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Abstract
The complex dynamics that shape human interac-
tions have been the object of studies for decades.
One of the most famous examples to analyse the
cooperative or defective nature of people is the Iter-
ated Prisoner’s Dilemma (IPD), a versatile dynamic
game which has been shown capable of capturing
the emergence of cooperative behaviours in envi-
ronments where people are rationally tempted to
defect. Trust plays a crucial role in such social in-
teractions, as it intrinsically influences a human on
which behaviour to adopt with a partner: a key as-
pect that the Prisoner’s Dilemma (PD) game fails to
register. In this study, two variants of the traditional
PD game are proposed in the context of spatial
and evolutionary Iterated Prisoner’s Dilemma; each
variant features the inclusion of trust as a variable
that affects the rewards of the two-player game.
The goal of this paper is to study the impact that
trust has on the efficacy of traditional Prisoner’s
Dilemma strategies played by agents in simulated
environments. The results obtained over different
experiments confirm that trust indeed fosters coop-
erating behaviours among agents, and allows them
to more easily populate worlds that feature harsh
living conditions.

1 Introduction
Game Theory is the branch of studies that focuses on ob-
serving and understanding the dynamics of interaction among
economic agents, which make choices according to personal
utilities and therefore generate outcomes [1]. Due to the
framework’s ease of use, Game Theory has often been used
to model social interactions, in order to better understand via
simulation the behaviours of humans when facing such situa-
tions.

Among many, the Prisoner’s Dilemma (PD) is arguably the
most renowned game in literature. The game consists of two
players – namely, two prisoners – who must choose whether
to cooperate or defect with each other [2]. The players choose
autonomously and with no possibility to communicate with
their partner, then finally receive a payoff according to their
choices. The payoffs are calculated as in Table 1 according

Table 1: Payoff table for the PD game; Ci corresponds to a player i
choosing cooperation, Di for defection. In a (X, Y) pair of rewards,

reward X goes to player A and reward Y to player B.

Player B
CB DB

Player A CA R, R S, T
DA T, S P, P

T > R > P > S (1)
2R > S + T (2)

to the inequalities 1 and 2, which ensure non-exploitation of
mutual defection at alternating turns to obtain maximum re-
wards. Due to the payoff distribution, rational agents will
always choose defection, as it provides the best personal pay-
off regardless of the opponent’s choice; however, both players
can receive higher rewards if they both decide to cooperate.

Such cooperative behaviour is shown to emerge rather eas-
ily among the agents as they play repeated games of the
Prisoner’s Dilemma in succession, i.e., when the PD is iter-
ated (IPD) and thus transitions from being static to dynamic.
Later studies have confirmed the emergence of cooperative
behaviours also in IPD games played in spatial and natural
environments [3, 4], where agents face costs of living in a
simulated world at every turn and have to pay them with their
earned payoffs (the energy).

Despite enabling the study of cooperation among agents,
the traditional IPD game fails to address another fundamen-
tal component of human interactions that lays behind coop-
eration itself: trust. Whereas cooperation indicates acting
together with a partner to obtain mutual rewards, trust digs
deeper into the reasons why cooperation happens. In fact,
trust is the willingness to take risks under uncertainty [5, 6];
the action of an individual of revealing some own vulnerabili-
ties to a partner, in order to receive a greater payoff according
to their actions. Trusting a partner, however, consequentially
means also accepting the risk that in case of missed cooper-
ation, the defected individual could be severely damaged –
proportionally to how much it trusted the partner.

In 2005, Yamagishi et al. proposed an empirical study
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on different variants of the traditional Prisoner’s Dilemma,
which aimed to address the role of trust in the game by sep-
arating the actions of trust and cooperation [7]; for such,
these variations are grouped under the name of Prisoner’s
Dilemma with variable Dependence (PD/D). Yamagishi et al.
conducted their study over mixed groups of American and
Japanese people playing non-spatial iterated PD/D (IPD/D)
games, and reported two relevant findings: firstly, the impor-
tance of separating trust from cooperation in order to build
trust relationships; secondly, the causation of cooperation to-
wards trust – and not the other way around.

In my research, I utilize the conclusions of Yamagishi et
al. to build simulated environments that reproduce the human
trust behaviour, thus allowing for investigating into the influ-
ence of trust over IPD/D games played in spatial and evo-
lutionary environments by computer agents that employ the
most diffused strategies in literature. In particular, the two
principal variations of the game proposed by Yamagishi et al.
are implemented, so that it can be assessed whether trust can
foster or diminish the evolution of cooperation among simu-
lated agents in such realistic environments.

I hypothesize that the harsher the environments, the more
the separation of trust boosts cooperation. Additionally,
the explicit presence of trust as a variable in the IPD/D
games leads to more defecting behaviours when the society
is wealthier (thus living conditions are less competitive).

A background of the research topic can be found in Sec-
tion 2, and Section 2.1 presents a summary of the approaches
to trust in the Prisoner’s Dilemma game found in literature.
The two PD/D variations are explained in Section 2.2, and
their implementations are detailed in Section 4.

In Section 3, the works from van Tilburg [4] and Gevers [8]
are presented, as they provided benchmark studies to confront
the influence of trust in different realistic spatial and evolu-
tionary IPD environments. The strategies used in their two
studies and this one are explained in Section 5.

To discuss the hypotheses, a series of experiments in dif-
ferent environments - presented in Section 6 – will be run and
measured over the metrics of population’s and actions’ dis-
tribution; the effects of trust on the evolution of cooperation
can thus be analyzed, as that is reported in Section 8. In order
to transparently include validation of results, replication and
reproducibility for the reader, Section 7 addresses the theme
of responsible research.

