmax

λmin

∣∣|bout(λ; cq)| − |bin(λ; cq)|
∣∣dλ∫ λmax

λmin
|bin(λ; cq)|dλ

, (11)

in which E|cs| denotes the relative error in the absolute value
of the continuous spectrum. The error is normalized with
the b-coefficient of the transmitted signal, as it does not
contain any ASE-noise, in contrast to the received signal. The
range [λmin, λmax] is determined by considering the occupied
bandwidth, i.e., the smallest linear frequency range containing
at least (e.g.) 90% of the signal energy:

[λmin, λmax] = [−ωmax/2,−ωmin/2], such that∫ ωmax

ωmin

|F(q)(ω)|2 dω ≥ 0.9

∫ +∞

−∞
|F(q)(ω)|2 dω, (12)

with F(q)(ω) the linear Fourier transform of q(t) at angular
frequency ω. The reason for this choice is that the NFT
of an infinitesimal-energy signal q(t) and the linear Fourier
transform of q(t) relate through [19]

b(λ) = − (F(q)(−2λ))
∗
. (13)

Also for higher-energy signals, (i.e., when the linear and
nonlinear Fourier transform differ significantly), we observed
that the frequency range [λmin, λmax] still contains a significant
amount of the energy, leading to a good signal-to-noise ratio
for the identification algorithm.

We minimize (11) with respect to cq by first performing a
coarse line search around the initial guess, c0q . The grid point
with minimal error is then used as initial guess for the local
minimization scheme from [21] (i.e., the standard fminsearch
function in Matlab) to obtain an estimate ĉq .

Comparing phase shifts to find Z: After identifying cq from
|b(λ)|, we may extract the normalized length Z by comparing
the phase shift between the continuous spectrum at receiver
and transmitter. From this point on, we consider only b(λ, z) =
b(λ, z; ĉq) with ĉq identified in the previous step. Assuming
propagation through an ideal fiber with ĉq = c?q and the correct
normalized length, Z?, the phase shift in b(λ, z) according to
(9) is given by

∠b(λ, Z?/T 2
0 ) = ∠b(λ, 0) + 4λ2Z?/T 2

0 mod 2π, λ ∈ R.
(14)

By replacing b(λ, 0) with the determined bin(λ), and b(λ, 0)
with bout(λ), Eq. 14 will hold approximately if ĉq ≈ c?q and
Z ≈ Z?. Note that Eq. 14 corresponds to fitting a parabola
λ2 to the phase shift in b, in a 2π-periodic space. When
identifying Z, we will also allow an offset ψ0 in the parabola.

We first estimate Z and ψ0 by fitting 4λ2Z/T 2
0 + ψ0

with linear least squares to the unwrapped phase difference,
∆ψ(λ) := unwrap(∠bout −∠bin), with ∆ψ(0) ∈ [−π, π), and
λ ∈ [λmin, λmax]. Although the resulting estimates are usually
accurate, it may occur that the phase difference is unwrapped
to the wrong side, causing 2π jumps in the unwrapped phase
difference (see Fig. 2, left). Therefore, we define an error norm
that is not affected by these 2π jumps:

E∠cs(Z,ψ0) =
1

λmax − λmin

∫ λmax

λmin

∣∣∣[∠bout(λ)− ∠bin(λ)

−
(
4λ2Z/T 2

0 + ψ0

)
+ π

]
mod 2π − π

∣∣∣dλ, (15)

in which E∠cs denotes the average error in the phase of
the continuous spectrum. Note that we add π before the
modulo operation, and subtract π afterwards to ensure the
phase mismatch at every λ is in the region [−π, π) instead
of [0, 2π). Similar to the optimization of E|cs| (11), we first
perform a coarse line search around the linear least squares
estimate for Z, and then the iterative minimization scheme
from [21] to obtain final estimates Ẑ and φ̂0.

B. Identification from the discrete NFT spectrum

In this subsection, we propose a method to identify the
normalization cq and normalized length Z by comparing the
discrete spectra of the transmitted and received signal. Similar
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Fig. 1. The absolute continuous spectrum at input and output at optimal cq
(left), and at sub-optimal cq (right).

