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Abstract

An accurate segmentation model for hip compo-
nents could improve the diagnosis of Osteoarthritis,
a prevalent age-related condition affecting joints.
A significant challenge in developing effective and
robust segmentation models are the domain differ-
ences across various datasets. In this study, we in-
vestigate the impact of different data augmentation
and preprocessing techniques on the generalizabil-
ity of femur segmentation models across datasets.
Using two labeled datasets, we evaluate the perfor-
mance of a U-Net segmentation model, focusing on
the effectiveness of augmentations like image flip-
ping, random rotations, blur, contrast, and bright-
ness adjustments. Our findings reveal that certain
augmentations, particularly random rotations of up
to 15 degrees, vertical image flipping and light
blurring, significantly improve the model’s gener-
alization to another data set, reducing boundary er-
rors and enhancing segmentation accuracy. These
results underscore the potential of targeted data
augmentations in developing robust, generalizable
models for hip joint component segmentation.

1 Introduction
Osteoarthritis (OA) is a prevalent age-related medical
condition, characterized by the progressive deterioration of
joint structures, particularly in weight-bearing joints such
as the knees or hips. The diagnosis of OA is made on the
basis of multiple factors, with the Joint Space Width (JSW)
remaining the primary criterion for diagnosing OA.The
joint space width (JSW) is the distance between the bones
in a joint. Clinicians currently measure the JSW manually
, which is time-consuming and prone to errors. A more
precise and robust measurement of the JSW in radiographs is
therefore an essential step in order to improve the accuracy of
the diagnosis and tracking the progression of the condition.
One important aspect of this are the precise segmentations of
the hip joint components that create an accurate bone surface
outline.

A common problem when it comes to generalisation of
a segmentation model to other data sets are domain dif-
ferences [1]. Domain differences are variations that can
exist between datasets originating from different sources.
These differences can significantly affect the performance
of machine learning models. Understanding and addressing
domain differences is important for developing robust and
generalizable models.
In the context of x-ray images, domain differences can arise
from different sources. Differences in the equipment used
(e.g., different X-ray machines or settings), lighting condi-
tions, and image resolution can introduce variations. For
example, two hospitals might use different X-ray machines
that produce images with different levels of contrast and
noise. Variability in patient populations, such as age, gender,
body type, and medical history, can affect the appearance of

medical images. Domain differences can lead to a domain
shift [2], where a model trained on one dataset performs
poorly on another due to the variations between the domains.
This can result in reduced accuracy and lower generalizabil-
ity.
Data augmentation techniques have been shown to avoid
over fitting and help generalization by enlarging the data set
and introduce sample greater sample diversity [3] [4]. We
can use data augmentation methods to help bridge domain
differences by manipulating the training data in ways that
simulate the variations present in the target domain.
In this paper we will study the effects of different data
augmentation techniques on the generalisability of a seg-
mentation model of femurs in X-ray images to different a
dataset.

2 Methods and Materials
2.1 General Approach
To evaluate the effectiveness of augmentation methods in
generalizing to a different dataset, we need two labeled
datasets and a segmentation model. First, we train the model
on one dataset and then test its segmentation accuracy on both
the training dataset and the other dataset. If we observe a
performance difference, we apply data augmentations to the
training dataset, retrain the model on the augmented data, and
reevaluate its performance on both datasets.

2.2 Data augmentations
Data augmentation offers numerous benefits for generalizing
to different datasets. By exposing the model to augmented
versions of the same data, it reduces the likelihood of mem-
orizing specific details of the training images. Instead, it
learns more generalized features that are useful across vari-
ous datasets. Data augmentation can introduce variations in
the training data through random transformations, mimick-
ing the diversity found in real-world data [5]. This helps the
model learn to handle a broader range of scenarios. For exam-
ple, augmentations can simulate different conditions such as
lighting changes, different angles, and noise, which the model
might encounter in new datasets. This enhances the model’s
robustness and performance, even when the test data differs
from the training data.
When considering how training datasets can differ, it’s im-
portant to note that different hospitals use varying equipment
and calibration protocols, affecting image focus, brightness,
contrast, and noise levels. The position and orientation of the
patient within the X-ray image can also vary. Additionally,
there is variability in patient populations, such as a higher
prevalence of hip implants or differences in gender distribu-
tion.
To address these differences, we propose a set of data aug-
mentations that can simulate these variations. For example,
augmentations that randomly change blur, brightness, con-
trast, and noise can help address equipment-related differ-
ences. However, factors like differences in patient population
cannot be addressed by these augmentations.
Augmentations also force the model to focus on learning in-
variant and discriminative features. For instance, rotating or



flipping an image helps the model recognize objects and pat-
terns regardless of their orientation or position, enhancing its
ability to generalize. Given the limited scope of this project,
we will focus on the following data augmentations:

1. Image Flipping
2. Random Rotation
3. Random Blur
4. Random Contrast Adjustments
5. Random Brightness Adjustments

We will apply these augmentations with varying levels of in-
tensity, such as different degrees of rotation and blur, to de-
termine which levels of augmentation work best.