Finally, conclusions and suggestions for future work in the
field are provided in Section 9.

2 Background
The Prisoner’s Dilemma game has been central in extensive
studies over the years. As its iterated version offers an inter-
esting framework to study the evolution of cooperation, dif-
ferent approaches to the game have been developed by re-
searchers depending on the goals of their works.

The primary distinction pertains to the kind of agents that
are subject to observation in studies; behaviour analysis of
players can be conducted both on humans playing the game,
or computer agents which play in simulated environments ac-
cording to various sets of strategies. In this research, the fo-

cus is shifted on the latter category. The Iterated Prisoner’s
Dilemma game can then be extended – as is the case of study
here – over spatial and evolutionary environments [9, 10].

The spatial IPD sees agents play Prisoner’s Dilemma
rounds in a two- or three-dimensional simulated world, where
they can move across to reach other players and partner up.
This attempt to recreate spatial playing conditions is often
enhanced in order to more closely reproduce natural environ-
ments (e.g., by introducing costs for basic agent’s needs and
actions), thus enabling researchers to investigate how strate-
gies perform in realistic situations.

The evolutionary IPD, on the other hand, integrates evo-
lutionary mechanics in the game, for instance by allowing
agents to reproduce and introducing Darwinian rules that de-
fine how their strategies can mutate and adapt to become a
more optimal fit for the environment. Further information on
both extensions of the IPD game is provided in Section 4,
where the models utilized in this research are explained.

2.1 Trust in Previous Research
The role of trust in the Prisoner’s Dilemma game has been
subject to different studies in the past; the approaches fol-
lowed to investigate its influence in PD games have been di-
verse, thus hereby a summary of the most relevant results is
reported.

In 2009, Venanzi proposed an interpretation of the human-
like trust characteristic in simulated agents systems [11]. It
shapes as a series of intuitive and internally similar rating sys-
tems for agents, in which the commonly shared idea features
trustworthiness as an agent’s parameter that is calculated via
the ratio of cooperations and total actions.

Similarly, Chen et. al in 2011 studied the impact of an
agent’s reputation score calculated, once again, by consid-
ering the ratio between cooperations and total actions [12,
13]; it differentiates from previous approaches by introducing
the possibility to receive indirect information from external
agents and weighting its influence according to the senders’
own reputation.

Trust explicated as such became thus used as the niceness
indicator for an agent or a strategy, due to its intrinsic corre-
lation with the act of cooperation in the game – as previously
explored. All of the mentioned approaches focus on the pas-
sive trustworthiness of an individual as a reputation indicator
that summarizes an agent’s actions. Yamagishi et al. [7] rel-
evance in the field comes from their contribution, introduced
in Section 1: the authors shift focus to the active role that
trust plays in human relationships, by directly targeting how
it can alter the players’ behaviour over the course of repeated
games. To achieve so, they modified the calculation of pay-
offs in the two proposed Prisoner’s Dilemma game variants,
so that the action of trusting a partner can alter them dynam-
ically. In the next subsection, the two PD/D games are pre-
sented to the reader.

2.2 Prisoner’s Dilemma with Variable Dependence
The first game proposed by Yamagishi et. al is the Prisoner’s
Dilemma with Trust via Matrix Changes (PD/Dm), in which
the payoff matrix of each player increases or decreases ac-
cording to whether a player decides to trust or not its partner.
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If a player decides to trust their partner, then all of the values
in the player’s payoff matrix are increased (or decreased, in
case of negative payoffs) by a set percentage of the initial val-
ues. Conversely, in case of mistrust, the payoffs are reduced
(or increased) by the same set percentage of the initial values.

The second game is the Prisoner’s Dilemma with Trust via
Coin Entrustment (PD/Dc), an investment game [14] where
every player decides how much of its previously earned re-
wards entrusting its partner with, thus shaping the payoff dis-
tribution. When two players are paired, a PD/Dc game is
carried out as follows:

1. Players simultaneously entrust their partner with a cer-
tain percentage of their reward points earned until that
moment.

2. Players simultaneously decide on an independent action
to perform – either cooperate or defect.

3. Players receive the appropriate payoffs for their actions
as rewards.

In case of cooperation, a player decides to send the received
points back to the owner. It thus receives no rewards from this
action, and the owner in return receives double the amount of
points that it had initially entrusted. In case of defection, an
agent retains the amount of points received from the partner.
The player is thus rewarded by stealing the points that the
partner decided to entrust it with, and the partner does not
receive anything back.

Both games share the feature of isolating trust from co-
operation, whilst retaining the key PD feature of rewarding
players with payoffs according to their choice of cooperating
or defecting.

3 Related Work
In this paper, the influence that introducing trust in the spa-
tial and evolutionary Iterated Prisoner’s Dilemma can bring
to the agents’ behaviours is analysed by performance com-
parison with the previously obtained results in the field. In
particular, the data collected via agent-based modelling and
simulation (ABMS) [15] – thoroughly explained in Section 4
– is confronted with the findings of van Tilburg and Gevers
on the performance of IPD strategies run in natural and noisy
environments.

In 2018, van Tilburg proposed a model [4] to analyse
the behaviour of the ten most diffused strategies in IPD re-
search [16]. In the model, a number of agents are deployed in
a two-dimensional grid which simulates a world environment;
at every time tick, agents can play a Prisoner’s Dilemma game
with one of their nearby partners and gain energy points ac-
cording to their mutual choice of actions (see Table 1). If an
agent earns sufficient energy points, it can generate offspring
that inherits its key traits in evolutionary fashion (e.g., the
strategy to decide which move to play next). Agents can also
die by old age or insufficient energy (i.e., when their energy
points fall below 0), since at every time tick a cost of living
is deducted from each player. With this model, van Tilburg
showed that cooperative strategies are more likely to survive
and reproduce in harsh environments, thus the ones defined

by high costs of living, high reproduction costs and low life
expectancy.

