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Abstract

For travelling from point A to point B, autonomous vehicles generate a route between the
points. During the mission, the vehicle uses a motion planning and controls algorithm to follow
the planned route while avoiding static and dynamic obstacles. Motion planning algorithms
generally plan over a future time horizon to smoothly follow the route and determine the car’s
optimal control (steering/acceleration). For planning through a future horizon, one requires
the possible positions of all the relevant obstacles in future time-steps. Solutions for predicting
an obstacle’s future trajectory usually involve neural networks to perform sequence learning
and generative algorithms to create multiple possibilities for a pedestrian’s future state. This
is done by attempting to learn the underlying distribution describing the obstacle motion.
However, in practice, one cannot evaluate if this learnt distribution is accurate. This thesis
addresses this issue by introducing a fully data-based alternative for trajectory prediction
called the Partitioned Experience Method (PEM), which predicts future trajectories based
solely on previously recorded data. In this way, it is not necessary to explicitly learn the
underlying distribution of the pedestrian motion. The implemented trajectory prediction is
validated using two metrics, recall and variance, introduced in this work. The trajectory
prediction is also evaluated using a state-of-the-art motion planning algorithm. The results
obtained from the motion planner indicate that using the Partitioned Experience Method
(PEM) reduces the number of collisions and close contacts with other road users, and the
corresponding trajectory followed by the car is closer to the reference trajectory.
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Chapter 1

Introduction

Historically, people lived and worked within a few-mile radius though-out their lives. The
invention of automobiles and the mass production of the same by Ford transformed the way
people lived. People no longer were bound by where they lived and could more easily travel
long distances and live their life with more freedom and autonomy. With more nations
developing and the richer the commoner became, the number of cars has also drastically
increased [3].
The sudden and mass adoption of automobiles also has some adverse effects. First, the burning
of fuel and car emissions have contributed to climate change affecting us all. Secondly, with
the increase in the number of cars, the number of accidents, and the time taken to travel
have also increased. The first challenge is being tackled by using cleaner fuel to run the car,
such as electricity. The rise of self-driving cars looks to solve the problem of travel time and
accidents. This thesis will look into self-driving cars and how they tackle the problem of
predicting the motion of other obstacles around the car.

1-1 Automated Driving

Car manufacturers have been trying to implement assistive features called Advanced driver-
assistance systems (ADAS), which would improve the driver’s safety and comfort. Early
ADAS included features such as cruise control, blind spot information, lane departure warn-
ing etc. [4]. These features still involve the human being as the main driver, while the ADAS
acts as an assistant. With the rapid progress in computers and artificial intelligence, the
number of tasks that can also be automated increased. This led to a standardization of the
definition of the level at which a car is automated. SAE [5] defined six levels of automation
of an autonomous vehicle, ranging from Level 0 to Level 5. Level 0 means the car is manually
controlled, and each subsequent level has a higher degree of driver assistance and autonomy.
Level 5 indicates that the car is fully autonomous and can handle any situation without a
human driver. A lot of the current research focuses on developing Level 4, and Level 5 au-
tonomous cars, with an increasing number of companies [6], [7] aiming to develop autonomous
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FIGURE 6. An illustration of pedestrian trajectory prediction from constant
velocity (CV) model. Here the green trajectory denotes the ground truth
trajectory of a pedestrian and the red trajectory shows the predicted trajectory
at the current instant of time.

recent extension of the physics-based approach uses IMMTP
(Interactive multiple trajectory prediction) with Unscented
Kalman filter (UKF) and Dynamic Bayesian Network (DBN)
[20]. The integration of both the predictors using IMM gives
non-linear trajectory prediction along with possible manoeu-
vre estimates (which in the above work is the lane chang-
ing manoeuvre). Such methods can be used for vehicular
trajectory prediction if the uncertainties are handled well.
Kalman filters represent these uncertainties in the form of
Gaussian noise, where in the prediction step the filter outputs
the position estimates based on kinematic or dynamic mod-
els and later the prediction estimates are updated based on
sensor measurements. The problem of using filters like this
is the unimodal representation of uncertainties which cannot
capture the complex vehicle trajectory behaviours. A better
representation of uncertainties is a mixture of Gaussians.

2) Learning-Based
Learning-based methods have an element of learning in
them i.e. they learn from data and history. In comparison to
physics-based models which are limited to low-level prop-
erties of motion and cannot estimate well the long term
dependencies in motion, the learning-based models on the
other hand tend to capture and incorporate long term depen-
dencies and changes caused by external factors. Learning-
based approaches have seen quite a lot of research in the
past decade. The learning part here can be a function ap-
proximator, clustering algorithm or a hidden Markov model
etc. Recent boom in deep learning has pushed these methods
to an even higher level. We further sub-classify learning-
based methods into two categories i.e. sequential and non-
sequential, as shown in Figure-8.

a: Sequential
Sequential models infer motion estimates of agents using the
history of their states. Sequential models are quite similar
to physics-based models in terms of Markovian assumption

FIGURE 7. An illustration vehicular trajectory prediction from constant velocity
(CV) model. Here the green trajectory denotes the ground truth trajectory of
the vehicle which is about to do a turn left manoeuvre and the red trajectory
shows the predicted trajectory at the current instant of time.

FIGURE 8. Categories of learning-based models. The dotted lines represent
that the methods in these categories are not limited to the three methods
mentioned in each category.

i.e. future motion of the agent is dependent on the current
state of the agent. Sequential methods are often one step
predictors similar to physics-based methods; the difference
lies in learning functions from statistical observations instead
of using motion models. One of the common types of sequen-
tial models is Dynamic Bayesian Network (DBN). A DBN
essentially is a Bayesian network with temporal updates.
These probabilistic models tend to be very useful for domains
where observations are unrolled in time. A good example
of DBN is the work done in [21] where authors employ a
DBN using agent dynamics and scene semantics to forecast
pedestrian local patterns as local transition maps. Similar to
pedestrians, the authors in [22] present a DBN to represent
driver behaviour and vehicle trajectories.

VOLUME 4, 2016 5

Figure 1-2: Trajec-
tory Prediction [1]

taxis and other similar solutions to improve transport logistics.
A completely automated car can travel from starting to a goal location without human inter-
ference. This includes a route planning system, which determines the best route between A
and B considering the time to travel and traffic situations, a perception system that detects
the state of the environment and other obstacles in it, and finally, a state-estimation system
that calculates the current position and movement of the car. The local motion planner takes
all these as input and tries to follow the route by giving the required controls to the car.
Local motion planning algorithms try to plan over the future horizon by satisfying some con-
straints and then give the estimated control of acceleration and steering required to the car
for the next step. This is done in order to ensure smooth motion. One of the constraints
these algorithms need to satisfy is based on the current and future state of the environment.
The environment consists of static obstacles such as sidewalks, poles, and lane dividers that
do not move, and their position in a future time instant can be known. The environment also
consists of dynamic obstacles, who are the other road-users such as pedestrians, cyclists and
other vehicles on the road. These positions are not fixed or known beforehand. So for the
motion planner to work, there needs to be an estimation or a prediction of where other road
users could be at a future time instant, i.e. predict their trajectory for a given time horizon.
This thesis deals with trajectory prediction by introducing a new framework called the Par-

titioned Experience Method. The framework is then used for the trajectory prediction of the
pedestrian. This framework is evaluated using a local motion planning method called the
scenario approach to optimization [8].

1-2 Trajectory Prediction Approaches

Traditionally, trajectory prediction algorithms attempted to predict a single best prediction
for an obstacle [9], [10]. These algorithms are known as uni-modal trajectory prediction al-
gorithms. A uni-modal trajectory is shown in Fig. 1-3
Since the exact intention of an obstacle is unknown, predicting one trajectory per obstacle
would not accurately represent its motion. Recently, the approach has turned towards pre-
dicting multiple possible trajectories for an obstacle [11], [12], [13], trying to cover the various
possible intents of the obstacle. These approaches are known as multi-modal trajectory pre-
diction algorithms. A multi-modal trajectory is shown in Fig. 1-4
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FIGURE 12. An illustration of constrained vs unconstrained multimodal
trajectory output. Here a) is showing 3 manoeuvres (steer left, steer right and
follow leading vehicle) while b) shows an unconstrained multimodal trajectory
with fixed mode size = 9.

precise than just intention. A unimodal trajectory thus out-
puts one trajectory with discrete trajectory points (which can
later be made continuous using splines or Bézier curves).

In case of vehicles, the behaviour on road can be defined
as a set of complex manoeuvres, a unimodal trajectory output
can thus further be defined as trajectory independent / depen-
dent on the intended manoeuvre. A trajectory independent
of the intended manoeuvre is a unimodal trajectory without
consideration of possible manoeuvres on it. Here the position
of VOI is estimated over time. An example is [49] where
the output trajectory of heterogeneous traffic participants is
predicted as a unimodal trajectory. Here they predict mean,
standard deviation and correlation coefficient of bivariate
Gaussian w.r.t the x and y positions of each trajectory
point. Despite being a better representation of vehicle motion
compared to intention, manoeuvre independent trajectories
tend to average out between two manoeuvres when there
is an equal chance of making two manoeuvres at the same
time. This can lead to dangerous encounters as illustrated in
Figure-10.