2.3 Measuring Differences between Datasets
Given the potential differences we highlighted earlier and the
data augmentations designed to address these discrepancies,
it is important to quantify these differences in order to asses
if they exist and how strong they are. Specifically, we need
a method to compare the brightness, contrast, and blurriness
between the datasets.
A straightforward approach is to compare the intensity
distributions between the two datasets. Differences can be
observed by visually inspecting the histogram, as well as by
comparing the mean and standard deviation.

As measure for Blur, we can calculate the mean vari-
ance of the Laplacian for each data set. The variance of the
Laplacian is a widely-used method for quantifying image
blurriness [6]. The Laplacian operator highlights regions
of rapid intensity change, such as edges. By applying the
Laplacian operator to an image, we measure the variability
of pixel intensity changes.
High variance can indicate a large number of rapid intensity
changes, corresponding to a sharp image with well-defined
edges where as low variance can indicate fewer rapid
intensity changes, corresponding to a blurry image where
edges are less distinct and details are lost. However, there
are limitations to using the Laplacian variance metric. The
Laplacian operator, is sensitive to noise. This sensitivity can
lead to an inflation of variance, falsely indicating sharper
image quality.
Additionally, images with extensive uniform regions, such as
plain backgrounds, tend to exhibit low variance regardless of
their actual blurriness. Moreover, when comparing datasets,
variations in image content, lighting conditions, and other
factors can influence the computed variance. These variations
may confound assessments of image blurriness, complicating
the interpretation and comparison of results.

2.4 Segmentation Model
The U-Net architecture is a widely used convolutional
neural network (CNN) designed for image segmentation
tasks [7] . It was originally developed for biomedical
image segmentation but has since been applied to various
segmentation problems across different domains [8][9][10].
The architecture consists of a symmetric encoder-decoder
structure with skip connections between corresponding

layers in the encoder and decoder paths [7]. The symmetric
encoder-decoder architecture of U-Net allows for the effec-
tive extraction of both low-level and high-level features. The
encoder path captures the context of the input image, while
the decoder path allows for precise localization, important
for accurate segmentation of joint components.
Additionally, U-Net employs skip connections between
corresponding layers in the encoder and decoder paths,
which help preserve spatial information and details[11].
This is particularly important for X-ray images, where small
structures and subtle variations must be accurately captured.
U-Net is also highly adaptable to different segmentation
tasks. Its architecture can be easily modified and extended
to incorporate additional layers or different types of input
data. Numerous studies and applications have successfully
used U-Net for similar tasks, showing its effectiveness.
This includes segmentation of bone structures and other
anatomical features in radiographs [12][13][14], which
resembles our application.

While there are other suitable models such as SegNet[15],
DeepLab[16], or adaptations of the UNet architecture like
ResU-Net [17] or TransUNet [18], we chose the basic
model. This decision was mainly driven by the abundance of
available resources, tutorials, and code samples.

2.5 Evaluation Metrics
To evaluate the accuracy of model we employ two different
metrics: Jaccard index and Hausdorff distance. The Jaccard
index J between two sets A and B is defined as:

J(A,B) =
|A ∩B|
|A ∪B|

The Hausdorff distance dH between two sets A and B is
defined as:

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
where:

• sup denotes the supremum (least upper bound),

• inf denotes the infimum (greatest lower bound),

• d(a, b) represents the distance between points a and b in
the metric space.

Given the relatively large area we need to segment, substan-
tial boundary errors can have a relatively small impact on the
Jaccard index. Therefore, we include the Hausdorff distance,
which emphasizes boundary accuracy and can, in some cases,
provide a more insightful measure of performance compared
to the Jaccard index.