An extension to the study was proposed in 2020 by Gev-
ers, who focused on the performance of IPD strategies when
introducing noise in harsh spatial environments [8]. To simu-
late the agents’ behaviours, Gevers used an approach similar
to van Tilburg’s and expanded his model by adding a noise
parameter and additional, environment-appropriate strategies.
The noise parameter is a value from 0 to 1 which repre-
sents the probability that an agent’s action gets inadvertently
flipped before it reaches the partner. The added strategies are
generous and contrite variants of the Tit-for-Tat and Pavlov
traditional strategies [17]; generosity is described as “leaving
a certain amount of another individual’s defections unpun-
ished”, while contrition is “avoiding to defect as a response
to the other individual’s defection after own unintended de-
fection” [8, p.3]. Gevers confirmed that van Tilburg’s claims
over cooperative strategies still hold when noise is involved in
the harshness of an environment, therefore generous strate-
gies help in coping with noise; moreover, he demonstrated
that in presence of high uncertainty (i.e., when noise values
are high) contrite behaviours are the most effective.

To study the impact of trust in such scenarios, this pa-
per reproduces the works from van Tilburg and Gevers, and
extends them by implementing the two Prisoner’s Dilemma
with Variable Dependence game variants by Yamagishi et.
al [7] described in Section 2.2. In this way, simulations can
be conducted over the same environments (i.e., with the same
world settings) for both the traditional Prisoner’s Dilemma
game and its trust-isolating variants. The results can thus
be gathered unambiguously and confronted clearly over the
same metrics, enabling to specifically address the influence
that trust has in the spatial and evolutionary Iterated Pris-
oner’s Dilemma.

4 Models
To simulate experimental runs and gather data over the in-
fluence of trust in the spatial and evolutionary IPD, multiple
agent-based modeling and simulation systems have been gen-
erated on the NetLogo framework. The models are based on
van Tilburg’s codebase1, and are four in total: two models for
the PD/Dm game and two models for the PD/Dc game. Each
of the two models per different game features the specifics
and the strategies employed respectively by van Tilburg and
Gevers in their works.

All the models share key features on how they represent
the spatial and evolutionary IPD game. An L × L discrete
grid is populated with a variable number of agents, each oc-
cupying a single, non-overlapping cell and employing a spe-
cific strategy; a thorough list of the utilised strategies is pro-
vided in Section 5. Agents possess an energy level, which is
drawn from a 1 to 50 uniform distribution at simulation setup
and signals the agent’s death when it falls below 0. Time
is measured discretely in ticks; at every tick, a cost of liv-
ing amount of energy is subtracted from every agents’ energy

1A personal acknowledgement to van Tilburg, who permitted the
use and share of his code in my work.
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points. During the tick, agents can thus perform a series of
actions described as follows:

• Pair up with a Moore neighbour (another agent that oc-
cupies one of their 8 adjacent cells), and play a Pris-
oner’s Dilemma game together to earn energy points.

• Move to an adjacent cell, if no neighbour to play a game
with is found.

• Reproduce by the cost of 50 energy points and, on one of
the free adjacent cells, hatch an agent that has 50 energy
points and the same strategy as the parent.

• Evolve their strategy to match one of the better per-
forming neighbours. For such, an evolution threshold
is indicated, so that if the energy level of an agent +
the evolution threshold is ≤ than the neighbour’s en-
ergy level, the agent adopts the neighbour’s strategy. If
evolution threshold = 0, then evolution is not applied.

In the following subsections, the differences in models for the
PD/Dm and PD/Dc variants are provided.

4.1 PD/Dm
In the Prisoner’s Dilemma with Trust via Matrix Changes, the
core difference with the traditional Prisoner’s Dilemma game
resides in the fact that the payoff matrix changes according to
the trust placed by a player in its partner.

To model this in an ABMS system, a trust mechanism has
been introduced according to the conclusions of Yamagishi et
al. As noted by the authors, “cooperation leads to trust, not
the other way around” [7, p.303]: for such, agents store a
trust array in which every cell contains a number that sum-
marizes the results of past cooperation-defection received by
a specific, previously-played player. For every time that a
partner cooperates, the number – initially 0 – is incremented
by 1; for every defection, it is instead decreased by 1.

An increase trust factor, a number between 0 and 1, in-
dicates the percent increase or decrease in payoffs (relative
to the initial payoff matrix) that an agent experiences per ac-
tion when playing a PD/Dm game with a partner. In order to
calculate the appropriate variation in the payoff matrix, the
partner’s corresponding cell is fetched from the trust array
and multiplied by the increase trust factor (see Formula 3).

As an example: if increase trust = 0.1 and an agent part-
ners up with another agent who in previous encounters coop-
erated 5 times and defected 2, its corresponding cell in the
trust array will contain the value 3, and the agent’s payoff
matrix will increase (or decrease, in case of negative payoffs)
by 0.1× 3 = 30% with respect to the initial payoff matrix’s
values.

Pincrease = increase-T× T-arrayi[j]× Pinitial (3)

The payoff increase in agent i’s payoff matrix when playing
a PD/Dm game with agent j. P = Payoffs, T = Trust.

4.2 PD/Dc
In the Prisoner’s Dilemma with Trust via Coin Entrustment,
changes in the dynamics of the game are more substantial:

there is no payoff matrix involved in the decision of the pay-
offs as a game’s outcome.