Fig. 2. Left: the initial least squares quadratic fit to the unwrapped phase
difference. Right: the quadratic fit to the unwrapped phase difference resulting
from (15), which allows for 2π phase shifts.

to the continuous spectrum algorithm, we will first identify cq ,
and Z afterwards.

We start by writing the discrete spectrum with an ex-
plicit dependence on cq . We denote the discrete spectrum
that corresponds to the signal q(t) = T0cqQ(T0t) by
{λm(cq), bm(z; cq)}M(cq)

m=1 , with z the normalized position of
Q in the fiber. We note here that the energy Em of the solitonic
component corresponding to the eigenvalue λm increases with
its imaginary part, Em = 4= (λm) [19]. Increasing cq increases
the normalized signal energy, which usually increases energy
in the discrete spectrum as well. As a result, on average
the eigenvalues meander upwards in the complex plane in
continuous trajectories, and new eigenvalues may appear from
the real axis [22], [23, p. 12]. For small values of cq however,
the normalized energy will be too low, and the discrete
spectrum will contain no eigenvalues at all [24].

If the correct normalization c?q is applied, the eigenvalues
λm remain constant, and each b(λm) evolves according to
(9), assuming a lossless, noiseless fiber. Also for a non-ideal
fiber, the solitonic components of the eigenvalues are still
preserved relatively well, as long as both the span length
is much shorter than the corresponding soliton period [25]
and the signal-to-noise ratio is sufficiently high. We will use
this property, and identify the normalization cq for which the
discrete spectrum at transmitter and at receiver correspond at
well as possible. To illustrate the effect of the normalization
cq on the discrete eigenvalues, Fig. 3 shows the spectrum of
a 7-soliton signal [26] at both transmitter and receiver. The
left eigenvalues were determined with the optimal c?q . The
right spectra were determined with a 22% larger cq , which
caused a larger difference between the spectra compared to
the optimal cq . We also note that the increase in cq resulted
in more normalized energy, and accordingly, the eigenvalues

have shifted upwards, and a new, unmatched output eigenvalue
has spawned from the real axis.

Fig. 3. The eigenvalues of a transmitted 7-soliton signal, evaluated with the
optimal normalization cq (left), and with a sub-optimal cq (right). Connections
indicate the least-cost perfect matching.

To quantify the error between the input and output spectrum
for a given cq , we propose an error norm based on creating
pairs of eigenvalues at input and output, and sum the error
in each pair. Note that the number of input eigenvalues, M in,
and the number of output eigenvalues, M out, may be unequal,
M in 6= M out. To allow for a perfect matching, we keep adding
‘auxiliary eigenvalues’ at zero, λaux = 0, to the smaller set
until the sets are equally large (see also Fig. 3, right). Next,
we create a complete bipartite graph as shown in Fig. 4. Each
input eigenvalue λin

k connects to each output eigenvalue λout
l

with edges (λin
k , λ

out
l ), with associated cost Ekl. The cost of

the edges represents the mismatch between eigenvalue λin
k and

λout
l , and will be specified later in this section, but we already

mention that each edge cost Ekl is always at most =
(
λin
k

)
+

= (λout
l ), i.e., proportional to their combined energy.

We define the total error by finding a least-cost perfect
matching of the bipartite graph with edge costs Ekl. Let
l(k) denote a perfect matching, which assigns each input
eigenvalue λin

k to the output eigenvalue λout
l(k) (see Fig. 3 and

Fig. 4). The least-cost matching may be found in O(M3)
time, M = max(M in,M out), for example with fast versions

λin1

λin2

λin3

λin4

λout1

λout2

λout3 = 0

λout4 = 0

λink , M in = 4
λoutl , Mout = 2

λaux

E12

E23

E34

E41

Fig. 4. The complete bipartite graph corresponding to 4 input eigenvalues,
and 2 output eigenvalues. 2 auxiliary eigenvalues have been added to
the set of output eigenvalues to ensure that the output and input eigen-
value sets are equally large. A possible perfect matching l(k) is marked:
{l(1) = 2, l(2) = 3, l(3) = 4, l(4) = 1}. The cost of this matching is E12+
E23 + E34 + E41.
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of the Hungarian algorithm [27]. The final error is the cost
of the least-cost perfect matching, normalized by the sum of
imaginary parts of all eigenvalues at input and output:

