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Chapter 1
Introduction

In the Netherlands, large areas of the land along the North Sea lie below mean Sea
level. The North Sea is characterized by strong tides and storm surges which have
strong impact on Dutch coast. Another important aspect is that the coast is open. It
has many inlets since the country serves as last passage way of the three main river
systems (Rhine, Meuse and Scheldt) before they enter into the North Sea.

Considering the geophysical conditions and the fact that large areas of the land
lie below mean sea level, it is very important to protect the country against flooding.
On the other hand, these waters are used for drinking water, fishing, transport and for
similar kind of activities. In predicting the effects of the various activities of interests
along the Dutch coast and to use the rivers, estuaries and seain a safe and economical
way, numerical flow modeling plays an important role. It is also an important part of
successful water management.

Figure 1.1: Eastern Scheldt barrier at North Sea during storm

1



2 Chapter 1. Introduction

The numerical models are conceptual approximations that describe physical sys-
tems by means of mathematical equations. So the applicability of the numerical mod-
els is actually dependent on how closely these mathematicalequations approximate
the physical phenomenon. Although in the last few years the computational resources
have grown immensely but the approximation scale is always related to the available
computing power.

For the last few decades computers have been fast enough to model tidal flow using
large numerical flow models. The predictions made by these numerical flow models
always contain errors due to the numerical approximation and the fact that a part of
the inputs for these models is not known accurately (e.g. true depth, bottom friction,
open boundaries, etc). The model results can be improved by identifying these uncer-
tain parameters using real observations.One method that assimilates observations data
into a model simulation to estimate uncertain parameters isdata assimilation. The
main objective of the research presented in this thesis is toexamine and develop ef-
ficient methods with low computational costs to identify theuncertain parameters in
the numerical flow models.

This chapter serves as an introduction to the work presentedin the thesis. Section
1.1 briefly explains the storm surge forecasting system in the Netherlands. Section 1.2
covers the basic concepts of data assimilation. Section 1.3highlights the importance
of using model reduction and more specifically Proper Orthogonal Decomposition.
Section 1.4 gives a description of the motivation of the workpresented as well as an
overview of the thesis.

1.1 Storm surge forecasting

In the Netherlands there is a long tradition of building dikes and dams to protect the
country against floods. When a storm develops and the wind stirs up the waves, the
Dutch coastal area can become flooded. The last time this happened on a large scale
was around fifty five years ago. On 1st February 1953, the Dutch coast was hit by a
very strong storm surge that inundated large areas in the western part of the country.
The damage was enormous and nearly two thousand people died.More than 150,000
hectares of land were flooded and tens of thousands of live stocks were killed. The
damage to buildings, dikes, dams and other infrastructure was huge ([36]).

In order to prevent such a catastrophe in the future the DutchGovernment intro-
duced a plan that aimed at reinforcing the water defences andshortening the coastline
by closing estuaries with large dams. This plan became knownas the Delta Plan [28].

This huge project aimed at protecting the coast in a manner that reduced the risk
of a disaster such as the 1953 flood to a probability of one in 104 years for the most
densely populated areas. However, the Delta Plan was not just limited to the coastal
areas but stretched along the rivers all the way up to the German border. The key rec-
ommendation of the Delta Plan was the full closure of EasternScheldt with a regular
dam to create a closed coastline (www.eh-resources.org/floods.html).

The reinforcement of dikes in the river area of the Netherlands began in 1960′s.
Soon this kind of river dike reinforcement attracted heavy criticism from the local
population. Concerns regarding economical and ecologicalissues were raised by dif-
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ferent social groups. People were concerned that the uniquesalt water environment of
the Eastern Scheldt would cease to exist. Specifically, not only the environment, but
also the fishing industry would suffer from a dam.

In 1976, the Dutch government agreed to an alternative plan that the unique fresh-
water environment and the favourable fishery conditions would be maintained. Thus,
instead of building a closed dam, a move able storm surge barrier was built. Sixty two
openings, each forty metres wide, were installed to allow asmuch salt water through
as possible. These openings are closed when the water level is higher than a safety
threshold to protect the land from the water. The New Waterway movable storm surge

Figure 1.2: The Eastern Scheldt storm surge barrier, or Oosterschelde. (photo by Rob
Broek/iStockPhoto.com)

barrier was the final element of the Delta project. This stormsurge barrier was the
largest hydraulic project constructed in the Netherlands.It is nearly as long as the
Eiffel tower in Paris and weighs four times as much. This storm surge barrier together
with dikes reinforcement protects around 1 million people in the province of South
Holland from severe storm surges in the North Sea.

One of the major reasons for the construction of a movable barrier at New Water-
way is the enormous economical activity at the Rotterdam port. This barrier connects
the North Sea with this port. The port of Rotterdam is directly situated on the North
Sea and is the biggest seaport in Europe. The port serves as the gateway to European
market and has an annual throughput of more than 400 million tonnes of goods. The
port and surrounding industrial area stretch over a length of 40 kilometres and cover
around 10,000 hectares. Considering the economical activity at the port, the movable
storm surge barrier should be closed only in extreme situation.

The above discussion demonstrates the importance of movable storm surge bar-
riers to fulfil the safety, economical and ecological demands. In addition to better
defence against flooding from the North Sea, the warning system was also improved.
It was decided that in the case of severe storms the dikes should be staffed in time
to prevent them from breaching. The Dutch storm surge warning service (SVSD) in
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close cooperation with Royal Netherlands Meteorological Institute (KNMI) is respon-
sible for the water level predictions. Accurate water levelforecasts at least six hours
ahead are required for timely closure of the movable storm surge barriers in Eastern
Scheldt and New Waterway. Besides being required for the closure of these movable
barriers, water level predictions are also required for raising alarms in extreme situ-
ations. These alarms are used to ensure that the people can have sufficient time to
evacuate from the area in case of flood prediction.

Figure 1.3: Storm surge barrier at the New Waterwey. (photo taken from Microsoft
Encarta Online Encyclopaedia 2008)

Since mid 1980′s these forecasts are based on numerical hydrodynamic model
called the Dutch Continental Shelf Model (DCSM). The model describes how the wa-
ter level and velocities are related and evolve in time as a response to the wind forcing
exerted on the sea surface as well as to the tidal waves comingfrom the Atlantic Ocean.
A large scale numerical model such as DCSM usually suffers from inaccurately known
parameters or boundary conditions. Contrary to the numerical model, which covers
the whole area and time interval of interest, measurements (observations) are usually
sparse. Typically, there are only few points in the model area where the measurements
are available. The measurements are often quite accurate. Moreover measurements
are expensive and several quantities cannot be measured at all.

Numerical flow models and observations are usually applied separately to obtain
information about the water levels and currents. However, it seems logical to tune
the model by adapting some of the uncertain model parametersto obtain a better fit
with available measurements. One method to assimilate measurements data into a
model simulation to get a better estimate of the uncertain model parameters is data
assimilation which is main topic of the following chapters of this thesis
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1.2 Data assimilation and model calibration

Data assimilation (DA) is a method in which the observationsof the state of a system
are combined with the results from numerical model to produce accurate estimates of
all the current (and future) state variables of the system. Adata assimilation system
consists of three components: a set of observations, a dynamical model, and a data
assimilation scheme.

The central concept of the data assimilation is the concept of errors, error estima-
tion and error modeling. The observations have errors arising from various sources:
e.g. instrumental noise and the representativeness errors. All dynamical models are
imperfect with errors arising from: the approximate physics (or biology or chem-
istry), which parametrizes the interaction of the state variables and the discretization
of continuum dynamics into a numerical model. An aspect common for all the data
assimilation schemes is that the quantitative basis of the assimilation is formed by the
relative uncertainties of the dynamics and observations. Thus, the new estimate does
not degrade the reliable information of the observational data but rather enhances that
information content.

The most well-known application of DA is in weather forecasting problems in
which it was applied in real life for the first time in 1950′s and 1960′s to improve
the weather forecasts. A good description of the development of data assimilation in
meteorology can be found in [27]. The method has already proven to be useful in other
fields of application like tidal models [42], oceanography [30], nonlinear shallow-
water storm surge models [96] and atmospheric chemistry andtransport modeling (e.g.
[29], [76]). Among all the data assimilation methods, four dimensional variational
data assimilation (4DVAR) called as adjoint method is the one of the most effective
and powerful approaches. The method has an advantage of directly assimilating all the
available observations distributed in time and space into the numerical model while
maintaining dynamical and physical consistency with the model [83].

−

Inverse model

output observationsinput
+ Original Model

Figure 1.4: The inverse structure of the data assimilation problems
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One possible application of data assimilation is model calibration, which is also
called parameter estimation (inverse modeling). Physicalmodels usually contain one
or more empirical formulae which involve some constant values that must be tuned for
a good performance of the model. Using the constant parameter values, the model can
be used to compute simulated observations. If the parametervalues in the model are
incorrect, the simulated observations will not be equal to the real observations. This
provides the means for the estimation of parameters. Originally it was done manually
by comparing both simulated and true observations for various values of the param-
eters and thereafter adapting the parameters for each simulation. Many automated
calibration algorithms also operate in a similar iterativemanner. To speed up this it-
erative procedure, the derivatives with respect to the estimated parameters are used in
several automated calibration methods.

One of the very efficient ways to compute these derivatives is by using the adjoint
method. In the adjoint method the dynamical model plays a role of a strong constraint.
The objective function is defined, which is usually the sum ofpenalty terms. These
penalty terms are usually weighted sums over time of all data-model misfits at ob-
servation locations. Weights are determined by the observation error covariances. At
each iteration of the adjoint method, the the gradient (derivative) of the objective func-
tion is computed using one forward simulation with the original nonlinear model and
another simulation backwards in time with the adjoint model. Minimization along
the gradient’s direction at the end of each iteration leads to new parameter values.
Another forward and backward iteration can then be started,and so on, until the con-
vergence is achieved. A detailed description of the application of the adjoint method
in atmosphere and ocean problems can be found in [64].

The estimation of uncertain parameters in shallow water flowmodels using the ad-
joint method has been studied e.g. [23], [24], [92], [43], [58]. [23] shows that bottom
friction coefficient and depth corrections could be inferred from sea levelobservations
at given tidal stations. [92] studied the spatial variability of the bottom friction coeffi-
cient in a tidal model of the lower Hudson estuary by using theadjoint method. [43]
developed an inverse 3D shallow water flow model in which depth values, bottom fric-
tion coefficients and boundary conditions were estimated. The method has also been
studied in groundwater flow models (e.g. [16], [84]).

These inverse (adjoint) models require adjoint codes to evaluate products of the
transposed Jacobian of the underlying numerical model. Oneof the drawbacks of
the adjoint method is the programming effort required for the implementation of this
adjoint model code. Research has recently been carried out on automatic generation
of computer codes for the adjoint, and adjoint compilers have now become available
(see e.g. [38], [47]). Even with the use of these adjoint compilers, this is a significant
programming effort that hampers new applications of the method.

1.3 Model reduction

Despite the continued rapid advances in computing speed andmemory, the increase
of the complexity of numerical models used by engineers persists in outpacing them.
Nowadays, numerical modeling of physical processes used byengineers requires a lot
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of computer resources. Even when there is an access to the latest hardware, simula-
tions are often extremely computationally intensive and time-consuming when full-
numerical models of dimensions 104 − 109 are under consideration. The numerical
simulations in such large-scale settings lead in turn to unmanageably large demands
on computational resources, which is the main motivation for system approximation
(model reduction).

In system and control theory we associate model reduction with model-order re-
duction (MOR). Model order reduction aims at reducing the complexity of large-scale
dynamical systems, while preserving (to the possible extent) their input-output be-
haviour. The goal of the model reduction is to produce a low dimensional system
that has the same response characteristics as the original system. Low dimensionality
means far less storage and thus far less evaluation time. We achieve this by suppress-
ing redundant data that exist within the multi-dimensionalsystem of full order. So
model reduction can be referred as data compression.

The desire to approximate a complicated function with simpler formulation goes
back to 1807 when Fourier gave an idea to approximate a function with few trigono-
metric terms, although fundamental automated methods in the field of model order
reduction were published in 1980′sand 1990′s. In 1981 Moore published the method
of truncated balanced realization [62]. In 1984 Glover gavethe Hankel-norm reduc-
tion method [39]. In 1987 snapshot proper orthogonal decomposition method was
proposed by Sirovich [78]. Full description of these methods can be found in [11],
[75].

1.3.1 Proper Orthogonal Decomposition

Computers have also increased our capacity to not only simulate complicated systems,
but also to collect and analyze large amounts of data. One might then process hundreds
of millions of data points to obtain a few quantities of final interest. For example,
expensive machinery might be instrumented and monitored over days with the sole
objective of efficiently scheduling maintenance.

Proper orthogonal decomposition (POD), which is also namedas the principal
component analysis (PCA) or the discrete Karhunen-Loeve transform (KLT), is a pow-
erful and elegant method of data analysis aimed at obtaininglow-dimensional approx-
imate descriptions of high-dimensional processes. It involves a mathematical proce-
dure that transforms a number of possibly correlated variables into a smaller number
of uncorrelated variables called principal components. The first principal component
accounts for as much of the variability in the data as possible, and each succeeding
component accounts for as much of the remaining variabilityas possible.

It is a data driven projection based method invented by Karl Pearson (see [68]).
[48] and [56] had used it as a statistical tool to analyze random process data. [59]
gave the name POD, when the method was used to study the turbulent flow. The
POD method has application in many fields like image processing, signal processing,
data compression, oceanography, chemical engineering andfluid mechanics (see [71]
for details). The method involves the calculation of the eigenvalue decomposition
of a data covariance matrix or singular value decompositionof a data matrix obtained
from numerical simulations of high a dimensional model, which is expected to provide
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information about the dynamical behaviour of the system.
Nowadays significant research efforts are made to reduce the computational bur-

den of the data assimilation by reducing the dimension of thesystem. For oceanic
models the use of POD modes to identify a low-rank control space has shown promis-
ing results in the studies of [72], [44] and [15]. The common feature of these studies
is that the computation of the principal components relies on the model dynamics.
Recently [22] used the information of data assimilation system into the reduced-order
procedure by implementing a dual-weighted proper orthogonal decomposition (DW-
POD). The advantage of using DWPOD basis is that it may include lower energy
modes that are more significant to the representation of the 4DVAR objective func-
tion. For atmospheric models [90] has recently used POD technique in combination
with Monte Carlo method. The method not only simplifies the data assimilation pro-
cedure but also maintains the main advantages of the traditional 4DVAR.

In recent years, POD has also been applied for parameter estimation problems.
POD analysis has been applied to inverse problems in hydrology to determine the un-
certainty by [26]. [102] has used POD basis that includes thesensitivity with respect
to different set of the parameters. Recently [99] has proposed a method for the pa-
rameter estimation with computational efficiency comparable to the adjoint method,
but that does not require the implementation of the adjoint model code for the original
nonlinear model.

1.4 Motivation and overview

It has been shown that variational data assimilation based on adjoint approach is suit-
able for estimating uncertain parameters in the shallow water flow models. This re-
quires the implementation of the adjoint code which is a hugeprogramming effort.
This limitation of the adjoint method for the large scale numerical models has led to
the search of suboptimal algorithms, which still preserve the advantages of the adjoint
method.

POD based calibration method has been developed which does not require the
implementation of the adjoint method ([99]). The method hasbeen used successfully
for the 3D ground water flow modeling by [101]. This thesis extends the previous
work by investigating the new application of POD based calibration method to the
large scale tidal model of the entire continental shelf, theDCSM. The thesis describes
the potential use and benefits of this approach for estimating uncertain parameters in
both ideal and real settings.

Balanced proper orthogonal decomposition (BPOD) is a modelreduction method
which considers both inputs and outputs of the system while determining the reduce
subspace [73, 46]. The current thesis also investigates thepossible usage of BPOD
model reduction method within the framework of variationaldata assimilation.

The next chapter of this thesis consists of general introduction to the research. This
is followed by four chapters describing the content of the carried out study. Finally, in
the last chapter the most important results of this work are summarized.

Chapter 2 introduces the concept of the Sea level predictions in the Netherlands.
The chapter provides a brief introduction to the Dutch continental shelf model (DCSM),
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the numerical model mostly used in this study. The chapter considers topics mainly
related to model equations, numerical approximations, operational forecasting using
DCSM and model calibration. The Chapter also describes adjoint method commonly
used for inverse modeling. The difficulties in the practical implementation of the ad-
joint method are also mentioned and discussed.

Chapter 3 presents a parameter estimation algorithm based on POD model reduc-
tion which does not require the implementation of the adjoint method [99]. Results
of several synthetic experiments to estimate diffusion coefficient in a 2D advection
diffusion model are presented to show the effectiveness of the POD based estimation
method. The method has been extended by including balanced (information from the
observations) transformation in the model reduction procedure referred as balanced
proper orthogonal decomposition (BPOD). Results obtainedfrom several twin exper-
iments for the estimation of diffusion coefficient for both POD and BPOD procedures
are also presented and discussed [4].

Preliminary results in Chapter 3 shows the validity of the POD based model re-
duction methods for parameter estimation. The POD based calibration algorithm was
then developed to estimate the depth values in a tidal model of the North Sea, DCSM
[5]. In Chapter 4, results of several twin experiments are presented which were used
to evaluate the performance of the POD based calibration approach for the model
DCSM.

A large scale tidal model for storm surge forecasting in the Netherlands has re-
cently been developed. This model has approximately 106 computational grid points.
As a next step to real life application, the POD based calibration approach was then
implemented for the estimation of the water depth and space varying bottom friction
coefficient values in this large-scale DCSM model. This was the first attempt to im-
plement and evaluate the method with a very large-scale model and real data [9]. In
Chapter 5, the results of these experiments are presented and discussed. The compu-
tational costs of the POD based calibration method is dominated by generation of an
ensemble of forward model simulations. It is also found in the present study that a new
ensemble is not always required with the new set of estimatedparameters. Instead of
defining a new model subspace of the leading eigenvectors with updated parameters
by generating a new ensemble of the forward model simulations, the reduced model
is obtained by projecting original model with the updated parameters onto the same
subspace.

In Chapter 6, simulation perturbation method is presented and applied for the es-
timation of depth values in the model DCSM. Both twin and realexperiments are
discussed and the efficiency of the method is compared with the steepest descent and
the POD based calibration methods [10].

Finally, in Chapter 7 the most important results of this research work are summa-
rized and the conclusions of this thesis are formulated.
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Chapter 2
The Dutch Continental Shelf
Model

Accurate water level forecasts at least six hours ahead are required for timely closure
of the movable storm surge barriers in Eastern Scheldt and New Waterway. Besides
being required for the closure of these movable barriers, water level predictions are
also needed for raising alarms in extreme situations. Sincemid 1980′s these fore-
casts are based on numerical hydrodynamic model called the Dutch continental shelf
model (DCSM). The model describes how the water level and velocities are related
and evolve in time as a response to the wind forcing exerted onthe Sea surface as well
as to the tidal waves coming from the Atlantic Ocean.

This chapter is intended to provide a brief introduction about the storm surge pre-
diction model DCSM the numerical model used in this study. The DCSM is based
on WAQUA software package which is used for 2D modeling of water systems. The
use of a 2D model implies that flow related quantities are computed in depth-averaged
form, which is a commonly used approximation for tidal modeling. The details re-
garding the basic developments and WAQUA software are takenfrom technical docu-
mentation of WAQUA [1] and [98](www.waqua.nl).

Section 2.1 gives details of the basic equations of the modelfollowed by their
finite difference discretizations in Section 2.2. Section 2.3 elaborates the commonly
used adjoint method for model calibration. Section 2.4 briefly overviews the historical
efforts made in calibrating the DCSM model. Finally, Section 2.5 discusses issues of
operational forecasting situation of the storm surges and explains how forecasts are
made in operational setting.

2.1 The model equations

The governing equations used in DCSM are the non-linear 2D shallow water equa-
tions. The shallow water equations describe large scale water motions and depth-
integrated horizontal flow. These equations are well suitedfor the numerical tidal flow

11
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Figure 2.1: Area of the operational DCSM.

modeling. The equations of the model state, the conservation of mass and momentum
read in a Cartesian coordinates system as

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
+ g

∂h
∂x
− f v+

gu
√

u2 + v2

HC2
2D

=
1
ρw

τx

H
− 1
ρw

∂pa

∂x
, (2.1)

∂v
∂t
+ u

∂v
∂x
+ v

∂v
∂y
+ g

∂h
∂y
+ f u+

gv
√

u2 + v2

HC2
2D

=
1
ρw

τy

H
− 1
ρw

∂pa

∂y
, (2.2)

∂h
∂t
+
∂Hu
∂x
+
∂Hv
∂y
= 0, (2.3)

where
x, y = Cartesian coordinates in horizontal plane
t = time coordinate
u, v = depth-averaged current in x and y direction respectively
h = water level above reference plane
D = water depth below the reference plane
H = total water depth (D+h)
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f = coefficient for the Coriolis force
C2D = 2D Chezy coefficient
τx, τy = wind stress in x and y direction respectively
ρw = density of sea water
pa = atmospheric pressure
g = acceleration of gravity

The Chezy coefficient C2D used to account for bottom friction is a largely empiri-
cal parameter and assumed to be a function of depth. It is computed both inu andv
points according to the one of the following two formulations

C2D =



65, if D ≤ 40m,

65+ (D − 40), if 40m< D ≤ 65m,

90, if D ≥ 65m,

(2.4)

or

C2D =
{H} 1

6

cm
, (2.5)

wherecm is the manning coefficient. Without wind the stress at the free surface is zero.
With wind the wind stress is prescribed using the wind velocity at the water surface as
follows

τx = Cdρauw

√
u2

w + v2
w, (2.6)

τy = Cdρavw

√
u2

w + v2
w, (2.7)

where:
ρa = density of the air
Cd = wind stress coefficient
uw = wind speed 10 m above the water surface in x direction
vw = wind speed 10 m above the water surface in y direction

In order to obtain a unique solution to the above shallow water equations, a set of
boundary conditions is prescribed at closed and open boundaries. At closed bound-
aries, such as coastlines and dams, the velocity normal to the boundary is zero:

v⊥ = 0. (2.8)

So no inflow and outflow can occur through these boundaries. Atthe open boundaries
no physical boundaries exist and thus artificial ones will have to be specified. Two
boundary conditions are specified at open sea boundaries. The first is specified as

v‖ = 0. (2.9)

For the second open boundary condition the water levelh is specified in terms of the
amplitude and phase of the harmonic components as follows

h(t) = h0 +
∑

j

A j cos(ω j t − θ j), (2.10)
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where
h0 = mean water level
A j = amplitude of tidal constituent j
ω j = angular velocity of j
θ j = phase of j

The open boundaries of the model are located in deep water in order to model ex-
plicitly the non-linearities of the surge-tide interaction. For simulations which include
meteorological effects, the effects of atmospheric pressure are parametrized by a cor-
rection term at the boundaries. This correction is a function of the deviation from the
average pressurepavg:

h0 =
p− pavg

ρag
, (2.11)

wherep is the actual pressure andpavg = 1012hPa[43].

2.2 Numerical approximation

In this section the discretization method used to solve equations 4.26-4.28 is discussed.
The dimension of the state vector for tidal models is usuallyhuge and implies that the
numerical codes should be optimized with respect to required memory access and
computation time. Considering this optimization, the shallow water equations are
solved on a standard staggered C-grid using an alternative direction implicit (ADI)
finite difference method. Since the model is used in a wide variation of streaming
conditions, unconditional stability and at least second order accuracy are basic re-
quirements of the discretiztion method used. The ADI methodis based on the work
of Leendertse [55]. Stelling [82] stabilized the method by aspecial higher-order dis-
sipative approximation of the cross advection term.

To improve the computational efficiency the ADI method splits one time step into
two stages. Each stage consists of half a timestep. In both stages all the terms of the
model equations are solved in a consistent way with at least second order accuracy
in space. For each term the time levels are alternating. If inone stage a term is
discretized implicitly in time, this term will be discretized explicitly in time in the
other stage. As a result each term of the equations is solved second-order accurate
in time. The splitting in an implicit and explicit part is arranged in such a way that
implicit coupling only occurs along grid lines without coupling in the other directions.