In comparison to this, a trajectory dependent on intended
manoeuvre gives safer and meaningful future estimates of the
vehicle. This will make sure that whenever we get a trajectory
output, it is valid in terms of manoeuvre. Figure-11 shows an
illustration of manoeuvre constrained trajectory. An example
of this is [50] where the authors demonstrated a policy antic-
ipation network model that outputs trajectories constrained

FIGURE 13. An illustration of unimodal vs multimodal pedestrian trajectory
output. Here a) shows a distribution of possible trajectories where a possibility
of pedestrian using the crosswalk is predicted while b) shows that the
pedestrian will continue walking in the straight direction along the sidewalk.

on manoeuvres using CARLA simulator [51]. The problem
with uni-modal trajectory constrained on manoeuvres is that
the possibility of exploring new trajectories gets limited to
one trajectory only. This does not apply to pedestrians as
pedestrians, in terms of unimodal trajectory, do not have
manoeuvre categorizations i.e human walking behaviour is
mostly influenced by social constraints. Some examples of
work done on unimodal pedestrian trajectory include [13]–
[17] and [25].

c: Multimodal Trajectory:
An extension to unimodal trajectory is multimodal trajectory
output. For vehicles, the limitation of having one mode
as output gets addressed by having more than one trajec-
tory output. At any particular instance of time, the VOI
can choose from many correct manoeuvres or distribution
of manoeuvres. Having the knowledge of this distribution
makes the prediction algorithm more robust and less prone
to unidentified trajectory outputs. In multimodal trajectory,
we get a unimodal trajectory for each manoeuvre or mode.
Like unimodal outputs, here the models can be depen-
dent/independent of manoeuvres where the former means a
probability distribution over finite sets of manoeuvres while
later can have a fixed number of unimodal trajectory outputs
independent of manoeuvres. An example of manoeuvre de-
pendent multimodal output is convolution social pooling for
vehicle trajectories [27] whereas a fixed-sized multimodal

8 VOLUME 4, 2016

Figure 1-3: Uni-modal trajectory pre-
diction
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FIGURE 12. An illustration of constrained vs unconstrained multimodal
trajectory output. Here a) is showing 3 manoeuvres (steer left, steer right and
follow leading vehicle) while b) shows an unconstrained multimodal trajectory
with fixed mode size = 9.

precise than just intention. A unimodal trajectory thus out-
puts one trajectory with discrete trajectory points (which can
later be made continuous using splines or Bézier curves).

In case of vehicles, the behaviour on road can be defined
as a set of complex manoeuvres, a unimodal trajectory output
can thus further be defined as trajectory independent / depen-
dent on the intended manoeuvre. A trajectory independent
of the intended manoeuvre is a unimodal trajectory without
consideration of possible manoeuvres on it. Here the position
of VOI is estimated over time. An example is [49] where
the output trajectory of heterogeneous traffic participants is
predicted as a unimodal trajectory. Here they predict mean,
standard deviation and correlation coefficient of bivariate
Gaussian w.r.t the x and y positions of each trajectory
point. Despite being a better representation of vehicle motion
compared to intention, manoeuvre independent trajectories
tend to average out between two manoeuvres when there
is an equal chance of making two manoeuvres at the same
time. This can lead to dangerous encounters as illustrated in
Figure-10.

In comparison to this, a trajectory dependent on intended
manoeuvre gives safer and meaningful future estimates of the
vehicle. This will make sure that whenever we get a trajectory
output, it is valid in terms of manoeuvre. Figure-11 shows an
illustration of manoeuvre constrained trajectory. An example
of this is [50] where the authors demonstrated a policy antic-
ipation network model that outputs trajectories constrained

FIGURE 13. An illustration of unimodal vs multimodal pedestrian trajectory
output. Here a) shows a distribution of possible trajectories where a possibility
of pedestrian using the crosswalk is predicted while b) shows that the
pedestrian will continue walking in the straight direction along the sidewalk.

on manoeuvres using CARLA simulator [51]. The problem
with uni-modal trajectory constrained on manoeuvres is that
the possibility of exploring new trajectories gets limited to
one trajectory only. This does not apply to pedestrians as
pedestrians, in terms of unimodal trajectory, do not have
manoeuvre categorizations i.e human walking behaviour is
mostly influenced by social constraints. Some examples of
work done on unimodal pedestrian trajectory include [13]–
[17] and [25].

c: Multimodal Trajectory:
An extension to unimodal trajectory is multimodal trajectory
output. For vehicles, the limitation of having one mode
as output gets addressed by having more than one trajec-
tory output. At any particular instance of time, the VOI
can choose from many correct manoeuvres or distribution
of manoeuvres. Having the knowledge of this distribution
makes the prediction algorithm more robust and less prone
to unidentified trajectory outputs. In multimodal trajectory,
we get a unimodal trajectory for each manoeuvre or mode.
Like unimodal outputs, here the models can be depen-
dent/independent of manoeuvres where the former means a
probability distribution over finite sets of manoeuvres while
later can have a fixed number of unimodal trajectory outputs
independent of manoeuvres. An example of manoeuvre de-
pendent multimodal output is convolution social pooling for
vehicle trajectories [27] whereas a fixed-sized multimodal
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Figure 1-4: Multi-modal trajectory
prediction

1-2-1 Problem Formulation

A generalized problem formulation of trajectory prediction is explained below: Let et be the
state of the environment consisting of v obstacles, at current time t, ov

t is the state of the
vth obstacle at the same time step. Then, et − ov

t is the state of all other obstacles at time t,
other than the vth obstacle. The problem is to predict the trajectory of the vth object. The
inputs for a general trajectory prediction problem would involve the state of the environment
at the current and previous time steps.

X =



ov
t , et − ov

t

ov
t−1 , et−1 − ov

t−1
ov

t−2 , et−2 − ov
t−2

.

.

.
ov

t−k , et−k − ov
t−k


(1-1)

The states of the environment here can be any available feature of the obstacle of interest,
such as the position and velocity of the obstacle.
The output of the problem consists of the position of the vth obstacle at every time step in
the future horizon N. For a uni-modal algorithm, m=1, and a multi-modal algorithm m > 1:

Y = f(x) =



x̂v
1(t+1) , ŷv

1(t+1)
x̂v

2(t+2) , ŷv
2(t+2)

x̂v
3(t+3) , ŷv

3(t+3)
.
.
.
x̂v

k(t+N) , ŷv
k(t+N)


1

,



x̂v
1(t+n) , ŷv

1(t+n)
x̂v

2(t+n) , ŷv
2(t+n)

x̂v
3(t+n) , ŷv

3(t+n)
.
.
.
x̂v

k(t+n) , ŷv
k(t+n)


2

....,



x̂v
1(t+n) , ŷv

1(t+n)
x̂v

2(t+n) , ŷv
2(t+n)

x̂v
3(t+n) , ŷv

3(t+n)
.
.
.
x̂v

k(t+n) , ŷv
k(t+n)


m

(1-2)

A detailed literature survey is present in the related works section of the paper in Chapter 3.
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4 Introduction

1-3 Limitations in Current Research

1-3-1 Trajectory Prediction

Current state-of-the-art algorithms attempt to model obstacle behaviour through data. The
underlying distribution of the data is modelled to learn information such as possible goal
locations and intentions. When a query is made to predict an obstacle’s trajectory, multiple
possible intentions or goal positions are sampled from the distribution, giving an output of
multiple trajectories.

Figure 1-5: Uncertainty in any part of a learned distribution depends on the concentration of
the data points at that part of the disribution [2]

There are some inherent issues with such algorithms. First, a large amount of data is neces-
sary to learn the distribution accurately. Insufficient data might lead to high variance in a
region of the learned distribution, as shown in Fig. 1-5, where the parts of the distribution
defined by fewer data points have high variance. In such situations, an accurate trajectory is
only produced if the query is in the well-defined part of distributions, leading to noise/erro-
neous predictions for edge cases and low-probability queries.[14] and [15] bring up these issues
with Generative Adversarial Network (GAN) and the authors conclude that GANs might not
accurately learn the target distribution, and even if they do succeed, there is a lack of an
established way to prove the success, i.e., there is an assumption made on the accuracy of
the modelled distribution. Thus, the risk associated with the predictions can only be found
empirically, and the real risk is unknown.
Second, these algorithms try to predict a few modes (goals) and then sample trajectories from
these modes [13], [16], [17]. This could mean that not all relevant possibilities of motion are
predicted.
Third, multi-modality is usually achieved by sampling individual trajectories. Sampling mul-
tiple trajectories is a sequential task, the time taken increases with the number of samples
required. This means that it is not possible to predict a high number of samples, which is
helpful for constraint satisfaction in sampling-based motion planning algorithms, such as [8].

1-3-2 Trajectory Evaluation

The usual metrics to evaluate trajectory predictions are the Average Displacement Error
(ADE) and the Final Displacement Error (FDE).

Anish Sridharan Master of Science Thesis



1-4 Contribution 5

• Average Displacement Error (ADE) is the mean L2 distance between the best predicted
of N randomly sampled output trajectories and the ground-truth trajectory position at
all times of predictions [18].

