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Abstract. Accurate biventricular segmentation of cardiac magnetic res-
onance (CMR) cine images is essential for the clinical evaluation of heart
function. However, compared to left ventricle (LV), right ventricle (RV)
segmentation is still more challenging and less reproducible. Degener-
ate performance frequently occurs at the RV base, where the in-plane
anatomical structures are complex (with atria, valve, and aorta) and vary
due to the strong interplanar motion. In this work, we propose to address
the currently unsolved issues in CMR segmentation, specifically at the
RV base, with two strategies: first, we complemented the public resource
by reannotating the RV base in the ACDC dataset, with refined delin-
eation of the right ventricle outflow tract (RVOT), under the guidance of
an expert cardiologist. Second, we proposed a novel dual encoder U-Net
architecture that leverages temporal incoherence to inform the segmenta-
tion when interplanar motions occur. The inter-planar motion is charac-
terized by loss-of-tracking, via Bayesian uncertainty of a motion-tracking
model. Our experiments showed that our method significantly improved
RV base segmentation taking into account temporal incoherence. Fur-
thermore, we investigated the reproducibility of deep learning-based seg-
mentation and showed that the combination of consistent annotation and
loss of tracking could enhance the reproducibility of RV segmentation,
potentially facilitating a large number of clinical studies focusing on RV.

Keywords: Cardiac MRI · segmentation · right ventricle · uncertainty

1 Introduction

Automatic segmentation of heart chambers is crucial for quantitatively assessing
heart functions from cardiac magnetic resonance (CMR). Besides the left ventri-
cle (LV), there is a growing clinical interest in accurate assessment of the right
ventricle (RV), given its significance in heart and lung diseases [10,11,16,22].
In recent years, several challenges have been dedicated to evaluating automatic
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Fig. 1. (a) Anatomy of LV and RV. The basal imaging plane covers the right ventricle
outflow tract (RVOT), pulmonary valve (P), and tricuspid valve (T) [20]. (b) A short-
axis basal slice contains atria (in green), P (in blue), and RVOT (in red), with complex
and varying layouts. (c) Motion tracking has high uncertainty here (ub and us, defined
in Sect. 2.1), indicating loss-of-tracking. (d) RV segmentation by 10 Bayesian ensembles
exhibits high uncertainty, resulting in a poorly reproducible volume estimation ranging
from 0.2 to 37.8 mL. (Color figure online)

CMR segmentation, including the ACDC challenge [4], M&M [5], and M&M-
v2 [16] which particularly focuses on RV. Results reveal that the nnUNet fami-
lies [1,12] have overall superior performance in biventricular segmentation, but
RV has degenerated performance compared to that of LV [4,5,16,21]. Degener-
ation is especially pronounced at the RV base, due to the irregular RV shape,
large variability, and complex anatomical context [27].

Segmentation of basal slices is intrinsically challenging, because clinical cine
MRI is 2D+t, with each plane imaged in a separate breath-hold, unable to cap-
ture the complex 3D+t spatiotemporal motion at the base. Ventricles, atria,
and valves all have inter-planar movements [16,26], as shown in Fig. 1(b).
This complicates basal segmentation, resulting in quantitative errors of RV
assessment [4,16].

More specifically, RV segmentation error stems from the region of the right
ventricle outflow tract (RVOT). RVOT is a pathway where the blood exits RV
and enters the pulmonary artery [11], spanning from the right side of the tri-
cuspid valve to the pulmonary valve [8] (Fig. 1a). RVOT needs to be included
for accurate RV quantification, but it is often overlooked in the annotations of
public CMR datasets [4,5,16,26]. Common protocols delineate RV when the full
cavity is covered [4,5,16] while RVOT is labeled as RV or background depending
on cases or observers. This inconsistency in the annotation can affect the con-
fidence of the neural network [13]. Segmentation models, even when trained on
the same dataset [9,13,15], will have high uncertainty on basal slices, resulting
in low reproducibility of volume quantification. A typical example is shown in
Fig. 1 (d), where different segmentation models make varying RV predictions,
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indicating low reproducibility of RV volume estimation [9,28,29]. This under-
mines the reliability of the assessment of RV function.

