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SUMMARY

In this report an approximate solution is presented for the stresses
round an infinite row of unloaded, equal circular holes in an ortho-
tropic plate loaded at infinity. The calculations are based on the

analytical method of complex stress functions.

The complex stress functions are evaluated from the boundary condi-
tions of a single, central hole. The influence of the other holes is
represented by Taylor-expansions of the elementary stress functions of
these holes in the neighbourhood of the central hole. The use of
series dimplies a 1limited accuracy of the solution. The numerical

evaluation however shows that the convergence of the series is good.

The row of holes 1is oriented under an arbitrary angle with the

symmetry axes of the material. Two loading conditions have been con~-

sidered:

- a normal stress at infinity in a direction perpendicular to the
row of holes,

- a normal strain at infinity in a direction perpendicular to the

row of holes.

Numerical results are obtained for a number . of carbon fibre reinforced

laminates. The isotropic case has been added for reference purposes.



1. INTRODUCTION

The problem of generalized plane stress in an infinite orthotropic
plate‘with a single hole has been solved by Lekhnitskii, Reference
[1], by means of complex functions. As with isotropic materials the
numerical results of infinite plate theory are often applied to plates
containing a row of holes. For isotropic materials this is acceptable
since the maximum stress concentration factor in the net area doesn't
change significantly over a wide range of pitch to hole diameter
ratio's. Furthermore in many isotropic materials yielding can take
place in highly stressed regions, reducing the effect of stress con-
centrations on the net failing stress. In contrast modern composite
materials tend to behave linearly almost up to failure or even exhibit
a non-Hookean behaviour with increasing Young's modulus, Reference
[2]. Therefore composite materials are very sensitive to stress risers
which reduce the static strengtﬁ considerably. Nevertheless the
classical tensile stress concentration factor also has limited
significance in predicting failure since other stress concentrations,
e.g. the maximum shear stress concentration on the edge of the hole
may cause failure. It is for instance well known that the tensile
performance of a unidirectional strip with a circular hole is limited
by the shear stress concentration in a point circa 10° from the net
area and not by the extremely high tensile stress concentration of
about 7 to 8 in the net area. On the other hand a +45° laminate will
fail due to the relatively low tensile stress concentration of about 2
in the net area. For strength predictions of composites based upon
"elastic analysis therefore accurate knowledge of the whole stress

distribution around the hole is required.

In this paper the generalized plane stress problem of an infinite row
of equal circular holes with equal spacing in an orthotropic platé is
treated. The purpose 1s to investigate the interaction between the
holes by varying the pitch to hole diameter ratio. The centre line of
the holes coincides with the X-axis, the material symmetry axes in




general do not coincide with the coordinate axes. Two loading
conditions have been chosen
- a normal stress cy at infinity,

- a normal strain sy at infinity resulting from py, Py = py'CIZ /022
and Pyy = py'CZ6 /Co9

The approach to the problem has been adopted ftom Reference [3). In
the neighbourhood of the central hole the elementary complex stress
functions of an arbitrary hole are expanded into Taylor series. Since
an elementary function 1is a series with unknown coefficients, the
expansion results in an infinite double sum with one set of unknown
coefficients. For the whole periodic array of holes a complex stress
function in the neighbourhood of the central hole is a frible sum. By
satisfying the boundary conditions of the central hole, a system of
linear equations is obtained. Solving a limited number of these

equations results in an approximate solution of the stress functioms.

In this report only four coefficients for both stress functions have
been calculated. Nevertheless the accuracy of the solution seems to be
technical acceptable. Calculations to verifyv this showed no differ-
ences in the numerical values of the stresses on the edge of the
central hole in a three coefficient solution and the solution
presented here. The values for the isotropic case fit well with values
found in literature. It should be emphasized however that the Taylor
expansions of the elementary stress functioms of the single holes have
limited areas of convergence around the central hole. For points out-
side this hole the four coefflcients may not be sufficient, especially
not for points near the edge of the convergence area. Therefore this
solution is strictly limited to the edge of the central hole and its

direct surrounding.