• Final Displacement Error(FDE) is the L2 distance between the best predicted of N
randomly sampled output trajectories and the ground-truth trajectory position at final
time-step of prediction [18].

These metrics do not describe the distribution of the prediction. [13] introduced the use of
recall and precision in trajectory prediction.

• Precision is the measure of how much of the predicted distribution is covered by the
ground-truth distribution. A precision of one would mean that all the predicted trajec-
tories are also a part of the ground truth distribution, and no predictions lie outside of
the ground truth.

• Recall measures how much of the can be ground-truth is covered by the predicted
distribution. A recall of one means the ground truth is completely covered by the
predictions.

The precision and recall as described here tries to evaluate the entire distribution, rather
than just figuring out how good the best trajectory is. This is important for motion planning
scenarios where the entire distribution of the predicted trajectories helps in defining the
obstacle space. A shortcoming of the metrics that are used in [13] is that they only work if
the ground-truth consists of a multimodal output.

1-3-3 Research Direction

In order to overcome these issues, this thesis introduces the Partitioned Experience Method
(PEM) for trajectory prediction. The method is motivated by the scenario approach [19].
Instead of learning the distribution from available data, the data itself is used as the output
of the trajectory prediction. A dataset containing pedestrian motion is divided into multiple
partitions. Each partition contains trajectories of a unique situation (walking, running or
idle pedestrians). According to the state of motion of a detected obstacle, a specific partition
is chosen, and the trajectories present in these partitions are directly used as the predicted
output.
By directly using the data, Partitioned Experience Method (PEM) does not have to learn
the underlying data distribution. Each sample represents a unique and real trajectory, thus
representing a unique mode. More modes can be sampled, covering relevant possibilities.
Finally, since the trajectories are directly sampled from a stored dataset and not generated
individually, a high number of trajectories can be sampled quickly.

1-4 Contribution

• A new method for multi-modal trajectory predictions, the Partitioned Experience Method
(PEM), based on the scenario approach, is introduced and implemented to predict pedes-
trian motion. A dataset containing pedestrian motion is divided into different partitions

Master of Science Thesis Anish Sridharan



6 Introduction

separating different kinds of motion. Based on the observed pedestrian motion, a suit-
able partition is chosen, and trajectories are sampled from it.

• This effectiveness of the trajectory prediction is analysed using the scenario-based mo-
tion planner.

• New evaluation metrics, called recall and variance for evaluating trajectory prediction
algorithms, which work on uni-modal ground truth data, are defined to measure how
well the predictions capture the multi-modal distribution.

The rest of the report contains some preliminaries which would be useful in understanding
the thesis, followed by the thesis, written in a research paper format.
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Chapter 2

Preliminaries

This chapter introduces some background work related to the thesis, namely the scenario
approach and different trajectory prediction algorithms. It is also included in the paper in
the appendix.

2-1 Scenario Approach

The scenario approach [19] is an optimization method that uses data from historical observa-
tions as the constraints of the optimization problem. The number of historical samples used
for the output affects the problem’s risk of constraint violation with the cost of the solution.
More predicted samples lead to a higher number of constraints, which reduces the risk of the
solution but degrades the performance. The risk vs feasibility is explored in detail in [20] and
[21], where the amount of data required to satisfy a particular risk is calculated for various
problems. This method has also been used in other fields in time-series problems to predict
future trends, such as power generation [22],[23], medical applications [24], and finance [25].
Similarly, trajectory prediction defined in this thesis is also a time-series problem, so the sce-
nario approach is used to sample pedestrian motion from a partitioned database to predict
future trajectories.

2-1-1 Scenario Approach in Motion Planning

In autonomous driving, the constraints are uncertain since the positions of obstacles (static
and dynamic) are not precisely known. To overcome this, these positions are usually described
using uncertainty around their believed position. The scenario approach comes into the picture
here. [8] builds upon a Model Predictive Contouring Control (MPCC) framework called Local
MPCC [26]. The way constraints are dealt with is inspired by [21], i.e. the current and
possible future positions of the obstacles are represented as scenarios that act as constraints.
The algorithm is as follows:

Master of Science Thesis Anish Sridharan
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• The chance constraints of the dynamic obstacle are linearized.

• These linearized chance constraints are sampled, and deterministic constraints called
scenarios are drawn.

• The risk of planning is linked with the number of scenarios, with lesser scenarios drawn
implying higher risk.

Problem Definition

Consider a robot at its current state, xt ∈ X navigating through an environment at state et

containing both static and dynamic obstacles. The task followed by the robot is to follow a
trajectory; the problem after linearizing the chance constraints and sampling the deterministic
scenarios is given by:

min
u∈U

N∑
k=1

J(xk, uk) (2-1a)

s.t. xk+1 = f(xk, uk), x ∈ X (2-1b)
AT

k (δi
k, x̂k)xk ≤ bk(δi

k, x̂k) (2-1c)
x0 = xinit (2-1d)

where xk and uk denote the states and inputs of the robot and x̂k) is the k-step ahead
prediction of the robot,

Ak = δk − x̂k

||δk − x̂k||
, bk = Ak(δk − Akr) (2-2)

is the linearized collision region with respect to the predictions of the robot state at a given
stage k, u is the control input given to the robot.
The set of deterministic constraints is obtained by sampling each dynamic obstacle’s position
from uncertainty (δv

k) at a time-step k and getting the collision constraint. Each sample is
a possible position of the dynamic obstacle v at a time-step k. The future positions of each
obstacle are not observable and time-variant; that is, samples at each time step cannot be
used for other time-steps.

Risk Bounding

The paper also has some theorems on risk bounding and some methods for sample pruning
so that less number of samples are used in the optimization and the solution is tractable.
Theorem 1 of the paper states that the probability that the solution violates the chance con-
straint at a stage k in optimization is:

PSk
k [Vk (u∗

SP ) > ϵk (s∗
k)] ⩽ βk (Sk) (2-3)

where β is the confidence parameter that is defined by:

βk (Sk) :=
Sk−1∑

0

(
Sk

s

)
[1 − ϵk(s)]Sk−s (2-4)

Anish Sridharan Master of Science Thesis



2-2 Types of Trajectory Prediction Algorithms 9

Figure 2-1: Taxonomy of trajectory prediction [1]

Thus the scenario approach for autonomous driving is a stochastic approach to the collision
avoidance problem in local motion planning. The approach, unlike Local Model Predictive
Contouring Control (LMPCC), is agnostic to the type of uncertainty of the dynamic obstacle.
Another advantage of the approach is that the pruning of constraints, and the formal definition
of the risk/ safety bounds, not only with the original scenario but also after pruning, allows
the approach to be real-time.

2-2 Types of Trajectory Prediction Algorithms

This section describes the different ways in which trajectory prediction algorithms (as shown
in Fig. 2-1) can be classified.

2-2-1 Based on Output

Trajectory prediction models can either be classifiers that try to classify the type of motion
and object takes or predict one or multiple possible trajectories at every future time-step.
The different types of possible outputs in a trajectory prediction model are described below:

Uni-Modal

These algorithms predict one trajectory per obstacle.

Master of Science Thesis Anish Sridharan
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Multi-Modal

These algorithms suggest that one trajectory is not enough to cover all human intentions,
hence predicting multiple possibilities of motion.

2-2-2 Based on Situational Awareness

Situational awareness refers to the data which the model takes as input. This would range
from considering only one obstacle independently to considering multiple obstacles and their
environment to give a more accurate prediction.

Unaware

These models try to predict the trajectory of an obstacle without considering its interaction
with other obstacles/the entire scene itself. Some basic physics-based approaches described
below, such as the constant velocity (CV) and constant acceleration (CA), are unaware mod-
els. These models are too simple, and since they do not consider the presence of other
obstacles and the environment, they do not produce accurate long-term trajectories.

Interaction-Aware

Interaction-aware prediction models consider other obstacles in the path while estimating
future trajectories. For a pedestrian, this would be using the trajectories of other pedestri-
ans/vehicles and reasoning out that the pedestrian would try to avoid collisions and some
possible paths. [9], [11] and [27] are some algorithms based on interaction aware modelling,
where interaction between obstacles in a particular scene is considered by using Long Short-
Term Memory (LSTM).

Scene Aware

These models use the interaction between all obstacles in the scene and the scene itself.
For example, a pedestrian crossing the road would have a different type of movement when
compared to walking straight ahead. These features are usually obtained from a sensor feed
(like a camera) and fed to the model. Scene context adds physical constraints, which help in
providing more realistic paths. [28] builds upon the social-LSTM work in [9], by embedding
new factors encoding human-space interactions. [29] is another method that models both the
physical terrain and the motion of other obstacles using a LSTM based Generative Adversarial
Network (GAN) module.

Map Aware

Map Aware models use information from a High Definition (HD) map of the environment
as additional information to estimate future trajectories. [30] makes use of HD maps. The
approach uses maps to provide a structure to where obstacles can or cannot be. The future
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trajectory of vehicles is predicted by constraining the vehicle path based on road geometry
and constraints such as lane maintenance. [31] uses a neural network model called VectorNet
to encode HD maps and agent dynamics in terms of vectors.