To replicate the trust dynamic in this scenario (explained
in Section 2.2), at hatch every agent is assigned a base trust
value, which is a number from 0 to 1 that indicates an agent’s
inclination towards trusting an opponent. If an agent is the
child of another agent, its base trust value is randomly picked
in a 30% interval (±15%) around the parent’s base trust. Ev-
ery agent stores a trust array in the same fashion as in Sec-
tion 4.1; an increase trust value from 0 to 1 is present as well,
albeit with a slightly different use. In fact, in the PD/Dc game
agents decide on the amount of energy to entrust their oppo-
nent with according to Formula 4.

Eto entrust = Ei × (Tbase + T-arrayi[j]× increase-T) (4)

The calculation of energy that agent i entrusts agent j with
when playing a PD/Dc game. E = Energy, T = Trust.

4.3 Van Tilburg’s and Gevers’ Differences
The codebase for the simulation suite on NetLogo was pro-
vided by van Tilburg, thus it is entirely consistent with the im-
plementation in his research; the codebase was then extended
by implementing the two PD/D variants of the game.

Gevers’ model was re-implemented in NetLogo by extend-
ing van Tilburg’s: a noise parameter was added coherently
to his studies, thus as a number from 0 to 1 indicating the
probability that an agent’s action gets flipped due to miscom-
munication in a noisy environment.

5 Strategies
Van Tilburg’s and Gevers’ approaches deal with two different
subjects in the field of the spatial IPD, therefore the authors
analysed different sets of agents’ strategies.

To ensure correctness and fidelity to the original studies
when comparing them to the results obtained with trust-based
variants of the PD games, every strategy has been provided in
the corresponding NetLogo models.

5.1 Van Tilburg’s Strategies
Van Tilburg studied the performance of the 9 strategies clas-
sified as default type by Jurišić et al. [16]; the authors con-
ducted an analysis of the strategies proposed in the three ma-
jor IPD tournaments held from 2004 to 2005 and listed the 9
default types as follows (see Table 2). As the Pavlov strategy
can be played with either cooperation or defection as the ini-
tial behaviour, the resulting total number of strategies for van
Tilburg is 10.

5.2 Gevers’ Strategies
Gevers also studied the performance of the same 9 default
type strategies. However, Gevers dealt with harsher environ-
ments than van Tilburg’s, characterized by noise that could
alter the choice of an agent’s action. He thus considered 5
additional strategies to the default types, which correspond to
generous and contrite variants of the Tit-for-Tat (TFT) and
Pavlov strategies [17]. Gevers’ added strategies are described
in Table 3.
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Table 2: Strategies used in Van Tilburg’s research [4].

Designation Description
ALLC A strategy that always plays cooperation.
ALLD A strategy that always plays defection.
RAND A strategy has a 50% probability of playing

either cooperation or defection.
GRIM A strategy that starts with cooperation; af-

ter its opponent’s first defection, it contin-
ues with defection.

TFT A strategy that starts with cooperation,
then replicates the moves of the opponent.

STFT As TFT, but the strategy starts with defec-
tion.

TFTT As TFT, but the strategy defects after two
consecutive defections.

TTFT As TFT, but each opponent’s defection is
retaliated with two defections.

Pavlov A strategy that considers action results as
divided into 2 groups: positive actions (T
and R), and negative actions (P and S). If
the result of the previous action belonged
to the first group, the action is repeated; if
the result was in the second group, then the
action is changed. It is also called win-stay,
lose shift.

Table 3: Strategies used in Gevers’ research [8].

Designation Description
GTFT As TFT, but it has a 10% probability of co-

operating when it would otherwise defect.
CTFT As TFT, but it has 3 states: contrite, con-

tent and provoked. The strategy begins
with cooperation and stays there until there
is an unilateral defection. If the agent was
the victim while content, it becomes pro-
voked and defects until a cooperation from
the other player causes it to return content.
If the agent was a defector while content,
it becomes contrite and cooperates. When
contrite, it only becomes content after suc-
cessfully cooperating.

GPavlov As Pavlov, but it has a 10% probability of
cooperating when it would otherwise de-
fect.

SGTFT As TFT, but it has a 60% probability of co-
operating when it would otherwise defect.

SGPavlov As Pavlov, but it has a 60% probability of
cooperating when it would otherwise de-
fect.

6 Results
To investigate the influence that trust can have in the spatial
and evolutioanry IPD, a set of simulations with different en-
vironments was analyzed. More specifically, in this section
the various scenarios are organized as:

• IPD/Dm simulations
– In natural and evolutionary environments (based on

van Tilburg’s study).
– In noisy environments (based on Gevers’ study).

• IPD/Dc simulations
– In natural and evolutionary environments.

All the experiments have been run with L = 100 (thus
100× 100 grid size), an initial population size of 10% of the
available grid cells (thus 1000 agents), with strategies uni-
formly distributed over the players. Every experiment fea-
tures its own set of cost of living (or K), increase trust, payoff
matrix values and noise (where applicable). For every ex-
periment, the number of executed runs and their criterion of
termination will be reported; when referring to until stabi-
lization, it is to be intended as “every strategy’s agent-count
stayed in a margin of 0.1% of the total population for 50
rounds”.

6.1 IPD/Dm Simulations
The experiments involving the PD/Dm variation of the Pris-
oner’s Dilemma game are reported here. For the experiments
in natural and evolutionary environments, as they are based
on van Tilburg’s studies, the strategies from his article are
used (see Section 5.1); for the experiments in noisy envi-
ronments, as they are based on Gevers’ studies, the best per-
forming noise-specific strategies found in his article are used,
alongside the remaining traditional ones (thus ALLC, ALLD,
RAND, GRIM, STFT, TFTT, TTFT, CTFT and SGPavlov).