Numerical results have been obtained for five laminates of carbon
fibre reinforced plastics, four pitch to hole diameter ratio's and two

angles between material axes and coordinate axes. The mechanical



properties of the laminates are presented in Table 1, as well as two
complex material parameters S1 and 59, needed in the theory of complex
stress functions. The stresses for the two types of loading and the

different geometrical conditions are presented graphically.

Although only two load conditions have been considered, it should be
remarked that the present analysis is able to calculate stresses for

any arbitrary combination of loads p_, p, and p_. at infihity.
x* y Xy



2. GENERAL EQUATIONS

The general theory on stress problems in orthotropic plates 1is
discussed in detail in Reference [l]. A short summary of this theory

is given here to make this paper selfcontained.

The boundary conditiqn formulae for the loads on an orthotropic plate

in a plane stress situation are

s
2 Re T 6, (z,) = [Yds +K
k=1,2 ko k 0 1
(2.1)
f
2 Re X s 6, (z,) = - X ds + K
k=1,2 k(D ko k 0 2

in which X and Y are external forces and ¢k(zk) are complex functions

of

Z, =X+ 8,y k=1,2 (2.2)

After solving ¢k(zk) the stresses can be calculated with

2
6. = 2Re I s $1(z,)
b4 k=1,2 k(p k*7k
g = 2Re I ¢! (z,) (2.3)
y k=1,2 Kk
T = =2 Re % s $r(z,)
Xy Kk=1,2 kq) k "k

and the displacements in X- and Y-direction respectively with



k, 0 (z) + Kgy + K,
(2.4)

V=2Re X ka ¢k(zk) - K3x + K5

The index ¥ denotes the angle ¢ between the material axes a—B and the
coordinate axes. (¢ has a positive value when the material axes are
rotated in clockwise direction relative to the coordinate axes.

K1 e K5 are integration constants; K3 is zero when no rotation of
the plate as a rigid bodx is allowed. K4 and K5 represenf a trans-
lation of the plate as a rigid body.

The complex constants s are defined by
®

Sk cos © - sin @

Sk, =%, sin @ + cos @ k =1,2 (2.5)

(4 k
in which s can be solved from

6 2.2 . S22

1 72 s11
(2.6)

2 2 2519 * 8¢

s1 +-52 = - s

11

sij are the material compliances in the principal material directions.

Sk is either complex or imaginary.
®

In (2.4) 1is



2
U =g s + s - s s
k 11 "k 12 16
¢ v ¢ ¢ © k=12 (2.7)
V., =8 s, +s,, /s 8
k
k 12(p ® 22Lp k@ 26@
in which 513 are the material compliances in the coordinate
directions.

The general express

case of an unloaded

zero stresses at inf

b () = 85 7,7 +

k)
2 %

The quadratic term

ions for the elementary functions ¢k(zk) in the
hole in an infinite orthotropic plate with non

inity are

x

0 (2.8)

g(k) z +g
-1 “k
n=1,2

in (2.8) is necessary if inplane bending moments

are present., In the linear term, representing a homogeneous stress
field is
b - L (521432 )=(5, 43, )(s, 45, ] + . (5, 45, )
k) x 2 2@ Xm km Rw 1@ 1@ Xy kw Rw -
T ( ) s 5, ) 22
s, | =8 s, +s, -8, -8
km Xm kw lw kw Xw
= 1,2
L= 3-k

where p_, Py and Pxy

The infinite seriles

unknown coefficlents g

boundary condition o

(k)
(o)
stress calculations

The constant g

in (2.8) has been added for formal reasons.

are stresses at infinity.

in (2.8) represents the influence of the’hole. The
(k)
n

f the hole.

in these series must be solved from the

For

it has no relevance.




3. THE COMPLEX STRESS FUNCTIONS FOR A ROW OF HOLES

The complex stress functions for a row of circular holes with equal
spacing s can be considered as a sum of thé elementary stress
functions of the single holes. So, when the centre points of the holes
are on the X-axis and the centre point of the central hole coincides

with the origin of the coordinate system:

¢°(z Y=z g(k) z 0+ % ¢m(z -ms) + X ¢m(z +ms) (3.1)
k 7k n k k* 7k k 7k
n=1,2 m=1,2 m=1,2
k=1,2
in which:
(k) -n ‘
z &, zy are the elementary complex stress functions
n=1,2 v belonging to the central hole,
¢E(zk - ms) are the elementary -complex stress functions
belonging to the mth hole to the right of the
central hole,
¢E(zk + ms) are the -elementary complex stress functions

belonging to the m—th hole to the left of the

central hole.