Eds(cq) =
minl(k)

∑M
k=1Ekl(k)∑M

k=1=
(
λin
k

)
+
∑M
l=1= (λout

l )
, (16)

in which M , Ekl, and λm depend implicitly on cq . In case no
eigenvalues were found for both the input and output, we set
Eds to its maximum value, 1. We find an estimate c̃q as the
value minimizing Eds(cq).

Edge cost Ekl: Next, we consider the edge cost Ekl to
represent the mismatch Ekl between λin

k and λout
l . A straight-

forward, but effective edge cost Ekl is the Euclidean distance
between input and output eigenvalue. However, with this norm,
eigenvalue pairs with with small imaginary part, but large
difference in real part may dominate the error, whereas their
energy (∝ imaginary part) can be arbitrarily small. To ensure
that eigenvalue pairs with low energy cannot dominate the total
error, we put an upper bound on Ekl, equal to the sum of the
imaginary parts of the eigenvalue pair:

Ekl = min
(∣∣λin

k − λout
l

∣∣ ,= (λin
k

)
+ =

(
λout
l

))
. (17)

This way, if λin
k and λout

l contain little energy, they can also
contribute little to the total error. A mathematical motivation
for this upper bound for Ekl is that new eigenvalues may
appear at the real axis as cq is varied. Therefore, we can argue
that instead of connecting an input and output eigenvalue to
each other, it may also be the case that each connects to a
hypothetical eigenvalue which is about to appear on the real
axis right beneath it, resulting in an error of =

(
λin
k

)
+= (λout

l ).
Note that the connection between an eigenvalue λm and an
auxiliary eigenvalues λaux = 0 always assumes its maximum
bound, = (λm).

Although the edge cost in Eq. 17 suffices in most circum-
stances, an alternative definition for Ekl may be used when
we already have a reliable estimate for Z available. Z may
be available when β2 and L are already known, and only
γ1 is to be identified, or when Z was reliably estimated by
the continuous spectrum algorithm. If Z is available, we may
define the error Ekl using both a mismatch in eigenvalue, Eλkl,
as well as a mismatch in spectral function, Ebkl, (opposed to
only using the mismatch in λ as in (17)). Let the mismatch
in eigenvalue be given by the Euclidean distance between the
paired eigenvalues,

Eλkl := |λin
k − λout

l |. (18)

Second, we consider the mismatch in the spectral function
b. According to Eq. 9, b(λ, Z/T 2

0 ) = b(λ, 0)e4iλ2Z/T 2
0 . Let

λkl :=
λin
k+λout

l

2 be the average of the input and output
eigenvalue. We may express the difference between bin

k and
bout
l e
−4iλ2

klZ/T
2
0 as the result of a difference ∆λ in λkl:

bin
k = bout

l e
−4i(λkl+∆λ)2Z/T 2

0 ,

⇒ bin
k = bout

l e
−4iλklZ/T

2
0−8iλkl∆λZ/T

2
0 +O(∆λ2).

By dropping the quadratic term O(∆λ2), we get a simple
expression for the mismatch ∆λ in the spectral data:

|∆λ| ≈ Ebkl :=

∣∣∣∣∣∣
log
(
bout
l e
−4iλklZ/T

2
0 /bin

k

)
8iλklZ/T 2

0

∣∣∣∣∣∣ , (19)

and note that this relationship requires knowledge of Z. We
finally define the total mismatch as the average of both errors,
and bound it by the imaginary value of the eigenvalue pair:

Ekl := min

(
Eλkl + Ebkl

2
,=
(
λin
k

)
+ =

(
λout
l

))
. (20)

When a reliable estimate for Z is available, using edge cost
(20) generally results in better estimates c̃q compared to using
(17).