Natural and Evolutionary Environments
For all the PD/Dm experiments conducted in natural and evo-
lutionary environments, the payoff values are set as T =
4,R = 2, P = 0 and S = −1.

The first simulation compares the percentage of strategies
among agents over the first 350 ticks in van Tilburg’s research
to the results obtained by substituting the PD game with its
PD/Dm variant, under the same circumstances and over 20
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Figure 1: Agents count per strategy over the first 350 ticks.
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Figure 2: Actions count over the first 350 ticks.
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runs (see Figure 1). An added metric is included, and that
is the number of actions happening in the simulation at every
tick (see Figure 2). For this experiment, cost of living = 0.25,
the evolution threshold is set at 0, and increase trust = 0.1 in
the PD/Dm variant.

The second experiment compares the variation in numbers
of actions that agents perform at the last tick of runs when the
PD/Dm game is played with different values of increase trust
(see Figure 3). Specifically, for the increase trust parameter,
6 values from 0.0 (corresponding to the traditional Prisoner’s
Dilemma game) to 0.5 in 0.1 increases are considered, as well
as both scenarios with evolution threshold set at 0 and 20.
The cost of living is set at 0.25. Once again, the obtained
results are averaged over 20 runs, each of which terminated
at population stabilization.

The third experiment focuses on analyzing the impact of
varying the increase trust parameter over different cost of liv-
ing values. For such, the time ticks that on a 10-run average
every simulation took to achieve a fully populated grid are
reported in Table 4 for evolution threshold = 0, and in Ta-
ble 5 for evolution threshold = 20. N.A. indicates that the
runs were not able to reach 100% grid population in those
simulations.

Noisy Environments
The experiments ran in noisy environments focus on investi-
gating the impact of trust over collaboration in the setting pro-
posed by Gevers; for this reason, the evolution threshold has
been set to 0 and never changed during the analysis. More-
over, the same payoffs from Gevers’ study have been used,
thus T = 5, R = 3, P = 0 and S = −2. To differentiate with
previous experiments in non-noisy environments, the noise
parameter has been set to 0.1.

The first experiment compares the variation in numbers of
actions that agents perform at the last tick of runs, when the
PD/Dm game is played with varying increase trust at differ-
ent values of cost of living (see Table 6 for cooperations, Ta-
ble 7 for reciprocated cooperation, Table 8 for defections).
Runs are ended when population reaches stabilization, or af-
ter 2000 ticks in case of impossibility to stabilize; 10 runs
have been executed per every parameter combination.

In the second experiment, the graphs of actions over ticks
are presented to the reader, with the aim to investigate the
evolution of cooperation/defection over different cost of liv-
ing values with increase trust = 0 and 0.3 (see Figures 4
and 5). The last tick before stabilization/tick limit (here set at
2500, with 10 runs per value combination) indicates the max-
imum scale over the x-axis, thus the differences over graphs.
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Figure 3: Actions count at termination over various increase trust.

Table 4: Ticks to full grid with evolution threshold = 0.

Increase trust

Cost of living 0.0 0.1 0.2 0.3 0.4 0.5

0.00 289 237 220 215 208 210
0.25 398 278 243 254 241 221
0.50 458 305 307 290 269 279
0.75 585 393 334 322 330 335
1.00 748 466 409 442 393 390
1.50 2002 621 534 547 721 552
2.00 N.A. 905 812 755 641 651
2.50 N.A. 1690 1054 1023 987 948
3.00 N.A. N.A. N.A. 3529 2614 2463
3.50 N.A. N.A. N.A. N.A. N.A. N.A.
4.00 N.A. N.A. N.A. N.A. N.A. N.A.

Table 5: Ticks to full grid with evolution threshold = 20.

Increase trust

Cost of living 0.0 0.1 0.2 0.3 0.4 0.5

0.00 283 232 220 212 216 207
0.25 352 281 262 247 244 230
0.50 448 317 288 287 292 276
0.75 548 383 325 317 343 300
1.00 758 447 396 352 357 350
1.50 1899 581 522 470 470 475
2.00 N.A. 908 737 639 662 636
2.50 N.A. 1624 1155 1084 904 948
3.00 N.A. N.A. N.A. 3614 2850 2488
3.50 N.A. N.A. N.A. N.A. N.A. N.A.
4.00 N.A. N.A. N.A. N.A. N.A. N.A.

Table 6: Cooperations at the end of simulations.

Increase trust

Cost of living 0.0 0.1 0.2 0.3 0.4 0.5

0 3529 3765 3859 4061 4138 4152
1 4668 4280 5286 5593 5696 5919
2 2820 3929 4209 4970 5982 5953
3 40 3900 4215 4408 4624 5742

Table 7: Reciprocated cooperations at the end of simulations.

Increase trust

Cost of living 0.0 0.1 0.2 0.3 0.4 0.5

0 2581 2832 2933 3110 3174 3174
1 3662 3350 4084 4367 4426 4619
2 2516 3435 3598 4167 4963 4903
3 33 3519 3774 3912 4056 4967

Table 8: Defections at the end of simulations.

Increase trust

Cost of living 0.0 0.1 0.2 0.3 0.4 0.5

0 2469 2298 2255 2324 2327 2370
1 2302 2137 2809 2821 2924 2990
2 506 910 1195 1671 2153 2289
3 15 656 775 908 1069 1501
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Figure 4: Actions over ticks for cost of living = 0, 1, 2, 3 at increase trust = 0.
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Figure 5: Actions over ticks for cost of living = 0, 1, 2, 3 at increase trust = 0.3.
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Figure 6: Actions over ticks for cost of living = 1, 3, 5, 7.
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Figure 7: Average base trust values over ticks for cost of living = 1, 3, 5, 7.