Since the row of holes is infinitely long and all holes are equal the
elementary stress functions must be equal to the functions of the

central hole, so:

Rz tme) = 2 gz 2 me)™ k=1,2 (3.2)
n=1,2

)

f

N.B. The complex stress functions representing a single hole in an

infinite plate with normal and shear loads at infinity along the
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material axes have terms with odd, negative powers of zj only. If
the material axes and coordinate axes do not coincide the loads
along the coordinate axes can always be transformed to the
material axes. In that case the stress functions also have odd,
negative powers of z,. It is obvious that in a plate with a row

of holes on the X-axis and an angle -between material axes and

coordinate axes

axes. In that c

the loads can also be transformed to the material

ase however the geometry of the plate with holes

is not symmetric with respect to the material axes. For that

reason in the

terms with negat
The coefficients gﬁk)
ing the boundary co

central hole. The

elementary stress functions of (3.1) and (3.2)

ive, even powers are included.

in (3.1) and (3.2) must be obtained by satisfy-
nditions of one of the holes, for instance the

power series however produce very complicated

(k)

expressions in z, from which it is impossible to solve g, Therefore

the stress functions

of the holes to the left and to the right of the

central hole are expanded in Taylor—-series in an area around the

centre of the coordinate system:

-] zp

Mz, + ms) = z k {¢mp(z + ms)}

¢ = = =

K%k p=0,1,2 P kK z, =0
or, with (3.2)

© zp ©
zgms) = T 5 I (m(mmD).ee(-nmptl) g{) (ame) P
p: n
p=0,1,2 n=1,2 (3.3)

The terms with equal, odd powers of ms and -ms eliminate each other

when (3.3) is substituted in (3.1). The terms with even values of -n-p

are in pairs identical.
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So, with I = X r o+ = T (3.1) becomes:

o _ e (k) -n
¢k(zk) = I g %y + (3.4)
n=1,2
+2 % % =K (en)(-n-D)...(-n-ptl) gr(l ) (-ms) P
m=1,2 p,n °°
p
. Zx
On the edge of the hole T can be evaluated into the linear
expression:
P 1-is r .
-z k_ p A
k_(— —k__ p-2r -
o7 (——) r=g’1 C=SIT {(142,77") cos(p-2r) & +
(3.5)
+ 1 (l-Ki-zr) sin(p-2r) 6}
where
1+ isk‘.p )
M T T8, (3.6)
0}

and the upper limit of r is (p-1)/2 for b is odd and p/2~-1 for p is
even. The first series of (3.4) however still produces a complicated
expression in sines and cosines on the edge of the central hole. Since
this series contains only negative powers of 2, it may be replaced by

a power series with only negative powers of
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for which on the edge of the central hole

Cl =f,=0c=cos 8§+ 1 sin 6

2
So
z gr(lk) ;“ T hflkg o _ (3.8)
n=1,2 n=1,2 ’
With
-n
o = cos nd - 1 sin nb

(3.8) has now become rather simple on the edge of the central hole.

However (3.8) introduces a new set of unknown coefficients hﬁk) in
(3.4). Therefore the still present coefficients gﬁk) must  be
(k) ‘

transformed in h by the same transformation as used in (3.8):

n

2 (-n)(=n=D)erreo(-n=ptl) g% (-me) P

n
p -
=4 ggk)(—ms) n (3.9)
d(—ms)p n
-ms —\\/Ems)z - si -1,
LN O I °
d(—ms)p n n,o 1 - iskw
where the - sign of (3.7) has been chosen because -ms has a negative
value.