2-2-3 Based on Modelling Approach

The modelling approach refers to the algorithm based on a physics-based approach or a more
general data-driven( learning-based) approach. Physics-based approaches rely on kinematics
and dynamics of the obstacle to predict the motion. In learning approaches, the algorithm
uses past obstacle data and other information like the road structure and motion of other
obstacles to find a correlation with the obstacle’s future trajectory.

Physics-Based Approaches

Physics-based approaches are algorithms where predictions are made following the rules of
physics, either dynamic or kinematic models. Dynamic models consider the forces involved in
creating the motion. For human trajectory predictions, it is not necessary to calculate these
forces, and the dynamic modelling becomes complex and irrelevant [1]. Kinematic models
describe the motion of the obstacles in mathematical form. There are many simple kinematic
models where assumptions such as CV and CA are used. The obstacle is assumed to move
at a constant velocity or acceleration based on its previous motion.

Learning-Based

Learning-based algorithms do not use complex physical-model to represent an obstacle; in-
stead, they use data of similar obstacles and history to model the new trajectory. These
approaches have become popular since the advent of Deep Learning (DL). The model might
use sensor inputs such as velocity and position of the obstacle during its past trajectory and
may also use the same to precept the scene in which the obstacle is present. Learning-based
approaches can be uni-modal/ multi-modal, unaware/ interaction aware/ scene aware, or map
aware. The output/ situational awareness type is usually based on the problem statement
and the available sensor data. Literature [1] classifies learning algorithms into two types,
sequential and non-sequential models.
Non-Sequential Models learn over the current data directly, and these models do not use data
from previous frames to condition the output. [32] uses a 2D CNN for trajectory predic-
tion and presents position normalization techniques and data augmentation techniques for
the trajectory prediction problem. Sequential Models perform trajectory prediction based on
the history of their past motion. These approaches try to capture long-term dependencies,
using DL tools such as LSTM, Gated Recurrent Unit (GRU), Conditional Variational Au-
toencoders (CVAE) and GAN.
The table 2-1 summarizes different trajectory prediction algorithms and categorizes them
based on the defined classification approaches.s
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Trajectory Prediction
Type of Learn-
ing Algorithms

Type of Output Type of Situ-
ational Aware-
ness

Algorithms

Sequential
Uni-Modal Interaction Aware Social LSTM [33], Group

LSTM [10]
Scene Aware Graph2Kernel Grid-LSTM

[34], Context Aware LSTM
[35]

Multi-Modal Interaction Aware Social GAN [11]
Scene Aware Social VRNN [36], Trajec-

tron++ [12], Sophie [37], So-
cial BiGAT [17], Goal-GAN
[16], MG-GAN [13]

Table 2-1: Classifying Learning based state-of-the-art algorithms
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Abstract—For travelling from point A to point B, au-
tonomous vehicles generate a route between the points.
During the mission, the vehicle uses a motion planning
and controls algorithm to follow the planned route while
avoiding static and dynamic obstacles. Motion planning
algorithms generally plan over a future time horizon to
smoothly follow the route and determine the car’s opti-
mal control (steering/acceleration). For planning through
a future horizon, one requires the possible positions of
all the relevant obstacles in future time-steps. Solutions
for predicting an obstacle’s future trajectory usually in-
volve neural networks to perform sequence learning and
generative algorithms to create multiple possibilities for a
pedestrian’s future state. This is done by attempting to learn
the underlying distribution describing the obstacle motion.
However, in practice, one cannot evaluate if this learnt
distribution is accurate. This thesis addresses this issue
by introducing a fully data-based alternative for trajectory
prediction called the Partitioned Experience Method (PEM),
which predicts future trajectories based solely on previously
recorded data. In this way, it is not necessary to explicitly
learn the underlying distribution of the pedestrian motion.
The implemented trajectory prediction is validated using
two metrics, recall and variance, introduced in this work.
The trajectory prediction is also evaluated using a state-
of-the-art motion planning algorithm. The results obtained
from the motion planner indicate that using the PEM
reduces the number of collisions and close contacts with
other road users, and the corresponding trajectory followed
by the car is closer to the reference trajectory.

I. Introduction

Autonomous vehicles drive around in an unstructured
environment, including pedestrians, cyclists and other
obstacles. For safe navigation, modern motion planning
algorithms plan over a future horizon. We require the
various obstacles’ current and future positions and
motion.
Trajectory prediction is an estimation of the possible
future position of an obstacle, given its past motion.
Some methods predict one output trajectory per
obstacle, called uni-modal prediction. Modern
approaches, however, state that human intention
is uncertain and cannot be predicted by just one
trajectory. So multi-modal algorithms are used to
predict multiple possible trajectories per obstacle.
Current state-of-the-art algorithms attempt to model
obstacle behaviour through data. The underlying
distribution of the data is modelled to learn information

Fig. 1: Uncertainty in any part of a learned distribution
depends on the concentration of the data points at that
part of the distribution [3]

such as possible goal locations and intentions. When a
query is made to predict an obstacle’s trajectory, multiple
possible intentions or goal positions are sampled from
the distribution followed by the trajectories to achieve
these.
There are some inherent issues with such algorithms.
First, a large amount of data is necessary to learn the
distribution accurately. Insufficient data might lead to
high variance in a region of the learned distribution,
as shown in Fig. 1, where the parts of the distribution
defined by fewer data points have high variance. In
such situations, an accurate trajectory is only produced
if the query is in the well-defined part of distributions,
leading to noise/erroneous predictions for edge cases
and low-probability queries. [1] and [2] bring up these
issues with Generative Adversarial Network (GAN) and
the authors conclude that GANs might not accurately
learn the target distribution, and even if they do
succeed, there is a lack of an established way to prove
the success, i.e., there is an assumption made on the
accuracy of the modelled distribution. Thus, the risk
associated with the predictions can only be found
empirically, and the real risk is unknown.
Second, these algorithms try to predict a few modes

(goals) and then sample trajectories from these modes
[4], [5], [6]. This could mean that not all relevant
possibilities of motion are predicted.
Third, multi-modality is usually achieved by sampling
individual trajectories. Sampling multiple trajectories



is a sequential task, the time taken increases with the
number of samples required. This means that it is not
possible to predict a high number of samples, which
is helpful for constraint satisfaction in sampling-based
motion planning algorithms, such as [7].
In order to overcome these issues, this thesis introduces
the Partitioned Experience Method (PEM) for trajectory
prediction. The method is motivated by the scenario
approach [8]. Instead of learning the distribution from
available data, the data itself is used as the output
of the trajectory prediction. A dataset containing
pedestrian motion is divided into multiple partitions.
Each partition contains trajectories of a unique situation
(walking, running or idle pedestrians). According to
the state of motion of a detected obstacle, a specific
partition is chosen, and the trajectories present in these
partitions are directly used as the predicted output.
By directly using the data, PEM does not have to learn
the underlying data distribution. Each sample represents
a unique and real trajectory, thus representing a unique
mode. More modes can be sampled, covering relevant
possibilities. Finally, since the trajectories are directly
sampled from a stored dataset and not generated
individually, a high number of trajectories can be
sampled quickly.

II. Related Work

A. Trajectory Prediction
1) Early Approaches: Initial approaches to trajectory

predictions used approximations such as constant veloc-
ity/acceleration or simple physics-based rules to predict
the trajectory [9], [10], [11]. Since it is not easy to model
the exact dynamics of the scene, it is not practical to
use purely physical models for the prediction of human
motion.
Neural networks architectures based on Recurrent Neu-
ral Network (RNN) [12], like Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) [13] became
the prevalent way to model the long term dependen-
cies of human motion. Social LSTM [14] was the first
popular approach of this type, where LSTM networks
were used to predict based on the motion of both
the query pedestrians and other nearby pedestrians.
Context-Aware LSTM in [15] added information about
the surrounding scene to the better context of the mo-
tion. Group LSTM in [16] clustered pedestrians together
in a group and used Social LSTM on the group as a
whole.
These algorithms produce uni-modal trajectories. In case
there are two available modes, the output ends up being
the average of these, without representing either of the
modes accurately [17], [18], [19], [20].

2) Multi-Modality: Variational and generative models
such as the GAN are popular ways to solve the multi-
modality problem of trajectory prediction.