Determine Z from |b(λm)|: We can (re-)estimate Z by
comparing the |bin(λk)| with |bout(λl(k))| using the identified
c̃q and assignment l(k). The spectral function at input and
output for λm are related through Eq. 9, from which estimates
Z̃k may be obtained as

|b(λm, Z/T 2
0 )| = |b(λm, 0)|e<(4iλ2

m)Z/T 2
0

⇒ Z̃k = T 2
0

log
∣∣bout

(
λl(k)

)∣∣− log
∣∣bin (λk)

∣∣
< (4iλ2

kl)
, (21)

where Z̃k is an estimate for Z from the kth eigenvalue pair,

and λkl :=
λin
k+λout

l(k)

2 is the average of the paired input
and output eigenvalue. To use the available data as well as
possible, we consider all Z̃k for a final estimate Z̃. First, all
pairs with maximal distance, Ekl = =

(
λin
k

)
+ = (λout

l ), are
discarded, as these eigenvalues are very distant from each
other and are unlikely to be related. Second, we discard
outliers, i.e., estimations more than two standard deviations
away from the mean. Outliers are common, as almost purely
imaginary eigenvalues lead to a small denominator in (21),
yielding unstable estimations for Z. Third, as eigenvalues
with large imaginary part contain more energy, we assign
their associated estimates a larger weight, wk = = (λkl). The
final Z̃ is the weighted average of the remaining estimates,
Z̃ =

∑
k wkZ̃k/

∑
k wk.

IV. FINAL IDENTIFICATION ALGORITHM

In this section, we combine all previously described algo-
rithms to create one final robust algorithm. From our experi-
ence with the continuous and discrete spectrum, we have found
that the continuous spectrum algorithm usually yields better
results for Z, while the discrete spectrum algorithm yields
more reliable results for cq . Therefore, we will first attempt
to use the continuous spectrum to identify Z, and then the
discrete spectrum to identify cq . If Z is identified reliably
from the continuous spectrum, this Z may also be used for
the discrete spectrum identification through Eq. 18-20.

In general, it holds that if the continuous or discrete
spectrum contains too little energy, or the signal-to-noise ratio
is too low, no good resemblance between input and output
spectrum exists, and thus the estimates of the corresponding
algorithm should be discarded. We therefore reject estimates
for the continuous spectrum when E∠cs >

π
8 (average absolute
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Input signal Qin(τ),
Output signal Qout(τ)

Continuous spectrum:
find ĉq s.t. E|cs|(ĉq)

is minimal, and
Ẑ and φ̂0 s.t.

E∠cs(Ẑ, φ̂0) is minimal.

E∠cs(Ẑ, φ̂0)
≤ π

8 ?

Discrete spectrum: take
Ekl from (20), find c̃q
s.t. Eds(c̃q) is minimal.

Eds(c̃q)
≤ 0.2?

Discrete spectrum:
take Ekl from (17),

find c̃q s.t. Eds(c̃q) is
minimal. Find Z̃ by

averaging Zk from (21).

Eds(c̃q)
≤ 0.2?

Return c̃q and Ẑ.

Return c̃q and Z̃.

Return ĉq and Ẑ.

Return ‘No good
model found’.

yes

no

yes

no

yes

no

Fig. 5. Overview of the final algorithm.

phase mismatch) for the continuous spectrum algorithm, and
Eds > 0.2 (relative error) for the discrete spectrum.

We propose a final algorithm as summarized in Fig. 5. First
we find estimates ĉq and Ẑ using the continuous spectrum
algorithm. If these estimates are accepted, we apply the dis-
crete spectrum algorithm using the identified Ẑ to re-estimate
cq , and accept this estimate c̃q if Eds < 0.2. Otherwise, it is
discarded. If the continuous spectrum algorithm estimates were
rejected, we fully rely on the discrete spectrum algorithm. If
the discrete spectrum error is sufficiently small, Eds < 0.2,
we accept the resulting estimates c̃q and Z̃. In case both
the continuous and discrete algorithm did not provide reliable
results, we can enlarge our search range for the initial guess c0q .
If this does not yield any reliable results either, the algorithm
cannot identify a fitting normalization, most likely because the
LPA-NLSE does not model the fiber well enough, or because
the considered signal is too noisy. A more reliable estimate
can be obtained by running the identification algorithm for
multiple signals, discarding outlier estimates, and averaging
over the remaining ones.