With (3.8) and (3.9) the stress functions for the row of holes are
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o (k)
¢k(zk) ? 5 MO +
i (3.10)
- P p -ms j\/&ms)z - si -1 -
+2 = T S$~hgkg d > { T ® }
m=1,2 p,n *7 d(-ms) k(_p

The differentiation procedure in (3.10) can be simplified considerably

by the approximation

-ms :\/Qms)z - si -1
P -2ms

for m > 2 1= isk =Tz isk (3.11)
© [\

In the appendix a further simplification has been obtained for m = 1

(k) V -2 }P Bk
n

) (g}

Ih = = £, (s)

n,o d(- s) w 1 :Lsk(p sP k (3.12)
in which
£, (s) = = 1s, (3.13)

w
() N )

hn,p = Xk(n +p 3) hn-Z,p—l + (n+0p ;) hn,p—l (3.14)

(k)
{hn—Z,p—l}n=1
n=2

=0

So



P
: k) ~ *x -2 Kk -n-
¢1(:(zk) = _Z hl(l,()) s+ 2 3% 'IST [{ﬁs—}p ht(l,l)) {Ck(S)} Py
n=1,2 p,n kw
(3.15)
1-is
(1) kg™ A |
by 3 ) (m-1)ee o (nmpr1)(-5) m=>2: mn+p]

in which the last series is identical to the Riemann-Zeta function for

ntp:

|

5 =¢(n+p) -1 (3.16)
m=2,3 mn+p

(3.16) represents the influence of all the holes m > 2 on the stress

distribution around the central hole.

In (3.15) the summation over n for p = 0 can be omitted since the sum
is a constant, independent of z; . This constant is not relevant for

the solution of the elasticity problem.

The summations over p have to be truncated. In the present work: this
has been done after p = 8 which implies that from the expansions given

in (3.3) 9 terms are taken into account.

with (3.5) and

(k) (k) Tk gty .
B =2 [0 (50 (mO-n-D e (nmpr) (=) T {t(a+p)-1}

n,p n,o

+ D Rl {5 )] ' (3.17)

the complex stress functions can now be written as
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¢§(zk) = Z hﬁkg (cos n® - i sin nd)
n=l’2 ’
p-1
™ 2 )\E -
bX y X __
p=1,3 r=0,1 (p-r)!r! {(1 + }\k ) cos(p
’

1 (1- "E-zr) sin(p - 2r) 6}

n=1,3

@ p/2-1 X
A =1y

. p___2’4 r=0,1 ( k

2 (1 - *i_zr) sin(p - 2r) 6}

& {1+ 2P

eS)

) cos(p

n,p

2r) o +

2r) 0 +

(3.18)
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4, THE CONVERGENCE AREA OF THE COMPLEX STRESS FUNCTIONS

The elementary stress functions of the central hole converge outside
and on the edge of the hole. So this edge is the inner contour of the
convergence area of the stress functions of the row of holes.

'

The elementary functions belonging to the m—th hole
- - (%) — ey D
¢k( zk ms) = ? gn . (zk ms)

converge outside and on the edge of the Hl;th hole. The centre point M
of the central hole is in the zk-plane a point inside the convergence
area of the elemenfary functions of the m—th hole, so the analytic
functions may be expanded into Taylor-series in the area around M.
These series converge in the zk—plane inside a circle with a radius
which is equal to the distance between M and the néarest singularity
of d{. In the z-plane this circle represents an ellipse with axes
that do not coincide with the coordinate axes in the case of complex
material parameters s) = @ + in.
(6]

It is obvious that the convergence areas of the holes with m = 1 are
the smallest. Singularities of ¢i only occur inside the contours of
these holes. Inside a circle with centre M and a radius s-1 there are
certainly no singularities. Therefore this circle will be considered
as the outer contour of the convergence areas of the complex stress
functions of the row of holes. In the z-plane this circle is an

ellipse for which, following from 2z, = s = 1.

'~  width over the X-axis is 2(s - 1) (4.1)

2(s ~ 1)

% + By

- height over the Y-axis is (4.2)
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It is remarked that expansions (3.3) converge rapidly for small values
of z, only. This restricts the validity of the solution of the stresé
problem to the edge of the central hole and its direct vicinity,
- especially if the pitch s 1s small.
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5., EVALUATION OF CONSTANTS hgk) FROM THE BOUNDARY CONDITIONS

The edge of the central hole is unloaded, so in (2.1) is X = Y = 0.