The finite difference discretization scheme for the model equations (4.26-4.28) is
illustrated here. We denote the index of a grid cell in the (x, y) coordinate by (m, n)
and the time index byk, as shown in Figure 2.2. In the first part of the computation

the velocityv
k+ 1

2
m,n is determined explicitly based onuk

m,n, vk
m,n. The remaining variables

u
k+ 1

2
m,n andh

k+ 1
2

m,n are found as the solution of implicit equations
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Figure 2.2: The computational grid
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In the second part, the roles of them and n directions are changed. The velocity
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where the numerical operatorsS+y[um,n], Soy[um,n], S+x[vm,n] andSox[vm,n] are defined
as

S+y[um,n] =



3um,n − 4um,n−1 + um,n−2

24y
, if vm,n ≥ 0,

−3um,n + 4um,n+1 − um,n+2

24y
, if vm,n < 0,

(2.18)

Soy[um,n] =
um,n+2 + 4um,n+1 − 4um,n−1 − um,n−2

124y
, (2.19)

S+x[vm,n] =



3vm,n − 4vm−1,n + vm−2,n

24x
, if vm,n ≥ 0,

−3vm,n + 4vm+1,n − vm+2,n

24x
, if um,n < 0,

(2.20)

Sox[vm,n] =
vm+2,n + 4vm+1,n − 4vm−1,n − vm−2,n

124x
, (2.21)

To ensure the well-posedness of the numerical tidal model, Dirichlet conditions
are imposed on boundaries. The conditions are derived in a similar way to the finite
difference equations just described.
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2.2.1 State space model

The main aim of the present work is to develop an efficient calibration method for
general tidal models. The state space representation of thefinite difference equations
(2.12) and (2.17) for the deterministic model DCSM is given by

X(ti+1) = Mi [X(ti), γ], (2.22)

where the nonlinear and deterministic operatorMi consists of the coefficients repre-
senting the ADI scheme and the forcings andX(ti+1) ∈ <n is a state vector containing
water levelsh and velocitiesu andv at time (i + 1) for all the grid points in the DCSM
area. γ is a vector of uncertain parameters which need to be determined. The state
space representation is used to provide a convenient and compact way to analyze the
model DCSM with multiple inputs and outputs.

2.3 Adjoint method

In recent years there have been a large developments of various data assimilation ap-
plications based on variational methods. The approach is also referred to as four di-
mensional variational data assimilation (4DVAR). It computes a particular solution of
the numerical model which matches in the best way the available data during a certain
time interval. The approach is conceptually equivalent to performing a least square fit
of a set of model parameters to the available data. The parameters to be estimated may
be the unknown coefficients in the model equations, boundary conditions or forcing
terms.

As explained earlier, data assimilation is a method of integrating observations with
physically based mathematical models. The observations taken from the actual system
are never perfect. Suppose now that we have imperfect observationsY(ti) ∈ <q that
are related to the model state at timeti through

Y(ti) = HX(ti) + η(ti), (2.23)

whereH : <n → <q is a linear observation operator that maps the model fields
on observation space,η(ti) is a white Gaussian observation noise process with zero
mean and covariance matrixRi introduced to model the uncertainties associated with
observation process.

The idea of parameter estimation is to estimate the uncertain model parameters by
minimizing the measure of residuals. We first define an objective functionJ(γ) as a
measure for distance between the observations and model results:

J(γ) =
∑

i

[Y(ti) − H(X(ti))]TR−1
i [Y(ti) − H(X(ti))] (2.24)

Here, we have chosen a most commonly used measure to defineJ, the generalized
least square criterion orl2 norm. The optimal parameter is obtained by minimizing
this objective functionJ. If the information regarding observations is limited, a prior
information about the parameters can also be included in theobjective function

J(γ) =
∑

i

[Y(ti) − H(X(ti))]TR−1
i [Y(ti) − H(X(ti))] + (γ − γb)TPb

γ(γ − γb), (2.25)
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where the prior information term is referred to as background term and prevents un-
realistic parameter estimates. Thus the estimated parameters will remain close to the
prior parameter values.

The efficient minimization of the objective functionJ is often based on quasi-
Newton methods. In the case of the quadratic objective function the quasi-Newton
routine iterates approximately (np + 1) times [33], wherenp is the number of param-
eters to be estimated. These methods require the computation of the gradient of the
objective functionJ. The gradient gives information about the direction (positive or
negative) and the size of adjustments for each individual parameter. The gradient of
theJ is usually obtained either by finite difference method or adjoint methods.

In most situations it is not possible to establish explicit analytical expressions for
the gradient. It is however possible to numerically and approximately determine the
gradient through finite-difference method (perturbation method). To obtain the gradi-
ent of the objective functionJ with respect to the componentsγk we can use the one
sided perturbation

∇Jk ≈
J(γk + ∆γk) − J(γk)

∆γk
, k = {1, · · · , np}, (2.26)

where∆γk is the perturbation size. Since only one component∆γk is perturbed at a
time and each perturbation requires one simulation run of the original nonlinear model
to evaluateJ(γk + ∆γk), the method is not applicable when there is a large number of
uncertain parameters to estimate.

Spall [80] proposed simultaneous perturbation stochasticapproximation (SPSA)
algorithm in which all the estimated parameters were perturbed at one time stochasti-
cally. Since the perturbation are stochastic, the calculated gradient is also stochastic.
However its expectation is the true gradient [80], [34]. Themethod has recently been
used successfully by [7] for shallow water flow models. The method has also been
applied in petroleum engineering by [34] for history matching problems and by [103]
to production optimization, but the results demonstrated that the computational cost
of the method is comparable to finite difference method.

In most data assimilation problems the number of uncertain parameters is usually
large. In such a case, the variational or adjoint approach isthe most suitable approach
to efficiently compute the gradient of objective functionJ. The adjoint method com-
putes the exact gradient efficiently. The principle of the adjoint method is based on
the systematic use of the chain rule for differentiation.

Since for every parameterγ the system stateX(ti+1) has to satisfy the model con-
straint (2.22), the objective functionJ in equation (2.24) can be re-written as

J(γ) =
m∑

i=1

[Y(ti) − H(X(ti))]TR−1
i [Y(ti) − H(X(ti))]+

m∑

i=1

ν(ti+1)T [X(ti+1)−Mi [X(ti), γ]] ,

(2.27)
whereν(ti) is the vector of Lagrange multipliers or adjoint state variables. Now the
incremental changes inJ, X(ti) andν due to incremental change in one of the compo-
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nents ofγ gives

∆J(γ) =
m−1∑

i=0

ν(ti+1)T{∆X(ti+1) − ∂Mi [X(ti), γ]
∂X(ti)

∆X(ti)}+

m−1∑

i=0

∆ν(ti+1)T{X(ti+1) − Mi [X(ti), γ]} −

m−1∑

i=0

ν(ti+1)T ∂Mi [X(ti), γ]
∂γ

∆γ −

m∑

i=1

2HTR−1
i [Y(ti) − H(X(ti))]. (2.28)

The above expression after rearrangement yields

∆J(γ) =
m−1∑

i=1

∆X(ti)T{ν(ti) − [
∂Mi [X(ti), γ]

∂X(ti)
]Tν(ti+1)−

2HTR−1
i [Y(ti) − H(X(ti))] + ν(tm)∆X(tm)T −

m−1∑

i=0

ν(ti+1)T ∂Mi [X(ti), γ]
∂γ

∆γ. (2.29)

The adjoint statesν(ti) are still free variables. An expression for the adjoint model
ν(ti+1), i ∈ {m− 1, · · · , 1}, solved backward in time follows from

ν(ti) = [
∂Mi[X(ti), γ]

∂X(ti)
]Tν(ti+1) + 2HTR−1

i [Y(ti) − H(X(ti))] (2.30)

with ν(tm) equal to zero. Once the adjoint statesν(ti) are known, the gradient∂J
∂γ

of the
objective functionJ can be computed using the following expression

∇Jk =
∂J
∂γ)
= −

m−1∑

i=0

ν(ti+1)T ∂Mi [X(ti), γ]
∂γ

. (2.31)

Regardless of the number of parameters, the time required tocompute the gradi-
ent using adjoint technique is more or less identical and is comparable to the com-
putational time needed for a single simulation run of the nonlinear model (2.22). It
requires one forward simulation with the original nonlinear model (2.22) and a second
additional simulation backward in time with the adjoint model.

The main hurdle in the use of adjoint method is its implementation. The adjoint
model requires adjoint code to determine the tangent linearmodel of the original non-
linear model. This implies that tremendous programming effort is required to obtain
the adjoint model which is approximately equivalent to the programming effort re-
quired to build an original model. Moreover, if the originalmodel needs to be mod-
ified, as in the case of tidal models studied in this thesis, the adjoint model should
also be modified and thus the maintenance costs of the software increases. In recent
years research has been carried out on automatic generationof computer codes for the
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adjoint, and adjoint compilers have now become available (see e.g. [38], [47]). Even
with the use of these adjoint compilers, this is a significantprogramming effort that
hampers new applications of the method. Moreover since the adjoint equations need
to be integrated backward in time, the determined states of the original problem must
be stored for all the time steps. The memory access will therefore be huge for large
scale problems.

2.3.1 Procedural flow for the classical adjoint method

Variational schemes are used to minimize the objective function J iteratively. The fol-
lowing steps are performed for the estimation of uncertain parameter with the classical
adjoint method.

1. Choose an initial valueγb for the parameter to be determined.

2. Run the original nonlinear model to obtain the objective functionJ.

3. Run the adjoint model backward in time to compute the gradient of the objective
functionJ.

4. Minimize the objective functionJ based on the quasi-Newton method to get the
updated parameters.

5. Repeat from step 2 if the parameter value improves significantly or the prede-
fined convergence criterion is achieved. The final values obtained in this way
will give the optimal parameters.

2.3.2 The LBFGS method

For the problem of minimizing a multivariable function quasi-Newton methods [41]
are widely employed. These methods involve the approximation of the Hessian matrix
(or its inverse) of the objective functionJ. The LBFGS (Limited memory-Broyden-
Fletcher-Goldfarb-Shanno) [65] method is basically a method to approximate the Hes-
sian matrix in the quasi-Newton method of optimization. It is a variation of the stan-
dard BFGS method.

γl+1 = γl − al Ĥl ĝl(γl), l = 0, 1, · · · (2.32)

whereal is a step length, ˆgl is the local gradient of the objective function, andĤl is
the approximate inverse Hessian matrix which is updated at every iteration by means
of the formula

Ĥl+1 = VT
l ĤlVl + %ldld

T
l (2.33)

where

%l =
1

yT
l dl

(2.34)

Vl = I − %lyld
T
l (2.35)

and
dl = γl+1 − γl (2.36)
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yl = ĝl+1 − ĝl (2.37)

Using this method, instead of storing the matricesĤl , one stores a certain number
of pairs, saym, of pairs sl , yl that define them implicitly. The product of̂Hlgl is
obtained by performing a sequence of inner products involving gl and them most
recent vector pairssl , yl to define the iteration matrix. Line minimization is needed
for determiningγ in equation 2.32.

2.4 An overview on DCSM calibration

The task of calibration in the current application, is to reconstruct the physical pro-
cesses under astronomical conditions as accurately as possible. The mathematical
models always include some undetermined parameters that are only known with lim-
ited accuracy. These parameters are adjusted to ensure thatthe model represents the
selected known cases with sufficient accuracy. The adjustments of uncertain parame-
ters must be physically acceptable, since the aim of model calibration is obtaining the
model that can be used in the forecast mode.

conditions

Computed waterlevels

Objective function

without wind
DCSM

Adjoint model small

Calibration accepted

Yes

No

Adjustment of

Depth

Depth

Boundary

Bottom friction

Bottom friction

Boundary
conditions

Observed waterlevels

Figure 2.3: Block diagram of calibration process using adjoint method [2]

The objective of DCSM calibration is to make best estimates of the uncertain pa-
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rameters, i.e. find parameters such that the water levels computed by the DCSM are
as close as possible to the observed water levels. Bathymetry of the DCSM was ob-
tained from nautical charts. Since the main purpose of thesecharts is to allow ships a
safe course in any tidal situation, they usually give details of shallow rather than deep
water areas. Hence, depth is a parameter on which model can becalibrated. At the
open boundaries the water level is described in terms of harmonic components. These
tidal components were estimated on the basis of encompassing models matched with
nearby coastal and pelagic tidal data. Hence, the amplitudes and phases of these har-
monic components are also the parameters on which the DCSM can be calibrated.
The bottom friction in DCSM is described in terms of the Chezycoefficient, which is
largely empirical model parameter.

In the early development of DCSM the calibration was done using sensitivity stud-
ies and making changes manually [93]. Later, automated procedures based on a vari-
ational method were developed for this purpose [86], [2]. Few efforts were also made
in calibrating DCSM using the adjoint method [97]). Local changes were made in the
model to compensate for the lack of resolution. This was donemainly near narrow
channels between islands where a small misrepresentation of the bathymetry may lead
to large changes in the flow. The calibration of the DCSM was also performed to asses
the potential impact of satellite altimeter sea level observations [63], [61]. Although
the impact of the satellite observations proved to be small with regard to the amount
of data and level of accuracy available, it has provided someimprovements to the cal-
ibration of the DCSM. Figure 2.3 presents flowchart of the calibration process with
the adjoint method for DCSM model.

The difficulty in the use of adjoint method is the implementation and maintenance
of adjoint model code. The implementation of adjoint model code requires significant
programming effort that hampers its application. Moreover, every time the forward
model code is altered the adjoint code also needs to be updated. So for the adjoint
model it is necessary to keep track of all these alterations and modifications. In this
thesis we have developed a method for the estimation of uncertain parameters in the
model DCSM. The advantage of this method is that it efficiently estimates the uncer-
tain parameters without the implementation of the adjoint code.

2.5 Operational forecasts using DCSM

The Dutch coast is divided in several zones, where each zone has its own warning
threshold according to tidal amplitude and time of high water. Table 2.1 presents the
warnings and alarm levels for different zones along Dutch coast. As described earlier,
the forecasts regarding storm surges are made using the DCSMat KNMI. If the water
levels in such forecasts exceed certain thresholds the SVSDis informed. If the SVSD
hydrologists on duty decide that one or more warning level may be reached in response
to these forecasts, the SVSD office is staffed. These warnings are made at least 6 hours
ahead to provide required time which is necessary for preparation.

For operational correction of forecasts with observationsa steady-state Kalman
filter was developed [42]. This filter assimilates the selected water level observations
from tide gauge stations along the British and Dutch coasts for selected set of stations.
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Zone Reference station Warning (cm) Alarm level (cm)
Schelde Vlissingen 330 370
West Holland Hoek van Holland 220 280
Den Helder Den Helder 190 260
Harlingen Harlingen 270 330
Delfzijl Delfzijl 300 380

Table 2.1: Warning and alarm levels used by SVSD (level relative to normal Amster-
dam level (NAP))

Since the shallow water equations for water much deeper thanvertical tidal range are
nearly linear, the Kalman filter can approximate in a very efficient manner. This re-
quires only 10% additional computational cost. The filter can correct the forecasts up
to 12 hours ahead if the forecasts deviate from the availablewater level observations.

The DCSM model including the steady state Kalman filter is installed in the KNMI
for daily operational forecasting [25], where it is the partof automatic production
line (APL). This APL was developed to produce regular numerical forecasts with a
minimum of human intervention. The heart of APL is a limited area atmospheric
circulation model (HIRLAM), which currently provides an analysis of the state of the
atmosphere and a forecast for up to 48 h ahead four times per day with a resolution of
approximately 22 km.
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Chapter 3
Using POD and BPOD within
variational data assimilation1

3.1 Introduction

Proper Orthogonal Decomposition (POD) method provides an efficient means of de-
riving the reduced basis for high order nonlinear systems. This technique essentially
identifies the most energetic modes in a time dependent system thus provides a means
of obtaining a low dimensional description of the system dynamics. The POD method
has been extensively used in recent years and applied successfully to different fields
[13], [49], [51], [60], [3], [57], [100], [14]. A detailed description of POD research
can be found in [40].

Another obvious application of POD is four dimensional variational data assimila-
tion (4DVAR) which can be seen as an optimal control problem [88]. The variational
(adjoint) method aims at adjusting a number of unknown control parameters on the ba-
sis of given data. The control parameters might be model initial conditions or model
parameters ([88], [89]). Memory storage requirements impose a severe limitation on
the size of assimilation studies. The POD has recently been applied successfully in
data assimilation for the state and parameter estimation [67], [26], [102], [15]. An-
other drawback of the adjoint method is the computation of the gradient which requires
the implementation of adjoint model code. The implementation and maintenance of
the adjoint model is very expensive and thus hampers its applications.

The POD method however, can yield unpredictable results as it neglects low en-
ergy modes that may be important to the dynamics and POD modesare sensitive to the
empirical data used and the choice of inner product [73]. An alternative POD method
(referred as Balanced proper orthogonal decomposition (BPOD)) is to combine the
concepts from both POD and balanced truncation methods. Thebalanced truncation
method uses both controllable and observable subspaces while obtaining a low rank
subspace for the reduced model. The balanced truncation methods are designed for

1This chapter is a slightly revised version of [4]
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stable and linear systems [104]. The balanced truncation ofstable linear system is
stable, but POD models of nonlinear systems may be unstable even if the nonlinear
system is linearly stable at the origin ([79]). The main goalof BPOD is to achieve
approximate balanced truncation with computational cost as in POD. It has already
been applied by [104], [52] and recently by [73], [46].

The main motivation for the work presented in this chapter isinspired by the work
done by [73], [99]. Vermeulen and Heemink [99] proposed a method based on POD,
which shifts the minimization into lower dimensional spaceand avoids the imple-
mentation of the adjoint of the tangent linear approximation of the original nonlinear
model. In their approach, an ensemble of snapshot vectors offorward model simu-
lations is used to determine an approximation of the covariance matrix of the model
variability and a small number of leading eigenvectors of this matrix are used to define
a model subspace. By projecting the original model onto thissubspace, an approxi-
mate linear reduced model is obtained. Due to the linear character of the reduced
model, its adjoint can be implemented easily and the minimizing problem is solved
completely in reduced space with very low computational cost. This process is re-
peated several times while generating new set of snapshots (ensemble) which is closer
to the new estimated parameters.

Rowley [73] computed the balancing transformation directly from snapshots of
empirical Gramians using singular value decomposition (SVD), without needing to
compute the Gramians themselves. The method allows the empirical observability
Gramian to be computed efficiently even when the number of outputs is large. The
work presented here, uses POD and BPOD in the context of variational data assimi-
lation. Employing the examples of POD and BPOD techniques, we demonstrate the
usefulness of these techniques to parameter estimation andpresents experiments with
the 2D-advection diffusion model for the transport of pollutant. We have shown that
the use of model reduction allows the optimization to be muchefficient than the one
with the original model.

In the next section we briefly describe the projection based model reductions tech-
niques used in this chapter and Section 3.3 explains the procedure for collecting snap-
shots and the basis vectors (patterns) required for the simulation of reduce model in
the context of variational data assimilation. The numerical results with 2D advec-
tion diffusion model to estimate space varying diffusion are presented in Section 3.4.
Conclusions are given in Section 3.5.

3.2 Model reduction

Model reduction represents the solution to a problem as a truncated series of known
basis function and independent coefficients. Roughly speaking, the goal of model re-
duction methods is to replace the initial data by data that are optimal in terms of stor-
age capacity. This is achieved by suppressing redundant data that exists within multi-
dimensional datasets. Two of the most well-known methods ofmodel reduction used
in control are the proper orthogonal decomposition (POD) and the method of balanced
truncation. Balanced proper orthogonal decomposition (BPOD) is a model reduction
method which combines the ideas and methodology from both ofthese methods. This



3.2. Model reduction 27

Section briefly explains the methodology of these model reduction methods.

3.2.1 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD), also known as principle components
analysis, has been widely used for a broad range of applications. The main idea is,
given a set of data that lies in a vector spaceV, to find a subspaceVr of fixed dimension
r, such that the error in the projection onto the subspace is minimized.

We start by collecting the set ofns snapshots of some physical process. Each sam-
ple of snapshotsXi which is defined on a set ofn nodeX stands for ann dimensional
vectorX j. i.e.,

Xi = {X1i ,X2i , · · · ,Xni}′, i ∈ {1, 2, · · · , s} (3.1)

The elements within a snapshot represent the signal for a specific location in the
model, possibly for multiple quantities. Define the vectorXb of background state
and correct each snapshot vector so that

Ei = Xi − Xb, i ∈ {1, 2, · · · , s} (3.2)

These corrected snapshots are arranged in matrixE, which denote the new ensemble.
The covariance matrixQ can be constructed from the ensembleE of the snapshots by
taking the outer product:

Q = EEt (3.3)

The dimensionn often exceeds 104, so direct solution of eigenvalue problem is not
feasible. To shorten the calculation time necessary for solving the eigenvalue problem
for this high dimensional covariance matrix, we define a covariance matrixG as the
inner product. In the method of snapshots ([78]), one then solves thens×ns eigenvalue
problem

GZi = EtEZi = λiZi , i ∈ {1, 2, · · · , s} (3.4)

with λi are the eigenvalues of the above eigenvalue problem. The eigenvectorsZi may
be chosen to be orthonormal and the POD modespi are then given by

pi = EZi/
√
λi (3.5)

i.e., in matrix form;

P = EZ∧−1/2 (3.6)

WhereZ = {Z1,Z2, · · · ,Zs} andP = {p1, p2, · · · , ps} and∧ is a diagonal matrix con-
taining the eigenvalues.

A physical explanation of POD modes is that they maximize theaverage energy
in the projection of data onto subspace spanned by the modes.The eigenvaluesλi

provide a measure (ψi) for the relative energy associated with corresponding POD
modespi :

ψi =
λi∑s

l=1 λl
.100%, i = {1, 2, · · · , s} (3.7)
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We collectpr (r < s) modes such thatψ1 > ψ2 > . . . > ψr and they totally explain
at least the required varianceψe.

ψe =

r∑

l=1

ψl (3.8)

3.2.2 Balanced Truncation

Given a linear system defined by

dX
dt
= AX+ Bu (3.9)

Y = HX (3.10)

whereA ∈ <n×n; B ∈ <n×nu
andH ∈ <nq×n. The main idea behind balanced trunca-

tion is to consider both inputs and outputs of the system governed by equation 3.9 and
3.10 when determining which states to keep in the reduced model structure.

Reduction of the systems will be achieved by retaining only certain states in the
representation. This is equivalent to defining a certain subspace within the state space.
Two important subspaces are the controllable and observable subspaces. The control-
lable subspace is the space that can be obtained with zero initial state and a given input
u(t)., whereas the observable subspace comprises those statesthat as initial conditions
could produce a nonzero outputY(ti) with no external input. The controlability and
observability GramiansWc andWo are each ann× n matrix whose eigenvectors span
the controllable and observable subspaces, respectively.These matrices are defined
for the linear system (3.9) and (3.10) as

Wc =

∫ ∞

0
eAtBB∗eA∗tdt (3.11)

Wo =

∫ ∞

0
eA∗tH∗HeAtdt (3.12)

where the asterisk denotes the complex conjugate transpose. The Gramians are sym-
metric, positive-semi definite matrices usually computed by solving the Lyapunov
equations given by

AWc +WcA
∗ + BB∗ = 0 (3.13)

A∗Wo +WoA+ H∗H = 0 (3.14)

In order to obtain balanced realization of the system (3.9) and (3.10), a state trans-
formationT is chosen such that controlability and observability Gramians are diagonal
and equal. This transformation is obtained by computing appropriate scaled eigenvec-
tors of the product of both the GramiansWco

Wco =WcWo = TΛT−1 (3.15)
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whereTi; i = {1, · · · , n} are the eigenvectors that describes the balancing transforma-
tion. here the eigenvaluesλi are positive and real. The square root of these eigenvalues
λi gives the Hankel singular valuesσi .

√
λi = σi (3.16)

The process of balanced truncation is completed by first finding the balancing
transformationT and then truncating those controllable-observable stateswhich have
less effect on inputs and outputs.

Method of snapshots

Instead of solving the Gramians by solving Lyapunov equations (3.13) and (3.14),
one may compute them from data by the numerical simulations.This was the original
approach used by [62]. The quantityeAtB in equation 3.11 is simply the impulse
response of the single input/ single output system. So if so we havenu number of
inputs can writeWc as

Wc =

∫ ∞

0
(X1(t)X1(t)∗+, · · · ,+Xnu(t)Xnu(t)∗)dt (3.17)

Note the similarity to the POD dataset of snapshots (3.1) andthe above expression.
The POD modes for this dataset of impulse responses are just the largest eigenvectors
of Wc. If data from simulations is used to find the impulse responses, then it is usually
given at discrete timest1, · · · , tm and the integral above becomes a quadrature sum as
in (3.1). Thus we can writeWc as:

Wc = EET (3.18)

For the observability Gramians, we need to consider the adjoint system

z. = A∗z+ H∗uo (3.19)

If nq is the number of outputs then the observability Gramians is given by

Wo =

∫ ∞

0
(z1(t)z1(t)∗+, · · · ,+znq(t)znq(t)∗)dt. (3.20)

One then form the data matrix F, as in (3.1) and observabilityGramians becomes

Wo = FFT (3.21)

The method requiresnq integrations of the adjoint system, where q is the number of
outputs. Thus it is not feasible to use the method with large number of outputs.