Models using Variational Approaches
Conditional Variational Autoencoder (CVAE) [21] is
an extension of Variational Autoencoder (VAE) [22],
a neural network architecture that models latent
variables and data to represent it as a lower dimension
distribution, from which ”fake” data can be sampled.
Desire [23] is a method that uses CVAE to generate
a diverse range of trajectories and then ranks the
trajectories based on their likelihood. Trajectron++
[24], is another CVAE-based multi-modal approach to
trajectory prediction, where the authors use dynamics
and scene context, in addition to the ability to add
sensors and High Definition maps for pedestrian/vehicle
modelling.
A Variational Recurrent Neural Network (VRNN) [25]
is also an extension of a VAE, that is used to model
high dimensional sequences. Social-VRNN in [26] uses a
scene-aware VRNN approach, where a Gaussian mixture
model is used to generate multiple modes. The diversity
of predictions is ensured by representing inputs as a
gaussian distribution and sampling different inputs
from it.
GAN Based Networks
GAN [27] is a neural network architecture containing
a generator and a discriminator, contesting each other.
The generators try to learn the underlying distribution
of the data and create ”fakes” from the same. The
discriminator has to distinguish between real and
fake data, thus pushing the generator to create more
realistic data. Social-GAN [28] first used GAN for
trajectory prediction. LSTMs are used for socially
aware encoding of pedestrian motion, and the GAN
attempts to generate multiple realistic trajectories from
the distribution. Graph Attention Network (GAT) [6]
is another approach that uses feature representations
of multiple humans and static obstacles in the scene.
Goal Gan [5] tries to predict multiple possible goal
positions and then generate trajectories that lead to
these goals. Finally, MG-GAN [4] is a recent work where
the path mode network produces different modes.
Multiple generators are used, each trying to sample
from one generated mode. This ensures that every mode
is independent of the other, effectively separating the
different prediction modes.
Multi-modal algorithms have inherent issues, as
described in the previous section. They attempt to
model input data and learn the distribution, which
could lead to the prediction of unrealistic trajectories.
They also learn limited modes and then sample out
of these modes instead of considering each possible
trajectory as a separate mode by itself. Finally, since
each trajectory is sampled individually from the learnt
distribution, they are too slow to predict a high number
of output trajectories.



3) Evaluation Metrics of Trajectory Predictive algorithms:
The usual metrics to evaluate trajectory predictions are
the Average Displacement Error (ADE) and the Final
Displacement Error (FDE).

• Average Displacement Error (ADE) is the mean L2
distance between the best predicted of N randomly
sampled output trajectories and the ground-truth
trajectory position at all times of predictions [29].

• Final Displacement Error (FDE) is the L2 distance
between the best predicted of N randomly sampled
output trajectories and the ground-truth trajectory
position at final time-step of prediction [29].

These metrics do not describe the distribution of the
prediction. [4] introduced the use of recall and precision
in trajectory prediction.

• Precision is the measure of how much of the pre-
dicted distribution is covered by the ground-truth
distribution. A precision of one would mean that
all the predicted trajectories are also a part of the
ground truth distribution, and no predictions lie
outside the ground truth.

• Recall measures how much of the can be ground-
truth is covered by the predicted distribution. A
recall of one means the predictions completely cover
the ground truth.

The precision and recall, as described here, try to eval-
uate the entire distribution rather than just figuring out
how good the best trajectory is. This is important for
motion planning scenarios where the entire distribution
of the predicted trajectories helps define the obstacle
space. A shortcoming of the metrics used in [4] is
that they only work if the ground truth consists of a
multimodal output.

B. Scenario Approach

The scenario approach [8] is an optimization method
that uses data from historical observations as the con-
straints of the optimization problem. The number of his-
torical samples used for the output affects the problem’s
risk of constraint violation with the cost of the solu-
tion. More predicted samples lead to a higher number
of constraints, which reduces the risk of the solution
but degrades the performance. The risk vs feasibility is
explored in detail in [30] and [31], where the amount
of data required to satisfy a particular risk is calculated
for various problems. This method has also been used
in other fields in time-series problems to predict future
trends, such as power generation [32], [33], medical
applications [34], and finance [35]. Similarly, trajectory
prediction defined in this thesis is also a time-series
problem, so the scenario approach is used to sample
pedestrian motion from a partitioned database to predict
future trajectories.

C. Contribution

• A new method for multi-modal trajectory predic-
tions, the Partitioned Experience Method (PEM),
based on the scenario approach, is introduced
and implemented to predict pedestrian motion. A
dataset containing pedestrian motion is divided into
different partitions separating different kinds of
motion. Based on the observed pedestrian motion,
a suitable partition is chosen, and trajectories are
sampled from it.

• This effectiveness of the trajectory prediction is
analysed using the scenario-based motion planner.

• New evaluation metrics, called recall and vari-
ance for evaluating trajectory prediction algorithms,
which work on uni-modal ground truth data, are
defined to measure how well the predictions capture
the multi-modal distribution.

III. Problem Formulation

Consider an environment where an autonomous
robot and obstacles are present. For motion planning,
the autonomous robot needs to learn the current and
future states of the environment accurately. The state
of the environment at time t, is given by et ∈ E. The
environment state at a given time is the combination of
each obstacle present.
The problem of trajectory prediction can be defined as
finding the environment state for N future time steps,
given the environment states at current and m past time
steps.

Input : e = {et , et−1, et−2, ....., et−m} (History)

Output : ê = {et+1, et+2, et+3, ....., et+N } (Future)
(1)

Thus the prediction of future states of the environment
can be represented as the combination of the trajectory
prediction of each obstacle. In order to simplify
the problem in Eq. (1), we will consider the problem
to be the trajectory prediction of one obstacle, Obstacle i:

et =
v∏

i=1

xi,tobs

Input : xiobs = {xtobs,x
t−1
obs , ....,x

t−m
obs }

Output : x̂iobs = {xt+1
obs ,x

t+2
obs , ....,x

t+N
obs }

(2)

The obstacle state is not fully observable. Some infor-
mation about the obstacle can be obtained (e.g. velocity,
position, past motion). These are called observables.
Other information on the obstacle state cannot be ob-
tained (e.g. obstacle intention). These are the hidden
states of the obstacle.
Let the obstacle state, xiobs be defined by a set of observ-
ables: oit ∈ O and hidden states: hit ∈ H. The obstacle state
is defined by: xiobs = Oi ∪ Hi .
The predicted trajectories are a function of the current
and past obstacle states. We assume that the hidden



states are generated by a time-variant distribution (P t
H).

Data-centric approaches usually attempt to fit a model
probability distribution for (P t

H) and thus make some
assumptions regarding the distribution. Hence, the risk
associated with the predictions can only be found em-
pirically, and the real risk is unknown.
The PEM uses the scenario approach [36] and directly
uses the samples from the distribution as the output pre-
dictions. In this case, no assumptions on the distribution
are made, and thus the risk associated with the predicted
trajectories can be accurately determined based on the
number of trajectories predicted.

IV. Partitioned Experience Method

The PEM is an approach for trajectory prediction
based on the scenario approach. It consists of two stages:
• Offline Stage: In this stage, we create a database

called the experience dataset. The experience
dataset is a collection of observables and the corre-
sponding trajectory followed by obstacles. A parti-
tioning algorithm divides the database into multiple
partitions based on the collected observables, such
that each partition contains trajectories of obstacles
having a similar set of observables. The schematic
of the offline stage is shown in Fig. 2.

• Online Stage: This stage is performed when the
autonomous vehicle is driving. For every detected
obstacle, the PEM predicts a multi-modal trajectory
consisting of Sr trajectories. For this task, a set of
observables is detected from the obstacle and fed
to the partitioning algorithm, where the obstacle’s
partition is detected. From this partition, Sr trajec-
tories (trajectories with the closest speed to that of
the obstacles) are sampled. These trajectories are
the predicted trajectories for the given obstacle. The
schematic of the online stage is shown in Fig. 3.

Consider a dataset D of recorded obstacle motion. The
experience dataset consists of a set of observables and
their future trajectories. The hidden states cannot be
recorded, and their distribution is defined by P t

H.
In the case of trajectory prediction, P t

H is time-variant,
i.e., the distribution of the hidden information is not
static. This means that the trajectories collected in one
instant of time cannot be readily used in another. To
resolve this, we assume that the hidden states are corre-
lated with the observables. That is, the intention of the
obstacle is correlated with its observable state, such as
velocity, direction, location etc. Then we can condition
the hidden state based on the observables recorded,
P t
H = f (O), which is then assumed to be static with

respect to time.
The idea of the method is that the more observable
information is gained, the more is the variance of the
distribution of the hidden state reduced. The more in-
formation we get about an obstacle state, the better we
can predict the obstacle’s intention.

A. Offline Stage

1) Data Collection: A recorded database, called the ex-
perience dataset, is collected at this stage. The experience
dataset consists of observables and the corresponding
trajectory for every observed obstacle. To make the expe-
rience dataset spatially stable, the collected trajectories
do not consist of the actual obstacle position but rather
contain the obstacle velocities at each step of the horizon.
Let the set of m observables that represent an obstacle i
be defined as, Oi

t = [Oi,0
t , Oi,1

t , Oi,2
t , ........., Oi,m

t ].
The corresponding trajectory of this obstacle is x̂iobs ∈

R
2N .

Let the experience dataset contain V datapoints recorded
from various obstacles. Each data point is a combination
of the observables recorded for a particular obstacle i
and the corresponding trajectory.

Individual datapoint, Da ∈ Oi
t × x̂iobs

Experienced Dataset, D = [D0, D1, D2, ....., DV ]
(3)

2) Partitioning: By conditioning the hidden state on
observables, the observables can directly be used to
sample the relevant trajectories for a detected obstacle
from the dataset, such that Ôi

t = OD. Here Ôi
t represents

the set of observables of a detected obstacle, and OD
represents an equivalent set of observables recorded in
the experience dataset. But the probability of finding a
point in a continuous space is zero (P [X = x ] = 0).
Thus by definition, finding such a datapoint in the
experience dataset where, Ôi

t = OD, is 0. To locate similar
datapoints based on observables, it is necessary to divide
the experience dataset into multiple partitions, where
each partition contains volumes of datapoints with sim-
ilar observables. These partitions are mutually exclu-
sive, and each partition contains observables and the
corresponding trajectory for specific cases of motion. Let
experience dataset D be the collection of all individual
partitions. Each partition is given by Dm.