3 Experiment
3.1 Data
We utilize two datasets in our study: the OAI [19] and the
CHECK [20] datasets. Both datasets contain X-ray images of
the hips of osteoarthritis patients. The OAI dataset is signif-
icantly larger, with a total of 12294 images, compared to the



CHECK dataset, which includes 3707 images. Images were
taken over multiple years, the total number of patients that
participated in the CHECK study is 1002, where as in the OAI
study, 4796 people participated. For both of the datasets we
have obtained the segmentation from Bonefinder [21] which
serves as our ground truth. Bonefinder is a fully automatic
software tool designed to outline and segment skeletal struc-
tures from 2D radiographs.

3.2 Preprocessing
For preprocessing, we start by loading the DICOM image.
We use the BoneFinder segmentation to crop the image to the
general region of the femur. Although we utilize the ground
truth for this step, it is worth noting that a model could be
trained to perform this cropping, the detailed outlines of the
segmentation are harder to obtain than finding the general
area of interest. Next, we use the segmentation obtained from
BoneFinder to create a binary segmentation mask of both
cropped femurs. Finally, we resize both the image and the
mask to 256x256 pixels. In 1 we can see an example of the
processed image and the corresponding binary mask.

Figure 1: Left:cropped and resized image, Middle: cropped and re-
sized binary mask, Right: mask overlaid on the image

3.3 Model Training
The specific UNET-model and code to train the model was
taken from a project on Github to segment lungs[22]. The
preprocessed images and masks are divided into three sets: a
training set comprising 70 percent of the data, a validation set
containing 10 percent, and a test set containing 20 percent.
We use the negative log likelihood (NLL) as the loss func-
tion, a common choice for deep learning models. Each model
is trained for 30 epochs using the Adam optimizer, which
is known for its efficiency and effectiveness in training deep
learning models, with a learning rate of 0.0005. The model
is saved whenever the validation loss is smaller than the pre-
vious minimum validation loss. From our observations, the
validation loss typically starts to rise continuously after about
10 to 20 epochs, so we run the training for 30 epochs to en-
sure convergence.

3.4 Data augmentations
The following data augmentation techniques will be applied
to the training data of the CHECK data set in order to asses
its influence on the generalisation. For each augmentation,
a new model with the specific augmentation will be trained
on CHECK and evaluated on CHECK and OAI data set. The

augmentation levels for blur, contrast, and brightness adjust-
ment were manually selected to realistically simulate strong,
medium, and small changes.

1. Image Flipping: The image and the corresponding are
vertically flipped.

2. Random Rotation: Random rotations are applied to both
the image and the mask within different ranges

• small: rotation of up to 5 degree
• medium: rotations of up to 15 degree
• high: rotations of up to 25 degree

3. Random Blur: A gaussian blur kernel of size 5 is applied
with random sigma values of different ranges.

• small: sigma between 0.1 and 1
• medium: sigma between 0.5 and 2
• high: sigma between 1 and 3

4. Random Contrast Adjustment: the brightness of an im-
age is scaled by a random number of different ranges

• small: between 0.9 and 1.1
• medium: between 0.7 and 1.3
• high: between 0.5 and 1.5

5. Random Contrast Adjustment: the contrast of an image
is scaled by a random number of different ranges

• small: between 0.9 and 1.1
• medium: between 0.7 and 1.3
• high: between 0.5 and 1.5

In Figure 2 we can see selected levels of augmentation ap-
plied to a resized and cropped image from the CHECK data
set.

Figure 2: Example of augmentations applied to a cropped and re-
sized image of CHECK

3.5 Evaluation
As previously mentioned, our evaluation metrics include the
Jaccard index for measuring overlap and the Hausdorff dis-
tance for assessing border accuracy. We calculate the average
and standard deviation of both metrics on two data sets: the
20 percent of the training data used to train the model and the
entirety of the other data set.



4 Results
4.1 Differences between data sets
In Figure 3 we can see differences within the brightness
distribution of the two data sets. A difference in average

Figure 3: Histograms of normalized and resized OAI and CHECK
data set

brightness as well as the standard deviation can also be seen.

In Figure 4 we can see the significant differences be-
tween the mean variance of the Laplacian between the
CHECK and OAI data set. In the results for the baseline

Figure 4: Difference in Mean of variance of Laplacian across data
sets

model, which was trained without any data augmentation, we
observe that the model trained on the CHECK data exhibits
a notable difference in generalization performance within
its own dataset compared to the other dataset. Although
the differences in the Jaccard indecies are relatively small
but noticeable, the Hausdorff distance reveals a significant
disparity between the two datasets.