3.2.3 Balanced POD

Balanced POD (BPOD) is an approximation to balanced truncation. The main goal of
BPOD is to achieve approximate balanced truncation with computational cost compa-
rable to POD. The BPOD method presented here has two components:
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1. compute the balancing transformation directly from snapshots of empirical Grami-
ans using singular value decomposition (SVD), without needing to compute the
Gramians themselves.

2. enable traceable computation even when the number of outputs is large.

As described in previous section, the balancing transformation is obtained from the
dominant eigenvectors of the product of two Gramians given by Wco. The Gramians
are two (n × n) matrices. For large scale real time systems, where number of states
are large, the idea of finding eigenvectors from these matrices is not feasible. Here the
balancing modes are therefore obtained from the data matricesE andF by forming
the SVD of the matrixFTE

FTE = UΣV = (U1 U2)

(
Σ1 0
0 0

) (
VT

1
VT

2

)
(3.22)

whereΣ1 ∈ <r×r is invertible, r is the rank of matrixFTE andUT
1 U1 = VT

1 V1 = Ir .
The advantage in using this method is balancing transformation is obtained by SVD
of matrix of dimension (nu × nq). We can now define the transformation matrices S
and T as

S = Σ−1/2
1 UT

1 FT , (3.23)

T = EV1Σ
−1/2
1 . (3.24)

If r = n, then the matrixΣ1 contains the Hankel singular values,T determines
the balancing transformation andS is its inverse [73]. Moreover, ifr < n, then the
columns ofT form the firstr columns of the balancing transformation and the rows
of S form the firstr rows of the inverse transformation. The major advantage of using
the above method for computing the balancing transformation is that the Gramians
themselves are not computed. Only one SVD of matrix with dimensionns × nq are
required. Thus overall computation time is similar POD except that here one also
needs to compute adjoint snapshots, which are required in POD method.

Outer Projection

As explained earlier, using impulse responses to compute adjoint snapshots is not
feasible with large number of outputs. The outer projection(OP) method can be used
to compute adjoint snapshots in this case. The main idea is toproject the output
onto an appropriate subspace in such a way that the input-output behavior is almost
unchanged [73]. Instead of the linear system given by (3.9) and (3.10), consider the
related system

dX
dt
= AX+ Bu (3.25)

Y = Pr HX (3.26)
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wherePr is an orthogonal projection with rank r. The projectionPr will allow us to
compute the observability GramiansWo using only r simulations of the adjoint system
instead ofnq simulations. We choosePr such that the input-output behavior of (3.25-
3.26) is almost similar to the input-output behavior of (3.9-3.10). Now we can write
the adjoint system as

z. = A∗z+ H∗Pruo (3.27)

and the corresponding observability GramiansWo becomes

Wo =

∫ ∞

0
eA∗tH∗Pr P

T
r HeAtdt (3.28)

Thus, the following steps are performed in the BPOD method using outer projec-
tion.

1. Generate an ensemble of snapshots E and project these snapshots on observa-
tional space to get{He1, · · · ,Hes}.

2. Compute r dominant POD modesPr of this matrix.

3. Integrate solutionz1(t), . . . , zr (t) of the adjoint systemz. = A∗z with initial con-
ditionszk(0) = H∗Pk. This will give the data matrix F.

4. Compute the SVD ofFTE and the BPOD modes are given by (3.23) and (3.24).

Relation to POD

There are deep connections between the POD methods and the BPOD procedure ex-
plained here. BPOD may be viewed as bi-orthogonal decomposition instead of or-
thogonal decomposition given by POD. One of the difficulties with the POD method
is that the inner product used for computing POD modes is arbitrary, specially for
the compressible flow, the inner product is not obvious and different choices can give
different results ([74]). BPOD may be viewed as a special case of POD using impulse
responses and observability Gramians as an inner product. Auseful consequence of
using the observability Gramians as an inner product is thatin this case the reduced
order model preserves the stability of an equilibrium pointat the origin, even if the full
model is nonlinear ([73]). The balanced truncation of stable linear system is stable,
but POD models of nonlinear systems may be unstable even if the nonlinear system is
linearly stable at the origin ([79]).

3.3 Inverse modeling using reduced models

The discrete model for the evaluation of dynamical system from time ti to time ti+1

can be described by an equation of the form

X(ti+1) = Mi [X(ti), γ] (3.29)

whereX(ti+1) ∈ <n denotes the state vector at timeti+1 andγ is the vector of the
uncertain parameters which needs to be determined.Mi is the nonlinear and deter-
ministic dynamics operator that includes inputs. Suppose now that we have imperfect
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observationsY(ti) ∈ <nq
of the dynamical system (3.29), that are related to the model

state at timeti through
Y(ti) = HX(ti) + η(ti) (3.30)

whereH : Rn → Rq being a linear observation operator that maps the model fields
on observation space andη(ti) is an unbiased, random Gaussian error vector with
covariance matrixRi .

We assume that the difference between data and simulation results is only due to
measurement errors and incorrectly prescribed model parameters. The problem of the
estimation is then solved by directly minimizing the objective functionJ

J(γ) =
∑

i

[Y(ti) − H(X(ti))]TR−1
i [Y(ti) − H(X(ti))] (3.31)

with respect to the parametersγ, satisfying the discrete nonlinear forecast model
(3.29).

The efficient minimization of the objective function require the computation of the
gradient of the objective function (3.31). The gradient vector (∇J) gives information
about the direction (positive or negative) and the size of adjustments for each indi-
vidual parameter. The adjoint method computes the exact gradient efficiently. The
principle of the adjoint method is based on the systematic use of the chain rule of dif-
ferentiation. Regardless of the number of parameters, the time required to compute the
gradient using adjoint technique is more or less identical and is comparable with the
computational time needed for a single simulation run of thenonlinear model (??). It
requires one forward simulation with the original nonlinear model (3.29) and a second
additional simulation backward in time with the adjoint model:

ν(ti) = (
∂Mi

∂X(ti)
)Tν(ti+1) − 2HR−1

i [Y(ti) − H(X(ti))] (3.32)

whereν(ti) represents the solution of the adjoint model. The gradient∇J of the objec-
tive functionJ with respect to each componentγk of the uncertain parameters vector
γ is given by:

∇Jk =
∑

i

− [ν(ti+1)]T[
∂Mi [X(ti), γ]

∂γk
], k = {1, . . . , np} (3.33)

The adjoint method is flexible as the number of parameters caneasily be changed.
The main hurdle in the use of adjoint method is its implementation, especially when
the forward model contains nonlinearities. For the shallowwater flow computations,
the original model is very complicated and it is difficult to implement the adjoint for
these type of models.

3.3.1 Linearization and reduced model formulation

The classical adjoint problem for a general model is a nonlinear constrained opti-
mization problem which is difficult to solve. The problem can be simplified with
the hypothesis that the objective functionJ can be made quadratic by assuming that
the nonlinear dynamics operatorMi can be linearized. The linearization of nonlinear
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high-order model (3.29) using the first order Taylor’s formula around the background
parameterγb

k gives

4X(ti+1) =
∂Mi [Xb(ti), γb]

∂Xb(ti)
4X(ti) +

∑

k

∂Mi [Xb(ti), γb]
∂γk

∆γk (3.34)

whereX is linearized state vector,Xb is the background state vector with the prior
estimated parameters vectorγb and4X is a deviation of the model from background
trajectory.

A model can be reduced if the incremental state4X(ti+1) can be written as linear
combination:

4X(ti) = Pξ(ti+1) (3.35)

whereP = {p1, p2, · · · , pr } is a projection matrix such thatPTP = Ir andξ is a reduced
state vector given by

ξ(ti+1) = M̃iξ(ti) +
∑

k

∂M̃i

∂γk
∆γk (3.36)

or in matrix form (
ξ(ti+1)
∆γ

)
=

(
M̃i M̃γ

i
0 I

) (
ξ(ti)
∆γ

)
(3.37)

Here∆γ is the control parameter vector,̃Mi andM̃γ

i are simplified dynamics operators
which approximate the full Jacobians∂Mi

∂Xb and ∂Mi
∂γk

respectively:

M̃i = PT ∂Mi

∂Xb(ti)
P (3.38)

M̃γ

i = PT(
∂Mi

∂γ1
, · · · , ∂Mi

∂γnp
) (3.39)

The Jacobian∂Mi

∂Xb , is obtained by approximating the nonlinear dynamics operator Mi

by linearizing it with respect to background stateXb. Instead of computing this huge
Jacobian by approximating the partial differential with finite difference by perturbing
the nonlinear operatorMi in the direction of each node, we perturb along the direction
of ph : h = {1, · · · , r} only

∂Mi

∂Xb(ti)
ph =

Mi [Xb(ti) + εph, γ
b] − Mi [Xb(ti), γb]
ε

, h = {1, . . . , r} (3.40)

with ε being the size of the perturbation. The reduced dynamics operatorM̃i can now
be computed by pre multiplying the above formula byPT :

M̃i = PT(
∂Mi

∂Xb(ti)
p1, · · · ,

∂Mi

∂Xb(ti)
pr ) (3.41)

Notice also that only the original model simulations are needed here. The reduced
model requires less computational time as it simulates a reduced state within the di-
mensionr instead of the original dimensionn wherer < n. The dimension on which
the reduced model operates is (r +np)× (r +np) with np being the number of estimated
parameters.



34 Chapter 3. POD and BPOD within variational data assimilation

3.3.2 Collection of the snapshots and the reduced basis

Since the reduced model is used here to estimate uncertain parameters, the snapshots
should be able to represent the behavior of the system for these parameters. Therefore
the snapshot vectorsEi ∈ <s are the perturbed model simulations∂Mi

∂γk
with respect to

each estimated parameterγk to get a matrix:

E = {E1, · · · ,Es}; i = {1, 2, · · · , s} (3.42)

The dimension of this ensemble matrixE is s = u × ns, wherens is the number
of snapshot collected for each individual parameterγk. The operatorsP used in the
previous subsection are obtained from this ensemble of snapshot vectors by applying
either POD or BPOD reduced order methodologies. In case of BPOD, we have an
bi-orthogonal decomposition such thatP = T = S−1.

3.3.3 Approximate objective function and its adjoint

In reduced model approach, we look for an optimal solution ofthe (3.29) to minimize
the approximate objective function (Ĵ) in an incremental way:

Ĵ(∆γ) =
∑

i

[{Y(ti) − H(Xb(ti))} − Ĥξ(ti ,∆γ)]TR−1
i [{Y(ti) − H(Xb(ti))} − Ĥξ(ti ,∆γ)]

(3.43)
The value of the approximate objective functionĴ is obtained by correcting the obser-
vationsY(ti) for background stateXb(ti) which is mapped on the observational space
through a mappingH and to the reduced model stateξ(ti ,∆γ) which is mapped to the
observational space through mappingĤ, with Ĥ = HP.

Since the reduced model has linear characteristics, it is easy to build an approxi-
mate adjoint model for the computation of gradient of the approximate objective func-
tion (3.43). The gradient of̂J with respect to∆γ is given by:

∂Ĵ
∂(∆γ)

=
∑

i

−[ν̂(ti+1)]T ∂ξ(ti+1)
∂(∆γ)

(3.44)

whereν̂(ti+1) is the reduced adjoint state variable. Once the gradient has been com-
puted, the process of minimizing the approximate objectivefunction Ĵ is done along
the direction of the gradient vector in the reduced space.

After the minimization process the initial parametersγ are updated and new set of
updated parametersγup is obtained

γup = γ + ∆γ (3.45)

This process of minimization is repeated several times by constructing new reduced
model with new set of updated parametersγup to get optimal parameters. Figure 3.1
presents the flowcharts of the parameter estimation procedure with classical adjoint
method and two projection based model reduction methods.
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Figure 3.1: Flowcharts of the parameter estimation procedure with the classical adjoint
method (left) and the reduced model approaches (middle (POD) and right (BPOD))

Convergence Criterion

To decide what will be optimal values of estimated parameter, we can use the criterion
ρ. The outer iteration cycle is aborted when the terminal value ofρ is obtained

ρ =| Jβi − Jβi−1 |≤ κ, (3.46)

whereβi stands for theith outer iteration,κ is the terminal value. We have chosen
κ = 10−5 for all the numerical experiments.

3.4 Numerical experiments

3.4.1 The Model

We consider the advection-diffusion of concentrationc(x, t) for the transport of pollu-
tant in two space dimensions. The evaluation ofc gives

∂c
∂t
+ u

∂c
∂x
+ v

∂c
∂y
=

∂

∂x
υd
∂c
∂x
+
∂

∂y
υd
∂c
∂y
+ S (3.47)

with the square domain [0, d]×[0, d], hereνd contains diffusion coefficient, [u, v] is the
velocity field andS, the source term. The experiments are performed on the 20× 20



36 Chapter 3. POD and BPOD within variational data assimilation

grid. In analyzing the system equation, we have assumed thatthe velocity field [u, v]
is known and constant with respect to time (see Figure 3.2) and the diffusion tensor is
also constant. A solution to the partial differential equation is obtained by imposing
boundary conditions and applying Euler time stepping to approximate the time deriva-
tive, the second derivatives are approximated with the central finite difference, while
the upwind scheme is used for the first order spatial derivatives. Initially the concen-
tration is zero for the whole model domain. A uniform source term is introduced at
two grid points during the course of simulation.
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Figure 3.2: Velocity Field

3.4.2 Experiment 1

The POD based reduced model approach described above was used here to estimate
the diffusion coefficientυd for the 2D advection diffusion model defined by 3.47. In
experiment 1 three cases were considered to estimateυd according to the flow rate
and complexity with respect to number of estimated parameters. The original model
was simulated for 50 timesteps withdt = 1s and a 20× 20 grid with dx = dy =
1m constitutes the model domain. The estimated parametersγ were effected by the
parameterυd. A set of simulated observationsY(ti); i∈ {1, · · · , 50} were obtained for
each case.

Case 1:

The POD based model reduction method works well for diffusive systems [11]. Thus,
diffusion was considered to be more dominant than advection in the first instance.
The number of parameters estimated for this case were two. The numerical domain
was divided into two regions for eachγk. The true value for both the parameters was
γt = 0.18. A set of simulated observationsY(ti) ; i ∈ {1, · · · , 50} with true values of
the parameters were obtained at 2 different grid points one in each region of the model
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Figure 3.3: The 2D pollution model domain; The locations of the selected data points
(circles) and straight line divides the model domain in two regions one for each esti-
mated parameter

domain as shown in Figure 3.3. Initiallyγ1 = 0.12 andγ2 = 0.20. For the initial
values of the parameters, a set consisting of 100 snapshot vectors was generated and
we were able to form a basis consisting of only 8 dominant eigenvectors that captured
99.99% of the relative energy (see Figure 3.4). So a reduced model was built using
these basis vectors which finally operates on the dimension<8+2.
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Figure 3.4: The POD modes captured energy for an ensemble of 100 snapshot vectors

With this reduced model approximate objective functionĴ was minimized and
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new values of estimated parameters were found atγ
up
1 = 0.1641 andγup

2 = 0.1944. A
significant improvement was observed in the objective function J which was reduced
by more than 90% after the outer iterationβ1. The minimization process was repeated
several times with the new values of updated parametersγup by first constructing a
new reduced model and than minimizing the approximate objective function Ĵ in the
reduced space. Table 3.1 shows the results of the minimization of two estimate vari-
ables.

(β) γ1 γ2 J Ĵ α

1 0.12 0.2 0.8434 0.0504 4
2 0.1641 0.1944 0.0865 0.0172 4
3 0.1751 0.1899 0.0167 0.0056 4
4 0.1830 0.1783 0.0035 4.5× 10−4 4
5 0.1811 0.1792 5.12× 10−4 9.11× 10−5 4
6 0.18039 0.17944 9.99× 10−5 3.79× 10−5 4
7 0.17998 0.17969 1.08× 10−5 4.77× 10−6 4

Table 3.1: The results of the estimation of two parametersγ1 andγ2. Hereα andβ are
the number of inner and outer iterations respectively.

With classical adjoint method, after11 gradient computation, the objective func-
tion J reached a minimum value 7.7472× 10−9 with γ1 = 0.18000121 andγ2 =

0.18000219.
Two separate reduced models were also constructed that captured 95% and 99% of

the relative energy respectively. Using these reduced models, the approximate objec-
tive function Ĵ was minimized in reduced space and the new values of the estimated
parametersγup are found. Figure 3.5 shows the reduction of objective function J in
the POD based calibration approach after each outer iterationβ separately for each of
the reduced models. It can be seen from Figure 3.5 that reduced model converged in
all the cases but the rate of convergence is slow with the reduced models that captured
95% and 99% of the relative energy as compared to the reduced model that captured
99.99% relative energy. The basis for the reduced model must therefore be chosen
intelligently.

Case 2:

To see the effect of dominant advection, the flow rate was increased in thiscase. The
initial values for both the parameters wereγ1 = 0.12 andγ2 = 0.24, and the true
value for both parameters wasγt = 0.18. A set of simulated observationsY(ti) ;
i ∈ {1, · · · , 50} with true values of the parameters were obtained at 9 different grid
points of the model domain as shown in Figure 3.6.

For the above initial parameters values, a reduced model wasconstructed that cap-
tured 99.99% of the relative energy with only 10 basis vectors. With this reduced
model of dimension<10+2, the approximate objective function̂J was minimized and
new values of the estimated parameters were found atγ

up
1 = 0.1773 andγup

2 = 0.1974.
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Figure 3.5: The value of the objective functionJ at successive outer iterations for
reduced models with different relative energy attained

A significant improvement was again observed in the objective functionJ, which was
again reduced by more than 90% after the outer iterationβ1. The process was re-
peated several times and updated values of the estimated parameters were used as
initial values to construct the reduced model in each outer iterationβ. Table 3.2 shows
the minimization results and the convergence of two estimated parameters. It is clear
from the results that although the flow rate and the observation points were increased,
the estimated parametersγ1 andγ2 converged to true parameter valueγt = 0.18 with
similar efficiency.

(β) γ1 γ2 J Ĵ α

1 0.12 0.24 20.8776 1.7673 4
2 0.1773 0.1974 1.2699 0.0894 4
3 0.1787 0.1848 0.1061 0.0070 4
4 0.1795 0.1812 0.0072 4.49× 10−4 4
5 0.17982 0.18027 4.28× 10−4 2.56× 10−5 4
6 0.17993 0.18006 2.59× 10−5 2.21× 10−6 4

Table 3.2: Results of the estimation of two parametersγ1 andγ2 with the reduced
model that captured 99.99% of the relative energy.

Case 3:

The validity of the reduced model also depends on the number of estimated param-
eters. The parameters estimated in this case were four. The numerical domain was
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Figure 3.6: The locations of the selected data points (circles) and straight line divides
the model domain in two regions one for each estimated parameter

divided into four regions for eachγk. The true value for all the four parameters was
γt = 0.18. A set of simulated observations were obtained with true values of the pa-
rameters at 12 different grid points in the model domain as shown in Figure 3.7. The
initial values for the estimated parameters wereγ1 = 0.12,γ2 = 0.20,γ3 = 0.14 and
γ4 = 0.22.
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Figure 3.7: The locations of the selected data points (circles) and the four subdomains
used used in case 3 to estimate four parameters

As in the previous cases, the initial values of the estimatedparametersgamma
were used to collect a set of 200 snapshot vectors and a basis consisting of 6 dominant
eigenvectors was used to construct a reduced model that captured 98% of the relative
energy (see Figure 3.8(a)). Here the reduced model was builtusing only few dominant
modes to get the initial direction of the update of the estimated parametersγ and once
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the direction is known the reduced model can be built using updated parametersγup

with more relative energy attained for fast convergence.
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Figure 3.8: The POD modes captured energy for an ensemble of 200 snapshots in the
outer iterations a)β1 b) β2

With this reduced model of dimension<6+4, the approximate objective function̂J
was minimized and new values of the estimated parameters were found atγ1 = 0.176,
γ2 = 0.188,γ3 = 0.164 andγ4 = 0.206. Although only 6 dominant POD modes were
used to build the reduced model, the objective functionJ was reduced by more than
75% after the outer iterationβ1.

The updated parameters obtained after outer iterationβ1 were used again to con-
struct a new reduced model that captured 99.99% of the relative energy with 15 basis
vectors (see Figure 3.8(b)). Table 3.3 shows the minimization results and the conver-
gence of four estimated parameters. The results from Table 3.3 shows that the POD
based estimation procedure efficiently minimizes the objective functionJ and all the
estimated parameters converge to true parameter valueγt = 0.18 after few outer itera-
tions.

β γ1 γ2 γ3 γ4 J Ĵ

1 0.12 0.20 0.14 0.22 4.3277 0.6073
2 0.176 0.188 0.164 0.206 0.9485 0.1101
3 0.18285 0.185388 0.17701 0.188588 0.1637 0.0227
4 0.185666 0.182784 0.180184 0.184586 0.0446 0.0027
7 0.180158 0.180092 0.180164 0.18014 6.5× 10−5 4.1× 10−6

Table 3.3: Results of the estimation of four parametersγ1, γ2, γ3 andγ4 with the POD
based estimation procedure.
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3.4.3 Experiment 2

In this experiment we have applied the BPOD procedure to get the basis of reduced
model and compare results with POD based reduced-order model. In experiment 2
two cases were considered to estimateυd with dominant advection as in the 2nd case
of Experiment 1 according complexity with respect to the number of observations.

Case 1

The number of parameters estimated for this case were two. The numerical domain
was divided into two regions for eachγk. The true value for both the parameters
was againγt = 0.18. A set of simulated observationsY(ti) ; i ∈ {1, · · · , 50} with
true values of the parameters were obtained at 20 different grid points scattered in the
model domain as shown in Figure 3.9. Initiallyγ1 = 0.12 andγ2 = 0.20. For the initial
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Figure 3.9: The 2D pollution model domain; The locations of the selected data points
(circles) and straight line divides the model domain in two regions one for each esti-
mated parameter

values of the parameters, a set consisting of 100 snapshot vectors was generated and
the BPOD method was applied to get reduced basis for the reduced model. The first 10
balancing modes were used to construct the reduced model. With this reduced model
of dimension<10+2, the approximate objective function̂J was minimized and new
values of the estimated parameters were found atγ

up
1 = 0.19 andγup

2 = 0.194. The
process was repeated several times and updated values of theestimated parameters
were used as initial values to construct the reduced model ineach outer iterationβ.

Figure 3.10 shows the minimization of objective functionJ for BPOD and POD
reduced models of order<10+2. The Figure 3.10 demonstrates that the optimization
using BPOD based reduced model performs efficiently in the first few outer iterations
β of the minimization process as compared to the POD based reduced model. More-
over, the same minimum value of the objective functionJ is achieved with both the
reduced order models afterβ8 of the minimization process.
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Figure 3.10: The successive outer iterationsβ of the objective function (J) for the
POD and the BPOD based reduced order models of order<10+2

Case 2

The only difference here from the previous case is the number of selected observa-
tions. The experiment was designed to compare the results from the BPOD method
with and without outer projection procedure. Since outer projection procedure is use-
ful when the number of outputs (observations) are large, therefore a set of simulated
observationsY(ti) ; i ∈ {1, · · · , 50} with true values of the parameters were obtained at
every other grid point in the model domain. So in total 200 observation points were
selected.

To quantify the performance of both the reduce models we haveused the following
metric, i.e. relative root mean square error (RRMSE) [100] of the difference between
the full order and the reduced order simulation. This was obtained by first taking the
full order approximation results and the corresponding reduced order results within
the inner iteration of the variational data assimilation.

RRMS E=
1
m
Σm

i=1

√
||Y(ti) − Ŷ(ti)||2
||Y(ti)||2

(3.48)

wherem is the number of time steps. Table 3.4 shows the comparison ofthe RRMSE
in the full and reduced order approximations obtained by using the POD method, the
BPOD method and the BPOD method with outer projection procedure respectively
with respect to the size of the reduced order models. Here, the outer projection pro-
cedure was used by selecting a projection matrixPr of 12 dominant POD modes as
explained in Section 3.2.3. So instead of 200 simulations with the adjoint system, only
12 simulations with the adjoint system were needed to compute the balancing modes.
The Table 3.4 demonstrates that there are no significant differences in the RRMSE
errors for the BPOD with and without outer projection. Although the BPOD method
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performs better as compared to the POD method, this difference is not significant if
number of modes selected for the reduced model are more than 10.