Traditionally, temporal coherence is leveraged to improve the segmentation
performance of CMR, because segmentation tends to be continuous in time and
space [2,7,17,18,24,25]. Nilsson et al. proposed a spatial-temporal Gated Recur-
rent Unit (ST-GRU) [17] to promote coherence of segmentation maps. In CMR
segmentation, joint motion estimation and segmentation proved to be mutually
beneficial [18]. Yan et al. proposed a flow-based feature fusion framework [24,25]
to integrate temporal coherence. Similarly, Wu et al. explicitly encoded the flow
as an additional feature for segmentation [7,23]. Bai et al. leveraged recurrent
neural network (RNN) for cine segmentation with registration-based pseudo-
labels [2].

However, the same principle does not apply to the RV base, because of the
strong in-plane anatomy change (Fig. 1b). Intuitively, estimating the motion
between temporal frames at RV base is ill-posed, i.e. a well-trained motion track-
ing model will fail to track due to the inter-planar motion, a phenomenon we
hereafter call loss-of-tracking. Hence, instead of leveraging the temporal coher-
ence, we propose the opposite: we make use of the temporal incoherence, which
can be identified by motion tracking uncertainty. This uncertainty highlights the
inter-planar motion of different structures (Fig. 1c) and is highly informative.

We propose a novel loss-of-tracking-based method to tackle the cur-
rently unsolved RV base segmentation in CMR analysis, with the following
contributions:

– For a more accurate RV definition, we complemented current public resources
by providing refined RV base annotations for the ACDC dataset [4], under the
guidance of an expert cardiologist. This complemented community resource
can be used to train and evaluate RV segmentation algorithms.

– We propose a Bayesian motion tracking framework for CMR cine, to estimate
the tracking uncertainty (loss-of-tracking) which can identify the interplaner
cardiac motion in an unsupervised manner.

– We integrate this tracking uncertainty into a Dual-Encoder UNet architecture
to enhance segmentation performance in the challenging regions of RV base.

– In addition, we demonstrated that the low reproducibility of deep learning
segmentation can stem in part from the annotation inconsistency. Our work
improved the RV segmentation reproducibility with refined RV annotation
and loss-of-tracking.

2 Method

2.1 Loss-of-Tracking Detection via Registration Uncertainty

We formulate the motion estimation problem as the registration between two
temporal frames It and It+δt in a cine MRI. A VoxelMorph model [3] V is
trained to predict the deformation field φt = V (It, It+δt). Since the temporal
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Fig. 2. The Dual-Encoder UNet architecture for CMR segmentation: the upper path
encodes the original image, while the lower path encodes the “loss-of-tracking” from It

to It+δt, identified by a Bayesian motion-tracking model. The decoder D predicts the
segmentation map from the fused image feature fI and loss-of-tracking feature fφ.

cine images have similar contrast, we use the simple mean square error (MSE)
us as the image similarity metric, and regularize the smoothness of the estimated
field φt via a gradient-based regularizer R. The loss function for motion tracking
model training is:

Lreg(φt; It, It+δt) = us(φt ◦ It, It+δt) + λR(φt) (1)

