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A B S T R A C T

Land subsidence is a significant issue in many coastal megacities, including Shanghai, where it poses risks to 
infrastructure and economic stability. Although numerous studies have used SAR datasets to monitor land 
subsidence in Shanghai, multi-decadal displacement measurements obtained from multi-sensor SAR data remain 
unavailable. Moreover, the contributions and variations of driving factors behind the evolution of land subsi-
dence remain poorly understood. This study employs multi-sensor SAR fusion method and a Random Forest 
model, along with Shapley Additive exPlanations (SHAP), to examine subsidence evolution and assess the in-
fluence of key drivers over the past 30 years. The results show that severe subsidence has spread from central 
urban areas to surrounding suburban regions, particularly in the eastern coastal and southern industrial zones in 
Shanghai. SHAP analysis identified that evapotranspiration, sediment thickness, and groundwater extraction 
were the dominant factors in the early stage of subsidence, while recent groundwater management and recharge 
practices have significantly mitigated the subsidence rate. These findings demonstrate the shifting importance of 
different subsidence factors over time and provide valuable insights for long-term prevention and control 
measures.

1. Introduction

Land subsidence leads to a decline in surface elevation, which affects 
infrastructure and increases flood risks in coastal regions. It is driven by 
both natural processes (e.g., sediment compaction) and human activities 
(e.g., fluid extraction) (Bagheri-Gavkosh et al., 2021; Nicholls et al., 
2021; Shirzaei et al., 2021; Hasan et al., 2023; Huning et al., 2024). Over 
200 locations across 34 countries report significant subsidence, with an 
estimated 12 million km2 of land at risk globally (Shirzaei and Bürg-
mann, 2018; Herrera-García et al., 2021; Fang et al., 2022; Buzzanga 
et al., 2023; Jiang et al., 2023; Ohenhen et al., 2023, 2024; Ao et al., 
2024; Oelsmann et al., 2024; Wang et al., 2024; Thiéblemont et al., 
2024). In China, subsidence-related economic losses average around 
USD 1.5 billion annually, with Shanghai alone incurring over USD 3.37 

billion in damage between 2001 and 2020 (Erkens et al., 2015). As a 
rapidly growing economic center, Shanghai has experienced severe 
subsidence since 1921 due to intensive groundwater extraction, which 
peaked in the 1960s to 1980s. Although groundwater recharge policies 
have reduced extraction impacts, spatially uneven subsidence persists, 
requiring further investigation into its long-term evolution and primary 
driving mechanisms (Yang et al., 2020).

Interferometric Synthetic Aperture Radar (InSAR) enables large- 
scale monitoring of land subsidence with millimeter-level precision 
(Ferretti et al, 2001). Persistent Scatterer Interferometry (PS-InSAR) and 
Small Baseline Subset (SBAS) have proven effective in mitigating the 
interference in low-coherence areas (Berardino et al., 2002). PS-InSAR, 
for instance, was used to analyze subsidence rates across 99 coastal cities 
worldwide from 2015 to 2020, highlighting the significant role of 
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human activities, particularly groundwater extraction in driving subsi-
dence (Wu et al., 2022). SBAS, due to its robustness against temporal 
and spatial decorrelation, is particularly advantageous for monitoring 
large-scale subsidence and has been extensively utilized in studies 
assessing surface subsidence in Chinese cities (Ao et al., 2024). Several 
InSAR-based studies have analyzed subsidence in Shanghai, focusing on 
short-term variations and localized effects (Dong et al., 2014; Zhao et al., 
2019; Wang et al., 2022). However, most studies utilize data from a 
single satellite, often overlooking the potential of integrating multi- 
source, long-term available satellite data that dates back to 1991 
(Damoah-Afari et al., 2007; Dong et al., 2023). Integrating multi-sensor 
data over extended periods enables a deeper understanding of land 
subsidence, especially related to urban development and groundwater 
recovery.

Traditional analysis of subsidence drivers often uses point-based 
correlations, linking subsidence to groundwater levels or aquifer char-
acteristics (Zhu et al., 2015; Chen et al., 2019). While studies have 
applied machine learning to quantify contributions of human and nat-
ural factors, few have focused on whether the driving factors change 
over long-term processes, and the black-box nature of these methods 
limits their interpretability (Zhou et al. 2019; Chen et al., 2021; Qiao 
et al., 2024). Explainable AI (XAI) methods can enhance the trans-
parency and interpretability of models. Among these methods, SHapley 
Additive exPlanations (SHAP) are particularly effective in improving the 
understanding of internal mechanisms of model predictions, offering 
insights into the role of various driving factors to subsidence (Lundberg 
and Lee, 2017; Davydzenka et al., 2024; Loi et al., 2024; Yoo et al., 
2024).

In this study, we construct the first 30-year record of displacement in 
Shanghai using multi-sensor SAR data from ERS-1/2, Envisat ASAR, and 
Sentinel-1A/B, linked via a logistic model to create a continuous record 
from 1992 to 2023. We apply a Random Forest-SHAP model to 

determine the impacts of the factors driving subsidence. Our analysis 
identifies shifts in the primary drivers over time, highlighting the role of 
groundwater management in reducing subsidence and providing a 
framework for mitigating subsidence in coastal megacities.

2. Study area

Shanghai, a major city in the Yangtze River Delta region of China, 
covers an area of 6,340.5 km2 (Fig. 1). The region’s ground elevation 
generally ranges from 2 to 6 m above local mean sea level. The average 
annual temperature is approximately 15 ◦C, with total annual precipi-
tation reaching 1,262.1 mm. The region is primarily composed of 
Quaternary sediments consisting of alternating clay and sand layers 
(200–300 m). Shanghai’s groundwater is categorized into phreatic and 
confined aquifers based on formation time, genetic type, and water 
chemistry (Li et al., 2021).

3. Dataset and processing methods

3.1. Dataset

The dataset includes three C-band SAR images, GNSS and leveling 
benchmark data (for validating InSAR results), and land subsidence 
driving factors (Table 1). Specifically, SAR data from ERS-1/2 (June 
1992 to October 2004), Envisat ASAR (September 2003 to September 
2010), and Sentinel-1A/B (May 2016 to August 2023) were utilized. 
GNSS data were collected from the IGS network (https://network.igs. 
org/), and six leveling point records from 2017 to 2020 were provided 
by Zhang et al. (2023).

Data related to key hydrological, geological, and anthropogenic 
factors influencing land subsidence were also collected (Fig. 2). 
Groundwater extraction and recharge data for Shanghai districts from 

Fig. 1. Study site. (a) Location of Shanghai. The deep yellow areas represent the thickness of the deposited sediment layers. The major rivers are marked by blue 
lines. (b) Coverage areas of three C-band SAR datasets over the study region.
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1990 to 2020 were sourced from the Shanghai Geological Environment 
Bulletin (https://hd.ghzyj.sh.gov.cn/dzkc/dzhjbg). Precipitation and 
evapotranspiration data for the same period, with a 1 km spatial reso-
lution, were provided by Peng et al. (2017, 2019). Building volume data 
for Shanghai from 2000 to 2020 were obtained from the Global Human 
Settlement dataset (https://human-settlement.emergency.copernicus. 
eu/datasets.php). A 1 km gridded population dataset, provided by 

WorldPop, was included to assess subsidence in populated areas 
(https://www.worldpop.org/). Additionally, deposited sediment thick-
ness data (Fig. 1a) were included to represent geological factors influ-
encing subsidence. Table 1 provides further details on the datasets. 
Multicollinearity tests were conducted to assess and reduce redundancy 
among the driving factors of land subsidence (supplementary Fig. S1) 
(Arabameri et al., 2020, Zhao et al., 2024).

3.2. Methods

3.2.1. SBAS technology
Prior to time‑series inversion, all interferometric and geocoding 

steps were carried out in the commercial GAMMA software suite 
(version 201710) (Werner et al., 2000; Wegmüller et al., 2016). Single- 
look complex (SLC) products were imported, and master and slave SLCs 
were co-registered to ensure high-quality interferometric processing. 
Differential interferograms were subsequently generated and multi-
looked, resulting in 149 pairs for ERS-1/2, 220 pairs for Envisat ASAR, 
and 413 pairs for Sentinel-1 (Fig. 3). The maximum spatiotemporal 
baselines of the three types of SAR data interferometry varied due to 
differences in sensors and data volume. The Digital Elevation Model 
(DEM) was used to simulate and remove the topographic phase, fol-
lowed by geocoding of the interferogram (Farr et al., 2007).

Subsequently, the multi-look SBAS technique was applied to detect 
displacement using ERS-1/2, Envisat ASAR and Sentinel-1A/B data 
(Berardino et al., 2002). The time-series analysis was performed using 
the StaMPS software (version 4.1b) (Hooper, 2008). High coherence 
pixels (Hooper et al., 2007) were selected, and the phase difference of 
these pixels were converted into continuous phase changes through 
phase unwrapping, reflecting the true ground displacement (Costantini, 
1998). Subsequently, atmospheric delay and orbital errors were cor-
rected, and noise was removed. Finally, the processed phase of high 
coherence pixels was inverted to obtain the radar line-of-sight (LOS) 
displacement, then converted into vertical using the SAR image’s inci-
dent angle, as shown in Eq. (1): 

dvertical = dLOS/cosθ (1) 

Table 1 
Data used to monitor land subsidence and analyze its potential driving factors.

Data Spatial 
resolution

Timespan Additional information

SAR ERS-1/2 30 m × 30 
m

Jun 1992-Oct 
2004

Flight Direction: 
Descending; Path: 3; No. 
of images: 86

Envisat 
ASAR

30 m × 30 
m

Sep 2003-Sep 
2010

Flight Direction: 
Ascending; Path: 497; No. 
of images: 104

Sentinel-1 
A/B

5 m × 20 m May 2016-Aug 
2023

Flight Direction: 
Ascending; Path: 171; No. 
of images: 182

GNSS Point May 2016- Aug 
2023

Vertical observations 
from the GPS station in 
Jinshan District, 
Shanghai.

Leveling data Point 2017–2020 Observed from six 
leveling points, with their 
locations shown in Fig. 1.

Groundwater 
extraction

1 km 1990–2020 Groundwater extraction 
and recharge in confined 
aquifers.Groundwater 

recharge
1 km 1990–2020

Precipitation 1 km 2000–2020 Peng et al. (2019)
Evapotranspiration 1 km 2000–2020 Peng et al. (2017)
Building volume 

data
1 km In 2000, 2005, 

2010, 2015, 
2020

Pesaresi and Politis 
(2022)

Population density 1 km 2000–2020 WorldPop
Deposited sediment ~ 1 km − Interpolated from 

borehole measurements.

Fig. 2. Land subsidence drivers used for Random Forest-SHAP modeling: (a) precipitation, (b) evapotranspiration, (c) groundwater extraction, (d) groundwater 
recharge, (e) deposited sediment thickness, (f) building volume, and (g) population density. Some data spanning multiple years exist, but only the data from 2020 are 
currently being displayed.
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where θ is the incident angle, and dLOS denotes the displacement along 
the LOS direction. This conversion assumes negligible horizontal 
deformation, an assumption supported by previous studies indicating 
that vertical displacement is the dominant component of ground 
deformation in Shanghai (Wang et al., 2022). However, this simplifi-
cation may not be applicable in all contexts. The ’strapdown’ approach 
offers a promising alternative for capturing three-dimensional dis-
placements in regions where horizontal movements are significant 
(Brouwer and Hanssen, 2024). This method addresses the under-
determined nature of 3D displacement estimation by incorporating 
minimal and largely undisputed contextual information about the 
deformation phenomenon, providing a practical solution to obtain 
physically meaningful estimates. Due to differences in SAR data sources, 
the parameters used in the processing vary accordingly. For detail of the 
parameters used in this analysis, please refer to supplementary Table S1.

3.2.2. Time series displacement fusion method
A comprehensive analysis of land subsidence changes requires long- 

term data, and therefore the displacement time series obtained from 
multi-sensor SAR images need to be effectively fused. There was varia-
tion in both the density and quantity of high coherence points generated 
by the three types of SAR data. A nearest-point matching method was 
then applied to roughly integrate the three datasets (Deng et al., 2017). 
First, using the coherence points from ERS-1/2 data as a reference, the 
closest points in space corresponding to the Envisat ASAR data were 
considered the same. Then, using the first date of ERS-1/2 as the 
reference, the date with the minimum subsidence error within the 
overlapping period was selected as the stitching time to link the data 
temporally. Since the time interval between Envisat ASAR and Sentinel- 
1 was relatively long, subsidence during this period was estimated using 
contour data from the Shanghai Geological Environment Bulletin. To 
assess potential interpolation errors, 100 points were randomly extrac-
ted across different subsidence levels along the original contour lines 
and compared with Kriging-derived values, obtaining a Root Mean 
Square Error (RMSE) of 3.2 and a Mean Absolute Error (MAE) of 1.5 to 
evaluate interpolation accuracy (supplementary Text S2, Table S2). 
Finally, the coherence points from ERS-1/2 and Envisat ASAR were 
matched with the Sentinel-1 results, and a logistic regression model was 
applied to integrate the multi-sensor InSAR time series. The model is as 
follows (Dong et al., 2023): 

d(t) =
D

1 + e− k(t− t0)
+ b (2) 

where d(t) represents the modeled displacement at the coherence points, 
D denotes the potential maximum displacement, and k controls the 
gradient of the logistic regression curve, while time t0 determines the 

inflection point of the curve.
The model parameters were determined by minimizing the objective 

function, which represents the squared difference between the actual 
and estimated displacement. Here, vi

j represents the observed measure-
ments at the j-th time of the i-th series, reflecting the actual land sub-
sidence values. The parameter bi acts as an offset for the i-th time series, 
accounting for baseline differences between individual time series. By 
minimizing the sum of squared errors, the parameters are optimized 
through a nonlinear least squares method, ensuring an accurate fit for 
the time series data (Wright, 2006). The objective function is given by: 

ϕ
(

D, k, t0, bi
)
=

∑

i,j

⎛

⎜
⎝vi

j −

⎛

⎜
⎝

D

1 + e
− k

(
tij − t0

) + bi

⎞

⎟
⎠

⎞

⎟
⎠

2

i ∈ 1, 2,⋯,N; j

∈ 1, 2,⋯,Mi (3) 

The initial parameters are set to provide a reasonable starting point for 
the optimization process: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bi,init = 0, i ∈ 1, 2,⋯,N

kinit =
1

tN
MN

− t1
1

tinit
0 =

tN
MN

+ t1
1

2
Dinit = v0

N
MN

− v0
1
1

(4) 

where bi,init is initialized to 0, assuming no baseline offset at the outset. 
kinit , tinit

0 , and Dinit are determined based on the temporal and displace-
ment ranges of the data, ensuring that the initial estimates align with the 
overall trends of the time series. This approach helps facilitate conver-
gence during the optimization process.

3.2.3. Random Forest – SHAP model
Random Forest works by building multiple decision trees and 

aggregating their predictions, which improves the model’s accuracy and 
robustness. This ensemble learning method effectively handles high- 
dimensional feature data. The algorithm splits the data into feature 
and target variables, building multiple trees using random subsets of 
samples and features. Each tree generates a prediction for the target 
variable, and the final output is an aggregation of these predictions. 
Furthermore, Random Forest provides feature importance scores by 
quantifying each feature’s contribution across all decision trees.

To enhance the model’s interpretability, SHAP is used to help explain 
and understand the decision-making process of the Random Forest 
model (Lundberg and Lee, 2017). The SHAP method computes the 
marginal impact of each feature on the prediction results, ensuring a fair 
and consistent distribution of contributions. This makes the model’s 
explanations more transparent. The fundamental mathematical formu-
lation of SHAP is as follows: 

ϕi(f) =
∑

S⊆N\{i}

|S|!(|N| − |S| − 1 )!

|N|!
[f(S ∪ {i}) − f(S)] (5) 

where N denotes the complete set of features, and S is a subset of N that 
excludes a specific feature xi, f(S ∪ {i}) and f(S) represent the prediction 
results using the features in S, with xi included and excluded, respec-
tively.

The subsidence at each coherence point is denoted as y = [y1, y2,⋯,

yi,⋯, ym] for T1,2,⋯,n, where m represents the number of the points and T 
represents the years. For each point, the values of the seven driving 
factors listed in Table 1, used for subsidence contribution analysis, are 
extracted to construct the vector x = [x1,x2,⋯,xj,⋯,x7]. These driving 
factors are then used as inputs to predict subsidence for 2000 and 2020, 
with the SHAP model used to interpret the predictions. The overall 

Fig. 3. The baseline distributions in both spatial and temporal for the three 
SAR datasets.
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methodology is summarized in Fig. 4.

4. Results

4.1. Spatial and temporal characteristics of displacement in Shanghai

Cross-comparisons of corresponding points within the overlapping 
regions were conducted to evaluate the displacement results of ERS-1/2 
and Envisat ASAR. For the ERS-1/2 data, the sparse and dispersed 
coherence points resulted in a root mean square error (RMSE) of 3.64 
mm/yr (Fig. 5a). In contrast, the Envisat ASAR data exhibited more 
concentrated coherence points, achieving a lower RMSE of 3.11 mm/yr 
(Fig. 5b). Validation against leveling and GPS vertical component data 
confirmed alignment with the average subsidence of coherence points 
within a 100-meter buffer zone, with leveling RMSE of 8.90 mm and GPS 
RMSE of 18.77 mm (Fig. 5c and 5d). For the comparison, only the ver-
tical component of the GNSS data was used, with plate motions 
removed, and both GPS and InSAR results were transformed into the 
same coordinate system (WGS84) to ensure consistency. Additionally, 
subsidence contour data from the years 1996–2001 and 2002–2006, as 
published in the Shanghai Geological Bulletin, were collected for vali-
dation. The results demonstrated a generally consistent spatial pattern 
with the data obtained from ERS-1/2 and Envisat ASAR (Fig. S2). The 
validations demonstrate that all three datasets meet the accuracy 
requirements.

The spatial pattern of displacement across Shanghai based on 
different SAR data is shown in Fig. 6. Uplift is shown by positive values 
(blue), while negative values (red) indicate subsidence. ERS-1/2 data 
(1992–2004) identified 99,371 coherence points (Fig. 6a). During this 
period, severe subsidence was concentrated in central Shanghai, 
showing the maximum subsidence of 352 mm in central urban area, and 
extended into the southeastern Pudong. Envisat ASAR data (2003–2010) 
identified 1,521,981 coherence points (Fig. 6b), showing a reduction in 
central urban area subsidence, but intensified subsidence along the 
coastal regions of Pudong, where maximum cumulative subsidence 
reached 237 mm. Sentinel-1 data (2016–2023) obtained 994,705 
coherence points, indicating further intensified subsidence in the 

eastern and southern coastal areas, with a peak total subsidence of 206 
mm (Fig. 6c). The observed spatial trends in this study are consistent 
with previous monitoring results of land subsidence in Shanghai (Zhao 
et al.,2019; Wang et al., 2022).

4.2. Fusion of multi-sensor InSAR time series

To fuse the time series from three types of SAR images, the meth-
odology described in Section 3.2.2 was applied. Using point P1 as a case 
(location shown in Fig. 8), the segmented time series were linked to 
construct a continuous long-term land subsidence time series. The fused 
time series shows a good alignment with the fitted curve (Fig. 7). Sub-
sequently, the time series for all coherence points are integrated to 
construct the long-term land subsidence in Shanghai from 1992 to 2023. 
The logistic model effectively captured the observed pattern, with sub-
sidence initially accelerating and gradually stabilizing.

The spatial distribution of cumulative land subsidence over 30 years 
revealed three distinct subsidence funnels situated within the central 
urban area, Pudong District, and the southern coastal region of Shanghai 
(Fig. 8). The maximum cumulative subsidence for these areas was 388 
mm, 605 mm, and 363 mm, respectively. Taking P1 in the central urban 
area as an example, the temporal variation in the subsidence rate can be 
observed. In the initial phase, the subsidence rate was relatively fast, as 
evidenced by the steep slope of the fitting curve from 1992 to 2008 
(Fig. 7). Over time, the subsidence rate gradually slowed, and the curve 
flattened, indicating that the subsidence process is progressively 
entering a stable state.

4.3. Relative importance of driving factors

Multicollinearity tests were performed to evaluate the correlations 
among the driving factors. The Variance Inflation Factor (VIF) values for 
all factors are below 3, demonstrating that the factors are suitable for 
incorporation into the model (Fig. S1). Based on the fused displacement 
time-series and associated driving factors data, we constructed a 
Random Forest-SHAP model to predict and interpret its driving factors. 
A total of 94,438 coherence points were randomly split, with 80% 

Fig. 4. Flowchart of methodology.
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allocated for training the model and 20% reserved for testing. To ac-
count for temporal variations and minimize the risk of overfitting, the 
model was trained separately on data from 2000 and 2020, ensuring that 
predictions for each year were independent. The model was trained with 
‘n_estimators’ set to 300, achieving high accuracy for subsidence pre-
dictions in 2000 and 2020, with R2 scores of 0.96 (Fig. 9).

Fig. 10 (a) and (b) show the contribution proportions of the driving 
factors, (c) and (d) display the SHAP decision plots, where each line 
represents a data point; 1,000 data points were selected for display in 
these plots. Fig. 10 (e) and (f) show the SHAP summary plots, where 
positive SHAP values indicate uplift, while the negative values represent 

subsidence. Red and blue correspond to high and low feature values, 
respectively, with their associated positive or negative contributions to 
the model’s predictions. In 2000, evapotranspiration (ET) and deposited 
sediment thickness (Compre) were the primary contributors, accounting 
for 26% and 25% of subsidence, respectively. Precipitation (PRE) 
contributed 15% and groundwater extraction (GWE) accounted for 9%, 
with minimal impact from groundwater recharge (GWR). The decision 
plot shows that Compre and ET lines have a large divergence and have 
the most significant impact on the model (Fig. 10). SHAP analysis re-
veals a significant negative correlation between land subsidence and 
both Compre and ET, where higher values of these factors (indicated in 

Fig. 5. Data Validation and multi-sensor InSAR displacement results. (a) Cross-validation results for the overlapping region of ERS-1/2 data. (b) Cross-validation 
results for the overlapping region of Envisat ASAR data. (c) Validation of InSAR-derived Sentinel-1 A/B velocities against leveling benchmark data. (d) Valida-
tion of InSAR-derived Sentinel-1 A/B velocities against GNSS-based velocities.

Fig. 6. Cumulative land subsidence across Shanghai. (a) ERS-1/2 (1992–2004). (b) Envisat ASAR (2003–2010). (c) Sentinel-1 A/B (2016–2023). The black 
pentagram represents the location with the maximum subsidence during the monitoring period.
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red on the SHAP plot) associated with greater subsidence. In contrast, 
PRE intensity shows a significant positive correlation with land 
subsidence.

By 2020, GWR became the primary driving factor, accounting for 
27% of subsidence, followed by Compre at 18%. Contributions from ET 
and GWE decreased significantly, while the impacts of other factors 
remained relatively stable. The decision plot shows that the GWE line 

exhibits smaller divergence, while the GWR line shows an increased 
level of divergence. SHAP values indicated that GWR and PRE had a 
positive association with subsidence, suggesting that higher levels were 
linked to uplift. In contrast, Compre, along with ET and BLT, still 
demonstrated a significant negative impact on land subsidence. 
Although GWE still exhibited some negative influence, its SHAP range 
narrowed. Notably, while the contributions of BLT and POP remained 
stable, their SHAP ranges broadened.

The relative importance of various driving factors shifted from 2000 
to 2020. The contribution of GWR increased by 21% compared to 2000, 
while that of GWE decreased by 8%, reducing its significance. The hy-
drological factors (GWE and GWR, ET, and PRE) made substantial 
combined contributions in both 2000 and 2020, accounting for 57% and 
64% of subsidence, respectively. These factors influence land subsidence 
directly or indirectly by affecting groundwater levels. Compre consis-
tently had a significant impact in both periods.

5. Discussion

5.1. SHAP-based interpretation of land subsidence drivers

From 2000 to 2020, the impact of groundwater extraction on land 
subsidence decreased significantly. This period saw a substantial 
reduction in groundwater extraction, with some areas halting extraction 
entirely and adopting recharge measures. Fig. 11 illustrates both the 
overall and district-level groundwater extraction and recharge in 
Shanghai from 1992 to 2020. The total groundwater extraction in 
Shanghai has shown a continuous decline over this period. It can be 
observed that in the central urban districts (Yangpu, Huangpu, Xuhui, 

Fig. 7. Individual and fused multi-sensor InSAR time series with the model- 
fitting curve. The orange circles represent the original Sentinel-1 monitoring 
results, with the displacement of the first date set to zero, while the pink circles 
represent the logistic regression fitting results.

Fig. 8. Cumulative surface fusion displacement distribution from three SAR datasets. The white dashed box selects three subsidence centers within the study area for 
zooming in, situated within the central urban area, Pudong District, and the southern industrial zones, respectively. P1 is a subsidence point within the central 
urban area.
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Putuo, Changning, Jingan, and Hongkou), groundwater recharge grad-
ually exceeded extraction starting from 1992. In other districts, recharge 
began to surpass extraction around 2008. This shift reflects the effec-
tiveness of groundwater management policies, including recharge 

initiatives and extraction limits, in mitigating subsidence. The SHAP 
values, clustered in the positive range, demonstrate the growing effec-
tiveness of recharge in controlling subsidence by this time.

The thickness of the deposited sediment consistently influenced 

Fig. 9. Random Forest model prediction results. (a) 2000 and (b) 2020. Each data point represents the subsidence of a coherence point.

Fig. 10. Normalized impact and SHAP-based assessment of land subsidence driving factors. (a) Driving factors importance estimated with Random Forest in 2000. 
(b) Driving factors importance estimated with Random Forest in 2020. (c) SHAP decision plot of driving factors in 2000. (d) SHAP decision plot of driving factors in 
2020. (e) SHAP summary plot of driving factors in 2000. (f) SHAP summary plot of driving factors in 2020. ET: evapotranspiration; Compre: deposited sediment 
thickness; PRE: precipitation; GWE: groundwater extraction; GWR: groundwater recharge; BLT: building volume data; POP: population density.
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subsidence in both periods. The potential magnitude of subsidence is 
controlled by the thickness of the deposited sediment, with larger values 
typically indicating more pore space for compaction. Notably, areas 
with subsidence greater than 200 mm have thicker deposited sediment, 
as indicated by higher median thickness (Fig. 12a). This impact suggests 
that in regions with thicker deposited sediment, the likelihood of sub-
sidence is higher. Therefore, geological conditions remain a crucial 
factor with a long-term and stable influence on this phenomenon.

Evapotranspiration and precipitation had relatively stable and indi-
rect effects on subsidence across both periods, mainly through their 

influence on aquifer recharge (Fig. 12b). Increased precipitation can 
enhance groundwater recharge, while higher evapotranspiration may 
exacerbate groundwater depletion by limiting surface water infiltration. 
In 2020, the positive impact of precipitation became more evident, 
possibly due to higher precipitation levels or the implementation of 
rainwater utilization and ‘sponge city’ policies, which increased surface 
permeability and reduced runoff. However, increasing global irrigation 
demand, coupled with climate-induced changes in precipitation, evap-
oration, and surface water availability, is driving greater reliance on 
groundwater, exacerbating aquifer overextraction and land subsidence, 

Fig. 11. Variations in groundwater extraction and recharge in Shanghai at both overall and district levels (1992–2020): Red indicates that recharge exceeds 
extraction, while blue indicates the opposite.

Fig. 12. Characteristics of land subsidence driving factors. (a) Deposited sediment thickness at different displacement levels. (b) Evapotranspiration and precipi-
tation levels in 2000 and 2020.
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while uncertainties in climate model projections further complicate 
future groundwater-related subsidence estimates (Huning et al., 2024). 
Projections from Coupled Model Intercomparison Project Phase 6 
(CMIP6) indicate potential increases in extreme rainfall events and 
prolonged dry periods, which may lead to greater fluctuations in 
groundwater recharge and depletion (Copernicus Climate Change Ser-
vice and Store, 2021). By 2040, a combination of factors, including 
human migration, urbanization, worsening droughts, declining 
groundwater levels, shifts in land cover and land use, sea level rise 
(SLR), and overall temperature increases, is projected to expand the 
global potential subsidence area by 7% and increase the population 
affected by subsidence by 30% (Herrera-García et al., 2021). Thus, 
future research should integrate hydrological modeling with climate 
projections to assess the long-term impacts of climate variability on 
subsidence risks, particularly in coastal megacities like Shanghai.

The contribution of building volume to subsidence showed an 
insignificant increase from 2000 to 2020. This modest impact is likely 
because urban areas had already experienced intensive development 
before 2000, reducing the relative effect of new construction (Xu et al., 
2009, 2012). Subsidence tends to accelerate in recently developed areas 
(Ao et al., 2024), making new buildings in suburban and reclaimed areas 
vulnerable to subsidence due to sedimentary consolidation (Fig. 13). To 
further investigate the spatial relationship between construction activity 
and subsidence, we analyzed the proportion of major engineering pro-
jects relative to subsidence points across different districts (Fig. 14). The 
results indicate that districts with higher construction activity exhibit a 
greater proportion of subsidence points, whereas central urban areas, 
such as Huangpu, Xuhui, Changning, and Jingan, where construction 
intensity has declined, experience relatively lower subsidence rates. The 
SHAP results indicate that building volume is not a highly influential 
factor in subsidence. This may be because subsidence is also influenced 
by factors such as pile foundation depth and soil properties, which 
building volume alone does not capture (Ao et al., 2024). Additionally, 
the spatial density of input data influences the model’s interpretation, 
with higher density in urban areas and lower density in suburbs. How-
ever, the impact of construction in suburban areas can be more signifi-
cant due to rapid urbanization, potentially leading to an 
underestimation of its influence (Xu et al., 2016; Wang et al., 2022).

Population density showed no significant impact on subsidence in 

either period, likely due to its indirect role. Instead, higher population 
density may indirectly contribute to uplift by driving stricter ground-
water management policies in response to increased water demand. 
Additionally, higher density often corresponds to infrastructure im-
provements, further supporting the indirect stabilization of subsidence.

5.2. Comparison with other subsiding megacities

The infrastructure of coastal cities could face severe impacts from 
flooding resulting from the combined effects of land subsidence and 
rising sea levels. Asian countries such as China, Indonesia, and Thailand 
are among the most heavily affected by these losses. In 11 coastal cities 
across Asia, land subsidence was primarily due to urban development 
and groundwater extraction, occurring at rates several times faster than 
the rise in sea levels (Takagi et al., 2023). Although some cities have 
seen a reduction in subsidence rates due to decreased groundwater 
extraction, subsidence continues to progress in places like Jakarta, 
Manila, and Bangkok.

Land subsidence in Jakarta was first observed in 1926 and has 
worsened over decades due to rapid population growth and industrial 
expansion. Since the 1980s, private groundwater extraction surged, with 
registered wells increasing from 352 in 1968 to 2,626 in 1998. After 
policy interventions, growth slowed, reaching 4,551 by 2016 (Batubara 
et al., 2023). However, GPS surveys (2015–2019) show northern coastal 
areas still sinking at 6.2 cm/yr, likely due to unregistered groundwater 
extraction (Abdullah et al., 2021).

In Bangkok, significant land subsidence began in the 1970s and 
peaked in the early 1980s at rates of up to 12 cm/yr (Phien-wej et al., 
2006). In response, the government implemented groundwater regula-
tion policies, successfully reducing subsidence (Babel et al., 2006). 
However, groundwater extraction rose from 1.2 million to over 2 million 
cubic meters per day between the early 1980s and 2000, causing sub-
sidence to extend beyond the city center into suburban and provincial 
areas (Ahmed et al., 2024). Strict mitigation measures, including critical 
groundwater zones, and expanded surface water supply, have helped 
control urban subsidence, though peripheral regions remain vulnerable 
(Bremard, 2022).

In Manila, groundwater extraction has long been the primary driver 
of land subsidence. Tidal gauge records (1901–1965) showed a trend of 

Fig. 13. Examples of land subsidence associated with construction. The white dashed box represents the Dishui Lake. The image in the top right is a remote sensing 
image from April 25, 2018, and the image in the bottom right is from December 12, 2024. During this period, Dishui Lake underwent construction.
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1.5 mm/yr, later rising to 14.7 mm/yr, with earlier trends possibly 
linked to global sea-level rise (Siriwardane-de Zoysa et al., 2021). Since 
the 1970s, groundwater extraction has increased fivefold due to rapid 
population growth. Although the Water Code Amendment later banned 
deep wells within municipal boundaries, weak enforcement has allowed 
groundwater depletion to persist, worsening subsidence.

Shanghai has successfully implemented groundwater management 
policies that have reduced subsidence in certain areas, particularly in 
the central urban districts. Similar to Bangkok, Shanghai has experi-
enced a shift in subsidence patterns due to urban expansion, indicating 
the need for comprehensive regional land-use planning. The experiences 
of these cities suggest that a combination of stricter groundwater pol-
icies, improved enforcement, and alternative water supply strategies 
could further enhance Shanghai’s long-term subsidence mitigation 
efforts.

5.3. Integrated approaches to land subsidence prevention and mitigation

The findings of this study underscore the necessity of comprehensive 
policy interventions to mitigate land subsidence in rapidly urbanizing 
coastal megacities like Shanghai. Sustainable groundwater management 
remains critical, requiring the optimization of groundwater recharge 
and extraction through designated subsidence control zones with spe-
cific regulations. Additionally, enhanced rainwater collection and reuse 
strategies can reduce dependence on groundwater, mitigating long-term 
subsidence risks. Given the role of engineering activities in accelerating 
subsidence, stricter construction guidelines should be implemented, 
particularly in soft soil regions, alongside foundation design standards 
that account for long-term subsidence risks. Furthermore, policies 
should restrict high-density development in subsidence-prone areas to 
prevent excessive loading on soft soils. To support proactive risk man-
agement, remote sensing-based early warning systems should be 
developed, integrating InSAR monitoring and artificial intelligence- 
based prediction models to detect anomalies and issue timely warn-
ings. Such a system would provide government agencies and stake-
holders with critical information to implement targeted mitigation 
strategies.

6. Conclusions

This study provides a comprehensive analysis of land subsidence in 
Shanghai over the past 30 years using multi-sensor InSAR data, 
revealing a significant spatial shift in subsidence patterns from central 
urban districts to eastern coastal and southern industrial zones. The 

Random Forest-SHAP analysis highlights that while groundwater man-
agement policies have successfully mitigated excessive subsidence in 
certain areas, sediment thickness remains a persistent driver. These 
findings emphasize the need for sustainable urban planning strategies 
that account for evolving subsidence risks. Specifically, policymakers 
should integrate subsidence-prone zones into land-use planning, enforce 
stricter construction regulations in soft soil areas, and enhance 
groundwater recharge programs to maintain long-term stability.

Although this study provides long-term land subsidence data, the 
temporal resolution of the driving factor characteristics may be limited, 
affecting the ability to capture seasonal variations in subsidence. Future 
research should incorporate higher-resolution datasets (e.g., ground-
water time series) and advanced machine learning techniques to 
improve prediction accuracy and further explore the interactions be-
tween climate change, human activities, and subsidence mechanisms.
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Galápagos. J. Geophys. Res. Solid Earth. 112 (B7). https://doi.org/10.1029/ 
2006JB004763.

Hooper, A., 2008. A multi-temporal InSAR method incorporating both persistent 
scatterer and small baseline approaches. Geophys. Res. Lett. 35 (16). https://doi. 
org/10.1029/2008GL034654.

Huning, L.S., Love, C.A., Anjileli, H., Vahedifard, F., Zhao, Y., Chaffe, P.L., Cooper, K., 
Alborzi, A., Pleitez, E., Martinez, A., Ashraf, A., Mallakpour, I., Moftakhari, H., 
AghaKouchak, A., 2024. Global land subsidence: Impact of climate extremes and 
human activities. Rev. Geophys. 62 (4), e2023RG000817. https://doi.org/10.1029/ 
2023RG000817.

Jiang, R., Lu, H., Yang, K., Chen, D., Zhou, J., Yamazaki, D., Pan, M., Li, W., Xu, N., 
Yang, Y., Guan, D., Tian, F., 2023. Substantial increase in future fluvial flood risk 
projected in China’s major urban agglomerations. Commun. Earth Environ. 4 (1), 
389. https://doi.org/10.1038/s43247-023-01049-0.

Li, M.G., Chen, J.J., Xu, Y.S., Tong, D.G., Cao, W.W., Shi, Y.J., 2021. Effects of 
groundwater exploitation and recharge on land subsidence and infrastructure 
settlement patterns in Shanghai. Eng. Geol. 282, 105995. https://doi.org/10.1016/j. 
enggeo.2021.105995.

Loi, C.L., Wu, C.C., Liang, Y.C., 2024. Prediction of tropical cyclogenesis based on 
machine learning methods and its SHAP interpretation. J. Adv. Model. Earth Syst. 16 
(3), e2023MS003637. https://doi.org/10.1029/2023MS003637.

Lundberg, S. M., Lee, S. I., 2017. A unified approach to interpreting model predictions. 
NIPS 2017 In Proceedings of the 31st International Conference on Neural 
Information Processing Systems. NIPS 4765–4774. Curran Associates, Inc. Retrieved 
from https://papers.nips.cc/paper/7062-aunified-approach-to-interpreting-model- 
predictions.pdf.

Nicholls, R.J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A.T., Meyssignac, B., Hanson, S. 
E., Merkens, J.L., Fang, J., 2021. A global analysis of subsidence, relative sea-level 
change and coastal flood exposure. Nat. Clim. Change 11 (4), 338–342. https://doi. 
org/10.1038/s41558-021-00993-z.

Oelsmann, J., Marcos, M., Passaro, M., Sanchez, L., Dettmering, D., Dangendorf, S., 
Seitz, F., 2024. Regional variations in relative sea-level changes influenced by 
nonlinear vertical land motion. Nat. Geosci. 17 (2), 137–144. https://doi.org/ 
10.1038/s41561-023-01357-2.

Ohenhen, L.O., Shirzaei, M., Ojha, C., Kirwan, M.L., 2023. Hidden vulnerability of US 
Atlantic coast to sea-level rise due to vertical land motion. Nat. Commun. 14 (1), 
2038. https://doi.org/10.1038/s41467-023-37853-7.

Ohenhen, L.O., Shirzaei, M., Ojha, C., Sherpa, S.F., Nicholls, R.J., 2024. Disappearing 
cities on US coasts. Nature 627 (8002), 108–115. https://doi.org/10.1038/s41586- 
024-07038-3.

Peng, S., Ding, Y., Wen, Z., Chen, Y., Cao, Y., Ren, J., 2017. Spatiotemporal change and 
trend analysis of potential evapotranspiration over the Loess Plateau of China during 
2011–2100. Agric. for. Meteorol. 233, 183–194. https://doi.org/10.1016/j. 
agrformet.2016.11.129.

Peng, S., Ding, Y., Liu, W., Li, Z., 2019. 1 km monthly temperature and precipitation 
dataset for China from 1901 to 2017. Earth Syst. Sci. Data 11 (4), 1931–1946. 
https://doi.org/10.5194/essd-11-1931-2019.

Pesaresi, M., Politis, P., 2022. GHS-BUILT-V R2022A-GHS built-up volume grids derived 
from joint assessment of Sentinel-2, Landsat, and global DEM data, for 1975-2030. 
Dataset, European Commission, Joint Research Centre, Brussels.

Phien-wej, N., Giao, P.H., Nutalaya, P., 2006. Land subsidence in bangkok. Thailand. 
Eng. Geol. 82 (4), 187–201. https://doi.org/10.1016/j.enggeo.2005.10.004.

Qiao, X., Chu, T., Krell, E., Tissot, P., Holland, S., Ahmed, M., Smilovsky, D., 2024. 
Interpretation and attribution of coastal land subsidence: An InSAR and machine 
learning perspective. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 17, 
4768–4783. https://doi.org/10.1109/JSTARS.2024.3361391.

Shirzaei, M., Bürgmann, R., 2018. Global climate change and local land subsidence 
exacerbate inundation risk to the San Francisco Bay Area. Sci. Adv. 4 (3), eaap9234. 
https://doi.org/10.1126/sciadv.aap9234.

C. Lu et al.                                                                                                                                                                                                                                       International Journal of Applied Earth Observation and Geoinformation 140 (2025) 104606 

12 

https://doi.org/10.1016/j.jag.2025.104606
https://doi.org/10.1016/j.jag.2025.104606
https://doi.org/10.1126/science.adl4366
https://doi.org/10.1088/1755-1315/873/1/012034
https://doi.org/10.1016/j.scitotenv.2024.174285
https://doi.org/10.1016/j.scitotenv.2020.138595
https://doi.org/10.1016/j.scitotenv.2021.146193
https://doi.org/10.1016/j.geoforum.2023.103689
https://doi.org/10.1016/j.geoforum.2023.103689
https://doi.org/10.1109/TGRS.2002.803792
https://doi.org/10.1109/TGRS.2002.803792
https://doi.org/10.3390/su141710593
https://doi.org/10.1007/s00190-024-01918-2
https://doi.org/10.1007/s00190-024-01918-2
https://doi.org/10.1126/sciadv.adi8259
https://doi.org/10.1126/sciadv.adi8259
https://doi.org/10.1016/j.jag.2018.09.003
https://doi.org/10.1016/j.jag.2018.09.003
https://doi.org/10.1016/j.jag.2020.102284
https://doi.org/10.1109/36.673674
https://doi.org/10.1109/36.673674
https://doi.org/10.1029/2023GL104497
https://doi.org/10.1029/2023GL104497
https://doi.org/10.1080/15481603.2017.1331511
https://doi.org/10.1016/j.rse.2022.113446
https://doi.org/10.1016/j.rse.2022.113446
https://doi.org/10.1007/s12665-013-2990-y
https://doi.org/10.1007/s12665-013-2990-y
https://doi.org/10.5194/piahs-372-189-2015
https://doi.org/10.1038/s41467-022-34525-w
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1109/36.898661
https://doi.org/10.1038/s41467-023-41933-z
https://doi.org/10.1126/science.abb8549
https://doi.org/10.1029/2006JB004763
https://doi.org/10.1029/2006JB004763
https://doi.org/10.1029/2008GL034654
https://doi.org/10.1029/2008GL034654
https://doi.org/10.1029/2023RG000817
https://doi.org/10.1029/2023RG000817
https://doi.org/10.1038/s43247-023-01049-0
https://doi.org/10.1016/j.enggeo.2021.105995
https://doi.org/10.1016/j.enggeo.2021.105995
https://doi.org/10.1029/2023MS003637
https://doi.org/10.1038/s41558-021-00993-z
https://doi.org/10.1038/s41558-021-00993-z
https://doi.org/10.1038/s41561-023-01357-2
https://doi.org/10.1038/s41561-023-01357-2
https://doi.org/10.1038/s41467-023-37853-7
https://doi.org/10.1038/s41586-024-07038-3
https://doi.org/10.1038/s41586-024-07038-3
https://doi.org/10.1016/j.agrformet.2016.11.129
https://doi.org/10.1016/j.agrformet.2016.11.129
https://doi.org/10.5194/essd-11-1931-2019
http://refhub.elsevier.com/S1569-8432(25)00253-5/h0205
http://refhub.elsevier.com/S1569-8432(25)00253-5/h0205
http://refhub.elsevier.com/S1569-8432(25)00253-5/h0205
https://doi.org/10.1016/j.enggeo.2005.10.004
https://doi.org/10.1109/JSTARS.2024.3361391
https://doi.org/10.1126/sciadv.aap9234


Shirzaei, M., Freymueller, J., Törnqvist, T.E., Galloway, D.L., Dura, T., Minderhoud, P.S., 
2021. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth 
Environ. 2 (1), 40–58. https://doi.org/10.1038/s43017-020-00115-x.
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Thiéblemont, R., Le Cozannet, G., Nicholls, R.J., Rohmer, J., Wöppelmann, G., 
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