(Modes) POD BPOD OP(12)
2 0.5071 0.3658 0.3728
3 0.4965 0.3617 0.3704
4 0.2191 0.1383 0.1388
5 0.2197 0.1375 0.1380
6 0.1187 0.1012 0.1009
7 0.1178 0.0947 0.0995
8 0.0845 0.0777 0.0766
9 0.0717 0.0659 0.0660
10 0.0534 0.0527 0.0530
15 0.0267 0.0258 0.0257
20 0.0267 0.0247 0.0247
25 0.0225 0.0209 0.0213

Table 3.4: RRMSE in the forward simulation with different model reduction methods

Figure 3.11 shows the minimization of the objective function J with the outer pro-
jection and the POD based reduced models of order<10+2. The Figure 3.11 demon-
strates that the optimization based on both types of reducedmodel performs efficiently
and converge to almost similar value of the objective functionJ in each outer iteration
β. This means that although lots of effort had been made in constructing a reduced
model using outer projection procedure but the results of the optimization with the
POD method and the BPOD method are the same.
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Figure 3.11: The successive outer iterationsβ of the objective function (J) for the
POD and the outer projection based reduced order models of order<10+2
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3.5 Conclusions

In variational data assimilation it is necessary to implement the adjoint model for the
computation of gradient of the objective functionJ which is difficult and laborious for
large scale real time systems. In this work we have applied a method which simplifies
this problem using a projection based POD model reduction approach. The method
approximate the full dynamical system while retaining its properties. An ensemble of
forward model simulations is used to determine the approximation of the covariance
matrix of the model variability and the dominant eigenvectors of this matrix are used
to define a model subspace. An approximate linear reduced model is obtained by pro-
jecting the original model onto this reduced subspace. The adjoint of the tangent linear
model is replaced by the adjoint of this linear reduced forward model. The minimiza-
tion process is carried out in reduced subspace and hence reduces the computational
costs. Numerical experiments were performed in a pollutionmodel of concentration
c(x,t) with the POD based estimation method to estimate diffusion coefficients. The
results demonstrates that the POD based estimation approach successfully estimate
the diffusion coefficient for both advection dominated problems as for diffusion dom-
inated problems.

BPOD is a model reduction method which combines the ideas andmethodology
of two model reduction methods, i.e. POD and balanced truncation. The balanced
truncation method uses both controllable and observable subspaces while obtaining
a low rank subspace for the reduced model. A state transformation is chosen such
that controllability and observability Gramians are diagonal and equal. The BPOD
method presented here allows computation of the balancing transformation directly
from snapshots of empirical Gramians using SVD, without needing to compute the
Gramians themselves. The method also allows the empirical observability Gramian to
be computed efficiently even when the number of outputs is large.

Identical twin experiments were performed to estimate diffusion coefficients in a
pollution model with both POD and BPOD methods. The results demonstrated that
the reduced model obtained from BPOD performs better than POD based reduced
model in the beginning of the minimization but both the methods converged to similar
value after 6th outer iteration of the minimization process. An experimentwas also
performed to compare the two BPOD procedures when the numberof outputs is large.
We were able to form a reduced model with similar accuracy with 12 simulations of
the adjoint system using outer projection procedure instead of 200 simulations with
the adjoint system using usual BPOD method. Although lot of efforts had been put
in constructing a reduced order model by BPOD method, the minimization results
demonstrated that both the POD and the BPOD methods performed similarly.

Preliminary results shows the validity of the POD based model reduction meth-
ods for parameter estimation and now the method needs to be tested for large scale
application which is the topic of the next chapter.



46



Chapter 4
Inverse shallow water flow
modeling using model reduction1

4.1 Introduction

Variational data assimilation has often been used for modelcalibration (e.g. [87], [53],
[92], [43]). The method aims at adjusting a number of unknownparameters on the ba-
sis of given data. One first defines a scalar function which, for any model solution
over the assimilation interval, measures the “distance” or“misfit” between that solu-
tion and the available observations. The so-calledobjective (cost) functionis typically
a sum of squared differences between the observations and the corresponding model
values. One then looks for the model solution that minimizesthe objective function.
To obtain a computationally efficient procedure this objective function is minimized
with a gradient-based algorithm where the gradient is determined by solving the ad-
joint problem. Variational data assimilation usually requires the implementation of
an adjoint model. Research has recently been carried out on automatic generation of
computer code for the adjoint and adjoint compilers have nowbecome available (see
[47]). Even with the use of these compilers coding an adjointis a laborious program-
ming effort that hampers new applications of the method.

In the last years the studies of complex systems have taken strong advantage of the
development of mathematical methods coming from the theoryof non-linear dynam-
ical systems. Proper orthogonal decomposition (POD) is a model reduction method
considered as an application of the singular value decomposition (SVD) to the ap-
proximation of general dynamical systems [11]. POD is the technique leading to the
system of low-dimensional ordinary differential equations that approximate the model
formulated in terms of partial differential equations, allowing to take full advantage
of dynamical systems theory. The method was originally developed by Karl Pearson
(see [68]) and has application in many fields like image processing, signal processing,
data compression, oceanography, chemical engineering andfluid mechanics (see e.g.

1This chapter is a slightly revised version of [5]
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[49], [69], [3], [14]). For a detailed description on POD scope and research see [40].
Another application of POD in operational occeanography and weather forcast-

ing is four dimensional variational data assimilation (4DVAR), which is based on an
optimal control theory [88]. POD has recently been applied successfully in 4DVAR
(e.g. [54], [22], [32], [31]). Previous experiences show that the POD is valuable in
parameter estimation (e.g. [26]), especially the recent work by [102] shows that POD
based model reduction technique can be successfully applied for inverse modeling of
3D groundwater flow.

In the POD model reduced approach, an ensemble of snapshot vectors of forward
model simulations is used to determine an approximation of the covariance matrix of
the model variability and a small number of the leading eigenvectors of this matrix is
used to define a model subspace. By projecting the original model onto this subspace
an approximate linear reduced model is obtained. Once the reduced model is avail-
able its adjoint can be implemented easily and the minimization problem is solved
completely in reduced space with very low computational cost. If necessary this pro-
cess of minimization is repeated several times by generating a new set of snapshots
(ensemble) which is closer to the new estimated parameters.

Compared with the classical variational method the adjointof the tangent linear
model is replaced by the adjoint of the linear reduced forward model. While the
adjoint of the tangent linear approximation of the originalmodel produces the exact
local gradient, the reduced order approach is based on statistically linearised model
and hence produces an averaged gradient. As a result the model reduced approach can
be less sensitive for local minima for certain applications[99].

The present work is mainly inspired by the recent work done inreduced order
modeling by [99], [54]. These methods are based on deriving approximate low-order
data assimilation system in the context of incremental 4DVAR procedure for parame-
ter and state estimation respectively. In the present work we consider 1) a new appli-
cation of reduced-order calibration approach. The method has been used for a model
based on shallow water equations which is different in behaviour from the one used
in [99]. We also consider 2) usage of extended time horizon for parameter estimation.
The generation of an ensemble involves running the forward model several times. The
computational cost of the method is dominated by the generation of this ensemble. In
this study it is found that if the dynamics of the system does not change significantly
then a smaller simulation period can be chosen to generate anensemble of forward
model simulations for an optimization problem over larger period.

A shallow water model of the continental shelf, the Dutch continental shelf model
(DCSM) is used in the Netherlands to forecast the storm surges in the North Sea.
Accurate predictions of storm surges are of vital importance to the Netherlands. The
decision whether or not to close the storm surge barriers is based on these predictions.
A number of twin experiments is performed with DCSM to evaluate the performance
of proposed approach. This allows us to evaluate the resultsby comparing them to the
truth.

The chapter is organized as follows. Section 4.2 explains classical inverse mod-
eling methods. Procedure required for the construction of POD projection based re-
duced model is described in Section 4.3. In Section 4.4 the methodology of POD
projection based reduced method for the calibration is explained. Section 4.5 contains
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results from the twin experiments with the operational model for storm surge predic-
tion, the DCSM, to estimate the water depth. The chapter concludes in Section 4.6 by
discussing the results.

4.2 Inverse modeling

Consider the data assimilation problem for a general nonlinear dynamical system. The
discrete system equation for the state vectorsX(ti+1) ∈ <n is given by;

X(ti+1) = Mi [X(ti), γ], (4.1)

whereMi is nonlinear and deterministic dynamics operator that includes inputs and
propagates the state from timeti to timeti+1, γ is vector of uncertain parameters which
needs to be determined. Suppose now that we have imperfect observationsY(ti) ∈ <nq

of the dynamical system (4.1) that are related to model stateat timeti through

Y(ti) = HX(ti) + η(ti), (4.2)

whereH : <n → <nq
is linear observation operator that maps the model fields on

observation space andη(ti) is unbiased random Gaussian error vector with covariance
matrixRi .

The idea of parameter estimation is to identify the values ofuncertain model pa-
rametersγ. We assume that the difference between data and simulation results oc-
curs only due to measurement errors and incorrectly prescribed model parameters. A
most commonly used measure that determines this difference is the weighted sum of
squared residuals. The problem of estimation is then solvedby directly minimizing
the cost functionJ

J(γ) =
m∑

i=1

[Y(ti) − H(X(ti))]TR−1
i [Y(ti) − H(X(ti))], (4.3)

with respect to the parametersγ, satisfying the discrete nonlinear forecast model (4.1).
The minimization of the cost functionJ is often based on quasi-Newton methods.

These methods require the computation of the gradient of thecost function. The gradi-
ent vector∇J gives information about the direction (positive or negative) and the size
of adjustments for each individual parameter. The adjoint method [18] computes the
exact gradient efficiently. The principle of the adjoint method is based on the system-
atic use of the chain rule of differentiation. Regardless of the number of parameters,
the time required to compute the gradient using adjoint technique is more or less iden-
tical and is comparable with the computational time needed for a single simulation
run of the nonlinear model (4.1). It requires one forward simulation with the original
the nonlinear model (4.1) and a second additional simulation backward in time with
the adjoint model:

ν(ti) = (
∂Mi

∂X(ti)
)Tν(ti+1) − 2HR−1

i [Y(ti) − H(X(ti))], (4.4)
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whereν(ti) represents the solution of the adjoint model. The gradient∇J of the cost
functionJ with respect to each componentγk, k = {1, . . . , np}, of the uncertain param-
eter vectorγ is given by

∇Jk =
∑

i=1

− [ν(ti+1)]T [
∂Mi [X(ti), γ]

∂γk
]. (4.5)

The main hurdle in the use of adjoint method is its implementation. Even with
the use of adjoint compilers that have become available these days this is a huge pro-
gramming effort that hampers new applications of the method. Moreover, the adjoint
equation needs to be integrated backward in time and therefore the states of the for-
ward model have to be stored at each grid point for all time steps. The memory access
will therefore be huge for large scale problems.

4.3 Reduced order modeling

The problem of obtaining a lower-dimensional approximation to a high-dimensional
system is known as model reduction. The method used in this paper fall in the category
of projection methods, which involve projecting the systemequations onto a subspace
of the original phase space.

4.3.1 Proper Orthogonal Decomposition

The proper orthogonal decomposition, also known as principle components analysis,
has been widely used for a broad range of applications. POD analysis yields a set of
empirical eigenfunctions which describes the dominant behavior or dynamics of the
given problem. POD can be described as the method that examines the linear relation-
ship between variables with the aim of reducing the dimensionality of the problem.

The main idea is the following. Given a set of data that lies ina vector spaceV,
find a subspaceVr of fixed dimensionr such that the error in the projection onto the
subspace is minimized. We start by collecting the set ofs snapshots of some physical
process. Each sample of snapshotsXi which is defined on a set ofn nodesX stands
for ann dimensional vectorX j . i.e.,

Xi = {X1i ,X2i, · · · ,Xni}′, i ∈ {1, 2, · · · , s}, (4.6)

The elements within a snapshot represent the signal for a specific location in the
model, possibly for multiple quantities. Define the vectorXb of background state
and correct each snapshot vector so that

Ei = Xi − Xb, i ∈ {1, 2, · · · , s}, (4.7)

These corrected snapshots are arranged in matrixE, which denotes the new ensemble.
The covariance matrixQ can be constructed from the ensembleE of the snapshots by
taking the outer product

Q = EET , (4.8)
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The dimensionn often exceeds 104, so direct solution of eigenvalue problem is not
feasible. To shorten the calculation time necessary for solving the eigenvalue problem
for this high dimensional covariance matrix, we define a covariance matrixG as the
inner product. In the method of snapshots [78], one then solves s × s eigenvalue
problem

GZi = ETEZi = λiZi , i ∈ {1, 2, · · · , s}, (4.9)

whereλi are the eigenvalues of the above eigenvalue problem. The eigenvectorsZi

may be chosen to be orthonormal and the POD modespi are then given by

pi = EZi/
√
λi . (4.10)

A physical explanation of POD modes is that they maximize theaverage energy
in the projection of data onto subspace spanned by the modes.The eigenvaluesλi

provide a measureψi for the relative energy associated with the corresponding POD
modespi :

ψi =
λi∑s

l=1 λl
.100%, i = {1, 2, · · · , s} (4.11)

We collectpr (r < s) modes such thatψ1 > ψ2 > . . . > ψr and they totally explain
at least the required varianceψe:

ψe =

r∑

l=1

ψl . (4.12)

4.4 Inverse modeling using reduced models

An approximate linear reduced model in variational data assimilation presented here is
based on the principle of POD model reduction technique. An ensemble of snapshots
vectors is generated from the original model. The reduced model operates on the space
defined by the dominant eigenvectors of the generated ensemble.

4.4.1 Linearization and reduced Basis

Linearization of non-linear high-order model (4.1) with respect to parameterk gives

X(ti+1) = Mi [Xb(ti), γb]X(ti) +
∑

k=1

∂Mi [Xb(ti), γb]
∂γk

∆γk, (4.13)

with X is linearized state,Xb is the background state for which the corresponding
parameterγb are linearized. The partial derivatives∂M

∂γk
can be computed using pertur-

bation method with respect to each parameterγk

∂Mi

∂γk
≈

Mi [Xb(ti), γb
k + ∆γk] − Mi [Xb(ti), γb

k]

∆γk
, (4.14)

where∆γk is the perturbation. The snapshot vectorsEi ∈ <s are the perturbed model
simulations∂M

∂γk
with respect to each parameterγk. These snapshots are collected in
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matrix E = [E1, · · · ,Es]. We then simplify the eigenvalue problem as explained in
Section 4.3 to obtain the POD basis (modes)P = [p1, · · · , pr ] of r dominant eigen-
vectors. The total number of eigenmodesr in the basisP depends on the required
accuracy of the reduced model.

4.4.2 Reduced model formulation

A model can be reduced if stateX̂(ti) can be written as linear combination

X̂(ti+1) = Xb(ti+1) + Pξ(ti+1), (4.15)

whereX̂ is the approximate linearized state,ξ is a reduced time-varing state vector
given by (

ξ(ti+1)
∆γ

)
=

(
M̃i M̃γ

i
0 I

) (
ξ(ti)
∆γ

)
(4.16)

, hereM̃i andM̃γ

i are simplified dynamics operators which approximate the full Jaco-
bians∂Mi

∂Xb and ∂Mi
∂γk

respectively:

M̃i = PT ∂Mi

∂Xb(ti)
P, (4.17)

M̃γ

i = PT(
∂Mi

∂γ1
, · · · , ∂Mi

∂γnp
). (4.18)

The Jacobian∂Mi

∂Xb is obtained by linearizing the nonlinear dynamics operatorMi

with respect to background stateXb. Instead of computing this huge Jacobian with
finite difference method (i.e. by perturbing the nonlinear operatorMi in the direction
of each node), we perturb along the direction of POD modes only:

∂Mi

∂Xb(ti)
ph =

Mi [Xb(ti) + εph, γ
b] − Mi [Xb(ti), γb]
ε

(4.19)

with ε being the size of the perturbation. The reduced dynamics operatorM̃i can now
be computed by premultiplying the above formulae byPT

M̃i = PT (
∂Mi

∂Xb(ti)
p1, · · · ,

∂Mi

∂Xb(ti)
pr ). (4.20)

The dimension of the subspace on which reduced model operates depends on the
number of eigenmodesr selected in the POD basis and the number of estimate vari-
ablesnp i.e. (r + np) × (r + np).

4.4.3 Approximate objective function and its adjoint

The value of the approximate objective functionĴ is obtained by correcting the ob-
servationsY(ti) for the background stateXb(ti) which is mapped on the observational
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space through a mappingH and for the reduced model stateξ(ti) which is mapped on
the observational space through mappingĤ with Ĥ = HP:

Ĵ(∆γ) =
m∑

i=1

[{Y(ti) − H(Xb(ti))} − Ĥξ(ti ,∆γ)]TR−1
i [{Y(ti) − H(Xb(ti))} − Ĥξ(ti ,∆γ)].

(4.21)
As the dimension of the reduced model is smaller than that of original model and

reduced model has linear characteristics, it is easy to build an approximate adjoint
model for the computation of gradient of the approximate objective function (4.21).
The gradient ofĴ with respect to parameter∆γ is given by:

∆Ĵ
∆γ
=

∑

i

−[ν̂(ti+1)]T ∂ξ(ti+1)
∂∆γ

, (4.22)

whereν̂(ti+1) is the reduced adjoint state variable (see Appendix A). Once the gradi-
ent is computed, the process of minimizing the approximate objective functionĴ is
performed along the direction of the gradient vector in the reduced space.

4.4.4 Procedural flow with reduced model

In order to perform the whole parameter estimation process the following steps are
executed.

1. Outer Iteration.

• Background initial parametersγb are used to generate an ensemble of for-
ward model simulations.

• A POD reduced model and its adjoint model are established using this
ensemble.

• Inner Iteration. Perform optimization iterations in reduced space to obtain
the optimal solution of the approximate objective functionĴ.

• The background initial parametersγb are updated and new set of initial
parameters (γup) is obtained.

γup = γb + ∆γ. (4.23)

2. Return to step 1 with new set of initial parameters until optimality condition is
achieved.

Convergence criterion for inner and outer iterations

We have defined two criteria both for the inner and outer iterations of the optimization
process. We stop the present inner iteration and switch to a new outer iteration with
new set of parameters following the criterionµ, which is defined as

µ =
∑

k=1

‖ 5Ĵαi ‖/‖ 5 Ĵα1 ‖≤ δ, (4.24)
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where5Ĵα1 is the value of the gradient at start of inner iteration,5Ĵαi is the value of
the gradient after each inner iteration. The value ofδ is chosen considering that the
gradient should decrease by at least three orders of magnitude from the initial gradient
[15]. The outer iteration cycle is said to converge when the optimal valueα of the
objective functionJ is achieved:

ρ =‖ Jβi − Jβi−1 ‖≤ κ, (4.25)

whereβi is the ith outer iteration. We have chosenκ = 0.5 for all the numerical
experiments.

4.4.5 Computational cost

The computational costs of the reduced model approach are dominated by the gener-
ation of the ensemble of forward model simulations. If the dynamics of the system
does not change significantly during the course of simulation then a smaller simula-
tion period can be chosen for the generation of ensemble. Using this ensemble the
optimization problem can then be solved over the whole period of model simulation.
The efficiency of optimization process is also influenced by the ensemble size. A large
ensemble size leads to a huge eigenvalue problem. It is possible to include only those
snapshots in the ensemble where data is available.

The method needs to be updated in each outer iterationβ by constructing a new
POD model by generating a new ensemble of forward model simulations. The number
of outer iterationsβ is influenced by the chosen abortion criterionκ. It should not be
chosen too small as this causes jumping of objective function J since it is possible that
reduced model overestimatesγk due to the process of linearisation.

4.5 Application: The Dutch Continental Shelf Model

The Dutch continental shelf model (DCSM) is an operational storm surge model used
in the Netherlands for real-time storm surge prediction in North Sea. Accurate predic-
tions of the storm surges are of vital importance to the Netherlands since large areas
of the land lie below sea level. Accurate forecasts at least six hours ahead are needed
for proper closure of the movable storm surge barriers in Eastern Scheldt and the New
Waterway. The governing equations used in DCSM are the non-linear 2-D shallow
water equations. The shallow water equations, which describe large scale water mo-
tions, are used to calculate the movements of the water in thearea under consideration.
These equations are

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
+ g

∂h
∂x
− f v+

gu
√

u2 + v2

HC2
2D

=
1
ρw

τx

H
− 1
ρw

∂pa

∂x
, (4.26)

∂v
∂t
+ u

∂v
∂x
+ v

∂v
∂y
+ g

∂h
∂y
+ f u+

gv
√

u2 + v2

HC2
2D

=
1
ρw

τy

H
− 1
ρw

∂pa

∂y
, (4.27)

∂h
∂t
+
∂Hu
∂x
+
∂Hv
∂y
= 0, (4.28)
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Figure 4.1: DCSM area and assimilation stations: 1. N51, 2. Southend, 3. Innerdows-
ing, 4. Oostende, 5. H.v.Holland, 6. Den Helder, 7. N4

where
x, y = Cartesian coordinates in horizontal plane
t = time coordinate
u, v = depth-averaged current in x and y direction respectively
h = water level above reference plane
D = water depth below the reference plane
H = total water depth (D+h)
f = coefficient for the Coriolis force
C2D = 2D Chezy coefficient
τx, τy = wind stress in x and y direction respectively
ρw = density of sea water
pa = atmospheric pressure
g = acceleration of gravity
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These equations are descretized using an alternating directions implicit (ADI) method
and the staggered grid that is based on the method by [55] and improved by [82].
In the implementation the spherical grid is used instead of rectangular (see e.g. [94]).
Boundary conditions are applied at both closed and open boundaries. At closed bound-
aries the velocity normal to the boundary is zero. So no inflowand outflow can occur
through these boundaries. At open boundaries the water level is described in terms of
ten harmonic components (M2,S2,N2,K2,O1,K1,Q1,P1,U2, L2) as follows

h(t) = h0 +

10∑

j=1

f j H j cos(ω j t − θ j) (4.29)

where
h0 mean water-level
f j H j amplitude of harmonic constituent j
ω j angular velocity of j
θ j phase of j

The DCSM covers an area in the north-east European continental shelf, i.e. 12oW
to 13oE and 48oN to 62oN as shown in Figure 4.1. The resolution of the spherical grid
is 1/8o × 1/12o, which is approximately 8× 8 km. With this configuration there are
201× 173 grid blocks with 19809 computational grid points. The time step is4t=10
minutes. All open boundaries of the model are located in deepwater (more than
200m), see Figure 4.1. This is done in order to model explicitely the non-linearities of
the surge-tide interaction.

4.5.1 Estimation of depth

The bathymetry for a model is usually derived from nautical maps. One of the pur-
poses of these maps is to guide large ships safely through shallow waters. Therefore
these maps usually give details of shallow rather than deep-water areas. If we use
these maps to prescribe the water depth, it is reasonable to assume that such prescrip-
tion of the bathymetry is erroneous. So depth can be a parameter on which model
can be calibrated. In the early years of the developments of the DCSM the changes
to bathymetry were made manually. Later automated calibration procedures based on
variational methods were developed starting from the work by [87]], [63]. The com-
plete description on the development of these calibrated procedures for DCSM can be
found in [98].

The experiments are performed to assimilate data near the Dutch coast, i.e. for
domainΩ (see Figure??). Obviously, not every depth pointDx,y can be conceived
as an unknown parameter of the simulation model. Including too many parameters,
identifiability will become a problem [97]. The parameter groups should be selected
in accordance with the physical properties of the model. It seems logical to avoid
parameter groups in which the flow varies widely [43]. The numerical domainΩ is
divided into subdomainsΩk, k = 1, · · · , 7. These subdomainsΩk are chosen based on
uniformity of the depth inΩk. For each subdomainΩk a correction parameterγb

k is
defined that is related toDx,y by

Dnew
x,y = Dx,y + γ

b
k, i f (x, y) ∈ Ωk, (4.30)
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Figure 4.2: (a) The domainΩ (dashed rectangle) of DCSM; (b) The subdomainsΩ1,
Ω2,Ω3,Ω4,Ω5,Ω6 andΩ7

The parametersγb
k are treated as unknown parameters that are to be estimated.

They act as a correction for the mean level ofDx,y in a subdomainΩk and leave the
spatial dependence insideΩk unaltered.

Experiment 1

Seven observation points are included in the assimilation,two of which are located
along the east coast of the UK, two along the the Dutch coast and one at the Belgian
coast (see Figure??). The truth model is run for a period of six days from 13 Decem-
ber 1997 00:00 to 18 December 1997 24:00 with the specification of water depthDx,y

as used in the operational DCSM to generate artificial data atthe assimlation stations.
The first two days are used to properly initialize the simulations. The set of observa-



58 Chapter 4. Inverse shallow water flow modeling using modelreduction

tionsY of computed water levelsh is collected for last four days with an interval of
every ten minutes at seven selected assimilation grid points, which coincide with the
points where data are observed in reality. We have assumed that the observations are
perfect. This assumption is made in order to see how close is our estimate to the truth.