‘Hence the boundary condition formulae for the loads become

2 Re % ¢k(zk) =0

k=1,2 (5.1)
2 Re . ¢ s ¢, (z,) =0

k=1,2 Ko K ¥

.With only normal and shear loads on the plate at infinity the complex

stress functions for a row of holes are

0 (z) = gET) z, + 0,(2,) k = 1,2 (5.2)

in which the first term represents a homogeneous stress field and

¢§(zk) is evaluated in Chapter 3.

(k)

With (2.9) for g_

substitution of (5.2) in (5.1) results in

o
2 Re ? ¢k(zk) pxy sin 6 - py cos 6

(5.3)

o
2 Re I ) Skw ¢k(zk) = pxy cos 6 - P, sin 6

in which the summations in ¢§(zk) are re-arranged as follows:

¢§(Zk) = I h(kz (cos p® - 1 sin po)
r=9,10 P»



7-p r
7 { (k) o 2 . xk © ) }
+ = cos pd {h + (14+0\) I —75 & H
p=1,3 P,0 k r=0,1 (ptr)tir! n=1,3 n,pt+2r
7-p
+1i ¥ sin pb {—h + (1-))) P Ty I H }
p=1,3 p,0 k" pop,1 (PFOITL )5 mpt2r
&p r
8 2 A ®
(k) Dy’ k (x)
+ T cos ph {h + (1477) z I . H }
p=2,4 P,0 K% peo,1 (PFOITD o, Tn,pelr
&p r
+ 1 ; sin pé {—h(k) + (1-AF) ; .__111___ ; ey }
1!
p=2,4 P,0 k r=0,1 (p+r)!r! n=2,4 n,pt+2r
k=12 (5.4)

After substitution of (5.4) into (5.3) comparison of coefficients of

sines and cosines with equal coefficients of the angle 6 yields:
For p=1, 3, 5, 7
I-p

2
2Re I {h(ki + (1) 3
k=1,2 P r=0

T
M ()
1 (ptr)ir! n=§,3 Hn,p+2r}

] py(p -3 -50-7

%8
I-p
() py 2 M T )
2R I i{~h "’ +(1-\) T ——— T H }
k=1,2 p.o xk r=0,1 (ptr)ir!? n=1,3 n,p+2r

-pxy(p =3 =-5)p -7
= 48

(5.5)



I-p
2R T s, {n) 4+ (1P ; N O
k=1,2 %o p=0,1 (PFOITT 7 5 Tn,pélr
P, (p-3N@-3(-7
= %8
I r .
2re 3 s, [-n(®) 4+ 1 ) g Ak ; u{k) }
k=1,2 Fo r=0,1 (PFOITT ] 4 Tn,pi2r

px(p -3 ~5)(p-7)
= 48

which is a set of 16 equations with 16 unknown coefficients h(kg and
. ?
h;kg. The last can be concluded from the fact that for p » 9
]
equations (5.3) yield zero values only of the coefficients hékg
bl

Additionally it can be evaluated from (3.14) that the maximum value of
n in h(k) and H(k)
in the summations in (5.5) is 2(p + 2r) + 7.

is 2p + 7, which implies that the upper limit of n

Since for p = 2, 4, 6, 8 boundary conditions (5.3) yield a set of
(k)

homogeneous equations, the coefficients h for these wvalues of p
must be zero. So all coefficilents with eve; values of p are zero and
the power series, representing the complex stress functions of a row
of holes have odd powers only, similar to the stress functions for the
single hole problem.

From (5.5) 4 coefficients hgk)

(k = 1,2) and their conjugated values
can be obtained. With these coefficients solved the complex stress
functions of a row of holes are known. It is obvious that in (5.5) any

combination of Py~ py- and p__—values may be introduced.