D =
p⋃

m=0

Dm, Di∩Dj = ∅, i , j, D
[
Ôi
t ∈ D

]
> 0, Dm ⊆ D

(4)
The partition that an obstacle belongs to is a function of
its observables. So, the partition m. to which an obstacle
i, with a recorded set of observables Oi

t , is given by:

Dm = g(Oi
t ) (5)

We propose partitioning the experience dataset using
an unsupervised clustering algorithm, the k-means [37]
algorithm. K-Means is an iterative clustering algorithm
that divides the dataset into several (pre-defined num-
ber) partitions. This partitioning is done based on a set
of features. K-Means randomly initializes centroids. Each
datapoint is then assigned a cluster (partition) based
on the nearest centroid, and the cluster is updated. A
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new centroid is then assigned based on the mean of
all the datapoints in the updated cluster. This process
is iteratively performed till the assigned clusters are
stable. Fig. 4 shows the schematic of K-Means for a two-
dimensional set of features. The features used in PEM
are high dimensional and cannot be visualized as easily.
K-Means is also an exclusive clustering method, mean-

ing every datapoint can only belong to one clus-
ter/partition. This point is crucial to our method, where
by definition in Eq. (4), each datapoint can belong to one
partition, and the partitions are mutually exclusive.
For the PEM, the features considered for the K-Means
algorithm are the different observables recorded from
obstacles. The more information the observables give on
the obstacle state and thus condition the hidden state
more accurately. This means that if more information
about the obstacle state is known, the K-Means algorithm
could better distinguish between the different intentions
of the obstacle. Thus, each motion partition would con-
tain only trajectories relating to a specific intention.
The experience dataset is partitioned, so each partition
contains at least Sr elements.

B. Online Stage
This stage occurs during motion planning, where the

state of the environment needs to be predicted. Let
us consider the problem defined in Eq. (2), trajectory
prediction of one obstacle. A set of Oi

t is observables
recorded for the obstacle at time t. The partition to
which the obstacle belongs is given by Eq. (5). From this
partition, Sr trajectories are sampled, and these samples
are the predicted output of the problem. The output of
the trajectory prediction is:

x̂iobs = [ x̂i,0obs , x̂
i,1
obs , x̂

i,2
obs , ......., x̂

i,Sr
obs ] (6)

This process can be repeated for all obstacles in the
environment, and the predicted future state of the envi-
ronment is given by:

ê =
v∏

i=1

x̂i,tobs (7)

V. Discussion

When an obstacle is detected, the Partitioned Experi-
ence Method (PEM) captures all the relevant informa-
tion (Observables). It uses this information to predict
the partition the obstacle belongs to, based on the K-
Means clustering algorithm. A pre-determined (based on
requirements) number of trajectories are then sampled
from this partition and used as the output to the trajec-
tory prediction problem.
In doing so, PEM alleviates three of the issues mentioned
in Section I:
• Since the database is directly used to sample trajec-

tories, one does not need to fit a model to learn



the prediction, and only realistic trajectories are
sampled.

• Every trajectory that is sampled is unique and in-
dependent. Each trajectory represents an individual
mode. Thus the trajectory prediction problem is not
limited to a few modes, and low probability modes
can be predicted.

• The output trajectories need not be sequentially
sampled, the latency of predicting a high number of
trajectories is lower than a comparative generative
neural network based model.

VI. Implementation

The method is implemented and evaluated in the
CARLA [39] simulator (shown in Fig. 5) along with a
motion planning algorithm, the scenario-based motion
planner. The scenario-based motion planner is a chance-
constrained optimization problem where the constraints
are the possible trajectories of various obstacles in the
planning horizon. The number of trajectories needed to
be predicted for each obstacle at every time-step is a
function of the required risk (ϵ) and confidence (β) of
the motion planner, Sr ∝ (β,ϵ). This is calculated in [7],
and the number of trajectories predicted for a risk factor
of { 5, 10, 15 } are approximately { 1000, 500, 250 }. The
table I gives further details on the implementation of the
trajectory prediction.

TABLE I: Implementation details of the experiment

Type of Obstacles Considered Pedestrians

Number of Predicted Timesteps 20

Timestep size 0.2 seconds

Fig. 5: Carla Scene

A. Implemented Algorithm

1) Inputs/ Observables: The implementation in the the-
sis is a map-aware approach, where the location of the
sidewalks and crosswalks are known.
Carla provides the pedestrian’s position and velocity
with respect to the global centre of the map, so local

motion is not known. To make the data spatially stable,
the motion of the pedestrian must be recorded in a frame
of reference that is easily generalized and can be used
for any pedestrian.
The road network is converted into a graph with multi-
ple nodes at the sidewalks’ edge. Each consecutive node
is joined together to form edges. All the observables of
the pedestrian are calculated with respect to the close
edge. The used observables:
• Distance from edge: Distance from the sidewalk

edge, i.e. how far away pedestrian is from the road.
• Angle with respect to edge: Angle of the pedestrian

velocity to the nearest sidwalk edge.
• Velocity with respect to edge: Velocity of the pedes-

trian with respect to the nearest sidwalk edge.
• Distance to crosswalk: Distance to the closest cross-

walk from the pedestrian.
• Acceleration: Captures history, change in pedestrian

velocity over past few timesteps.
• Direction Change : Captures history, change in

pedestrian angle with the sidewalk edge over time.
These observations are recorded and sent to the parti-
tioning module.

2) Experience dataset: The experience dataset consists
of recorded pedestrian motion in Carla by recording the
observables (defined above) for various pedestrians and
the corresponding trajectories of obstacle velocities for
20 time-steps in the future. This dataset is recorded by
collecting pedestrian information from multiple roads.
In order to use the pedestrian trajectory in one road to
satisfy the prediction of another road, all the motions are
generalised and calculated in a local frame of reference
as explained in the above Section VI-A1.

3) Partitioning: In this step, the k-means implementa-
tion of scikit learns [40] is used to divide the experience
dataset into multiple partitions such that each partition
has at least 1000 datapoints, ensuring that each partition
can guarantee probabilistic safety.

4) Outputs: The output consists of Sr sampled tra-
jectories, with each trajectory containing the velocity of
the pedestrians for the next 20 time-steps. These veloc-
ities are integrated with respect to the observed current
position of the obstacles to get the possible positions.
So for each future time-step, the output contains 1000
possible positions of the obstacle. These outputs are used
to construct constraints for the scenario-based motion
planner.

VII. Experiments

For evaluation, two types of simulated experiments
were carried out.

A. Stand-alone Trajectory Prediction Experiments

Here, the evaluation of the stand-alone trajectory pre-
diction network is performed.



1) Evaluation Metrics: The recall and precision intro-
duced in [4] is based on the convergence of ground-truth
modes and the predicted modes, and the ground-truth
itself is multi-modal. So it would not work for cases
with just one ground truth per test case. Most datasets
contain only one possible ground truth per test case,
so such a method cannot be used. For the metrics to
work when single ground truth is used, in this paper,
the concept of recall is modified, and a new metric
called variance is introduced to describe the shape of
the predicted distribution. The predicted trajectory is
clustered by a distance-based clustering algorithm, ag-
glomerative clustering [41], from scikit learn [40]. This
clustering attempts to separate the different prediction
modes by keeping the nearby predicted trajectories close.
The outer edges of each cluster are then found by fitting
a bounding box on each cluster, using the convex hull
algorithm of scipy [42]. The recall and variance are then
calculated as follows:

• Recall - The recall defines if the predicted trajec-
tories capture the ground truth for every time step
of prediction. For example, in Fig. 6, the ground
truth at the final stage of prediction is present
inside the bounding box, and hence it is accurately
captured by the predicted distribution. The recall
of the algorithm of one time step is the percentage
of predictions in which the distribution accurately
represent the ground truth at that time step.

• Variance - Variance captures the size of every stage
of the predicted distribution. In Fig. 6, this size for
the final stage of prediction is given by the sum of
areas of the bounding boxes A, B and C.
The variance of an algorithm of one time step is the
average of the areas of the predicted distribution of
every prediction.

Ground 
Truth

Box A

Box B

Box C

Fig. 6: Multi-Modal Trajectory Prediction of pedestrian,
where each colour represents one time-step and the black
’x’ represents the ground truth of the final position

For calculating the recall and variance for the vari-
ous experiments performed, a test set containing 10000

pedestrian observables and trajectories is separated from
the recorded experience dataset and used.

2) Experiments Performed:
• Number of output trajectories sampled - The effect

of different amounts of sampled trajectories is
studied, and the results are demonstrated in graphs
of Fig. 7a and Fig. 7b. The results show that the
number of sampled trajectories greatly affects both
the recall and variance. This goes per the research
in scenario approach [36], as more trajectories
sampled mean more variance in the predicted
distribution, increasing the size of the predicted
distribution and thereby increasing the probability
of accurately predicting the ground truth.