5(m) is added toDx,y at all the grid points in domainΩ to get the initial adjusments
γb

k. With this specification of the background initial parametersγb
k, an ensemble E of

210 snapshot vectors is collected for the period where data is available, i.e. from 15
December 1997 00:00 to 18 December 1997 24:00. The snapshotsare chosen with an
equal interval of 20 timesteps, so 30 snapshots are collected for eachγk.
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Figure 4.3: The energy captured by POD modes for an ensemble of 210 snapshots of
the water level h, velocitiesu andv

Each snapshot vector consists of predicted water levelsh, velocitiesu and v.
Therefore it is necessary to scale the snapshot vectors before solving the eigenvalue
problem (4.9). The state vector should be scaled such that all state variables become
equally observable. For the shallow water equations the scaling based on energy pro-
duced at the output can be used to find a practical scaling method [95]. The potential
and kinetic energies for one grid cell are

Eh = 1/2gh2ρw∆x∆y, (4.31)

Eu,v = 1/2(u2 + v2)Dρw∆x∆y, (4.32)

Assume one measures surface elevations. Through propogation of the model kinetic
energy may become potential energy. Since the model is dissipative the sum of the two
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can only decrease or at most remain the same. This suggests that scaling state variables
according to the energy they represent creates approximately equal observability if the
dissipation is small. In this case, the water levelsh should be scaled with

√
g and the

velocitiesu andv with
√

D [95].
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Figure 4.4: Value of the objective function J versus the number of outer iterationsβ

After applying the above scaling to each snapshot vector in an ensemble E we are
able to form a basis consisting of only 15 dominant eigen modes that captured 97%
relative energy. Figure 4.3 shows energy captured by POD modes for 210 snapshot
vectors. So a reduced model is built using these 15 modes and finally operates on
<15+7. The low-dimensional model is defined by assuming that the matrix M̃ remains
stationary througout the experiment.

The numerical solution of the optimal control problem is obtained by quasi-Newton
method with LBFGS (limited memory Broyden Fletcher Goldfard Shanno) updating
formula. With this reduced model approximate objective function Ĵ is minimized and
new values of estimate variables are found. The objective function J is reduced by
more than 80% after the inner minimization. We have stopped the inner minimization
process and switched to a new outer iteration with the new setof parameters following
the criterionµ, that the gradient should decrease by at least three orders of magnitude
from the initial gradient value. A new POD model is required in the outer iteration if
the old POD model cannot substantially reduces the objective functionJ. Figure 4.4
shows the history of the minimization of the objective function J in the POD based
estimation approach with respect to number of outer iterationsβ. It is clear from Fig-
ure 4.4 that after four outer iterations the objective function J is approximately equal
to its optimal value.

In the beginning of minimization process there is a significant change in param-
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Figure 4.5: Convergence of the depth parameters that coincide along the UK, Dutch
and Belgium coasts

eters for regions coinciding with the UK, Dutch and Belgian coast, but there is not
much improvement in deep water regionsΩ1 andΩ7. The subdomains containing
deep areas are less sensitive as compared to the subdomains containing shallow areas,
so it is difficult to estimateγb

k in these areas. However in the third and fourth outer
iterations, we have found improvement in the deep water regionsΩ1 andΩ7. Figure
4.5 shows the convergence of parameters that coincide with coastal areas.

Figure 4.6 presents water level timeseries at Den Helder andHoek van Holland
respectively for the period of 16 December 1997 00:00 - 18 December 1997 24:00.
These timeseries refer to water levels obtained from simulated data (truth), timeseries
using deterministic model without data assimilation, and timeseries with data assimi-
lation after four outer iterations respectively. These figures demonstrate that the differ-
ences between the timeseries with data assimilation and thetruth are always smaller
as compared to the difference between the timeseries without data assimilation and
the truth. It is also clear from the figures that both phase shift and correct amplitude
are compensated.

To quantify the performance of the POD based estimation method at assimilation
stations we use root-mean-square-error (RMSE) metric of the water level errors over
the whole simulation period

RMS E=

√
1
m
Σm

i=1(ht(ti) − ĥ(ti))2 (4.33)
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Figure 4.6: Water level timeseries for the period from 16 December 1997 00:00 -
18 December 1997 24:00 for simulated data (truth), deterministic model without as-
similation (background), deterministic model with data assimilation after four outer
iterations (reduced estimation) at a) Den Helder; b) Hoek van Holland

whereht is the true water level and̂h is the analysed water level. To check whether the
data assimilation works at different locations, the RMSE of water level innovations
is also computed for some validation stations where no assimilation was performed.
Six validation stations are selected for this purpose. Figure 4.7 shows RMSE of water
levels for assimilation and validation stations respectively. The POD based estimation
procedure reduces the RMSE at both assimilation and validation stations.

In order to get an idea of the required computational cost we express it in terms
of number of simulations with the original model. In this experiment seven param-
eters are estimated, so eight model simulations for a periodof 6 days are performed
to generate an ensemble. The snapshots are collected for last four days only, since
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observations are available for this period. As the number ofsnapshots chosen is only
210, the computational time to solve eigenvalue problem andto construct the reduced
model is much less than that of running the full model. Combined with seven parame-
ters to be estimated, the reduced model operated eventuallyin R22 instead of∼ R6×104

.
Simulating the POD reduced model and its adjoint model over the whole simulation
period requires approximately 1/50 of the time for simulating the full model. The
number of outer iterationsβ in this experiment is four. Therefore the time required
to estimate seven parameters with POD based reduced estimation procedure is equal
to approximately 40 simulations with the original model. The same amount of time
is required in case of the classical adjoint method see [85].Thus the POD calibration
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Figure 4.7: RMSE for water level observations at a) assimilation stations and b) vali-
dation stations
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method offers an efficiency comparable to the classical adjoint method without the
burden of implementation of the adjoint.

Experiment 2

In this experiment we have computed POD reduced model from a short simulation
and used it for calibration over a longer period. For boundary forcing and water depth
Dx,y specified as in the previous experiment, a truth model is run for 15 days, i.e.
from 13 December 1997 00:00 to 27 December 1997 24:00, to generate artificial data
(observations) for the last 13 days. These observationsY are again the computed water
levels for the same assimilation stations.
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Figure 4.8: Value of the objective function J versus the number of outer iterationsβ
for the calibration over 15 days

The specification of the background initial parametersγb
k is the same as in the

previous experiment. We have used the same POD reduced ordermodel which was
constructed from an ensembleE of 210 snapshot vectors of forward model simulations
for the period from 15 December 1997 00:00 to 18 December 199724:00 (4 days) as
in the previous experiment. The calibration period is now 15days, i.e. 13 December
1997 00:00 to 27 December 1997 24:00.

The approximate objective function̂J reduces its value with similar magnitude.
Figure 4.8 shows the minimization of the objective functionJ in the experiment with
respect to the number of outer itertionsβ. The existence of the same trend in this
graph as compared to the minimization of objective functionJ in calibration over 6
days indicates that the POD reduced model constructed over the small time period can
be used for calibration over a much larger period.
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Figure 4.9: RMSE for water level observations at assimilation stations for calibration
over 15 days

Figure 4.9 shows RMSE for water level at the assimilation stations. The estima-
tion procedure reduces the RMS values of the water level errors at all assimilation
stations. Figure 4.10 gives an idea about the model performance after calibration. The
figure presents the water-level time series at Hoek van Holland for the period of 24
December 1997 00:00 - 24 December 1997 24:00 for the initial setting of the calibra-
tion parameters, the true calibration parameters and the calibration parameters after
four outer iterations with the reduced estimation procedure.

In this experiment seven parameters are estimated during a calibration over 15
days. Seven model simulations for a period of 4 days and one model simulation with
background initial parameters for a period of 15 days are performed to generate an
ensemble. The total number of outer iterationsβ in this experiment is four, therefore
the time required to estimate seven parameters is now approximately 20 simulations
with the original model. Thus for the current experiment PODreduced model required
1/2 of the computational time of the classical adjoint method.The use of POD based
estimation procedure has significantly reduced the computational cost.

4.6 Conclusions

The adjoint method is a powerful tool for sensitivity analysis and model calibration,
but it is laborious to implement adjoint model for the computation of the gradient
for large scale systems. The POD based model reduction approach presented here is
used to simplify this problem using a projection based POD model reduction method.
An optimal order-reduction approach to model calibration must capture accurately the
properties of full dynamical model. The presented approachis designed to approx-
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Figure 4.10: Water level timeseries at Hoek van Holland for the period from 24 De-
cember 1997 00:00 - 24 December 1997 24:00 for simulated data(truth), the initial
setting of the calibration parameters (background) and deterministic model after cali-
bration (reduced estimation)

imate the data assimilation system in a restricted space while retaining its essential
properties. The method fits into the theory of incremental variational data assimila-
tion by using restriction and prolongation operators.

The method has been used to calibrate the operational model for storm surge
prediction, the DCSM. Twin experiments have been performedto estimate the wa-
ter depth. The results show that the calibration method performs very efficiently. A
POD reduced model of much smaller sizeR15 has been constructed instead of original
model of size (∼ R6×104

). After four outer iterationsβ the objective functionJ has re-
duced significantly and is very close to optimal value. The RMSE at both assimilation
and validation stations have improved significantly.

Considering the model periodicity in time an experiment hasbeen done to cal-
ibrate the model for longer period with a reduced order modelover shorter period.
The same trend in the minimization of objective functionJ has been observed for the
calibration over 15 days from the same POD model that is used for the calibration
over six days. This result demonstrates the potential usageof the method to calibrate
DCSM model for much longer period. Moreover, the POD calibration offers a rela-
tively efficient method compared to the classical adjoint method without the burden of
implementation of the adjoint.

The classical method employs the adjoint of tangent linear model which is re-
placed here by the adjoint of linear reduced model. Comparedto the classical adjoint
method the minimization in reduced space converges faster due to better condition
number of the reduced Hessian. The method has a limitation that it has to be updated
at each outer iteration by constructing a new POD model by generating an ensemble
of forward model simulations. Moreover, the quality of ensemble and the process of
generating ensemble is crucial for a reduced order procedure to be effective.
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Chapter 5
Case Study: Identification of
uncertain parameters in a large
scale tidal model1

5.1 Introduction

Accurate sea water level forecasting is crucial in the Netherlands. This is mainly be-
cause large areas of the land lie below sea level. Forecasts are made to support storm
surge flood warning system. Timely water level forecasts arenecessary to support the
decision on closure of the movable storm surge barriers in the Eastern Scheldt and the
New Waterway. Moreover, forecasting is also important for harbor management, as
the size of some ships has become so large that they could onlyenter the harbor dur-
ing high water period. Storm surge warning service (SVSD) inclose cooperation with
royal Netherlands meteorological institute (KNMI) is responsible for these forecasts.
The surge is predicted by using a numerical hydrodynamic model, the Dutch conti-
nental shelf model (DCSM) (see [82], [94]). Performance of the DCSM regarding the
storm surges is influenced by its performance in forecastingthe astronomical tides.
Using inverse modeling techniques, these tidal data can be used to improve the model
results.

The adjoint method is a well-known approach to inverse modeling. The method
aims at adjusting a number of unknown control parameters on the basis of given data.
The control parameters might be model initial conditions ormodel parameters [88],
[89]. An objective function is defined which measures the misfit between the solu-
tion and the available data for any model solution over the assimilation interval. This
objective function is typically a sum of squared differences between the data and the
corresponding model values. One then looks for the model solution that minimizes
this objective function. To obtain a computationally efficient procedure this objective

1This chapter is a slightly revised version of [9]
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function is minimized with a gradient-based algorithm where the gradient is deter-
mined by solving the adjoint problem. The adjoint approach is computationally very
efficient because one gradient calculation requires just a single simulation of the for-
ward model and a single simulation of the adjoint model backward in time, irrespective
of the number of parameters. The adjoint method has been usedand applied success-
fully to many types of inverse problems in ground water flow studies (e.g. [16]), in
meteorology (e.g. [20]), in oceanography (e.g. [91]) and inshallow water flow models
(e.g. [87], [53], [92], [43]).

One of the drawbacks of the adjoint method is the programmingeffort required
for the implementation of the adjoint model. Research has recently been carried out
on automatic generation of computer codes for the adjoint, and adjoint compilers have
now become available (see [47]). Even with the use of these adjoint compilers de-
veloping an adjoint model is often a significant programmingeffort that hampers new
applications of the method. Courtier [21] had proposed an incremental approach, in
which the forward solution of the nonlinear model is replaced by a low resolution ap-
proximate model. Reduced order modeling can be used in an incremental approach to
obtain an efficient low order approximate linear model [54].

Proper orthogonal decomposition (POD) is a model reductionmethod considered
as an application of the singular value decomposition (SVD)to the approximation of
general dynamical systems [11]. It is a data driven projection based method origi-
nally developed by Karl Pearson [68]. Karhunen [48] and Loeve [56] had used it as
statistical tool to analyze random process data. Lumley [59] gave the name POD,
and used the method to study turbulent flow. The POD method hasapplication in
many fields like image processing, signal processing, data compression, oceanogra-
phy, chemical engineering and fluid mechanics (see [40]). Inthe POD method the
projection subspace is determined by processing data obtained from numerical simu-
lations of high dimensional model which is expected to provide information about the
dynamical behavior of the system. The high dimensional equations are projected onto
the low dimensional subspace resulting in a low dimensionalmodel. In this way, the
POD method reduces the CPU time of model simulation but does not change the com-
plexity of the problem and consequently does not solve the implementation problem
of the adjoint model. The method has recently been investigated by (e.g. [15], [22],
[32]). The POD method has also been applied successfully forparameter estimation
(e.g. [26]).

Vermeulen and Heemink [99] proposed a method based on POD which shifts the
minimization into lower dimensional space and avoids the implementation of the ad-
joint of the tangent linear approximation of the original nonlinear model. In their
approach, an ensemble of snapshot vectors of forward model simulations is used to de-
termine an approximation of the covariance matrix of the model variability and a small
number of leading eigenvectors of this matrix is used to define a model subspace. By
projecting the original model onto this subspace an approximate linear reduced model
is obtained. Due to the linear character of the reduced modelits adjoint can be im-
plemented easily and the minimization problem is solved completely in reduced space
with very low computational cost. The method has recently been successfully applied
to the 2D-DCSM to estimate water depth [5]. Several synthetic cases were used to
show that the depth parameters were correctly identified in the selected regions of the
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model domain. The generation of an ensemble in the POD methodinvolves running
the forward model several times. The computational cost of the method is dominated
by the generation of this ensemble. It was also found in the study that if the dynam-
ics of the system does not change significantly then a smallersimulation period can
be chosen to generate an ensemble of forward model simulations for an optimization
problem over larger period [5, 8].

The first version of DCSM was developed in the 1980′s and has been through
numerous improvements since then. Among the developments was the increased res-
olution of the wind forecast input from 55 to 22 km, which could slightly increase the
forecast quality in storm situations. Another attempt was to refine further the resolu-
tion of the wind input to 11 km. However case studies comparing resolution 22 km
and 11 km input for DCSM showed that the 11 km resolution couldnot improve the
prediction. Besides works on improving the wind input, a lotof studies had also been
devoted to model calibration ([87], [63], [43]). The last calibration was performed
in 1998 using the adjoint method [61]. It was assumed that with the limited model
resolution of approximately 8 km and certain quality of the bathymetry information
further calibration was not worthwhile. For further details on the development of the
DCSM see [98].

DCSM version 6 is the recently designed large-scale spherical grid based water
level model for the northwest European continental shelf (around 106 computational
grid points). It covers a much larger deep water area than theoperational version of
DCSM (see Figure 5.1) and has a spatial resolution that is a factor 5 finer in both
latitudinal and longitudinal directions. The flow exchanges with the non-modeled part
of the Atlantic Ocean are modeled by prescribing the tidal water level variation along
the open boundary of the domain. One of the objectives of thisnew development is
to extend the time horizon of the water level forecasts in thenear future and to make
these forecasts for a denser distribution of locations along the Dutch coast. At this
moment the forecasts are made for just the five 5 main stationswhich are taken as
representative for a specific coastal section.

In this chapter, the POD based model reduced approach is usedfor the estimation
of the water depth and space varying bottom friction coefficient values in large-scale
DCSM model. This is the first application of the method to a very large-scale model
and real data. The computational costs of the method are dominated by the generation
of an ensemble of forward model simulations. The simulationperiod of the ensemble
is equivalent to the timescale of the original model. Here anaccurate reduced model
is obtained from an ensemble with a relatively short simulation period as compared to
the calibration period. A new ensemble is usually required with the suboptimal esti-
mated parameters until the convergence criterion is achieved. It is also found in the
present study that a new ensemble is not always required for the new set of estimated
parameters. Instead of defining a new model subspace of the leading eigenvectors
by generating a new ensemble of the forward model simulations, we obtained a re-
duced model by projecting original model with the updated parameters onto the same
subspace.

The chapter is organized as follows. Section 5.2 briefly describes the DCSM
model used in this study. The methodology of POD projection based reduced method
for the calibration is explained in Section 5.3. Section 5.4discusses the experiments
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with the newly developed DCSM to estimate the water depth andthe bottom friction
coefficient. Section 5.5 presents the conclusions.

5.2 The new Dutch continental shelf model

Since the mid-1980′s, the storm surge forecasts in the Netherlands are based on a
numerical hydrodynamic model DCSM. This model uses forecasts of the meteorolog-
ical high-resolution limited area model (HIRLAM) as input.The model is based on
shallow water equations. The use of a 2D model implies that flow related quantities
are computed in depth-averaged form, which is a commonly used approximation for
tidal modeling. The model is based on the work of [55] and improved by [82]. In the
implementation the spherical grid is used instead of rectangular (see e.g. [94]).

The time between warning for dangerous high water and the actual occurrence of
the high water is an important parameter in the planning of the response, e.g. decisions
on the closure of the storm surge barriers, dike watch and potentially even an activation
of an evacuation scenario. The objectives of this new development include obtaining
better quality of the forecasts, forecasts for a denser distribution of locations along the
Dutch coast and increasing the forecasts horizons.

5.2.1 Model computational grid of the new model

The newly developed DCSM covers an area in the northwest European continental
shelf, i.e. 15oW to 13oE and 43oN to 64oN, as shown in Figure 5.1. The spherical grid
has a uniform cell size of 1/40o in eastwest direction and 1/60o in northsouth direction
which corresponds to a grid cell size of about 2× 2 km. With this configuration there
are 1120 grid cells in eastwest direction and 1260 grid cellsin north-south direction.
The grid cells that include land are excluded form the model and the model finally
contains 869544 computational grid points. The grid resolution of the spherical grid
is factor five finer than of the operational DCSM.

5.2.2 Model bathymetry and bottom roughness

The bathymetryD for a model is usually derived from nautical maps. One of the
purposes of these maps is to guide large ships safely throughshallow waters. The
bathymetry for the new DCSM is based on a NOOS gridded data setand for some
areas in the model ETOPO2 bathymetry data are interpolated on the computational
grid. The model bathymetry is presented in Figure 5.2. The North Sea is much shal-
lower, with maximum depth around 200m. In southern North Sea(English Channel)
the depths are mostly less than 50m. In the southwestern and northern parts of the
model domain the depth exceeds 2000m.

To account for the bottom friction, the empirical 2D-Chezy coeffiecient is com-
puted in the direction of the velocitiesu andv according to the following formulation:

C2D =
{H} 1

6

cm
, (5.1)
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Figure 5.1: Newly developed hydrodynamic DCSM area. The dashed line represents
the area of the operational DCSM extent

where
H total water depth
cm the manning coefficient

A uniform value of 0.028s/m
1
3 has been applied for the manning coefficientcm.

This initial value of thecm has been obtained through manual calibration.

5.2.3 Model boundary conditions

Boundary conditions are applied at both closed and open boundaries. At closed bound-
aries the velocity normal to the boundary is zero. So no inflowand outflow can occur
through these boundaries. The dashed line in Figure 5.1 shows the comparison of the
new DCSM area with the operational DCSM. The model area of thenew DCSM is
extended significantly in order to ensure that the open boundary conditions are located
further away in deep water. At the northern and western sidesof the model domain
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Figure 5.2: DCSM model bathymetry in meters. The bathymetrygreater than 2000m
is shown as 2000m

water levels are specified at 205 different locations along the open boundaries. These
water levelsh at the open boundaries are described in terms of the amplitude and phase
of the ten harmonic components (M2,S2,N2,K2,O1,K1,Q1,P1,U2, L2) as follows:

h(t) = h0 +

10∑

j=1

f jH j cos(ω j t − θ j), (5.2)

where
h0 mean water-level
f j H j amplitude of harmonic constituent j
ω j angular velocity of j
θ j phase of j

The tidal conditions of these ten main diurnal and semi-diurnal constituents have
been derived by interpolation from a dataset that is obtained from the GOT00.2 global
tidal model.
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5.2.4 Initial conditions and computational time

A uniform initial water level of 0m mean sea level (MSL) is used. First four days of the
model run are considered as the spin-up period. Zero flow conditions are prescribed
for the initial velocity. The time zone of the model is GMT. A computational time step
of 2 minutes is applied. So it takes more than 2 days to complete a one year model run
on eight 3.6 MHz CPUs.

5.3 Inverse modeling using POD

The discrete model for the evaluation of shallow water system from timeti to timeti+1

can be described by an equation of the form

X(ti+1) = Mi [X(ti), γ], (5.3)

where state vectorX(ti+1) ∈ <n denotes the vector of water levelsh, velocitiesu
andv at time ti+1 andγ is the vector of the uncertain parameters which needs to be
determined.Mi is nonlinear and deterministic dynamics operator that includes inputs.
Suppose now that we have imperfect observationsY(ti) ∈ <nq

of the dynamical system
(5.3) that are related to the model state at timeti through

Y(ti) = HX(ti) + η(ti), (5.4)

whereH : <n → <nq
is a linear observation operator that maps the model fields

on observation space andη(ti) is an unbiased, random Gaussian error vector with
covariance matrixRi .

We assume that the difference between data and simulation results is only due to
measurement errors and incorrectly prescribed model parameters. The problem of the
estimation is then solved by directly minimizing the objective functionJ

J(γ) =
∑

i

[Y(ti) − H(X(ti))]
TR−1

i [Y(ti) − H(X(ti))] (5.5)

with respect to the parametersγ satisfying the discrete nonlinear forecast model (5.3).
The efficient minimization of the objective function requires the computation of

the gradient of the objective function (5.5). The gradient vector∇J gives information
about the direction (positive or negative) and the size of adjustments for each indi-
vidual parameter. The adjoint method computes the exact gradient efficiently. The
principle of the adjoint method is based on the systematic use of the chain rule of dif-
ferentiation. Regardless of the number of parameters, the time required to compute the
gradient using adjoint technique is more or less identical and is comparable with the
computational time needed for a single simulation run of thenonlinear model (5.3). It
requires one forward simulation with the original nonlinear model (5.3) and a second
additional simulation backward in time with the adjoint model

ν(ti) = (
∂Mi

∂X(ti)
)Tν(ti+1) − 2HR−1

i [y(ti) − H(X(ti))], (5.6)
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whereν(ti) represents the solution of the adjoint model. The gradient∇J of the objec-
tive functionJ with respect to each componentγk of the uncertain parameters vector
γ is given by

∇Jk =
∑

i

− [ν(ti+1)]T[
∂Mi [X(ti), γ]

∂γk
], k = {1, · · · , np}. (5.7)

The adjoint method is flexible as the number of parameters caneasily be changed.
The main hurdle in the use of adjoint method is its implementation, especially when
the forward model contains nonlinearities. For the shallowwater flow computations
the original model is very complicated and it is difficult to implement the adjoint for
this type of models.

5.3.1 Linearization and reduced model formulation

The classical adjoint problem for a general model is a nonlinear constrained opti-
mization problem which is difficult to solve. The problem can be simplified with
the hypothesis that the objective functionJ can be made quadratic by assuming that
the nonlinear dynamics operatorMi can be linearized. The linearization of nonlinear
high-order model (5.3) using the first order Taylor’s formula around the background
parameterγb

k gives

4X(ti+1) =
∂Mi [Xb(ti), γb]

∂Xb(ti)
4X(ti) +

∑

k

∂Mi [Xb(ti), γb]
∂γk

∆γk (5.8)

whereX is linearized state vector,Xb is the background state vector with the prior
estimated parameters vectorγb and4X is a deviation of the model from background
trajectory.