= ‖φt ◦ It − It+δt‖22 + λ‖∇φt‖22,
where ◦ denotes the warping operation. At test time, the registration uncertainty
can be inferred in two ways. First, we can evaluate the similarity between the
warped image and the target image with us:

us(φt, It, It+δt) = ‖φt ◦ It − It+δt‖22, (2)

where an elevated level of us indicates regions of registration failure. Second, the
model uncertainty of the trained registration network V can be estimated from
a Bayesian perspective [9,29], which derives the tracking uncertainty from the
posterior p(w|D) of network weights w, with D being the training dataset. The
Bayesian uncertainty of motion ub is estimated via:

ub(φt, It, It+δt) ≈ std {Vwi
(It, It+δt)}M

i=1 , (3)

where std is the standard deviation operator, {wi ∼ p(w|D)}M
i=1 is a set of M

weights drawn from the posterior distribution, and Vwi
denotes the trained model

with weight wi. We draw the posterior samples {wi ∼ p(w|D)}M
i=1 via the Hamil-

tonian Monte Carlo (HMC) method [6,28,29].

2.2 Uncertainty-Guided Segmentation

Network Architecture. We propose a Dual-Encoder UNet architecture that
takes both the image It and its motion uncertainty uφ, which highlights the
basal areas with interplanar motion, as input. Specifically, we use an encoder EI
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for image encoding and an additional encoder Eφ for loss-of-tracking encoding.
The image encoder EI encodes the current temporal frame It and outputs the
feature fI = EI(It). The loss-of-tracking encoder Eφ learns a representation
fφ = Eφ(ub, us) of the estimated motion uncertainty. The feature fusion is then
performed by a learnable convolutional layer Fu, and the aggregated feature fa

is expressed by
fa(It, ub, us) = Fu (cat (fI , fφ)) . (4)

Subsequently, fa is fed into the decoder D for the final segmentation predic-
tion. Skip connections between the encoder and decoder are preserved as in
the original U-Net [19]. The overall segmentation model is hence expressed as
S = D◦Fu ◦cat◦(EI , Eφ). We show the proposed network architecture in Fig. 2.

Bayesian Segmentation and Reproducibility. We used the same Bayesian
HMC principle to generate a range of models [9,28,29]. This Bayesian ensem-
ble of segmentation networks is denoted by {Sθj

}M
j=1, parameterized by weight

posterior samples {θj ∼ p(θ|D)}M
j=1. Bayesian segmentation is performed via

St =
1
M

M∑

j=1

Sθj
(It), σv(It) ≈ std

{V ◦ Sθj
(It)

}M

j=1
, (5)

where St is the segmentation of It, V is the volume calculation operator, and σv

additionally quantifies the model reproducibility as the standard deviation (SD)
of RV volume predicted by the Bayesian ensembles.

With ACDC standard labels, previous work has reported degenerate per-
formance at the RV base, accompanied by high uncertainty [4,5,16,29]. In the
literature, degraded performance is often attributed to network generalizability
or domain shift. However, a less explored hypothesis is that the training data
can also play a role: if the annotation is inconsistent, the prediction from mul-
tiple trained models is also inconsistent. To validate the hypothesis and demon-
strate the benefit of the refined RV annotation, we evaluated the RV segmen-
tation reproducibility using the standard ACDC and our complemented ACDC
annotation.

3 Data and Experiments

Dataset. We evaluated our method on the publicly available ACDC dataset [4].
It consists of cine images of 150 subjects, of which 100 serve as the training set,
and the remaining 50 subjects are reserved for testing. Under the guidance of
an expert cardiologist, we reannotated RV, including RVOT, on basal slices
using the 3D Slicer [14] for all 150 subjects. In total, we manually refined the
segmentation map on 240 slices of the original datasets (135 on the training split
and 105 on the test split). In the following, we denote the original ACDC dataset
as Original, and our relabeled dataset as New. We will open-source the new
RV annotations on GitHub.
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Table 1. Segmentation accuracy of RV measured by the Dice coefficient [%] on basal,
middle, apical slices, and the full volume. Improvements with statistical significance
(p < 0.05) using the Wilcoxon signed-rank test are labeled with *.