Xy
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6. THE STRESSES

The most suitable expression of ¢§(zk) for the calculation of the
stresses 1is given in (3.15). With only odd powers of zy and expression
(3.17) for Hgkg (3.15) can be simplified to

’

P
7 _ 7 2z P 2p+7 .
op(z) = T ht(lkc)) e+ oz p—l,‘ (l-is z Hflk; (6.1)
n=1,3 ™ p=1,3 P kK n=1,3 ™

where ¢E(zk) is extended from the edge of the hole to the area around
the hole by replacing o by Ck. Before substitution in the stress
formulae (2.3) the functions must be differentiated with respect to

Zk'
dCk Ck
With iz e (6.1) becomes after differentiation:
z
k 22 - s2 -1
k ~ kg
o' 7 (k) ,-n , 2 2 3
¢, (z,) == £ nh ¢ (z, =57 -1)
k ‘Zx nel,3 Mo Tk Pk T Sk
p-1
7 z : P 2p+7
oz (pljl)' (5 . (6.2)
- p=1,3 : k, n=1,3 »P )

The stresses obtained from (2.3) after substitution of (6.2) must be
added to the homogeneous stresses Pys Py and Pxy in order to find the
actual stresses. Since the edge of the hole 1is unloaded, the

tangential stress can simply be found with
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7. NUMERICAL EVALUATION

For the isotropic case, which is added as a check on the adequacy of

the present analysis, the next values of S/D have been chosen:

$/D =1.11, 1.25, 2, 3.33 and 5

The elasatic properties of isotropic materials result in s, = 1,

according to (3.6) zero. For these materials it is not

(k )

making Kk

possible to obtain coefficients h from equations (5.5). Therefore
the calculations have been made with values of ) differing slightly

from i. The coefficients h( ) for isotropic materials and different

’
s/D values are listed in Table 2. In Table 3 the tangential stress on
the edge of the central hole is compared with corresponding values
from Ref. [4]. This stress is shown in the first quadrant in Fig. 1.

In Fig. 12 the stress oy along the X-axis is given.

The calculations for the orthotropic materials have been made for the

following pitch to diameter ratio's and material orientations:

s/D=1.5, 3, 4.5 and =

@ =0 and 30°

As an example the coefficients hﬁkz of the (905/145°)s—1aminate and
b4

one of the load conditions are listed in Table 4. In Figures 2-11 the
stress o, on the upper half of the edge of the central hole is shown
for the different laminates. The stress ¢_ on the X-axis for values of
x up to s/2 1is shown in Figures 13-22. The stresses are made

dimensionless with the stress Py at infinity. Figures for s/D = » are
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not shown since they almost coincide with the figures for s/D = 4.5

From the calculated stress pattern a strength prediction has been made
by applying the Tsai-Hill failure criterion. The strength values of
the laminates used in the criterion, are given in Table 5. The
calculated ultimate value of Py is listed in Table 6, together with

the angle 0 where first significant damage occurs.

All calculations have been made with a computer program in Fortran IV

which has the capability of handling complex expressions.
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v~ 8. DISCUSSION OF RESULTS
- Evaluation of the solution

Except for the very small pitch s =1.11D Table 3 shows good agreement
between the calculated stresses for the isotropic case and the corre-
sponding values of Referemce [4]. For s = 1.11D the approximations
used 1in expressions (3.11) and (3.12) may not be sufficiently

accurate, resulting in too high compressive stresses near 8§ = 90°.
- Stress distributions and strength values

If should be noted that the failure criterion, used to predict the
“ultimate value of Py as shown 1in Table 6, neglects important aspects
- such as three-dimensional stresses at the edge of the holes and non-

linear elasticity of the laminates. Nevertheless the calculated value

of ;; is a good indication for the first significant damage.

The peak stresses are always generated near the point on the edge of
the hole where the direction of the highest Young's modulus 1is
parallel to the hole Boundary. Since this direction coincides with the
direction of the highest strength of the laminate, the maximum
tangential stress doesn't generally produce first damage. It 1is
obvious that first damage occurs on places with unfavourable combi-
nations of ot-values and laminate strength in the direction
of Oy Mostly this is the case near points with a high shear stress in
the direction of the material axes. The values of € in Table 6
indicate that failure generally doesn't occur in the net area between

the holes.
- The influence of the pitch of the holes

For the orthotropic laminates Figures 2-11 show a modest interaction

between the holes for s/D » 3. The numerical results indicate that the
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peak stresses for s/D = 3 are only about 2 percent larger than the
corresponding single hole values, both for the approximately quasi-
isotropic (0“/90°/i45°)s—1aminate and the laminates dominated by 90°-
layers.