A model can be reduced if the incremental state4X(ti+1) can be written as linear
combination

4X(ti) = Pξ(ti+1), (5.9)

whereP = [p1, p2, · · · , pr ] is a projection matrix such thatPTP = Ir andξ is a reduced
state vector given by

(
ξ(ti+1)
∆γ

)
=

(
M̃i M̃γ

i
0 I

) (
ξ(ti)
∆γ

)
(5.10)

Here∆γ is the control parameter vector,̃Mi andM̃γ

i are simplified dynamics operators
which approximate the full Jacobians∂Mi

∂Xb and ∂Mi
∂γk

respectively:

M̃i = PT ∂Mi

∂Xb(ti)
P, (5.11)

M̃γ

i = PT(
∂Mi

∂γ1
, · · · , ∂Mi

∂γnp
), (5.12)

The Jacobian∂Mi

∂Xb , is obtained by approximating the nonlinear dynamics operator Mi

by linearizing it with respect to background stateXb. Instead of computing this huge
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Jacobian by approximating the partial differential with finite difference by perturbing
the nonlinear operatorMi in the direction of each node, we perturb along the direction
of ph only:

∂Mi

∂Xb(ti)
ph =

Mi [Xb(ti) + εph, γ
b] − Mi [Xb(ti), γb]
ε

, h = {1, · · · , r}, (5.13)

with ε being the size of the perturbation. The reduced dynamics operatorM̃i can now
be computed by premultiplying the above formulae byPT :

M̃i = PT(
∂Mi

∂Xb(ti)
p1, · · · ,

∂Mi

∂Xb(ti)
pr ). (5.14)

Notice also that only the original model simulations are needed here.The reduced
model requires less computational time as it simulates a reduced state within the di-
mensionr instead of the original dimensionn wherer < n. The dimension on which
the reduced model operates is (r +np)× (r +np) with np being the number of estimated
parameters.

5.3.2 Collection of the snapshots and POD basis

The POD method is used here to obtain an approximate low-order formulation of the
original tangent linear model. POD is an optimal technique of finding a basis which
spans an ensemble of data (snapshots) collected from an experiment or a numerical
simulation of a dynamical system. The POD modes are optimal at approximating a
given dataset. Since the reduced model is used here to estimate uncertain parameters
(depthD and manning coefficientcm), the snapshots should be able to represent the
behavior of the system for these parameters. Therefore the snapshot vectorsei ∈ <s

are obtained from the perturbations∂Mi
∂γk

along each estimated parameterγk to get a
matrix

E = {e1, · · · , es}; i = {1, 2, · · · , s}. (5.15)

The dimension of this ensemble matrixE is s = np × ns, wherens is the number of
snapshot collected for each individual parameterγk. The covariance matrixQ can be
constructed from the ensembleE of the snapshots by taking the outer product

Q = EET (5.16)

The projection matrix P used in the previous section is basedon the dominant eigen-
vectors (POD modes) of this covariance matrix which are obtained as explained in
Section??.

5.3.3 Approximate objective function and its adjoint

In reduced model approach, we look for an optimal solution ofthe (5.3) to minimize
the approximate objective function̂J in an incremental way:

Ĵ(∆γ) =
∑

i

[{Y(ti) − H(Xb(ti))} − Ĥξ(ti ,∆γ)]TR−1
i [{Y(ti) − H(Xb(ti))} − Ĥξ(ti ,∆γ)].

(5.17)
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The value of the approximate objective functionĴ is obtained by correcting the obser-
vationsY(ti) for background stateXb(ti) which is mapped on the observational space
through a mappingH and for the reduced model stateξ(ti ,∆γ) which is mapped to the
observational space through mappingĤ with Ĥ = HP.

Since the reduced model has linear characteristics, it is easy to build an approxi-
mate adjoint model for the computation of gradient of the approximate objective func-
tion (5.17). The gradient of̂J with respect to∆γ is given by

∂Ĵ
∂(∆γ)

=
∑

i

−[ν̂(ti+1)]T ∂ξ(ti+1)
∂(∆γ)

, (5.18)

whereν̂(ti+1) is the reduced adjoint state variable (see Appendix A). Once the gradient
has been computed, the process of minimizing the approximate objective functionĴ
is done along the direction of the gradient vector in the reduced space.

After the minimization process the initial parametersγ are updated and new set of
updated parametersγup is obtained:

γup = γ + ∆γ. (5.19)

This process of minimization is repeated several times by constructing new POD
model with new set of updated parametersγup to get optimal parameters.

5.3.4 Workflow with POD algorithm

In order to perform the whole parameter estimation process,the following steps are
executed.

1. Outer Iteration:

(a) Generate an ensemble of forward model simulations usinginitial parame-
tersγb.

(b) Solve eigenvalue problem to get dominant eigenmodespi

(c) Establish a POD reduced model and its adjoint model usingeigenmodes
pi .

2. Inner Iteration:

(a) Perform optimization iterations in the reduced space toobtain the optimal
solution of the approximate objective functionĴ.

(b) Update the initial parametersγb after the minimization process obtain new
set of updated parametersγup.

3. Return to step 1 with new set of updated parametersγup until optimality condi-
tion is achieved.
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5.3.5 Convergence criterion for inner and outer iterations

The minimization is performed using a quasi-Newton optimization algorithm where
the Hessian of the objective function is updated using the limited Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) method. The minimization algorithm requires conver-
gence criteria to terminate. We have defined two criterions,one is for inner iterations
and one is for outer iterations of the optimization process.We stop the present in-
ner iterationα and switch to a new outer iterationβ with updated parametersγup by
criterionµ, which is defined as

µ =
| Ĵαi+1 − Ĵαi |

max{| Ĵαi+1 |, 1}
< ε, (5.20)

whereαi represents theith inner iteration. The value of theε is chosen such that the
approximate objective function̂J stops to change, i.e.ε = 10−4 (see [66]). The outer
iteration cycle is aborted when the terminal value ofρ is obtained

ρ =
| Jβi − Jβi−1 |
| Jβi |

≤ κ, (5.21)

whereβi stands for theith outer iteration,κ is the terminal value.

5.3.6 Computational efficiency of the algorithm

The computational efficiency of the model-reduced approach is influenced by three
factors.

1. Ensemble generation: The computational costs of the reduced model approach
are dominated by the generation of the ensemble of forward model simulations.
If the dynamics of the system does not change significantly during the course of
simulation then a smaller simulation period can be chosen for the generation of
ensemble [5]. Using this ensemble the optimization problemcan then be solved
over the whole period of model simulation.

To achieve convergence, the POD method needs to be updated ineach outer it-
erationβ, so the ensembleE of snapshot vectors is required in eachβ. Instead of
defining a new model subspace of the leading eigenvectors in eachβ by gener-
ating a new ensemble of the forward model simulations, it is possible to obtain
the reduced model by projecting the original model with updated parameters
onto the same subspace.

2. Ensemble size: The efficiency of optimization process is also influenced by
the ensemble size. A large ensemble size leads to a huge eigenvalue problem.
On the other hand, since the ensemble gives the representation of the model
behavior with respect to eachγk, it is important that the number of snapshot
vectors included in the ensemble must give this representation. So the quality of
ensemble is crucial for a reduced-order procedure to be effective. It is possible
to include only those snapshots in the ensemble for the period where data is
available.
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3. Outer iteration: The convergence criterionρ should be carefully chosen. It
should not be chosen too small as this causes jumping of the updated parameters
γup around the optimal global solution [99]. For the current application we have
chosenκ = 0.05.

5.4 Parameter identification for the new DCSM

In this section, the POD based calibration approach described before is used for the
calibration of the newly developed DCSM. The following parameters are estimated:

1. correction parameter for the depth,

2. correction parameter for the manning roughness coefficient.

In the early years of the developments of the DCSM these parameters were adapted
manually. Later automated calibration procedures based onthe variational methods
were developed starting from the work of [87], [63]. An overview of the development
of these calibration procedures for DCSM can be found in [98].

Both depth and bottom friction have to be prescribed at each grid cell of the model.
Thus, theoretically it is possible to consider depth and bottom friction at each grid cell
as a parameter to adapt. Practically it is not possible to take the adaptation values
of every grid point as a parameter since far too many parameters would then have to
be estimated in proportion to the available amount of data. Including too many pa-
rameters, identifiability will become a problem [97]. Here the rectangular areas are
chosen, for which adaptation parameters are considered. These rectangular areas are
chosen based on the previous calibrations of the DCSM [85] and the spatial correla-
tions within the rectangular regions.

5.4.1 Measurement data

The model performance can be assessed by comparing it to the measured (observed)
dataset. The available data used in this research consists of two datasets of the tide
gauge stations are used, namely,

1. water level measurement data from the Dutch DONAR database,

2. BODC (British Oceanographic Data Center) offshore water level measurement
data.

In the operational system the astronomical tide component of the observed data
is replaced by the one predicted using the DCSM, obtained by running the DCSM
without any wind input forcing [37]. The target of the calibration of the parameters
(i.e. depth and bottom friction coefficient) is to optimize the model for its reproduction
of the astronomical tide. The tide gauge data are therefore retrieved from the results
of the harmonical analysis to exclude the meteorological influences.
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Figure 5.3: DCSM area with stations included in the model calibration

5.4.2 The calibration and validation datasets and time period

For the calibration 50 water level locations are selected (see Figure 5.3). Observations
obtained by the harmonic analysis from these 50 stations at every fifth time step (10
minutes) are used for the calibration experiments. The calibration runs are performed
for the period from 28 December 2006 to 30 January 2007 (34 days). The first 4 days
are used to properly initialize the simulation. The measurement data are used for the
remaining 30 days. This period is selected such that 2 spring-neap tide cycles are
simulated. We have assumed that the observationsY of the computed water levelsh
contain an error described by white noise process with standard deviationσm =0.10
(m).

For the validation 32 water level locations are selected (see Figure 5.4). The vali-
dation runs are carried out with validation dataset from theperiod 12 January 2007 to
14 February 2008 (34 days). The first four days are again used for initialization. The
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stations that are used for the calibration are not included in the dataset that is used for
the validation. The model validation with different dataset and time period prevents
the model to be adjusted too much to one specific dataset and time period. Another
validation dataset, a so-called Dutch dataset, is prepared(see Figure 5.5). It includes
the stations from both calibration and validation datasetsalong the Dutch coast. This
dataset is used as an extra control to closely monitor the improvement along the Dutch
coast for the validation time period.

Figure 5.4: DCSM area with stations included in the validation dataset

5.4.3 Time and frequency domain analysis

The tidal predictions have been made using amplitudes and phases derived from the
harmonic analysis of the DONAR and BODC measurements. In this way the water
level variation resulting from the tides is the only signal.To measure the overall per-
formance of the model in time domain, the root-mean-square-error (RMSE) is deter-
mined for each station over the calibration and validation periods. The RMSE metric
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is also used to measure the quality of model simulation for different datasets used for
calibration and validation periods.

Although the calibration is performed in time domain, it is usually more conve-
nient to interpret the results in the frequency domain. For the frequency analysis a
vector difference (VD) is defined [70]:

VD = [{Accos(Gc) − Aocos(Go)}2 + {Acsin(Gc) − Aosin(Go)}2]
1
2 , (5.22)

whereAc andGc represent the computed amplitude (in cm) and phase (in radian)
respectively, whileAo andGo represent the observed amplitude and phase respectively
for the tide gauge stations. The RMS(VD) is also obtained in which the mean is taken
over the datasets of tide gauge stations used for the calibration and the validation
periods.

Figure 5.5: Stations along the Dutch coast included in the Dutch dataset for the vali-
dation period
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5.4.4 Ensemble generation

As explained in Section 5.3.1, the generation of the ensemble involves perturbations
∂Mi
∂γk

with respect to each parameter for the whole simulation period. If the dynamics
of the system does not change significantly then a smaller simulation period can be
chosen to generate an ensemble of forward model simulationsfor an optimization
problem over larger period [?]. The ensembleE is generated using forward model
simulations for a period from 28 December 2006 00:00 to 04 January 2007 24:00. The
snapshot vectors in the ensemble are collected for the period where data is available,
i.e. from 01 January 2007 00:00 to 04 January 2007 24:00. The snapshots are chosen
with an equal interval of 03 hours, so 33 snapshots are collected for eachγk.

5.4.5 Scaling

Each snapshot vector consists of predicted water levelh, velocitiesu andv. Before
solving the eigenvalue problem as explained in the section 5.3.2 to find dominant
eigenmodes, it is necessary to scale the snapshot vectors. The state vector should be
scaled such that all state variables become equally observable. One approach here is
based on the energy. The potential energy of a surface elevation h above the reference
plane for one grid cell is

Eh = 1/2gh2ρw∆x∆y (5.23)

and the kinetic energy of the grid cell is

Eu,v = 1/2(u2 + v2)Dρw∆x∆y, (5.24)

where
g the gravitational acceleration
ρw the density of the water

Assume one measures surface elevations. Through propagation of the model ki-
netic energy may become potential energy, and because the model is dissipative, the
sum of the two can only decrease or at most remain the same. This suggests that scal-
ing the state variables according to the energy they represent creates approximately
equal observability if the dissipation is small. In this case, the water levels should be
scaled with

√
g and the velocitiesu andv with

√
D (see [95]).

5.4.6 Model calibration

The tidal calibration of the DCSM was carried out in steps. Three experiments are
performed during the calibration process, two with the estimated parameter depth and
one with the bottom friction.

Experiment 1

For this experiment, the numerical domainΩ is divided into four subdomainsΩk, k =
1, . . . , 4 (see Figure 5.6). For each subdomainΩk a correction parameterγb

k is defined
that is related toDx,y by

Dnew
x,y = Dx,y(1+ γ

b
k), i f (x, y) ∈ Ωk. (5.25)
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Figure 5.6: The four subdomainsΩk of the DCSM used in Experiments 1 and 3

The parametersγb
k are treated as unknown parameters that are to be estimated.

They act as correction for theDx,y in a subdomainΩk and leave the spatial dependence
insideΩk unaltered. The adaptation in depth is relative. This is assumed keeping in
mind that the model is quite sensitive for the shallow areas.

After the initial adjustmentsγb
k, an ensembleE of 132 snapshot vectors is gener-

ated using the forward model simulations. As explained in section 5.4.4, the snapshot
vectors in the ensemble are collected for the period where data is available, i.e. from
1 January 2007 00:00 to 04 January 2007 24:00. After applyingthe scaling to each
snapshot vector in an ensemble E, we are able to form a basis consisting of only
24 dominant eigenmodes that capture more than 97% of the relative energy. Figure
5.7 shows energy captured by POD modes for 132 snapshot vectors. So a reduced
model is built using these 24 modes and finally operates on state space<24+4. The
low dimensional model is defined by assuming that the matrixM̃ remains stationary
throughout the experiment.

With this reduced model the approximate objective functionĴ is minimized in
reduced space and the new values of the estimated variablesγup are found. We have



84
Chapter 5. Case Study: Identification of uncertain parameters in a large scale

tidal model

1 10 20 30
30

40

50

60

70

80

90

100

No. of modes (r)

C
ap

tu
re

d 
En

er
gy

 (ψ
e )

Figure 5.7: The energy captured by POD modes for an ensemble of 132 snapshots of
the water levelh, velocitiesu andv (Experiment 1)

stopped the inner minimization process and switched to a newouter iteration with the
new set of parameters following the criterionµ. The objective functionJ is reduced by
more than 50% with the updated parametersγup after the inner minimization (Figure
5.8). The RMSE for the calibration dataset has decreased from 21.75 cm to 14.74 cm
after the 1st outer iterationβ1 of the minimization.

A new POD model is required in the outer iterationβ2 if the old POD model cannot
substantially reduce the objective functionJ. Here the new POD model is constructed
usingγup. The POD modes however are the same as in theβ1 as explained in section
5.3.6. In this way, the generation of the new ensemble E and the solution of the eigen-
value problem to get the dominant eigenmodespi can be avoided. Again a significant
improvement is observed in the objective functionJ after the inner minimization (see
Figure 5.8) with the new values ofγup. The RMSE for the calibration dataset has now
decreased to 12.98 cm after the outer iterationβ2 of the minimization process.

Figure 5.9 shows the reduction of̂J and the convergence ofµ with respect to
the inner iterationsα for the outer iterationsβ1 andβ2. In the case of the quadratic
objective function the quasi-Newton routine iterates approximately (np+1) times [33].
It can be seen from Figure 5.9b that the convergence criterion µ is achieved within the
specified range of the quasi-Newton routine.

Three validation runs are performed, the 1st with the initial values for the calibra-
tion parametersγb and two with the updated parametersγup after each of the outer
iterationsβ1 andβ2 respectively. As explained in section 5.4.2, the validation experi-
ments have to clarify whether these parameter adaptations really improve the model.

Table 5.1 shows the RMSE in the POD based calibration approach after each outer
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iterationβ1 and β2 for the tide gauge stations, separately for the different datasets
used for the calibration and validation periods. The RMSE inTable 5.1 shows that
significant improvements are found for different locations and different time periods.
Table 5.1 also demonstrates that afterβ2 the RMSE for the stations near Dutch coast
is reduced to 12.05 cm as compared to the 27.15 cm with the initial parameter values
γb.

OuterIterations(β) Calibration Validation Dutch
Initial 21.75 19.94 27.15
β1 14.74 13.22 15.24
β2 12.98 11.72 12.05

Table 5.1: RMSE results for the minimization process with the 97% relative energy
after 1st and 2nd outer iteration (Experiment 1)

Another reduced model is constructed that captures 90% of the relative energy.
15 POD modes are required in this case to built a reduced modelthat finally operates
on state space<15+4. Using this reduced model, the approximate objective function
Ĵ is minimized in reduced space and the new values of the estimated parametersγup

are found. Table 5.2 shows the RMSE in the POD based calibration approach that
captured 90% relative energy after each outer iterationβ for the tide gauge stations,
separately for each of the datasets used for the calibrationand validation periods.
The RMSE is again reduced significantly for both the calibration and the validation
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Figure 5.8: The reduction of the value of the objective function J at successive outer
iterationsβ1 andβ2 (Experiment 1)
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Figure 5.9: The values of a)̂Jα�hatJ0 and b) convergence criterionµ at successive
inner iterationsα for the outer iterationsβ1 andβ2 (Experiment 1)

OuterIterations(β) Calibration Validation Dutch
Initial 21.75 19.94 27.15
β1 15.44 13.85 16.42
β2 13.80 12.42 13.57

Table 5.2: RMSE results for the minimization process with the 90% relative energy
after 1st and 2nd outer iteration (Experiment 1)

datasets and time periods as in the previous case. The reduced model that captured
more relative energy has performed slightly better since the eigenmodespi that are
not included in the second case describe the part of the modelvariance which is rel-
evant to the observations. Therefore the accuracy of the minimization procedure is
really dependent on the size of the reduced model and also importance of the selected
eigenmodespi with respect to the observations included in the calibration dataset [99].

In order to compare the results, a new POD model is constructed with the updated
parametersγup after the outer iterationβ1. Here a new ensembleE of 132 snapshot
vectors is generated using the forward model simulations. We are able to form a basis
consisting of 28 dominant eigenmodes that captures 97% of the relative energy (see
Figure 5.10). Based on 28 modes the approximate objective function Ĵ is minimized
and the new values of the estimate variablesγup are found.

Table 5.3 shows the comparison of the minimization results obtained from the
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Calibration Validation Dutch
NewEnsemble 12.33 11.41 11.13
S ameEnsemble 12.98 11.72 12.05

Table 5.3: Results after 2nd outer iteration obtained by generating new ensemble and
using the same ensemble as in 1st outer iteration (Experiment 1).

POD model that uses the POD modespi based on a new ensembleE in the outer
iterationβ2 with the one that uses the same POD modespi as inβ1. It is clear from
the Table 5.3 that the results obtained by generating new ensembleE with new set of
updated parametersγup are slightly better. But the computational cost of generating
this ensembleE is much higher especially when the number of parameters is large.

In this experiment, we have found that the largest adjustments in the depth are in
the southern part of the North Sea with the channel area, i.e.the Dutch coast and the
east-coast of UK. This is because the initial RMSE in subdomain Ω2 is quite big as
compared to the other parts of the model domain. Also the dataobservation points are
concentrated in this area of the model domain (see Figure 5.3).
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Figure 5.10: The energy captured by POD modes for a new ensemble of 132 snapshots
of the water levelh, velocitiesu andv in the outer iterationβ2 (Experiment 1)
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Figure 5.11: The 12 subdomainsΩk of the DCSM used in Experiment 2

Experiment 2

In order to further improve the model results, the numericaldomainΩ is divided
into the 12 subdomainsΩk, k = 1, . . . , 12 (see Figure 5.11). The influence of the
depth adjustments is quite significant and also depth has a strong local effect. This
is one of the reasons for increasing the number of subdomains. Another reason for
this subdivision is to separate the subdomains containing both deep and shallow areas
(see Figure 5.11). As described earlier the data observation points are concentrated in
the English Channel, so this region is divided into 5 subdomains to further improve
the results by considering the local effects of the depth in each subdomainΩk, k =
3, · · · , 7, in this area.

With this new selection of subdomains an ensembleE consisting of 396 snapshot
vectors is generated for the same time period as in the previous experiment. Figure
5.12 shows energy captured by POD modes obtained from this ensembleE. A reduced
model is then built using 49 dominant POD modes that captured90% of the relative
energy. The model finally operates on state space<49+12. These dominant POD
modes are used in outer iterationsβ3 andβ4 of the minimization process to reduce the
approximate objective function̂J.
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Outeriteration(β) Calibration Validation Dutch
Initial (β2) 12.98 11.72 12.05

β3 10.97 9.87 9.15
β4 10.55 9.86 9.20

Table 5.4: RMSE results for the minimization process with the 90% relative energy
after 3rd and 4th outer iterations (Experiment 2)

The initial values of the depth parameters used here are the values obtained after
β2. Figure 5.13 shows the reduction of the objective functionJ in the outer iterations
β3 andβ4. The objective functionJ is reduced by more than 30% after theβ4 of
the minimization process as compared to the objective function J at the start of this
experiment. The overall RMSE has decreased from 12.98 cm to 10.55 cm.
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Figure 5.12: The energy captured by POD modes for an ensembleof 396 snapshots
of the water levelh, velocitiesu andv in the 3rd outer iterationβ3 (Experiment 2)

Table 5.4 shows the RMSE in the POD based calibration approach after the outer
iterationsβ3 andβ4 of the minimization process for the tide gauge stations, separately
for the datasets used for the calibration and validation periods. The RMSE for the
Dutch dataset of the tide gauge stations along the Dutch coast for the validation period
is reduced to 9.20 afterβ4 which is in acceptable range now.

The larger adjustments in the bathymetry are again found along the east-coast
of the UK. The preliminary bathymetry along the UK coast is still a question. It is
believed that the prescribed bathymetry in this area of the model is not satisfactory
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and that it has also a strong effect on the model results. The adjustments along the
southern Dutch coast (subdomainΩ6) are larger as compared to the rest of the Dutch
coast (subdomainΩ7). Compared to the initial bathymetry an overall adjustments of
around 8− 11% are applied along the Dutch coast. It has also been noticed that the
deep water regions are not adjusted significantly. Also froma physical point of view,
the estimation of the depth in subdomains containing deep and shallow areas is more
or less the estimation of the depth in the shallow areas [85].

2 3 4
0.5

0.6

0.7

0.8

0.9

1

 Outer Iterations [ β]

J β
/J

2

Figure 5.13: The reduction of value of the objective function J at successive outer
iterationsβ3 andβ4 (Experiment 2)

Experiment 3

As mentioned in section 2, a uniform value of 0.028s/m
1
3 has been applied for the

manning coefficientcm. In this experiment we have calibrated the uniform manning
coefficient. The numerical domainΩ is again divided into four subdomainsΩk, k =
1, . . . , 4, as in experiment 1 (see Figure 5.6). For each subdomainΩk a correction
parameterγb

k is defined that is related tocnew
m by

cnew
m = cm + γ

b
k, k = {1, · · · , 4}, (5.26)

wherecm is the value used in the model.
With the above specification, an ensembleE of 132 snapshot vectors is generated

from the perturbations∂Mi
∂γk

along the estimated parametersγb
k. Figure 5.14 shows

energy captured by POD modes obtained from this ensembleE. A reduced model is
then built using 32 dominant POD modes that capture 97% of therelative energy. The
reduced model finally operates on state space<32+4. These dominant POD modes are
used inβ5 to reduce the approximate objective functionĴ.
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Figure 5.14: The POD modes captured energy for an ensemble of132 snapshots of
the water levelh, velocitiesu andv in the outer iterationβ5 (Experiment 3)

Outeriteration(β) Calibration Validation Dutch
Initial (β4) 10.55 9.86 9.20

β5 10.25 9.82 9.22

Table 5.5: RMSE results for the minimization process with the 97% relative energy
after 5th outer iteration (Experiment 3)

Figure 5.15 shows the reduction ofĴ and the convergence ofµ after each inner
iterationα for the outer iterationβ5. Although Ĵ is reduced, the reduction is not very
significant as compared to the experiments with depth parameters. This is because
the influence of the depth adjustments is usually far greaterthan the adjustments to
the bottom friction coefficient. Moreover, the manning coefficient is already being
calibrated manually. Nevertheless any further reduction in objective functionJ is
considered to be an improvement in the model results.