Methods Base Mid Apex Full

ED ES ED ES ED ES ED ES

U-Net 90.1 (±9.0) 80.7 (±22.4) 94.5 (±2.7) 90.2 (±5.1) 86.9 (±10.4) 70.9 (±26.1) 92.9 (±2.6) 88.5 (±4.7)

ST-GRU 87.3 (±9.1) 79.2 (±17.1) 91.0 (±4.2) 87.0 (±5.6) 78.1 (±15.2) 63.7 (±21.6) 89.4 (±3.4) 84.9 (±4.9)

Proposed 91.3* (±7.3) 84.0* (±16.5) 95.0* (±2.6) 91.0* (±5.0) 88.1* (±9.8) 71.8* (±26.8) 93.6 (±2.3) 89.5* (±4.5)

Experimental Settings. We used nnUNet [12] as our segmentation backbone,
sticking to its original loss function, optimizer, and network plan. Specifically, we
trained a 2D nnUNet with all training samples, to be the baseline. To identify
loss-of-tracking, we trained a motion tracking network using the VoxelMorph
backbone [3], on images with a phase difference of δt = 4. Furthermore, we
trained an ST-GRU network [17], as a contrastive baseline that leverages tem-
poral coherence for refined segmentation. For our Dual-Encoder UNet, we used
the same encoder architecture for the loss-of-tracking input as for the image
input, following the nnUNet design. We used M = 10 HMC samples to build
Bayesian ensembles, both for VoxelMorph (motion-tracking) and Dual-Encoder
UNet (segmentation).

4 Results

4.1 Segmentation Accuracy

We evaluated the segmentation performance of the three methods on RV, using
the new label as ground truth. We divided each short-axis volume into basal,
middle, and apical slices and evaluated segmentation accuracy on end-systolic
(ES) and end-diastolic (ED) volumes separately. The accuracy measured by Dice
coefficients is listed in Table 1 on the three regions and the full volume. The table
shows that the vanilla nnU-Net already forms a strong baseline for RV segmen-
tation. Using the coherence-promoting ST-GRU leads to reduced segmentation
accuracy. With the loss-of-tracking encoding, our proposed method outperforms
the Vanilla U-Net, especially on the basal slices with an improvement of 1.2%
and 3.3% at ED and ES volumes, respectively. In comparison, the improvement
on the middle and apical slices is marginal in comparison with that on basal
slices.

In Fig. 3, we show some qualitative results of the loss-of-tracking detection
and the predicted segmentation maps. In case (a), the right ventricle preserves
its shape from It to It+δt, and the detected loss-of-tracking us and ub stays on
a relatively low level. On such images, all methods can correctly predict the RV
segmentation map. However, the ST-GRU prediction still has a small deviation
from the ground truth on ventricular borders (red arrow). We conjecture that
ST-GRU suffers from imperfect motion tracking here. In case (b), we show a basal
slice with strong interplanar motion on which the RV and valves can hardly be



Uncertainty-Guided Cardiac Cine MRI Segmentation 421

Fig. 3. Qualitative results of tracking uncertainty and segmentation. The left panel
shows the tracking uncertainty ub and us between It and It+δt. The right panel shows
the segmentation labels and predictions. In case (b), the atrium and valve (cyan arrows)
coexist with RV, and should not be included (c.f. the anatomy in Fig. 1). (Color figure
online)

Fig. 4. Distribution of segmentation reproducibility as measured by volume standard
deviation σv. Statistics (mean ± std) are given in corresponding colors.

distinguished from the single image It. The detected loss-of-tracking ub highlights
the area that cannot be tracked from It to It+δt, mainly in RVOT. The MSE
pattern us approximately delineates the separation between the valves and the
RV. In this slice, the U-Net has difficulty in predicting RV segmentation in
a single image It, but the proposed method can successfully predict the RV
border with loss-of-tracking taken into account. In this case, taking segmentation
consistency for granted like ST-GRU can harm the segmentation accuracy.