V. RESULTS: IDENTIFICATION ON SIMULATED DATA

In this section, we demonstrate the capabilities of the iden-
tification algorithm on noisy transmission data simulated with
Eq. 1. We have considered two applications: first, we identified
the second-order dispersion β2, and the Kerr nonlinearity
coefficient γ using a conventional transceiver; second, without

any prior knowledge, the algorithm was used to calibrate a
nonlinear Fourier transform-based transmission system.

We applied the algorithm on input-output data from a fiber-
optic transmission system, simulated with the software NFDM-
lab [28]. For both applications, we considered the same NZ-
DSF fiber link, with 20 spans of Lspan = 80 km each, resulting
in a total transmission length of 1600 km. The second-order
dispersion of the fiber was β2 = −5.00·10−27 s2m−1, the Kerr
nonlinearity coefficient was γ = 1.20 · 10−3 (Wm)−1, and the
attenuation coefficient was α = 0.2 · 10−3 dB/m. After each
span, an EDFA compensated the accumulated loss through
lumped amplification, and added white Gaussian noise with
a noise figure of fn = 6 dB. We used the LPA-NLSE (4)
as reference solution, which predicted a path-averaged (PA)
model with path-averaged Kerr nonlinearity coefficient γ1 =
0.318 · 10−3 (Wm)−1, normalization coefficient cq = 2.52 ·
1011 W−1/2s−1, and normalized length Z = 4.00·10−23 s2. At
the link input and output, ideal low-pass filters were applied to
account for transceiver bandwidth limitations [28]. We assume
that all other real-world effects not included in the model are
either zero-mean and can be included in the noise term, or
that they have been removed by appropriate post-processing.
For example, a carrier frequency offset can be detected and
compensated with a simple nonlinear-frequency shift [19].
We finally assume a coherent receiver since both phase and
amplitude information are required. To compute the NFT in the
identification algorithm, we used the Fast Nonlinear Fourier
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Transform (FNFT) software library [29].

A. Identifying fiber coefficients from a conventional
transceiver

In this benchmark, we simulated data transmission using
a conventional time domain transceiver, and show that the
fiber coefficients β2 and γ can be accurately recovered. We
assume that the fiber length, amplifier spacing, and attenuation
coefficient are known. The transmitted signal consists of a
linear sum of time-shifted raised cosine pulses, modulated with
Quadrature Phase Shift Keying (QPSK). The roll-off factor
was 0.5 and symbol duration T = 0.04 ns. The time shift
between two subsequent pulses is also T = 0.04 ns, to ensure
zero intersymbol interference (ISI) in the transmitted signal.
The transmitted signal consisted of burst of 128 pulses. In
between two bursts, a guard interval of 16T was added. We
considered two cases: one with optimal launch power, −4.5
dBm, and one with high launch power, 2.9 dBm. The optimal
launch power was found by optimizing detection performance
after applying digital (linear) dispersion compensation and
average rotation compensation of the symbols. Note that the
NFT spectrum of this signal was not specially tailored, we only
spaced the bursts sufficiently far apart with guard intervals
such that the bursts did not significantly interfere at output,
and could be analysed separately.

For both cases, we transmitted a signal with 100 bursts, and
applied our algorithm to each burst at transmitter and receiver.
The identified coefficients were determined by first discarding
outliers (more than two standard deviations away from the
mean), and then averaging over the remaining estimations.
The path averaged coefficients were used as reference solution.
First, we consider the result for the high power signal, which
are shown on the left in Fig. 6. The identified coefficients
were β2 = −4.99 · 10−27 s2m−1 (PA: −5.00 · 10−27) and
γ1 = 3.16·10−4 (Wm)−1 (PA: 3.18·10−4). The corresponding
Kerr nonlinearity coefficient was γ = 1.19 · 10−3 (Wm)−1

(true: 1.20 · 10−3). Both coefficients were less than 1% off
the true values, showing that the fiber coefficients can be
accurately identified using our algorithm if the launch power
is sufficiently high.