• Choice of Observables used - The effect of the
choice of observables is studied, and the results
are shown in graphs in Fig. 8a and Fig. 8b. The
choice of the observables used greatly affects
how partitioning is done and, thus, the kind
of trajectories present in a partition. The more
well-defined the obstacle’s current state is, the
less variance there is in the obstacle’s predicted
trajectories. For example, including a pedestrian’s
crosswalk data would help predict crossing
intention, which will be reflected in the created
partitions. If the pedestrian is near a crossing
zone, the crossing intention would be higher, and
the partition chosen would also reflect this. If
crossing data is not included, this intention is not
captured, and the chance of pedestrian crossing
would be similar in each partition. The graphs
in Fig. 8a and Fig. 8b show that the variance of
predicted trajectories increases when the sidewalk
or crosswalk data of the pedestrian is removed. This
means that this data helps predict the pedestrian’s
intention and reduces the variance in the predicted
trajectories.

• Size of the experienced dataset - Three datasets
containing 100000 trajectories, 200000 trajectories
and 800000 trajectories are considered and parti-
tioned such that each partition contains at least
1000 trajectories. The results are shown in the
graphs of Fig. 9a and Fig. 9b. The accuracy of
the underlying distribution of motion is dependent
on the size of the dataset. The distribution of a
dataset with more samples is well-defined compared
to a dataset with a less number of samples. This
is demonstrated in the experiments in Fig. 9a and
Fig. 9b. When there are fewer datapoints in the
experience dataset, the number of trajectories rep-
resenting each type of motion is also less. Due to
this, there might not be Sr trajectories to repre-
sent the different intentions of the pedestrian, and
hence adequate partitions cannot be made to cap-
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Fig. 9: Recall and Variance for Different Sizes of the Experience Dataset

ture each intention separately. Thus, each partition
will contain a mixture of different intentions, and
the variance of the predicted distribution will be
larger. As the number of datapoints increases, the
dataset can be partitioned such that more intentions
of the pedestrian can be partitioned, containing Sr
elements. Intentions can be better represented, and
the variance of the predicted trajectory would be
less. This test shows that the PEM does not eliminate
the need for having an extensive database, and the
more data contained in the experience dataset, the
more well-defined the motion is.

B. Motion Planning Experiments

Here the PEM’s performance is tested along with
a motion planner. The performance is compared with

two other trajectory prediction algorithms, the constant
velocity trajectory predictions, where the pedestrian is
projected to move at the observed constant velocity
throughout the time horizon. The Social-VRNN [43] is a
neural network based method that captures both social
impact (Positions of other pedestrians and vehicles in the
scene) and the position of static obstacles in the scene to
generate possible trajectories. Twenty runs of the motion
planner with the implementation in table I are run, with
pedestrians spawning at different map locations in a
different run. Then, the following metrics are collected
and averaged out.

• Trajectory Followed - The trajectory of the car fol-
lowed under different trajectory prediction algo-
rithms is shown in Fig. 11.

• Close Obstacle Count - The motion planner is run



(a) Constant Velocity model (b) Social-VRNN model (c) PEM

Fig. 10: Rviz visualization of the motion planning problem, where the blue circles represents the generated plan for
the car. The green markings represent the pedestrians and the black markings represent the pedestrian’s predicted
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Fig. 11: Trajectories followed by various algorithms. The
ego-vehicle travels from (200,-2) to (350,-1) in the mission.
The shaded areas in the graph represent the different
crossing zones, while the dashed lines represent the lane
dividers

20 times, collecting metrics such as collisions, close
encounters (where the distance to the obstacle is less
than 0.5m) and minimum clearance per run. The
results are shown in table II.
The results of the above two experiments demon-
strate the ability of the PEM to learn crossing in-
tentions before the pedestrian turns or enters the
road. In the trajectories graph, it can be seen that
both the constant velocity and the social-vrnn mod-
els (500 and 1000 trajectories sampled) have huge
deviations in trajectories (Fig. 11), sometimes even
entering the other lane. These deviations happen in
the crossing zones, where the constant velocity and
the social-vrnn models do not predict pedestrian
crossing in time. The motion planner has to resort
to reactive measures, such as sudden deviations,
to avoid collisions. This is also reflected in the
close encounters and collisions, as the ego-vehicle
does not pre-emptively slow down for pedestrian
crossing. These results are shown in in table II.
The PEM can learn crossing intentions by collect-
ing appropriate data and simple partitioning ap-

proaches. Due to the crossing prediction, the ego-
vehicle can slow down in time for pedestrians to
cross, avoiding collisions and having very few close
encounters.

TABLE II: Collision and close encounters

Algorithm Collision Count Close Encounters ( < 0.5m ) Minimum clearance
per run [m]

Constant Velocity (500 samples) 4 33 0.24
PEM(500 samples) 0 9 0.63
Social - VRNN (500 samples) 1 24 0.27
Constant Velocity (1000 samples) 2 25 0.17
PEM (1000 samples) 0 5 0.74
Social - VRNN (1000 samples) 2 18 0.41

• Time Taken to Goal - This is a measure of the aver-
age time to goal for each of the three algorithms is
shown in table III.
The early detection of crossing makes the ego-
vehicle slow down in the crossing zones, unlike the
social-vrnn and constant velocity prediction models
where the ego-vehicle does not slow down until the
pedestrian is on the road and crossing and thus
uses reactive measures to avoid pedestrians and
continue the mission. This results in the PEM being
more conservative. The time taken to reach the goal
is highest in the PEM compared to the other two
methods (table III), but the safety of the planner
improves significantly.

TABLE III: Average Time Taken to Goal

Algorithm Average Time to Goal (seconds)
Constant Velocity (500 samples) 46.1
PEM (500 samples) 56.6
Social - VRNN (500 samples) 47.4
Constant Velocity (1000 samples) 45.9
PEM (1000 samples) 61.8
Social - VRNN (1000 samples) 48.2



TABLE IV: Time Taken to sample

Algorithm Time Taken to sample trajectories (in ms)
Constant Velocity (500 samples) <1
PEM (500 samples) ∼25
Social - VRNN (500 samples) ∼89
Constant Velocity (1000 samples) <1
PEM (1000 samples) ∼26.5
Social - VRNN (1000 samples) ∼112.5

C. Time taken for Prediction

The table IV contains each algorithm’s time to sample
a specific number of trajectories for six obstacles. As
can be seen, the constant velocity model is the fastest
algorithm because it directly integrates current velocity
over the horizon, without considering external factors.
On the other hand, the Social-VRNN is a neural network-
based algorithm that considers all the pedestrians in the
scene to predict a particular pedestrian’s position. It also
requires sequential sampling trajectories to generate a
diverse, multi-modal prediction, which leads to a high
prediction time for a large number of sampled trajecto-
ries.
The PEM does not sequentially generate individual
trajectories but directly samples trajectories from the
experienced dataset, which is why the time difference
between sampling 500 and 100 trajectories is low (1.5ms
difference). The PEM can thus sample many trajectories
required for the constraint satisfaction of multi-modal
methods in real time.

VIII. Conclusion and Future Work

In this thesis, the current state-of-the-art trajectory
prediction algorithms are studied. The underlying issues
regarding learning the pedestrians’ underlying distribu-
tion, amount of training data needed and algorithms’
speed are raised. A new method for trajectory prediction
of other obstacles, the PEM, is introduced to address
these issues. The PEM does not try to learn a distribution
but instead uses the recorded database and partitions it
based on different kinds of motion. Based on the query
obstacle, trajectories in the database, having a similar
kind of motion as the query obstacles, are directly sam-
pled as the output. The algorithm removes the need to
learn the underlying distribution of the dataset and is
time efficient for sampling a large number of trajectories.
However, the PEM depends on the recorded experiences.
Hence, a large amount of data is required to represent
the various pedestrian motions accurately. The imple-
mented method focuses on pedestrian motion and uses
knowledge of pedestrian motion and map information
such as the location of the footpaths and crossing zone
to learn different types of pedestrian motion. This is
evaluated in a CARLA simulation environment with a
sampling-based motion planner, considering pedestrians
as the other obstacles.

A. Future Work

• Currently, the PEM implemented in the thesis is
also evaluated with a motion planner, so the CARLA
simulation tool is used for the implementation. The
next step would be to adapt the implementation to
real-life datasets like SDD [44], ETH/UCY ( [45],
[46]), KITTI [47], NuScenes [48], which are the
usually used datasets for the evaluation of trajectory
prediction methods.