Strategy

Cost of living ALLD TFTT ALLC PavlovC TFT TTFT GRIM STFT PavlovD RAND

1 17 1702 455 1458 2071 1667 1621 416 266 328
3 9 1331 448 1404 2444 2033 1828 199 100 205
5 4 1064 474 1374 2403 2278 2118 96 88 99
7 5 886 444 1354 2673 2106 2292 85 91 63

Table 9: Number of agents per strategy at end of simulations with
evolution threshold = 0.

Strategy

Cost of living ALLD TFTT ALLC PavlovC TFT TTFT GRIM STFT PavlovD RAND

1 714 221 131 742 3063 2730 2398 0 0 0
3 135 568 345 1058 2782 2577 2534 0 0 0
5 0 1113 768 1530 2196 2240 2152 0 0 0
7 0 1305 1050 1565 1946 1913 2221 0 0 0

Table 10: Number of agents per strategy at end of simulations with
evolution threshold = 20.
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6.2 IPD/Dc Simulations
This subsection presents the simulations that feature the
PD/Dc variant of the Prisoner’s Dilemma game. For the dif-
ferent nature of the game (more diverse than PD/Dm vs PD),
no direct comparison with previous studies is possible. How-
ever, the settings that define the environments hereby used re-
semble the natural and evolutionary scenarios of van Tilburg.
Due to this, the strategies featured in these experiments are
the ones used by van Tilburg in his studies (see Section 5.1).

Natural and Evolutionary Environments
The first experiment presents the graphs of actions over ticks
with the aim to investigate the evolution of cooperation over
four different cost of living values = 1, 3, 5 and 7 (see Fig-
ure 6), as well as the graphs of the agents’ average base trust
values over ticks (see Figure 7). To study the impact of evo-
lution, the evolution threshold is set at 0 and 20. Results are
obtained as the average of 10 runs per parameter combination,
each of which terminating after 2000 ticks.

In the second experiment, we observe the strategies’ de-
velopment among agents at the end of simulations with cost
of living values = 1, 3, 5 and 7 (see Tables 9 and 10). To
study the impact of evolution, the evolution threshold is set at
0 and 20. Results are obtained as the average of 10 runs per
parameter, each of which terminating after 2000 ticks.

7 Responsible Research
In this section, insight is provided over the reproducibility of
the results obtained in the research.

The codebase used in the research and the results obtained
by running the simulations are available online upon request
for validation, replication, reproduction or extension. The
reader can download the models and run them in NetLogo,
either to recreate the results or to analyse different scenarios
by modifying the parameters introduced in Section 4.

As described in Section 6, every experimental case has
been run 10 or 20 times – according to the type of simula-
tion –, in order to provide consistent averaged results. Due to
the stochastic nature of the ABMS systems involved (it being
due to the grid setup or some strategies’ own randomness),
it cannot be expected to replicate consistently the same exact
results at every iteration of the simulations. However, the co-
efficient of variation (or CV) metric have been used for every
experiment to analyze the results’ consistency over averaged
runs (see Formula 5).

CV =
standard deviation

|mean|
(5)

In the IPD/Dm simulations run in natural and evolutionary
environments, the CV mean value for the collected data in
each experiment is between 0.03 to 0.12.

In IPD/Dm simulations run with added noise, max CV can
rise up to 0.65 in the first experiment: this is due to both the
added randomness of the noise parameter and the inclusion
of generous/contrite variants of traditional strategies, that rely
on probabilities. Low-number results (e.g., the ones obtained
in high costs of living scenarios) also negatively impact the
score, as being subject to higher relative variation impacts

the CV value, but have a low influence on the outcome of
the simulation if the rest of the reported data is considerably
larger. The second experiment registers a mean CV value of
0.03.

In the final IPD/Dc simulations, the mean CV = 0.37 for
both the evolutionary and non-evolutionary cases in the first
experiment; in the second experiment, the value can grow up
to 0.72 for the evolutionary scenario (and 0.64 for the non-
evolutionary one). This for similar numerical reasons as in
the noisy simulations, whilst the generally higher mean val-
ues can depend on the different nature of the PD/Dc game.

In every scenario, the mean CV value is well below 1,
which is considered to be a good indicator of low variance
in collected data, especially for stochastic simulations.

8 Discussion
In the following section, an overall interpretation of every
simulation case is provided to the reader; every experiment
is summarized in its results, highlighting the key findings and
observations. The reported behaviours are then related to the
hypotheses advanced in Section 1, to finally assess the knowl-
edge that can be deduced from studying the impact of human
trust in the agent-simulated spatial and evolutionary Iterated
Prisoner’s Dilemma.

8.1 Summary of Results
The results are analyzed per category of experiments, as listed
in Section 6.

IPD/Dm Simulations in Natural and Evolutionary
Environments
The first experiment focuses on observing how the different
strategies spread across the grid’s population with and with-
out the trusting mechanic (in Figure 1); the number of actions
over time ticks is also reported, to study the evolution of co-
operation (in Figure 2). The strategies distribution remains
overall consistent over both the with and without trust scenar-
ios, as the only difference noticed in the with-trust simulation
is the wider gap that separates the best 6 strategies from the
worst-performing 4. When analyzing the ticks that the agents
need to stabilize, however, it is reported that the simulation
with trust takes ≈ 230 ticks to reach full-grid population,
whilst the non-trust simulation takes ≈ 300 ticks: a 23% per-
formance improvement. The same behaviour can be seen in
the actions graph, where the amount of both total and recipro-
cated cooperations is also slightly larger in the trusted setting
than the non-trusted one (+142 and +147 respectively).

The second experiment deals with the impact that different
increase trust values have on the number of actions happen-
ing when simulation reaches stabilization (in Figure 3). The
scenarios analyzed include both values of 0 and 20 for the
evolution threshold parameter, to observe how evolution is
affected by trust; these values were chosen as they are the
critical points to notice a consistent impact of evolution, as
observed by van Tilburg. When evolution threshold = 0,
the resulting action curves show a distinct increase in coop-
eration (therefore decrease in defection) with trust increasing
from 0 to 0.3, then a stabilized behaviour for the remaining
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values; when evolution threshold = 20, the same pattern re-
peats, albeit with more fluctuation for values from 0.3 to 0.5.
The effects of evolution in mitigating defecting behaviours
studied by van Tilburg finds confirmation in these results.

The third experiment compares the time in ticks that simu-
lations with different combinations of increase trust and cost
of living values take to reach 100% grid occupation (see Ta-
bles 4 and 5). Again, values of 0 and 20 are considered
for the evolution threshold. It appears clear that introduc-
ing higher degrees of trust in the experiments significantly
improves efficiency in populating the grid (thus in agents’ re-
production, therefore in agents’ capability of earning higher
rewards). Moreover, trust allows agents to achieve a fully-
populated grid at increasingly larger costs of living, where
the impact of trust is the greatest.

IPD/Dm Simulations in Noisy Environments
The first experiment proposes an analysis on the number of
actions observed at the last tick of the simulations in a noisy
environment, thus when noise = 0.1 (see Tables 6, 7, and 8).
The trend of trust’s influence is the same as the one noticed
in van Tilburg-based experiments for less harsh environments
(thus with lower costs of living); however, it is interesting
to see how in such environments the gap between the num-
ber of cooperations and defections is drastically lower than
what previously noticed. For the harsher environment at
cost of living = 2, however, the increase in defections sig-
nificantly outgrows the increase in reciprocated cooperations
and total cooperations (at increase trust = 0.5, +352% de-
fections and just +95% in reciprocated cooperations, +111%
in cooperations). The ratio then normalizes again in favour of
cooperations for cost of living = 3.

The second experiment focuses on the evolution of coop-
eration over time for the first experiment’s settings where
increase trust = 0 and 0.3, chosen as a representative value
to investigate the influence of trust (see Figures 4 and 5). The
graphs show in a different manner the effects that trust has on
mitigating defection, as well on increasing the survival and
reproduction abilities of agents in harsh conditions (see the
graphs for cost of living = 3).

IPD/Dc Simulations in Natural and Evolutionary
Environments
The first experiment provides the action graphs for the
IPD/Dc game played in environments with cost of living = 1,
3, 5 and 7 (see Figure 6), at the two evolution threshold of
0 and 20. Moreover, the graphs showing the agents’ av-
erage base trust values over time ticks are reported in Fig-
ure 7. The graphs for evolution threshold = 20 reveal an
interesting behaviour at cost of living = 1: the defecting ac-
tions appear to close the gap with cooperations, before re-
verting to the regularly observed behaviour of decline. This
is not observed for larger values of cost of living; how-
ever, for evolution threshold = 0 the same attempt at ”ex-
ploiting the cooperators” is noticed in an inverse pattern,
thus increasing as the costs of living increase. The graphs
concerning the average base trust level of the agents open
to different, insightful observations. Firstly, the values for
evolution threshold = 0 drop significantly below the values

registered for evolution threshold = 20 when the costs of liv-
ing increase, as the respective curve gradient descends more
rapidly towards 0. Secondly, although the peaks reached
by the average base levels of trust remain unchanged in the
graphs, it is interesting to notice how their floor values in-
crease as costs of living get larger.

The second experiment is a confrontation of strategies dif-
fusion after 2500 ticks, with different values of cost of living
and evolution threshold = 0, 20 (see Tables 9 and 10). Here,
the difference between the evolution thresholds is significant.
For evolution threshold = 20, we notice a complete annihi-
lation of the RAND, PavlovD and STFT strategies regardless
of the cost of living; for evolution threshold = 0, that is not
the case, as all strategies survive in any scenario. The ALLD
strategy performs particularly well for cost of living = 1 and
2 in the evolutionary scenario, whilst it is not able to repro-
duce effectively in the non-evolutionary one. Strategies as
TFT and TTFT see the largest discrepancies with respect to
different evolution thresholds: in the non-evolutionary envi-
ronment they significantly grow in number as costs of living
increase, but for evolution threshold = 20 the opposite hap-
pens.

8.2 Hypotheses Discussion
In Section 1, two hypotheses over the influence of trust in the
evolutionary and spatial IPD were advanced. Here, the same
hypotheses are discussed in light of the findings elicited from
the results. The two hypotheses develop as follows:

1. The harsher the environments, the more the separation
of trust boosts cooperation.

2. The separation of trust leads to more defecting be-
haviours when the society is wealthier (thus living con-
ditions are less competitive).

To discuss the hypotheses, it is important to verify if trust
indeed contributes to boosting cooperation in the overall pic-
ture, and eventually how it does so.

In the IPD/Dm simulations in natural and evolutionary en-
vironments, trust fosters cooperating behaviours in different
manners:

• In the first experiment, defections are slightly reduced
and cooperations benefit from that. Moreover, the time
needed to reach a stable population is noticeably re-
duced.

• In the second experiment, higher values of increase trust
lead to more cooperative agents’ behaviours.