Table 5.5 presents the RMSE obtained in theβ5 of the POD based calibration
approach, separately for the datasets used for the calibration and validation periods.
The results show that the POD based calibration procedure reduces the RMSE for
the datasets of the calibration period, but for the validation period there is no further
improvement.
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5.4.7 Discussion on results

Five outer iterationsβ have been performed during the calibration process. Figure
5.16 summarizes the RMSE after each outer iterationβ for the datasets used for the
calibration and the validation periods respectively. The POD based calibration ap-
proach, reduces the RMS values of the water levelsh for the tide gauge stations for
both the calibration and the validation periods with similar magnitude, except for the
the outer iterationsβ4 andβ5 where there is not much improvement for the datasets of
the validation periods.

Figure 5.17 presents the mean value of the total depth adaptation after each outer
iteration. The depth is adapted significantly in each outer iteration of the minimization
process.

Figure 5.18 presents water levelsh at the two tide gauge stations Delfzijl and
Vlissingen along the north and south of the Dutch coast respectively for the period of
15 January 2007 00:00 - 16 January 2007 24:00. These time series refer to water levels
obtained from observations, forecast using deterministicmodel without data assimila-
tion and forecast with data assimilation afterβ4 respectively. The figure demonstrates
that the POD based calibration approach significantly reduces the differences between
forecast time series with data assimilation and the observations as compared to the
differences between the forecast time series without data assimilation and the obser-
vations. It is also clear from the Figure 5.18 that both the effects, phase shift and
amplitude are compensated.

Figure 5.19 shows RMSE of water level at the selected stations along the Dutch
coast for the validation period with the initial values of the parameters and with the up-
dated parametersγup after the outer iterationsβ1, β3 andβ5 respectively. As explained
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Figure 5.15: The values of a)̂Jα�hatJ0 and b) convergence criterionµ at successive
inner iterationsα for the outer iterationβ5 (Experiment 3)
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Figure 5.16: RMSE for the calibration and validation datasets after each outer itera-
tionsβ of the minimization process

earlier, the target of the calibration of the depth and bottom friction parameters is to
optimize the model for reproduction of the astronomical tide especially for the sta-
tions along Dutch coast. The Figure 5.19 demonstrates that the POD based calibration
procedure significantly reduces the RMS values of the water level errors at all the tide
gauge stations along the Dutch coast except for the station WESTTSLG where the
improvement in RMSE is not significant.

Although the calibration is done in time domain, its important to analyze the per-
formance of the model in frequency domain after calibration. Figure 5.20 illustrates
the model performance after the calibration by means of the VD metric for the seven
important constituents for the three selected locations used in the calibration for the
initial values of the parameters and with the updated parametersγup after the outer
iterationsβ1, β3 andβ5 respectively. The figure shows large improvements especially
in the constituents M2 and M4. The model performance is further illustrated by Fig-
ure 5.21, in which the RMS(VD) is shown for the seven important constituents for
the three datasets of the tide gauge stations used for the calibration and the validation
periods for the initial values of the parameters and with theupdated parametersγup

after the outer iterationsβ1, β3 andβ5 respectively. The estimation procedure reduces
the RMS values for all the constituents for all the datasets used for the calibration and
validation periods.

The computational cost of the calibration experiments are expressed in terms of
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Figure 5.17: The mean value of the total depth adaptation after each outer iteration

the number of simulations with t he original model. Table 5.6presents the computa-
tional costs of the calibration experiments. Four parameters are estimated during the
outer iterationsβ1, β2 andβ5 (experiment 1 and 3), while 12 parameters are estimated
during the outer iterationsβ3 andβ4 (experiment 2) of the minimization process. In
the outer iterationβ1 one forward model simulation is required for the calibration pe-
riod, i.e. from 28 December 2006 to 30 January 2007, to obtainthe initial value of
the objective functionJ. As four parameters are estimated duringβ1, so four forward
model simulations are performed from 28 December 2006 to 04 January 2007 to ob-
tain an ensemble of the perturbations∂Mi

∂γk
alongγk. The snapshots are collected for

last four days only, since observations are available for this period. As the number of
snapshots chosen is 132 (every three hours), the computational time to solve eigen-
value problem and to construct the reduced model is negligible. Combined with four
estimated parameters, the reduced model simulates a reduced state within the dimen-
sion of a subspace<28 instead of the original state space∼ <3×106

. Similarly the cost
of optimization in the reduced space is negligible and eventually the time required to
estimate 4 parameters in the outer iterationβ1 is equal to approximately 2.2 forward
model simulations.

An ensembleE of the forward model simulations is obtained in the outer iterations
β1, β3 andβ5 while in the outer iterationsβ2 andβ4 the same ensembles are used as in
the case ofβ1 andβ3 respectively. In this way the computational cost of generating a
new ensembleE and solving the eigenvalue problem to get the dominant POD modes
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can be avoided in the outer iterationsβ2 andβ4 as shown in Table 5.6. Table 5.6 also
summarizes the computational cost for each outer iterationβ of the POD based calibra-
tion approach. So approximately only 11 full forward model simulations are required
to fine tune the model with respect to 16 depth and 4 bottom friction coefficients.
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Figure 5.18: Water level timeseries for the period from 15 January 2007 00:00 - 16
January 2007 24:00 obtained from measurement data (observations), forecast using
deterministic model without data assimilation and forecast with data assimilation (cal-
ibrated) afterβ4 respectively at the two tide gauge stations a) Delfzijl and b) Vlissingen
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Figure 5.19: RMS of water level at the selected tide gauge stations along the Dutch
coast with the initial values of the parameters and with the updated parametersγup

after the outer iterationsβ1, β3 andβ5 respectively

Outeriteration(β) Parameters NewEnsemble PODmodes No.o f simulations
β1 4 Yes 24 ∼ 2.2
β2 4 No 24 ∼ 1.1
β3 12 Yes 49 ∼ 4.2
β4 12 No 49 ∼ 1.1
β5 4 Yes 32 ∼ 2.2

Total ∼ 11

Table 5.6: Computational costs of the calibration experiments after each outer iteration
β of the minimization process
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Figure 5.20: Model performance for a) Hoek van Holland; b) Dover; c) Wick ex-
pressed as vector differences of the 7 important constituents with the initial values of
the parameters and with the updated parametersγup after the outer iterationsβ1, β3

andβ5 respectively
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Figure 5.21: Model performance for the datasets a) Calibration; b) Validation; c)
Dutch expressed as RMS(VD) for the 7 important constituentswith the initial values
of the parameters and with the updated parametersγup after the outer iterationsβ1, β3

andβ5 respectively
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5.5 Conclusions

The adjoint method is a powerful tool for sensitivity analysis and model calibration,
but it is laborious to implement adjoint model for the computation of the gradient for
large scale systems. The model-reduced approach presentedhere is used to simplify
this problem using a projection based on POD model reductionmethod. The present
approach is designed to approximate the data assimilation system in a restricted space
while retaining its essential properties. By using restriction and prolongation operators
the method fits into the theory of incremental variational data assimilation. Compared
to the classical adjoint method, the minimization in reduced space converges faster
due to better condition number of the reduced Hessian.

In this chapter, the POD based calibration approach has beenused to calibrate the
two-dimensional large-scale shallow water flow model, the new DCSM, defined over
the entire European continental shelf. The method has been used to calibrate the new
DCSM with respect to the bathymetry and a space-varying Chezy coefficient. The
results show that the calibration method performs very efficiently. A POD reduced
model of much smaller size is constructed instead of original model with state space
∼ <3×106

. The RMS errors for the tide gauge stations used for both calibration and
validation periods have improved significantly with an overall improvement of more
than 50% is observed after the calibration in comparison with the initial model.

The computational costs of the method are dominated by the generation of an
ensemble of forward model simulations. The simulation period of the ensemble is
equivalent to the timescale of the original model. Here an accurate reduced model is
obtained from an ensemble with a relatively short simulation period of first four days
that is used for calibration over the whole calibration period of one month.

To achieve the convergence, the method needs to be updated ateach outer iteration
β by constructing a new POD model by generating an ensemble of forward model
simulations. We have found in the present study that it is notalways required to use
the new ensemble in each outer iterationβ to construct the new POD based reduced-
order model. Instead, the same ensemble can be used in several outer iterations. The
results also demonstrate that in total only 11 full model simulations are required to
calibrate the DCSM with 20 degrees of freedom. Thus the POD calibration method
offers a very efficient minimization technique compared to the classical adjoint method
without the burden of implementation of the adjoint.



100



Chapter 6
Parameter Estimation using
Simultaneous Perturbation1

6.1 Introduction

Most efficient optimization algorithms require a gradient of the objective function.
This usually requires the implementation of the adjoint code for the computation of
the gradient of the objective function. The adjoint method aims at adjusting a number
of unknown control parameters on the basis of given data. Thecontrol parameters
might be model initial conditions or model parameters [88, 89]. A sizeable amount
of research on adjoint parameter estimation was carried outin the last 30 years in
fields such as meteorology, petroleum reservoirs and oceanography for instance by
[77], [12], [19], [20], [91], [87], [53], [92] , [43].

One of the drawbacks of the adjoint method is the programmingeffort required
for the implementation of the adjoint model. Research has recently been carried out
on automatic generation of computer code for the adjoint, and adjoint compilers have
now become available (see [47]). Even with the use of these adjoint compilers, this is
a huge programming effort, that hampers new applications of the method.

Vermeulen and Heemink [99] proposed a method based on Properorthogonal de-
composition (POD) which shifts the minimization into lowerdimensional space and
avoids the implementation of the adjoint of the tangent linear approximation of the
original nonlinear model. Due to the linear character of thePOD based reduced model
its adjoint can be implemented easily and the minimization problem is solved com-
pletely in reduced space with very low computational cost. Recently [6, 9] applied this
POD based calibration method for the estimation of depth values and bottom friction
coefficients for a very large scale tidal model.

This chapter focuses on a method referred to as simultaneousperturbation stochas-
tic approximation (SPSA) method. This method can be easily combined with any
numerical model to do automatic calibration. For the calibration of numerical tidal

1This chapter is a slightly revised version of [10]
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model, the SPSA algorithm would require only the water leveldata predicted from
the given model. SPSA is stochastic offspring of the Kiefer-Wolfowitz algorithm
[50] commonly referred as finite difference stochastic approximation (FDSA) method.
This algorithm uses objective function evaluations to obtain the gradient approxima-
tions. Each individual model parameter is perturbed one at atime and the partial
derivatives of the objective function with respect to the each parameter is estimated
by a divided difference based on the standard Taylor series approximation ofa partial
derivative. This approximation of each partial derivativeinvolved in the gradient of
the objective function requires at least one new evaluationof the objective function,
thus this method is not feasible for automated calibration when we have large number
of parameters.

The SPSA method uses stochastic simultaneous perturbationof all model parame-
ters to generate a search at each iteration. SPSA is based on ahighly efficient and eas-
ily implemented simultaneous perturbation approximationto the gradient. This gradi-
ent approximation for the central difference method uses only two objective function
evaluation independent of the number of parameters being optimized. The SPSA al-
gorithm has gathered a great deal of interest over the last decade and has been used for
a variety of applications [45], [80], [81], [35], [34], [103]. As a result of the stochastic
perturbation, the calculated gradient is also stochastic,however the expectation of the
stochastic gradient is the true gradient [34]. So one would expect that the performance
of the basic SPSA algorithm to be similar to the performance of steepest descent.

The gradient based algorithms are faster to converge than any objective function
based gradient approximations such as SPSA algorithm when speed is measure in
terms of the number of iterations. The total cost to achieve effective convergence
depends not only on the number of iterations required, but also on the cost needed to
perform these iterations, which is typically greater in gradient based algorithms. This
cost may include greater computational burden and resources [5, 9], additional human
effort required for determining and coding gradients.

Accurate sea water level forecasting is crucial in the Netherlands. This is mainly
because large areas of the land lie below sea level. Forecastare made to support storm
surge flood warning system. Timely water level forecasts arenecessary to support
the decision of the proper closure of the movable storm surgebarriers in the Eastern
Scheldt and the New Waterway. The surge is predicted by usingnumerical hydrody-
namics model, the Dutch continental shelf model (DCSM) [82,94]. Performance of
the DCSM regarding to storm surges is influenced by its performance in forecasting
the astronomical tides. Using inverse modelling techniques, these tidal data can be
used to improve the model results. SPSA algorithm is appliedhere for the estimation
of depth values in the tidal model DCSM of the entire Europeancontinental shelf.
Experiments are performed with both simulated and real datato see the performance
of the SPSA algorithm in terms of the accuracy of the estimates and computational
efficiency.

The chapter is organized as follows. Section 2 describes theSPSA algorithm.
The following section contains results from experiments with the model DCSM, to
estimate the water depth. The paper concludes in section 4 bydiscussing the results.
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6.2 Parameter estimation using SPSA

Consider a data assimilation problem for a general nonlinear dynamical system. The
discrete system equation for the state vectorsX(ti+1) ∈ <n is given by;

X(ti+1) = Mi [X(ti), γ], (6.1)

whereMi is nonlinear and deterministic dynamics operator that includes inputs and
propagates the state from timeti to timeti+1, γ is vector of uncertain parameters which
needs to be determined. Suppose now that we have imperfect observationsY(ti) ∈ <q

of the dynamical system (6.1) that are related to model stateat timeti through

Y(ti) = HX(ti) + η(ti), (6.2)

whereH : <n → <nq
is linear observation operator that maps the model fields on

observation space andη(ti) is unbiased random Gaussian error vector with covariance
matrixRi .

We assume that the difference between data and simulation results is only due to
measurement errors and incorrectly prescribed model parameters. The problem of the
estimation is then solved by directly minimizing the objective functionJ

J(γ) =
∑

i

[Y(ti) − H(X(ti))]TR−1
i [Y(ti) − H(X(ti))] (6.3)

with respect to the parametersγ satisfying the discrete nonlinear forecast model (6.1).
In the SPSA algorithm, we minimize the objective functionJ(γ) using the iteration

procedure
γl+1 = γl − al ĝl(γ

l), (6.4)

where ˆgl(γl) is a stochastic approximation of∇J(γl), which denotes the gradient of the
objective function with respect toγ evaluated at the old iterate,γl . if ĝl(γl) is replaced
by∇J(γl), then 6.4 represents the steepest descent algorithm.

The stochastic gradient ˆgl(γl) is SPSA algorithm is calculated by the following
procedure.

1. Define thenp dimensional column vector4l by

4l = [4l,1,4l,2, · · · ,4l,np]T , (6.5)

and
4−1

l = [4−1
l,1 ,4−1

l,2, · · · ,4−1
l,np]T , (6.6)

where4l,i , i = 1, 2, · · · , np represents independent samples from the symmetric
±1 Bernoulli distribution. This means that+1 or−1 are the only possible values
that can be obtained for each4l,i. It also means that

4−1
l,i = 4l,i , (6.7)

and
E[4−1

l,i ] = E[4l,1] = 0, (6.8)

whereE denotes the expectation.
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2. Define a positive coefficientcl and obtain two evaluations of the objective func-
tion J(γ) based on the simultaneous perturbation around the currentγl : J(γl +

cl4l) andJ(γl − cl4l).

3. A realization of the stochastic gradient is then calculated by using central dif-
ference approximation as

ĝl(γ
l) =

J(γl + cl4l) − J(γl − cl4l)
2cl

4−1
l (6.9)

Since4l is a random vector, ˆgl is also random vector. So by generating a sam-
ple of 4l , we generate a specific sample of ˆgl. The FDSA algorithm involves
computation of each component of∇J by perturbing one model parameter at a
time. If one does a one-sided approximation for each partialderivative involved
in ∇J(γl), then computation of the gradient requiresnp + 1 evaluations ofJ for
each iteration of the steepest descent algorithm. In contrast the SPSA requires
only two evaluations of the objective functionJ(γl + cl4l) andJ(γl + cl4l) at
each iteration.

6.2.1 Choice ofal and cl

Returning to equations 6.4 and 6.9, we see that we have left tospecify withal andcl .
These are specified here according to the guidelines given bySpall [80]. The relevant
formulas foral andcl are given by

al =
a

(A+ l + 1)α̂
, (6.10)

and
cl =

c

(l + 1)β̂
, (6.11)

where a, c, A, ˆα and β̂ are positive real numbers such that 0< α̂ ≤ 1, α̂ − β̂ < 0.5
andα̂ > 2β̂. The given choices for ˆα, β̂ will ensure that the algorithm, equation (6.4)
converges to a minimum ofJ in a stochastic sense (almost surely). The choice of a, c,
A, α̂ andβ̂ is to some extent case dependent and it may require some experimentation
to determine good values of these parameters. Although the asymptotically optimal
values ofα̂ and β̂ are 1.0 and 1/6 respectively ([17]), but choosing smaller values
e.g. α̂ = 0.602 andβ̂ = 0.101 ([80]) appear to be more effective in practice. One
recommendation for A is to set A equal to 10% of the maximum number of iterations
allowed.

The value of constantc should be chosen so thatc is equal to the standard deviation
of the noise in objective functionJ. If one has perfect objective function, then c should
be chosen as small positive number.

6.2.2 Average stochastic gradient

One of the motivations for SPSA is that for a quadratic objective function such asJ,
the expectation of the stochastic gradient is the true gradient ([34]), i.e.

E[ĝl(γ
l)] = ĝl(γl) = ∇J(γl), (6.12)
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whereĝl(γl) is defined as

ĝl(γl) =
1
N

N∑

i=1

ĝl(γl), (6.13)

with each ˆgl(γl) is obtained from equation 6.9 usingN different samples of4l . Due
to the relationship given in equation 6.15 one would hope that SPSA would have
convergence properties similar to those of steepest descent in terms of the number of
iterations required to reduce the objective functionJ to a certain level. In this case
SPSA could be much more efficient than the steepest descent algorithm.

6.3 Numerical experiments

The algorithm presented in Section 6.2 was tested in a calibration experiment using the
model DCSM. The DCSM is an operational storm surge model, used in the Nether-
lands for real-time storm surge prediction in North sea.

6.3.1 Experiment 1

The DCSM model used in this experiment covers an area in the north-east European
continental shelf, i.e. 12oW to 13oE and 48oN to 62oN, as shown in Figure 6.1. The
resolution of the spherical grid is 1/8o×1/12o, which is approximately 8×8 km. With
this configuration there are 201× 173 grid with 19809 computational grid points. The
time step is4t=10 minutes.

In chapter 4 several twin experiments were performed to estimate depth values in
the English channel of the model DCSM (see Figure 6.2) using POD based calibra-
tion method. Similar twin experiment was performed as in Section 4.5.1 to estimate
depth values using SPSA algorithm. The numerical domainΩ was divided into seven
subdomainsΩk, k = 1, · · · , 7. For each subdomainΩk, a correction parametersγb

k is
defined that is related toDn1,n2 by:

Dn1,n2 = Db
n1,n2
+ γb

k; if (n1, n2) ∈ Ωk (6.14)

with Db
n1,n2

, the initial value. The parametersγb
k were treated as unknown parameters.

They act as a correction for the mean level of theDn1,n2 in a sub domainΩk and leave
the spatial dependence insideΩk unaltered. Seven observation points were included
in the assimilation, two of which are located along the east coast of the UK, two along
the the Dutch coast and one at the Belgium coast (see Figure 6.1). The truth model
was run for a period of 15 days from 13 December 1997 00:00 to 27December 1997
24:00 with the specification of water depthDb

n1,n2
as used in the operational DCSM

to generate artificial data at the assimilation stations. The first two days were used to
properly initialize the simulations and set of observationsY of computed water levels
h were collected for last 13 days at an interval of every ten minutes in seven selected
assimilation grid points, which coincide with the points where data are observed in
reality. The observations were assumed to be perfect. This assumption was made in
order to see how close the estimate to the truth. 5[m] was added in Db

n1,n2
at all the

grid points in domainΩ to get the initial adjustmentsγb
k.
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Figure 6.1: DCSM area with calibration stations: 1. N51, 2. Southend, 3. Innerdows-
ing, 4. Oostende, 5. H.v.Holland, 6. Den Helder, 7. N4

For the SPSA optimization algorithm, two methods were applied to calculate the
stochastic gradient. In the first method, the stochastic gradient ĝl(γl) was computed
according to equation 6.9. In the second method the gradientwas computed by equa-
tion 6.13 referred as Average SPSA where expectation is taken over two independent
stochastic gradients.

The values of a, c, A, ˆα and β̂ were obtained according to the guidelines given
in Section 6.2.1. These values were determined as best from several forward model
simulations. The iteration cycle for the SPSA algorithm wasaborted when the value of
the objective functionJ did not change for the last three iterations of the minimization
process.[103].

Figure 6.3 shows a plot of the objective function versus number of iterationsβ for
the two implementations of the SPSA algorithms compared with the steepest descent
and the POD based calibration methods. Note that the gradient used in the steepest
descent algorithm was obtained from the finite difference method using one-sided
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Figure 6.2: (a) Shows the domainΩ (dashed rectangle), of DCSM. (b) Shows the
subdomainsΩ1,Ω2,Ω3,Ω4,Ω5,Ω6 andΩ7

perturbation. The graph shows that both SPSA and Average SPSA give comparable
results, although for Average SPSA the decrease in the objective functionJ is more at
early iterations. Also the rate of convergence of Average SPSA is slightly better than
the SPSA. However, in terms of rate of convergence both SPSA and Average SPSA are
less efficient than steepest descent and POD based calibration methods. The steepest
descent algorithm converges in 10 iterations as compared to20 and 15 iterations in
SPSA and Average SPSA respectively. However, the cost of single iteration in SPSA
algorithm is far less than the steepest descent algorithm.

For all the algorithms, there was a significant improvementsin parameters for
regions coinciding with the UK, Dutch and Belgian coast, butthere was not much
improvement in deep water regionsΩ1 andΩ7. Since the subdomains containing deep
areas are less sensitive as compared to the subdomains containing shallow areas, so it
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Figure 6.3: Successive iterationsβ of the minimization process

is much difficult to estimateγk in regionsΩ1 andΩ7.
Table 6.1 lists the measure (ζ) between the updated estimated parametersγup ob-

tained after calibration with different optimization algorithms and the true parameter
estimateγt. The measure is defined as the two norm of the difference between esti-
mated parametersγup obtained after optimization and the true parameter estimate γt

divided by the norm of the true parameter estimateγt ([34]).

ζ =
|| γup − γt ||2
|| γt ||2

(6.15)

By this measure, steepest descent (21%) performed the best followed by Average
SPSA (29%) and SPSA (35%). Since the stochastic gradient in the SPSA algorithm
is based on two perturbations of the independent random samples, it is more likely
that the SPSA algorithm improves more sensitive areas. The table also lists the same
measure for shallow regions. In this case, all the algorithms steepest descent (6.49%),
Average SPSA (6.29%) and SPSA (9.95%) performed very well. Here Average SPSA
matched the performance of steepest descent algorithm. In Average SPSA the gradient
was the average of only two independent stochastic gradients. One would expect better
performance by the inclusion of more stochastic gradients in Average SPSA.

Table 6.2 presents the RMSE between estimated parameters (γup) and the true pa-
rameters (γt) after iterationsβ5, β10, β15 andβ20 of SPSA algorithm for calibration
stations and compares it with Average SPSA and steepest descent algorithms. The
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ζ SPSA Average SPSA Steepest Descent
All parameters 35.11% 29.27% 21.02%

Sensitive parameters 9.95% 6.29% 6.49%

Table 6.1: Comparison of estimated parameters to true parameters for the twin exper-
iment

RMSE for SPSA algorithm after iterationβ5 is 9.95 compared to 8.92 and 6.05 in Av-
erage SPSA and steepest descent algorithm respectively. SoSPSA and Average SPSA
are comparable at this point. The RMSE for SPSA after 10 iterations is comparable
to the RMSE of steepest descent method after only 5 iterations. Since the cost of one
iteration of steepest descent is 8 model simulations compared to 3 model simulations
in SPSA algorithm, SPSA is 1/4 times efficient than steepest descent at this point and
one would expect SPSA to be more efficient if we have large number of parameters.