• Current implementation uses simple rules and a
clustering-based partition method to predict differ-
ent types of pedestrian motion. Future work could
use neural networks’ power to capture pedestrian
motion and the environment scene. This could be
used along with clustering to capture more intricate
details for partitioning compared to the currently
used approach.
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C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D. A.
Nicholson, D. R. Hagen, D. V. Pasechnik, E. Olivetti, E. Martin,



E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G. A.
Price, G. L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst,
J. P. Dietrich, J. Silterra, J. T. Webber, J. Slavič, J. Nothman,
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Appendix

Preliminaries

A. Scenario Approach in Motion Planning

In autonomous driving, the constraints are uncertain
since the positions of obstacles (static and dynamic) are
not precisely known. To overcome this, these positions
are usually described using uncertainty around their
believed position. The scenario approach comes into the
picture here. [7] builds upon a Model Predictive Con-
touring Control (MPCC) framework called Local MPCC
[43]. The way constraints are dealt with is inspired by
[31], i.e. the current and possible future positions of
the obstacles are represented as scenarios that act as
constraints. The algorithm is as follows:

• The chance constraints of the dynamic obstacle are
linearized.

• These linearized chance constraints are sampled,
and deterministic constraints called scenarios are
drawn.

• The risk of planning is linked with the number
of scenarios, with lesser scenarios drawn implying
higher risk.

1) Problem Definition: Consider a robot at its current
state, xt ∈X navigating through an environment at state
et containing both static and dynamic obstacles. The
task followed by the robot is to follow a trajectory;
the problem after linearizing the chance constraints and
sampling the deterministic scenarios is given by:

min
u∈U

N∑
k=1

J(xk ,uk) (8a)

s.t. xk+1 = f (xk,uk),x ∈X (8b)

AT
k (δik , x̂k)xk ≤ bk(δik , x̂k) (8c)

x0 = xinit (8d)

where xk and uk denote the states and inputs of the
robot and x̂k) is the k-step ahead prediction of the robot,

Ak =
δk − x̂k
||δk − x̂k ||

,bk = Ak(δk −Akr) (9)

is the linearized collision region with respect to the
predictions of the robot state at a given stage k, u is the
control input given to the robot.
The set of deterministic constraints is obtained by sam-
pling each dynamic obstacle’s position from uncertainty
(δvk ) at a time-step k and getting the collision constraint.
Each sample is a possible position of the dynamic ob-
stacle v at a time-step k. The future positions of each
obstacle are not observable and time-variant; that is,
samples at each time step cannot be used for other time-
steps.

2) Risk Bounding: The paper also has some theorems
on risk bounding and some methods for sample
pruning so that less number of samples are used in the
optimization and the solution is tractable.
Theorem 1 of the paper states that the probability that
the solution violates the chance constraint at a stage k
in optimization is:

P
Sk
k

[
Vk

(
u∗SP

)
> ϵk

(
s∗k
)]
⩽ βk (Sk) (10)

where β is the confidence parameter that is defined by:

βk (Sk) :=
Sk−1∑

0

(
Sk
s

)
[1− ϵk(s)]Sk−s (11)

Thus the scenario approach for autonomous driving is
a stochastic approach to the collision avoidance problem
in local motion planning. The approach, unlike LMPCC,
is agnostic to the type of uncertainty of the dynamic
obstacle. Another advantage of the approach is that the
pruning of constraints, and the formal definition of the
risk/ safety bounds, not only with the original scenario
but also after pruning, allows the approach to be real-
time.

B. Types of Trajectory Prediction Algorithms

This section describes the different ways in which
trajectory prediction algorithms (as shown in Fig. 12)
can be classified.

1) Based on Output: Trajectory prediction models can
either be classifiers that try to classify the type of motion
and object takes or predict one or multiple possible
trajectories at every future time-step. The different types
of possible outputs in a trajectory prediction model are
described below:
• Uni-Modal: These algorithms predict one trajectory

per obstacle.
• Multi-Modal: These algorithms suggest that one tra-

jectory is not enough to cover all human intentions,
hence predicting multiple possibilities of motion.

2) Based on Situational Awareness: Situational aware-
ness refers to the data which the model takes as input.
This would range from considering only one obstacle
independently to considering multiple obstacles and
their environment to give a more accurate prediction.
• Unaware: These models try to predict the trajectory

of an obstacle without considering its interaction
with other obstacles/the entire scene itself. Some ba-
sic physics-based approaches described below, such
as the constant velocity (CV) and constant accelera-
tion (CA), are unaware models. These models are too
simple, and since they do not consider the presence
of other obstacles and the environment, they do not
produce accurate long-term trajectories.

• Interaction Aware: Interaction-aware prediction
models consider other obstacles in the path while



Fig. 12: Taxonomy of trajectory prediction [49]

estimating future trajectories. For a pedestrian,
this would be using the trajectories of other
pedestrians/vehicles and reasoning out that the
pedestrian would try to avoid collisions and
some possible paths. [14], [28] and [50] are some
algorithms based on interaction aware modelling,
where interaction between obstacles in a particular
scene is considered by using LSTM.

• Scene Aware: These models use the interaction be-
tween all obstacles in the scene and the scene it-
self. For example, a pedestrian crossing the road
would have a different type of movement when
compared to walking straight ahead. These features
are usually obtained from a sensor feed (like a
camera) and fed to the model. Scene context adds
physical constraints, which help in providing more
realistic paths. [51] builds upon the social-LSTM
work in [14], by embedding new factors encoding
human-space interactions. [52] is another method
that models both the physical terrain and the motion
of other obstacles using a LSTM based GAN module.

• Map Aware: Map Aware models use information
from a HD map of the environment as additional in-
formation to estimate future trajectories. [53] makes
use of HD maps. The approach uses maps to provide
a structure to where obstacles can or cannot be. The
future trajectory of vehicles is predicted by con-

straining the vehicle path based on road geometry
and constraints such as lane maintenance. [54] uses
a neural network model called VectorNet to encode
HD maps and agent dynamics in terms of vectors.

3) Based on Modelling Approach: The modelling ap-
proach refers to the algorithm based on a physics-based
approach or a more general data-driven( learning-based)
approach. Physics-based approaches rely on kinematics
and dynamics of the obstacle to predict the motion. In
learning approaches, the algorithm uses past obstacle
data and other information like the road structure and
motion of other obstacles to find a correlation with the
obstacle’s future trajectory.

• Physics-Based Approaches: These approaches are
algorithms where predictions are made following
the rules of physics, either dynamic or kinematic
models. Dynamic models consider the forces in-
volved in creating the motion. For human trajectory
predictions, it is not necessary to calculate these
forces, and the dynamic modelling becomes com-
plex and irrelevant [49]. Kinematic models describe
the motion of the obstacles in mathematical form.
There are many simple kinematic models where
assumptions such as CV and CA are used. The
obstacle is assumed to move at a constant velocity
or acceleration based on its previous motion.

• Learning-Based: Learning-based algorithms do not



Trajectory Prediction
Type of Learning Algo-
rithms

Type of Output Type of Situational Aware-
ness

Algorithms

Sequential
Uni-Modal Interaction Aware Social LSTM [55], Group LSTM [16]

Scene Aware Graph2Kernel Grid-LSTM [56], Context
Aware LSTM [15]

Multi-Modal Interaction Aware Social GAN [28]
Scene Aware Social-VRNN [26], Trajectron++ [24], Sophie

[57], Social BiGAT [6], Goal-GAN [5], MG-
GAN [4]

TABLE V: Classifying Learning based state-of-the-art algorithms

use complex physical-model to represent an ob-
stacle; instead, they use data of similar obstacles
and history to model the new trajectory. These
approaches have become popular since the advent
of DL. The model might use sensor inputs such as
velocity and position of the obstacle during its past
trajectory and may also use the same to precept the
scene in which the obstacle is present. Learning-
based approaches can be uni-modal/ multi-modal,
unaware/ interaction aware/ scene aware, or map
aware. The output/ situational awareness type is
usually based on the problem statement and the
available sensor data. Literature [49] classifies learn-
ing algorithms into two types; Sequential and non-
sequential models.
– Non-Sequential Models learn over the current

data directly, and these models do not use data
from previous frames to condition the output.
[58] uses a 2D CNN for trajectory prediction
and presents position normalization techniques
and data augmentation techniques for the tra-
jectory prediction problem.

– Sequential Models perform trajectory prediction
based on the history of their past motion. These
approaches try to capture long-term dependen-
cies, using DL tools such as LSTM, GRU, CVAE
and GAN.

The table V summarizes different trajectory prediction
algorithms and categorizes them based on the defined
classification approaches.
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Appendix A

Glossary

List of Acronyms

ADE Average Displacement Error
CVAE Conditional Variational Autoencoders
DL Deep Learning
FDE Final Displacement Error
GAN Generative Adversarial Network
GRU Gated Recurrent Unit
HD High Definition
LSTM Long Short-Term Memory
LMPCC Local Model Predictive Contouring Control
PEM Partitioned Experience Method

Master of Science Thesis Anish Sridharan



20 Glossary

Anish Sridharan Master of Science Thesis


	Front Matter
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgement

	Main Matter
	Introduction
	Automated Driving
	Trajectory Prediction Approaches
	Problem Formulation

	Limitations in Current Research
	Trajectory Prediction
	Trajectory Evaluation
	Research Direction

	Contribution

	Preliminaries
	Scenario Approach
	Scenario Approach in Motion Planning

	Types of Trajectory Prediction Algorithms
	Based on Output
	Based on Situational Awareness
	Based on Modelling Approach


	Paper

	Appendices
	Appendices
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols



