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1
Introduction

The shape of the Earth has long been one of the biggest and most frequently-asked questions of
humanity. While ancient Chinese believed the Earth is a square plane covered by a hemisphere sky,
the ancient Egyptians had long spotted the Earth is curved and even gave an estimate to the curvature
and size of the Earth. Yet it was not until Ferdinand Magellan succeeded the circumnavigation in year
1521 that human-beings first confirmed experimentally that the Earth is a closed sphere. Yet it is not
really a sphere - the remote sensing techniques developed alongside with the space technology in the
last century revealed that the Earth’s shape is a ’spheroid’, meaning ’almost sphere’, whose surface is
indeed much rougher than anyone expected.

The shape of the Earth, modernly described by the so-called mean-sea level, is indeed a time-
independent equipotential of the conservative gravitational field, governed by the Poisson equation.
With an uneven distribution of mass both on the surface and in the interior of the Earth, the resulting
gravity field is also spatially non-uniform.

Although small in magnitude, the spatial variation of gravitational attraction does lead to observable
’topography’ on the ocean, namely, the hypothetically motionless sea-surface does not lie on a perfect
sphere but a rough-surfaced spheroid. Consequently, the gravity vector, which is defined to be the
gradient vector of the equipotential lines, does not always point in the same direction. The magnitude
of the gravity at the mean-sea level is also not uniform at all.

The causes and empirical determination of the mean-sea level have been addressed by geophysi-
cists. In this project, however, it is the consequence of the non-uniform gravity that concerns us. In
particular, the surface waves in fluid in a spatially varying gravity field is the topic of this thesis.

In the classical treatment of surface waves, the gravity field is assumed to be uni-directionally
constant everywhere. The gravity together with the fluid pressure constitute the restoring mechanisms
of oscillations on the fluid surface, thus creating the surface gravity waves.

In this project, the assumption of uniform gravity, used in most, if not all, of the analytical and
numerical studies of surface waves, will be relaxed. Focus is especially put on conservative gravitational
force fields, due to their relevance to the actual gravity field on Earth. In Chapter 2 basic terminologies
and notations will be introduced. The research topic starts with the shallow water waves in Chapter
3, in which the standard shallow water model will be adapted to cater for the non-uniformity in the
gravity field. The adapted shallow water model and the linearised shallow water waves will be derived
in this Chapter.

In Chapter 4, the adapted one-dimensional shallow water waves are analysed. Analytic solutions
to the adapted shallow water wave equations are derived, and validated by numerical simulations
with the aid of the open-source numerical solver CLAWPACK. Two features of surface waves in the
one-dimension studies are reviewed, namely the wave amplitudes and wavenumber.

Chapter 5 continues the discussion of the adapted shallow water model in the two-dimensional
space. While limited analytic studies are presented, the two-dimensional equations are solved nu-
merically by CLAWPACK based on both hypothetical and physical scenarios. In addition to the wave
amplitudes and wavenumbers, the refraction and scattering of waves by the spatially-varying gravity
field is focused also in the two-dimensional studies.
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2 1. Introduction

A twist is found in Chapter 6. In this chapter the shallowness assumption is relaxed and Airy’s
linear wave theory, which is a fundamental and widely-applied theory to study surface gravity waves, is
generalised for spatially-varying conservative gravity fields. The generalisation is, however, limited to
only the two-dimensional space, and thus one-dimensional waves. The surface waves in the full three-
dimensional remains an unresolved problem left for further research. Despite this, it is demonstrated
that the one-dimensional waves turns out to be consistent with the adapted shallow water waves,
discussed in Chapter 3 and 4.

The summary and conclusions are given in Chapter 7. Several unanswered questions in this thesis
are also outlined for future research.



2
Basis Terminology

2.1. Governing Equations
2.1.1. Equations of Motion in a Non-rotating Coordinate System
The governing equations for fluid are given by the continuum equations of motions.

Denote
𝐷
𝑑𝑡 ≡

𝜕
𝜕𝑡 + u ⋅ ∇ (2.1)

to be the total derivative following individual fluid elements.
Denote x to be the position vector, 𝜌 = 𝜌(x, 𝑡) to be the density of fluid and u = ፝፱

፝፭ (x, 𝑡) is the
velocity field. The continuity equation is given by:

𝐷𝜌
𝑑𝑡 + 𝜌∇ ⋅ u = 0 (2.2)

In this thesis the fluid is taken to be incompressible, so that the continuity equation reads:

∇ ⋅ u = 0 (2.3)

Denote 𝑝 = 𝑝(x, 𝑡) to be the pressure field, Φ = Φ(x, 𝑡) is the potential for conservative force fields
and F = F(x,u, 𝑡) is the non-conservative forces. The momentum equation is given by:

𝜌𝐷u𝑑𝑡 = −∇𝑝 − 𝜌∇Φ + F (2.4)

2.1.2. Equations of Motion in a Rotating Coordinate System
Consider a reference frame which is rotating at uniform angular speed � relative to the inertial frame.
The continuity equation remains invariant in both rotating and non-rotating coordinate system. The
momentum equation, however, is transformed into the following form:

𝜌[𝐷u𝑑𝑡 + 2� × u] = −∇𝑝 − 𝜌∇(Φ +Φ) + F (2.5)

where Φ is the conservative centrifugal potential associated to the centrifugal force due to the rotation
of reference frame.

2.2. Transformation of Coordinates
2.2.1. Notations
The Cartesian coordinates (𝑥, 𝑦, 𝑧) are commonly used to study geophysical fluid dynamics when the
scale of motion is not too large in the sense that the length scale of motion 𝐿 is much less than the
radius of Earth 𝑅ፄ ≈ 6400km.

3



4 2. Basis Terminology

For specific problems, it may happen that the use of an transformed coordinate system can simplify
the analysis. In the following text, a specific transformation on the vertical coordinates 𝑧 will be
performed. A general description is given below.

Suppose 𝑟 is a general vertical coordinate which is monotonic with 𝑧. Transformation from (𝑥, 𝑦, 𝑧, 𝑡)
to (𝑥, 𝑦, 𝑟, 𝑡) requires a transformation function 𝑇(𝑥, 𝑦, 𝑧, 𝑡), which maps (𝑥, 𝑦, 𝑧, 𝑡) ∈ ℛኾ into (𝑥, 𝑦, 𝑟, 𝑡) ∈
ℛኾ.

(𝑥, 𝑦, 𝑟, 𝑡) = 𝑇(𝑥, 𝑦, 𝑧, 𝑡), (2.6)
Since the coordinates 𝑥, 𝑦 and remains invariant in the transformation given by 𝑇, 𝑟 can also be seen
as a scalar function that maps (𝑥, 𝑦, 𝑧, 𝑡) to a scalar, which is given by

𝑟 = 𝑟(𝑥, 𝑦, 𝑧, 𝑡) (2.7)

If 𝑟 is monotonic, there exist an inverse �̃� to 𝑟, which maps (𝑥, 𝑦, 𝑟, 𝑡) back to a scalar, which is given
by

�̃� = �̃�(𝑥, 𝑦, 𝑟, 𝑡) (2.8)
The equation (2.8) can be interpreted as ’reading’ the vertical position in the physical coordinate using
data from the transformed coordinates (𝑥, 𝑦, 𝑟, 𝑡).

2.2.2. Transformation of scalar fields
Any scalar field 𝐹 = 𝐹(𝑥, 𝑦, 𝑧, 𝑡) can then be rewritten in the new coordinates 𝐹 = 𝐹(𝑥, 𝑦, 𝑧(𝑥, 𝑦, 𝑟, 𝑡), 𝑡) =
�̃�(𝑥, 𝑦, 𝑟, 𝑡). Applying the chain rule yields

𝜕�̃�
𝜕𝑥 |፫

= 𝜕𝐹
𝜕𝑥 |፳

+ 𝜕𝐹𝜕𝑧
𝜕�̃�
𝜕𝑥 |፫

(2.9a)

𝜕�̃�
𝜕𝑦 |፫

= 𝜕𝐹
𝜕𝑦 |፳

+ 𝜕𝐹𝜕𝑧
𝜕�̃�
𝜕𝑦 |፫

(2.9b)

𝜕�̃�
𝜕𝑡 |፫

= 𝜕𝐹
𝜕𝑡 |፳

+ 𝜕𝐹𝜕𝑧
𝜕�̃�
𝜕𝑡 |፫

(2.9c)

where the vertical bar refers to partial differentiation maintaining the suffix constant.
Meanwhile along the transformed ’vertical’ coordinates, the ’vertical’ gradient of the scalar field �̃�

is given by
𝜕�̃�
𝜕𝑟 =

𝜕𝐹
𝜕𝑧
𝜕�̃�
𝜕𝑟 (2.10)

Denote ̂𝑒ኻ, ̂𝑒ኼ and ̂𝑒ኽ to be the unit vector in the Cartesian coordinates. the horizontal gradient ∇፡
and ∇̃፡ is given by

∇፡𝐹 =
𝜕𝐹
𝜕𝑥 |፳

̂𝑒ኻ +
𝜕𝐹
𝜕𝑦 |፳

̂𝑒ኼ (2.11)

∇̃፡�̃� =
𝜕�̃�
𝜕𝑥 |፫

̂𝑒ኻ +
𝜕�̃�
𝜕𝑦 |፫

̂𝑒ኼ. (2.12)

Hence, based on the chain rules (2.9) and equation (2.10), the full gradient operator in the basis of
Cartesian unit vector with respect to (𝑥, 𝑦, 𝑟, 𝑡) can be obtained:

∇𝐹 = ∇፡𝐹 +
𝜕𝐹
𝜕𝑧 ̂𝑒ኽ (2.13)

= [∇̃፡�̃� −
𝜕�̃�
𝜕𝑟
𝜕𝑟
𝜕𝑧 ∇̃፡(�̃�)] +

𝜕�̃�
𝜕𝑟
𝜕𝑟
𝜕𝑧 ̂𝑒ኽ (2.14)

Note that the reciprocal rule for partial derivatives Ꭷ፫
Ꭷ፳ = 1/

Ꭷ፳̃
Ꭷ፫ has been used to obtain the full

gradient operator. The reciprocal rule is valid as long as both Ꭷ፫
Ꭷ፳ and

Ꭷ፳̃
Ꭷ፫ does not vanish.

To summarise this section, the relation between ∇፡𝐹 and ∇̃፡�̃� highlighted:

∇፡𝐹 = ∇̃፡�̃� −
𝜕�̃�
𝜕𝑟
𝜕𝑟
𝜕𝑧 ∇̃፡(�̃�), (2.15)

which will play crucial roles in the following sections when equations are transformed.
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REMARK 1: In the following text, if a variable, a scalar function, or a vector function is marked with
a tilde, it implicitly means that the transformed coordinates (𝑥, 𝑦, 𝑟, 𝑡) is used to express it.

REMARK 2: All equations and their derivations in this chapter can be found in the lecture note by
Adcroft. Hence the detailed derivation of some equations will be omitted in this text. Interested readers
may refer to Adcroft et al.(2015).

2.2.3. Transformation of vector fields
Similarly for any vector field F(𝑥, 𝑦, 𝑧, 𝑡) = 𝐹ኻ(𝑥, 𝑦, 𝑧, 𝑡) ̂𝑒ኻ + 𝐹ኼ(𝑥, 𝑦, 𝑧, 𝑡) ̂𝑒ኼ + 𝐹ኽ(𝑥, 𝑦, 𝑧, 𝑡) ̂𝑒ኽ in Cartesian
coordinates, define the horizontal vector F፡ = 𝐹ኻ ̂𝑒ኻ + 𝐹ኼ ̂𝑒ኼ and horizontal divergence ∇፡⋅ and ∇̃፡⋅

∇፡ ⋅ F፡ =
𝜕𝐹ኻ
𝜕𝑥 |፳

+ 𝜕𝐹ኼ𝜕𝑦 |፳
(2.16)

∇̃፡ ⋅ F̃፡ =
𝜕�̃�ኻ
𝜕𝑥 |፫

+ 𝜕�̃�ኼ𝜕𝑦 |፫
(2.17)

Again based on the chain rules (2.9) and equation (2.10) for each component of the vector field F, it
then follows the full divergence is given by

∇ ⋅ F = ∇፡ ⋅ F፡ +
𝜕𝐹ኽ
𝜕𝑧 (2.18)

= [∇̃፡ ⋅ F̃፡ −
𝜕F̃፡
𝜕𝑟

𝜕𝑟
𝜕𝑧 ⋅ ∇̃፡(�̃�)] +

𝜕�̃�ኽ
𝜕𝑟

𝜕𝑟
𝜕𝑧 (2.19)

The relation between ∇፡ ⋅ V፡ and ∇̃፡ ⋅ Ṽ፡ is also highlighted:

∇፡ ⋅ V፡ = ∇̃፡ ⋅ Ṽ፡ −
𝜕Ṽ፡
𝜕𝑟

𝜕𝑟
𝜕𝑧 ⋅ ∇̃፡(�̃�), (2.20)

which will also play significant role in the next section when the equations are transformed.

2.2.4. Transformation of equations
In the new coordinate system (𝑥, 𝑦, 𝑟, 𝑡), the vertical velocity �̇� = ፝፫

፝፭ and its relation with the vertical
velocity 𝑤 = ፝፳

፝፭ in the physical coordinates has to be handled with care.

The relation between �̇� and 𝑤
Consider the total derivative of coordinate function 𝑟 = 𝑟(𝑥, 𝑦, 𝑧, 𝑡),

𝑑𝑟
𝑑𝑡 =

𝜕𝑟
𝜕𝑡 +

𝜕𝑟
𝜕𝑥
𝑑𝑥
𝑑𝑡 +

𝜕𝑟
𝜕𝑦
𝑑𝑦
𝑑𝑡 +

𝜕𝑟
𝜕𝑧
𝑑𝑧
𝑑𝑡 (2.21)

Note that 𝑢 = ፝፱
፝፭ , 𝑣 =

፝፲
፝፭ and 𝑤 =

፝፳
፝፭ are respectively the velocities in 𝑥, 𝑦 and 𝑧 directions. Hence a

handy expression for �̇� = ፝፫
፝፭ with respect to the physical coordinates (𝑥, 𝑦, 𝑧, 𝑡) is obtained

�̇� = 𝜕𝑟
𝜕𝑡 + u፡ ⋅ ∇፡(𝑟) + 𝑤

𝜕𝑟
𝜕𝑧 (2.22)

On the other hand, consider the vertical position �̃� in the physical frame of reference as a function
of the transformed coordinates �̃� = �̃�(𝑥, 𝑦, 𝑟, 𝑡) via equation (2.8). The total derivative of �̃�, which is
the vertical velocity �̃� = ፝፳̃

፝፭ , is hence given by

�̃� = 𝜕�̃�
𝜕𝑡 |፫

+ ũ፡ ⋅ ∇̃፡(�̃�) + �̇�
𝜕�̃�
𝜕𝑟 , (2.23)

which relates the vertical velocity �̃� from the viewpoint of the transformed coordinates.
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Total Derivative in the Transformed Coordinates
The total derivative of a scalar field �̃� = �̃�(𝑥, 𝑦, 𝑟, 𝑡) is given by:

𝐷�̃�
𝑑𝑡 =

𝜕�̃�
𝜕𝑡 |፫

+ ũ፡ ⋅ ∇̃፡(�̃�) + �̇�
𝜕�̃�
𝜕𝑟 . (2.24)

An important application to the equation (2.24) is to compute the quantity Ꭷ፰̃
Ꭷ፫ . Consider the scalar

field for the vertical velocity �̃� = �̃�(𝑥, 𝑦, 𝑟, 𝑡) with respect to the transformed coordinates (𝑥, 𝑦, 𝑟, 𝑡).
The partial derivative Ꭷ፰̃

Ꭷ፫ can be shown to be:

𝜕�̃�
𝜕𝑟 =

𝜕
𝜕𝑟(

𝜕�̃�
𝜕𝑡 |፫

+ ũ፡ ⋅ ∇̃፡(�̃�) + �̇�
𝜕�̃�
𝜕𝑟) (2.25)

= 𝐷
𝑑𝑡(

𝜕�̃�
𝜕𝑟) +

𝜕ũ፡
𝜕𝑟 ⋅ ∇̃፡(�̃�) +

𝜕�̇�
𝜕𝑟
𝜕�̃�
𝜕𝑟 (2.26)

Based on the expression for Ꭷ፰̃Ꭷ፫ , after some algebraic manipulations, the divergence of velocity field u
in the transformed coordinates (𝑥, 𝑦, 𝑟, 𝑡) can be concisely given by:

∇ ⋅ u = ∇̃፡ ⋅ ũ፡ +
𝜕�̇�
𝜕𝑟 +

𝐷
𝑑𝑡 [ ln(

𝜕�̃�
𝜕𝑟 )] (2.27)

The detailed derivation to equation (2.27) is given below. Readers who are not interested may skip to
the next section. Recall that the divergence operator for a velocity field is given by equation (2.19).
Take the vector field F to be the velocity field u = 𝑢 ̂𝑒ኻ + 𝑣 ̂𝑒ኼ +𝑤 ̂𝑒ኽ in equation (2.19):

∇ ⋅ u = [∇̃፡ ⋅ ũ፡ −
𝜕ũ፡
𝜕𝑟

𝜕𝑟
𝜕𝑧 ⋅ ∇̃፡(�̃�)] +

𝜕�̃�
𝜕𝑟
𝜕𝑟
𝜕𝑧

Consider the quantity Ꭷ፰̃
Ꭷ፫

Ꭷ፫
Ꭷ፳ , replacing the expression of

Ꭷ፰̃
Ꭷ፫ using equation (2.26) gives

𝜕�̃�
𝜕𝑟
𝜕𝑟
𝜕𝑧 = [

𝐷
𝑑𝑡(

𝜕�̃�
𝜕𝑟) +

𝜕ũ፡
𝜕𝑟 ⋅ ∇̃፡(�̃�) +

𝜕�̇�
𝜕𝑟
𝜕�̃�
𝜕𝑟 ]

𝜕𝑟
𝜕𝑧

Note that by the reciprocal rule, Ꭷ፳̃Ꭷ፫
Ꭷ፫
Ꭷ፳ = 1. Hence the quantity

Ꭷ፰̃
Ꭷ፫

Ꭷ፫
Ꭷ፳ is simply given by

𝜕�̃�
𝜕𝑟
𝜕𝑟
𝜕𝑧 =

𝜕�̇�
𝜕𝑟 +

[ ፃ፝፭ (
Ꭷ፳̃
Ꭷ፫ )]
Ꭷ፳̃
Ꭷ፫

+ 𝜕ũ፡𝜕𝑟
𝜕𝑟
𝜕𝑧 ⋅ ∇̃፡(�̃�)

= 𝜕�̇�
𝜕𝑟 +

𝐷
𝑑𝑡 [ ln(

𝜕�̃�
𝜕𝑟)] +

𝜕ũ፡
𝜕𝑟

𝜕𝑟
𝜕𝑧 ⋅ ∇̃፡(�̃�)

Therefore, the term Ꭷũᑙ
Ꭷ፫

Ꭷ፫
Ꭷ፳ ⋅ ∇̃፡(�̃�) in the divergence of velocity ∇ ⋅u cancels out. Hence the divergence

of velocity in the transformed coordinates (𝑥, 𝑦, 𝑟, 𝑡) is simply given by

∇ ⋅ u = ∇̃፡ ⋅ ũ፡ +
𝜕�̇�
𝜕𝑟 +

𝐷
𝑑𝑡 [ ln(

𝜕�̃�
𝜕𝑟)],

which completes the proof.

Continuity Equation
It follows that the continuity equation in (𝑥, 𝑦, 𝑟, 𝑡) coordinates becomes:

𝐷�̃�
𝑑𝑡 + �̃�[∇̃፡ ⋅ ũ፡ +

𝜕�̇�
𝜕𝑟 +

𝐷
𝑑𝑡 ( ln(

𝜕�̃�
𝜕𝑟 ))] = 0 (2.28)
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Momentum Equation
The transformation of momentum equation, is unfortunately more complicated. Here the transformed
momentum equation in a rotating coordinate frame will be derived. First consider the horizontal com-
ponents of the momentum equations:

𝜌[𝐷u፡𝑑𝑡 + (2� × u)፡] = −∇፡𝑝 − 𝜌∇፡(Φ + Φ) + F፡ (2.29)

The equation (2.15) suggests that in the transformed coordinates (𝑥, 𝑦, 𝑟, 𝑡):

∇፡𝑝 = ∇̃፡�̃� −
𝜕�̃�
𝜕𝑟
𝜕𝑟
𝜕𝑧 ∇̃፡(�̃�), (2.30)

whereas equation (2.20) suggests that, by defining the sum of potential Φ፬ by Φ፬ = Φ+Φ

∇፡Φ፬ = ∇̃፡Φ̃፬ −
𝜕Φ̃፬
𝜕𝑟

𝜕𝑟
𝜕𝑧 ∇̃፡(�̃�) (2.31)

Hence the horizontal components of the momentum equation is obtained:

�̃�[𝐷ũ፡𝑑𝑡 + (2�̃ × ũ)፡] = −∇̃፡�̃� − �̃�∇̃፡Φ̃፬ + F̃፡ + [
𝜕�̃�
𝜕𝑟 + �̃�

𝜕(Φ̃፬)
𝜕𝑟 ]𝜕𝑟𝜕𝑧 ∇̃፡(�̃�) (2.32)

The derivation of the vertical momentum equation containing ፝Ꮄ፫
፝፭Ꮄ is cumbersome. In the shallow

water approximation of the fluid, the vertical momentum equation is not needed. Hence the exact form
of vertical momentum equation will not be presented here.





3
Adapted Shallow Water Model

In this chapter, the adapted model will be presented. A adapted wave equation for ocean surface wave
defined on geopotential height will be presented. The inertial frame without non-conservative force
will be investigated first.

3.1. Basic Definitions
Define Mean-Sea Level Set 𝑀𝑠𝑙: It contains a the points (𝑥, 𝑦, 𝑧) such that

Φ(𝑥, 𝑦, 𝑧) = Φኺ (3.1)

where Φኺ is an empirically found value. In other words, 𝑀𝑠𝑙 = {(𝑥, 𝑦, 𝑧) ∶ Φ(𝑥, 𝑦, 𝑧) = Φኺ}. Given
(𝑥, 𝑦), there is unique 𝑧ኺ = 𝑧ኺ(𝑥, 𝑦) such that (𝑥, 𝑦, 𝑧ኺ) belongs to 𝑀𝑠𝑙. The work done required to
transport a unit mass from any point to 𝑀𝑆𝑙 to any arbitrary point (𝑥, 𝑦, 𝑧) is known as the potential
difference between (𝑥, 𝑦, 𝑧) and 𝑀𝑆𝑙, and is given by:

Ψ(𝑥, 𝑦, 𝑧) = −∫
(፱,፲,፳)

(፱̄,፲̄,፳̄)
−∇Φ ⋅ 𝑑𝑙 (3.2)

where (�̄�, �̄�, �̄�) is any point on 𝑀𝑠𝑙. Since Φ is a conservative field, the above integral is path indepen-
dent. Hence an equivalent definition can be given by:

Ψ(𝑥, 𝑦, 𝑧) = ∫
፳

፳Ꮂ(፱,፲)

𝜕Φ
𝜕�̆� (𝑥, 𝑦, �̆�)𝑑�̆� (3.3)

which takes a straightly vertical path integral, or,

Ψ(𝑥, 𝑦, 𝑧) = Φ(𝑥, 𝑦, 𝑧) − Φኺ (3.4)

which is essentially the potential difference.
Define the Geopotential height 𝑍 as following:

𝑍 = 𝑍(𝑥, 𝑦, 𝑧) = Ψ(𝑥, 𝑦, 𝑧)
𝑔ኺ

(3.5)

where 𝑔ኺ is a constant reference gravity. Note that Ψ takes into account only the geopotential induced
by masses which are time-independent. The geopotential induced by ocean water is neglected. 𝑍
has the same physical dimension with physical height 𝑧. Given any (𝑥, 𝑦), the mapping from 𝑍 to 𝑧 is
monotonic and one-to-one.

The geopotential height 𝑍 will serve as the variable 𝑟 in the chapter 2.2 to transform the equations.

3.2. Properties of the Geopotential Height
In this section, several properties of the Geopotential Height transformation will be discussed.

9
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3.2.1. Vertical Gradient of the Geopotential Height
A very nice property of the Geopotential Height 𝑍 comes from the fact that

Φ̃ = 𝑔ኺ𝑍 + Φኺ, (3.6)

by considering equations (3.4) and (3.5). A tilde is added to to Φ because the geopotential Φ is now
read in the transformed coordinates (𝑥, 𝑦, 𝑍, 𝑡). Hence a very handy vertical gradient is given by:

𝜕Φ̃
𝜕𝑍 = 𝑔ኺ (3.7)

which is the reference gravity independent of any spatial or temporal coordinates.

3.2.2. 𝑍-transformation
Assume that the gravity �⃗� is weakly non-uniform: �⃗� consists of a uniform component −𝑔ኺ ̂𝑒ኽ and a
perturbing non-linear conservative component 𝑔ᖣ(𝑥, 𝑦, 𝑧) = −∇Φᖣ(𝑥, 𝑦, 𝑧), such that ‖𝑔ᖣ‖ ≪ 𝑔ኺ. that is:

�⃗�(𝑥, 𝑦, 𝑧) = −𝑔ኺ ̂𝑒ኽ + 𝑔ᖣ(𝑥, 𝑦, 𝑧) (3.8)

It follows that, fixing (𝑥, 𝑦), the potential difference Ψ between the point (𝑥, 𝑦, 𝑧) and the mean sea
level is given by

Ψ(𝑥, 𝑦, 𝑧) = −∫
፳

፳Ꮂ(፱,፲)
[−𝑔ኺ + 𝑔ᖣ(𝑥, 𝑦, 𝑧)]𝑑𝑠

= 𝑔ኺ(𝑧 − 𝑧ኺ) + ∫
፳

፳Ꮂ(፱,፲)
∇Φᖣ(𝑥, 𝑦, 𝑠)𝑑𝑠

Ψ(𝑥, 𝑦, 𝑧) = 𝑔ኺ(𝑧 − 𝑧ኺ(𝑥, 𝑦)) + [Φᖣ(𝑥, 𝑦, 𝑧) − Φᖣ(𝑥, 𝑦, 𝑧ኺ(𝑥, 𝑦))] (3.9)

where 𝑧 = 𝑧ኺ(𝑥, 𝑦) is the mean sea level at horizontal location (𝑥, 𝑦). The term Φᖣ(𝑥, 𝑦, 𝑧) can be
interpreted as the disturbing geopotential Φᖣ due to local topographical features.

It follows that the geopotential height 𝑍 becomes:

𝑍 = Ψ
𝑔ኺ

= 𝑧 + Φ
ᖣ(𝑥, 𝑦, 𝑧)
𝑔ኺ

− (𝑧ኺ(𝑥, 𝑦) +
Φᖣ(𝑥, 𝑦, 𝑧ኺ)

𝑔ኺ
)

Denote 𝑍ኺ(𝑥,𝑦) = 𝑧ኺ(𝑥,𝑦) + ጓᖤ(፱,፲,፳Ꮂ)
፠Ꮂ , which is independent of 𝑧, the transformation from (𝑥, 𝑦, 𝑧) to

(𝑥, 𝑦, 𝑍) can be given by
𝑍 = 𝑧 + Φ

ᖣ(𝑥, 𝑦, 𝑧)
𝑔ኺ

− 𝑍ኺ(𝑥, 𝑦) (3.10)

Equation (3.10) will be called as 𝑍-transformation in the remaining text.
Now the partial derivative of 𝑍 with respect to 𝑧 (keeping 𝑥, 𝑦 constant) is considered, note that

𝑍ኺ(𝑥, 𝑦) is independent of 𝑧. Denote Ꭷጓᖤ
Ꭷ፳ by 𝑔ᖣ፳.

𝜕𝑍
𝜕𝑧 = 1 +

1
𝑔ኺ
𝜕Φᖣ
𝜕𝑧

= 1 + 𝑔
ᖣ
፳
𝑔ኺ

The partial derivative of 𝑍 with respect to 𝑧

𝜕𝑍
𝜕𝑧 = 1 +

𝑔ᖣ፳
𝑔ኺ

(3.11)
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will be the most crucial ingredient in the later derivation of equations and analysis. It is noted that,
since 𝑍 = 𝑍(𝑥, 𝑦, 𝑧) is a smooth function, when Ꭷፙ

Ꭷ፳ ≠ 0, the reciprocal rule of partial derivative gives,

𝜕�̃�
𝜕𝑍 =

1
Ꭷፙ
Ꭷ፳
= 1
1+ ፠ᖤᑫ

፠Ꮂ

(3.12)

is also valid. The criterion for which Ꭷፙ
Ꭷ፳ ≠ 0 will be discussed in the next section.

ATTENTION: Instead of defining 𝑔ᖣ፳ = −Ꭷጓᖤ
Ꭷ፳ , which is the typical way to define force from for

conservative potential, here the definition is given by −𝑔ᖣ፳ = −Ꭷጓᖤ
Ꭷ፳ . The motivation here is that by

defining 𝑔ᖣ፳ in this way, the effective gravity �⃗� in 𝑧 direction is given by −(𝑔ኺ +𝑔ᖣ፳), so that when 𝑔ᖣ፳ is
positive, the magnitude of gravity in 𝑧-direction is 𝑔ኺ + 𝑔ᖣ፳ > 𝑔ኺ.

3.2.3. Inverse 𝑍-transformation
In this section, further analytic properties of the 𝑍-transformation will be examined. In particular, the
existence of the inverse transformation will be discussed.

Recall that the 𝑍-transformation is given by equation (3.10)

𝑍 = 𝑧 + Φ
ᖣ(𝑥, 𝑦, 𝑧)
𝑔ኺ

− 𝑍ኺ(𝑥, 𝑦)

It is a natural question to ask if the inverse transformation exists. Consider the complete coordinate
transformation problem (𝑥, 𝑦, 𝑧) → (𝑥ኻ, 𝑥ኼ, 𝑥ኽ):

𝑥ኻ = 𝑥
𝑥ኼ = 𝑦
𝑥ኽ = 𝑍(𝑥, 𝑦, 𝑧)

Note that 𝑍 = 𝑍(𝑥, 𝑦, 𝑧) is considered as a coordinate function 𝑍 ∶ ℛኽ → ℛ here. Consider the vector
function �⃗� ∶ ℛዀ → ℛኽ

�⃗�(𝑥ኻ, 𝑥ኼ, 𝑥ኽ; 𝑥, 𝑦, 𝑧) = (
𝑥ኻ − 𝑥
𝑥ኼ − 𝑦

𝑥ኽ − 𝑍(𝑥, 𝑦, 𝑧)
) (3.13)

The coordinate transformation is equivalent to looking for solution of �⃗� = 0⃗.
The Jacobian matrix of �⃗� denoted as 𝐽(�⃗�) is thus given by

𝐽(�⃗�)(𝑥ኻ, 𝑥ኼ, 𝑥ኽ; 𝑥, 𝑦, 𝑧) = (
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 −Ꭷፙ

Ꭷ፱ −Ꭷፙ
Ꭷ፲ −Ꭷፙ

Ꭷ፳

)

According to the implicit function theorem, the inverse function 𝑧 = 𝑍ዅኻ(𝑥ኻ, 𝑥ኼ, 𝑥ኽ) uniquely exists if
the columns corresponding to the partial derivatives with respect to the original coordinates (in this
case (𝑥, 𝑦, 𝑧), which corresponds to the last three columns) form an invertible matrix ̄𝐽, that is

̄𝐽 = 𝐽(�⃗�)(𝑥, 𝑦, 𝑧) = (
−1 0 0
0 −1 0
−Ꭷፙ
Ꭷ፱ −Ꭷፙ

Ꭷ፲ −Ꭷፙ
Ꭷ፳

)

is invertible. Hence it suffices to consider the determinant of ̄𝐽, which is det ̄𝐽 ≠ 0. Note that det ̄𝐽 =
−Ꭷፙ
Ꭷ፳ , and from equation (3.11), ᎧፙᎧ፳ = 1+

፠ᖤᑫ
፠Ꮂ , hence det

̄𝐽 ≠ 0 implies

1 + 𝑔
ᖣ
፳
𝑔ኺ
≠ 0 ⟺ 𝑔ᖣ፳ ≠ −𝑔ኺ (3.14)

In other words, in the physical sense this condition (3.14) suggests that when the excess gravity 𝑔ᖣ፳
does not cancel out the background uniform gravity 𝑔ኺ, the inverse coordinate transformation �̃� = 𝑍ዅ1
which maps from (𝑥, 𝑦, 𝑍) to physical coordinates (𝑥, 𝑦, 𝑧) is well-defined.
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In practice, for weakly non-uniform gravitational field such that ‖𝑔ᖣ፳‖ ≪ 𝑔ኺ, the condition (3.14)
is always satisfied. Thus the inverse transformation �̃� = �̃�(𝑥, 𝑦, 𝑍) is practically always well-defined.
This is also the condition where the reciprocal rule Ꭷፙ

Ꭷ፳ = ኻ
ᒟᑫ̃
ᒟᑑ
holds, and justifies the validity of (3.12)

discussed in the previous section.

3.3. Definition of Water Depth
3.3.1. Classical Water Depth
Suppose at time 𝑡, with respect to the physical coordinates (𝑥, 𝑦, 𝑧), the surface elevation 𝑆(𝑥, 𝑦, 𝑡) of
the fluid is described by the level set 𝑧 = 𝑆(𝑥, 𝑦, 𝑡). Meanwhile the bottom boundary 𝑆ፁ(𝑥, 𝑦) of the
fluid, which is time-independent, is described by the level set 𝑧 = 𝑆ፁ.

The water depth 𝐷(𝑥, 𝑦, 𝑡) at location (𝑥, 𝑦) at time 𝑡 is given by the difference between the surface
elevation 𝑆 and bottom elevation 𝑆ፁ, that is,

𝐷(𝑥, 𝑦, 𝑡) = 𝑆(𝑥, 𝑦, 𝑡) − 𝑆ፁ(𝑥, 𝑦) (3.15)

It is natural to give an analogous definition to water depth in the transformed 𝑍-coordinates, which
will be discussed in the next section.

3.3.2. Adapted Water Depth
Recall the coordinate transformation (3.10):

𝑍 = 𝑧 + Φ
ᖣ(𝑥, 𝑦, 𝑧)
𝑔ኺ

− 𝑍ኺ(𝑥, 𝑦)

Suppose the surface elevation �̃� in the transformed coordinates is given by the level set 𝑍 = �̃�(𝑥, 𝑦, 𝑡).
�̃� can thus be computed by putting 𝑧 = 𝑆 into the transformation formula:

�̃�(𝑥, 𝑦, 𝑡) = 𝑆(𝑥, 𝑦, 𝑡) + Φ
ᖣ(𝑥, 𝑦, 𝑆(𝑥, 𝑦, 𝑡))

𝑔ኺ
− 𝑍ኺ(𝑥, 𝑦) (3.16)

Similarly the bottom boundary 𝑧 = 𝑆ፁ can be mapped into 𝑍 = �̃�ፁ, which is given by

�̃�ፁ(𝑥, 𝑦) = +
Φᖣ(𝑥, 𝑦, 𝑆ፁ(𝑥, 𝑦))

𝑔ኺ
− 𝑍ኺ(𝑥, 𝑦) (3.17)

Define the water depth �̃�(𝑥, 𝑦, 𝑡) in 𝑍-coordinates by the difference between �̃� and �̃�ፁ:

�̃�(𝑥, 𝑦, 𝑡) = �̃�(𝑥, 𝑦, 𝑡) − �̃�ፁ(𝑥, 𝑦) (3.18)

Using the equations (3.16) and (3.17), and defining ΔΦᖣ(𝑥, 𝑦, 𝑡) = Φᖣ(𝑥, 𝑦, 𝑆)−Φᖣ(𝑥, 𝑦, 𝑆ፁ), the relation
between 𝐷 and �̃� becomes clear:

�̃�(𝑥, 𝑦, 𝑡) = 𝐷(𝑥, 𝑦, 𝑡) + 1
𝑔ኺ
ΔΦᖣ(𝑥, 𝑦, 𝑡). (3.19)

Note that ΔΦᖣ(𝑥, 𝑦, 𝑡) physically refers to the potential difference between the surface elevation and
the bottom boundary solely due to the non-uniform component of the gravity.

3.3.3. A First-order Approximation to the Adapted Water Depth
In this section a first-order approximation to equation (3.19) will be obtained. The result of this section
will be applied in later sections when the adapted shallow water model is derived.

Recall that the definition of ΔΦᖣ(𝑥, 𝑦, 𝑡) is given by:

ΔΦᖣ(𝑥, 𝑦, 𝑡) = Φᖣ(𝑥, 𝑦, 𝑆) − Φᖣ(𝑥, 𝑦, 𝑆ፁ)

Performing Taylor-series expansion of Φᖣ(𝑥, 𝑦, 𝑆) around the mean-sea level (𝑥, 𝑦, 𝑧ኺ) gives

Φᖣ(𝑥, 𝑦, 𝑆) = Φᖣ(𝑥, 𝑦, 𝑧ኺ) + [
𝜕Φᖣ
𝜕𝑧 ]@፳Ꮂ(፱,፲)

(𝑆 − 𝑧ኺ) + ℎ.𝑜.𝑡.
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where the subscript @𝑧ኺ(𝑥, 𝑦) refers to the evaluation of quantities in the square bracket [ ∗ ] at the
mean-sea level (𝑥, 𝑦, 𝑧ኺ(𝑥, 𝑦)), and ℎ.𝑜.𝑡. refers to the higher-order terms in the Taylor-series expansion.

Similarly, the Taylor-expansion of Φᖣ(𝑥, 𝑦, 𝑆ፁ) can be performed around (𝑥, 𝑦, 𝑧ኺ(𝑥, 𝑦)) also, a similar
expression can be obtained

Φᖣ(𝑥, 𝑦, 𝑆ፁ) = Φᖣ(𝑥, 𝑦, 𝑧ኺ) + [
𝜕Φᖣ
𝜕𝑧 ]@፳Ꮂ(፱,፲)

(𝑆ፁ − 𝑧ኺ) + ℎ.𝑜.𝑡.

For a given certain (𝑥, 𝑦) at certain time 𝑡, ΔΦᖣ(𝑥, 𝑦, 𝑡) can thus be approximated by

ΔΦᖣ(𝑥, 𝑦, 𝑡) = [𝜕Φ
ᖣ

𝜕𝑧 ]@፳Ꮂ(፱,፲)
(𝑆 − 𝑆ፁ) + ℎ.𝑜.𝑡.

= [𝑔ᖣ፳]@፳Ꮂ(፱,፲)𝐷 + ℎ.𝑜.𝑡.

Note that the Taylor-expansion could have been performed at any vertical coordinate 𝑧 within or in
the neighbourhood of the interval of [𝑆ፁ , 𝑆] to yield an analogous result. The mean-sea level 𝑧 = 𝑧ኺ(𝑥, 𝑦)
is chosen because empirical measurement data of 𝑔ᖣ፳ is usually available at this level.

If the higher-order terms are so small such that they can be neglected, then the relation between
𝐷 and �̃� given by equation (3.19) can be simplified into

�̃�(𝑥, 𝑦, 𝑡) ≈ 𝐷(𝑥, 𝑦, 𝑡) +
[𝑔ᖣ፳]@፳Ꮂ(፱,፲)

𝑔ኺ
𝐷(𝑥, 𝑦, 𝑡)

≈ 𝐷(𝑥, 𝑦, 𝑡)[(1 + 𝑔
ᖣ
፳
𝑔ኺ
)]
@፳Ꮂ(፱,፲)

Note that according to equation (3.11), 1+ ፠ᖤᑫ
፠Ꮂ =

Ꭷፙ
Ꭷ፳ , hence

�̃�(𝑥, 𝑦, 𝑡) ≈ 𝐷(𝑥, 𝑦, 𝑡)[
𝜕𝑍
𝜕𝑧 ]@፳Ꮂ(፱,፲)

, (3.20)

which is a handy expression for analysis in later sections.

3.4. Transformation of equations
In the remaining part of this chapter, the horizontal gradient ∇፡ and ∇̃፡ are understood to be ̂𝑒ኻ Ꭷ

Ꭷ፱ |፳+
̂𝑒ኼ Ꭷ
Ꭷ፲ |፳ and ̂𝑒ኻ ᎧᎧ፱ |ፙ + ̂𝑒ኼ Ꭷ

Ꭷ፲ |ፙ respectively.
To transform the equations from (𝑥, 𝑦, 𝑧, 𝑡) to (𝑥, 𝑦, 𝑍, 𝑡), take 𝑟 = 𝑍 in equation (2.28) and equation

(2.32).
Adapted Continuity Equation:

𝐷�̃�
𝑑𝑡 + �̃�[∇̃፡ ⋅ ũ፡ +

𝜕�̇�
𝜕𝑍 +

𝐷
𝑑𝑡( ln (

𝜕�̃�
𝜕𝑍))] = 0 (3.21)

Adapted Horizontal Momentum Equation:

�̃�[𝐷ũ፡𝑑𝑡 ] = −∇̃፡�̃� − �̃�∇̃፡Φ̃ + (
𝜕�̃�
𝜕𝑍 + �̃�

𝜕Φ̃
𝜕𝑍 )

𝜕𝑍
𝜕𝑧 ∇̃፡(�̃�) (3.22)

These equations are not easy to deal with. Hence it is necessary to further simplify them before
analytically studying the properties of their solutions, which will be presented in 3.5.

Another highlight is the extra terms ፃ
፝፭ ( ln(

Ꭷ፳̃
Ꭷፙ )) in the continuity equation (3.21) and (

Ꭷ፩̃
Ꭷፙ+�̃�

Ꭷጓ̃
Ꭷፙ )

Ꭷፙ
Ꭷ፳ ∇̃፡(�̃�)

in the momentum equation (3.22), in contrast to the standard continuity and momentum equation in
the standard Cartesian coordinates. The properties of these two extra terms will be discussed in the
two sections 3.6 and 3.7.
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3.5. Additional simplifications
3.5.1. Incompressiblity
Density of water on the ocean surface does change due to temperature and salinity variation. How-
ever to simplify the analysis, such density variations are omitted. In other words, it is assumed that
�̃�(𝑥, 𝑦, 𝑍) = 𝜌ኺ, where 𝜌ኺ is a constant. In the later text, the subscript in 𝜌ኺ will be skipped so that
�̃�(𝑥, 𝑦, 𝑍) = 𝜌.

It follows that the continuity equation (3.21) becomes:

∇̃፡ ⋅ ũ፡ +
𝜕�̇�
𝜕𝑍 +

𝐷
𝑑𝑡( ln (

𝜕�̃�
𝜕𝑍)) = 0 (3.23)

3.5.2. Horizontal Gradient of Geopotential
In the (horizontal) momentum equations (3.22) the horizontal gradient of geopotential with respect
to 𝑍, i.e. ∇̃፡Φ̃ is involved. However, recalling that 𝑍 = ጓዅጓᎲ

፠Ꮂ , it is noticed that keeping 𝑍 constant is
equivalent to keeping Φ constant. Hence the horizontal gradient of geopotential ∇̃፡Φ̃ simply vanishes.

∇̃፡Φ̃ =
𝜕Φ̃
𝜕𝑥 |ፙ

̂𝑒ኻ +
𝜕Φ̃
𝜕𝑦 |ፙ

̂𝑒ኼ = 0⃗ (3.24)

Hence under the 𝑍-transformation, the momentum equation (3.22) becomes

𝜌[𝐷ũ፡𝑑𝑡 ] = −∇̃፡�̃� + (
𝜕�̃�
𝜕𝑍 + 𝜌

𝜕Φ̃
𝜕𝑍 )

𝜕𝑍
𝜕𝑧 ∇̃፡(�̃�) (3.25)

Note that the density 𝜌 is assumed to be a constant followed by the discussion of section 3.5.1 and
there is no difference between the density 𝜌 in the physical coordinates (𝑥, 𝑦, 𝑧, 𝑡) and transformed
coordinates (𝑥, 𝑦, 𝑍, 𝑡).

3.5.3. Hydrostatic approximation
Hydrostatic Balance
For large scale oceanic flows, the horizontal length scale, denoted as 𝐿፡, is usually much greater than
the vertical length scale which is denoted by 𝐿፯. The shallowness of an oceanic flow is known as the
small aspect ratio:

𝛿 = 𝐿፯
𝐿፡
≪ 1 (3.26)

In section 2.8 of Pedlosky 1979, it is justified that for a shallow flow with 𝛿 ≪ 1, the vertical pressure
gradient Ꭷ፩Ꭷ፳ can be approximated by the gradient of gravitational force 𝜌

Ꭷጓ
Ꭷ፳ . An analogous result will

be derived.
Consider the hydrostatic pressure 𝑝፬ = 𝑝፬(𝑥, 𝑦, 𝑧(𝑥, 𝑦, 𝑍), 𝑡) = �̃�፬(𝑥, 𝑦, 𝑍, 𝑡). The pressure gradient in

hydrostatic condition is obtained by setting velocity �⃗� = 0⃗ in the momentum equation. Hence the full
momentum equation equation(2.4) becomes:

∇𝑝፬ = −𝜌∇Φ

Since it is assumed that the density 𝜌 is constant everywhere, 𝜌 can be included in the gradient operator.
Hence it follows that:

∇𝑝፬ = −∇(𝜌Φ) (3.27)
⇒ 𝑝፬ = −𝜌Φ + 𝑝ኺ (3.28)

where the reference pressure 𝑝ኺ is an arbitrary constant. Note that the same argument can be applied
in the transformed coordinates (𝑥, 𝑦, 𝑍, 𝑡) and gives:

�̃�፬ = −𝜌Φ̃ + �̃�ኺ, (3.29)

where �̃�ኺ is also an arbitrary constant.
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Consider the gradient operator ∇ in Cartesian coordinate, along the 𝑧-direction, it is noted that:
𝜕𝑝፬
𝜕𝑧 = −𝜌

𝜕Φ
𝜕𝑧 (3.30)

Multiplying both sides with Ꭷ፳̃
Ꭷፙ leads to:

𝜕𝑝፬
𝜕𝑧

𝜕�̃�
𝜕𝑍 = −𝜌

𝜕Φ
𝜕𝑧

𝜕�̃�
𝜕𝑍 (3.31)

By the chain rule, the equalities

𝜕�̃�፬
𝜕𝑍 = 𝜕𝑝፬

𝜕𝑧
𝜕�̃�
𝜕𝑍 (3.32)

𝜕Φ̃
𝜕𝑍 =

𝜕Φ
𝜕𝑧

𝜕�̃�
𝜕𝑍 (3.33)

are justified. Thus the analogy of the hydrostatic pressure gradient in coordinates (𝑥, 𝑦, 𝑍, 𝑡) is estab-
lished:

𝜕�̃�፬
𝜕𝑍 = −𝜌𝜕Φ̃𝜕𝑍 = −𝜌𝑔ኺ (3.34)

The last equality follows from equation (3.6)). It is worthwhile to point out that, unlike the classical
case with uniformly downwards gravity �⃗� = −𝑔ኺ ̂𝑒ኽ, Ꭷ፩̃ᑤᎧ፱ |፳ ≠ 0 and

Ꭷ፩̃ᑤ
Ꭷ፲ |፳ ≠ 0. It is

Ꭷ፩̃ᑤ
Ꭷ፱ |ፙ and

Ꭷ፩̃ᑤ
Ꭷ፲ |ፙ that

are equal to zero. The proof for Ꭷ፩ᑤᎧ፱ |ፙ = 0 is shown:

𝜕�̃�፬
𝜕𝑥 |ፙ

= 𝜕(−𝜌Φ̃ + �̃�ኺ)
𝜕𝑥 |

ፙ
(c.f. equation (3.29))

= −𝜌𝜕(𝑔ኺ𝑍 + Φኺ)𝜕𝑥 |
ፙ
+ 𝜕𝑝ኺ𝜕𝑥 |ፙ

(c.f. equation (3.6))

= −𝜌𝑔ኺ
𝜕𝑍
𝜕𝑥 |ፙ

− 𝜌𝜕Φኺ𝜕𝑥 |ፙ
+ 𝜕𝑝ኺ𝜕𝑥 |ፙ

Recall that both the reference pressure 𝑝ኺ and the reference geopotential Φኺ are constants that are
independent of any coordinates. The partial derivative Ꭷፙ

Ꭷ፱ |ፙ vanishes because 𝑍 is kept invariant.
Hence, every term on the right-hand side vanishes and yields:

𝜕�̃�፬
𝜕𝑥 |ፙ

= 0

The proof for Ꭷ፩̃ᑤ
Ꭷ፲ |ፙ = 0 can be obtained in a similar fashion. Therefore, the horizontal gradient of

hydrostatic pressure �̃�፬ becomes:
∇̃፡�̃�፬ = 0⃗ (3.35)

Hydrostatic Approximation
Assume that the pressure �̃� = �̃�(𝑥, 𝑦, 𝑍, 𝑡) can be decomposed into a hydrostatic part �̃�፬ and dynamic
part �̃�፝, so that

�̃�(𝑥, 𝑦, 𝑍, 𝑡) = �̃�፬(𝑥, 𝑦, 𝑍) + �̃�፝(𝑥, 𝑦, 𝑍, 𝑡) (3.36)

The validity of this assumption need to be justified. In particular, an argument which suggests that the
order of magnitude of dynamic pressure �̃�፝ is much less than that of hydrostatic pressure �̃�፬ should be
provided. This will be done through the scale analysis discussed in section 3.9.

The vertical gradient of the hydrostatic pressure �̃�፬ can be determined by equation (3.28), which
suggests

𝜕�̃�፬
𝜕𝑍 = −𝜌𝜕Φ̃𝜕𝑍
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so that the vertical gradient of the total pressure �̃� can be expressed by

𝜕�̃�
𝜕𝑍 =

𝜕 ̃𝑝፬
𝜕𝑍 +

𝜕�̃�፝
𝜕𝑍 = −𝜌𝜕Φ̃𝜕𝑍 +

𝜕�̃�፝
𝜕𝑍 (3.37)

The scale analysis in section 3.9 suggests that the term Ꭷ፩̃ᑕ
Ꭷፙ

Ꭷፙ
Ꭷ፳ is of order of magnitude 𝒪(𝛿 ⋅𝜌

ፃũᑙ
፝፭ ).

Therefore, multiplying all quantities in equation (3.37) with Ꭷፙ
Ꭷ፳ gives

𝜕�̃�
𝜕𝑍
𝜕𝑍
𝜕𝑧 = −𝜌

𝜕Φ̃
𝜕𝑍

𝜕𝑍
𝜕𝑧 +

𝜕�̃�፝
𝜕𝑍

𝜕𝑍
𝜕𝑧

= −𝜌𝜕Φ̃𝜕𝑍
𝜕𝑍
𝜕𝑧 + 𝒪(𝛿 ⋅ 𝜌

𝐷ũ፡
𝑑𝑡 )

In the shallow water where 𝛿 ≪ 1, the 𝒪(𝛿 ⋅ 𝜌ፃũᑙ፝፭ ) term is typically much smaller than other terms
in the above equation. Hence the term 𝒪(𝛿 ⋅ 𝜌ፃũᑙ፝፭ ) is neglected and give rises to the hydrostatic
approximation in the transformed vertical coordinate 𝑍:

𝜕�̃�
𝜕𝑍
𝜕𝑍
𝜕𝑧 ≈ −𝜌

𝜕Φ̃
𝜕𝑍

𝜕𝑍
𝜕𝑧 (3.38)

or equivalently, dividing both sides with Ꭷፙ
Ꭷ፳

𝜕�̃�
𝜕𝑍 ≈ −𝜌

𝜕Φ̃
𝜕𝑍 (3.39)

3.6. The Adapted Continuity Equation
3.6.1. An Exact Adapted Continuity Equation
In this section the adapted continuity equation (3.21) will be examined and simplified under the setting
of 𝑍-transformation, where the gravity field is weakly non-uniform.

In the incompressible continuity equation (3.23):

∇̃፡ ⋅ ũ፡ +
𝜕�̇�
𝜕𝑍 +

𝐷
𝑑𝑡( ln (

𝜕�̃�
𝜕𝑍)) = 0,

where the last term can be simplified due to the fact that it is time-independent. The material derivative
ፃ
፝፭ therefore yields:

𝐷
𝑑𝑡( ln (

𝜕�̃�
𝜕𝑍)) = (�̃�

𝜕
𝜕𝑥 |ፙ

+ �̃� 𝜕𝜕𝑦 |ፙ
+ �̇� 𝜕𝜕𝑍)( ln(

𝜕�̃�
𝜕𝑍 ))

= (ũ፡ ⋅ ∇̃፡ + �̇�
𝜕
𝜕𝑍)[ ln (

𝜕�̃�
𝜕𝑍)]

= 1
Ꭷ፳̃
Ꭷፙ
(ũ፡ ⋅ ∇̃፡ + �̇�

𝜕
𝜕𝑍)[

𝜕�̃�
𝜕𝑍 ]

Plugging this into the incompressible continuity equation (3.23) gives:

∇̃፡ ⋅ ũ፡ +
𝜕�̇�
𝜕𝑍 +

1
Ꭷ፳̃
Ꭷፙ
(ũ፡ ⋅ ∇̃፡ + �̇�

𝜕
𝜕𝑍)[

𝜕�̃�
𝜕𝑍 ] = 0

Multiplying both sides with Ꭷ፳̃
Ꭷፙ and applying the product rule of differentiation rule gives a ’divergence’-

free form equation:

∇̃፡ ⋅ (
𝜕�̃�
𝜕𝑍 ũ፡) +

𝜕
𝜕𝑍(

𝜕�̃�
𝜕𝑍 �̇�) = 0 (3.40)
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However, it should be highlighted since the coordinates 𝑍 is not orthonormal to 𝑥 and 𝑦, the expression
is merely by coincidence similar to the divergence of a vector field in the Cartesian coordinates . Since
Ꭷፙ
Ꭷ፳ (𝑥,𝑦,𝑧) =

፠ᑫ(፱,፲,፳)
፠Ꮂ , by the reciprocal rule,

𝜕�̃�
𝜕𝑍 (𝑥, 𝑦, 𝑍) =

𝑔ኺ
̃𝑔፳(𝑥, 𝑦, 𝑍)

(3.41)

Attention should be paid on the scalar fields and their dependence on coordinates. In particular, the
effective vertical gravity 𝑔፳ has to be treated with care in both coordinates system because it is used
to defined the coordinate transformation as well. In the above expression, the transformation

𝑔፳(𝑥, 𝑦, �̃�(𝑥, 𝑦, 𝑍)) = ̃𝑔፳(𝑥, 𝑦, 𝑍) (3.42)

has been applied. It should also be highlighted that a closed form representation of ̃𝑔፳ is often absent
because the closed form representation of the inverse coordinate transformation 𝑧 = �̃�(𝑥, 𝑦, 𝑍) in
general does not exists.

Hence, in terms of the physical quantities, the adapted continuity equation in the transformed
coordinates (𝑥, 𝑦, 𝑍, 𝑡) is given by

∇̃፡ ⋅ (
𝑔ኺ
̃𝑔፳
ũ፡) +

𝜕
𝜕𝑍(

𝑔ኺ
̃𝑔፳
�̇�) = 0, (3.43)

which is known as the adapted incompressible continuity equation in the transformed (𝑥, 𝑦, 𝑍, 𝑡) co-
ordinates. This equation will be applied when derivation of the adapted shallow water equation is
performed in later section.

3.6.2. A Zeroth-Order Approximation
While the ’divergence’-free form of equation (3.43) may suit analytical investigation, this form does
not favour characteristic scale analysis. A zeroth-order approximation to the quantity ̃𝑔፳ based on the
physical argument will be proposed to simplify the expression.

The approximation is based on the Taylor-expansion of 𝑔፳(𝑥, 𝑦, 𝑧) along the 𝑧-direction over a fixed
(𝑥, 𝑦). Expanding 𝑔፳ at 𝑧 = 𝑧ኺ(𝑥, 𝑦) gives

𝑔፳(𝑥, 𝑦, 𝑧) = [𝑔፳]@፳Ꮂ(፱,፲) + [
𝜕𝑔፳
𝜕𝑧 ]@፳Ꮂ(፱,፲)

(𝑧 − 𝑧ኺ) + ℎ.𝑜.𝑡., (3.44)

where ℎ.𝑜.𝑡. refers to the higher order term. However, recall that the effective gravity 𝑔፳ = 𝑔ኺ +𝑔ᖣ፳
consists of the sum of a constant reference gravity 𝑔ኺ and the perturbing gravity 𝑔ᖣ፳ components.
Hence the quantity Ꭷ፠ᑫ

Ꭷ፳ contains purely the perturbing component, that is,

[𝜕𝑔፳𝜕𝑧 ]@፳Ꮂ(፱,፲)
= [𝜕𝑔

ᖣ
፳

𝜕𝑧 ]@፳Ꮂ(፱,፲)
. (3.45)

However, the characteristic scale analysis, which will be presented in the next section, suggests
that the magnitude of ‖[Ꭷ፠ᖤᑫᎧ፳ ]@፳Ꮂ(፱,፲)(𝑧 − 𝑧ኺ)‖ in the Ocean is much less than [𝑔፳]@፳Ꮂ(፱,፲), that is,

‖[𝜕𝑔
ᖣ
፳

𝜕𝑧 ]@፳Ꮂ(፱,፲)
(𝑧 − 𝑧ኺ)‖ ≪ [𝑔፳]@፳Ꮂ(፱,፲) (3.46)

Hence a zeroth-order approximation is sufficiently made to 𝑔፳

𝑔፳(𝑥, 𝑦, 𝑧) ≈ [𝑔፳]@፳Ꮂ(፱,፲), (3.47)

which makes 𝑔፳(𝑥, 𝑦, 𝑧) independent of 𝑧. It follows that ̃𝑔፳ is independent of 𝑍 as well. In particular,
since the mean-sea level 𝑧 = 𝑧ኺ(𝑥, 𝑦) is mapped into 𝑍 = 0, equation (3.47) in terms of the transformed
coordinates is given by

̃𝑔፳(𝑥, 𝑦, 𝑍) ≈ ̃𝑔፳(𝑥, 𝑦, 0). (3.48)
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However, now that both 𝑔፳ and the transformed ̃𝑔፳ are no longer dependent on the vertical coor-
dinates, hence it makes no difference between 𝑔፳ and ̃𝑔፳. To simplify the notation, the tilde on ̃𝑔፳ will
be omitted.

Therefore, equation (3.43) can be approximated by

∇̃፡ ⋅ (
𝑔ኺ
𝑔፳
ũ፡) +

𝑔ኺ
𝑔፳
𝜕�̇�
𝜕𝑍 ≈ 0. (3.49)

The expression (3.49) can manipulated algebraically so that a more handy equation for analysis can
be obtained. Expanding the horizontal gradient ∇̃፡ ⋅ (፠Ꮂ̃፠ᑫ ũ፡) and multiplying every term with ̃፠ᑫ

፠Ꮂ give

𝑔፳
𝑔ኺ
𝑔ኺ
𝑔፳
∇̃፡ ⋅ ũ፡ + ũ፡ ⋅

𝑔፳
𝑔ኺ
∇̃፡(

𝑔ኺ
𝑔፳
) + 𝑔፳𝑔ኺ

𝑔ኺ
𝑔፳
𝜕�̇�
𝜕𝑍 ≈ 0

∇̃፡ ⋅ ũ፡ + ũ፡ ⋅ ∇̃፡( ln (
𝑔ኺ
𝑔፳
)) + 𝜕�̇�𝜕𝑍 ≈ 0

Hence an alternative form of (3.49) is given by

∇̃፡ ⋅ ũ፡ − ũ፡ ⋅ ∇̃፡( ln (
𝑔፳
𝑔ኺ
)) + 𝜕�̇�𝜕𝑍 ≈ 0 (3.50)

In addition, to simplify the scale analysis, the term ln( ̃፠ᑫ
፠Ꮂ ) can also be linearised and approximated.

Recall the definition of 𝑔፳ = 𝑔ኺ + 𝑔ᖣ፳, hence it follows

𝑔፳
𝑔ኺ
= 1 + 𝑔

ᖣ
፳
𝑔ኺ

Therefore for ‖፠ᖤᑫ፠Ꮂ ‖ ≪ 1, linearisation of the logarithm function ln gives,

ln (𝑔፳𝑔ኺ
) ≈ 𝑔ᖣ፳

𝑔ኺ
(3.51)

To sum up, if the following conditions are satisfied,

‖[𝜕𝑔
ᖣ
፳

𝜕𝑧 ]@፳Ꮂ(፱,፲)
(𝑧 − 𝑧ኺ)‖ ≪ [𝑔፳]@፳Ꮂ(፱,፲), (3.52a)

‖𝑔ᖣ፳‖ ≪ 𝑔ኺ, (3.52b)

the adapted incompressible continuity equation (3.43) can be approximated to zeroth-order by

∇̃፡ ⋅ ũ፡ +
𝜕�̇�
𝜕𝑍 − ũ፡ ⋅ ∇̃፡(

𝑔ᖣ፳
𝑔ኺ
) ≈ 0 (3.53)

REMARK: In order to consider the first-order or even higher-order approximation, it suffices to con-
sider higher-order terms in the Taylor expansion of 𝑔፳ in equation (3.44), which is unnecessary in the
case of ocean wave since the zeroth-order approximation is reasonably accurate already.

3.7. Adapted Horizontal Momentum Equation
3.7.1. Adapted Momentum Equation under the Hydrostatic Approximation
In this section, the hydrostatic approximation discussed in section 3.5.3 will be applied to simplify the
adapted momentum equation after 𝑍-transformation (3.25). Recall the decomposition of pressure �̃�
into the hydrostatic �̃�፬ and dynamic �̃�፝ components:

�̃�(𝑥, 𝑦, 𝑍, 𝑡) = �̃�፬(𝑥, 𝑦, 𝑍) + �̃�፝(𝑥, 𝑦, 𝑍, 𝑡)
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The hydrostatic pressure �̃�፬ is again given by equation (3.28), which suggests
𝜕�̃�፬
𝜕𝑍 = −𝜌𝜕Φ̃𝜕𝑍

Rearranging equation (3.37) gives
𝜕�̃�
𝜕𝑍 + 𝜌

𝜕Φ̃
𝜕𝑍 =

𝜕�̃�፝
𝜕𝑍 (3.54)

In addition, recall that the horizontal gradient of hydrostatic pressure ∇̃፡�̃�፬ vanishes according to
equation (3.35):

∇̃፡�̃�፬ = 0⃗ (3.55)

Therefore collecting the results of equations (3.37) and (3.55) in the momentum equation under 𝑍-
transformation (3.25), the adapted momentum equation is given by

𝜌[𝐷ũ፡𝑑𝑡 ] = −∇̃፡�̃�፝ +
𝜕�̃�፝
𝜕𝑍

𝜕𝑍
𝜕𝑧 ∇̃፡(�̃�) (3.56)

This equation is known as the adapted horizontal momentum equation in the 𝑍-coordinates.
The last term ∇̃፡(�̃�) on the right-hand side of equation (3.56) is known as the Jacobian involved in the

transformation of coordinates from the physical coordinates (𝑥, 𝑦, 𝑧, 𝑡) to (𝑥, 𝑦, 𝑍, 𝑡). The mathematical
properties and its physical implication will be presented in the following section.

3.7.2. Explicit Expression for the Jacobian term
Recall that the definition of ∇̃፡ is given by

∇̃፡(�̃�) =
𝜕𝑧
𝜕𝑥 |ፙ

̂𝑒ኻ +
𝜕𝑧
𝜕𝑦 |ፙ

̂𝑒ኼ

The vertical line with subscript 𝑍 refers to partial derivatives keeping 𝑍 unchanged.
It has been discussed in the section 3.2.3 that, given the definition of coordinate function 𝑍 =

𝑍(𝑥, 𝑦, 𝑧) given by equation (3.10), the inverse coordinate function 𝑧 = 𝑧(𝑥, 𝑦, 𝑍) exists and is unique
in the weakly non-uniform gravitation field. Although the explicit form of the function 𝑧 = 𝑧(𝑥, 𝑦, 𝑍) is
absent, fortunately, it is still possible to compute Ꭷ፳

Ꭷ፱ |ፙ and
Ꭷ፳
Ꭷ፲ |ፙ indirectly.

Consider the total differential of the coordinate functions 𝑍 = 𝑍(𝑥, 𝑦, 𝑧) and 𝑧 = 𝑧(𝑥, 𝑦, 𝑍):

𝑑𝑍 = 𝜕𝑍
𝜕𝑥 𝑑𝑥 +

𝜕𝑍
𝜕𝑦𝑑𝑦 +

𝜕𝑍
𝜕𝑧 𝑑𝑧 (3.57)

𝑑𝑧 = 𝜕𝑧
𝜕𝑥 |ፙ

𝑑𝑥 + 𝜕𝑧
𝜕𝑦 |ፙ

𝑑𝑦 + 𝜕�̃�
𝜕𝑍𝑑𝑍 (3.58)

By setting 𝑑𝑦 = 0 and 𝑑𝑍 = 0 in equation (3.58), the ratio 𝑑𝑧/𝑑𝑥 is given by Ꭷ፳
Ꭷ፱ |ፙ:

𝑑𝑧 = 𝜕𝑧
𝜕𝑥 |ፙ

𝑑𝑥 (3.59)

Hence setting 𝑑𝑦 = 0 and 𝑑𝑍 = 0 in equation (3.57) gives:

0 = 𝜕𝑍
𝜕𝑥 𝑑𝑥 +

𝜕𝑍
𝜕𝑧 𝑑𝑧 ⟺ 𝑑𝑧 = −𝜕𝑍𝜕𝑥 /

𝜕𝑍
𝜕𝑧 𝑑𝑥, (3.60)

provided that ᎧፙᎧ፳ ≠ 0. Therefore by comparing equations (3.59) and (3.60), a closed form expression
for Ꭷ፳̃Ꭷ፱ |ፙ is obtained:

𝜕�̃�
𝜕𝑥 |ፙ

= −𝜕𝑍𝜕𝑥 /
𝜕𝑍
𝜕𝑧 (3.61)

Similarly by setting 𝑑𝑥 = 0 and 𝑑𝑍 = 0, an expression for Ꭷ፳̃Ꭷ፲ |ፙ can be obtained:

𝜕�̃�
𝜕𝑦 |ፙ

= −𝜕𝑍𝜕𝑦/
𝜕𝑍
𝜕𝑧 (3.62)
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REMARK: In tensor calculus, these are quantities are the vertical component in the covariant basis
when transformation 𝑍 = 𝑍(𝑥, 𝑦, 𝑧) is performed.

3.7.3. Explicit Computation for the Jacobian term
With an explicit expression for Ꭷ፳̃Ꭷ፱ |ፙ and

Ꭷ፳̃
Ꭷ፲ |ፙ, given by equations (3.61) and (3.62), the Jacobian term

∇̃፡(�̃�) can be computed explicitly.
Recall the 𝑍-transformation was given by equation (3.10):

𝑍 = 𝑧 + Φ
ᖣ(𝑥, 𝑦, 𝑧)
𝑔ኺ

− 𝑍ኺ(𝑥, 𝑦) (3.63)

where 𝑍ኺ(𝑥,𝑦) = 𝑧ኺ(𝑥,𝑦) + ጓᖤᎲ(፱,፲)
፠Ꮂ . Recall 𝑧 = 𝑧ኺ(𝑥, 𝑦) is the hydrostatic sea level at the horizontal

physical coordinates (𝑥, 𝑦) and Φᖣኺ(𝑥, 𝑦) = Φᖣ(𝑥, 𝑦, 𝑧ኺ(𝑥, 𝑦)) is the perturbing geopotential at the mean
sea level (𝑥, 𝑦, 𝑧ኺ(𝑥, 𝑦)).

Denote 𝑔ᖣ፱ and 𝑔ᖣ፲ to be

𝑔ᖣ፱ = −
𝜕Φᖣ
𝜕𝑥 (3.64a)

𝑔ᖣ፲ = −
𝜕Φᖣ
𝜕𝑦 (3.64b)

Then differentiating (3.63) gives

𝜕𝑍
𝜕𝑥 =

1
𝑔ኺ
𝜕Φᖣ
𝜕𝑥 − 𝜕𝑍ኺ𝜕𝑥 = −𝑔

ᖣ
፱
𝑔ኺ
− 𝜕𝑍ኺ𝜕𝑥 (3.65a)

𝜕𝑍
𝜕𝑦 =

1
𝑔ኺ
𝜕Φᖣ
𝜕𝑦 − 𝜕𝑍ኺ𝜕𝑦 = −

𝑔ᖣ፲
𝑔ኺ
− 𝜕𝑍ኺ𝜕𝑦 (3.65b)

Now consider the derivative of function 𝑍ኺ = 𝑧ኺ(𝑥,𝑦) + ጓᖤ(፱,፲,፳Ꮂ(፱,፲))
፠Ꮂ . Note that the subscript

@𝑧ኺ(𝑥, 𝑦) means the quantities in the square brackets are evaluated at the mean-sea level (𝑥, 𝑦, 𝑧) =
(𝑥, 𝑦, 𝑧ኺ(𝑥, 𝑦)).

𝜕𝑍ኺ
𝜕𝑥 = 𝜕𝑧ኺ

𝜕𝑥 +
1
𝑔ኺ
[𝜕Φ

ᖣ

𝜕𝑥 + 𝜕Φ
ᖣ

𝜕𝑧
𝜕𝑧ኺ
𝜕𝑥 ]@፳Ꮂ(፱,፲)

= 𝜕𝑧ኺ
𝜕𝑥 + [ −

𝑔ᖣ፱
𝑔ኺ
]
@፳Ꮂ(፱,፲)

+ [𝑔
ᖣ
፳
𝑔ኺ
]
@፳Ꮂ(፱,፲)

𝜕𝑧ኺ
𝜕𝑥

= [1 + 𝑔
ᖣ
፳
𝑔ኺ
]
@፳Ꮂ(፱,፲)

𝜕𝑧ኺ
𝜕𝑥 + [ −

𝑔ᖣ፱
𝑔ኺ
]
@፳Ꮂ(፱,፲)

Note that in the above derivation, 𝑔ኺ is a constant and 𝑧ኺ(𝑥, 𝑦) is independent of vertical coordinates
𝑧, hence at each 𝑧-coordinate they are identical. Similarly ᎧፙᎲ

Ꭷ፱ can be computed. These give rise to

𝜕𝑍ኺ
𝜕𝑥 = [1 + 𝑔

ᖣ
፳
𝑔ኺ
]
@፳Ꮂ(፱,፲)

𝜕𝑧ኺ
𝜕𝑥 −

1
𝑔ኺ
[𝑔ᖣ፱]@፳Ꮂ(፱,፲) (3.66a)

𝜕𝑍ኺ
𝜕𝑦 = [1 + 𝑔

ᖣ
፳
𝑔ኺ
]
@፳Ꮂ(፱,፲)

𝜕𝑧ኺ
𝜕𝑦 −

1
𝑔ኺ
[𝑔ᖣ፲]@፳Ꮂ(፱,፲) (3.66b)

The physical meaning of these quantities will be discussed in the next section 3.7.4. Therefore Ꭷፙ
Ꭷ፱ and

Ꭷፙ
Ꭷ፲ can be computed explicitly

𝜕𝑍
𝜕𝑥 = −

𝑔ᖣ፱ − [𝑔ᖣ፱]@፳Ꮂ(፱,፲)
𝑔ኺ

− [1 + 𝑔
ᖣ
፳
𝑔ኺ
]
@፳Ꮂ(፱,፲)

𝜕𝑧ኺ
𝜕𝑥 (3.67a)

𝜕𝑍
𝜕𝑦 = −

𝑔ᖣ፲ − [𝑔ᖣ፲]@፳Ꮂ(፱,፲)
𝑔ኺ

− [1 + 𝑔
ᖣ
፳
𝑔ኺ
]
@፳Ꮂ(፱,፲)

𝜕𝑧ኺ
𝜕𝑦 (3.67b)
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Recall also that from equation (3.11),

𝜕𝑍
𝜕𝑧 = 1 +

𝑔ᖣ፳
𝑔ኺ

Hence plugging this together with equations (3.67) into the closed form expressions (3.61) and (3.62)
yields two lengthy formulas,

𝜕�̃�
𝜕𝑥 |ፙ

=
፠ᖤᑩዅ[፠ᖤᑩ]@ᑫᎲ(ᑩ,ᑪ)

፠Ꮂ +[1+ ፠ᖤᑫ
፠Ꮂ ]@፳Ꮂ(፱,፲)

Ꭷ፳Ꮂ
Ꭷ፱

1+ ፠ᖤᑫ
፠Ꮂ

(3.68a)

𝜕�̃�
𝜕𝑦 |ፙ

=
፠ᖤᑪዅ[፠ᖤᑪ]@ᑫᎲ(ᑩ,ᑪ)

፠Ꮂ +[1+ ፠ᖤᑫ
፠Ꮂ ]@፳Ꮂ(፱,፲)

Ꭷ፳Ꮂ
Ꭷ፲

1+ ፠ᖤᑫ
፠Ꮂ

. (3.68b)

After some algebraic manipulations, their physical meanings will become clear. This will be pre-
sented in the following section.

3.7.4. Physical Interpretation of the Jacobian term
Equation (3.68) reveals that several physical quantities come into effect to determine the Jacobian
∇̃፡(�̃�). It is noted that expression of equations (3.68a) and (3.68b) are identical except for the coordi-
nates, it suffices to consider and discuss one of them for the physical interpretation. In particular, the
equation (3.68a) in 𝑥 direction will be focused on.

Multiplying the reference gravity 𝑔ኺ to both the nominator and denominator of equation (3.68a)
gives

𝜕𝑧
𝜕𝑥 |ፙ

=
𝑔ᖣ፱ −[𝑔ᖣ፱]@፳Ꮂ(፱,፲)+[𝑔ኺ+𝑔

ᖣ
፳]@፳Ꮂ(፱,፲)

Ꭷ፳Ꮂ
Ꭷ፱

𝑔ኺ + 𝑔ᖣ፳
(3.69)

However, recall that 𝑔፳(𝑥, 𝑦, 𝑧) = 𝑔ኺ + 𝑔ᖣ፳(𝑥, 𝑦, 𝑧) is the effective gravity in the vertically downwards
direction at the point (𝑥, 𝑦, 𝑧). Hence [𝑔፳]@፳Ꮂ(፱,፲) = 𝑔ኺ + [𝑔ᖣ፳]@፳Ꮂ(፱,፲) is the effective vertical gravity
evaluated at the mean-sea level (𝑥, 𝑦, 𝑧ኺ(𝑥, 𝑦)).

Denote also Δ[𝑔፱] = Δ[𝑔፱](𝑥, 𝑦, 𝑧) = 𝑔ᖣ፱(𝑥, 𝑦, 𝑧) − [𝑔ᖣ፱]@፳Ꮂ(፱,፲) to be the difference between the
𝑥-component of effective gravity 𝑔፱ at point (𝑥, 𝑦, 𝑧) and the point at mean-sea level (𝑥, 𝑦, 𝑧ኺ(𝑥, 𝑦)).
Hence Ꭷ፳

Ꭷ፱ |ፙ can be expressed as

𝜕𝑧
𝜕𝑥 |ፙ

=
[𝑔፳]@፳Ꮂ(፱,፲)

𝑔፳
𝜕𝑧ኺ
𝜕𝑥 +

Δ[𝑔፱]
𝑔፳

(3.70)

Similarly Ꭷ፳
Ꭷ፱ |ፙ can be defined:

𝜕𝑧
𝜕𝑥 |ፙ

=
[𝑔፳]@፳Ꮂ(፱,፲)

𝑔፳
𝜕𝑧ኺ
𝜕𝑦 +

Δ[𝑔፲]
𝑔፳

(3.71)

Since that 𝑧ኺ = 𝑧ኺ(𝑥, 𝑦) is the hydrostatic mean-sea level at horizontal coordinates (𝑥, 𝑦), the term Ꭷ፳Ꮂ
Ꭷ፱

in (3.70) and Ꭷ፳Ꮂ
Ꭷ፲ in (3.71) thus measures the slope of the mean-sea level. On the other hand, the

dimensionless quantities [𝑔፳]@፳Ꮂ(፱,፲)/𝑔፳, Δ[𝑔፱]/𝑔፳ and Δ[𝑔፲]/𝑔፳ measure the ratio of the horizontal
gravity, relative to mean-sea level, to the vertical gravity.

The scale analysis of all quantities involved will be presented in the next session.
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3.8. Characteristic Scale Analysis of the Continuity Equation
3.8.1. Notation of the Characteristic Scales
Denote, with respect to 𝑍 coordinate, 𝐿፡ and 𝑈፡ to be the horizontal length and velocity scale, 𝐿፯ and
𝑈፯ to be their vertical counterparts. In other words, express

𝑢, 𝑣 = 𝑈፡𝑢∗ (3.72a)

�̇� = 𝑈፯�̇�∗ (3.72b)
𝑥, 𝑦 = 𝐿፡𝑥∗ (3.72c)
𝑍 = 𝐿፯𝑍∗ (3.72d)

so that 𝑢∗, �̇�∗, 𝑥∗, 𝑍∗ are dimensionless and scales with order of magnitude 𝒪(1). Also, define 𝜎፡ to be
the horizontal scale of the gradient of relative gravity perturbation 𝐺 = ፠ᖤᑫ

፠Ꮂ , that is

∇̃፡𝐺 = 𝜎፡𝐺∗ (3.73)

where 𝐺∗ is also dimensionless with order 𝒪(1).

3.8.2. Validity of Approximations
In the sections 3.6.2, two approximations have been made to derive the zeroth-order approximation
of the continuity equation (3.53). The two approximation are valid only if (3.52a) and (3.52b) are
satisfied. In this section, the validity of these conditions in the ocean will be illustrated.