The RMSE with SPSA afterβ15 and average SPSA afterβ10 is similar. At this
point the computational costs of both SPSA and Average SPSA are also comparable.
It is also clear from the table 6.2 that the smallest RMSE value is achieved by steepest
descent method in 10 iterations.

SPSA (cm) Average SPSA (cm) Steepest Descent (cm)
Initial 22.80 22.80 22.80
β5 9.95 8.92 6.05
β10 5.63 4.09 2.91
β15 4.10 3.27 -
β20 3.55 - -

Table 6.2: RMSE results for the minimization process after 5th, 10th, 15th and 20th

iterations

Figure 6.4 presents water levelsh at the two tide gauge stations Den Helder and
Southend along the Dutch and English coasts respectively for the period from 18 De-
cember 1997 00:00 - 18 December 1997 24:00. These time seriesrefer to water levels
obtained from true values of the parameters, the initial values of the parameters and
the estimated values of the parameters using SPSA algorithmrespectively. The fig-
ure 6.4 demonstrates that the estimation methods significantly reduces the differences
between time series obtained from initial parameters and the true parameters as com-
pared to the differences between time series obtained from the estimated parameters
and true parameters.



110 Chapter 6. Parameter Estimation using Simultaneous Perturbation

6 12 18 24
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 Time [Hours]

 W
at

er
 L

ev
el

 [m
]

 

 

Truth Initial SPSA

(a)

6 12 18 24
−3

−2

−1

0

1

2

3

 Time [Hours]

 W
at

er
 L

ev
el

 [m
]

 

 

Truth Initial SPSA

(b)

Figure 6.4: Water level timeseries for the period from 18 December 1997 00:00 - 18
December 1997 24:00 obtained from truth model, deterministic model with initial val-
ues of the estimated parameters and deterministic model after calibration respectively
at the two tide gauge stations a) Den Helder and b) Southend

6.3.2 Experiment 2

The DCSM model used in this experiment is a newly designed large scale spherical
grid model. This newly developed DCSM covers an area in the north-east European
continental shelf, i.e. 15oW to 13oE and 43oN to 64oN, as shown in (see Figure 6.5).
The spherical grid has a uniform cell size of 1/40o in east-west direction and 1/60o in
north-south direction which corresponds to a grid cell sizeof about∼ 2× 2 km. With
this configuration there are 1120 grid cells in east-west direction and 1260 grid cells
in north-south direction. The grid cells that include land are excluded form the model
by the enclosures and the model contains 869544 computational grid points. The grid
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Figure 6.5: Newly developed hydrodynamic DCSM area. The dashed line represents
the area of the operational DCSM extent

resolution of the spherical grid is factor five finer then the DCSM model grid used in
the previous experiment. The idea was to perform numerical experiment with a very
large scale model and with real data using SPSA algorithm.

The bathymetry of the model here is based on a NOOS gridded data set and for
some areas in the model, ETOPO2 bathymetry data is interpolated on the computa-
tional grid. The dashed line in Figure 6.5 shows the comparison of the newly devel-
oped DCSM model area with the old DCSM. The model area of the newly developed
DCSM is extended significantly in order to ensure that the open boundary conditions
are located further away in deep water. A computational timestep of 2 minutes has
been applied.

The model performance can be assessed by comparing it to the measured (ob-
served) dataset. The available data used here consists of two datasets of the tide gauge
stations are used, namely,
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Figure 6.6: The 12 subdomainsΩk of the DCSM used in Experiment 2

1. water level measurement data from the Dutch DONAR database,

2. BODC (British Oceanographic Data Center) offshore water level measurement
data.

The target of the calibration of the parameters (i.e. depth values) is to optimize the
model for its reproduction of the astronomical tide. The tide gauge data are therefore
retrieved from the results of the harmonical analysis to exclude the meteorological
influences.

Similar experiment was performed as in Section 5.4.6 to estimate depth values us-
ing SPSA algorithm. The numerical domainΩ was divided into the 12 subdomains
Ωk, k = 1, . . . , 12 (see Figure 6.6). 50 water level locations were selected for the cali-
bration experiment (see Figure 6.7). Observations obtained by the harmonic analysis
from these 50 stations at every fifth time step (10 minutes) were used for the cal-
ibration experiments. The calibration runs were performedfor the period from 28
December 2006 to 30 January 2007 (34 days). The first 4 days were used to properly
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Figure 6.7: DCSM area with stations included in the model calibration

initialize the simulation. The measurement data were used for the remaining 30 days.
We assumed that the observationsY of the computed water levelsh contained an error
described by white noise process with standard deviationσm =0.10 (m).

Figure 6.8 shows a plot of the objective functionJ versus number of iterationsβ
for the SPSA algorithm compared with the POD based calibration method. The SPSA
method is compared here with POD based calibration method for practical reasons.
One reason is we have seen in the previous experiment that thePOD based calibra-
tion method efficiently estimated the depth values with the fastest convergence rate
as compared to SPSA and steepest descent algorithms. Secondly, its not worthwhile
to compute gradient by finite differences in this large scale model. The graph shows
that both the calibration methods give comparable results in terms of reduction in the
objective functionJ. Though the rate of convergence of the POD based calibration
method is far better than the SPSA.

The POD based calibration method converged in only 2 iterations as compared
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Figure 6.8: Successive iterationsβ of the minimization process

to 14 iterations with the SPSA respectively. However, the cost of single iteration in
the POD based calibration method is much higher and is dependent on the number
of parametersnp and the POD modesr used to construct the reduced model [5]. So
for this experiment the POD method required 13 initial simulations of the model to
get the ensemble and then additional simulations of the model to construct the POD
reduced model in each iterationβ of the optimization process . The SPSA method
on the other hand required only two objective function evaluations to compute the
gradient in each iterationβ of the optimization procedure. For this application the
POD method is also fast since it is not needed to use a full simulations of the original
model for the generation of the ensemble [9]. For both the experiments performed
the SPSA algorithm converged in almost similar iterations although the number of
parameters were different. So it is expected that the SPSA algorithm will work even
with more parameters and the algorithm is independent of thenumber of the estimated
parameters.

6.4 Conclusions

In the absence of adjoint model, the gradient is usually obtained by objective function
evaluations to obtain the gradient approximations. Each individual model parameter is
perturbed one at a time and the partial derivatives of the objective function with respect
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to the each parameter is estimated. This method is not feasible for automated calibra-
tion when we large number of parameters are estimated. Simultaneous perturbation
stochastic approximation (SPSA) method uses stochastic simultaneous perturbation
of all model parameters to generate a search at each iteration. SPSA is based on a
highly efficient and easily implemented simultaneous perturbation approximation to
the gradient. This gradient approximation for the central difference method uses only
two objective function evaluation independent of the number of parameters being op-
timized.

SPSA algorithm is applied to calibrate the model Dutch Continental Shelf Model
(DCSM). The DCSM is an operational storm surge model, used inthe Netherlands for
real-time storm surge prediction in North sea. A number of calibration experiments
was performed both with simulated and real data. The resultsfrom twin experiment
showed that SPSA has a lower convergence rate than the steepest descent and POD
based calibration methods. The steepest descent algorithmconverged in 10 iterations
as compared to 20 and 15 iterations in SPSA and Average SPSA respectively. How-
ever, the computational cost of single iteration in the steepest descent method is much
higher and dependent on the number of parametersnp. Although both SPSA and
steepest descent methods converged to similar value of the objective function, none of
the optimization algorithms achieved the expected reduction in the objective function.

The results from a very large scale tidal model and with real data showed that
SPSA algorithm gives comparable results to POD based calibration method. The POD
based calibration method converged in only 2 iterations as compared to 14 iterations
with the SPSA respectively. The POD based calibration method though required 13
initial simulations of the original model to get the ensemble and then extra simulations
to construct the POD reduced model in each iterationβ of the optimization process.
The SPSA method on the other hand required only two objectivefunction evaluations
to compute an approximation of the gradient in each iteration β of the optimization
procedure independent of the number of estimated parameters. For this application
the POD method is also fast since it is not needed to use a full simulations of the
original model for the generation of the ensemble. Thus SPSAalgorithm proved to
be a promising optimization algorithm for model calibration for cases where adjoint
code is not available for computing the gradient of the objective function.
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Chapter 7
Conclusions

Identifying uncertain parameters in large-scale numerical flow models can be done
using the variational method. However, directly implementing the variational method
would require the adjoint model, which requires highly complex computer code and
maintenance and thus hampers its applications. This research has explored several
methods for efficiently identifying uncertain parameters in a large-scaletidal model of
entire European continental shelf which does not require the implementation of these
complex adjoint code.

An estimation method based on model reduction is developed and investigated first
for a simple 2D-advection diffusion model. We have developed estimation procedure
for two projection based model reduction methods.

• Proper Orthogonal Decomposition(POD).
In POD based estimated procedure an ensemble of forward model simulations is
used to determine the approximation of the covariance matrix of the model vari-
ability and the dominant eigenvectors of this matrix are used to define a model
subspace. An approximate linear reduced model is obtained by projecting the
original model onto this reduced subspace. The method is simple to implement.

• Balanced Proper Orthogonal Decomposition (BPOD).
In BPOD estimation procedure the model subspace is obtainedwhile consid-
ering both inputs and outputs of the system. Thus both controllable and ob-
servable subspaces are considered while obtaining a low rank subspace for the
reduced model. The presented method allows efficient computation of observ-
able subspace when the number of outputs is large.

In both the estimation procedures the adjoint of the tangentlinear model is re-
placed by the adjoint of this linear reduced forward model. The minimization process
is carried out in reduced subspace and hence reduces the computational costs. The
method and results from the experiments have been presentedin Chapter 3. Numer-
ical results from a simple pollution model of concentrationc(x,t) demonstrated that
the POD based estimation approach successfully estimated the diffusion coefficient
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for both advection dominated problems as for diffusion dominated problems. Another
important message in that chapter, although lots of effort had been put in constructing
a reduced order model by BPOD method, the minimization results demonstrated that
both the POD and the BPOD methods performed similarly.

For a feasible approximation of the model variability, a PODbased estimation
approach is attractive as it avoids the implementation of adjoint code and save con-
siderable computational effort for optimization compared to the usual gradient based
iterative procedures where gradient is obtained from the original nonlinear model in
each iteration. In Chapter 4 the POD based estimation methodis used to calibrate
numerical tidal models. Results from twin experiments showed that the POD based
calibration method performed very efficiently to estimate depth values in the selected
regions of the model domain. The computational costs of the method are dominated
by the generation of an ensemble of forward model simulations. The simulation pe-
riod of the ensemble is equivalent to the timescale of the original model. It is also
found in that study that an accurate reduced model is obtained from an ensemble with
a relatively short simulation period as compared to the calibration period and the POD
based calibration offers an efficient method compared to the classical adjoint method.

As a next step, the POD based model reduced approach is used for the estima-
tion of the water depth and space varying bottom friction coefficient values in a very
large-scale DCSM model. The model used here is the recently designed large-scale
spherical grid based water level model for the northwest European continental shelf
(around 106 computational grid points). It covers a much larger deep water area than
the operational DCSM and has a spatial resolution that is a factor 5 finer in both lat-
itudinal and longitudinal directions. This is the first application of the POD based
calibration method to a very large-scale model and with realdata. To achieve conver-
gence, the method needs to be updated by constructing a new POD model by generat-
ing an ensemble of forward model simulations with suboptimal estimated parameters.
We have also found in the present study that a new ensemble is not always required
with the updated parameters. Instead of defining a new model subspace of the leading
eigenvectors by generating a new ensemble with suboptimal parameters, we can ob-
tain a reduced model by projecting original model with the updated parameters onto
the same subspace.

Results from numerical experiments showed that the calibration method again per-
formed very efficiently. A POD reduced model of much smaller size is constructed
instead of original model with state space∼ <3×106

. The RMS errors for the tide
gauge stations used for both calibration and validation periods have improved signifi-
cantly with an overall improvement of more than 50% is observed after the calibration
in comparison with the initial model. The results also demonstrate that in total only
11 full model simulations are required to calibrate the DCSMwith 20 degrees of free-
dom. Thus the POD calibration method offers a very efficient minimization technique
compared to the classical adjoint method without the burdenof implementation of the
adjoint.

In the absence of adjoint model, the gradient is usually obtained by objective func-
tion evaluations to obtain the gradient approximations. Each individual model param-
eter is perturbed one at a time and the partial derivatives ofthe objective function
with respect to the each parameter is estimated. This methodis not feasible for au-
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tomated calibration when large number of parameters are estimated. Simultaneous
perturbation stochastic approximation (SPSA) method usesstochastic simultaneous
perturbation of all model parameters to generate a search ateach iteration. SPSA is
based on a highly efficient and easily implemented simultaneous perturbation approx-
imation to the gradient. This gradient approximation for the central difference method
uses only two objective function evaluation independent ofthe number of parame-
ters being optimized. SPSA algorithm has applied to calibrate the model DCSM and
results are presented in Chapter 6. The results from experiments showed that SPSA
has a lower convergence rate than steepest descent and POD based calibration meth-
ods, however the computational cost in each iteration of theSPSA method is far less
then these methods. The results demonstrated that the SPSA algorithm proved to be a
promising optimization algorithm for model calibration for cases where adjoint code
is not available for computing the gradient of the objectivefunction.
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Appendix A
The Reduced Adjoint State

Equation (5.18) introduces the adjoint model ˆν(ti+1), that is elaborated here. The ap-
proximate objective function̂J can be written as:

Ĵ(∆γ) =
m∑

i=1

[{Y(ti) − H(Xb(ti))} − Ĥξ(ti ,∆γ)]TR−1
i [{Y(ti) − H(Xb(ti))} − Ĥξ(ti ,∆γ)]

(A.1)
The reduced adjoint state variables ˆν are introduced in equation (A.1) as:

Ĵ(∆γ) = J̄(∆γ) +
m∑

i=1

ν̂(ti+1)T [ξ(ti+1,∆γ) − Aiξ(ti ,∆γ)] (A.2)

whereĴ ≡ J̄. The matrixAi is defined here as:

Ai =

(
M̃i M̃γ

i
0 I

)
(A.3)

The incremental changes in̂J, ξ(ti ,∆γ) andν̂ due to incremental change in one of the
components of∆γ gives:

∆Ĵ =
m−1∑

i=0

ν̂(ti+1)T [∆ξ(ti+1,∆γ) − Ai∆ξ(ti ,∆γ)]+

m−1∑

i=0

∆ν̂(ti+1)T [ξ(ti+1,∆γ) − Aiξ(ti ,∆γ)] −

m−1∑

i=0

ν̂(ti+1)T ∂ξ(ti+1,∆γ)
∂∆γ

∆γ + [
∂J

∂ξ(ti ,∆γ)
]T∆ξ(ti ,∆γ) (A.4)
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The above expression after simple calculations yields:

∆Ĵ =
m−1∑

i=1

∆ξ(ti ,∆γ)[ν̂(ti)T − Ai ν̂(ti+1)T ] + [
∂J

∂ξ(ti ,∆γ)
]T∆ξ(ti ,∆γ)+

ν̂(tm)T∆ξ(tm,∆γ) −
m−1∑

i=0

ν̂(ti+1)T ∂ξ(ti+1)
∂∆γ

∆γ (A.5)

An expression for the reduced adjoint model ˆν(ti+1); i ∈ {m−1, · · · , 1} solved backward
in time is followed from above expression:

ν̂(ti) = AT
i ν̂(ti+1) + B(ti) (A.6)

with ν̂(tm) equals zero.B(ti) is given by:

B(ti) =

(
2ĤTR−1

i [{Y(ti) − H(Xb(ti))} − Ĥξ(ti ,∆γ)]
0

)

Once the reduced adjoint states ˆν(ti) are known, the gradient∂Ĵ
∂∆γ

is found as:

∂Ĵ
∂(∆γ)

=
∑

i

−[ν̂(ti+1)]T ∂ξ(ti+1)
∂(∆γ)

(A.7)
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Summary

Identifying uncertain parameters in large-scale numerical flow models can be done
using the variational method. However, for implementing the variational method the
adjoint model have to be available, which requires highly complex computer code and
maintenance and thus hampers its applications. To ease thisproblem, this thesis has
explored several methods for efficiently identifying uncertain parameters in a large-
scale tidal model of the entire European continental shelf which does not require the
implementation of these complex adjoint code.

In this study, as a first step an estimation method based on model reduction is
developed and investigated for the estimation of diffusion coefficient in a simple 2D-
advection diffusion model. Two projection based model reduction methods were con-
sidered, namely proper orthogonal decomposition (POD) andBalanced proper orthog-
onal decomposition (BPOD). In the POD based estimation method an ensemble of
forward model simulations is used to determine an approximation of the covariance
matrix of the model variability and a small number of the leading eigenvectors of this
matrix is used to define a model subspace. By projecting the original model onto this
subspace an approximate linear reduced model is obtained. Once the reduced model
is available its adjoint can be implemented easily and the minimization problem is
solved completely in reduced space with very low computational cost. BPOD is also a
model reduction method which considers both inputs and outputs of the system while
determining the reduce subspace. The estimation method hasbeen extended by in-
cluding BPOD procedure into the estimation procedure. Numerical results from a
simple pollution model demonstrate that the POD based estimation approach success-
fully estimate the diffusion coefficient for both advection dominated problems as for
diffusion dominated problems. Another important message in this study, although lots
of effort had been made in constructing a reduced order model by theBPOD method,
the minimization results demonstrated that both the POD andthe BPOD methods per-
formed similarly.

Preliminary results showed the validity of the POD based model reduction meth-
ods for parameter estimation. As a next step, the POD based estimation method is
used to calibrate numerical tidal models. Results from (twin) numerical experiments
showed that the POD based calibration method performed veryefficiently to estimate
depth values in the selected regions of the model domain. Thecomputational costs of

131



132 BIBLIOGRAPHY

the POD based calibration method are dominated by the generation of an ensemble of
forward model simulations where the simulation period of the ensemble is equivalent
to the timescale of the original model. It has also been foundin the study that it is
not needed to use a full simulations of the original model forthe generation of the
ensemble.

The POD based calibration method has also been implemented for the estimation
of the water depth and space varying bottom friction coefficient values in a very large-
scale DCSM model. The recently designed large-scale spherical grid based water level
model for the northwest European continental shelf (around1000000 computational
grid points) has been used for this purpose. This has been thefirst application of the
POD based calibration method to a very large-scale model andwith real data. Re-
sults from numerical experiments showed that the calibration method performs very
efficiently. An overall improvement of more than 50% was observed after the calibra-
tion in comparison with the initial model. The results also demonstrated that the POD
based calibration method offered a very efficient minimization technique compared to
the classical adjoint method without the burden of implementation of the adjoint.

As a concluding step, to estimate depth values in the model DCSM, a Simultane-
ous perturbation stochastic approximation (SPSA) method has been used. The method
uses stochastic simultaneous perturbation of all model parameters to generate a search
at each iteration. SPSA is based on a highly efficient and easily implemented simulta-
neous perturbation approximation to the gradient. This gradient approximation for the
central difference method uses only two objective function evaluationsindependent
of the number of parameters being optimized. The results from experiments showed
that SPSA has a lower convergence rate than POD based calibration method, how-
ever the computational cost in each iteration of the SPSA method is usually far less
then the POD based calibration method. The results also demonstrated that the SPSA
algorithm proved to be a promising optimization algorithm for model calibration for
cases where adjoint code is not available for computing the gradient of the objective
function.



Samenvatting

Het schatten van onbekende parameters in grootschalige numerieke stromingsmod-
ellen kan gedaan worden met behulp van de variationele methode. Om deze methode
te kunnen implementeren moet men de beschikking hebben overhet geadjungeerde
model. Het daarvoor noodzakelijke programmeerwerk is zeercomplex, hetgeen het
toepassen van de variationele methode onaantrekkelijk maakt. In dit proefschrift wor-
den enkele methoden onderzocht voor het efficiënt schatten van onbekende parame-
ters zonder gebruik te maken van het geadjungeerde model. Deze methoden worden
toegepast op grootschalige getijde modellen van het Europese continentale plat.

De eerste stap in dit onderzoek bestaat uit het bestuderen enontwikkelen van een
schattingmethode voor de diffusiecoëfficient in een eenvoudig 2D advectie-diffusie
model, gebaseerd op model reductie. Hierbij zijn twee projectie-gebaseerde meth-
oden beschouwd, te weten ’proper orthogonal decomposition’, POD en ‘balanced
proper orthogonal decomposition’, BPOD. Het idee achter deze schattingmethode is
als volgt: Eerst wordt een ensemble voorwaartse simulatiesvan het model gebruikt
om een benadering te krijgen van de covariantie matrix van devariabiliteit van het
model. Vervolgens worden enkele dominanteeigenvectoren van deze matrix gebruikt
om een deelruimte van het model te bepalen. Door het originele model op deze
deelruimte te projecteren, verkrijgt men een lineaire benadering van het model (het
‘gereduceerde model’). De geadjungeerde van het gereduceerde model kan eenvoudig
worden bepaald, en ook de complexiteit van het minimaliseringsprobleem in de gere-
duceerde ruimte is laag. BPOD is ook een model reductie methode die zowel de input
als de output van het system betrekt bij het bepalen van het gereduceerde model. De
hierboven genoemde schattingsmethode is uitgebreid door de BPOD procedure toe
te voegen in de schattingsprocedure. Numerieke resultatenvan een eenvoudig con-
centratie model tonen aan dat POD erin slaagt de diffusiecoëfficient goed te schatten,
zowel voor advectie-gedomineerde problemen als voor diffusie-gedomineerde proble-
men. De numerieke resultaten tonen ook aan dat de twee methoden POD en BPOD
vergelijkbaar presteren, terwijh de implementatie van BPOD complexer is.

De volgende stap is om de POD model reductie methode toe te passen op de kali-
bratie van numerieke getijdemodellen. Een ‘tweeling’ experimenten toont dat de op
POD gebaseerde kalibratie methode zeer efficiënte schattingen geeft van de water-
diepte in vooraf bepaalde delen van het model domein. De rekenkundige complexiteit
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van de op POD gebaseerde kalibratie methode wordt gedomineerd door de generatie
van het ensemble voorwaartse modellen, waarbij de simulatie periode voor het ensem-
ble equivalent is aan de tijdschaal van het oorspronkelijkemodel. Uit ons onderzoek
blijkt dat het genereren van het ensemble mogelijk is zonderhet originele model ver
de hele calibratie periode te simuleren.

Het onderzoek heeft zich vervolgens gericht op het toepassen van de op POD
gebaseerde kalibratie methode voor het schatten van de waterdiepte en de plaatsafhanke-
lijke bodemwrijvingscoëfficient in een zeer grootschalig DCSM model. Hiervoor
is het recent ontwikkeld model van het noordwesten van het Europese continentale
plat op basis van een grootschalige bolvormig grid gebruikt(met ongeveer 1000000
rekenkundige gridpunten). Dit is de eerste toepassing van de op POD gebaseerde kali-
bratie methode op een grootschalig model met ‘echte’ data. Numerieke experimenten
tonen dat de kalibratie methode zeer efficiënt functioneert. Na kalibratie werd een
algehele verbetering van meer dan 50% waargenomen in vergelijking met het oor-
spronkelijke model. Deze resultaten tonen ook dat de op POD gebaseerde kalibratie
methode een zeer efficiënt alternatief vormt voor de klassieke methode gebaseerd op
het gebruik van geadjungeerde model.

Als laatste stap in dit onderzoek is een stochastische approximatie op basis van
simultane perturbatie (‘simultaneaous perturbation stochastic approximation’, SPSA)
uitgevoerd. Deze methode gebruikt iteratief stochastische simultane perturbaties van
alle model parameters om een zoekrichting te bepalen. SPSA is gebaseerd op hoog-
stefficiënte en eenvoudig te implementeren simultane stochastische perturbatie be-
naderingen van de gradiënt. Deze approximatie van de gradiënt in de centrale dif-
ferentie methode maakt gebruik van slechts twee doelfunctie evaluaties, ongeacht het
aantal parameters dat geschat dient te worden. De experimentele resultaten tonen dat
SPSA een lagere convergentiesnelheid heeft dan de op POD gebaseerde kalibratie
methode, echter, de berekeningen per iteratie zijn in het algemeen veel lager dan voor
de op POD gebaseerde kalibratie methode. De resultaten tonen ook aan dat het SPSA
algoritme veelbelovend is voor model kalibratie waarbij het geadjungeerde model niet
beschikbaar is om de gradiënt van de doelfunctie te bepalen.
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