Next, we consider the case with optimal launch power. The
algorithm still reliably identifies β2, but the estimate of γ is
poor. See the middle of Fig. 6. The poor performance of the
algorithm with respect to γ is due to the fact that at optimal
launch power (for a linear transceiver), nonlinear effects
are insignificant compared to the dispersive effect over the
considered fiber length. During further analysis, we observed
that while the signals were actually dominated by solitonic
components (about 80% of the total signal energy), the discrete
spectrum was consistently rejected due to significant mismatch
in b(λj) in Eq. 19. (Similar observations in which conventional
OFDM signals were found to be soliton-dominated have been
reported in [30]. Note that the solitons do not disentangle since
the fiber is too short.) The current estimates were thus solely
based on the continuous spectrum. In order to get a good
estimate of the nonlinearity parameter γ at optimal transmit
power (for a linear transceiver), we should not discard the

discrete spectrum. Hence, we increased the acceptance rates
for the discrete estimates from 0.2 to 0.6 (this corresponds
to accepting the discrete estimates in almost all cases). The
result is shown on the right in Fig. 6. The new estimate
is much better than before, although is it still biased and
and the individual data points show a large variance. Thus,
we were eventually able to obtain a reasonable estimate of
the nonlinearity coefficient. However, the benchmark also
shows that for highly accurate estimates of the nonlinearity
parameter, the launch power has to be high enough such that
nonlinear effects are not negligible.

B. Calibrating an NFT-based transceiver

In our second benchmark, we considered a scenario in
which we modulated data in the discrete NFT-spectrum. If the
correct normalization was used for the modulation, the trans-
mitted signal would consist of bursts of multi-solitons with 7
eigenvalues λm and zero continuous spectrum. Bits were mod-
ulated into the phase of the residues, q̃m = b/aλ(λm), of each
eigenvalue using QPSK, identically following the modulation
format of Bülow et al. [26]: ∠

(
q̃(λin

m)
)
∈
{
− 3π

4 ,−
π
4 ,

π
4 ,

3π
4

}
.

The time normalization constant was T0 = 2 ns/(14π), which
transformed the bursts with normalized duration 14π to bursts
of physical duration 2 ns. We emphasize that it is no problem
if the identification algorithm uses a different value for T0

when normalizing the input and output data. (When data is
modulated in the normalized nonlinear Fourier domain and
then transformed into the physical time-domain, the choice of
the normalization parameter influences the physical duration
and amplitude of the fiber input and thus has to be chosen
correctly. In contrast, for the identification algorithm, physical
data is the starting point and the time normalization constant
only influences in which normalized domain the nonlinear
spectra are compared. The only important point is that the
input and output data have to be normalized using the same
constant.)

Only the correct normalization cq and the normalized length
Z are required for successful transmission, but these were
guessed poorly as cq = 3.00 ·1011 W−1/2s−1 (PA: 2.52 ·1011)
and Z = 8.00 · 10−23 s2 (PA: 4.00 · 10−23). As a result, the
error vector magnitude (EVM) in the received symbols was
35 dB, and communication was unsuccessful. Although the
symbols could not be recovered, we could use the transmitted
and received signals to identify a new model. We applied
the combined algorithm to each of 100 bursts of presumed
7-soliton signals, discarded outlier estimates (more that 2
standard deviations away from the mean), and averaged the
remaining estimates to obtain cq = 2.54 · 1011 W−1/2s−1

and Z = 3.85 · 10−21 s2, as shown in Fig. 7. Using this
new normalization, we generated a signal modulated with new
symbols, and the symbols were successfully received. The
transmission with the identified model resulted in an EVM
of −8.2 dB in the symbols, whereas the path-averaged model
resulted in −8.6 dB. Thus the identified model performed
comparable to the path-averaged model, only showing a minor
increase in EVM.
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Fig. 6. The identified path-averaged Kerr nonlinearity and second-order dispersion from conventional transceiver data. Left: high launch power (2.9 dBm) and
unadapted algorithm. Middle: medium launch power (-4.5 dBm) and the unadapted algorithm (middle). Right: medium launch power (-4.5 dBm), increased
acceptance rate from Eds < 0.2 to Eds < 0.2 for the discrete algorithm part.

Fig. 7. The identified normalization from multi-soliton transceiver data. No
prior knowledge of the fiber was used.

VI. CONCLUSION

We have proposed an algorithm to identify the second-
order dispersion β2 and Kerr nonlinearity coefficient γ of an
optical fiber, based on the nonlinear Fourier transform (NFT)
of transmitted and received signals. The algorithm models
the fiber with a lossless, path-averaged nonlinear Schrödinger
equation, and identifies a normalization for the NFT such
that the corresponding NFT spectrum of the transmitted and
received signal match optimally to each other. β2 and γ
are finally derived from the identified normalization, using
the known fiber length, amplifier spacing, and attenuation
coefficient. Although β2 and γ cannot be found without prior
knowledge of the fiber, the normalization can nonetheless
be identified, which already suffices to calibrate an NFT-
based transceiver. The entire algorithm can be applied on any
sufficiently high energy signal, and does not require special

training signals.
We have demonstrated the capabilities of the algorithm

with two benchmarks, in which the fiber coefficients were
accurately identified. Due to its versatility and accuracy, the
proposed identification algorithm may prove an attractive
alternative to currently existing fiber identification methods.
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APPENDIX
IDENTIFICATION FROM CONSERVED QUANTITIES

The normalized focusing NLSE (6) has an infinite number
of conserved quantities [15], the first three of which are

C1 = −
∫ ∞
−∞
|q|2 dt, (22)

C2 =
1

2

∫ ∞
−∞

qq∗t − q∗qt dt, (23)

C3 =

∫ ∞
−∞
|q|4 − |qt|2 dt. (24)

The value of these constants does not depend on the location
in the fiber as long as the signal propagates according to the
NLSE. Given an arbitrary input signal qin(t) = T0cqQ

in(T0t)
and its corresponding output signal qout(t) = T0cqQ

out(T0t),
we may determine cq by comparing C3 at input and output:

C in
3 (cq) = Cout

3 (cq), ⇒∫ ∞
−∞
|cqQin|4 − |cqQin

τ |2 dτ =

∫ ∞
−∞
|cqQout|4 − |cqQout

τ |2 dτ,

⇒ c2q =

∫∞
−∞ |Q

in
τ (τ)|2 − |Qout

τ (τ)|2 dτ∫∞
−∞ |Qin(τ)|4 − |Qout(τ)|4 dτ

. (25)

This relation provides a fast and easy method to obtain esti-
mates for cq > 0. We note that the first and second conserved
quantities cannot be used in a similar fashion because cq drops
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out when equating them. On the other hand, higher conserved
quantities can be used, but contain higher derivatives and
powers, which are increasingly sensitive to noise. Using C3

through Eq. 25 is thus the most suitable to estimate cq . Using
optimal linear launch power (-4.5 dBm) and high-power (2.9
dBm) signals from the conventional transceiver, described
in Sec. VI, we have determined c2q from 100 bursts. The
results are shown in Fig. 8. At −4.5 dBm launch power, the
estimates are highly biased, and the resulting cq is a factor
2.5 too high (i.e., c2q about 6 times too high). At higher
launch power, the estimates for cq improve, but still contain a
bias of about 5%. In general, we observed that changing the
modulation format or the fiber itself can drastically influence
the bias. Furthermore, the estimates are very sensitive to
noise, considered bandwidth and interference with neighboring
bursts. The estimates are unfortunately too biased and unstable
to immediately use as final estimates for cq , but they still
provide an order-of-magnitude indication, and can be used as
initial estimates for our NFT-based identification algorithm.

Fig. 8. The distribution of c2q , estimated from the conserved quantity C3 of
a transmitted raised cosines signal at launch powers of −4.5 dBm and 2.9
dBm. Note the difference in scale between the plots.
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