Magnitude of 𝑔ᖣ፳ in the Open Ocean
In the open ocean, the typical value of perturbing gravity 𝑔ᖣ፳ is of order 0.01 msዅኼ, while the reference
gravity 𝑔ኺ is of order 10 msዅኼ. Therefore the order of size of ፠

ᖤᑫ
፠Ꮂ is given by

𝑔ᖣ፳
𝑔ኺ
∼ 𝒪(10ዅኽ) (3.74)

which is much less than 1. Hence the condition (3.52b) is satisfied, so that the linearisation of the
logarithm function ln(1+ ፠ᖤᑫ

፠Ꮂ ) ≈
፠ᖤᑫ
፠Ꮂ is justified. Note that this approximation is only required to perform

the characteristics scale analysis, but not the derivation of depth-integrated continuity equation which
will be presented in the later sections.

Magnitude of Ꭷ፠
ᖤᑫ

Ꭷ፳ in the Open Ocean
In the open ocean, the typical variation of the perturbing gravity 𝑔ᖣ፳ between the surface and the
bottom of the ocean at most of order 100milliGal. Note that the quantity 𝑧 − 𝑧ኺ, which measures
vertical distance between a point and the mean-sea level, is at maximum when the bottom floor is
considered 𝑧 = 𝑆ፁ.

Therefore, denoting Δ𝑔፳ to be scale of Ꭷ፠
ᖤᑫ

Ꭷ፳ (𝑧 − 𝑧ኺ), Δ𝑔፳ is then given by
Δ𝑔፳ ∼ 𝒪(100milliGal) = 𝒪(10ዅኽ msዅኼ) (3.75)

Note that Δ𝑔፳ is much less than the reference gravity 𝑔ኺ ≈ 10 msዅኼ. Hence the condition (3.52a)
is also valid in the ocean.

To sum up, the empirical scales discussed in equation (3.74) and (3.75) indicate that the equation
(3.53) is a reasonable approximation to the exact adapted incompressible continuity equation given by
equation (3.43) in the setting of the open ocean.

3.8.3. Dimensionless Continuity Equation
Considering the characteristic scale of each of the terms in the continuity equation (3.53) yields:

∇̃፡ ⋅ ũ፡ =
𝑈፡
𝐿፡
(∇̃∗፡ ⋅ ũ∗፡) (3.76)

𝜕�̇�
𝜕𝑍 =

𝑈፯
𝐿፯
(𝜕

̇𝑍∗
𝜕𝑍∗ ) (3.77)

ũ፡ ⋅ ∇̃፡(
𝑔ᖣ፳
𝑔ኺ
) = 𝑈፡𝜎፡(ũ፡ ⋅ ∇̃∗፡𝐺∗) (3.78)
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Plugging these quantities into the continuity equation (3.53) gives:

𝑈፡
𝐿፡
(∇̃∗፡ ⋅ ũ∗፡) +

𝑈፯
𝐿፯
(𝜕

̇𝑍∗
𝜕𝑍∗ ) − [𝑈፡𝜎፡(ũ፡ ⋅ ∇̃

∗
፡𝐺∗)] = 0

Rearranging and grouping terms gives

𝑈፡
𝐿፡
[∇̃∗፡ ⋅ ũ∗፡ − 𝐿፡𝜎፡(ũ፡ ⋅ ∇̃∗፡𝐺∗)] +

𝑈፯
𝐿፯
(𝜕

̇𝑍∗
𝜕𝑍∗ ) = 0 (3.79)

Horizontal Length Scales in the Ocean
By a similar consideration in the first square bracket in equation (3.79), the term 𝐿፡𝜎፡(ũ፡ ⋅ ∇̃∗፡𝐺) is
comparable to ∇̃∗፡ ⋅ũ∗፡ only if the dimensionless quantity 𝛼, given by the product of horizontal length scale
of motion and horizontal gradient of relative gravity perturbation 𝛼 = 𝐿፡𝜎፡ is of order of magnitude
equal than 𝒪(1), that is,

𝛼 = 𝐿፡𝜎፡ ∼ 𝒪(1) (3.80)

Typical value of 𝜎፡ = 𝒪(∇̃፡𝐺) ranges from 𝒪(10ዅኻኻmዅኻ) to 𝒪(10ዅmዅኻ) on the mean-sea level. Hence
the length scale of the motion should be of at least order of magnitude 10ዀm = 10ኽkm, which is of the
same scale with tidal motion.

Case 1, 𝛼 ≪ 𝒪(1): When the condition (3.80) is not satisfied in the way that 𝛼 ≪ 1, the term
𝐿፡𝜎፡(ũ፡ ⋅ ∇̃∗፡𝐺) in equation (3.79) can be neglected. Hence the continuity equation (3.53) in the
transformed coordinates is further simplified and is given by:

∇̃፡ ⋅ ũ፡ +
𝜕�̇�
𝜕𝑍 = 0, (3.81)

whose form resembles the incompressible continuity equation in the physical coordinates system. How-
ever, it is reminded again that the coordinate 𝑍 is not orthogonal to (𝑥, 𝑦), and thus this is not a
divergence-free form.

Consider the balancing of the scales in equation (3.81) gives

𝑈፡
𝐿፡
+ 𝑈፯𝐿፯

= 0

𝑈፯ ∼ 𝒪(
𝐿፯𝑈፡
𝐿፡

)

Recall that 𝛿 = ፋᑧ
ፋᑙ is the aspect ratio of the motion, hence

𝑈፯ ∼ 𝒪(𝛿𝑈፡) (3.82)

which suggests a constraint on the vertical velocity scale 𝑈፯, given certain aspect ration 𝛿 and horizontal
velocities scale 𝑈፡. In the shallow water, i.e. 𝛿 ≪ 1, 𝑈፯ is thus very small relative to 𝑈፡. Hence, the
vertical momentum equation can be abandoned.

Case 2, 𝛼 ∼ 𝒪(1): When the condition (3.80) is satisfied, the continuity equation (3.53) keeps its
form

∇̃፡ ⋅ ũ፡ +
𝜕�̇�
𝜕𝑍 − (ũ፡ ⋅ ∇̃፡)(

𝑔ᖣ፳
𝑔ኺ
) = 0

Since 𝛼 ∼ 𝒪(1), both ∇̃፡ ⋅ ũ፡ and (ũ፡ ⋅ ∇̃፡)(፠
ᖤᑫ
፠Ꮂ ) scales with

ፔᑙ
ፋᑙ . It follows that balancing the scale

gives rise to the same result as equation (3.82)

𝑈፯ ∼ 𝒪(𝛿𝑈፡). (3.83)
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Case 3, 𝛼 ≫ 𝒪(1): This corresponds to a strongly varying gravitational field on the Earth surface,
which is not observed. In such case, the dominant balance in the continuity equation results in

𝜕�̇�
𝜕𝑍 − (ũ፡ ⋅ ∇̃፡)(

𝑔ᖣ፳
𝑔ኺ
) ≈ 0, (3.84)

which will not be studied in this project since it is physically absent on the Earth.

3.9. Characteristic Scale Analysis of the Momentum Equation
The characteristic scale analysis of the Momentum Equation presented in this section is not very stan-
dard. The common way to conduct the scale analysis is to derive the full momentum equation in all
coordinates and consider the characteristic scales of each variable. However, since the momentum
equation in the direction along the transformed vertical coordinate 𝑍 was not derived, this standard
approach does not work.

However, a closer look of the horizontal momentum equation (3.22) suggests an alternative to derive
information of the characteristic scales. Although this alternative is not entirely rigorous, it provides a
handy and sensible argument to the characteristic scales of the terms in the momentum equation.

Recall that the horizontal momentum equation in the transformed coordinate 𝑍 is given by equation
(3.56):

𝜌[𝐷ũ፡𝑑𝑡 ] = −∇̃፡�̃�፝ +
𝜕�̃�፝
𝜕𝑍

𝜕𝑍
𝜕𝑧 ∇̃፡(�̃�)

The main difference between the adapted horizontal momentum equation and the standard one is the
extra term Ꭷ፩̃ᑕ

Ꭷፙ
Ꭷፙ
Ꭷ፳ ∇̃፡(�̃�) on the right-hand side of the equation. Hence, it suffices to give an estimate

of the order of magnitude of this term.
In this section the characteristic scales of variables are defined using also the notation in equation

(3.72).

3.9.1. The scale of the term ፃũᑙ
፝፭

It is reminded that Characteristic scales of variables in the transformed coordinates (𝑥, 𝑦, 𝑍, 𝑡) are
defined in equation (3.72). It is reminded here about the notation

𝐷ũ፡
𝑑𝑡 = 𝜕ũ፡

𝜕𝑡 |ፙ
+ �̃�𝜕ũ፡𝜕𝑥 |ፙ

+ �̃�𝜕ũ፡𝜕𝑦 |ፙ
+ �̇�𝜕ũ፡𝜕𝑍 |ፙ

have been used. Therefore denote, in addition, the time scale of the motion to be 𝑇,

𝐷ũ፡
𝑑𝑡 ∼ 𝒪(max (𝑈፡𝑇 ,

𝑈ኼ፡
𝐿፡
, 𝑈፯𝑈፡𝐿፯

))

By equation (3.82) or (3.83), which is always valid on the Earth surface, the above scale simplifies into

𝐷ũ፡
𝑑𝑡 ∼ 𝒪(max (𝑈፡𝑇 ,

𝑈ኼ፡
𝐿፡
)). (3.85)

3.9.2. The scale of the non-linear pressure gradient terms
It is noted that the pressure gradient involves an additional term Ꭷ፩̃ᑕ

Ꭷፙ
Ꭷፙ
Ꭷ፳ after the coordinate transfor-

mation.
Recall that the pressure �̃�(𝑥, 𝑦, 𝑍, 𝑡) has been decomposed into the hydrostatic �̃�፬ and dynamic �̃�፝

parts: �̃� = �̃�፬ + �̃�፝. Correspondingly the the pressure 𝑝 = 𝑝(𝑥, 𝑦, 𝑧, 𝑡) in the physical coordinates has
also been decomposed into 𝑝 = 𝑝፬ + 𝑝፝. It is reminded here about the notation of scalar field in
different coordinates systems: �̃�፝(𝑥, 𝑦, 𝑍, 𝑡) = 𝑝፝(𝑥, 𝑦, 𝑧(𝑥, 𝑦, 𝑍), 𝑡). The relation between Ꭷ፩ᑕ

Ꭷ፳ and Ꭷ፩̃ᑕ
Ꭷፙ ,

by the chain rule, is given by

𝜕�̃�፝
𝜕𝑍 = 𝜕𝑝፝

𝜕𝑧
𝜕�̃�
𝜕𝑍 (3.86)
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Note that by the reciprocal rule Ꭷ፳̃
Ꭷፙ

Ꭷፙ
Ꭷ፳ = 1. Hence it yields:

𝜕�̃�፝
𝜕𝑍

𝜕𝑍
𝜕𝑧 =

𝜕𝑝፝
𝜕𝑧 (3.87)

Therefore, it is sufficient to consider the characteristic scale of Ꭷ፩ᑕᎧ፳ . This can be done via the vertical
momentum equation in standard Cartesian coordinates (𝑥, 𝑦, 𝑧):

𝜕𝑤
𝜕𝑡 + 𝑢

𝜕𝑤
𝜕𝑥 + 𝑣

𝜕𝑤
𝜕𝑦 + 𝑤

𝜕𝑤
𝜕𝑧 =

−1
𝜌
𝜕𝑝
𝜕𝑧 − (𝑔ኺ + 𝑔

ᖣ
፳) (3.88)

Considering the hydrostatic balance in the vertical momentum equation in the Cartesian coordinates
gives

𝜕𝑝፬
𝜕𝑧 = −𝜌(𝑔ኺ + 𝑔

ᖣ
፳) (3.89)

Hence what remains in the momentum equation (3.88) is only the dynamic pressure 𝑝፝
𝐷𝑤
𝑑𝑡 =

−1
𝜌
𝜕𝑝፝
𝜕𝑧 (3.90)

Note that the notation of material derivatives

𝐷𝑤
𝑑𝑡 =

𝜕𝑤
𝜕𝑡 + 𝑢

𝜕𝑤
𝜕𝑥 + 𝑣

𝜕𝑤
𝜕𝑦 + 𝑤

𝜕𝑤
𝜕𝑧

have been used.

Notations of Characteristic Scales in the Physical Coordinates (𝑥, 𝑦, 𝑧, 𝑡)
In order to perform the characteristic scale analysis for equation (3.90), it is necessary to define the
characteristic scales again but in the original (𝑥, 𝑦, 𝑧, 𝑡) coordinates.

Denote, with respect to the Cartesian coordinates (𝑥, 𝑦, 𝑧, 𝑡), the characteristic length scale of the
horizontal motion and its velocity 𝑢, 𝑣 to be 𝐿ፇ and 𝑈ፇ respectively. Similarly for the vertical motion
with velocity 𝑤, denote its length scale and velocity scale to be 𝐿ፕ and 𝑈ፕ. It is reminded again
that Characteristic scales of variables in the transformed coordinates (𝑥, 𝑦, 𝑍, 𝑡) are defined in equation
(3.72). To summarise, it follows

𝑥, 𝑦 ∼ 𝒪(𝐿ፇ)
𝑢, 𝑣 ∼ 𝒪(𝑈ፇ)
𝑧 ∼ 𝒪(𝐿ፕ)
𝑤 ∼ 𝒪(𝑈ፕ)

Relations between Characteristic Scales in the Two Coordinates Systems
The relation between the characteristic scale in the two different coordinates should be examined and
deal with care. Recall the transformation formulas for the horizontal velocities 𝑢 and 𝑣 in the two
coordinates are given by

�̃�(𝑥, 𝑦, 𝑍, 𝑡) = 𝑢(𝑥, 𝑦, 𝑧(𝑥, 𝑦, 𝑍), 𝑡)
�̃�(𝑥, 𝑦, 𝑍, 𝑡) = 𝑣(𝑥, 𝑦, 𝑧(𝑥, 𝑦, 𝑍), 𝑡)

which suggest 𝑢 and 𝑣 are essentially the same quantity with �̃� and �̃�. It naturally follows that their
scales are identical, that is 𝑈፡ = 𝑈ፇ. Similar consideration gives also 𝐿፡ = 𝐿ፇ.

For the vertical length scale, recall that the jacobian of the transformation is given by

𝜕𝑍
𝜕𝑧 = 1 +

𝑔ᖣ፳
𝑔ኺ



26 3. Adapted Shallow Water Model

Since it is assumed that ፠
ᖤᑫ
፠Ꮂ ≪ 1, hence it is expected that

𝜕𝑍
𝜕𝑧 ∼ 𝒪(1)

and thus the vertical length scale in both coordinates are of the same characteristic order, that is,

𝐿፯ ≈ 𝐿ፕ

so that the aspect ratio of the motion 𝛿 = 𝐿፯/𝐿፡ ≈ 𝐿ፕ/𝐿ፇ remains approximately invariant in both
coordinates.

To sum up, the relation between the characteristic scales are summarised as:

𝐿፡ = 𝐿ፇ (3.91a)
𝑈፡ = 𝑈ፇ (3.91b)
𝐿፯ ≈ 𝐿ፕ (3.91c)

Scale Analysis of Equation (3.90)
It has been shown in Pedlosky 1979 that

𝑈ፕ ∼ 𝒪(
𝐿ፕ𝑈ፇ
𝐿ፇ

), (3.92)

However, using the relationship between the two characteristic scales (3.91), the scales in (3.92) can
thus be expressed also by

𝑈ፕ ∼ 𝒪(𝛿𝑈፡), (3.93)

Denote max (𝑎, 𝑏) to be the maximum of 𝑎 and 𝑏. It follows from (3.93) that ፃ፰፝፭ scales with

𝐷𝑤
𝑑𝑡 ∼ 𝒪(max (𝑈ፕ𝑇 ,

𝑈፡𝑈ፕ
𝐿፡

, 𝑈
ኼ
ፕ
𝐿፯
))

∼ 𝒪(max (𝛿𝑈፡𝑇 , 𝛿𝑈
ኼ
፡

𝐿፡
, 𝛿
ኼ𝑈ኼ፡
𝐿፯

))

∼ 𝒪(𝛿 ⋅max (𝑈፡𝑇 ,
𝑈ኼ፡
𝐿፡
)),

Note that according to equation (3.85), max (ፔᑙፓ ,
ፔᎴᑙ
ፋᑙ ) is the characteristic scale of

ፃũᑙ
፝፭ . In order to

emphasise that scale of the vertical momentum 𝜌ፃ፰፝፭ is dependent on the horizontal momentum 𝜌ፃũᑙ፝፭ ,
denote

𝜌𝐷𝑤𝑑𝑡 ∼ 𝒪(𝛿 ⋅ 𝜌
𝐷ũ፡
𝑑𝑡 ) (3.94)

By equation (3.90), an estimate to the scale of vertical gradient of dynamic pressure 𝑝፝ is thus
given by

𝜕𝑝፝
𝜕𝑧 ∼ 𝒪(𝛿 ⋅ 𝜌𝐷ũ፡𝑑𝑡 ) (3.95)

and therefore from equation (3.87):

𝜕�̃�፝
𝜕𝑍

𝜕𝑍
𝜕𝑧 ∼ 𝒪(𝛿 ⋅ 𝜌

𝐷ũ፡
𝑑𝑡 ) (3.96)
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3.9.3. The scale of the Jacobian term
It is noted that the term Jacobian term ∇̃፡(�̃�) is involved in the momentum equation after the coordinate
transformation.

Recall that equation (3.70) and (3.71) provides two physically insightful formula for the Jacobian
∇̃፡(�̃�):

𝜕�̃�
𝜕𝑥 |ፙ

=
[𝑔፳]@፳Ꮂ(፱,፲)

𝑔፳
𝜕𝑧ኺ
𝜕𝑥 +

Δ[𝑔፱]
𝑔፳

𝜕�̃�
𝜕𝑦 |ፙ

=
[𝑔፳]@፳Ꮂ(፱,፲)

𝑔፳
𝜕𝑧ኺ
𝜕𝑦 +

Δ[𝑔፲]
𝑔፳

Denote the vertical and horizontal length scale of mean-sea level 𝑧ኺ to be 𝑀፡ and 𝑀፯ respectively, that
is,

𝜕𝑧ኺ
𝜕𝑥 ,

𝜕𝑧ኺ
𝜕𝑦 ∼ 𝒪(𝑀፡𝑀፯

) (3.97)

Denote also the scale of vertical gravity 𝑔፳ by 𝐺፯. Note that [𝑔፳]@፳Ꮂ(፱,፲) scales also with 𝐺፯, hence

[𝑔፳]@፳Ꮂ(፱,፲)
𝑔፳

≈ 1 (3.98)

In practice the order of Δ[𝑔፱] and Δ[𝑔፲] depends on location, denote the order of these quantity by
Δ[𝑔፱]
𝑔፳

,
Δ[𝑔፲]
𝑔፳

∼ 𝒪(Δ𝐺፡𝐺፯
) (3.99)

Therefore, the Jacobian ∇̃፡(�̃�) scales with
𝜕𝑧
𝜕𝑥 |ፙ

, 𝜕𝑧𝜕𝑦 |ፙ
∼ 𝒪(max(𝑀፡𝑀፯

, Δ𝐺፡𝐺፯
)) (3.100)

Typical values of 𝑀፡ and 𝑀፯ are 𝒪(100 km) and 𝒪(1-10 m) respectively. The horizontal length scale
of 𝑧ኺ varies depending on location on the Earth.

𝑀፡
𝑀፯

∼ 𝒪(10ዅኾ or 10ዅ) (3.101)

In the ocean, the perturbing gravity is always weak, compared with the uniform reference gravity 𝑔ኺ.
In terms of order of magnitudes,

𝑔ኺ ≈ 10 msዅኼ (3.102)
𝑔ᖣ፳ ∼ 𝒪(10ዅኾ msዅኼ to 0.01 msዅኼ) (3.103)

𝑔ᖣ፱ , 𝑔ᖣ፲ ∼ 𝒪(10ዅኾ msዅኼ to 10ዅኽ msዅኼ) (3.104)

It is reminded that 𝑔፳ = 𝑔ኺ + 𝑔ᖣ፳, 𝑔፱ = 𝑔ᖣ፱ and 𝑔፲ = 𝑔ᖣ፲. Hence in equation (3.70) and (3.71), the
quantities are of order

[𝑔፳]@፳Ꮂ(፱,፲)
𝑔፳

= 1 + 𝒪(10ዅኽ) (3.105)

which justifies equation (3.98). On the other hand,
Δ𝐺፡
𝐺፯

≤ 𝒪(10ዅኾ) (3.106)

The ≤ sign is used to indicate the largest possible scale, because the differences of 𝑔፱ and 𝑔፲ between
two locations are evaluated in Δ[𝑔፱] and Δ[𝑔፲]. In particular, the closer a point is to the mean-sea
level, the smaller this term is.

Therefore, in the open ocean, according to equation (3.100), the terms Ꭷ፳
Ꭷ፱ |ፙ and

Ꭷ፳
Ꭷ፲ |ፙ are of order

of magnitude:
𝜕𝑧
𝜕𝑥 |ፙ

, 𝜕𝑧𝜕𝑦 |ፙ
≤ 𝒪(10ዅኾ) (3.107)
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3.9.4. Short Conclusions
To sum up, in the general case of shallow water flow, the extra term in the adapted horizontal momen-
tum equation Ꭷ፩̃ᑕ

Ꭷፙ
Ꭷፙ
Ꭷ፳ ∇̃፡(�̃�) scales with:

𝜕�̃�፝
𝜕𝑍

𝜕𝑍
𝜕𝑧 ∇̃፡(�̃�) ∼ 𝒪(𝛿 ⋅ 𝜌

𝐷ũ፡
𝑑𝑡 ⋅max(𝑀፡𝑀፯

, Δ𝐺፡𝐺፯
)) (3.108)

The shallowness assumption states that 𝛿 ≪ 1. Given the situation in the open ocean (3.107), the
quantity 𝛿⋅max(ፌᑙፌᑧ ,

ጂፆᑙ
ፆᑧ ) is very small. Hence compared with 𝜌

ፃũᑙ
፝፭ , the term

Ꭷ፩̃ᑕ
Ꭷፙ

Ꭷፙ
Ꭷ፳ ∇̃፡(�̃�) is negligible.

Hence the adapted horizontal momentum is reduced into

𝜌𝐷ũ፡𝑑𝑡 = −∇̃፡�̃�፝ , (3.109)

which is called the adapted horizontal momentum equation in the shallow water.
It is expected in the deep water, where the configuration 𝛿 ≪ 1 is not valid, the term Ꭷ፩̃ᑕ

Ꭷፙ
Ꭷፙ
Ꭷ፳ ∇̃፡(�̃�)

is no longer negligible. However, an aspect ratio 𝛿 ≈ 1 will imply 𝐿፡ ≈ 𝐿፯. In order to satisfy the the
condition (3.80) such that the gravity variation is ’felt’ by the fluid motion, the vertical length scale 𝐿፯
of the motion has to scale with ኻ

ᑙ , which is at least 10
 m, which is much greater than the average

depth of ocean ≈ 4000 m. Hence the deep water scenario will be unrealistic on the Earth and will not
be studied in this project.

3.10. Derivation of Adapted Shallow Water Equations
In this section, the adapted shallow water model, which is capable of dealing with the weakly non-
uniform gravity, will be derived.

3.10.1. Boundary Conditions
In the classical shallow water model, boundary conditions are needed to be imposed on both the surface
of the fluid and the bottom floor over which the fluid flow. In this section, the boundary condition for
the fluid in the transformed coordinates will be presented.

Surface: Kinematic Boundary Conditions
In the physical coordinates (𝑥, 𝑦, 𝑧, 𝑡), typically the kinematic boundary condition on fluid surface 𝑧 =
𝑆(𝑥, 𝑦, 𝑡) is imposed, which suggests a fluid element on the surface-interface always remains on the
interface. Mathematically the kinematic boundary condition is given by:

𝐷
𝑑𝑡 (𝑧 − 𝑆) = 0, at 𝑧 = 𝑆(𝑥, 𝑦, 𝑡)

or equivalently,

𝑤 = 𝜕𝑆
𝜕𝑡 + u፡ ⋅ ∇፡𝑆 (3.110)

where 𝑢,𝑣 and 𝑤 are the velocities in 𝑥, 𝑦 and 𝑧 direction.
A natural expectation of the analogy to equation (3.110) in the transformed coordinates (𝑥, 𝑦, 𝑍, 𝑡)

is given by

�̇� = 𝜕�̃�
𝜕𝑡 + ũ፡ ⋅ ∇̃፡�̃� (3.111)

However, equation (3.111) should be examined carefully because of the coordinate transformation.
It turns out that, fortunately, equation (3.110) and (3.111) are equivalent and thus equation (3.111)
correctly describe the kinematic boundary condition to the surface of the fluid in the transformed
coordinates (𝑥, 𝑦, 𝑍, 𝑡) as well. The proof will be given in the next section. Readers who are not
interested may skip it.
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Equivalence between the expressions (3.110) and (3.111)
To show the equivalence between (3.110) and (3.111), it suffices to express the quantities given in
equation (3.110) by the transformed coordinates (𝑥, 𝑦, 𝑍, 𝑡). The ’translation’ from the physical coordi-
nates (𝑥, 𝑦, 𝑧, 𝑡) to the transformed coordinates (𝑥, 𝑦, 𝑍, 𝑡) of each term will be presented separately.

By equation (2.23), the vertical velocity 𝑤 is translated into �̃� by

�̃� = 𝜕�̃�
𝜕𝑡 |ፙ

+ ũ፡ ⋅ ∇̃፡(�̃�) + �̇�
𝜕�̃�
𝜕𝑍

Since the inverse coordinate transformation �̃� = �̃�(𝑥, 𝑦, 𝑍) is time-independent, Ꭷ፳̃Ꭷ፭ |ፙ = 0. Thus the
vertical velocity 𝑤 on the left-hand sides of equation (3.110) is given by:

�̃� = ũ፡ ⋅ ∇̃፡(�̃�) + �̇�
𝜕�̃�
𝜕𝑍 (3.112)

To translate the derivative of 𝑆(𝑥, 𝑦, 𝑡) into �̃�(𝑥, 𝑦, 𝑡), it is necessary to consider the relation between
𝑆 and �̃� first, which is already given by equation (3.16):

�̃�(𝑥, 𝑦, 𝑡) = 𝑆(𝑥, 𝑦, 𝑡) + Φ
ᖣ(𝑥, 𝑦, 𝑆(𝑥, 𝑦, 𝑡))

𝑔ኺ
− 𝑍ኺ(𝑥, 𝑦)

Then consider the time-derivative of �̃�(𝑥, 𝑦, 𝑡), by the chain rule:

𝜕�̃�
𝜕𝑡 =

𝜕𝑆
𝜕𝑡 +

1
𝑔ኺ
[𝜕Φ

ᖣ

𝜕𝑧 ]@ፒ(፱,፲,፭)
𝜕𝑆
𝜕𝑡

Since 𝑔ᖣ𝑧 = Ꭷጓᖤ
Ꭷ፳ and recall that ᎧፙᎧ፳ = 1+

፠ᖤᑫ
፠Ꮂ , �̃�(𝑥, 𝑦, 𝑡) can be simply expressed by

𝜕�̃�
𝜕𝑡 =

𝜕𝑆
𝜕𝑡 [

𝜕𝑍
𝜕𝑧 ]@ፒ(፱,፲,፭)

The spatial-derivatives of �̃�(𝑥, 𝑦, 𝑡) can be computed similarly and give

𝜕�̃�
𝜕𝑥 =

𝜕𝑆
𝜕𝑥 [

𝜕𝑍
𝜕𝑧 ]@ፒ(፱,፲,፭)

−
[𝑔፱]@ፒ(፱,፲,፭)

𝑔ኺ
− 𝜕𝑍ኺ𝜕𝑥

𝜕�̃�
𝜕𝑦 =

𝜕𝑆
𝜕𝑦[

𝜕𝑍
𝜕𝑧 ]@ፒ(፱,፲,፭)

−
[𝑔፲]@ፒ(፱,፲,፭)

𝑔ኺ
− 𝜕𝑍ኺ𝜕𝑦 ,

where 𝑔፱ =−Ꭷጓᖤ
Ꭷ፱ and 𝑔፲ =−Ꭷጓᖤ

Ꭷ፱ .
The above equations may seem complicated at first glance. However, recall that by equation (3.65),

[𝜕𝑍𝜕𝑥 ]@ፒ(፱,፲,፭)
= −

[𝑔፱]@ፒ(፱,፲,፭)
𝑔ኺ

− 𝜕𝑍ኺ𝜕𝑥

[𝜕𝑍𝜕𝑦 ]@ፒ(፱,፲,፭)
= −

[𝑔፲]@ፒ(፱,፲,፭)
𝑔ኺ

− 𝜕𝑍ኺ𝜕𝑦 .

In addition, by equation (3.61) and (3.62), ᎧፙᎧ፱ and
Ꭷፙ
Ꭷ፲ can be related to

Ꭷ፳̃
Ꭷ፱ |ፙ and

Ꭷ፳̃
Ꭷ፲ |ፙ respectively by

[ 𝜕�̃�𝜕𝑥 |ፙ
]
@ፒ̃(፱,፲,፭)

= −[𝜕𝑍𝜕𝑥 ]@ፒ(፱,፲,፭)
/[𝜕𝑍𝜕𝑧 ]@ፒ(፱,፲,፭)

[ 𝜕�̃�𝜕𝑦 |ፙ
]
@ፒ̃(፱,፲,፭)

= −[𝜕𝑍𝜕𝑦 ]@ፒ(፱,፲,፭)
/[𝜕𝑍𝜕𝑧 ]@ፒ(፱,፲,፭)
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Therefore the quantities Ꭷፒ
Ꭷ፭ and u፡ ⋅ ∇፡𝑆 are ’translated’ to be

𝜕𝑆
𝜕𝑡 =

𝜕�̃�
𝜕𝑡 [

𝜕�̃�
𝜕𝑍 ]@ፒ(፱,፲,፭)

(3.115a)

u፡ ⋅ ∇፡𝑆 = ũ፡ ⋅ (∇̃፡�̃� + ∇̃፡(�̃�))[
𝜕�̃�
𝜕𝑍 ]@ፒ(፱,፲,፭)

(3.115b)

Note that in the above expressions, terms expressed in the physical coordinates (𝑥, 𝑦, 𝑧, 𝑡) are placed
on the left-hand sides, while the terms expressed in the transformed coordinates (𝑥, 𝑦, 𝑍, 𝑡) are placed
on the right-hand sides.

Putting the translated 𝑤 by (3.112) and translated ፃፒ
፝፭ by (3.115) into the kinematic boundary

condition in the physical coordinates (3.110) gives

ũ፡ ⋅ ∇̃፡(�̃�) + �̇�
𝜕�̃�
𝜕𝑍 =

𝜕�̃�
𝜕𝑡 [

𝜕�̃�
𝜕𝑍 ] + ũ፡ ⋅ (∇̃፡�̃�)[

𝜕�̃�
𝜕𝑍 ] + ũ፡ ⋅ (∇̃፡(�̃�))

�̇� 𝜕�̃�𝜕𝑍 =
𝜕�̃�
𝜕𝑡 [

𝜕�̃�
𝜕𝑍 ] + ũ፡ ⋅ (∇̃፡�̃�)[

𝜕�̃�
𝜕𝑍 ]

�̇� 𝜕�̃�𝜕𝑍 = [
𝜕�̃�
𝜕𝑡 + ũ፡ ⋅ (∇̃፡�̃�)][

𝜕�̃�
𝜕𝑍 ]

Note that all quantities are evaluated at 𝑍 = �̃�(𝑥, 𝑦, 𝑡) and thus the subscript @�̃�(𝑥, 𝑦, 𝑡) notation has
been dropped. Since the quantity Ꭷ፳̃

Ꭷፙ does not vanish, the boundary condition (3.110) in the physical
coordinates is thus equivalent to the boundary condition (3.111)

𝑤 = 𝜕𝑆
𝜕𝑡 + u፡ ⋅ ∇፡𝑆 ⟺ �̇� = 𝜕�̃�

𝜕𝑡 + ũ፡ ⋅ ∇̃፡�̃�, (3.116)

which completes the proof.

Bottom: Zero Normal Flow Boundary Conditions
In the physical coordinates (𝑥, 𝑦, 𝑧, 𝑡), given the time-independent bottom topography 𝑧 = 𝑆ፁ(𝑥, 𝑦),
typically the boundary condition that the normal flow to the bottom vanishes is imposed. This sug-
gests equivalently that a fluid element initially lying on the bottom will always remains on bottom.
Mathematically the kinematic boundary condition is given by:

𝐷
𝑑𝑡 (𝑧 − 𝑆ፁ) = 0, at 𝑧 = 𝑆ፁ(𝑥, 𝑦, 𝑡)

or equivalently,
𝑤 = u፡ ⋅ ∇፡𝑆ፁ (3.117)

where 𝑢,𝑣 and 𝑤 are the velocities in 𝑥, 𝑦 and 𝑧 direction.
Repeating the argument discussed in the section for the surface boundary condition, and noting

that 𝑆ፁ(𝑥, 𝑦) can be regarded as a special case of 𝑆(𝑥, 𝑦, 𝑡) where the time-dependence is absent, it
can be shown that the equivalent boundary condition in the transformed coordinates (𝑥, 𝑦, 𝑍, 𝑡) is given
by

�̇� = ũ፡ ⋅ ∇̃፡�̃�ፁ . (3.118)

3.10.2. Adapted Depth-Averaged Continuity Equation
Additional Assumption: Gravity
Recall in equation (3.47), it has been approximated that the gravity variation 𝑔ᖣ፳ is independent of
the vertical coordinates, which is justified by the condition (3.52a),

𝑔፳(𝑥, 𝑦, 𝑧) ≈ 𝑔፳(𝑥, 𝑦, 𝑧ኺ(𝑥, 𝑦)) (3.119)

or equivalently in the transformed (𝑥, 𝑦, 𝑍) coordinates

̃𝑔፳(𝑥, 𝑦, 𝑍) ≈ ̃𝑔፳(𝑥, 𝑦, 0), (3.120)
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since the mean-sea level 𝑧 = 𝑧ኺ(𝑥, 𝑦) is mapped to 𝑍 = 0.
Another physical justification of this approximation is that in the standard shallow water model, the

fluid is considered to be ’layerised’. By depth-averaging, the dependence on the vertical coordinates
𝑧 of the horizontal velocities is removed. Hence the standard shallow water model is essentially a
’semi-3D’ model.

Here in the adapted model the assumption of independence of vertical coordinates is extended
also the the gravity 𝑔፳. Hence it is justifiable also to a priori take a depth-independent vertical gravity
perturbation 𝑔ᖣ፳, which gives the assumption (3.120).

Additional Assumption: Horizontal Velocities
Another assumption is that the horizontal velocity ũ፡ is independent of 𝑍, which is an exact analogy to
the assumption that the horizontal velocities are vertically-independent in the standard shallow water
model. Quantitatively this assumption is given by

ũ፡ = ũ፡(𝑥, 𝑦). (3.121)

Depth-Integration
Rearranging the exact adapted incompressible continuity equation (3.43) gives

𝜕
𝜕𝑍(

𝑔ኺ
̃𝑔፳
�̇�) = −∇̃፡ ⋅ (

𝑔ኺ
̃𝑔፳
ũ፡), (3.122)

Integrating the adapted continuity equation (3.122) over depth from 𝑍 = �̃�ፁ to arbitrary 𝑍 = �̃� gives

∫
ፒ̃

ፒ̃ᐹ

𝜕
𝜕�̆�(

𝑔ኺ
̃𝑔፳
�̇�)𝑑�̆� = −∫

ፒ̃

ፒ̃ᐹ
∇̃፡ ⋅ (

𝑔ኺ
̃𝑔፳
ũ፡)𝑑�̆�

Note that �̆� is a dummy variable used in the integration. Since by equation (3.47) �̃�፳(𝑥, 𝑦, 𝑍) cab be
approximated by �̃�፳(𝑥, 𝑦, 0) to the zeroth-order, the integration is straight-forward and gives

𝑔ኺ
̃𝑔፳
(�̇�(𝑥, 𝑦, �̃�, 𝑡) − �̇�(𝑥, 𝑦, �̃�ፁ , 𝑡)) ≈ −(�̃� − �̃�ፁ)[∇̃፡ ⋅ (

𝑔ኺ
̃𝑔፳
ũ፡)]

The boundary conditions for �̇�(𝑥, 𝑦, �̃�, 𝑡) and �̇�(𝑥, 𝑦, �̃�ፁ , 𝑡) are respectively given by (3.111) and (3.118).
This gives rise to

𝑔ኺ
̃𝑔፳
(𝜕�̃�𝜕𝑡 + ũ፡ ⋅ ∇̃፡(�̃� −

̃𝑆ፁ)) ≈ −(�̃� − �̃�ፁ)[∇̃፡ ⋅ (
𝑔ኺ
̃𝑔፳
ũ፡)]

Note the water depth �̃� in the transformed coordinates is given by �̃� = �̃� − �̃�ፁ. Also note that �̃�ፁ is
time-independent. Thus the depth-integrated continuty equation is given by

𝑔ኺ
̃𝑔፳
(𝜕�̃�𝜕𝑡 + ũ፡ ⋅ ∇̃፡�̃�) ≈ −�̃�[∇̃፡ ⋅ (

𝑔ኺ
̃𝑔፳
ũ፡)]

By the product rule, the expression can be expressed in a concise way, which will be known as the
adapted depth-integrated continuity equation in the shallow water:

𝜕
𝜕𝑡(

𝑔ኺ
̃𝑔፳
�̃�) + ∇̃፡ ⋅ (

𝑔ኺ
̃𝑔፳
�̃�ũ፡) ≈ 0 (3.123)

Note that in the above expression, the quantity ፠Ꮂ
̃፠ᑫ can also be given by

፠Ꮂ
̃፠ᑫ =

Ꭷ፳̃
Ꭷፙ . By equation

(3.20), the adapted depth-integrated continuity equation (3.123) can thus be interpreted informally as

𝜕𝐷
𝜕𝑡 + ∇̃፡ ⋅ (𝐷ũ፡) ≈ 0,
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which looks like the the depth-integrated continuity in the classical case with uniform gravity. Note that
this interpretation is informal since the horizontal divergence operator ∇̃፡ is defined in the transformed
coordinates (𝑥, 𝑦, 𝑍, 𝑡), while the physical water depth 𝐷 is defined in the physical coordinates (𝑥, 𝑦, 𝑧, 𝑡).