• In the third experiment, higher values of increase trust
allow agents to populate the grid far more efficiently
and have a significantly larger impact in harsher envi-
ronments. The actions’ graphs are not included in this
article for space constraints, but they conform to the be-
haviours registered in the first and second experiments.

In the IPD/Dm simulations in noisy environments, trust
fosters cooperating behaviours similarly to what seen previ-
ously:

• In the first experiment, higher values of increase trust
favour the emergence of cooperative behaviours. It ap-
pears also that defective behaviours grow at a larger
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rate than cooperations as the costs of living increase,
although it is due to the fact that defectors can survive
more easily by exploiting a larger presence of cooperat-
ing neighbours.

• In the second experiment, a boost to cooperation pro-
vided by the introduction of trust is evident. In particu-
lar, its effects are more evident in the reduced time ticks
that are needed to reach a stable development pattern as
the costs of living increase.

Finally, in the IPD/Dc simulations in natural and evolution-
ary environments, it is observed that trust fosters cooperating
behaviours as follows:

• In the first experiment, trust increases cooperative ac-
tions and decreases defections (compared to the tradi-
tional PD scenario, but also the PD/Dm variant). More-
over, as the living conditions get harsher, the surviv-
ing agents show greater levels of base trust values, thus
adapting their needs of trusting a partner according to
the increasing costs of living.

• In the second experiment, trust appears to behave differ-
ently in case of evolution threshold = 0 or 20 for what
concerns the population distribution. In particular, in
the first case the population distribution gap between the
best performing strategies and the rest becomes more ac-
centuated as the cost of living increases; in the second
case, conversely, that gap is reduced among the top 6 out
of 10 strategies, with the remaining 4 that are reduced to
extinction.

With respect to the first hypothesis, it can be stated that
trust fosters cooperation more in harsher environments. Al-
though the second experiment with the IPD/Dm played in
noisy environments seems to demonstrate that the impact of
trust in cooperation increase is greater at lower cost of liv-
ing values, all of the other IPD/Dm and IPD/Dc experiments
show the opposite. In particular, it is interesting to notice how
the effects of trust on cooperation affect significantly the time
that it takes for agents to reproduce and occupy larger areas of
the grid, while at the same time allowing to populate worlds
with harsher living conditions. This exact behaviour is also
reported in the noisy experiments, that provide even harsher
scenarios due to the added probability of actions miscommu-
nication.

The second hypothesis does not appear to generally hold in
the IPD/Dm simulations: trust seems to mitigate the diffusion
of defectors in any scenario. With trust, however, the defec-
tors grow in number when the environments are harsher: this
shows the opportunistic behaviour hinted in the hypothesis,
as defectors are able to proliferate more when surrounded by
more cooperators to exploit. Moreover, in the IPD/Dc sim-
ulations (particularly, in the first experiment) an interesting
behaviour can be noted for evolution threshold = 0: in all but
one instance (cost of living = 3), the initial pattern of coopera-
tions outgrowing in numbers the defections is briefly inverted
for a few ticks span, as a result of the defectors’ attempt to
exploit the cooperators when sufficiently wealthy. This ten-
dency, however, is rapidly inverted, as afterwards defectors
begin to decline and cooperators rise again.

9 Conclusions and Future Work
This research aims to investigate how the introduction of trust
in the spatial and evolutionary Iterated Prisoner’s Dilemma
game affects the performance of simulated agents that em-
ploy the most studied strategies in literature. To achieve so,
the trusting mechanics have been implemented in ABMS sys-
tems according to the findings of Yamagishi et al. [7], who
investigated the correlation between trust and cooperation
among humans playing two iterated variations of the tradi-
tional Prisoner’s Dilemma game. The two previous works
by van Tilburg [4] and Gevers [8] provide interesting bench-
marking scenarios for natural and noisy environments, thus
have been used as a reference to confront the variation in per-
formance of the different strategies when introducing trust.

The simulations indeed show that the human feature of
trust helps in facilitating the emergence of collaboration
among agents. Players who can decide whether trusting or
not their partner – and consequentially modify their payoffs
– are able to achieve higher rewards more rapidly, meaning
that they can reproduce more efficiently and populate a given
spatial environment in less time. Additionally, the harsher the
living conditions of an environment, the more trust is useful
to agents to survive, and can allow them to colonize environ-
ments where, otherwise, the cost of living would prevent them
to do so.

The effects of allowing agents to evolve their strategies and
adopt the one of a better performing neighbour are compara-
ble to the observations of van Tilburg in his paper: they foster
cooperation, thus amplifying some effects of the introduction
of trust. However, when the evolution of strategies is applied
to the PD/Dc game, a curious outcome is noticed: as the cost
of living increases, evolution balances the distribution of the
top-6 strategies among the agents – an occurrence that does
not happen when the evolution of strategies is not applied.

The noisy environments provided by Gevers provide in-
sight to notice the effects of trust in even harsher environ-
ments, where actions can be subject to miscommunication er-
rors. As a result, defectors are more active in these scenar-
ios, thus the ability of trust to mitigate defective behaviours
over time can be appreciated also under more difficult cir-
cumstances.

In this research, only sets of strategies proposed by [16]
and [17] are analyzed to report changes in cooperation and
defection. An extension of the study that includes genetic
strategies (such as the ones proposed by [18] and [19]) could
be of interest, in particular if focusing more on the kind of
strategies that develop optimally in presence of trust, instead
of the evolution of cooperation through actions. Finally, trust
is only one of the human features that play a role when in-
teracting with a partner; in order to more realistically study
human behaviour through the games of Game Theory in sim-
ulated environments, a different set of influencing features
could be modelled and analyzed.
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