The model trained on the OAI dataset achieves better re-
sults across all evaluation metrics and datasets. Addition-
ally, the difference in performance between evaluations on the
OAI dataset and the CHECK dataset is significantly smaller.

Trained on Tested on Jaccard Hausdorff
CHECK CHECK 0.967042 6.83842
CHECK OAI 0.955002 10.9427

OAI OAI 0.97302 4.91234
OAI CHECK 0.97319 5.13456

Table 1: Results of Jaccard and Hausdorff distances for different
training and testing data sets.

This suggests that the model generalizes more effectively
when trained on the OAI data.

4.2 Generalisation within the CHECK data set
In Table 2 we can see the evaluation of the effects of data
augmentation on the generalisation within the own data set.

Augmentation Jaccard Std Jaccard Hausdorff Std Hausdorff
none 0.9670 0.0376 6.8420 13.4496

Augmentation ∆ Jaccard ∆ Std Jaccard ∆ Hausdorff ∆ Std Hausdorff
flipped +0.0025 +0.0007 -2.2085 -9.0319

rotation high +0.0008 +0.0009 -1.9327 -8.3420
rotation medium +0.0021 -0.0005 -2.1332 -9.2301
rotation low +0.0009 -0.0007 -1.9811 -8.5597

brightness high -0.0002 -0.0005 -1.6609 -6.9942
brightness medium +0.0006 +0.0036 -1.9259 -7.8763
brightness low -0.0004 -0.0002 -1.2404 -4.3286

contrast high +0.0002 +0.0024 -1.8227 -8.4019
contrast medium -0.0003 +0.0009 -1.5686 -6.8507
contrast low +0.0001 +0.0020 -1.8699 -9.0481

blur high +0.0005 +0.0023 -1.8193 -8.1567
blur medium +0.0005 +0.0010 -1.9202 -9.3682
blur low +0.0005 +0.0029 -1.9358 -8.8604

Table 2: Performance metrics for different augmentations in the
CHECK dataset tested on CHECK

Flipping the images resulted in noticeable improvements.
It increased the average Jaccard index, indicating better
overlap between the predicted and true masks, the average
Hausdorff distance decreased, suggesting more precise and
consistent boundary predictions. This method also reduced
the variability in performance, as seen from the lower
standard deviations.

Rotation at various intensities also showed positive ef-
fects. High, medium, and low rotation augmentations
improved the average Jaccard index, but did not significantly
reduce the standard deviation, with medium rotation yielding
the highest improvements among the three. The average
Hausdorff distance and its standard deviation was reduced
across all rotation settings, with the medium rotation provid-
ing the best improvements.
Brightness adjustments produced mixed results. Medium
brightness adjustments slightly improved the Jaccard index
and Hausdorff distance. In contrast, high and low brightness
adjustments primarily enhanced the Hausdorff distance but
resulted in overall poorer performance in the other metrics.

High and medium contrast adjustments improved the
Hausdorff distance, but medium contrast adjustments re-
sulted in a slightly higher improvement of the Jaccard index



. Low contrast adjustments did not enhance performance
except for a lower Hausdorff distance.

Blur augmentations generally improved model perfor-
mance. High blur settings provided moderate improvements
in the Jaccard index, along with a reduction in the Hausdorff
distance. Medium and low blur settings also enhanced
performance, with medium blur showing the best overall im-
provement in segmentation accuracy and boundary precision.

Among the tested augmentation techniques, flipping
and medium rotation showed the most substantial im-
provements in both segmentation accuracy and boundary
precision. Medium brightness and blur adjustments also
slightly improved performance, suggesting these methods
help the model generalize better within the same dataset.
Conversely, contrast adjustments were the least effective.
We observe that augmentations significantly reduced the
Hausdorff distance, indicating substantial improvements in
boundary precision. In contrast, the impacts on the Jaccard
index were more subtle, showing only modest improvements.
The standard deviations for the Jaccard index generally did
not improve; instead, they slightly increased, reflecting a
minor rise in performance variability.

4.3 Generalisation to OAI data set
In Table 3 we can see the evaluation of the effects of data
augmentation on the generalisation to another data set.
Flipping images led to notable improvements. The average

Augmentation Jaccard Std Jaccard Hausdorff Std Hausdorff
none 0.9550 0.0456 11.0472 21.6011

Augmentation ∆ Jaccard ∆ Std Jaccard ∆ Hausdorff ∆ Std Hausdorff
flipped +0.0059 -0.0060 -4.9325 -11.9413

rotation high +0.0046 -0.0067 -5.0488 -12.5593
rotation medium +0.0059 -0.0075 -4.9767 -12.0267
rotation low +0.0033 -0.0048 -4.3427 -10.5684

brightness high +0.0026 -0.0025 -5.0405 -13.9138
brightness medium +0.0034 -0.0037 -5.1056 -13.5936
brightness low +0.0028 -0.0061 -4.1101 -9.3770

contrast high +0.0033 -0.0037 -4.8256 -12.5132
contrast medium +0.0005 +0.0029 -4.2099 -11.1701
contrast low +0.0034 -0.0054 -4.8653 -12.5176

blur high +0.0031 -0.0051 -4.8749 -13.0071
blur medium +0.0038 -0.0046 -5.1504 -13.7956
blur low +0.0035 -0.0039 -5.1933 -13.6012

Table 3: Performance metrics for different augmentations in the
CHECK dataset tested on OAI.

Jaccard index increased. The average Hausdorff distance
decreased significantly, showing more precise and consistent
boundary predictions. This method also resulted in a lower
standard deviation, indicating a lower performance variabil-
ity.

The rotation augmentations had varying degrees of ef-
fectiveness. High, medium, and low rotations all led to
improvements in the Jaccard index, with medium rotation
yielding the highest improvements among the three. The
Hausdorff distance was consistently reduced across all
rotation settings, with medium rotation showing the best

scores across all metrics

Brightness adjustments produced mixed outcomes. High
brightness adjustments slightly improved the Jaccard index
and also led to a notable reduction in the Hausdorff distance.
Medium brightness adjustments provided the best scores
across all the metrics. Low brightness adjustments resulted in
similar Jaccard index improvements as the high adjustment
with lower standard deviations, but a significantly worse
Hausdorff distance.

Contrast adjustments also showed varied results. High
and low contrast adjustments led to improvements in the
Jaccard index, but low contrast adjustments were more ef-
fective in reducing the Hausdorff distance. Medium contrast
adjustments did not significantly enhance performance and
even increased the standard deviation of the Jaccard index,
except for the Hausdorff distance.
Blur augmentations generally improved model performance.
High blur settings provided moderate improvements in the
Jaccard index, along with a reduction in the Hausdorff
distance. Medium and low blur settings also enhanced
performance, with medium blur showing the best overall
improvement in both segmentation accuracy and boundary
precision.

Among the augmentation techniques tested, flipping,
medium and high rotation provided the most substantial
improvements in both segmentation accuracy and boundary
precision. Medium brightness and medium and low blur
adjustments also proved effective, with the low blur augmen-
tation scoring the lowest average Hausdorff distance. Low
contrast adjustments were the least effective.
All data augmentation techniques improved the results across
all metrics, and most also lowered standard deviations,
indicating more robust and consistent segmentation.

5 Discussion
As shown in Table 1, the model trained on the OAI dataset
generalizes much better to another dataset. A key factor is
that the OAI dataset is roughly three times larger, providing
a more diverse set of data. All models, regardless of the
training or evaluation set, perform quite well on the Jaccard
index. This can be partly explained by the fact that the femur
is relatively large, so even significant boundary changes do
not greatly affect these overlap metrics. However, boundary
accuracy varies more significantly, as reflected by the Haus-
dorff score.
We observe that all data augmentations, tested on both the
original and the new dataset, significantly improved the
Hausdorff distance. Figure 5 illustrates a case with relatively
high Jaccard index but a much worse Hausdorff distance,
highlighting the disparity in boundary precision. Hausdorff
distance is highly susceptible to outliers, and the reduced
Hausdorff distance likely results from the increased sample
size of images. However, some augmentation methods are
more effective than others.
When it comes to generalization to the OAI dataset, medium



Figure 5: Example segmentation of the base model trained on
CHECK on an OAI image.Yellow: overlap between ground truth
and predicted mask, Red: predicted mask, Green: ground truth

and low blur augmentations and medium and high brightness
adjustments are particularly effective. These augmentations
may effectively eliminate outliers. The most effective aug-
mentations target the differences between the two datasets,
likely by removing outliers in the new dataset. When testing
on the original dataset, flipping is the most effective in reduc-
ing the Hausdorff distance. This could be because flipping
introduces realistic variations for the CHECK dataset, while
the OAI dataset is more diverse, and augmentations targeting
differences better simulate outlier behavior, thus reducing the
Hausdorff distance most effectively.