The depth-integrated continuity equation (3.123) can be expanded in an alternative form to favour
the derivation of the adapted shallow water wave equation and numerical computations. Multiplying
every term in equation (3.123) by ̃፠ᑫ

፠Ꮂ and expanding the horizontal divergence term gives

𝜕�̃�
𝜕𝑡 +

̃𝑔፳
𝑔ኺ
�̃�ũ፡ ⋅ ∇̃፡(

𝑔ኺ
̃𝑔፳
) + ̃𝑔፳

𝑔ኺ
𝑔ኺ
̃𝑔፳
∇̃፡ ⋅ (�̃�ũ፡) ≈ 0

Note that the quantity ̃፠ᑫ
፠Ꮂ ∇̃፡(

፠Ꮂ
̃፠ᑫ ) can be given by −∇̃፡[ ln(

̃፠ᑫ
፠Ꮂ )]. Hence an alternative and equivalent

form to (3.123) is given by

𝜕�̃�
𝜕𝑡 + ∇̃፡ ⋅ (�̃�ũ፡) ≈ �̃�ũ፡ ⋅ ∇̃፡( ln (

̃𝑔፳
𝑔ኺ
)) (3.124)

3.10.3. Adapted Momentum Equation
In the remaining sections of this chapter, all variables, scalar fields and vector fields and their derivatives
are expressed in the transformed coordinates (𝑥, 𝑦, 𝑍, 𝑡) unless otherwise specified. The notation tilde
will thus be dropped to simplify the notation.

Recall that the simplified momentum equation (3.109) has the following form in the shallow water:

𝜌𝐷u፡𝑑𝑡 = −∇፡𝑝፝ , (3.125)

where 𝜌 is the density of fluid, 𝑢፡ is the horizontal velocities and 𝑝፝ is the dynamic component of the
pressure.

In order to obtained a closed system of equations with the adapted depth-averaged continuity
equation, equation (3.39) is integrated over depth:

∫
ፙ

ፒᐹ
(𝜕𝑝𝜕�̆� )𝑑�̆� = −𝜌∫

ፙ

፡
(𝜕Φ𝜕�̆� )𝑑�̆�

Note that by equation (3.7), ᎧጓᎧፙ = 𝑔ኺ, imposing the boundary condition of pressure on the free fluid
surface: 𝑝(𝑥, 𝑦, 𝑆, 𝑡) = 𝑝ኺ leads to:

𝑝(𝑥, 𝑦, 𝑍, 𝑡) − 𝑝ኺ = −𝜌𝑔ኺ(𝑍 − 𝑆)

Hence it follows that

𝜕𝑝
𝜕𝑥 = 𝜌𝑔ኺ

𝜕𝑆
𝜕𝑥 (3.126a)

𝜕𝑝
𝜕𝑦 = 𝜌𝑔ኺ

𝜕𝑆
𝜕𝑦 (3.126b)

Therefore using equation (3.35), (3.109) and (3.126), the adapted horizontal momentum equation in
the shallow water is given by:

𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 + 𝑣

𝜕𝑢
𝜕𝑦 = −𝑔ኺ

𝜕𝑆
𝜕𝑥 (3.127a)

𝜕𝑣
𝜕𝑡 + 𝑢

𝜕𝑣
𝜕𝑥 + 𝑣

𝜕𝑣
𝜕𝑦 = −𝑔ኺ

𝜕𝑆
𝜕𝑦 (3.127b)

or equivalently
𝜕u፡
𝜕𝑡 + u፡ ⋅ ∇u፡ = −𝑔ኺ∇፡𝑆 (3.128)
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3.11. Derivation of Adapted Wave Equation in Shallow Water
Let the hydrostatic thickness of the fluid layer be 𝐷ኺ(𝑥, 𝑦). 𝐷ኺ is therefore the difference in vertical
coordinates 𝑍 between the mean-sea level and the ocean floor. Denote 𝜂 = 𝜂(𝑥, 𝑦, 𝑡) to be the relative
surface elevation of the fluid to the mean-sea level, that is,

𝜂 = 𝐷 − 𝐷ኺ (3.129)

In this section it is assumed that 𝜂 ≪ 𝐷ኺ, which suggests only small-amplitude motions on the surface
will be considered. These small amplitudes represent free oscillations or waves on a fluid surface.

In addition it is further assumed u፡ is small enough, such that the advection term u፡ ⋅ ∇፡u፡ can be
neglected compared to Ꭷuᑙ

Ꭷ፭ in equation (3.128). To sum up, it is assumed that

𝜂 ≪ 𝐷ኺ

u፡ ⋅ ∇፡u፡ ≪
𝜕u፡
𝜕𝑡

Consider a slight deviation from quiescent state of the fluid, which is given by

𝑢 = 0 + 𝑢ᖣ
𝑣 = 0 + 𝑣ᖣ
𝐷 = 𝐷ኺ + 𝜂

and plug these into the adapted momentum equation (3.128) and the adapted depth-averaged conti-
nuity equation (3.124). By keeping only the first order perturbations it is obtained that:

𝜕𝑢ᖣ
𝜕𝑡 = −𝑔ኺ

𝜕𝜂
𝜕𝑥 (3.130a)

𝜕𝑣ᖣ
𝜕𝑡 = −𝑔ኺ

𝜕𝜂
𝜕𝑦 (3.130b)

𝜕𝜂
𝜕𝑡 + ∇፡ ⋅ (𝐷ኺu

ᖣ
፡) = 𝐷ኺuᖣ፡ ⋅ ∇፡( ln (

𝑔፳
𝑔ኺ
)) (3.130c)

Define the mass flux U = (𝑢ᖣ𝐷ኺ, 𝑣ᖣ𝐷ኺ) = (𝑈, 𝑉), it then follows
𝜕𝑈
𝜕𝑡 = −𝑔ኺ𝐷ኺ

𝜕𝜂
𝜕𝑥 (3.131a)

𝜕𝑉
𝜕𝑡 = −𝑔ኺ𝐷ኺ

𝜕𝜂
𝜕𝑦 (3.131b)

𝜕𝜂
𝜕𝑡 + ∇፡ ⋅U = U ⋅ ∇፡( ln (

𝑔፳
𝑔ኺ
)) (3.131c)

The system of first-order partial differential equations (3.131) is known as the governing equation for
the adapted shallow water wave. Numerical computation will be based on the system of equations
(3.131).

It is noted that the depth-averaged continuity equation (3.131c) can be expressed equivalently by
a ’conservative’ form

𝜕
𝜕𝑡(

𝜂
𝑔፳
) + ∇፡ ⋅ (

U
𝑔፳
) = 0 (3.132)

However, this form does not bring additional insight to the physics nor bring convenience to numerical
computation. Hence the form in (3.131c) will be used and analysed.

3.11.1. The Second-Order Wave Equation
It is also possible to derive a second-order partial differential equations. Partially differentiate equation
(3.131c) with respect to 𝑡 gives:

𝜕ኼ𝜂
𝜕𝑡ኼ + ∇፡ ⋅ (

𝜕U
𝜕𝑡 ) =

𝜕U
𝜕𝑡 ⋅ ∇፡( ln (

𝑔፳
𝑔ኺ
)) (3.133)
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Noting that from equation (3.131a) and (3.131b), ᎧUᎧ፭ = −𝑔ኺ𝐷ኺ∇፡𝜂. Substituting this into the equation
(3.133), the adapted shallow water wave equation is finally obtained:

𝜕ኼ𝜂
𝜕𝑡ኼ − ∇፡ ⋅ (𝑔ኺ𝐷ኺ∇፡𝜂) = −𝑔ኺ𝐷ኺ∇፡( ln (

𝑔፳
𝑔ኺ
)) ⋅ ∇፡𝜂 (3.134)

Note that when 𝑔ᖣ፳ = 0 so that 𝑔፳ = 𝑔ኺ, the right-hand side of equation (3.134) vanishes and equation
(3.134) reduces to the classical shallow water gravity wave equation.

If the depth-averaged continuity equation (3.131c) of the form (3.132) is used, the above equation
becomes

𝜕ኼ𝜂
𝜕𝑡ኼ = 𝑔፳∇፡ ⋅ (

𝑔ኺ𝐷ኺ
𝑔፳

∇፡𝜂) (3.135)

which is an equivalent expression to (3.134).

3.11.2. TheMathematical Characteristics of the Adapted ShallowWaterWave
To end this chapter, the mathematical characteristics of (3.131) is highlighted. Since 𝑔ኺ�̃�ኺ is strictly
positive, denote:

𝑐(𝑥, 𝑦) = √𝑔ኺ�̃�ኺ.

Readers are reminded that 𝑔ኺ is the reference gravity and �̃�ኺ is the hydrostatic water depth in the
transformed coordinates.

In equation (3.20) of section 3.3.2, it has been suggested that when the vertical component of the
gravity field 𝑔፳(𝑥, 𝑦, 𝑧) is independent of the vertical 𝑧 coordinates, the relation between the depth of
fluid in the transformed coordinates �̃� and the physical coordinates 𝐷 is given by

�̃�(𝑥, 𝑦, 𝑡) = 𝐷(𝑥, 𝑦, 𝑡)[𝜕𝑍𝜕𝑧 ] = 𝐷(𝑥, 𝑦, 𝑡)[1 +
𝑔ᖣ፳(𝑥, 𝑦)
𝑔ኺ

]. (3.136)

Applying the transformation rule to �̃�ኺ suggested in equation (3.136), in terms of the water depth 𝐷ኺ
in the physical coordinates, the wave speed 𝑐(𝑥) becomes

𝑐(𝑥) = √𝑔ኺ𝐷ኺ[1 +
𝑔ᖣ፳(𝑥)
𝑔ኺ

] = √𝑔፳𝐷ኺ. (3.137)

Readers are reminded that the effective gravity 𝑔፳(𝑥) = 𝑔ኺ+𝑔ᖣ፳(𝑥) and time-averaged water depth
𝐷ኺ(𝑥) are both spatially dependent.

Equation (3.131) is then expressed in the form of:

𝜕𝜂
𝜕𝑡 + ∇፡ ⋅U = U ⋅ ∇፡( ln (

𝑔፳
𝑔ኺ
)) (3.138a)

𝜕𝑈
𝜕𝑡 + 𝑐

ኼ 𝜕𝜂
𝜕𝑥 = 0 (3.138b)

𝜕𝑉
𝜕𝑡 + 𝑐

ኼ 𝜕𝜂
𝜕𝑦 = 0 (3.138c)

Defining 𝑞 = (𝜂, 𝑈, 𝑉)ፓ, the system of equation (3.138) can thus be expressed in a system of linear
hyperbolic equations

𝜕𝑞
𝜕𝑡 + 𝐴፱

𝜕𝑞
𝜕𝑥 + 𝐴፲

𝜕𝑞
𝜕𝑦 = 𝑅(𝑞, 𝑔፳) (3.139)

where

𝐴፱ = (
0 1 0
𝑐ኼ 0 0
0 0 0

)
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and

𝐴፲ = (
0 0 1
0 0 0
𝑐ኼ 0 0

)

with the source term

𝑅 = ⎛

⎝

U ⋅ ∇፡( ln(፠ᑫ፠Ꮂ ))
0
0

⎞

⎠
It is worthwhile to remind once more that the above equations are defined on the transformed

coordinates (𝑥, 𝑦, 𝑍, 𝑡). The solution of equation (3.139) should be converted back to (𝑥, 𝑦, 𝑧, 𝑡) in
order to be comparable with the solutions from standard gravity wave equation as well as the actual
observation and measurement data.

The next questions to ask are, naturally, how the extra source term 𝑅 (in contrast to the stan-
dard wave equation) will affect 𝜂 and how the effects look like after being translated back to physical
coordinates (𝑥, 𝑦, 𝑧, 𝑡). This will be discussed in the next chapter.

3.11.3. Conservation of Potential Vorticity
Define the vorticity of shallow fluid to be 𝜁 = Ꭷ፯

Ꭷ፱ −
Ꭷ፮
Ꭷ፲ and water depth to be 𝐷 = 𝐷(𝑥, 𝑦, 𝑡). In the

standard shallow water model with uniform gravity, the potential vorticity Π given by

Π = 𝜁
𝐷 , (3.140)

is a conserved quantity, namely, the material derivative of Π is zero:

𝐷Π
𝑑𝑡 = 0 (3.141)

It will be demonstrated that the same quantity is no longer conserved in the adapted shallow water
model.

Recall the depth-averaged momentum equation (3.128), which has the same form as the standard
depth-averaged momentum equation:

𝜕u፡
𝜕𝑡 + u፡ ⋅ ∇u፡ = −𝑔ኺ∇፡𝑆

The vorticity equation can be obtained by cross-differentiating the two components of the horizontal
velocity in the adapted momentum equation, which eventually gives

𝐷𝜁
𝑑𝑡 = −𝜁∇ ⋅ u፡ (3.142)

The detailed derivation can be found in any introductory Geophysical Fluid Dynamics textbook.
Recall that the depth-averaged continuity equation (3.124) is given by

𝐷
𝑑𝑡 (�̃�) + �̃�∇፡ ⋅ u፡ = �̃�u፡ ⋅ ∇፡( ln (

̃𝑔፳
𝑔ኺ
)), (3.143)

where �̃� = �̃�(𝑥, 𝑦, 𝑡) is the depth of the fluid layer in the transformed coordinates.
After some algebraic manipulations on (3.142) and (3.143), it can be shown that

�̃�𝐷𝜁𝑑𝑡 − 𝜁
𝐷
𝑑𝑡 (�̃�) = −�̃�𝜁u፡∇ ln(

̃𝑔፳
𝑔ኺ
)

⟺ 𝐷
𝑑𝑡(

𝜁
�̃�) = −

𝜁
�̃�u፡∇ ln(

̃𝑔፳
𝑔ኺ
)
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In other words, the standard potential vorticity Π= ᎓
ፃ̃ is no longer a conserved quantity in the adapted

shallow water model. Readers are reminded here that �̃� refers to the water depth in the transformed
coordinates.

However, by noting that the quantity ̃፠ᑫ
፠Ꮂ is time-independent, the above expression can be rewritten

as

𝜕
𝜕𝑡(

𝜁
�̃� ) + u፡ ⋅ ∇(

𝜁
�̃� ) = −

𝜁
�̃�u፡

𝑔ኺ
̃𝑔፳
∇( ̃𝑔፳
𝑔ኺ
)

⟺ 𝜕
𝜕𝑡(

̃𝑔፳
𝑔ኺ
𝜁
�̃� ) +

̃𝑔፳
𝑔ኺ
u፡ ⋅ ∇(

𝜁
𝐷) = −

𝜁
�̃�u፡∇(

̃𝑔፳
𝑔ኺ
)

⟺ 𝜕
𝜕𝑡(

̃𝑔፳
𝑔ኺ
𝜁
�̃� ) + u፡ ⋅ ∇(

̃𝑔፳
𝑔ኺ
𝜁
�̃� ) = 0

In other words, in the transformed coordinates an adapted potential velocity Πፚ can be defined as

Πፚ =
̃𝑔፳
𝑔ኺ
𝜁
�̃� (3.144)

such that the material derivative of Πፚ vanishes, that is

𝐷Πፚ
𝑑𝑡 = 0. (3.145)

In other words, a conserved quantity in the adapted shallow water model is found to be the adapted
potential vorticity.



4
One-Dimensional Adapted Wave

Equation

In this chapter, the one-dimensional adapted wave equation will be discussed. The exact solution will
be derived. Quantitative and qualitative behaviour of the solution will examined.

4.1. Diagnostic Formalism for the One-dimensional AdaptedWave
Equation

Consider the one dimensional case of the adapted wave equation. For simplicity, it is also defined that
𝐺(𝑥) = ln(፠ᑫ(፱)፠Ꮂ ) and wave speed 𝑐(𝑥) = √𝑔፳𝐷ኺ(𝑥). Equation (3.131) can thus be written as:

𝜕�̃�
𝜕𝑡 +

𝜕�̃�
𝜕𝑥 = �̃�

𝜕
𝜕𝑥 (𝐺) (4.1a)

𝜕�̃�
𝜕𝑡 + 𝑐

ኼ 𝜕�̃�
𝜕𝑥 = 0 (4.1b)

Note that variables marked with a tilde are defined in the transformed coordinates.
Consider an ansatz to the surface elevation �̃�

�̃�(𝑥, 𝑡) = �̃�ኺ(𝑥) exp(−𝑖𝜔𝑡), (4.2)

which is harmonic in time. Denote partial derivative by subscripts. Then (4.1) becomes:

−𝑖𝜔�̃�ኺ𝑒ዅ።Ꭶ፭ + �̃�፱ = �̃�𝐺፱
�̃�፭ + 𝑐ኼ(�̃�ኺ)፱𝑒ዅ።Ꭶ፭ = 0

Rearranging gives:

�̃�፱ − 𝐺፱�̃� = 𝑖𝜔�̃�ኺ𝑒ዅ።Ꭶ፭

�̃�፭ = −𝑐ኼ(�̃�ኺ)፱𝑒ዅ።Ꭶ፭

Multiplying the integrating factor 𝑒ዅፆ(፱) to both equations, the two equations can be written as

(�̃�𝑒ዅፆ)፱ = 𝑒ዅ።Ꭶ፭[𝑖𝜔�̃�ኺ𝑒ዅፆ]
(�̃�𝑒ዅፆ)፭ = 𝑒ዅ።Ꭶ፭[ − 𝑐ኼ(�̃�ኺ)፱𝑒ዅፆ]

Let �̃� = �̃�𝑒ዅፆ, consider the mixed second order derivative:

�̃�፱፭ = +𝑒ዅ።Ꭶ፭[𝜔ኼ�̃�ኺ]𝑒ዅፆ

�̃�፭፱ = −𝑒ዅ።Ꭶ፭[𝑐ኼ(�̃�ኺ)፱፱ − 𝑐ኼ𝐺፱(�̃�ኺ)፱ + 2𝑐𝑐፱(�̃�ኺ)፱]𝑒ዅፆ

37
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Consider the case where both �̃�(𝑥, 𝑡) and 𝐺(𝑥) are continuously differentiable, it follows that �̃�፱፭ = �̃�፭፱,
which leads to the equation:

−𝜔ኼ�̃�ኺ = 𝑐ኼ(�̃�ኺ)፱፱ − 𝑐ኼ𝐺፱(�̃�ኺ)፱ + 2𝑐𝑐፱(�̃�ኺ)፱
Rearranging gives:

(�̃�ኺ)፱፱ + (2
𝑐፱
𝑐 − 𝐺፱)(�̃�ኺ)፱ +

𝜔ኼ
𝑐ኼ (�̃�ኺ) = 0, (4.3)

which is a second order ordinary differential equation with variable coefficients. The equation can be
transformed by taking 𝑃(𝑥) = ኼᑩ

 −𝐺፱ and 𝑄(𝑥) = ᎦᎴ
Ꮄ , and defining a transform coordinate 𝑟 implicitly

by

ln 𝑟 = ln (�̃�ኺ) +
1
2 ∫𝑃(𝑥)𝑑𝑥 = ln (�̃�ኺ) + ln 𝑐 − 12𝐺. (4.4)

Then equation (4.3) can be transformed into 𝑟፱፱ + [𝑄(𝑥) − ኻ
ኼ𝑃፱ −

ኻ
ኾ𝑃ኼ]𝑟 = 0, or in our context:

𝑟፱፱ + [
𝜔ኼ
𝑐ኼ −

1
2(2

𝑐𝑐፱፱ − (𝑐፱)ኼ
𝑐ኼ − 𝐺፱፱) −

1
4(2

𝑐፱
𝑐 − 𝐺፱)

ኼ]𝑟 = 0 (4.5)

Now recall that 𝐺(𝑥) is given by ln(፠ᑫ፠Ꮂ ). Hence 𝐺፱ and 𝐺፱፱ are respectively given by

𝐺፱(𝑥) =
1
𝑔፳
𝑑𝑔፳
𝑑𝑥 (4.6)

𝐺፱፱(𝑥) =
1
𝑔፳
[𝑑

ኼ𝑔፳
𝑑𝑥ኼ −

1
𝑔፳
(𝑑𝑔፳𝑑𝑥 )

ኼ] (4.7)

Define two dimensionless quantities

𝐸 = 𝜔ኼ
𝑐ኼ𝑘ኺኼ

, (4.8a)

𝑉 = 1
2𝑘ኺኼ

[2𝑐፱፱𝑐 − 2(𝑐፱)
ኼ

𝑐ኼ − 1
𝑔፳
𝜕ኼ𝑔፳
𝜕𝑥ኼ +

1
𝑔ኼ፳
(𝜕𝑔፳𝜕𝑥 )

ኼ] + 1
4𝑘ኺኼ

(2𝑐፱𝑐 −
1
𝑔፳
𝜕𝑔፳
𝜕𝑥 )

ኼ
, (4.8b)

where 𝑘ኺ is an arbitrarily chosen constant, which will be called reference wavenumber. For instance,
𝑘ኺ can be chosen as the wavenumber of the incoming wave in a closed physical domain, or 𝑘ኺ can be
chosen as the characteristic wavenumber of waves in a physical domain.

The spatial derivatives of 𝑐(𝑥) using the definition of (3.137) are given by

𝜕𝑐
𝜕𝑥 =

1
2𝑐 [𝑔፳

𝜕𝐷ኺ
𝜕𝑥 + 𝜕𝑔፳𝜕𝑥 𝐷ኺ] (4.9)

𝜕ኼ𝑐
𝜕𝑥ኼ =

−1
4𝑐ኽ [𝑔፳

𝜕𝐷ኺ
𝜕𝑥 + 𝜕𝑔፳𝜕𝑥 𝐷ኺ]

ኼ
+ 1
2𝑐 [𝑔፳

𝜕ኼ𝐷ኺ
𝜕𝑥ኼ + 2𝜕𝑔፳𝜕𝑥

𝜕𝐷ኺ
𝜕𝑥 + 𝜕

ኼ𝑔፳
𝜕𝑥ኼ 𝐷ኺ] (4.10)

Plugging these derivatives of 𝑐(𝑥) into the expression of the dimensionless quantity 𝑉(𝑥) given by
equation (4.8), surprisingly, all terms involving 𝑔፳ cancel out. 𝑉(𝑥) is greatly simplified into

𝑉(𝑥) = 1
4𝑘ኺኼ𝐷ኺኼ

[2𝐷ኺ
𝜕ኼ𝐷ኺ
𝜕𝑥ኼ − (𝜕𝐷ኺ𝜕𝑥 )

ኼ], (4.11)

which suggests the quantity 𝑉(𝑥) is independent of effective gravity 𝑔፳ itself.
On the other hand, the expression of 𝐸 preserves the dependence on the effective gravity 𝑔፳, which

is given by

𝐸(𝑥) = 𝜔ኼ
𝑔፳𝐷ኺ𝑘ኺኼ

. (4.12)



4.1. Diagnostic Formalism for the One-dimensional Adapted Wave Equation 39

To sum up, in terms of the variables expressed in the physical coordinates, the dimensionless
quantities 𝐸 and 𝑉 can be expressed as

𝐸(𝑥) = 𝜔ኼ
𝑔፳𝐷ኺ𝑘ኺኼ

, (4.13a)

𝑉(𝑥) = 1
4𝑘ኺኼ𝐷ኺኼ

[2𝐷ኺ
𝜕ኼ𝐷ኺ
𝜕𝑥ኼ − (𝜕𝐷ኺ𝜕𝑥 )

ኼ], (4.13b)

which are very handy expressions to be used for further analysis.
Equation (4.5) can be expressed simply by a simple second-order differential equation

𝑟፱፱ + [(𝐸(𝑥) − 𝑉(𝑥))𝑘ኺኼ]𝑟 = 0, (4.14)

whose form resembles the one-dimensional, time-independent Schrodinger equation in Quantum Me-
chanics.

While 𝐸 is strictly positive, the dimensionless quantity 𝑉 can be positive or negative, depending on
the spatial configuration of wave speed 𝑐(𝑥) and the effective gravity 𝑔፳(𝑥). The types of solutions to
the equation (4.14) are determined by the sign of 𝐸−𝑉. This indicates that the dimensionless quantity
𝜅∗(𝑥)

𝜅∗(𝑥) = √𝐸(𝑥) − 𝑉(𝑥) (4.15)
can serve as a diagnostic tool to a priori determine the type of wave dynamics. The two types of
solutions will be discussed in the next section.

An ansatz to the ’Schrodinger equation’ (4.14) will be applied

𝑟(𝑥) = 𝐴(𝑥) exp (𝑖𝑆(𝑥)), (4.16)

where 𝐴(𝑥) is the wave amplitude and 𝑆(𝑥) is the generalised phase function.
Depending on the sign of the diagnostic variable 𝜅∗(𝑥) = √𝐸(𝑥) − 𝑉(𝑥), two types of wave dynamics

are possible.

4.1.1. Case 1: Oscillatory Mode 𝐸 > 𝑉
The first type of wave dynamics corresponds to the case when 𝜅∗ is real, or equivalently 𝐸 > 𝑉. In
addition, if the wave amplitude 𝐴(𝑥) varies slowly relative to phase function 𝑆(𝑥), based on the JWKB-
approximation (Jeffreys, 1924; Brillouin, 1926; Kramers, 1926; Wentzel, 1926), it can be shown that
the solution to the Schrodinger equation (4.14), when 𝐸 ≫ 𝑉, is given by

𝐴(𝑥) = 1
(√(𝐸 − 𝑉)𝑘ኺ)

Ꮃ
Ꮄ

(4.17)

𝑆(𝑥) = ±∫√(𝐸 − 𝑉)𝑘ኺ𝑑𝑥 (4.18)

so that 𝑟 is
𝑟 ∼ exp(±𝑖 ∫√(𝐸 − 𝑉)𝑘ኺ𝑑𝑥)

(√(𝐸 − 𝑉)𝑘ኺ)
Ꮃ
Ꮄ

The symbol ᖣ ∼ᖣ here refers to that 𝑟 is a linear combination of the two possible fundamental solutions.
Transformation of 𝑟 to �̃�ኺ via equation (4.4) gives

�̃�ኺ ∼ √𝑔፳
√𝑔ኺ𝑐(√(𝐸 − 𝑉)𝑘ኺ)

Ꮃ
Ꮄ
exp(±𝑖 ∫√(𝐸 − 𝑉)𝑘ኺ𝑑𝑥), (4.19)

which is oscillatory in 𝑥 with amplitudes scaled by a spatially-dependent function √፠ᑫ

√፠Ꮂ(√(ፄዅፕ)፤Ꮂ)
Ꮃ
Ꮄ
.

Waves which satisfy the condition 𝐸 > 𝑉 will be called as waves in the oscillatory mode.
Note that the solution in (4.19) can be expressed equivalently by the diagnostic quantity 𝜅∗(𝑥) =

√𝐸(𝑥) − 𝑉(𝑥)
�̃�ኺ ∼ √𝑔፳

√𝑔ኺ𝑐(𝜅∗(𝑥)𝑘ኺ)
Ꮃ
Ꮄ
exp(±𝑖 ∫𝜅∗(𝑥)𝑘ኺ𝑑𝑥). (4.20)

The significance of this alternative expression will be presented in the following sections.
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4.1.2. Case 2: Growth/Decay mode 𝐸 < 𝑉
On the other hand, when 𝜅∗ is imaginary, or equivalently 𝐸 < 𝑉 in some region, and additionally
the phase function 𝑆(𝑥) varies slowly relative to the amplitude 𝐴(𝑥), it can then be shown that the
Schrodinger equation (4.14) has exponential solutions

𝐴(𝑥) = 1
(√(𝑉 − 𝐸)𝑘ኺ)

Ꮃ
Ꮄ

(4.21)

𝑆(𝑥) = ±𝑖 ∫√(𝑉 − 𝐸)𝑘ኺ𝑑𝑥 (4.22)

so that 𝑟 is

𝑟 ∼ exp(±∫√(𝑉 − 𝐸)𝑘ኺ𝑑𝑥)
(√(𝑉 − 𝐸)𝑘ኺ)

Ꮃ
Ꮄ

Transformation of 𝑟 to �̃�ኺ via equation (4.4) gives

�̃�ኺ ∼ √𝑔፳
√𝑔ኺ𝑐(√(𝑉 − 𝐸)𝑘ኺ)

Ꮃ
Ꮄ
exp(±∫√(𝑉 − 𝐸)𝑘ኺ𝑑𝑥), (4.23)

which is no longer oscillatory in nature. In Quantum Mechanics, this correspond to the ’tunneling’
effect. ’Waves’ with this properties will be called as waves in the growth/decay mode.

The physical meaning and the significance of the two dimensionless quantities 𝐸 and 𝑉, as well as
the diagonstic quantity 𝜅∗ will be discussed in the next section.

4.1.3. The Physical Meanings of 𝐸 and 𝑉
When the oscillatory mode is considered, firstly recall that a plane wave with wavenumber 𝑘 and
amplitude 𝐴 is given by

�̃�ኺ = 𝐴 exp (±𝑖𝑘𝑥). (4.24)

Comparing it with the oscillatory mode solution, assuming 𝜅∗ = √𝐸 − 𝑉 is independent of 𝑥, given
in equation (4.19) suggests that

𝑘 = 𝜅∗𝑘ኺ, (4.25a)

𝐴 ∼ √𝑔፳
√𝑔ኺ𝑐(𝜅∗𝑘ኺ)

Ꮃ
Ꮄ

(4.25b)

These indicate that the dimensionless quantity 𝜅∗ = √(𝐸 − 𝑉) is a scaling factor for the reference
wavenumber 𝑘ኺ to become the actual wavenumber 𝑘. If 𝜅∗ > 1, then the observed wavenumber
will be greater than the reference wave, or equivalently the observed wavelength is shorter than the
reference wavelength. The other way round applies for 𝜅∗ < 1.

Since 𝜅∗ = √𝐸 − 𝑉 is now a constant, it no longer controls the spatial variation of wave amplitude
𝐴(𝑥). Neglecting all the spatially constant terms in the wave amplitude 𝐴(𝑥), 𝐴(𝑥) is proportional to
ኻ
√ፃᎲ

only:

𝐴 ∼ √𝑔፳𝑐 = 1
√𝐷ኺ

. (4.26)

The growth/decay mode is considerably more complicated. Recall that for exponential function,
exp (𝜆𝑥), 𝜆 is the growth factor (𝜆 > 0) or the decay constant (𝜆 < 0) which controls the rate of
change of the exponential function. Comparing the growth/decay mode (4.23) with an exponential
function

�̃�ኺ ∼ 𝐴 exp (±𝜆𝑥). (4.27)
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gives

𝜆 = √(𝑉 − 𝐸)𝑘ኺ,

𝐴 ∼ √𝑔፳
√𝑔ኺ𝑐(√(𝑉 − 𝐸)𝑘ኺ)

Ꮃ
Ꮄ
∼ √𝑔፳𝑐 = 1

√𝐷ኺ

This indicates that the quantity √(𝑉 − 𝐸)𝑘ኺ, controls the attenuation of waves.
Together with a scaling factor 𝐴, which effectively scales with ኻ

√ፃᎲ
only, the actual variation of �̃�ኺ

may be faster or slower than exp (±𝜆𝑥). Test cases will be studied in later sections.

4.1.4. Final Remarks on the Definitions of Diagnostic Variables 𝐸 and 𝑉
It is noted that (4.14) differs from the one-dimensional Schrodinger equation by that the ’energy’ 𝐸 is
no longer a constant but a function of spatial coordinates (𝑥, 𝑦).

It is possible to get rid of the dependence of 𝐸(𝑥) on 𝑥 by an additional step of horizontal coordinate
transformation. The advantage of doing so is that only one diagnostic variable 𝑉(𝑥), derived from the
topographic profile, is needed. The 𝑉(𝑥) can be interpreted as the ’potential’ function for the wave
energy 𝐸 to ride on. This favours a direct analogy between the quantum mechanical system and surface
gravity waves in terms of the analysis on scattering and transmission mechanisms. The details can be
found in Maas(1996).

With the present definition of 𝐸(𝑥) and 𝑉(𝑥) in (4.14), the main advantage is that the information
derived from the diagnostic variables directly tells the field of wavenumber 𝑘(𝑥) and surface elevation
𝜂(𝑥) in the physical coordinates without an inverse coordinate transformation. Mathematically the two
approaches are identical despite the difference in the physical interpretation. For simplicity, the present
definitions will be applied in the remaining text.

4.2. Methodology of Constructing Test Cases
In this section, the methodology to create test cases in order to study the one-dimensional adapted
wave equation (4.1) will be presented.

There will be two types of test cases. The first type is purely hypothetical, with unrealistic values
of the gravity 𝑔፳ and water depth 𝐷ኺ. This type of test case is set up to verify the analytic results
discussed in the previous sections. The values of parameters for the hypothetical configuration are
given in Table 4.1.

The quantity Maximum Perturbing Gravity Δ𝑔፳ and the Maximum Perturbing Mean-Sea Level Δ𝐷ኺ
estimate the local maximum of the perturbing gravity field 𝑔፳(𝑥, 𝑦) and the local maximum of the
mean-sea level 𝑧ኺ(𝑥, 𝑦). The quantity ’half-life’ distance 𝑟ᎳᎴ is a parameter that estimates the distance
needed for both the perturbing gravity 𝑔ᖣ፳(𝑥, 𝑦) and the mean-sea level 𝑧ኺ(𝑥, 𝑦) to decrease to half of
its local maximum. This parameter restricts the gradients of the perturbing gravity field 𝑔ᖣ፳(𝑥, 𝑦) and
the mean-sea level 𝑧ኺ(𝑥, 𝑦).

Another type of test cases are created to mimic the actual physical setting in the ocean. In particular,
two types of shallow water waves in the ocean - Tsunami waves and Tidal waves - will be considered
as test case to study the adapted wave equation (4.1). The set of parameters which approximates the
actual ocean is proposed in Table 4.2. The parameters in Table 4.2 represent the gravity perturbations
𝑔ᖣ፳ that are solely due to local topographical features and exclude the effect of the Earth’s rotation.
There will be a separate test case which handles the gravity variation due to the Earth’s rotation.

Global Maps of the perturbing gravity and relative mean-sea level are attached in Figure 4.1 and
4.2, from which the Maximum Perturbing Gravity Δ𝑔፳ and Maximum Perturbing Mean-Sea Level Δ𝐷ኺ
are estimated.

The value of ’half-life’ distance 𝑟Ꮃ
Ꮄ
is roughly estimated based on actual observation data, which

suggests an order of magnitude with 𝒪(100 km). It should be highlighted that the parameters in Table
4.2 are very rough estimates and are expected to be accurate to the order of magnitude only.

As a final remark, a brief introduction to the figures in the same format as Figure 4.3 is given:

• All subplots share the same 𝑥-axis representing the relative spatial position, which is normalised
to the reference wavelength.
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Physical Parameters Values
Reference Gravity, 𝑔ኺ 10 msዅኼ
Mean Depth of Fluid, �̄�ኺ 10 m

Amplitude of incoming wave, 𝜂ኺ 1 m
Period of incoming wave, 𝑇 12 seconds

Angular speed of incoming wave, 𝜔 ኼ
ፓ = 0.5236 sዅኻ

Reference wavelength, 𝜆ኺ 𝑇√𝑔ኺ𝐷ኺ = 120 m
Reference wavenumber, 𝑘ኺ ኼ

᎘Ꮂ = 0.05236 m
Maximum Perturbing Gravity, Δ𝑔፳ ±2 msዅኼ

Maximum Perturbing Mean-Sea Level, Δ𝐷ኺ ±1 m
’Half-life’ Distance, 𝑟Ꮃ

Ꮄ
𝜆ኺ = 120 m

Numerical Parameters Values
Spatial domain of computation 𝑥 ∈ [0, 5𝜆ኺ] or [−5𝜆ኺ, 5𝜆ኺ]
Temporal domain of computation 𝑡 ∈ [0, 12𝑇]

Number of grid cells 1200
Left Boundary condition Incoming sinusoidal wave
Right Boundary condition Outflow boundary

Table 4.1: Configuration for the hypothetical numerical simulations

• The first subplot in the figures show the surface elevation both when the gravity perturbation
is present (purple line) and absent (green line). It is reminded that when the two lines almost
overlap, only the green line is observable.

• The second subplot outline the difference in surface elevation between the test case and the
reference case.

• The third subplot gives the spatial variation of the perturbation of gravity (blue line) and the
perturbation of water depth (red line).

• The final subplot plots the spatial dependence of the two diagnostic variables 𝐸(𝑥) and 𝑉(𝑥)
discussed in the previous sections.

4.3. Test Case 1: Uniform Water Depth
In this section, artificial scenarios where the water depth of the ocean is uniform is considered as a
test case for the one-dimensional adapted wave equation (4.1).

4.3.1. Rationale and Configuration of Test Case 1
In this first test case, an artificial scenario where the ocean floor 𝑧 = 𝑆ፁ(𝑥) is adjusted according to the
mean-sea level 𝑧 = 𝑧ኺ(𝑥), such that the time-averaged depth of the ocean 𝐷ኺ(𝑥) = 𝑧ኺ(𝑥) − 𝑆ፁ(𝑥) = �̄�
is constant at all 𝑥.

Since the water depth 𝐷ኺ(𝑥) is no longer spatially dependent, its derivatives vanish. The expression
𝑉(𝑥) in (4.13) are thus zero everywhere. Define the reference wavelength 𝑘ኺ by

𝑘ኺ =
𝜔

√𝑔ኺ�̄�
, (4.28)

which represents the expected wavelength of the wave when the water depth is constant and the
gravity is uniform. The expression for the dimensionless variable 𝐸 and 𝑉 are thus given by

𝐸(𝑥) = 𝜔ኼ
𝑔፳�̄�𝑘ኺኼ

= 1
1+ ፠ᖤᑫ

፠Ꮂ

= 𝑔ኺ
𝑔፳
, (4.29a)

𝑉(𝑥) = 0. (4.29b)
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Physical Parameters Values
Reference Gravity, 𝑔ኺ 9.806228 msዅኼ

Mean Depth of Ocean, �̄� 4000 m
Maximum Perturbing Gravity, Δ𝑔፳ 50 mGal = 0.0005 msዅኼ

Maximum Perturbing Mean-Sea Level, Δ𝐷ኺ 50 m
’Half-life’ Distance, 𝑟Ꮃ

Ꮄ
500 km

Period of Tsunami wave, 𝑇፭፬፮ 45 minutes
Period of Tidal wave, 𝑇፭።፝ፚ፥ 12 hours

Amplitude of incoming wave, 𝜂ኺ 5 m

Numerical Parameters Values
Spatial domain of computation 𝑥 ∈ [0, 𝜆ኺ] or [−𝜆, 𝜆ኺ]
Temporal domain of computation 𝑡 ∈ [0, 4𝑇]

Number of grid cells 1200
Left Boundary condition Incoming sinusoidal wave
Right Boundary condition Outflow boundary

Table 4.2: Parameters used to mimic the actual physical setting in the Ocean and its waves

Readers are reminded that the effective gravity 𝑔፳ is given by 𝑔፳ = 𝑔ኺ + 𝑔ᖣ፳.
Since 𝑉(𝑥) is zero everywhere, the diagnostic variable 𝜅∗ = √𝐸 − 𝑉 is always real and waves in

oscillatory mode solution proposed in (4.19) are always expected. Using the definition of wave speed
𝑐(𝑥) in (3.137), equation (4.19) indicates that the plane wave solution to the adapted wave equation
is

�̃�ኺ ∼
𝑔
Ꮃ
Ꮆ፳

√𝑔
Ꮅ
Ꮄ
ኺ �̄�𝑘ኺ

exp(±𝑖 ∫√
𝑔ኺ
𝑔፳
𝑘ኺ𝑑𝑥). (4.30)

Since the effective gravity 𝑔፳(𝑥) is decomposed into an uniform component 𝑔ኺ and small perturbing
component 𝑔ᖣ፳ by 𝑔፳(𝑥) = 𝑔ኺ + 𝑔ᖣ፳ and 𝑔ᖣ፳ ≪ 𝑔ኺ, it justifies a first-order approximation of √፠Ꮂ

፠ᑫ by

√
𝑔ኺ
𝑔፳
= (1 + 𝑔

ᖣ
፳
𝑔ኺ
)
ዅ ᎳᎴ
≈ 1 − 𝑔ᖣ፳

2𝑔ኺ
(4.31)

Hence

exp(±𝑖 ∫√
𝑔ኺ
𝑔፳
𝑘ኺ𝑑𝑥) ≈ exp ( ± 𝑖(𝑘ኺ𝑥 −

𝑘ኺ
2𝑔ኺ

∫𝑔ᖣ፳𝑑𝑥)), (4.32)

If, furthermore, over a small region in which the perturbing gravity 𝑔ᖣ፳ does not vary greatly in space
such that the integral ∫𝑔ᖣ፳(𝑥)𝑑𝑥 can be approximated by 𝑔ᖣ፳(𝑥)𝑥, solution (4.30) becomes

�̃�ኺ ∼ 𝑔
Ꮃ
Ꮆ፳ exp ( ± 𝑖𝑘ኺ(1 −

𝑔ᖣ፳
2𝑔ኺ

)𝑥). (4.33)

Note that the terms 𝑔ኺ and 𝑘ኺ in the amplitude component of (4.30) are constants and thus do not
contribute to the actual changes. Comparing the approximate solution (4.33) with the standard plane
wave exp(±𝑖𝑘𝑥) indicates that the perturbing gravity 𝑔ᖣ፳ locally rescales the reference wavenumber 𝑘ኺ
into the actual wavenumber 𝑘 over which the gravity perturbation 𝑔ᖣ፳ is approximately constant by

𝑘(𝑥) = 𝑘ኺ(1 −
𝑔ᖣ፳
2𝑔ኺ

). (4.34)
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Figure 4.1: Global gravity anomaly (Courtesy NASA)

Hence it is expected that when waves propagates into a region with positive gravity variation 𝑔፳, the
waves will appear to be elongated and vice versa.

Transforming �̃�ኺ back into the physical coordinates gives

𝜂ኺ = �̃�ኺ
Ꭷፙ
Ꭷ፳
∼ 𝑔ዅ

Ꮅ
Ꮆ፳ exp(±𝑖 ∫√

𝑔ኺ
𝑔፳
𝑘ኺ𝑑𝑥). (4.35)

This suggests that, if the water depth 𝐷ኺ(𝑥) = �̄� is constant over space 𝑥 in the physical space, the
surface wave amplitude scales spatially with [𝑔፳(𝑥)]

ዅ ᎵᎶ .
The solution provided in (4.35) can be equivalently expressed in terms of 𝜅∗(𝑥) by noting that

𝜅∗(𝑥) = √
𝑔ኺ
𝑔፳(𝑥)

, (4.36)

which, by (4.35), leads to

𝜂ኺ ∼ (𝜅∗)
Ꮅ
Ꮄ exp (±𝑖 ∫𝜅∗𝑘ኺ𝑑𝑥). (4.37)

This can also be derived directly from the general equation (4.20). It can be seen that the diagnostic
variable 𝜅∗ controls entirely the qualitative behaviour of the solution.
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Figure 4.2: Relative elevation of global mean-sea level (Courtesy European Space Agency)

4.3.2. Test Case 1a: Uniform Water Depth + Exponential Gravity Perturba-
tion

Consider an artificial scenario where the magnitude of perturbing gravity 𝑔ᖣ፳(𝑥) decreases exponentially
from 𝑥 = 0 in the positive 𝑥-direction, and 𝜆 is the positive decay constant. That is,

𝐷ኺ(𝑥) = �̄� (4.38)
𝑔ᖣ፳(𝑥) = Δ𝑔፳ exp(−𝜆𝑥) (4.39)

such that the effective gravity 𝑔፳ is given by

𝑔፳(𝑥) = 𝑔ኺ + 𝑔ᖣ፳(𝑥) = 𝑔ኺ + Δ𝑔፳ exp(−𝜆𝑥) (4.40)

Note that only the domain 𝑥 ≥ 0 is considered and Δ𝑔፳ can be positive or negative. Thus Δ𝑔፳ represents
the gravity perturbation at point 𝑥 = 0, which is also the maximum magnitude of gravity perturbation
in the interested domain.

It follows from the definition of the reference wavelength 𝑘ኺ in (4.28) and the simplified definition
of 𝐸 and 𝑉 in (4.29) that

𝐸 = 𝑔ኺ
𝑔ኺ + Δ𝑔፳ exp(−𝜆𝑥)

,

𝑉 = 0.

Equation (4.35) indicates that the solution to the adapted wave equation in the physical space, is

𝜂ኺ ∼ [𝑔ኺ + Δ𝑔፳𝑒ዅ᎘፱]
ዅ ᎵᎶ exp( ± 𝑖2𝜆 arctan (

√𝑔ኺ + Δ𝑔፳𝑒
ዅ᎘፱

𝑔ኺ
)). (4.41)
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If Δ𝑔፳ is positive such that the effective gravity 𝑔፳(𝑥) decreases over positive 𝑥-direction, the
amplitude of the surface wave will grow over space 𝑥 while the observed wavelength of the surface
waves will contract at decreasing rates.

1a.i: Hypothetical Scenario Numerical simulations have been conducted to verify the claims based
on the hypothetical scenarios with parameters given in Table 4.1. Figure 4.3 and 4.4 give two exam-
ples of the instantaneous solution of the adapted wave equation with positive and negative gravity
perturbation respectively. The actual parameters are given in the titles of the figures.

Readers are reminded that the blue dotted lines in the first plot of the figures are the reference
solution which corresponds to the scenario with no gravity nor water depth variation. The wavenumber
of the reference solution is the reference wavenumber 𝑘ኺ used to define the dimensionless quantities
𝐸 and 𝑉.

It can be noted that the theoretical bounds (black dots) plotted using the theoretical wave amplitude,

which scales with 𝑔ዅ
Ꮅ
Ꮆ፳ is derived in equation (4.35), fits very well with the amplitudes of numerical

solution (red lines). The observed wavelength of the numerical solution is also consistent with the
theoretical prediction in (4.35), which scales reciprocally with 𝜅∗ relative to the reference wavelength
in the reference solution (blue dotted lines). In particular, when 𝜅∗ > 1, the observed wavelength to
contracted with a factor ኻ

᎗∗ relative to the reference wavelength 𝜆ኺ and vice verse.

1a.ii: Physical Scenario To mimic the actual gravity field on the Earth, the decay constant 𝜆 needs
to be determined. However, in reality the gravity perturbation 𝑔ᖣ፳ never decays exponentially. To give a
realistic estimation of the decay constant, recall that the ’half-life’ distance 𝑟Ꮃ

Ꮄ
for exponential functions

is given by

𝑟Ꮃ
Ꮄ
= ln (2)

𝜆 , (4.42)

over which the gravity perturbation 𝑔ᖣ፳ decreases by a half. Hence 𝜆 is approximated using the value
of ’half-life’ distance 𝑟Ꮃ

Ꮄ
listed in Table 4.3

Parameters Values

Decay constant, 𝜆 ln (ኼ)
ኺኺ km = 1.3862 × 10

ዅዀ mዅኻ

Table 4.3: Parameters used to mimic the actual gravity perturbation by exponential function

Based on the parameters in Table 4.2 and 4.3, numerical solutions have been found for the adapted
wave equations (4.1). Figure 4.5 and 4.6 show the simulation results for positive and negative gravity
perturbations. It can be noted from both Figure 4.5 and 4.6 that the solutions of test cases nearly
coincide with the reference case solution.

The difference between the surface elevation of the test case and the reference case are given in
the second subplot of the figures. It can be noted that the difference is maximally of order 𝒪(10ዅኾ m).
Given that the actual amplitude of ocean surface wave is of order 𝒪(1 m), the relative difference of
surface elevation induced by the gravity is of order 𝒪(ኻኺᎽᎶ mኻ m ) = 𝒪(10ዅኾ), which indicates that the
variation of surface elevation due to the gravity perturbation can be neglected in practice.

Nonetheless, comparing the solutions in Figure 4.5 and 4.6 also reveals another interesting feature.
In Figure 4.5 where the gravity perturbation is positive, there are periodically small wiggles in the
solution. The small wiggles cannot be observed in Figure 4.6 with negative gravity perturbation. The
reasons of the presence of these wiggles are unclear. A possible reason could be numerical errors
involved in defining flux at some particular grid cells. Another reason could be there exists some
natural ’resonant’ frequencies of oscillation associated to the positive gravity perturbation. This may
be rationalised by the wave trapping mechanism seen in both surface waves and quantum mechanics,
in which the wave amplitude field is exponential when energy 𝐸 is smaller than 𝑉 locally. Further
investigation is needed to confirm the claim. In any case, since the magnitude of the wiggles are
minimal, they are neglected for the purpose of this project.
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4.3.3. Test Case 1b: Uniform Water Depth + Gaussian Gravity Perturbation
Consider the case again that the Bathymetry is uniform so that 𝐷ኺ(𝑥) = �̄�ኺ. The gravity perturbation
𝑔ᖣ፳ is, however, taken by the Gaussian function

𝑔ᖣ፳(𝑥) = Δ𝑔፳ exp (
−𝑥ኼ
2𝜎ኼ ), (4.43)

where Δ𝑔፳ is a real constant and 𝜎 > 0 is the dispersion parameter, a parameter that controls the
spread of the perturbation. The domain of interest is the entire 𝑥-axis.

It follows from the definition of the reference wavelength 𝑘ኺ in (4.28) and the simplified definition
of 𝐸 and 𝑉 in (4.29) that

𝐸 = 𝑔ኺ
𝑔ኺ + Δ𝑔፳ exp (ዅ፱

Ꮄ
ኼᎴ )

,

𝑉 = 0.

A gravity perturbation 𝑔ᖣ፳ modelled by the Gaussian function mimics an excess or deficit of mass
in the ocean floor near 𝑥 = 0. The case Δ𝑔፳ > 0 represents there is excess mass beneath the ocean
floor and thus induces extra gravity. An important parameter that measures the spread of the Gaussian
function is the Full width at half maximum (FWHM), which is given by

𝐹𝑊𝐻𝑀 = √2 ln(2)𝜎. (4.44)

From the expression (4.43), when 𝑥 = √2 ln(2)𝜎, the value of the gravity perturbation is half of its
peak located at 𝑥 = 0.

1b.i: Hypothetical Scenario Numerical simulations have been conducted based on the hypothetical
scenarios with parameters given in Table 4.1. Figure 4.7 and 4.8 give two examples of the instantaneous
solution of the adapted wave equation with positive and negative gravity perturbation respectively. The
actual parameters are given in the titles of the figures.

It can be noted again that the theoretical bounds fit well with the amplitudes of waves in the
numerical solution. Also, while the waves propagate through the region with gravity perturbation, they
experience a phase change, as predicted from solution (4.35).

If the dispersion parameter 𝜎 is lowered by one order of magnitude to ’localise’ the gravity perturba-
tion, it can be noted from Figure (4.9) and (4.10) that the difference between the test case waves and
reference waves (second subplot) are qualitatively different from that of the non-localised versions in
Figure 4.7 and 4.8, namely, there are periodic differences between the test case waves and reference
waves in the ’incoming’ section of the wave (domain of 𝑥 < 0) where the ’waves’ should have not
experienced any variation in gravity.

To investigate the reason behind the periodic difference, the test case waves are examined at an
earlier instant when the wave signals have not arrived the region with gravity perturbation. Figure 4.11
and 4.12 give two examples.

It can be observed that the difference between the test case waves and reference waves before the
test case waves hit the region with gravity variation is minimal. These imply that the period difference
seen in Figure 4.7 and 4.8 are very likely to be caused by reflection of waves at the region with localised
gravity variation. This motivates the studies of the reflection-transmission mechanisms due to gravity
perturbation, will be discussed in the next test case.

1b.ii: Physical Scenario To mimic the actual gravity variation, the parameter 𝜎 is chosen such that
the FWHM= 500 km as in Table 4.4 .

Parameters Values

Dispersion parameter, 𝜎 ኺኺ km
√ኼ ln(ኼ)

= 4.2466 × 10 m

Table 4.4: Parameters used to mimic the actual gravity perturbation by gaussian function
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Numerical simulations have also been conducted to study the effect of the Gaussian gravity pertur-
bation in a more realistic setting, based on the hypothetical scenarios with parameters given in Table
4.2 and 4.4.

The first group of studies are based on Tsunami waves with wave period 𝑇 taken as 𝑇 = 45minutes.
Figure 4.13 and 4.14 show two examples of the solutions at some time.

The second group of studies are based on the tidal waves which has period 𝑇 = 12 hours. Figure
4.15 and 4.16 give a numerical solution at certain time to the adapted wave equation with incoming
tidal waves, based on parameters given in Table 4.2 and 4.4.

It can be seen in both the cases of tidal and tsunami waves that the instantaneous difference
between the test case waves and reference waves are maximally of order 𝒪(10ዅኽ m), which indicates
that in practice the effects of gravity on the amplitude of ocean surface wave can hardly be measured.

Comparing the difference between test case and reference waves (second subplots) in the tsunami
waves from Figure 4.13 or 4.14 with that in the tidal waves in Figure 4.15 or 4.16, it can be noted
that similar patterns respectively with the hypothetical cases in Figure 4.7 or 4.8 with Figure 4.9 or
4.10 have occured. These highlight the importance of the ’locality’ of the gravity perturbation, which
is measured relative to the wavelength of the waves. This provides another direction to study the
reflection-transmission mechanisms of waves in the next test case.

Short Conclusions from Test Case 1
• When the depth is uniform, the amplitude 𝐴 of surface waves scales with the magnitude of gravity
by 𝐴 ∼ 𝑔ዅ

Ꮅ
Ꮆ፳ .

• It appears to be possible to reflect ocean surface wave by gravity variation. The ’locality’ of the
gravity perturbation, measured relative to the wavelength of surface waves, seems to be a factor
also in controlling the amplitude of reflected waves.

• The gravity perturbation in the ocean is relatively more ’localised’ to tidal waves than tsunami
waves. Reflection of tidal waves due to gravity perturbation is more likely than tsunami waves.

• Depsite the theoretical implications, the gravity variation in the actual ocean is too small to affect
any tsunami waves or tidal wave practically.

4.4. Test case 2: Reflection and Scattering of Surface Waves by
Varying Gravity

4.4.1. Rationale and Configuration of Test Case 2
In test case 1, it has been noted that the gravity variation seems to play a role in reflecting ocean
surface waves. In this section, the surface waves under several artificial configurations of gravity fields
will be studied analytically. The goal of this chapter is to understand the reflection of surface waves by
gravity.

4.4.2. Test case 2a: Gravity Step
The first case to study is the simple configuration with piecewise constant gravity field 𝑔፳:

𝑔፳(𝑥) = {
𝑔፥ , 𝑥 ≤ 0
𝑔፫ , 𝑥 > 0 (4.45)

where 𝑔ኻ and 𝑔ኼ are constants. The water depth 𝐷ኺ(𝑥) is constant everywhere.
Based on the general solution (4.37), the spatial structure of the surface surface wave 𝜂(𝑥) should

be

𝜂(𝑥) ∼ {exp (±𝑖𝜅
∗
፥ 𝑘ኺ𝑥), 𝑥 ≤ 0

exp (±𝑖𝜅∗፫𝑘ኺ𝑥), 𝑥 > 0 (4.46)

where 𝑘ኺ = Ꭶ
√፠Ꮂፃ̄

, 𝜅∗፥ =√፠Ꮂ
፠ᑝ and 𝜅

∗
፫ =√፠Ꮂ

፠ᑣ are constants.



4.4. Test case 2: Reflection and Scattering of Surface Waves by Varying Gravity 49

Consider a sinusoidal incoming surface wave from the 𝑥 = −∞, with incoming amplitude 𝐴 and
wavenumber 𝜅∗ኻ𝑘ኺ. Suppose the incoming wave partially reflects at 𝑥 = 0, thus it is expected that the
spatial solution of the wave is

𝜂(𝑥) = {𝐴 exp (𝑖𝜅
∗
፥ 𝑘ኺ𝑥) + 𝐵 exp (−𝑖𝜅∗፥ 𝑘ኺ𝑥), 𝑥 ≤ 0

𝐹 exp (𝑖𝜅∗፫𝑘ኺ𝑥), 𝑥 > 0 (4.47)

In addition, it is assumed that

1. The surface elevation 𝜂(𝑥) is continuous everywhere. (4.48a)

2. Its first derivative
𝑑𝜂
𝑑𝑥 is also continuous everywhere. (4.48b)

It can then be shown that after algebraic manipulation

𝐵
𝐴 =

𝜅∗፥ − 𝜅∗፫
𝜅∗፥ + 𝜅∗፫

(4.49)

𝐹
𝐴 =

2𝜅∗፥
𝜅∗፥ + 𝜅∗፫

(4.50)

Expressing ፁ
ፀ and

ፅ
ፀ in terms of the gravity gives the reflection and transmission coefficients in uniform

water depth:

𝐵
𝐴 =

√𝑔፫ − √𝑔፥
√𝑔፥ + √𝑔፫

(4.51)

𝐹
𝐴 =

2√𝑔፫
√𝑔፥ + √𝑔፫

(4.52)

These indicate the greater the ratio ፠ᑝ
፠ᑣ is, the greater reflection of surface waves is. Also, if the

gravity 𝑔፫ in the region of 𝑥 > 0 is smaller than that of 𝑔፥ in 𝑥 < 0, a 𝜋-phase shift is expected in the
reflected wave.

The reflection coefficient 𝑅 = |ፁ|Ꮄ
|ፀ|Ꮄ and transmission coefficient 𝑇 =

|ፅ|Ꮄ
|ፀ|Ꮄ are thus given by

𝑅 = (𝜅∗፥ − 𝜅∗፫)ኼ
(𝜅∗፥ + 𝜅∗፫)ኼ

= (√𝑔፫ − √𝑔፥)ኼ
(√𝑔፥ + √𝑔፫)ኼ

(4.53)

𝑇 = 4𝜅∗፥ ኼ
(𝜅∗፥ + 𝜅∗፫)ኼ

= 4𝑔፫
(√𝑔፥ + √𝑔፫)ኼ

. (4.54)

Note that 𝑅 + 𝑇 = 1.

4.4.3. Test case 2b: Gravity Well
The next configuration is a three-section piecewise constant gravity field 𝑔፳:

𝑔፳(𝑥) = {
𝑔ፚ , Region aዅ: 𝑥 ≤ −𝐿
𝑔 , Region b: −𝐿 < 𝑥 ≤ 𝐿
𝑔ፚ , Region aዄ: 𝑥 > 𝐿

(4.55)

with an expected solution

𝜂(𝑥) = {
𝐴 exp (𝑖𝜅∗ፚ𝑘ኺ𝑥) + 𝐵 exp (−𝑖𝜅∗ፚ𝑘ኺ𝑥), Region aዅ: 𝑥 ≤ −𝐿
𝐶 exp (𝑖𝜅∗𝑘ኺ𝑥) + 𝐷 exp (−𝑖𝜅∗𝑘ኺ𝑥), Region b: −𝐿 < 𝑥 ≤ 𝐿
𝐹 exp (𝑖𝜅∗ፚ𝑘ኺ𝑥), Region aዄ: 𝑥 > 𝐿

(4.56)

where 𝑘ኺ = Ꭶ
√፠Ꮂፃ̄

, 𝜅∗ፚ =√ ፠Ꮂ
፠ᑒ and 𝜅

∗
 =√፠Ꮂ

፠ᑓ are real constants.
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This configuration can be interpreted as an infinite domain with gravity 𝑔ፚ, together with a gravity
perturbation of magnitude 𝑔 −𝑔ፚ in region b: (−𝐿, 𝐿). The water depth 𝐷ኺ(𝑥) = �̄� is constant for all
𝑥. Imposing the same conditions (4.48), it can be shown that

𝑅ፚ ≡
|𝐵|ኼ
|𝐴|ኼ =

4(𝜅∗ፚኼ − 𝜅∗ኼ)ኼ sinኼ(2𝜅∗𝑘ኺ𝐿)
16𝜅∗ፚኼ𝜅∗ኼ + 4(𝜅∗ፚኼ − 𝜅∗ኼ)ኼ sinኼ(2𝜅∗𝑘ኺ𝐿)

(4.57)

𝑇ፚ ≡
|𝐶|ኼ
|𝐴|ኼ =

4𝜅∗ፚኼ(𝜅∗ፚ + 𝜅∗)ኼ

16𝜅∗ፚኼ𝜅∗ኼ + 4(𝜅∗ፚኼ − 𝜅∗ኼ)ኼ sinኼ(2𝜅∗𝑘ኺ𝐿)
(4.58)

𝑅 ≡
|𝐷|ኼ
|𝐴|ኼ =

4𝜅∗ፚኼ(𝜅∗ፚ − 𝜅∗)ኼ

16𝜅∗ፚኼ𝜅∗ኼ + 4(𝜅∗ፚኼ − 𝜅∗ኼ)ኼ sinኼ(2𝜅∗𝑘ኺ𝐿)
(4.59)

𝑇 ≡
|𝐹|ኼ
|𝐴|ኼ =

16𝜅∗ፚኼ𝜅∗ኼ

16𝜅∗ፚኼ𝜅∗ኼ + 4(𝜅∗ፚኼ − 𝜅∗ኼ)ኼ sinኼ(2𝜅∗𝑘ኺ𝐿)
, (4.60)

where 𝑅ፚ and 𝑇ፚ are the reflection and transmission coefficients at the interface of Region aዅ and b
relative to the incoming waves. Analogously the same definition applies for 𝑅፝ and 𝑇፝ at the interface
of Region b and aዄ. In terms of the values of gravity, these coefficients are given by

𝑅ፚ ≡
|𝐵|ኼ
|𝐴|ኼ =

4(𝑔 − 𝑔ፚ)ኼ sinኼ(2𝜅∗𝑘ኺ𝐿)
16𝑔ፚ𝑔 + 4(𝑔 − 𝑔ፚ)ኼ sinኼ(2𝜅∗𝑘ኺ𝐿)

(4.61)

𝑇ፚ ≡
|𝐶|ኼ
|𝐴|ኼ =

4𝑔(√𝑔ፚ + √𝑔)ኼ
16𝑔ፚ𝑔 + 4(𝑔ፚ − 𝑔)ኼ sinኼ(2𝜅∗𝑘ኺ𝐿)

(4.62)

𝑅 ≡
|𝐷|ኼ
|𝐴|ኼ =

4𝑔(√𝑔 − √𝑔ፚ)ኼ
16𝑔ፚ𝑔 + 4(𝑔ፚ − 𝑔)ኼ sinኼ(2𝜅∗𝑘ኺ𝐿)

(4.63)

𝑇 ≡
|𝐹|ኼ
|𝐴|ኼ =

16𝑔ፚ𝑔
16𝑔ፚ𝑔 + 4(𝑔 − 𝑔ፚ)ኼ sinኼ(2𝜅∗𝑘ኺ𝐿)

, (4.64)

Note that also 𝑅ኼፚ + 𝑇ኼ = 1.
The reflection coefficient 𝑅ፚ indicates that the amplitude of the reflected waves do not only depend

on the perturbing gravity 𝑔 −𝑔ፚ, but also the length of region 𝑏 = 2𝐿 where the perturbation gravity
is added, and the wavenumber of waves in region 𝑏, given by 𝑘 = 𝜅∗𝑘ኺ.

Given the values of gravity 𝑔ፚ and 𝑔 and a positive integer 𝑛, it is noted that when 𝑘 = ፧
ኼፋ , the

reflection coefficient 𝑅ፚ = 0; when 𝑘 = (ኼ፧ዄኻ)
ኼ(ኼፋ) , the reflection coefficient attends its maximum with

ኾ(፠ᑓዅ፠ᑒ)Ꮄ
ኻዀ፠ᑒ፠ᑓዄኾ(፠ᑓዅ፠ᑒ)Ꮄ

. In the particular case when the perturbation in gravity is highly ’localised’ relative to
the wavelength of the waves such that 2𝐿𝑘 → 0, it is expected that the reflection of waves is not very
likely.

Based on this preliminary study, it should be expected that, since the wavelengths of tidal waves
are much larger than the length scales of the region with gravity perturbation, tidal waves are anyway
not very likely to be reflected by the gravity variation.

For the tsunami waves whose wavelengths are comparable to the characteristic lengths of area with
gravity perturbation, in theory, whether the reflection take places depends on the actual wavelengths
and size of region with gravity perturbation.

However, a closer look of the reflection coefficient 𝑅ፚ reveals that since the gravity perturbation
𝑔 − 𝑔ፚ in practice is maximally with order of magnitude 𝒪(10ዅኼ msኼ), while the gravity 𝑔ፚ or 𝑔
both are roughly 10msኼ in practice, the reflection coefficient 𝑅ፚ is maximally with order of magnitude
𝒪(10ዅዀ). Hence in practice, with the current measurement facilities, it is not expected that the reflected
tidal or tsunami wave induced purely by the gravity variation will be measurable.

4.4.4. Short Conclusions from Test case 2
• Reflection and Transmission of surface waves by gravity variation is possible

• Despite the theoretical possibility, the actual variation of gravity field seems to be insufficient in
reflection any ocean surface wave in an observable manner
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In the next test case, another effect of the gravity anomaly will be focused, namely, its induced variation
on the mean-sea level 𝑧ኺ(𝑥, 𝑦), or the sea-surface topography.

4.5. Test Case 3: Non-Flat Sea-Surface Topography
4.5.1. Rationale and Configuration of Test Case 3
The term sea-surface topography refers to the spatial variation of mean-sea level 𝑧ኺ due to non-uniform
distribution of gravity. Typically variation Δ𝐷ኺ can amount up to ±80m, which gives a relative variation
to the water depth 𝐷ኺ in the ocean by ጂፃᎲ

ፃ̄Ꮂ
∼ 𝒪( ዂኺm

ኾኺኺኺm) = 𝒪(10ዅኼ), which is much larger than the
relative variation of gravity = ፠ᖤᑫ

፠Ꮂ ∼ 𝒪(10
ዅ).

In Test case 3, the ocean floor 𝑧 = 𝑆ፁ(𝑥) is assumed to be flat, that is, 𝑆ፁ(𝑥) is a constant.
However, due to the presence of spatially dependent gravity perturbation 𝑔ᖣ፳, the mean-sea level 𝑧ኺ
varies in space. Hence the water depth 𝐷ኺ(𝑥) = 𝑧ኺ(𝑥) − 𝑆ፁ becomes also spatially dependent and its
variation are predominantly given by the mean-sea level.

For simplicity, it is assumed in this section that the water depth 𝐷ኺ(𝑥) can be decomposed into
a uniform component �̄� and spatially dependent perturbing component 𝐷ᖣኺ(𝑥). Furthermore, it is
assumed that the perturbing gravity 𝑔ᖣ፳(𝑥) and the perturbing component of the water depth 𝐷ኺ(𝑥)
are linearly related. In other words, it is assumed that

𝑔፳(𝑥) = 𝑔ኺ + 𝑔ᖣ፳(𝑥) (4.65)
𝐷ኺ(𝑥) = �̄� + 𝐷ᖣኺ(𝑥) (4.66)

with

𝐷ᖣኺ(𝑥) ∝ 𝑔ᖣ፳(𝑥). (4.67)

Readers are reminded that, however, while the sea-surface topography mimics the spatial variation
perturbing gravity field, there is no definite correlation between the magnitude of the gravity field 𝑔ᖣ፳
and the mean-sea level 𝑧ኺ.

Recall the definition of the diagnostic variables 𝐸 and 𝑉, given by equation (4.8),

𝐸(𝑥) = 𝜔ኼ
𝑔፳𝐷ኺ𝑘ኺኼ

,

𝑉(𝑥) = 1
4𝑘ኺኼ𝐷ኺኼ

[2𝐷ኺ
𝜕ኼ𝐷ኺ
𝜕𝑥ኼ − (𝜕𝐷ኺ𝜕𝑥 )

ኼ],

By choosing the reference wavenumber 𝑘ኺ to be

𝑘ኺ =
𝜔

√𝑔ኺ�̄�
, (4.69)

The expression for 𝐸 and 𝑉 becomes

𝐸(𝑥) = 1
[1+ ፠ᖤᑫ

፠Ꮂ ][1+
ፃᖤᎲ
ፃ̄ ]
, (4.70a)

𝑉(𝑥) = 𝑔ኺ�̄�
𝜔ኼ [

(𝐷ᖣኺ)፱፱
2𝐷ኺ

− [(𝐷
ᖣ
ኺ)፱]ኼ

4(𝐷ኺ)ኼ
]. (4.70b)

Note that for small perturbations of gravity 𝑔ᖣ፳ ≪ 𝑔ኺ and water depth 𝐷ᖣኺ ≪ �̄�, the quantity 𝐸 is
approximately equal to 1.

If the the variation of the water depth is too ’small’, in the sense that both ፠Ꮂፃ̄
ᎦᎴ

(ፃᖤᎲ)ᑩᑩ
ፃᎲ and ፠Ꮂፃ̄

ᎦᎴ
[(ፃᖤᎲ)ᑩ]Ꮄ
(ፃᎲ)Ꮄ

in 𝑉(𝑥) do not scale with order of magnitude of at least 𝒪(10ዅኻ), the diagnostic quantity 𝜅∗(𝑥) =
𝐸(𝑥) − 𝑉(𝑥) can be approximated by dropping the contribution from 𝑉(𝑥)

𝜅∗(𝑥) ≈ 𝐸(𝑥) = 1
[1+ ፠ᖤᑫ

፠Ꮂ ][1+
ፃᖤᎲ
ፃ̄ ]

> 0. (4.71)
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The oscillatory solution (4.20) can thus be applied and the solution in the transformed coordinates is
given by

�̃�ኺ ∼ (
𝑔፳
𝐷ኺ
) ᎳᎶ exp(±𝑖 ∫ 𝑘ኺ

√[1+ ፠ᖤᑫ
፠Ꮂ ][1+

ፃᖤᎲ
ፃ̄ ]
𝑑𝑥). (4.72)

Transforming �̃�ኺ back to 𝜂ኺ defined in physical coordinates gives

𝜂ኺ ∼ (
1

𝑔
Ꮅ
Ꮆ፳ 𝐷

Ꮃ
Ꮆ
ኺ

) exp(±𝑖 ∫ 𝑘ኺ
√[1+ ፠ᖤᑫ

፠Ꮂ ][1+
ፃᖤᎲ
ፃ̄ ]
𝑑𝑥), (4.73)

which suggests the wave amplitude 𝐴(𝑥) scales spatially with 𝑔ዅ
Ꮅ
Ꮆ፳ 𝐷ዅ

Ꮃ
Ꮆ

ኺ .

Recall that when the gravity is uniform, the wave amplitude scales spatially with 𝐷ዅ
Ꮃ
Ꮆ

ኺ . Now with

the spatial variation in gravity, there is an extra scaling factor 𝑔ዅ
Ꮅ
Ꮆ፳ for the wave amplitude.

4.5.2. Test case 3a: Exponential Water Depth + Exponential Gravity Pertur-
bation

In this test case, the ocean floor 𝑆ፁ(𝑥) is flat but the mean-sea level 𝑧ኺ contains a perturbing component
which decays exponentially. Therefore, the perturbing water depth 𝐷ᖣኺ(𝑥) and the perturbing gravity
𝑔ᖣ፳(𝑥) are given by

𝐷ᖣኺ(𝑥) = Δ𝐷ኺ exp(−𝜆𝑥) (4.74a)
𝑔፳(𝑥) = Δ𝑔፳ exp(−𝜆𝑥), (4.74b)

where Δ𝐷ኺ and Δ𝑔፳ are constants which represents the maximum values of perturbation in water depth
𝐷ኺ and gravity 𝑔፳. 𝜆 is a constant which measures the rate of decay of the perturbation. Note that
only the domain of positive 𝑥 is considered. The expression of 𝐸 and 𝑉 given by equation (4.70) thus
becomes

𝐸(𝑥) = 1
[1 + ጂ፠ᑫ

፠Ꮂ exp(−𝜆𝑥)][1 + ጂፃᎲ
ፃ̄Ꮂ

exp(−𝜆𝑥)]
(4.75a)

𝑉(𝑥) = (𝑔ኺ�̄�ኺ𝜔ኼ )(𝜆
ኼ

4 )[
Δ𝐷ኺ𝑒ዅ᎘፱ + 2�̄�ኺ
(�̄�ኺ + Δ𝐷ኺ𝑒ዅ᎘፱)ኼ

(Δ𝐷ኺ𝑒ዅ᎘፱)]. (4.75b)

It can be shown that 𝑉(𝑥) attains its maximum on the domain 𝑥 ≥ 0 at 𝑥 = 0. Note that 𝑉(0) is
given by

𝑉(0) = (𝑔ኺ�̄�ኺ𝜔ኼ )(𝜆
ኼ

4 )[
Δ𝐷ኺ + 2�̄�ኺ
(�̄�ኺ + Δ𝐷ኺ)ኼ

(Δ𝐷ኺ)] (4.76)

Using the parameters listed in Table 4.2 and 4.3, for tsunami waves the dimensionless quantity 𝑉(0) is
of the order of magnitude 𝒪(10ዅ) and for tidal waves the quantity𝑉(0) is of the order of magnitude
𝒪(10ዅዀ). Meanwhile the order of magnitude of 𝐸 is 𝒪(1). These justify the approximation 𝜅∗ = 𝐸−𝑉 ≈
𝐸 in the approximation (4.71) and offer validity to the solution (4.73).

3a.i: Hypothetical Scenario Based on the parameters and configuration listed in Table 4.1, nu-
merical solutions to the one-dimensional adapted wave equation (4.1) have been found. Figure 4.17
gives an example of the numerical solution when the gravity perturbation is positive. It is noted that
𝑉(𝑥) << 𝐸(𝑥) and thus the approximation (4.71) is valid.

It can also be noted from Figure 4.17 that the amplitude of waves fits well with the theoretical
prediction given in the general solution (4.73). Comparing Figure 4.17 with Figure 4.3 reveals that the
phase difference between the test case wave and reference wave is enlarged when the perturbation
of sea-surface elevation is considered. This is not unexpected since 𝜅∗(𝑥) is scaled with a extra factor
ኻ

ኻዄᐻ
ᖤᎲ
ᐻ̄

in (4.71) compared with (4.29) when the variation of water depth 𝐷ኺ is excluded.
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3a.ii: Physical Scenario Numerical solutions based on the parameters associated with tsunami
and tidal waves listed in Table 4.2 and 4.3 are obtained. Figure 4.18, 4.19, 4.20 and 4.21 give some
examples of the numerical solutions.

Figure 4.20 and 4.21 show that the instantaneous difference between the test case wave and
reference has an order of magnitude 𝒪(0.01 m), which is much greater than the 𝒪(10ዅኾ m) in Figure
4.5 and 4.6 without the perturbation in water depth. This indicates that the perturbation of the mean-
sea level is much more likely to affect the wave dynamics than the gravity perturbation itself, despite
the fact that the difference is still unlikely to be measured by any observational tools.

Similarly to the case without mean-sea level perturbation, it is noted from the instantaneous dif-
ference between the test case wave and reference wave in Figure 4.20 that there are small-amplitude
periodic wiggles. The detailed mechanism of the emergence of these wiggles will be analysed.

4.5.3. Test case 3b: Gaussian Water Depth + Gaussian Gravity Perturbation
In this test case, the ocean floor 𝑆ፁ(𝑥) is again flat. The gravity and mean-sea level 𝑧ኺ(𝑥) are perturbed
with a Gaussian function. In other words,

𝐷ᖣኺ(𝑥) = Δ𝐷ኺ exp (
−𝑥ኼ
2𝜎ኼ ), (4.77a)

𝑔፳(𝑥) = Δ𝑔፳ exp (
−𝑥ኼ
2𝜎ኼ ), (4.77b)

with 𝜎 being the dispersion parameter which measures the spread of the peak of the Gaussian function.
It follows from equation (4.70) that the expression of 𝐸 and 𝑉 becomes

𝐸(𝑥) = 1

[1 + ጂ፠ᑫ
፠Ꮂ 𝑒

ᎽᑩᎴ
ᎴᒗᎴ ][1 + ጂፃᎲ

ፃ̄Ꮂ
𝑒
ᎽᑩᎴ
ᎴᒗᎴ ]

, (4.78a)

𝑉(𝑥) = (𝑔ኺ�̄�ኺ𝜔ኼ )( −14𝜎ኾ)[
(2𝜎ኼ − 𝑥ኼ)Δ𝐷ኺ𝑒

ᎽᑩᎴ
ᎴᒗᎴ + 2(𝜎ኼ − 𝑥ኼ)�̄�ኺ

(�̄�ኺ + Δ𝐷ኺ𝑒
ᎽᑩᎴ
ᎴᒗᎴ )ኼ

](Δ𝐷ኺ𝑒
ᎽᑩᎴ
ᎴᒗᎴ ) (4.78b)

Since the numerical solutions of the hypothetical scenario based on the parameters given in Table
4.1 do not provide much additional insight, they are omitted in this report.

3b: Physical Scenario Numerical solution for incoming tsunami and tidal waves are transmitted to
a region with Gaussian gravity and mean-sea level perturbation are obtained. The parameters for the
computation are listed in Table 4.2 and 4.3. Figure 4.22, 4.23, 4.24 and 4.25 give some examples of
the numerical solutions.

These figures are very similar to Figure 4.13, 4.14, 4.15 and 4.16 except that the instantaneous
difference between the test case wave and reference wave is much larger when the perturbation of
the mean-sea level is taken into account. This is not unexpected given the general solution given in
(4.73).

4.5.4. Short Conclusions from Test case 3
• When the water depth is perturbed together with the gravity, the amplitude 𝐴 of surface waves
scales with the magnitude of gravity by 𝐴 ∼ 𝑔ዅ

Ꮅ
Ꮆ፳ 𝐷ዅ

Ꮃ
Ꮆ

ኺ .

• It is more likely to reflect ocean surface wave by the variation of gravity-induced mean-sea level
than the gravity itself.

• Despite the theoretical implications, the gravity-induced mean-sea level variation in the actual
ocean is still too small to induce any observable changes on tsunami wave or tidal wave in
practice.
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4.6. Test Case 4: Global Variation of Gravity
4.6.1. Rationale and Configuration of Test Case 4
Due to the presence of centrifugal force, the effective gravity 𝑔፳ near the equator on the Earth is
significantly lower than that in near the pole. An empirically-based formula know as the International
Gravity Formula, is often used to evaluate the theoretical gravity 𝑔፫ at different latitude 𝜙. The
formula is cited here

𝑔፫(𝜙) = 𝑔፞(1 + 𝐴 sinኼ(𝜙) − 𝐵 sinኼ(2𝜙)ኼ), (4.79)

where 𝑔፞ = 9.780327 m/sኼ is the gravity at equator, 𝐴 = 0.0053024 and 𝐵 = 0.0000058 are empircally
determined constants.

The plot of 𝑔፫ over latitude is given in Figure 4.26. It can be noted that the gravity is weakest in
the equator at roughly 9.78 msዅኼ and strongest near the pole with approximately 9.83 msዅኼ.

4.6.2. Test Case 4a: Surface Waves on an Arc
To simplify the analysis, the waves motion along an arc on Earth’s surface is considered. This is achieved
by projecting the latitude 𝜙 on single spatial coordinates 𝑥, which is given by

𝑥 = 𝑅ፄ𝜙, (4.80)

where 𝑅ፄ = 6371 km is an estimated radius of Earth.
With the projection, the effective gravity 𝑔፳ can be thus expressed in the form of

𝑔፳(𝑥) = 𝑔ኺ + 𝑔ᖣ፳(𝑥) (4.81)

by choosing the reference gravity 𝑔ኺ and perturbing gravity 𝑔ᖣ፳(𝑥) as

𝑔ኺ = 𝑔፞ (4.82)

𝑔ᖣ፳(𝑥) = 𝑔፞(𝐴 sinኼ(
𝑥
𝑅ፄ
) − 𝐵 sinኼ( 2𝑥𝑅ፄ

)) (4.83)

Furthermore, consider the case where the water depth 𝐷ኺ is uniformly equal to 4000m everywhere
along the arc. This makes the diagnostic variable 𝑉(𝑥) given in (4.13) becomes strictly zero.

It has been demonstrated in test case 1, that when the water depth is uniform, the surface elevation
𝜂ኺ in the physical coordinates is given by equation (4.35)

𝜂ኺ ∼ 𝑔
ዅ ᎵᎶ፳ exp(±𝑖 ∫√

𝑔ኺ
𝑔፳
𝑘ኺ𝑑𝑥),

where 𝑘ኺ = Ꭶ
√፠ᎲፃᎲ

is a reference wavelength.

This suggests when given surface waves with wavenumber 𝑘ኺ and amplitude 𝜂ኺ at the equator
propagate towards the pole with stronger gravity, the wavenumber will appear to decrease to 𝑘ኻ =
√፠Ꮂ
፠ᑫ 𝑘ኺ ≈ √ዃ.ዂ

ዃ.ዂኽ𝑘ኺ ≈ 0.9984𝑘ኺ and the wave amplitude will appear to increase to 𝜂ኻ = (፠ᑫ፠Ꮂ )
ዅ ᎵᎶ 𝜂ኺ ≈

1.0023𝜂ኺ. In other words, a maximally 0.3% percentage change of wavelength and amplitude would
be experienced by the ocean surface waves due to the meridional gravity gradient on the Earth.

With the present measurement facilities, it will be extremely challenging, if not impossible, to isolate
the minimal effects of gravity variation on surface waves from other factors such as the non-uniform
bathymetry, tidal forcing and wind-forcing. This makes empirical analysis of global scale ocean surface
waves impractical.

4.6.3. Short Conclusions from Test case 4
• In test case 4 the meridional gravity variation due to rotation of Earth is reviewed.

• In an idealistic scenario where one-dimensional surface waves are considered in a uniformly-deep
ocean, it has been shown with the aid of test case 1 that the meridional gravity gradient is not
strong enough to induce any observable changes on surface waves in practice.
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4.7. Conclusions from One-Dimensional Adapted Shallow Water
Waves

In this chapter, analytical solutions to the adapted shallow water waves derived in Chapter 3 in one-
dimensional space were studied. The analytical solutions were also verified numerically in both hypo-
thetical and geophysical scenarios.

Surface waves in fluid with uniform depth are studied in test case 1. The analytical solutions are
verified by numerical solution. Reflection and transmission of surface waves due to gravity perturbation
were examined both numerically and analytically in test case 2.

In test case 3, the effects of non-flat sea-surface topography on the adapted shallow water waves
are studied both analytically and numerically. It has been shown that the surface waves in practice are
more sensitive to the induced sea-surface topography than the gravity variation itself.

In test case 4, the gravity variation due to Earth’s rotation, which are much stronger than that
originated from topographical features, are studied. However, it is demonstrated that the gravity
perturbation is still insufficient in making any observable effects in the actual ocean.

To sum up, the one-dimensional studies reveals it is highly unlikely for surface waves in the ocean to
be altered in an observable manner due to the gravity variation. This justifies the traditional assumption
that the gravity is taken to be a constant uniformly in space in the studies of surface waves.
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Figure 4.3: Numerical Simulations with Positive Exponential Gravity Perturbation; Hypothetical Scenario
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Figure 4.4: Numerical Simulations with Negative Exponential Gravity Perturbation; Hypothetical Scenario
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Figure 4.5: Numerical Simulations with Positive Exponential Gravity Perturbation; Physical Scenario - Incoming tidal wave
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Figure 4.6: Numerical Simulations with Negative Exponential Gravity Perturbation; Physical Scenario - Incoming tidal wave
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Figure 4.7: Numerical Simulations with Positive Gaussian Gravity Perturbation; Hypothetical Scenario
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Figure 4.8: Numerical Simulations with Negative Gaussian Gravity Perturbation; Hypothetical Scenario
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Figure 4.9: Numerical Simulations with Positive Gaussian Gravity Perturbation; Hypothetical Scenario; Localised Gravity Pertur-
bation
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Figure 4.10: Numerical Simulations with Negative Gaussian Gravity Perturbation; Hypothetical Scenario; Localised Gravity Per-
turbation



64 4. One-Dimensional Adapted Wave Equation

Figure 4.11: Numerical Simulations with Positive Gaussian Gravity Perturbation; Hypothetical Scenario
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Figure 4.12: Numerical Simulations with Negative Gaussian Gravity Perturbation; Hypothetical Scenario
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Figure 4.13: Numerical Simulations with Positive Gaussian Gravity Perturbation; Physical Scenario - Incoming Tsunami Waves
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Figure 4.14: Numerical Simulations with Negative Gaussian Gravity Perturbation; Physical Scenario - Incoming Tsunami Waves
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Figure 4.15: Numerical Simulations with Positive Gaussian Gravity Perturbation; Physical Scenario - Incoming Tidal waves
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Figure 4.16: Numerical Simulations with Negative Gaussian Gravity Perturbation; Physical Scenario - Incoming Tidal waves
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Figure 4.17: Numerical Simulations with Positive Exponential Gravity and Mean Sea-Level Perturbation; Hypothetical Scenario
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Figure 4.18: Numerical Simulations with Positive Exponential Gravity and Mean Sea-Level Perturbation; Physical Scenario -
Incoming Tsunami Waves
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Figure 4.19: Numerical Simulations with Negative Exponential Gravity and Mean Sea-Level Perturbation; Physical Scenario -
Incoming Tsunami Waves
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Figure 4.20: Numerical Simulations with Positive Exponential Gravity and Mean Sea-Level Perturbation; Physical Scenario -
Incoming Tidal Waves
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Figure 4.21: Numerical Simulations with Negative Exponential Gravity and Mean Sea-Level Perturbation; Physical Scenario -
Incoming Tidal Waves
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Figure 4.22: Numerical Simulations with Positive Gaussian Gravity and Mean-Sea Level Perturbation; Physical Scenario - Incoming
Tsunami Waves
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Figure 4.23: Numerical Simulations with Negative Gaussian Gravity and Mean-Sea Level Perturbation; Physical Scenario - In-
coming Tsunami Waves
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Figure 4.24: Numerical Simulations with Positive Gaussian Gravity and Mean-Sea Level Perturbation; Physical Scenario - Incoming
Tidal waves
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Figure 4.25: Numerical Simulations with Negative Gaussian Gravity and Mean-Sea Level Perturbation; Physical Scenario - In-
coming Tidal waves
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Figure 4.26: Global Variation of Gravity





5
Two-Dimensional Adapted Wave

Equation

In this chapter, the two-dimensional adapted wave equation will be discussed. Numerical solutions will
be investigated. Quantitative and qualitative behaviour of the solutions will be examined.

5.1. Diagnostic Formalism: Limitations
Recall that the set of equations (3.138) given by,

𝜕𝜂
𝜕𝑡 + ∇፡ ⋅ U = U ⋅ ∇፡( ln (

𝑔፳
𝑔ኺ
)),

𝜕𝑈
𝜕𝑡 + 𝑐

ኼ 𝜕𝜂
𝜕𝑥 = 0,

𝜕𝑉
𝜕𝑡 + 𝑐

ኼ 𝜕𝜂
𝜕𝑦 = 0,

governs the small-amplitude surface waves in a spatially varying gravity field on a two-dimensional
plane.

Motivated by the treatment in one-dimensional space, a time-harmonic ansatz to the surface eleva-
tion 𝜂(𝑥, 𝑦, 𝑡) = 𝜂ኺ(𝑥, 𝑦)𝑒ዅ።Ꭶ፭ is chosen to solve (3.138). This eventually gives rises to the second-order
partial differential equation:

∇ኼ𝜂ኺ + ∇ ln(
𝑐ኼ
𝑔፳
) ⋅ ∇𝜂ኺ +

𝜔ኼ
𝑐ኼ 𝜂ኺ = 0, (5.1)

which is the two-dimensional generalisation of (4.3).
Motivated by the one-dimensional case as in equation 4.4, applying a coordinate transformation

given by

ln 𝑟 = ln 𝜂ኺ +
1
2 ln(

𝑐ኼ
𝑔፳
), (5.2)

equation (5.1) becomes into

∇ኼ𝑟 + [𝜔
ኼ

𝑐ኼ − (
1
𝑐 ∇

ኼ𝑐 + 3
4𝑔፳ኼ

‖∇𝑔፳‖ኼ −
1
2𝑔፳

∇ኼ𝑔፳ −
1
𝑐𝑔፳

∇𝑐 ⋅ ∇𝑔፳)]𝑟 = 0 (5.3)

Using the definition of 𝑐(𝑥, 𝑦) = √𝑔፳𝐷 given by (3.137), the above transformed differential equation
can be simplified into

∇ኼ𝑟 + [𝐸(𝑥, 𝑦) − 𝑉(𝑥, 𝑦)]𝐾ኺኼ𝑟 = 0 (5.4)
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where 𝐸(𝑥, 𝑦) and 𝑉(𝑥, 𝑦) are given by

𝐸(𝑥, 𝑦) = 𝜔ኼ
𝑔፳𝐷𝐾ኺኼ

(5.5a)

𝑉(𝑥, 𝑦) = 1
4𝐾ኺኼ

( 2𝐷∇
ኼ𝐷 − 1

𝐷ኼ ‖∇𝐷‖
ኼ) (5.5b)

and 𝐾ኺ = √𝑘ኺኼ + 𝑙ኺኼ is the magnitude of a reference plane-wave wavevector �⃗�ኺ = (𝑘ኺ, 𝑙ኺ), which
is a constant. It is noted that (5.4) is similar to the two-dimensional time-independent Schrodinger
equation, except that the ’energy’ 𝐸 is a function of spatial coordinates (𝑥, 𝑦) instead of a constant.
This is the two-dimensional generalisation to (4.14).

In spite of the similarity, the two-dimensional time-independent ’Schrodinger’ equation (5.4) is not
as useful as the one-dimensional one (4.14) discussed in the previous chapter. This is because, given
the magnitude of wavevector 𝐾ኺ, there are infinitely many possible wavevector �⃗�ኺ that give rises to the
same 𝐾ኺ. Such degeneracy complicates the analysis to the equation (5.4). Therefore the diagnostic
formalism will not be further developed in this thesis.

5.2. Test Cases and Numerical Simulations
5.2.1. Rationale and Limitations
Rather than the analytical solutions, in this chapter only the numerical solutions to the two-dimensional
adapted shallow water wave equations (3.138) will be considered. This is because in the one-dimensional
studies, it has been shown that the gravity variation on the Earth surface is only able to create very
minimal changes for surface waves. The outcome of this chapter is to show that the effects caused
by the spatially-varying gravity field on ocean surface waves is also minimal in the three-dimensional
space as well.

5.2.2. Methodology and Configurations of Test Cases
Numerical Configurations
The parameters used for constructing test cases are given in Tables 5.1 and 5.2. The parameters
are obtained in the same manner as in the one-dimensional configurations in Table 4.1 and 4.2. The
detailed meanings of each quantity have been discussed in section 4.2.

Similar to the one-dimensional studies, the hypothetical setting given by Table 5.1 targets at showing
the qualitative features while the physical setting given by 5.2 aims at providing insight about the surface
waves in the actual ocean.

The numerical simulations are carried out using CLAWPACK, an open-source software package to
solve systems of hyperbolic equations numerically.

Explanation of Figures
Each of the figures shown in the following sections include four subplots. Each subplot represents a
scalar field at a certain instant. All subplots share identical x-axis and y-axis, which mark the normalised
x and y-coordinates. The normalisation is relative to the wavelength of the prescribed incoming waves.
The colour in the subplots represents the instantaneous value of the scalar field, with a colourbar
below the subplots. The ticks in the colour bar represents the maximum and minimum value of the
instantaneous scalar field.

From left to right, the first subplot gives the surface elevation of reference waves. This serves as a
yardstick for comparison with the second subplot, which gives the surface elevation of the test waves.
The test waves usually differ from the reference waves by the presence of gravity perturbation, water
depth perturbation or both. Details will be specified in the caption of the figures.

The third subplot shows the perturbation field of either the gravity or water depth. The final subplot
gives the instantaneous difference between the test waves and reference waves. This provides a handy
tool to preliminarily investigate the effects of the gravity or depth perturbation on the waves. Readers
are reminded that the instantaneous difference in surface elevation is not a very rigorous tool to study
the transmission-reflection mechanism of surface waves scattered by topography. A more sophisticated
tool should consider the time-independent surface elevation field by time-averaging. Yet for the purpose
of this chapter, such analysis is omitted.
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Physical Parameters Values
Reference Gravity, 𝑔ኺ 10 msዅኼ
Mean Depth of Fluid, �̄�ኺ 10 m

Amplitude of incoming wave, 𝜂ኺ 1 m
Period of incoming wave, 𝑇 6 seconds or 120 seconds
Reference wavelength, 𝜆ኺ 𝑇√𝑔ኺ𝐷ኺ = 60 m or 1200 m

Maximum Perturbing Gravity, Δ𝑔፳ ±2 msዅኼ
Maximum Perturbing Mean-Sea Level, Δ𝐷ኺ ±2 m

’Half-life’ Distance, 𝑟Ꮃ
Ꮄ

𝜆ኺ = 120 m

Numerical Parameters Values

Spatial domain of computation
𝑥 ∈ [−5𝜆ኺ, −5𝜆ኺ] or [−2.5𝜆ኺ, 2.5𝜆ኺ]

𝑦 ∈ [−2.5𝜆ኺ, 2.5𝜆ኺ]
Temporal domain of computation 𝑡 ∈ [0, 12𝑇]

Number of grid cells 250 × 250
Left Boundary condition Incoming sinusoidal waves
Right Boundary condition Outflow boundary
Bottom Boundary condition Outflow boundary
Top Boundary condition Outflow boundary

Table 5.1: Configuration for the hypothetical numerical simulations

5.3. Test case 1: Hypothetical Surface Waves
In this test case, the surface waves based on parameters given in Table 5.1 will be studied.

5.3.1. Test case 1a: Depth Perturbation vs Uniform Gravity and Depth
To begin with, the classical case of uniform water depth perturbed with a two-dimensional Gaussian
function is reviewed. The gravity is uniform as in the classical theory. Figure 5.1 to 5.4 give the
simulation results. The fourth subplot, which measures the instantaneous difference between the
surface elevations of test and reference waves, serves as a preliminary indicator of the scattered wave
due to the topographical feature.

Figure 5.1: Hypothetical Waves with Gaussian Depth Perturbation. FWHM=ኻኼኺ m, ጂፃ  ኼ m, wavelength=ዀኺ m. Reference:
ጂፃ  ኺ, ጂ፠  ኺ.

It can be noted by comparing 5.1 and 5.3 that the dispersion of perturbation significantly affects
the spatial structure of scattered waves. For a highly-localised (relative to the wavelengths) perturbed
depth, such as in Figure 5.3 or 5.4, the depth perturbation acts like a point-source for near-circular
scattered waves. It is also noted that when the depth perturbation is positive, representing a bottom
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Physical Parameters Values
Reference Gravity, 𝑔ኺ 9.806228 msዅኼ

Mean Depth of Ocean, �̄� 4000 m
Maximum Perturbing Gravity, Δ𝑔፳ 50 mGal = 0.0005 msዅኼ

Maximum Perturbing Mean-Sea Level, Δ𝐷ኺ 50 m
’Half-life’ Distance, 𝑟Ꮃ

Ꮄ
500 km

Period of Tsunami wave, 𝑇፭፬፮ 45 minutes
Period of Tidal wave, 𝑇፭።፝ፚ፥ 12 hours

Reference Tsunami wavelength, 𝜆፭፬፮ 540 km
Reference Tidal wavelength, 𝜆፭።፝ፚ፥ 8640 km
Amplitude of incoming wave, 𝜂ኺ 5 m

Numerical Parameters Values

Spatial domain of computation (tsunami)
𝑥 ∈ [−5𝜆,−5𝜆]
𝑦 ∈ [−2.5𝜆, 2.5𝜆]

Spatial domain of computation (tidal)
𝑥 ∈ [−2.5𝜆, −2.5𝜆]
𝑦 ∈ [−2.5𝜆, 2.5𝜆]

Temporal domain of computation 𝑡 ∈ [0, 12𝑇]
Number of grid cells 250 × 250

Left Boundary condition Incoming sinusoidal wave
Right Boundary condition Outflow boundary
Bottom Boundary condition Outflow boundary
Top Boundary condition Outflow boundary

Table 5.2: Parameters used to mimic the actual physical setting in the Ocean and its waves

pit, in addition to the near-circular scattered waves, other small-amplitude waves are also excited.
On the other hand, for a dispersive perturbation as in Figure 5.1 or 5.2 such that the perturbed area

is comparable to the wavelength, the depth perturbation refracts and scatters plane waves. In partic-
ular, when the plane waves propagate over a circular bottom pit, the plane waves are refracted away
and diverged from the pit. On the other hand, when the planes waves propagate over a subsurface
mountain, the waves converge towards the centre of mountain.

5.3.2. Test case 1b: Gravity Perturbation vs Uniform Gravity and Depth
In the next step, the case in which a uniform gravity field is perturbed Gaussianly will be studied.
Figure 5.5 to 5.8 outline the numerical simulations where Gaussian gravity perturbations are added to
homogeneous gravity and water depth medium.

It can be noted that the figures are very similar to those in Test case 1a, which deals with waves in
perturbed water depth. This motivates the comparison between the perturbation in gravity and depth,
which will be presented in the next section.

5.3.3. Test case 1c: Gravity Perturbation vs Depth Perturbation
Recall in Table 5.1 that the both the uniform and perturbed components of gravity and water depth
are chosen to be equal in magnitude. This enables fair comparisons in this section.

In this test case, the test waves experience Gaussian gravity perturbation and the reference ones
experience Gaussian water depth perturbation. Figure 5.9 to 5.12 give the simulation results.

It can be immediately noticed from the subplots of instantaneous differences that the waves scat-
tered respectively by the gravity and depth perturbation are nearly identical. This is not unexpected
since the scattering property is controlled by the wave speed field 𝑐(𝑥, 𝑦), given by

𝑐(𝑥, 𝑦) = √𝑔፳𝐷ኺ,

with 𝑔፳ and 𝐷ኺ being the effective gravity and time-average water depth. In this test case the perturba-
tion added respectively to 𝑔፳ and 𝐷ኺ are identical in both spatial distribution and magnitude, resulting
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Figure 5.2: Hypothetical Waves with Gaussian Depth Perturbation. FWHM=ኻኼኺ m, ጂፃ  ዅኼ m, wavelength=ዀኺ m. Reference:
ጂፃ  ኺ, ጂ፠  ኺ.

Figure 5.3: Hypothetical Waves with Gaussian Depth Perturbation. FWHM=ኻኼኺ m, ጂፃ  ኼ m, wavelength=ኻኼኺኺ m. Reference:
ጂፃ  ኺ, ጂ፠  ኺ.

identical fields of wave speed 𝑐(𝑥, 𝑦) for both the test waves and reference waves. Hence the scattered
waves are expected to be in phase.

Meanwhile, the instantaneous difference of surface elevation also reveals another feature in the
adapted shallow water waves. Readers are reminded that the governing equations for the adapted
shallow water waves (3.138) differ from the standard ones only by an additional term U ⋅ ∇ ln(፠ᑫ፠Ꮂ ) in
the right-hand side of depth-averaged continuity equation. In the one-dimensional analytic studies
given in Chapter 4 it has been shown that this additional term results in both changes of amplitude
and wavenumber of waves. Reader may refer to the derivation of equation (4.73) for the details.

By comparing the subplots of the gravity perturbation field and the instantaneous differences in
Figure 5.9 to 5.12, it is clear that the spatially varying gravity field in the two-dimensional space does
a very similar job.

However, as discussed in Section 5.1, a handy diagnostic tool for wave dynamics in two-dimension
is hard to obtain. A closed form expression as given in (4.73) may thus be difficult to obtain analytically.
To overcome this limitation, the numerical solutions can be analysed to obtain the time-independent
wave amplitude field. After removing the effects of scattered waves, the maximum amplitude over
time at each numerical cell can be recorded to determine the spatial structure of the amplitude field.
The results can thus be compared with the gravity field. For the purpose of this project, which focuses
on ocean waves on the Earth surface, it will be demonstrated in the next test case that such analysis
is unnecessary. Due to the time constraint, this analysis will be omitted in this project.
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Figure 5.4: Hypothetical Waves with Gaussian Depth Perturbation. FWHM=ኻኼኺm, ጂፃ  ዅኼm, wavelength=ኻኼኺኺm. Reference:
ጂፃ  ኺ, ጂ፠  ኺ.

Figure 5.5: Hypothetical Waves with Gaussian Gravity Perturbation. FWHM=ኻኼኺm, ጂ፠  ኼmsᎽᎴ, wavelength=ዀኺm. Reference:
ጂፃ  ኺ, ጂ፠  ኺ.

5.4. Test case 2: Physical Surface Waves
In this test case, the surface waves based on parameters given in Table 5.2 will be studied. Both
idealistic tsunami and tidal waves will be reviewed.

5.4.1. Test case 2a: Gravity Perturbation vs Uniform Gravity and Depth
Based on the configuration given in Table 5.2, a Gaussian gravity perturbation with peak 50 mGal is
added the uniform gravity field 9.80622 msዅኼ in constant water depth 4 km in this test case. The
surface waves are compared with the reference waves in which no perturbation is experienced.

Figure 5.13 and 5.14 give an account for the effects of the gravity perturbations on the tsunami
waves in the actual ocean. Figure 5.15 and 5.16 on the other hand suggest the possible consequences
when tidal waves propagate over a spatially-varying gravity field in the ocean.

It can be noted that since the wavelengths of tsunami waves are comparable to the length scale
of the gravity perturbation area, the resulted scattered field is highly similar to the hypothetical test
waves in Figure 5.5 and 5.5. On the other hand, the tidal waves are very similar to the hypothetical
waves in 5.5 and 5.5 thanks to the similarity in relative length scales between wavelengths and gravity
perturbation field.

It can be noted in all four figures from 5.13 and 5.16 that while the spatial structures of the scattered
waves are very similar to the hypothetical scattered waves, the magnitudes of the scattered waves are
maximally of order 𝒪(10ዅኽm), which is much smaller than that in the hypothetical waves. This is not
surprising since the relative size of the gravity perturbation is much smaller in the physical setting than
that in the hypothetical cases.
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Figure 5.6: Hypothetical Waves with Gaussian Gravity Perturbation. FWHM=ኻኼኺ m, ጂ፠  ዅኼ msᎽᎴ, wavelength=ዀኺ m. Refer-
ence: ጂፃ  ኺ, ጂ፠  ኺ.

Figure 5.7: Hypothetical Waves with Gaussian Gravity Perturbation. FWHM=ኻኼኺ m, ጂ፠  ኼ msᎽᎴ, wavelength=ኻኼኺኺ m.
Reference: ጂፃ  ኺ, ጂ፠  ኺ.

From the four figures from 5.13 and 5.16, it can be concluded that the spatially-varying gravity field
alone on Earth surface only lead to minimal changes to the ocean surface waves.

5.4.2. Test case 2b: Gravity and Depth Perturbation vs Uniform Gravity and
Depth

In this test case, the changes in surface elevation due to water depth perturbation is also taken into
account. Same as the one-dimensional test cases given in the previous chapter, the changes in surface
elevation are assumed to be linearly related to the gravity perturbation.

Figure 5.17 to 5.20 give the behaviour of tsunami and tidal waves in several physically representative
scenarios. The configurations for each figure are specified in the captions.

The qualitative features in Figure 5.17 to 5.20 are very similar to Figure 5.13 and 5.14 respectively.
The differences lie in the quantitative measures: when the depth perturbation is included, the scattered
waves are at least 𝒪(10ዅኼ𝑚) larger in amplitude, which makes it possibly observable in the nature. In
order to identify the cause for the increase in wave amplitude, the next test case is introduced.

5.4.3. Test case 2c: Gravity and Depth Perturbation vs Uniform Gravity and
Depth Perturbation

In the final test case, the ocean surface waves which experienced both gravity and depth perturbation
(test waves) are compared against the waves which only encountered depth perturbation (reference
waves). Figure 5.21 to 5.24 give the corresponding scenarios. The purpose of the comparison is to
’filter out’ the effects of depth perturbation from the combined perturbations. Hence the subplots of
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Figure 5.8: Hypothetical Waves with Gaussian Gravity Perturbation. FWHM=ኻኼኺ m, ጂ፠  ዅኼ msᎽᎴ, wavelength=ኻኼኺኺ m.
Reference: ጂፃ  ኺ, ጂ፠  ኺ.

Figure 5.9: Hypothetical Waves with Gaussian Gravity Perturbation. FWHM=ኻኼኺm, ጂ፠  ኼmsᎽᎴ, wavelength=ዀኺm. Reference:
ጂፃ  ኼ, ጂ፠  ኺ.

instantaneous difference between test and reference waves represents only the waves scattered by
the gravity perturbation. It is highlighted that the ’filtering’ is not rigorous since the scattered waves
are not necessarily linear. However for the sake of an overview, the result is sufficient.

It can be directly observed from the plots of instantaneous difference that the order of magnitudes
of wave amplitudes are similar to that in Figure 5.13 to 5.16. This implies that the gravity-induced
depth perturbation is dominant in the combined effects.

The quantitative justification can also be noted from that fact that the gravity perturbation maximally
corresponds to 𝒪(10ዅኽ%) change to the gravity, while the depth perturbation is capable of making up
to 𝒪(1%) change in the actual geophysical setting.

5.5. Conclusions from Test Cases
In the hypothetical test cases, it has been shown that the gravity perturbation scatters surface waves
as what the depth does in the adapted shallow water model. It has also been noted that the field
of wave amplitude is also associated with the gravity field, similar to the one-dimensional test cases
studied in the previous chapter.

In the physical test cases, it becomes clear that while in practice the surface waves can be altered
by the gravity perturbation, the effects are mainly attributed to the induced-changes of water depth.
Based on the adapted shallow water model, the variations of gravity in itself are too weak to make up
a huge difference for the ocean surface waves. In other words, the studies also justify the assumption
of uniform gravity for surface waves in the geophysical setting on Earth surface.
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Figure 5.10: Hypothetical Waves with Gaussian Gravity Perturbation. FWHM=ኻኼኺ m, ጂ፠  ዅኼ msᎽᎴ, wavelength=ዀኺ m.
Reference: ጂፃ  ዅኼ, ጂ፠  ኺ.

Figure 5.11: Hypothetical Waves with Gaussian Gravity Perturbation. FWHM=ኻኼኺ m, ጂ፠  ኼ msᎽᎴ, wavelength=ኻኼኺኺ m.
Reference: ጂፃ  ኼ, ጂ፠  ኺ.

5.6. Final Remarks on Surface Waves on a Two-Dimension Plane
Typically on the two-dimension plane, the surface water waves are analysed by the ray theory, which
assumes a slowly-varying medium for the wave propagation. It appears to be possible that the adapted
shallow water waves equations (3.138) can be studied by the ray theory after certain adaptations.
However, as seen in the test cases, the gravity variation on Earth is not strong enough to induce any
observable difference. Hence the detailed analysis is not performed for the purpose of this project.

Interested readers may refer to any introductory text on wave dynamics in fluid, for instance,
Pedlosky(2003), LeBlond and Mysak(1981) or Lighthill (1978), for the details of ray theory.

Readers are also reminded that the Coriolis force induced by the Earth’s rotation are neglected in the
test cases. In a more realistic modelling of large-scale ocean surface waves, the Coriolis force certainly
plays a very important role and should never be omitted. Pedlosky(2003) provides a comprehensive
introduction to the ocean surface waves in a rotating frame for interested readers.
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Figure 5.12: Hypothetical Waves with Gaussian Gravity Perturbation. FWHM=ኻኼኺ m, ጂ፠  ዅኼ msᎽᎴ, wavelength=ኻኼኺኺ m.
Reference: ጂፃ  ዅኼ, ጂ፠  ኺ.

Figure 5.13: Physical Tsunami Waves with Gaussian Gravity Perturbation. FWHM=ኺኺ km, ጂ፠  ኺ mGal, wavelength=ኾኺ
km. Reference: ጂፃ  ኺ, ጂ፠  ኺ.

Figure 5.14: Physical Tsunami Waves with Gaussian Gravity Perturbation. FWHM=ኺኺ km, ጂ፠  ዅኺ mGal, wavelength=ኾኺ
km. Reference: ጂፃ  ኺ, ጂ፠  ኺ.
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Figure 5.15: Physical Tidal Waves with Gaussian Gravity Perturbation. FWHM=ኺኺ km, ጂ፠  ኺ mGal, wavelength=ዂዀኾኺ m.
Reference: ጂፃ  ኺ, ጂ፠  ኺ.

Figure 5.16: Physical Tidal Waves with Gaussian Gravity Perturbation. FWHM=ኺኺ km, ጂ፠  ዅኺ mGal, wavelength=ዂዀኾኺ m.
Reference: ጂፃ  ኺ, ጂ፠  ኺ.

Figure 5.17: Physical Tsunami Waves with Gaussian Gravity Perturbation. FWHM=ኺኺ km, ጂ፠  ኺ mGal, ጂፃ  ኺ m,
wavelength=ኾኺ km. Reference: ጂፃ  ኺ, ጂ፠  ኺ.
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Figure 5.18: Physical Tsunami Waves with Gaussian Gravity Perturbation. FWHM=ኺኺ km, ጂ፠  ዅኺ mGal, ጂፃ  ዅኺ m,
wavelength=ኾኺ km. Reference: ጂፃ  ኺ, ጂ፠  ኺ.

Figure 5.19: Physical Tidal Waves with Gaussian Gravity Perturbation. FWHM=ኺኺ km, ጂ፠  ኺ mGal, ጂፃ  ኺ m,
wavelength=ዂዀኾኺ m. Reference: ጂፃ  ኺ, ጂ፠  ኺ.

Figure 5.20: Physical Tidal Waves with Gaussian Gravity Perturbation. FWHM=ኺኺ km, ጂ፠  ዅኺ mGal, ጂፃ  ዅኺ m,
wavelength=ዂዀኾኺ m. Reference: ጂፃ  ኺ, ጂ፠  ኺ.
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Figure 5.21: Physical Tsunami Waves with Gaussian Gravity Perturbation. FWHM=ኺኺ km, ጂ፠  ኺ mGal, ጂፃ  ኺ m,
wavelength=ኾኺ km. Reference: ጂ፠  ኺ, ጂፃ  ኺ m.

Figure 5.22: Physical Tsunami Waves with Gaussian Gravity Perturbation. FWHM=ኺኺ km, ጂ፠  ዅኺ mGal, ጂፃ  ዅኺ m,
wavelength=ኾኺ km. Reference: ጂ፠  ኺ, ጂፃ  ዅኺ m.

Figure 5.23: Physical Tidal Waves with Gaussian Gravity Perturbation. FWHM=ኺኺ km, ጂ፠  ኺ mGal, ጂፃ  ኺ m,
wavelength=ዂዀኾኺ m. Reference: ጂ፠  ኺ, ጂፃ  ኺ m.
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Figure 5.24: Physical Tidal Waves with Gaussian Gravity Perturbation. FWHM=ኺኺ km, ጂ፠  ዅኺ mGal, ጂፃ  ዅኺ m,
wavelength=ዂዀኾኺ m. Reference: ጂ፠  ኺ, ጂፃ  ዅኺ m.



6
Generalised Airy’s Linear Wave

Theory

In this chapter, Airy’s linear wave theory will be generalised for a general conservative gravitational
field. The chapter begins with a variational formalism for surface gravity waves. The linear waves will
then be studied in two-dimensional and three-dimensional space.

6.1. Derivation: Variational Formalism of Surface Gravity Waves
In this chapter, the variational formalism will be presented to derive a set of equations governing the
surface gravity waves in a fluid.

Luke (1967) considered the free surface gravity waves in incompressible, irrotational and inviscid
fluids, which allows the expression of velocity field v by a velocity potential 𝜙 such that v = ∇𝜙. He
proposed a Lagrangian variational scheme to derive both linear and non-linear waves. For a conserva-
tive gravity field g = −∇Ψ with geopotential Ψ and fluid of density 𝜌, the Lagrangian ℒ, also known as
Luke’s Lagrangian, is given by

ℒ = −∫
፭Ꮃ

፭Ꮂ
𝜌[∫

ፕ(፭)
(𝜕𝜙𝜕𝑡 +

1
2‖∇𝜙‖

ኼ +Ψ)𝑑𝑉]𝑑𝑡, (6.1)

where 𝑉(𝑡) is the control volume of fluid.
In Luke’s paper only the special case where the gravity is uniform was discussed. That is, the special

case of Ψ = 𝑔ኺ𝑧 where 𝑔ኺ is a constant and 𝑧 is the vertical coordinate in the Cartesian coordinates.
In the following discussion a general Ψ and standard Cartesian coordinates (𝑥, 𝑦, 𝑧) will be considered.

Similar to Luke’s approach, a layer of horizontally unbounded fluid with surface elevation 𝑧 =
𝜂(𝑥, 𝑦, 𝑡) and bottom-bed 𝑧 = −ℎ(𝑥, 𝑦) is considered. This leads to the Luke’s Lagrangian:

ℒ(𝜙, 𝜂) = −∫
፭Ꮃ

፭Ꮂ
𝜌[∫

ℛᎴ
(∫

᎔(፱,፲,፭)

ዅ፡(፱,፲)

𝜕𝜙
𝜕𝑡 +

1
2‖∇𝜙‖

ኼ +Ψ𝑑𝑧)𝑑𝐴]𝑑𝑡, (6.2)

where ℛኼ refers to the whole horizontal plane.
The next steps follows directly from the standard procedure of calculus of variation. Based on the

variation on velocity potential, the resulting equation is independent of the geopotential Ψ and gives:

∇ኼ𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝜕ኼ𝜙
𝜕𝑥ኼ +

𝜕ኼ𝜙
𝜕𝑦ኼ +

𝜕ኼ𝜙
𝜕𝑧ኼ = 0, (6.3)

subject to the boundary condition

at 𝑧 = −ℎ(𝑥, 𝑦): 𝜕𝜙𝜕𝑥
𝜕ℎ
𝜕𝑥 +

𝜕𝜙
𝜕𝑦
𝜕ℎ
𝜕𝑦 =

𝜕𝜙
𝜕𝑧 , (6.4a)

at 𝑧 = 𝜂(𝑥, 𝑦, 𝑡): 𝜕𝜂𝜕𝑡 +
𝜕𝜙
𝜕𝑥
𝜕𝜂
𝜕𝑥 +

𝜕𝜙
𝜕𝑦
𝜕𝜂
𝜕𝑦 =

𝜕𝜙
𝜕𝑧 . (6.4b)

95
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Meanwhile applying the variation of surface elevation gives rise to the equation containing Ψ

at 𝑧 = 𝜂(𝑥, 𝑦, 𝑡): 𝜕𝜙𝜕𝑡 +
1
2‖∇𝜙‖

ኼ +Ψ = 𝑃ፚ , (6.5)

where 𝑃ፚ is the reduced atmospheric pressure, which can be taken as 0 without loss of generality. The
detailed derivation of equations (6.3) and (6.4) can be found in Luke (1967) or Whitham’s textbook
”Linear and Nonlinear Waves” (1974). The detailed derivation of (6.5) shares the same procedure as
the standard case where Ψ = 𝑔ኺ𝑧, which can be found also in Whitham’s text.

The set of partial differential equations (6.3), (6.4) and (6.5) governs the surface gravity waves.
It provides a framework to model non-linear surface gravity waves, which will not be studied in this
thesis.

The Laplace equation (6.3) is an equivalent expression for the continuity equation of irrotational
fluid. The equation (6.5) is Bernoulli’s principle applied at the surface of the fluid, which stems from
the momentum equation of fluid. It is noted from the governing equations that the gravity field plays
a role only in (6.5), which is related to the momentum equation only.

6.2. One-Dimensional Surface Gravity Waves
6.2.1. Governing Equations for Linear Waves
The governing equations for surface waves (6.3) to (6.5) do not in general have closed-form solutions.
To obtain analytic solution, the one-dimensional linear surface gravity waves in a general conservative
gravity field will be studied first.

The one-dimensional waves are obtained by removing the 𝑦-coordinates in (6.3), (6.4) and (6.5),
which gives

𝜕ኼ𝜙
𝜕𝑥ኼ +

𝜕ኼ𝜙
𝜕𝑧ኼ = 0, (6.6)

subject to the boundary condition

at 𝑧 = −ℎ(𝑥): 𝜕𝜙𝜕𝑥
𝜕ℎ
𝜕𝑥 =

𝜕𝜙
𝜕𝑧 , (6.7a)

at 𝑧 = 𝜂(𝑥, 𝑡): 𝜕𝜂𝜕𝑡 +
𝜕𝜙
𝜕𝑥
𝜕𝜂
𝜕𝑥 =

𝜕𝜙
𝜕𝑧 , (6.7b)

and

at 𝑧 = 𝜂(𝑥, 𝑡): 𝜕𝜙𝜕𝑡 +
1
2[(

𝜕𝜙
𝜕𝑥 )

ኼ + (𝜕𝜙𝜕𝑧 )
ኼ] + Ψ = 0. (6.8)

Define 𝑧 = 𝛿𝑚(𝑥) to be the mean-sea level, such that Ψ(𝑥, 𝛿𝑚(𝑥)) = Ψኺ for some known constant
Ψኺ. For small amplitude motion |𝜂(𝑥, 𝑡)−𝛿𝑚(𝑥)| ≪ ℎ(𝑥), following the procedure given by Airy (1841),
the governing equations for linear surface wave is given by

𝜕ኼ𝜙
𝜕𝑥ኼ +

𝜕ኼ𝜙
𝜕𝑧ኼ = 0, (6.9)

subject to the linearised boundary conditions

at 𝑧 = −ℎ(𝑥): 𝜕𝜙𝜕𝑧 +
𝜕𝜙
𝜕𝑥
𝜕ℎ
𝜕𝑥 = 0, (6.10a)

at 𝑧 = 𝛿𝑚(𝑥): 𝜕𝜂𝜕𝑡 =
𝜕𝜙
𝜕𝑧 , (6.10b)

at 𝑧 = 𝛿𝑚(𝑥): 𝜕𝜙𝜕𝑡 − Ψ(𝑥, 𝜂) = 0, (6.10c)

The set of equation (6.9) and (6.10) is the governing equations for the linear surface gravity wave in
fluid. It is also a generalisation of the Airy’s linear wave theory for general conservative gravitational
field.

Unlike the standard case where the the geopotential Ψ(𝑥, 𝜂) is simply given by Ψ(𝑥, 𝜂) = 𝑔ኺ𝜂, the
geopotentialΨ is now a general function in spatial-coordinates (𝑥, 𝑧). This brings difficulty in the pursuit
of ansatz. In order to address this issue, a coordinate transformation scheme is proposed in the next
section.
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6.2.2. Motivation for the Coordinate Transformation
Recall that the geopotential Ψ(𝑥, 𝑧) satisfies the two-dimensional Laplace equation in free-space, that
is,

∇ኼΨ = 0, (6.11)

subject to suitable boundary conditions.
A classical result from complex analysis reveals that, if function 𝑞ኻ(𝑥, 𝑧) is a solution to the Laplace

equation, there exists a harmonic conjugate 𝑞ኼ(𝑥, 𝑧) that also satisfies the Laplace equation. The
function 𝑞ኼ(𝑥, 𝑧) satisfies the Cauchy-Riemann condition, namely,

𝜕𝑞ኻ
𝜕𝑥 = 𝜕𝑞ኼ

𝜕𝑧 , (6.12a)

𝜕𝑞ኼ
𝜕𝑥 = −𝜕𝑞ኻ𝜕𝑧 . (6.12b)

Note that 𝑞ኼ(𝑥, 𝑧) is unique up to a constant.
Define a time-independent orthogonal coordinate transformation (𝑥, 𝑦) → (𝑞ኻ, 𝑞ኼ), using the trans-

formation rule:

𝑞ኼ(𝑥, 𝑧) =
Ψ(𝑥, 𝑧) − Ψኺ

𝑔ኺ
, (6.13a)

𝑞ኻ(𝑥, 𝑧) = harmonic conjugate of 𝑞ኼ(𝑥, 𝑧), subject to 𝑞ኻ(0, 𝛿𝑚(0)) = 0, (6.13b)

where Ψኺ = Ψ(𝑥, 𝛿𝑚(𝑥)) is the mean-sea level potential and 𝑔ኺ is a constant which takes the value of
reference gravity.

Physically 𝑞ኼ(𝑥, 𝑦) measures the scaled potential difference at point (𝑥, 𝑦) with the mean-sea level,
which reduces into the Cartesian vertical coordinates 𝑧 in the case of uniform gravity. Meanwhile, in
the case of uniform gravity, 𝑞ኻ is reduced into the Cartesian horizontal coordinates 𝑥. Both 𝑞ኻ and 𝑞ኼ
are uniquely determined thanks to the condition in defining 𝑞ኻ.

6.2.3. Properties of the Conformal Coordinate Transformation
The very first property of the coordinate transformation is that 𝑢 and 𝑣 are orthogonal to each others.

Consider the contrapositive basis

a(ኻ) = ∇𝑞ኻ (6.14a)

a(ኼ) = ∇𝑞ኼ (6.14b)

Since the Cauchy-Riemann condition is satisfied, ∇𝑞ኻ ⋅∇𝑞ኼ = 0, which implies the orthogonality between
𝑞ኻ and 𝑞ኼ.

In addition, the Euclidean norm of ∇𝑞ኻ and ∇𝑞ኼ are equal due to the Cauchy-Riemann condition:

‖∇𝑞ኻ‖ኼ = (
𝜕𝑞ኻ
𝜕𝑥 )

ኼ
+ (𝜕𝑞ኻ𝜕𝑧 )

ኼ
= (𝜕𝑞ኼ𝜕𝑧 )

ኼ
+ ( − 𝜕𝑞ኼ𝜕𝑥 )

ኼ
= ‖∇𝑞ኼ‖ኼ, (6.15)

which implies the contrapositive basis a(ኻ) and a(ኼ) are equal in norm.
It can then been shown that the covariant basis are therefore given by

a(ኻ) =
1

‖∇𝑞ኼ‖ኼ
[𝜕𝑞ኼ𝜕𝑧 , −

𝜕𝑞ኼ
𝜕𝑥 ] =

1
‖∇𝑞ኻ‖ኼ

[𝜕𝑞ኻ𝜕𝑥 ,
𝜕𝑞ኻ
𝜕𝑧 ] (6.16)

a(ኼ) =
1

‖∇𝑞ኻ‖ኼ
[ − 𝜕𝑞ኻ𝜕𝑧 ,

𝜕𝑞ኻ
𝜕𝑥 ] =

1
‖∇𝑞ኼ‖ኼ

[𝜕𝑞ኼ𝜕𝑥 ,
𝜕𝑞ኼ
𝜕𝑧 ] (6.17)

With the explicit formulas for both the contrapositive and covariant basis, the metric tensors 𝑔።፣ and
𝑔።፣ are computed by 𝑔።፣ = a(።) ⋅ a(፣) and 𝑔።፣ = a(።) ⋅ a(፣):

𝑔ኻኻ = 𝑔ኼኼ = ‖∇𝑞ኻ‖ኼ = ‖∇𝑞ኼ‖ኼ (6.18)

𝑔ኻኻ = 𝑔ኼኼ =
1

‖∇𝑞ኻ‖ኼ
= 1
‖∇𝑞ኼ‖ኼ

(6.19)

𝑔ኻኼ = 𝑔ኼኻ = 𝑔ኻኼ = 𝑔ኼኻ = 0 (6.20)
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The quantity √𝑔 = √𝑔ኻኻ𝑔ኼኼ − 𝑔ኻኼ𝑔ኼኻ is thus given by:

√𝑔 =
1

‖∇𝑞ኻ‖ኼ
= 1
‖∇𝑞ኼ‖ኼ

(6.21)

Hence the differential operators in the transformed coordinates are well-defined.

6.2.4. Transformed Laplacian Operators and Laplace Equation
Applying the metric tensor, the Laplacian operator in the transformed coordinates is thus given by

∇ኼ𝜙 = 1
√𝑔

𝜕
𝜕𝑞ኻ

(√𝑔𝑔ኻኻ
𝜕𝜙
𝜕𝑞ኻ

+ √𝑔𝑔ኻኼ
𝜕𝜙
𝜕𝑞ኼ

) + 1
√𝑔

𝜕
𝜕𝑞ኼ

(√𝑔𝑔ኼኻ
𝜕𝜙
𝜕𝑞ኻ

+ √𝑔𝑔ኼኼ
𝜕𝜙
𝜕𝑞ኼ

)

= ‖∇𝑞ኻ‖ኼ
𝜕
𝜕𝑞ኻ

(1 ⋅ 𝜕𝜙𝜕𝑞ኻ
) + ‖∇𝑞ኼ‖ኼ

𝜕
𝜕𝑞ኼ

(1 ⋅ 𝜕𝜙𝜕𝑞ኼ
)

But since ‖∇𝑞ኼ‖ኼ = ‖∇𝑞ኻ‖ኼ, the Laplace equation is simply given by

‖∇𝑞ኼ‖ኼ[
𝜕
𝜕𝑞ኻ

( 𝜕𝜙𝜕𝑞ኻ
) + 𝜕

𝜕𝑞ኼ
( 𝜕𝜙𝜕𝑞ኼ

)] = 0

or equivalently, when ‖∇𝑞ኼ‖ ≠ 0,
𝜕ኼ𝜙
𝜕𝑞ኻኼ

+ 𝜕ኼ𝜙
𝜕𝑞ኼኼ

= 0 (6.22)

which preserves the structure of the Laplace equation in Cartesian coordinates.

6.2.5. Transformed Boundary condition
In the Cartesian coordinates, the geometry of bottom boundary 𝑧 = −ℎ(𝑥) and surface elevation
𝑧 = 𝜂(𝑥, 𝑡) can be interpreted as given by two level-set 𝑆ፁ(𝑥, 𝑧) and 𝑆(𝑥, 𝑧, 𝑡) being equal to zero:

𝑆ፁ(𝑥, 𝑧) = 𝑧 + ℎ(𝑥) = 0 (6.23)
𝑆(𝑥, 𝑧, 𝑡) = 𝑧 − 𝜂(𝑥, 𝑡) = 0 (6.24)

While the explicit expression for the inverse coordinate transformation from (𝑥, 𝑦) to (𝑞ኻ, 𝑞ኼ) is in
general absent, its existence and uniqueness is guaranteed by the implicit function theorem. Hence,
by denoting the inverse transformation by (𝑢, 𝑣) → (𝑥(𝑞ኻ, 𝑞ኼ), 𝑧(𝑞ኻ, 𝑞ኼ), it is equivalent to express the
level-sets by

�̃�ፁ(𝑞ኻ, 𝑞ኼ) = 𝑆ፁ(𝑥(𝑞ኻ, 𝑞ኼ), 𝑧(𝑞ኻ, 𝑞ኼ)) = 𝑧(𝑞ኻ, 𝑞ኼ) + ℎ(𝑥(𝑞ኻ, 𝑞ኼ)) = 0 (6.25)

�̃�(𝑞ኻ, 𝑞ኼ, 𝑡) = 𝑆(𝑥(𝑞ኻ, 𝑞ኼ), 𝑧(𝑞ኻ, 𝑞ኼ), 𝑡) = 𝑧(𝑞ኻ, 𝑞ኼ) − 𝜂(𝑥(𝑞ኻ, 𝑞ኼ), 𝑡) = 0 (6.26)

As long as the conditions of the implicit function theorem are satisfied, the level-sets �̃�ፁ(𝑞ኻ, 𝑞ኼ) = 0 and
�̃�(𝑞ኻ, 𝑞ኼ) = 0 can be expressed by using 𝑞ኼ as an independent coordinate, in other words, there exists
well-defined function ℎ̃(𝑞ኻ) and �̃�(𝑞ኻ, 𝑡) such that the level-sets �̃�ፁ(𝑞ኻ, 𝑞ኼ) and �̃�(𝑞ኻ, 𝑞ኼ) are given by

�̃�ፁ(𝑞ኻ, 𝑞ኼ) = 𝑣 + ℎ̃(𝑞ኻ) = 0 (6.27)

�̃�(𝑞ኻ, 𝑞ኼ, 𝑡) = 𝑣 − �̃�(𝑞ኻ, 𝑡) = 0 (6.28)

By considering the total time-derivative of �̃�ፁ(𝑞ኻ, 𝑞ኼ) and �̃�(𝑞ኻ, 𝑞ኼ), the boundary condition in the
transformed coordinates are thus given by

at 𝑞ኼ = −ℎ̃(𝑞ኻ):
𝜕𝜙
𝜕𝑞ኻ

𝜕ℎ
𝜕𝑞ኻ

= − 𝜕𝜙𝜕𝑞ኼ
, (6.29)

at 𝑞ኼ = �̃�(𝑞ኻ, 𝑡):
𝜕𝜂
𝜕𝑡 +

𝜕𝜙
𝜕𝑞ኻ

𝜕𝜂
𝜕𝑞ኻ

= 𝜕𝜙
𝜕𝑞ኼ

, (6.30)

at 𝑞ኼ = �̃�(𝑞ኻ, 𝑡):
𝜕𝜙
𝜕𝑡 +

1
2|∇𝜙|

ኼ − (𝑔ኺ𝑞ኼ −Ψኺ) = 𝑃ፚ (6.31)
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The arbitrary reduced pressure 𝑃ፚ can thus now be chosen as Ψኺ. Considering small-amplitude motion,
the linearised boundary condition are thus given by

at 𝑞ኼ = −ℎ̃(𝑞ኻ):
𝜕𝜙
𝜕𝑞ኻ

𝜕ℎ
𝜕𝑞ኻ

= − 𝜕𝜙𝜕𝑞ኼ
, (6.32a)

at 𝑞ኼ = 0:
𝜕�̃�
𝜕𝑡 =

𝜕𝜙
𝜕𝑞ኼ

, (6.32b)

at 𝑞ኼ = 0:
𝜕𝜙
𝜕𝑡 − 𝑔ኺ�̃� = 0 (6.32c)

Readers are reminded that the mean-sea level 𝑦 = 𝛿𝑚(𝑥) is mapped into 𝑣 = 0 under the coordinate
transformation.

6.2.6. Short Summary
Together with the Laplace equation in the transformed coordinates (6.22), the boundary conditions
(6.32) indicate that in the transformed orthogonal coordinates (𝑞ኻ, 𝑞ኼ), surface waves are governed by
exactly the same set of equations as in Cartesian coordinates with uniform gravity. Hence all results
obtained from the standard Cartesian coordinates can be mapped one-to-one to the scenario with a
spatially varying yet conservative gravity field, after the coordinate transformation suggested in (6.13).

The slight difference is, however, the interpretation of the physics. In the standard Cartesian co-
ordinates with uniform gravity, the quantity water depth, which is the physical vertical length between
the surface elevation and bottom boundary, is identified as a parameter to control the wave dynam-
ics. In the transformed coordinates, however, it is clear that the true quantity which plays the role is
the gravitation potential difference between the surface and bottom along the line of gravity. Figure
6.1 exemplifies a possible coordinates configuration. The coordinate systems for the adapted shallow
water model is also exemplified in Figure 6.2 for reference.

Figure 6.1: Example: Conformal Coordinate System

The difference, as seen in Figure 6.1 and 6.2, lies in the orthogonality of the coordinates.
However, readers are reminded that the conformal coordinate transformation only works in two-

dimensional settings, thus enabling the studies of one-dimensional surface waves.

6.3. Test Cases for One-Dimensional Linear Waves
In this section, several test cases will be proposed to visualise the linear wave on a general conservative
gravitational field.
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Figure 6.2: Example: Coordinates for Adapted Shallow Water Model

6.3.1. Example 1: Gravity with Inverse-law in 2D
Consider a solid circle of radius 𝑅 with centre lying at the origin of the 2-dimensional plane, as in
Figure 6.3. Solving the Poisson equation for the gravitational potential gives rise to a geopotential

Ψ(𝑥, 𝑧) = 𝑔ኺ ln(√𝑥ኼ + 𝑧ኼ),

in the domain {(𝑥, 𝑦) ∶ 𝑥ኼ + 𝑧ኼ ≥ 𝑅ኼ}, where 𝑔ኺ is a positive constant.
This also gives rises to a central-forced gravitational field F(𝑥, 𝑧) = −∇Ψ:

F(𝑥, 𝑧) = −𝑔ኺ(
𝑥

𝑥ኼ + 𝑧ኼ �̂� +
𝑧

𝑥ኼ + 𝑧ኼ �̂�), (6.33)

whose direction is always pointing towards the origin and magnitude ‖F(𝑥,𝑧)‖ = ፠Ꮂ
√፱Ꮄዄ፳Ꮄ

is decaying

inversely with the distance 𝑟 = √𝑥ኼ + 𝑧ኼ. Note that �̂� and �̂� are the unit vectors in the 𝑥 and 𝑧-direction
in the Cartesian plane.

Consider a fixed volume of fluid attached to the surface of the circle. The hydrostatic balance will
keep the fluid in the domain 𝑅 ≤ √𝑥ኼ + 𝑧ኼ ≤ 𝑅፬, for some positive constant 𝑅፬

The coordinate transformation proposed in (6.13) are then given by

𝑞ኻ(𝑥, 𝑧) = tanዅኻ(𝑥𝑧 ) (6.34a)

𝑞ኼ(𝑥, 𝑧) = ln(√𝑥
ኼ + 𝑧ኼ
𝑅፬

) (6.34b)

An explicit expression for the inverse coordinate transformation can be obtained. Manipulating the
expression gives

𝑥
𝑧 = tan(𝑞ኻ) (6.35)

𝑥ኼ + 𝑧ኼ = [𝑅፬𝑒፪Ꮄ]
ኼ, (6.36)

which suggests the inverse transformation by

𝑥(𝑞ኻ, 𝑞ኼ) = 𝑅፬𝑒፪Ꮄ sin(𝑞ኻ) (6.37a)
𝑧(𝑞ኻ, 𝑞ኼ) = 𝑅፬𝑒፪Ꮄ cos(𝑞ኻ) (6.37b)
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Figure 6.3: Schematic Sketch for Example 1 - a 2D Earth

Using the forward and inverse coordinate transformation given in equation (6.34) and (6.37), the
physical domain

{(𝑥, 𝑧) ∶ √𝑥ኼ + 𝑧ኼ ≥ 𝑅}

can be mapped into the domain

{(𝑞ኻ, 𝑞ኼ) ∶ −𝜋 < 𝑞ኻ ≤ 𝜋, 𝑞ኼ ≥ −ℎ̃ኺ},

where ℎ̃ኺ = ln(ፑᑤፑᑔ ) is denoted to simplify the notation.
It is noted that 𝑞ኻ is chosen to be bounded to ensure the one-to-one correspondence between the

physical coordinates and transformed coordinates. This additionally imposes the periodic boundary
condition on the solution of Laplace equation (6.22), which requires that both the surface elevation
𝜂(𝑞ኻ, 𝑡) and velocity potential 𝜙(𝑞ኻ, 𝑞ኼ, 𝑡) in the transformed coordinates satisfy

𝜂(−𝜋, 𝑡) = 𝜂(𝜋, 𝑡) (6.38)
𝜙(−𝜋, 𝑞ኼ, 𝑡) = 𝜙(𝜋, 𝑞ኼ, 𝑡), (6.39)

in additional to the boundary conditions given in (6.32):

at 𝑞ኼ = −:
𝜕𝜙
𝜕𝑞ኼ

= 0, (6.40a)

at 𝑞ኼ = 0:
𝜕𝜂
𝜕𝑡 =

𝜕𝜙
𝜕𝑞ኼ

, (6.40b)

at 𝑞ኼ = 0:
𝜕𝜙
𝜕𝑡 − 𝑔ኺ𝜂 = 0. (6.40c)
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These altogether suggest the monochromatic surface waves with amplitude 𝑎, angular frequency
𝜔 and wave number 𝑘 in the transformed coordinates (𝑞ኻ, 𝑞ኼ), whose surface elevation 𝑞ኼ = 𝜂(𝑞ኻ, 𝑡)
and velocity potential 𝜙(𝑞ኻ, 𝑞ኼ, 𝑡) read

𝜂(𝑞ኻ, 𝑡) = 𝑎 cos(𝑘𝑞ኻ − 𝜔𝑡) (6.41a)

𝜙(𝑞ኻ, 𝑞ኼ, 𝑡) = (
𝜔
𝑘 𝑎)

cosh(𝑘(𝑞ኼ + ℎ̃ኺ))
sinh(𝑘ℎ̃ኺ)

sin(𝑘𝑞ኻ − 𝜔𝑡) (6.41b)

subject to the dispersion relation

𝜔ኼ = 𝑔ኺ𝑘 tanh(𝑘ℎ̃ኺ) (6.42)

and the boundary condition

cos(𝑘𝜋 − 𝜔𝑡) = cos(−𝑘𝜋 − 𝜔𝑡), ∀𝑡 ⟺ 0 = 2 sin(2𝑘𝜋) sin(𝜔𝑡), ∀𝑡
⟺ 2𝑘𝜋 = 𝑛𝜋

⟺ 𝑘 = 𝑛
2 ,

with 𝑛 being an integer. This indicates that the wave number 𝑘 is quantised, limiting the modes of
wave available, which is not surprising since the fluid remains attached on a circular domain. One can
thus also denote the wave number by 𝑘፧ = ፧

ኼ to emphasise its quantised nature.
Translating from the transformed coordinates (𝑞ኻ, 𝑞ኼ) to the physical coordinates (𝑥, 𝑦) via equation

(6.37) reveals that the surface elevation 𝑞ኼ = 𝜂(𝑞ኻ, 𝑡) is described by

ln(√𝑥
ኼ + 𝑦ኼ
𝑅፬

) = 𝑎 cos(𝑘፧ tanዅኻ(
𝑥
𝑦) − 𝜔𝑡) (6.43)

To make the expression more readable, the standard polar coordinates is now introduced

𝑟ኼ = 𝑥ኼ + 𝑦ኼ (6.44)

tan𝜃 = 𝑦
𝑥 (6.45)

By noting the identity tanዅኻ(𝑥)+ tanዅኻ( ኻ፱ ) = 𝑠𝑔𝑛(𝑥)

ኼ , where 𝑠𝑔𝑛(𝑥) is the sign function, the expres-

sion for surface elevation (6.41a) becomes

𝑟 = 𝜂፫(𝜃, 𝑡) = 𝑅፬ exp [𝑎 cos(𝜔𝑡 + 𝑘፧𝜃 − 𝑘፧𝑠𝑔𝑛(𝜃)
𝜋
2 )]. (6.46)

Note that the constant quantity −𝑘፧𝑠𝑔𝑛(𝜃)ኼ corresponds to the phase shift which can be cancelled
by shifting the time variable 𝑡. Hence the surface elevation is described by

𝑟 = 𝜂፫(𝜃, 𝑡) = 𝑅፬ exp [𝑎 cos(𝜔𝑡 + 𝑘፧𝜃)]. (6.47)

Note that by fixing 𝜃, the quantity exp [𝑎 cos(𝜔𝑡 + 𝑘፧𝜃)] oscillates around 1 from exp(−𝑎) and
exp(𝑎) in time. This indicates that the periodic variation of surface elevation takes place around of
𝑟 = 𝑅፬, albeit not in a linear sinusoidal manner.

One can also reinterpret the equation (6.47) in the framework of harmonic waves. For the wave
amplitude 𝑎 in the transformed coordinates to be sufficiently small, the quantity exp [𝑎 cos(𝜔𝑡+𝑘፧𝜃)]
can be expanded as

exp [𝑎 cos(𝜔𝑡 + 𝑘፧𝜃)] = 1 +
ጼ

∑
።ኻ

𝑎።
𝑖! cos

።(𝜔𝑡 + 𝑘፧𝜃) (6.48)
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such that the surface elevation is given by

𝑟 = 𝜂፫(𝜃, 𝑡) = 𝑅፬[1 +
ጼ

∑
።ኻ

𝑎።
𝑖! cos

።(𝜔𝑡 + 𝑘፧𝜃)]. (6.49)

This indicates the presence of higher-order harmonics in the oscillation, when the waves are viewed in
the physical coordinates.

Note that the coefficients of the 𝑖-th order harmonics cos።(𝜔𝑡 + 𝑘፧𝜃), 𝑖 ≥ 2, given by ፚᑚ
።! , decrease

with the order 𝑖. Hence to first-order one can approximate the surface elevation also by

𝑟 = 𝜂፫(𝜃, 𝑡) ≈ 𝑅፬[1 + 𝑎 cos(𝜔𝑡 + 𝑘፧𝜃)] (6.50)

or equivalently

𝑟 − 𝑅፬ ≈ 𝐴 cos(𝜔𝑡 + 𝑘፧𝜃), (6.51)

where 𝐴 = 𝑅፬𝑎 can be considered as the wave amplitude of the linear wave.

6.3.2. Example 2a: Vertical Downwards Gravity with Perturbation

Figure 6.4: Schematic Sketch for Example 2

Consider a horizontal layer of fluid over a bottom boundary given by 𝑧 = −ℎ(𝑥). The uniform
gravity field due to the Earth can be regarded as g፮ = −𝑔ኺ�̂�, which points vertically downwards in the
𝑧-direction.

Suppose, in addition, there is an excess point mass located at (𝑥, 𝑧) = (0, −𝑑) under the bottom
boundary, that is, 𝑑 > ℎ(0). This leads to an additional perturbing gravity field �g given by

�g(𝑥, 𝑧) = −(𝛿𝑚(0) + 𝑑)
ኼ

𝛿𝑚(0) 𝐺Ꭸ(
𝑥

𝑥ኼ + (𝑧 + 𝑑)ኼ �̂� +
𝑧

𝑥ኼ + (𝑧 + 𝑑)ኼ �̂�), (6.52)

such that also at the mean-sea level at 𝑥 = 0, the perturbing gravity is simply given by −𝐺Ꭸ �̂�. The
magnitude of the perturbing gravity ‖�g‖ is assumed to be much smaller than 𝑔ኺ. For simplicity denote
𝑔Ꭸ = (᎑፦(ኺ)ዄ፝)Ꮄ

᎑፦(ኺ) 𝐺Ꭸ. Figure 6.4 gives a schematic sketch for the configuration.
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The total gravity field g(𝑥, 𝑧) is given by the sum of the uniform component g፮ and the perturbing
component �g:

g(𝑥, 𝑧) = − 𝑔Ꭸ𝑥
𝑥ኼ + (𝑧 + 𝑑)ኼ �̂� − (𝑔ኺ +

𝑔Ꭸ𝑧
𝑥ኼ + (𝑧 + 𝑑)ኼ)�̂�, (6.53)

which suggests the geopotential Ψ(𝑥, 𝑧) is given by

Ψ(𝑥, 𝑧) = 𝑔ኺ𝑧 +
𝑔Ꭸ
2 ln(𝑥ኼ + (𝑧 + 𝑑)ኼ) + 𝐶, (6.54)

where 𝐶 is arbitrary constant.
The constant 𝐶 is chosen by demanding Ψኺ = Ψ(𝑥, 𝛿𝑚(𝑥)) = 0, where 𝑧 = 𝛿𝑚(𝑥) is the mean-sea

level. The transformation rules in equation (6.13) suggest the new set of coordinates (𝑞ኻ, 𝑞ኼ) by

𝑞ኻ(𝑥, 𝑧) = 𝑥 +
𝑔Ꭸ
𝑔ኺ

tanዅኻ( 𝑥
𝑧 + 𝑑 ) (6.55)

𝑞ኼ(𝑥, 𝑧) = 𝑧 +
𝑔Ꭸ
2𝑔ኺ

ln(𝑥ኼ + (𝑧 + 𝑑)ኼ) (6.56)

Suppose, in addition, the bottom solid boundary of the fluid 𝑧 = −ℎ(𝑥) is chosen such that the
geopotential Ψ(𝑥,−ℎ(𝑥)) also remains constant on the boundary. In other words, 𝑧 = −ℎ(𝑥) coincides
with an equipotential line of the geopotential, such that the line 𝑧 = −ℎ(𝑥) can be mapped into 𝑞ኼ = −ℎኺ
with ℎኺ being a constant.

Hence the boundary conditions suggested in (6.40) is also applicable in this example. This gives
rises to the same monochromatic wave solution as in (6.41a) and (6.41b):

𝜂(𝑞ኻ, 𝑡) = 𝑎 cos(𝑘𝑞ኻ − 𝜔𝑡) (6.57)

𝜙(𝑞ኻ, 𝑞ኼ, 𝑡) = (
𝜔
𝑘 𝑎)

cosh(𝑘(𝑞ኼ + ℎ̃ኺ))
sinh(𝑘ℎ̃ኺ)

sin(𝑘𝑞ኻ − 𝜔𝑡) (6.58)

subject to the dispersion relation

𝜔ኼ = 𝑔ኺ𝑘 tanh(𝑘ℎ̃ኺ). (6.59)

Unfortunately an explicit inverse coordinate transformation from (𝑞ኻ, 𝑞ኼ) to physical coordinates
(𝑥, 𝑧) is absent, which makes the analysis complicated.

Furthermore, both coordinate functions 𝑞ኻ(𝑥, 𝑧) and 𝑞ኼ(𝑥, 𝑧) do not converge as 𝑟 = √𝑥ኼ + 𝑦ኼ → ∞,
which makes the two limiting cases 𝑟 → 0 and 𝑟 → ∞ impotent in distinguishing different types of wave
behaviour.

This motivates the studies of next example, which is based on a non-physical scenario.

6.3.3. Example 2b: Vertical Downwards Gravity with Perturbation
Consider the same physical setting in Example 2a except for the perturbing geopotential 𝛿Ψ(𝑥, 𝑧) that
satisfies the Laplace equation, which is given by

𝛿Ψ(𝑥, 𝑧) = −𝐺Ꭸ𝑥
𝑥ኼ + (𝑧 + 𝑑)ኼ . (6.60)

This physically corresponds to a dipole of mass and negative-mass centred at (𝑥, 𝑧) = (0, −𝑑). However,
negative-mass is unlikely to be relevant to gravitational field on Earth.

Despite the physical irrelevance, the perturbing gravity field �g is still considered:

�g(𝑥, 𝑧) = −𝐺Ꭸ(
𝑥ኼ − (𝑧 + 𝑑)ኼ
[𝑥ኼ + (𝑧 + 𝑑)ኼ]ኼ �̂� +

2𝑥(𝑧 + 𝑑)
[𝑥ኼ + (𝑧 + 𝑑)ኼ]ኼ �̂�), (6.61)

where 𝐺Ꭸ is a positive constant. This suggests for |𝑥| > |𝑧 + 𝑑|, both the horizontal and vertical
component of the perturbation gravity is always negative. This motivates a domain of interest given
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by {(𝑥, 𝑧) ∶ 𝑥 ≥ 𝑧 + 𝑑 > 0}, where it appears as if there is a certain attractive mass on the left side of
the domain of interest.

The magnitude of the perturbing gravity ‖�g‖ given by

‖�g‖ = 𝐺Ꭸ
𝑥ኼ + (𝑧 + 𝑑)ኼ (6.62)

is assumed to be much smaller than 𝑔ኺ.
Hence the total gravity field g(𝑥, 𝑧) is given by the sum of the uniform component g፮ and �g:

g(𝑥, 𝑧) = −𝐺Ꭸ(𝑥
ኼ − (𝑧 + 𝑑)ኼ)

[𝑥ኼ + (𝑧 + 𝑑)ኼ]ኼ �̂� − (𝑔ኺ +
2𝐺Ꭸ𝑥(𝑧 + 𝑑)

[𝑥ኼ + (𝑧 + 𝑑)ኼ]ኼ)�̂�, (6.63)

which suggests the geopotential Ψ(𝑥, 𝑧):

Ψ(𝑥, 𝑧) = 𝑔ኺ𝑧 −
𝐺Ꭸ𝑥

𝑥ኼ + (𝑧 + 𝑑)ኼ + 𝐶, (6.64)

where 𝐶 is an arbitrary constant.
The constant 𝐶 in the geopotential is chosen by demanding Ψኺ = Ψ(𝑥, 𝛿𝑚(𝑥)) = 0, where 𝑧 =

𝛿𝑚(𝑥) is the mean-sea level. Hence 𝐶 = −𝑔ኺ𝛿𝑚(0). The transformation rules in equation (6.13)
result in the new set of coordinates (𝑞ኻ, 𝑞ኼ):

𝑞ኻ(𝑥, 𝑧) = 𝑥 −
𝐺Ꭸ
𝑔ኺ

𝑧 + 𝑑
𝑥ኼ + (𝑧 + 𝑑)ኼ +

𝐺Ꭸ
𝑔ኺ(𝛿𝑚(0) + 𝑑)

(6.65a)

𝑞ኼ(𝑥, 𝑧) = 𝑧 −
𝐺Ꭸ
𝑔ኺ

𝑥
𝑥ኼ + (𝑧 + 𝑑)ኼ − 𝛿𝑚(0) (6.65b)

Closed-form expressions for the inverse 𝑥 = 𝑥(𝑞ኻ, 𝑞ኼ) and 𝑧 = 𝑧(𝑞ኻ, 𝑞ኼ) actually exists and can be
obtained by symbolic calculation using Maple or Mathematica. Yet the expression is lengthy and will
not be presented here.

Consider again the case that the bottom solid boundary of the fluid 𝑧 = −ℎ(𝑥) coincides with an
equipotential line of the geopotential, such that the line 𝑧 = −ℎ(𝑥) can be mapped into 𝑞ኼ = −ℎኺ with
ℎኺ being a constant. Note that 𝑑 is assumed to be 𝑑 < ℎ(𝑥) such that the excess mass is embedded
beneath the fluid.

The boundary conditions suggested in (6.40) becomes applicable. This gives rise to the monochro-
matic wave in (6.41a) and (6.41b):

𝜂(𝑞ኻ, 𝑡) = 𝑎 cos(𝑘𝑞ኻ − 𝜔𝑡) (6.66)

𝜙(𝑞ኻ, 𝑞ኼ, 𝑡) = (
𝜔
𝑘 𝑎)

cosh(𝑘(𝑞ኼ + ℎ̃ኺ))
sinh(𝑘ℎ̃ኺ)

sin(𝑘𝑞ኻ − 𝜔𝑡) (6.67)

subject to the dispersion relation

𝜔ኼ = 𝑔ኺ𝑘 tanh(𝑘ℎ̃ኺ) (6.68)

Rewriting the equation for the surface elevation 𝑞ኼ = 𝜂(𝑞ኻ, 𝑡) = 𝑎 cos(𝑘𝑞ኻ − 𝜔𝑡) by the physical
coordinates (𝑥, 𝑧) gives

𝑧 − 𝐺Ꭸ
𝑔ኺ

𝑥
𝑥ኼ + (𝑧 + 𝑑)ኼ − 𝛿𝑚(0) = 𝑎 cos [𝑘(𝑥 −

𝐺Ꭸ
𝑔ኺ

𝑧 + 𝑑
𝑥ኼ + (𝑧 + 𝑑)ኼ ) − 𝜔𝑡 + 𝜃፤], (6.69)

where 𝜃፤ = 𝑘 ፆᒠ
፠Ꮂ(᎑፦(ኺ)ዄ፝) is a constant phase which can be eliminated by shifting the time 𝑡.

It is noted from the coordinate functions (6.65) that, in the far-field |𝑥| ≫ (𝑧 + 𝑑) where the very
weak perturbing gravity field points towards the negative 𝑥-direction, 𝑞ኻ and 𝑞ኼ can be approximated
by

𝑞ኻ(𝑥, 𝑧) ≈ 𝑥 +
𝐺Ꭸ

𝑔ኺ(𝛿𝑚(0) + 𝑑)
(6.70)

𝑞ኼ(𝑥, 𝑧) ≈ 𝑧 +
𝐺Ꭸ
𝑔ኺ𝑥

− 𝛿𝑚(0)𝑔ኺ
(6.71)
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Hence it is expected that in the far-field the surface elevation in (6.69) can be described approxi-
mately by

𝑧 ≈ 𝑎 cos [𝑘𝑥 − 𝜔𝑡 + 𝜃፤] −
𝐺Ꭸ
𝑔ኺ𝑥

+ 𝛿𝑚(0)𝑔ኺ
(6.72)

For sufficiently large |𝑥| ≫ ፠ᒠ
፠Ꮂፚ , the term

፠ᒠ
፠Ꮂ፱ becomes negligible to 𝑎 cos(⋅), then the wave number

𝑘 and wave amplitude 𝑎 the transformed coordinates (𝑞ኻ, 𝑞ኼ), can be interpreted as also the wave
number and amplitude of surface waves in the physical coordinates (𝑥, 𝑧) in the far-field.

6.3.4. Example 2b: Numerical Visualisation and Comparison with Adapted
Shallow Water Model

In order to examine the actual surface elevation in the physical coordinates, the level-set (𝑥, 𝑧) described
by (6.69) and the mean-sea level 𝑞ኼ(𝑥, 𝑧) = 0 is visualised numerically using several configurations.

Figure 6.5: Surface Wave on fluid, spatially varying gravity field. Wavelength ኺ m.

Figure 6.5 to 6.8 gave the instantaneous surface elevation and mean-sea level in some hypothetical
scenarios at different wavelengths 𝐿. The second subplots in the figures plots the spatially varying
gravity at the mean-sea level. The depth of the fluid layer is 100 m in the far-field when gravity
perturbation is absent. The difference among the figure are only the wavelength (and thus period) of
the waves, which are described in the caption of each figure.

It can be concluded from all the figures, in regions with stronger gravity and thus higher and steeper
mean-sea level, an observer on a floating ship who aligns his local orthogonal coordinates along the
mean-sea level would observe a longer wavelength yet smaller wave amplitude than the counterpart
in the far-field. This is consistent with the results derived from the shallow water model.

In order to provide a more quantitative justification, the wave amplitude is compared with the
theoretical wave amplitude given by the shallow water model.
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Figure 6.6: Surface Wave on fluid, spatially varying gravity field. Wavelength ኼኺኺ m.

It has been shown in (4.35) that the wave amplitude in shallow water scales with 𝑔ዅ
Ꮅ
Ꮆ፳ , where 𝑔፳(𝑥)

is the effective gravity at position 𝑥, on the surface of fluid with uniform water depth. It is recalled that
in the shallow water model the horizontal coordinates are not transformed. The wave amplitude 𝑎(𝑥)
at location 𝑥 has been defined by

𝑎(𝑥) =max{|𝜂(𝑥, 𝑡) − 𝛿𝑚(𝑥)|, ∀𝑡} (6.73)

where 𝑧 = 𝜂(𝑥, 𝑡) is the surface elevation.
In order to make a fair comparison, the same definition of wave amplitude is applied to the surface

elevation described by (6.69) in the generalised Airy’s linear wave theory. The wave amplitudes are
compared with the theoretical prediction by the shallow water models at different wavelengths and
are given in Figure 6.9 to 6.12. It can be noted from the figures when the wavelengths of surface
waves increases, such that the fluid is getting more ’shallow’, the adapted shallow water model gains
consistency with the generalised Airy’s theory.

Readers are reminded that no unphysical approximation is made in the generalised Airy’s linear
wave theory. Thus this model is believed to be a more accurate model to describe surface waves in a
general conservative gravity field. The consistency thus indirectly justifies the various approximations
used in the derivation of the adapted shallow water model.

REMARK: Strictly speaking, the wavenumber 𝑘 derived the should also be compared with the wavenum-
ber field 𝑘 = 𝑘(𝑥) from the adapted shallow water model. However a straightforward comparison is
difficult since the surface waves derived by the generalised Airy’s theory are described implicitly by
the coordinates (𝑥, 𝑧). It becomes unclear on how to define the wavenumber field 𝑘 = 𝑘(𝑥) in the
framework of generalised Airy’s linear theory. Due to the time constraints, such analysis is omitted in
this project. Further research is invited to explore this areas.
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Figure 6.7: Surface Wave on fluid, spatially varying gravity field. Wavelength ኻኺኺኺ m.

6.3.5. Conclusions from the One-Dimensional Waves
In the test cases, the surface waves in quiescent fluid with uniform ’generalised’ water depth were
studied. The effects of water depth on the surface waves are thus eliminated from the analysis.

In example 1, the scenario in which the gravity varies only in the transverse direction of waves is
studied. It can be noted that the linear wave in the transformed coordinates can mapped non-linearly
to derive the actual waves in the physical coordinates.

In example 2, a weak and spatially varying gravity perturbation is added to the uniform gravity
field. Example 2a reveals the limitation of the choice of perturbing gravity field in the two-dimensional
space. Example 2b shows the possibility of deriving insights from unphysical gravity field by confining
a suitable domain of interest.

The result from example 2b shows qualitative consistency with the adapted shallow water model,
which suggested the surface waves to be damped but elongated in region with stronger gravity in
the physical space. Quantitative justification for the consistency in the wave amplitudes has also be
provided.

6.3.6. Remarks on the General Variable Bathymetric Profiles
In the test cases only the uniform bathmetric profiles, namely, water depth ℎ(𝑥) = ℎኺ being constant
after the coordinate transformation, is considered.

In the general case of a variable water depth ℎ(𝑥), after applying once the coordinate transforma-
tion via (6.13) to reduce the spatially-varying gravity field into an uniform one, an additional step of
conformal terrain-following coordinate transformation can be applied to derive the ansatz for the sur-
face waves. Ruban(2004, 2005) discussed the detailed mathematical formalism of the more general
time-dependent coordinate transformation via spectral methods. Viott(2013) outlined the numerical
methods to solve the resulting system of equations based on non-linear iterative solver.

In this thesis since the gravity field is concerned, the details of variable bottom profiles will be
omitted. Interested readers may refer to the literature suggested above.
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Figure 6.8: Surface Wave on fluid, spatially varying gravity field. Wavelength ኼኺኺኺ m.

6.4. Discussion on the Three-Dimensional Potential
It is natural to seek a three-dimensional generalisation to the coordinate transformation schemes dis-
cussed to analyse the surface waves. It will be shown in an example that, while an analogous method
to perform orthogonal coordinate transformation exists, the invariance property of the Laplacian op-
erator cannot be preserved in general. The framework on which the coordinate transformation takes
place will be presented in the next section before proceeding to an illustrating example.

6.4.1. coordinate transformation in Three-Dimensional Space
Analogous to the two-dimensional problem discussed in previous section, given a geopotentialΨ(𝑥, 𝑦, 𝑧)
which satisfies the Laplace equation ∇ኼΨ = 0, it is attempted to seek a coordinate transformation
(𝑥, 𝑦, 𝑧) → (𝑞ኻ, 𝑞ኼ, 𝑞ኽ) such that the following three properties hold:

1. The transformation (𝑥, 𝑦, 𝑧) → (𝑞ኻ, 𝑞ኼ, 𝑞ኽ) is uniquely defined and the inverse uniquely exists in
the interested domain.

2. The coordinates are orthogonal, that is ∇𝑞። ⋅ ∇𝑞፣ = 𝛿።፣, where 𝛿።፣ is the Kronecker delta

3. The scalar function 𝑞ኽ(𝑥, 𝑦, 𝑧) = ኻ
፠Ꮂ (Ψ(𝑥, 𝑦, 𝑧)−Ψኺ), such that 𝑞ኽ(𝑥, 𝑦, 𝑧) physically measures the

scaled potential difference from the mean-sea level Ψኺ

The Property 3 directly gives the explicit formula of 𝑞ኽ. Hence it suffices to determine 𝑞ኻ and 𝑞ኼ.

6.4.2. Trial 1: Clebsch Potential
For any divergence-free vector field u in ℛኽ with

∇ ⋅ u = 0,
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Figure 6.9: Comparison of adapted shallow water model and generalised Airy’s wave theory. Wavelength ኺ m.

it can be proved via techniques from algebraic topology that there exists a vector potential A such that

∇ × A = u.

The detailed proof can be obtained from intermediate-level Analysis texts.
It is reminded that the vector potential A is not unique. For any scalar function 𝑓, the vector field

Aᖣ = A+ ∇𝑓 is also a vector potential for u. This property is known as ’Gauge invariance’.
Clebsch (1857) showed that locally the vector potential A can be decomposed into

A = 𝜂∇𝜉,

where 𝜂(𝑥, 𝑦, 𝑧) and 𝜉(𝑥, 𝑦, 𝑧) are two scalar functions. It follows that

u = ∇𝜂 × ∇𝜉,

which shows the the vector u is locally parallel to the intersection line of the surfaces 𝜂 = constant and
𝜉 = constant.

Based on the definition given in the previous section, since 𝑞ኽ(𝑥, 𝑦, 𝑧) satisfies the Laplace equation,
the gradient of 𝑞ኽ, ∇𝑞ኽ, is a divergence-free vector field. For the field A to be the vector potential of
∇𝑞ኽ such that ∇ × A = ∇𝑞ኽ, it then follows the coordinates function 𝑞ኻ(𝑥, 𝑦, 𝑧) and 𝑞ኼ(𝑥, 𝑦, 𝑧) can be
chosen by

A = 𝑞ኻ∇𝑞ኼ (6.74)

which leads to

∇𝑞ኽ = ∇𝑞ኻ × ∇𝑞ኼ, (6.75)

If, in addition, ∇𝑞ኻ and ∇𝑞ኼ are orthogonal, (6.75) implies that ∇𝑞ኻ, ∇𝑞ኼ and ∇𝑞ኽ are mutually
orthogonal. Furthermore, considering the norm of vectors in (6.75), it can be noted that ‖∇𝑞ኽ‖ =
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Figure 6.10: Surface Wave on fluid, spatially varying gravity field. Wavelength ኼኺኺ m.

‖∇𝑞ኻ‖‖∇𝑞ኼ‖. In other words, unless all three vectors ∇𝑞። are unit vector, the coordinates will not be
equal in norm.

It is noted that the two-dimensional conformal coordinates discussed in (6.13) is a special case
under Clebsch’s theory. If 𝑞ኻ can be chosen such that 𝑞ኻ(𝑥, 𝑦) is independent of the vertical Cartesian
coordinates 𝑧, by choosing 𝑞ኼ(𝑥, 𝑦, 𝑧) = 𝑧, it follows that the coordinates 𝑞ኽ(𝑥, 𝑦) is also independent of
𝑧. The coordinates 𝑞ኻ and 𝑞ኽ satisfy the Cauchy-Riemann condition (6.12) automatically by the choice
of 𝑞ኼ.

6.4.3. Example: Point-mass in three-dimensional space
Consider the gravitational potential induced by a sphere of radius 𝑅 centred at the origin. To simplify
the notation, standard spherical coordinates (𝑟, 𝜃, 𝜙) with unit vectors �̂�, �̂�, �̂� will be used. By proper
rescaling the physical length 𝑟, the geopotential function Ψ(𝑟) is simply given by

Ψ(𝑟) = −𝑔ኺ𝑟 (6.76)

outside the sphere 𝑟 > 𝑅, where 𝑔ኺ is some positive constant. Suppose 𝑟 = 𝑅፬ is the mean-sea level.
It follows that the coordinate function 𝑞ኽ(𝑟, 𝜃, 𝜙) is simply given by

𝑞ኽ(𝑟, 𝜃, 𝜙) = −
1
𝑟 +

1
𝑅፬

(6.77)

The contrapositive basis a(ኽ) = ∇𝑞ኽ is thus given by

a(ኽ) = ∇𝑞ኽ =
1
𝑟ኼ �̂� (6.78)
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Figure 6.11: Surface Wave on fluid, spatially varying gravity field. Wavelength ኻኺኺኺ m.

It can be shown that a possible vector potential A(𝑟, 𝜃, 𝜙) to ∇𝑞ኽ such that ∇𝑞ኽ = ∇ × A is given by

A(𝑟, 𝜃, 𝜙) = 1 − cos(𝜃)
𝑟 sin(𝜃) �̂�, with sin(𝜃) ≠ 0 (6.79)

To decompose A into the form 𝑞ኻ∇𝑞ኼ, a natural choice is done by

𝑞ኻ = 1 − cos(𝜃) = 2 sinኼ(𝜃2) (6.80a)

𝑞ኼ = 𝜙. (6.80b)

It then also follows that the corresponding contrapositive basis a(።) are given by

a(ኻ) = ∇𝑞ኻ =
sin(𝜃)
𝑟 �̂� (6.81)

a(ኼ) = ∇𝑞ኼ =
1

𝑟 sin(𝜃) �̂�. (6.82)

It is noted that with this choice of 𝑞።, the contrapositive basis a(።) are all mutually orthogonal.
It then follows also that the covariant basis a(።) are given by

a(ኻ) =
𝑟

sin(𝜃) �̂� (6.83)

a(ኼ) = 𝑟 sin(𝜃)�̂� (6.84)

a(ኽ) = 𝑟ኼ�̂�. (6.85)
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Figure 6.12: Surface Wave on fluid, spatially varying gravity field. Wavelength ኼኺኺኺ m.

The metric tensor 𝑔።፣ = a(።) ⋅ a(፣) and 𝑔።፣ = a(።) ⋅ a(፣) are therefore given by

𝑔ኻኻ = sinኼ(𝜃)
𝑟ኼ , 𝑔ኼኼ = 1

𝑟ኼ sinኼ(𝜃)
, 𝑔ኽኽ = 1

𝑟ኾ (6.86)

𝑔ኻኻ =
𝑟ኼ

sinኼ(𝜃)
, 𝑔ኼኼ = 𝑟ኼ sinኼ(𝜃), 𝑔ኽኽ = 𝑟ኾ (6.87)

and the quantity √𝑔 is given by

√𝑔 = √𝑔ኻኻ𝑔ኼኼ𝑔ኽኽ = 𝑟ኾ (6.88)

The Laplacian operator in the (𝑞ኻ, 𝑞ኼ, 𝑞ኽ) are thus given by

∇ኼ𝑓 = 1
√𝑔

𝜕
𝜕𝑞ኻ

(√𝑔𝑔ኻኻ
𝜕𝑓
𝜕𝑞ኻ

) + 1
√𝑔

𝜕
𝜕𝑞ኼ

(√𝑔𝑔ኼኼ
𝜕𝑓
𝜕𝑞ኼ

) + 1
√𝑔

𝜕
𝜕𝑞ኽ

(√𝑔𝑔ኽኽ
𝜕𝑓
𝜕𝑞ኽ

)

= 1
𝑟ኾ

𝜕
𝜕𝑞ኻ

(𝑟ኾ sin
ኼ(𝜃)
𝑟ኼ

𝜕𝑓
𝜕𝑞ኻ

) + 1
𝑟ኾ

𝜕
𝜕𝑞ኼ

(𝑟ኾ 1
𝑟ኼ sinኼ(𝜃)

𝜕𝑓
𝜕𝑞ኼ

) + 1
𝑟ኾ

𝜕
𝜕𝑞ኽ

(𝑟ኾ 1𝑟ኾ
𝜕𝑓
𝜕𝑞ኽ

)

= 1
𝑟ኾ

𝜕
𝜕𝑞ኻ

(𝑟ኼ sinኼ(𝜃) 𝜕𝑓𝜕𝑞ኻ
) + 1

𝑟ኾ
𝜕
𝜕𝑞ኼ

( 𝑟ኼ
sinኼ(𝜃)

𝜕𝑓
𝜕𝑞ኼ

) + 1
𝑟ኾ
𝜕ኼ𝑓
𝜕𝑞ኽኼ

To simplify the notation, considering the coordinate transformation 𝑞ኽ in (6.77), it is also possible to
recast

𝑞ᖣኽ = 𝑞ኽ −
1
𝑅፬

(6.89)
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such that 𝑟 and Ꭷ
Ꭷ፪Ꮅ can be expressed in terms of

𝑟 = −1
𝑞ᖣኽ

(6.90)

𝜕
𝜕𝑞ኽ

= 𝜕
𝜕𝑞ᖣኽ

(6.91)

To recast sinኼ(𝜃) in terms of (𝑞ኻ, 𝑞ኼ, 𝑞ኽ), applying trigonometric identities and using (6.80) give

sinኼ(𝜃) = 4 cosኼ(𝜃2) sin
ኼ(𝜃2) = 4(1 −

𝑞ኻ
2 )
𝑞ኻ
2 = (2 − 𝑞ኻ)𝑞ኻ (6.92)

Therefore the Laplacian operator ∇ኼ𝑓 in the (𝑞ኻ, 𝑞ኼ, 𝑞ኽ) coordinates are given by

∇ኼ𝑓 =𝑞ᖣኽኼ
𝜕
𝜕𝑞ኻ

((2 − 𝑞ኻ)𝑞ኻ
𝜕𝑓
𝜕𝑞ኻ

) + 𝑞ᖣኽኼ

(2 − 𝑞ኻ)𝑞ኻ
𝜕ኼ𝑓
𝜕𝑞ኼኼ

+ 𝑞ᖣኽኾ
𝜕ኼ𝑓
𝜕𝑞ᖣኽኼ

Hence the Laplace equation (6.3) for the velocity potential 𝜙 is rewritten as

∇ኼ𝜙 = 𝜕
𝜕𝑞ኻ

((2 − 𝑞ኻ)𝑞ኻ
𝜕𝑓
𝜕𝑞ኻ

) + 1
(2 − 𝑞ኻ)𝑞ኻ

𝜕ኼ𝑓
𝜕𝑞ኼኼ

+ 𝑞ᖣኽኼ
𝜕ኼ𝑓
𝜕𝑞ᖣኽኼ

= 0 (6.93)

subject to the linearised boundary conditions

at 𝑞ኽ = −ℎ̃ኺ:
𝜕𝜙
𝜕𝑞ᖣኽ

= 0, (6.94a)

at 𝑞ኽ = 0:
𝜕𝜙
𝜕𝑞ᖣኽ

= 𝜕𝜂
𝜕𝑡 . (6.94b)

together with an addition equation for surface elevation 𝑞ኽ = 𝜂(𝑞ኻ, 𝑞ኼ, 𝑡):

at 𝑞ኽ = 0:
𝜕𝜙
𝜕𝑡 + 𝑔ኺ𝜂 = 0, (6.95)

Readers are reminded that 𝑞ኽ and 𝑞ᖣኽ are different merely by a shift proposed in (6.89).
Equation (6.93) reveals that the Laplacian operator does not preserve the structure as that in the

Cartesian coordinates.
As a first trial, consider a time-independent separable solution 𝑓 to equation (6.93), that is, take

𝑓(𝑞ኻ, 𝑞ኼ, 𝑞ᖣኽ) = 𝑄ኻ(𝑞ኻ)𝑄ኼ(𝑞ኼ)𝑄ኽ(𝑞ᖣኽ), this gives rises to the partial differential equation:

(2 − 𝑞ኻ)𝑞ኻ
𝑄ኻ(𝑞ኻ)

𝑑
𝑑𝑞ኻ

((2 − 𝑞ኻ)𝑞ኻ
𝑑𝑄ኻ
𝑑𝑞ኻ

) + 1
𝑄ኼ(𝑞ኼ)

𝑑ኼ𝑄ኼ
𝑑𝑞ኼኼ

+ (2 − 𝑞ኻ)𝑞ኻ𝑞
ᖣ
ኽ
ኼ

𝑄ኽ(𝑞ᖣኽ)
𝑑ኼ𝑄ኽ
𝑑𝑞ᖣኽኼ

= 0 (6.96)

For constant 𝑚, consider ፝ᎴፐᎴ፝፪ᎴᎴ
= −𝑚ኼ𝑄ኼ(𝑞ኼ) such that 𝑄ኼ(𝑞ኼ) is sinusoidal, the Laplace equation can

then be separated into three ordinary differential equations:

𝑑
𝑑𝑞ኻ

((2 − 𝑞ኻ)𝑞ኻ
𝑑𝑄ኻ
𝑑𝑞ኻ

) = [−𝑙(𝑙 + 1) + 𝑚ኼ
(2 − 𝑞ኻ)𝑞ኻ

]𝑄ኻ(𝑞ኻ), (6.97a)

𝑑ኼ𝑄ኼ
𝑑𝑞ኼኼ

= −𝑚ኼ𝑄ኼ(𝑞ኼ), (6.97b)

𝑑ኼ𝑄ኽ
𝑑𝑞ᖣኽኼ

= 𝑙(𝑙 + 1)
𝑞ᖣኽኼ

𝑄ኽ(𝑞ᖣኽ), (6.97c)

where 𝑙 is a constant.
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After some attempts of solving, it turns out that the solution of (6.97) is equivalent to the separable
solution of Laplace equation in the standard spherical coordinates by recasting (𝑞ኻ, 𝑞ኼ, 𝑞ኽ) into (𝑟, 𝜃, 𝜙),
which reads

𝑓(𝑟, 𝜃, 𝜙) =
ጼ

∑
፥ኺ

፥

∑
፦ኺ

(𝐴፥𝑟፥ + 𝐵፥𝑟(ዅ፥ዅኻ))𝑃፦፥ (cos(𝜃))[𝑆፦ sin(𝑚𝜙) + 𝐶፦ cos(𝑚𝜙)] (6.98)

where 𝑃፦፥ are the associated Legendre polynomials and 𝐴፥ , 𝐵፥ , 𝑆፦ , 𝐶፦ are some constants. This ansatz
is known as spherical harmonics, which are discussed together with its applications extensively in many
texts, such as Lebedev(1965).

In the particular case when𝑚 = 0, which suggests azimuthal symmetry in the ansatz, it appears that
the order of the Legendre function 𝑙 plays the role of wavenumber 𝑘 for sinusoidal-types of waves. For
integer 𝑘, the term cos(𝑘𝜃) can always be expressed uniquely by linear combination 𝑃ኺ፥ (cos(𝜃)), 𝑙 ≤ 𝑘
with the aid of Chebyshev polynomial. The details can be found in texts on special functions, for
example Lebedev(1965).

Conceptually, if the surface elevation 𝑞ኽ = 𝜂(𝑞ኻ, 𝑞ኼ, 𝑡) is known everywhere at a given 𝑡, a boundary-
value problem to the Laplace equation (6.93) with pure Neumann boundary conditions (6.94) is formed.
It then follows the constants 𝐴፥ , 𝐵፥ , 𝑆፦ , 𝐶፦ and thus the instantaneous velocity potential can be deter-
mined. Meanwhile the additional equation (6.95) can fix the uniqueness issue of the solution resulted
from the ill-posed pure Neumann boundary condition.

Unfortunately this approach by separation of variables does not appear to possess the capability
in deriving a wave-like and inseparable ansatz for the surface elevation 𝜂 = 𝜂(𝑘ኻ𝑞ኻ + 𝑘ኼ𝑞ኼ − 𝜔𝑡) with
arbitrary constants 𝑘ኻ and 𝑘ኼ.

Further research shall be devoted to confirm the existence of such solutions and, if exists, an
algorithm to obtain the solutions. The following sections outline alternative directions to obtain another
set of coordinates, which may bring insights in constructing the wave-like ansatz.

6.4.4. Clebsch Potential: the Gauge Invariance
Readers are reminded again that vector potential A is unique only up to the Gauge transformation. It
may be possible to choose a scalar function ℎ such that the coordinates function 𝑞ኻ and 𝑞ኼ, given by

A+ ∇ℎ = 𝑞ኻ∇𝑞ኼ, (6.99)

fulfill the additional conditions

‖∇𝑞ኻ‖ = ‖∇𝑞ኼ‖ = 𝑔ኻኻ = 𝑔ኼኼ = 𝐺. (6.100)

In that case, the Laplacian operator becomes

∇ኼ𝑓 = 1
√𝑔

𝜕
𝜕𝑞ኻ

(√𝑔𝐺
𝜕𝑓
𝜕𝑞ኻ

) + 1
√𝑔

𝜕
𝜕𝑞ኼ

(√𝑔𝐺
𝜕𝑓
𝜕𝑞ኼ

) + 1
√𝑔

𝜕
𝜕𝑞ኽ

(√𝑔𝑔ኽኽ
𝜕𝑓
𝜕𝑞ኽ

) (6.101)

which separates the transverse direction (𝑞ኻ, 𝑞ኼ) of surface waves from the longitudinal direction 𝑞ኽ.
If, in additional, both

√𝑔𝐺 = √𝑔𝐺(𝑞ኽ) (6.102)

√𝑔𝑔ኽኽ = √𝑔𝐺(𝑞ኽ) (6.103)

are only functions of 𝑞ኽ, then there exists symmetry in 𝑞ኻ and 𝑞ኼ, namely 𝑞ኻ and 𝑞ኼ are interchangeable
while preserving the Laplacian operator. The symmetry seems to provide a gateway to guarantee the
existence of an arbitrarily-oriented wavevector �⃗� = (𝑘ኻ, 𝑘ኼ) on the 𝑞ኻ-𝑞ኼ plane, which is a condition of
the hyperbolicity of systems of partial differential equations.

However, the existence of ℎ is not guaranteed and there is a lack of general procedure to obtain
ℎ. It is also uncertain whether it is possible to choose a coordinate such that 𝑞ኻ and 𝑞ኼ possess the
symmetry properties described in the previous paragraph. Further research shall be conducted to
rigorously understand the properties and explore this area.
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6.4.5. Trial 2: Geometric Inspection
In this section another trial to choose proper coordinates is presented. Although it appears to be also
a failing attempt, it does provide insight for the right direction to move forward.

Readers are reminded that for a given coordinate 𝑞ኽ, the goal has always been to seek two additional
mutually-orthogonal coordinates 𝑞ኻ, 𝑞ኼ which avoid cross-terms in the transformed Laplace equation.
While the approach via Clebsch potential effectively generates the orthogonal coordinates, it does not
seem to be effective in representing the physics in a mathematically concise manner.

For the particular example of point-mass geopotential, an alternative approach to propose the
coordinate transformation is given by a direct inspection of the algebraic and geometry properties of
the transformation. The inspection will be presented in this section.

Recall the coordinates function 𝑞ኽ is given by (6.77)

𝑞ኽ(𝑟, 𝜃, 𝜙) = −
1
𝑟 +

1
𝑅፬
,

which gives a contrapositive basis a(ኽ):

a(ኽ) = ∇𝑞ኽ =
1
𝑟ኼ �̂�

It can be noted that a(ኽ) is parallel to the unit vector �̂�. It is known that the unit vector �̂� is orthonormal
to �̂� and �̂�. This suggests that, by choosing

𝑞ኻ = 𝑞ኻ(𝜃) = ∫
𝑑𝜃

sin(𝜃) =
1
2 ln(

1 − cos(𝜃)
1 + cos(𝜃)) (6.104)

𝑞ኼ = 𝑞ኼ(𝜙) = 𝜙 (6.105)

which makes

a(ኻ) = ∇𝑞ኻ =
1

𝑟 sin(𝜃) �̂� (6.106)

a(ኼ) = ∇𝑞ኼ =
1

𝑟 sin(𝜃) �̂�, (6.107)

the contrapositive basis are mutually orthogonal. An additional property that a(ኻ) and a(ኼ) are equal in
norm is also guaranteed. The covariant basis are then given by

a(ኻ) = 𝑟 sin(𝜃)�̂� (6.108)

a(ኼ) = 𝑟 sin(𝜃)�̂� (6.109)

a(ኽ) = 𝑟ኼ�̂� (6.110)

The metric tensor are computed and given by

𝑔ኻኻ = 𝑔ኼኼ = 1
𝑟ኼ sinኼ(𝜃)

; 𝑔ኽኽ = 1
𝑟ኾ (6.111)

𝑔ኻኻ = 𝑔ኼኼ = 𝑟ኼ sinኼ(𝜃); 𝑔ኽኽ = 𝑟ኾ (6.112)

with the quantity √𝑔 = √𝑔ኻኻ𝑔ኼኼ𝑔ኽኽ = 𝑟ኾ sinኼ(𝜃).
By recasting 𝑞ኽ into 𝑞ᖣኽ in the same manner in (6.89), the inverse transformation from (𝑞ኻ, 𝑞ኼ, 𝑞ᖣኽ)

are given by

tanh(𝑞ኻ) = − cos(𝜃) (6.113)
𝑞ኼ = 𝜙 (6.114)

𝑞ᖣኽ =
−1
𝑟 (6.115)

after some algebraic manipulation. It follows also that sinኼ(𝜃) = 1 − cosኼ(𝜃) = 1 − tanhኼ(𝑞ኻ) =
ኻ

coshᎴ(፪Ꮃ)
.
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Hence the Laplacian operator is given by

∇ኼ𝑓 = 1
𝑟ኾ sinኼ(𝜃)

[ 𝜕𝜕𝑞ኻ
(𝑟ኼ 𝜕𝑓𝜕𝑞ኻ

) + 𝜕
𝜕𝑞ኼ

(𝑟ኼ 𝜕𝑓𝜕𝑞ኼ
) + 𝜕

𝜕𝑞ኽ
( sinኼ(𝜃) 𝜕𝑓𝜕𝑞ኽ

)] (6.116)

= 𝑞ᖣኽኾ coshኼ(𝑞ኻ)[
1
𝑞ᖣኽኼ

𝜕ኼ𝑓
𝜕𝑞ኼኻ

+ 1
𝑞ᖣኽኼ

𝜕ኼ𝑓
𝜕𝑞ኼኼ

+ 1
coshኼ(𝑞ኻ)

𝜕ኼ𝑓
𝜕𝑞ኽᖣኼ

] (6.117)

The Laplacian equation on function 𝑓(𝑞ኻ, 𝑞ኼ, 𝑞ኽ) can thus be expressed by

𝜕ኼ𝑓
𝜕𝑞ኼኻ

+ 𝜕
ኼ𝑓
𝜕𝑞ኼኼ

+ 𝑞ᖣኽኼ

coshኼ(𝑞ኻ)
𝜕ኼ𝑓
𝜕𝑞ኽᖣኼ

= 0. (6.118)

Considering again the the separable solution 𝑓(𝑞ኻ, 𝑞ኼ, 𝑞ኽ) = 𝑄ኻ(𝑞ኻ)𝑄ኼ(𝑞ኼ)𝑄ኽ(𝑞ᖣኽ) results in three ordi-
nary differential equations

𝑑ኼ𝑄ኻ
𝑑𝑞ኻኼ

= [ −𝑙(𝑙 + 1)
coshኼ(𝑞ኻ)

+ 𝑚ኼ]𝑄ኻ(𝑞ኻ), (6.119a)

𝑑ኼ𝑄ኼ
𝑑𝑞ኼኼ

= −𝑚ኼ𝑄ኼ(𝑞ኼ), (6.119b)

𝑑ኼ𝑄ኽ
𝑑𝑞ᖣኽኼ

= 𝑙(𝑙 + 1)
𝑞ᖣኽኼ

𝑄ኽ(𝑞ᖣኽ), (6.119c)

which turns out to give an equivalent ansatz as (6.97) after recasting the coordinates into the stan-
dard spherical coordinates (𝑟, 𝜃, 𝜙). In other words, with this seemingly ’better’ set of coordinates
(𝑞ኻ(𝜃), 𝑞ኼ(𝜙), 𝑞ኽ(𝑟)), the ansatz to the Laplace equation one can seek is no different from the ansatz
by choosing the standard coordinates (𝑟, 𝜃, 𝜙).

This failing example highlights again the choice of coordinates actually implicitly restricts the ansatz
one can obtain. With simple adaptation of the spherical coordinates, for example by (𝑞ኻ(𝜃), 𝑞ኼ(𝜙), 𝑞ኽ(𝑟)),
it is very unlikely to generate an insightful ansatz. This again motivates the further studies outlined in
section 6.4.4 for a general coordinate transformation given by (𝑞ኻ(𝑟, 𝜃, 𝜙), 𝑞ኼ(𝑟, 𝜃, 𝜙), 𝑞ኽ(𝑟)) satisfying
the additional conditions (6.100) and (6.102).

6.5. Short Conclusions
In this chapter Airy’s linear wave theory is generalised to deal with spatially non-uniform conservative
gravitational field in two and three-dimensional space.

In the two dimensional space, an explicit scheme of coordinate transformation has been proposed
to map the non-uniform conservative gravitational field into a uniform one, enabling the use of classical
results to analyse surface gravity waves in fluid. It has also been demonstrated in test cases that the
generalised linear wave theory is consistent with the adapted shallow water discussed in Chapter 3 in
the long-wave limit.

In the three dimensional space, however, the magic does not work in a straightforward manner. It
remains questionable whether a three-dimensional spatially-varying conservative field can be mapped
into a uniform field. Several attempts have been made to create the coordinate transformation scheme
in a special case but unfortunately unsuccessful. The reason of the failure has been analysed and new
directions have been proposed for further research.





7
Conclusions and Further Research

Directions

In this thesis, the effects of non-uniformity of gravity field on the fluid surface waves are studied
analytically and numerically.

In chapter 3 to 5 the shallow water long waves are studied. With the aid of both analytical and nu-
merical studies, it has been demonstrated that the actual variation of gravity field on Earth solely is not
critical to surface waves in the ocean, despite all the possible changes in wave amplitude, wavenumber
and wave scattering features induced by the gravity.

Despite this, it has been also illustrated that the sea-surface topography induced by the non-uniform
gravity can possibly affect the wave dynamics, especially in waves scattering, via the changes in the
time-averaged water depth. This implies that while it remains justifiable to assume constant gravity
remains, the spatial variation of time-averaged surface elevation due to gravity on the ocean shall
not be neglected. Hence the classical shallow water models remains applicable after properly taking
account of the water depths. This also reveals the equivalence between a surface mountain in a non-
uniform gravitatonal field and a seabed pit at the bottom in a uniform gravitational field, when it comes
to surface waves dynamics.

In chapter 6 the generalised Airy’s linear wave theory provided a qualitative justification to the
seemingly unrealistic approximations and assumptions used in the derivation of adapted shallow water
model. Unfortunately, the generalisation which builds upon conformal mapping is by-far only limited
to the two-dimensional space. Further research is needed for the three-dimensional generalisation,
in areas including the existence, uniqueness and algorithmic procedures for the three-dimensional
orthogonal mapping.

Another unanswered question includes the analytic aspects of two-dimensional waves scattering in
the adapted shallow water model, which appears to be possibly analysed by the standard techniques
for waves scattering in general heterogeneous medium.

While it appears to be clear that the gravity force on the ocean is too weak to alter the surface
waves, the theory developed in this thesis is not confined to surface waves on the ocean. In principle,
it applies to fluid surface waves in any conservative and weakly non-linear force fields. It is therefore
expected that analogous examples could be sought for in other physical scenarios, for instance, on
planets with stronger variation of gravity pull, in charged fluid in conservative electromagnetic fields
and so on.

A setback of this project is that the theories developed lack experimental or empirical verification.
While the gravity variation on Earth is too weak to result in any observable changes in practice, the
variation of restoring force to fluid surface waves can possibly be blown up in laboratory environments.
This may be achieved by using electromagnetic forces for charged fluid. Another possible direction to
conduct the experiment is by Direct Navier-Stokes simulation computationally. The validation of the
theories propose a new topic for further research.

119





Bibliography

[1] A. Adcroft, J. Marshall and K. Emanuel. Lecture Notes on Atmospheric and Oceanic Modeling. Freely
retrieve from http:www-paoc.mit.edu12.950_modelingnotesindex.htm. MIT.

[2] G.B. Airy. Tides and waves. Encyclopaedia Metropolitana. Mixed Sciences. 3:396, 1841.

[3] F. Barthelmes. Definition of functionals of the geopotential and their calculation from spherical
harmonic models. Tech. rep., Helmholtz Centre Potsdam, GFZ, 2009.

[4] L.Brillouin. La mecanique ondulatoire de Schroedinger: une methode generale de resolution par
approximations successives. Comptes Rendus de l’Academie des Sciences, 1926.

[5] A. Clebsch. Uber eine allgemeine Transformation der hydrodynamischen Gleichungen. J Reine
Angew Math 54:293-313, 1857.

[6] S.S. Hough. On the Application of Harmonic Analysis to the Dynamical Theory of the Tides. Part
I. On Laplace’s ’Oscillations of the First Species,’ and on the Dynamics of Ocean Currents. Philos.
Trans. R. Soc, A. 189:201-257, 1897.

[7] H. Jeffrey. On certain approximate solutions of linear differential equations of the second order.
Proceedings of the London Mathematical Society. 23: 428-436, 1924.

[8] H.A. Kramers.Wellenmechanik und halbzaehlige Quantisierung. Zeitschrift fuer Physik. 39 (10-11):
828-840, 1926.

[9] P.H. LeBlond, L.A. Mysak. Waves in the Ocean. Elsevier, 1981.

[10] N.N. Lebedev. Special Functions and Their Applications. Prentice-Hall. Englewood Cliffs,
N.J:308pp, 1965.

[11] R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002.

[12] J.C. Luke. A Variational Principle for a Fluid with a Free Surface. Journal of Fluid Mechanics. 27
(2): 395-397, 1967.

[13] L.R. Maas. Topographic filtering and reflectionless transmission of long waves. J. Phys. Ocean.,
27: 195-202, 1996.

[14] J. Marshall and R.A. Plume. Atmosphere, Ocean and Climate Dynamics: An Introductory Text.
Academic Press, 2007.

[15] J. Pedlosky. Geophysical Fluid Dynamics. Springer-Verlag New York, 1979.

[16] J. Pedlosky. Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer
Science & Business Media, 2003.

[17] V.P. Ruban. Water waves over a strongly undulanting bottom.. Phys. Rev. E, 70:066302, 2004.

[18] V.P. Ruban.Water waves over a time-dependent bottom: Exact description for 2D potential flows.
Physics Letter A. 340:194-200, 2005.

[19] D.L. Turcotte, G. Schubert. Geodynamics. Cambridge University Press, 2002.

[20] C. Viotti. D. Dutykh. F. Dias. The Conformal-mapping Method for Surface Gravity Waves in the
Presence of Variable Bathymetry and Mean Current. Procedia IUTAM: VOL11. IUTAM Symposium
on Nonlinear Interfacial Wave Phenomena from the Micro- to the Macro-Scale, 2013.

121



122 Bibliography

[21] G. Wentzel. Eine Verallgemeinerung der Quantenbedingungen f¼r die Zwecke der Wellen-
mechanik. Proceedings of the London Mathematical Society. 23: 428-436.

[22] P. Wesseling. Principles of Computational Fluid Dynamics. Springer Science & Business Media,
2001


	Introduction
	Basis Terminology
	Governing Equations
	Equations of Motion in a Non-rotating Coordinate System
	Equations of Motion in a Rotating Coordinate System

	Transformation of Coordinates
	Notations
	Transformation of scalar fields
	Transformation of vector fields
	Transformation of equations


	Adapted Shallow Water Model
	Basic Definitions
	Properties of the Geopotential Height
	Vertical Gradient of the Geopotential Height
	Z-transformation
	Inverse Z-transformation

	Definition of Water Depth
	Classical Water Depth
	Adapted Water Depth
	A First-order Approximation to the Adapted Water Depth

	Transformation of equations
	Additional simplifications
	Incompressiblity
	Horizontal Gradient of Geopotential
	Hydrostatic approximation

	The Adapted Continuity Equation
	An Exact Adapted Continuity Equation
	A Zeroth-Order Approximation

	Adapted Horizontal Momentum Equation
	Adapted Momentum Equation under the Hydrostatic Approximation
	Explicit Expression for the Jacobian term
	Explicit Computation for the Jacobian term
	Physical Interpretation of the Jacobian term 

	Characteristic Scale Analysis of the Continuity Equation
	Notation of the Characteristic Scales
	Validity of Approximations
	Dimensionless Continuity Equation

	Characteristic Scale Analysis of the Momentum Equation
	The scale of the term D uhdt
	The scale of the non-linear pressure gradient terms
	The scale of the Jacobian term
	Short Conclusions

	Derivation of Adapted Shallow Water Equations
	Boundary Conditions
	Adapted Depth-Averaged Continuity Equation
	Adapted Momentum Equation

	Derivation of Adapted Wave Equation in Shallow Water
	The Second-Order Wave Equation
	The Mathematical Characteristics of the Adapted Shallow Water Wave
	Conservation of Potential Vorticity


	One-Dimensional Adapted Wave Equation
	Diagnostic Formalism for the One-dimensional Adapted Wave Equation
	Case 1: Oscillatory Mode E>V
	Case 2: Growth/Decay mode E<V
	The Physical Meanings of E and V
	Final Remarks on the Definitions of Diagnostic Variables E and V

	Methodology of Constructing Test Cases
	Test Case 1: Uniform Water Depth
	Rationale and Configuration of Test Case 1
	Test Case 1a: Uniform Water Depth + Exponential Gravity Perturbation
	Test Case 1b: Uniform Water Depth + Gaussian Gravity Perturbation

	Test case 2: Reflection and Scattering of Surface Waves by Varying Gravity
	Rationale and Configuration of Test Case 2
	Test case 2a: Gravity Step
	Test case 2b: Gravity Well
	Short Conclusions from Test case 2

	Test Case 3: Non-Flat Sea-Surface Topography
	Rationale and Configuration of Test Case 3
	Test case 3a: Exponential Water Depth + Exponential Gravity Perturbation
	Test case 3b: Gaussian Water Depth + Gaussian Gravity Perturbation
	Short Conclusions from Test case 3

	Test Case 4: Global Variation of Gravity
	Rationale and Configuration of Test Case 4
	Test Case 4a: Surface Waves on an Arc
	Short Conclusions from Test case 4

	Conclusions from One-Dimensional Adapted Shallow Water Waves

	Two-Dimensional Adapted Wave Equation
	Diagnostic Formalism: Limitations
	Test Cases and Numerical Simulations
	Rationale and Limitations
	Methodology and Configurations of Test Cases

	Test case 1: Hypothetical Surface Waves
	Test case 1a: Depth Perturbation vs Uniform Gravity and Depth
	Test case 1b: Gravity Perturbation vs Uniform Gravity and Depth
	Test case 1c: Gravity Perturbation vs Depth Perturbation

	Test case 2: Physical Surface Waves
	Test case 2a: Gravity Perturbation vs Uniform Gravity and Depth
	Test case 2b: Gravity and Depth Perturbation vs Uniform Gravity and Depth
	Test case 2c: Gravity and Depth Perturbation vs Uniform Gravity and Depth Perturbation

	Conclusions from Test Cases
	Final Remarks on Surface Waves on a Two-Dimension Plane

	Generalised Airy's Linear Wave Theory
	Derivation: Variational Formalism of Surface Gravity Waves
	One-Dimensional Surface Gravity Waves
	Governing Equations for Linear Waves
	Motivation for the Coordinate Transformation
	Properties of the Conformal Coordinate Transformation
	Transformed Laplacian Operators and Laplace Equation
	Transformed Boundary condition
	Short Summary

	Test Cases for One-Dimensional Linear Waves
	Example 1: Gravity with Inverse-law in 2D
	Example 2a: Vertical Downwards Gravity with Perturbation
	Example 2b: Vertical Downwards Gravity with Perturbation
	Example 2b: Numerical Visualisation and Comparison with Adapted Shallow Water Model
	Conclusions from the One-Dimensional Waves
	Remarks on the General Variable Bathymetric Profiles

	Discussion on the Three-Dimensional Potential
	coordinate transformation in Three-Dimensional Space
	Trial 1: Clebsch Potential
	Example: Point-mass in three-dimensional space
	Clebsch Potential: the Gauge Invariance
	Trial 2: Geometric Inspection

	Short Conclusions

	Conclusions and Further Research Directions
	Bibliography