-

= The influence of the angle ¢

The influence of ¢ on the stress distribution is rather strong in both
load conditions. As was expected the effect is stronger for the
laminates dominated by 90°-layers than for the laminates dominated by
+45°-layers. Although the (0°/90°/t45°)s—1aminate is approximately
quasi-isotropic, its elastic constants differ slightly from the
criteria for isotropy sk = 1i. Therefore Figures 5 and 10 show some

influence of (p on the stress distribution.
- The different load conditions

For ¢ = 0 the difference between the stress distributions in the two

load conditions

- stress Py at infinity
- stress Py at infinity with full constraint of laterial contraction

by py = Py « C15/Cyy

as well as the difference in p_ values is remarkably small, espéﬁihiiy
for the (902/145°)S- and the (90;/145°)S—laminate. The value' o

where the predicted first damage occurs never exceeds 35°. Appaféﬁélf'
the stresses In the area's between the holes are hardly influenced by
the presence of a stress px'at infinity. In Reference [4] it is shown
that the stress concentration factor in 6 = 90° for a row of holes
along the X-axis in an isotropic plate loaded by-px reduces from 3 to
1.69 if s/D decreases from infinite to the limiting value 1. In Refer-
ence [5] this decrease is called the "lee—effect" of the neighbouring

holes. In the orthotropic plates with ¢ = 0 and bi~axial loading at
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infinity the stress p, cannot "penetrate" into the area's between the
holes because of the generally low modulus of rigidity of the
laminates, especially of those dominated by 90°-layers. This effect
may also be called a "lee-effect" of the neighbouring holes.

For ¢ = 30° the Ey-values of the (902/i45°)s— and the (905/t45°)s—
laminate show great differences between the two load conditions. These

differences are caused by the presence of the shear stress Pyy = Py
026‘0/022@ at infinity in the plates loaded with full llateral con—
straint. This shear stress is able to "penetrate" between the holes
since thé modulus of rigidity of these laminates in X-Y-direction has
improved considerably by the rotaﬁion over 30°. It is noted that,
except for the (i45°)s—laminate, the By—values of the laminates with
lateral constraint are higher than those of the laminates without

lateral comstraint.
~ The (i45°)s—1aminate

Figures 17 and 22 show a property of the (i45°)s-1aminate which 1is
also known from the single-hole solution. For ¢ = 0 the maximum stress
cy on the X-axis doesn't occur at the edge of the hole. For smaller
values of s/D it may even occur in the middle of the net area between

the holes.
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9. CONCLUSIONS

The present approximate solution was evaluated by comparing the
stresses for the isotropic case with values from literature. Except

for the very small pitch of the holes s = 1.11D the agreement is good.

The influence of the pitch on the stress distribution shows a trend

quite similar to .that of isotropic materials, especially for s/D » 3.

The maximum tangential stress concentration at the edge of the hole is
not an indication for first significant damage of the laminate. This
damage occurs mostly in the vicinity of the points with the maximum

shear stress in the direction of the material axes.

Rotation of the laminates dominated by 90°-layers reduces the strength

considerably.

The difference between the stress distributions (and Ey-values) in the
two different load conditions is remarkabiy small in the non rotated
case. In the rotated case however the laminates dominated by 90°-

layers show a large difference.
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Oy MPa 88‘ MPa 0B

tensf compr., tens. compr. MPa

(90, /+45%) _ 72 236 | 1258 818 168
(905/+45°%) _ 212 286 | 1072 805 217
(90°/+45%) _ 255 | 354 790 690 310
(90°/0°/445%) | 621 485 621 485 | 217
(#45°) 177 207 177 207 429

Table 5: Laminate strength values.
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Fig. 1. The tangential stress distribution at the hole boundaries
in an isotropic material. Load Py-