4.2 Segmentation Reproducibility

In this section, we compare the reproducibility measured by the standard devi-
ation of RV volume from Bayesian ensembles of segmentation networks. To val-
idate the role of annotation, we repeated the experiments on both the Original
and New ACDC annotations. Figure 4 shows the distributions of σv of the RV
base in the ED and ES phases, respectively. The statistics are reported for the
testing datasets.
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Fig. 5. Examples of RVOT segmentation and reproducibility. High uncertainty indi-
cates strong disagreement among different ensemble models. (a) Models trained with
the original labels are uncertain on basal slices with both the valve and atria (cyan
arrows) inplane. (b) The reproducibility is largely improved by the new annotations,
and further reduced by the proposed method. (Color figure online)

All methods have a volume variance that peaked at a relatively low value
(<5 ml), especially at ES. However, we observe that the U-Nets trained with the
original annotations have a longer tail than networks trained with the new anno-
tations. The proposed method exhibits the highest reproducibility with a sharp
peak. Figure 5(a) is a basal slice that covers the partial atrium and valve (cyan
arrows) on the image plane. In this slice, we observe that the networks trained
with the original annotations are highly uncertain, resulting in a volume SD of
12.3 ml. In contrast, the networks trained with the new annotations successfully
delineate the RVOT and have a reduced SD of 1.1–1.4 mL. In Fig. 5(b), we show
a case in which the vanilla U-Nets can have low reproducibility because the
RVOT and atrium are not distinguishable, with σv = 8.2 mL. In comparison,
our proposed method reduces σv to 1.2 mL. The results suggest that consis-
tent annotation and loss-of-tracking can greatly improve reproducibility when
segmenting difficult regions like the RV base.

5 Conclusion

Accurate biventricular segmentation of CMR cine images is important for the
clinical evaluation of heart function. In this work, we set out to tackle the cur-
rent challenges of segmenting RV base, for more accurate and reproducible RV
assessment. We proposed a novel dual encoder U-Net architecture that lever-
ages temporal incoherence, called loss-of-tracking, to identify the interplanar
motion at the base that previously deteriorated segmentation. Our experiments
showed that loss-of-tracking improved the segmentation of the RV base taking
into account temporal incoherence. In addition, we complemented the public
resource with refined RV base annotation including RVOT. Our work showed
that the joint contribution of data and algorithm can lead to improved accuracy
and reproducibility for the currently difficult regions of the RV base, potentially
leading to more reliable RV assessment for future clinical studies.



Uncertainty-Guided Cardiac Cine MRI Segmentation 423

Acknowledgments. The authors gratefully acknowledge the TU Delft AI Initia-
tive for financial support.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

1. Arega, T.W., Legrand, F., Bricq, S., Meriaudeau, F.: Using MRI-specific data aug-
mentation to enhance the segmentation of right ventricle in multi-disease, multi-
center and multi-view cardiac MRI. In: Puyol Antón, E., et al. (eds.) STACOM
2021. LNCS, vol. 13131, pp. 250–258. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-93722-5 27

2. Bai, W.: Recurrent neural networks for aortic image sequence segmentation with
sparse annotations. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-
López, C., Fichtinger, G. (eds.) MICCAI 2018, Part IV. LNCS, vol. 11073, pp.
586–594. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3 67

3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph:
a learning framework for deformable medical image registration. IEEE Trans. Med.
Imaging 38(8), 1788–1800 (2019)

4. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-
structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med.
Imaging 37(11), 2514–2525 (2018)

5. Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac seg-
mentation: the M&Ms challenge. IEEE Trans. Med. Imaging 40(12), 3543–3554
(2021)

6. Chen, T., Fox, E., Guestrin, C.: Stochastic gradient Hamiltonian Monte Carlo. In:
International Conference on Machine Learning, pp. 1683–1691. PMLR (2014)

7. Dong, S., et al.: DeU-net: deformable U-net for 3D cardiac MRI video segmenta-
tion. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part IV. LNCS, vol. 12264, pp.
98–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1 10
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