Overall, data augmentations improve segmentation per-
formance on the OAI dataset more than on the CHECK
dataset. Figures 3 and 4 show differences between the
datasets, explaining why augmentations targeting these dif-
ferences may not perform as well on the original dataset, as
they introduce images with characteristics that are different
from that dataset, increasing overall variance.

For augmentations with different levels, we see that
slight blurring retains most important details, such as edges
and textures, while introducing some variability, helping the
model recognize features under slightly different conditions
without losing critical information. Medium blur introduces
a moderate amount of blur, possibly still preserving essential
details while challenging the model to generalize better. Too
much variability due to high blur can make the training data
less representative of real-world scenarios, leading to poorer
generalization.

Similarly, for brightness augmentation, medium brightness
adjustments perform best within both the OAI and CHECK
datasets. Low adjustments may not provide enough variabil-
ity, while high adjustments may be too unrealistic. Medium
brightness adjustments simulate real-world conditions better.

For contrast adjustments, high and low adjustments
perform best, possibly for similar reasons.

These arguments do not apply to rotation augmenta-
tion. Low rotations perform poorly, while medium and high
rotations perform best. In the OAI dataset, rotations of 15
or 25 degrees appear unrealistic. High rotations introduce
substantial changes, possibly preventing the model from
memorizing specific details and orientations of the training
images, forcing it to learn more general features applicable
across different datasets.

6 Conclusions and Future Work
We can conclude that traditional data augmentations effec-
tively enhance the generalizability of segmentation models
to different datasets, improving segmentation accuracy and
reducing variability. Among the tested augmentations, ran-
dom rotations of 15 degrees or more and horizontal flipping
were the most effective, followed by medium blur, medium
brightness, and low contrast adjustments. The effectiveness
of brightness, contrast, and blur adjustments depends on the
strength of the modifications and the target dataset. Within
the training dataset, all augmentations reduced the Hausdorff
distance but had a minimal impact on the Jaccard index,
leading to increased variability in segmentation accuracy.

Future work could explore other models and datasets,
evaluate combinations of augmented methods, and test
additional augmentation techniques like adding random
noise. Applying different augmentations to subsets of the
data rather than uniformly across the entire dataset would
also be an interesting approach to investigate.

7 Responsible Research
This section outlines our approach to maintaining data in-
tegrity and reproducibility in our study.

7.1 Data Integrity
The datasets used in this study are sourced from the Os-
teoarthritis Initiative (OAI) and the Cohort Hip and Cohort
Knee (CHECK) study, both of which are reputable and well-
regarded sources. These datasets can be accessed by re-
searchers and have been used in medical research already, en-
suring their reliability and quality.
To preserve data integrity during preprocessing, we follow a
standardized process. This includes consistent methods for
loading DICOM images, applying BoneFinder segmentation,
and creating binary segmentation masks.
We ensure that all data handling processes, including storage
and transfer, are secure and comply with data protection reg-
ulations.



7.2 Reproducability
We have implemented several strategies to improve the re-
producibility of our work. Documentation of all procedures,
including data preprocessing steps, model training protocols,
and evaluation methods, are maintained. This provides a clear
roadmap for reproducing our experiments.
We ensure that all hyperparameters and model settings, such
as learning rate, optimizer type, and number of epochs, are
explicitly stated. This transparency allows others to replicate
our experiments under the same conditions.
We establish and document baseline models without data
augmentation to provide a point of comparison. This base-
line is crucial for understanding the impact of different data
augmentation techniques on model performance. We use
standard evaluation metrics such as Jaccard, and Hausdorff
scores, which are widely recognized and accepted in the field.

7.3 Use of AI
The only AI tool that we used throughout the writing of our
paper was ChatGPT. We primarily used ChatGPT to ensure
that a consistent writing style was used throughout the re-
port. This meant that we wrote a section of the report, that
still required refinement, and then consulted ChatGPT to as-
sist us in achieving a more polished and cohesive text. How-
ever, we often found that the response generated by ChatGPT
used overly stilted language, and usually seemed overformal.
Therefore, we usually just took ideas for phrasing from Chat-
GPT. However, it was still a useful tool to ensure that the style
of the report was coherent, that the content within paragraphs
flowed well. Another aspect that we used ChatGPT for was
formatting in LaTeX as well as helping to debug code.
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