Fig. 2. The tangential stress distribution at the hole boundaries in
a (90%/+45°) j~laminate. Load Py-
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Fig. 3. The tangential stress distribution at the hole boundaries in
a (903/1450)3-1aminate. Load Py-
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Fig. 4. The tangential stress distribution at the hole boundaries in
a (900/iﬁ5°)s—1aminate. Load Dy-
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Fig. 5. The tangential stress distribution at the hole boundaries in
a (0°/90°/+45°%) -laminate. Load py.
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Fig. 6. The tangential stress distribution at the hole boundaries in
a (+45°) -laminate. Load Py
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Fig. 7. The tangen(t)ial stress distribution at the hole boundaries in -
a (902/145 )g-laminate. Load py, py = Py - C12/Co9, Pxy = Py - Co6/C29.
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Fig. 8. The ‘tgngential stress distribution at the hole boundaries in
a (902/i45°)s—1aminate. Load Pys Px =Py . Cy12/C92, Pxy = Py . Cog/Co2-
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Fig. 9. The tangential stress distribution at the hole boundaries in
o . ,
a (90°/+45 -)S—lamlnate. Load Pys» Py =Py - C12/Cy9, Py = Py - C26/C22-
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Fig. 10. The tangential stress distribution at the hole boundaries in
o ; = = A
a (0°/90°/+45°)~1aminate. Load Py»> Px =Py - C12/Co9, pxy—py,ng,/Cz‘
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Fig. 11. The tangential stress distribution at the hole boundaries in-
a (+45°)g-laminate. Load Py> Px = Py-Cj2/C22; Pxy = Py-C26/C22.
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Fig. 22. The distribution of oy/py along the
X-axis in a (+45°)g-laminate.

Load py, px = Py-C12/€22, pxy = Py-C26/C22-



APPENDIX

P —
The expression I hikg -4 {Ck(S)} n
n ’ d(-s)p

According to (3.13) is

Cy(8) = @

in which Ck(s) is one of the roots of the equation

1 - isk@ 1 + 1Skw .
-s = ———7;———-Ck(s) + 5 Ck(s) (A.D
With
1+ isk@
M =TS is,
0)

it follows from (A.1l)

dz, (s) 2 1

d(-s) ~ 1 -1s 2
ko 1= A g ()}

(A.2)

Since ?\k{t;k(s)}_2 < 1 the right-hand side of expression (A.2) may be

expanded into a power series

dg. (s)
k
-8y " T- isk [1+ 3 de () + a2 {z (0} + .. ]
[




A-2

which will be truncated after the. second term, resulting in the

approximation
dg, (s)
k 2 2
a-s) "~ T- Is, [1+ 7 {g ()} ] (A.3)
© .

The accuracy of this approximation is the smallest for low values of s
and high values of s, . For the technically minimal pitch s = 3D and a
high value skw = 3i the difference between the value of (A.3) and the

value of the exact expression

ar (s) =L (s)

sy~ 2 2
s” - sk -1
)

is only 0.25%, so the accuracy of (A.3) will be considered as

sufficient for téchnical purposes.

With (A.3) is now easily found

k - -2 k -n- -n-
2 ) ey (61 ™ = = e n [e @)™ e @)™
n n k
P .
- k k -n-1
- 2 Iy n o+ n e ()
n k
©
-2 k ~n-1
R TS hﬁ,i IO (A6
n km

in which



h{K) (k) (k)
By = M) 5k n h

k
and {hi_;’o}n=l = 0.

In the same way is found

2
(k) d -n d -2 (k) -n-1
Th T ——s {0 (8)) == T h {e. ()}
L WO d(—s)z k d(-s) o 1 1skw n,l k
_ -2 y2 (k) -n~2
=z (l—isk )" hy 2 1o (o))
©
in which
hﬁf) A (n—l) hﬁk% 1 + (n+1) h(k)
(k)
and {hn—Z,l}n=2 = 0.

For the general term is now found

p _
2~ () ™ = & (e ) ()™
n ’ d(—s)p f n kw

where

(A.5)

(A.6)




(k) _ _ (k) . (%)
hn,p = Kk(n+p 3) hn—2,p—1 + (n+p-1) hn,p—l (A.7)
(k) _ '
and {hn_z,p_l}n=1 =0 (A.8)
' n=2

From the boundary conditions (5.4) is known that for even values of n

all coefficients h(k) are zero and that the maximum odd value of n in

() | 22 (X)
h is 7. For n in h ? in (A.7) this results in a maximum value 21.

n,o n,
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