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Chapter

Introduction

In the Netherlands, large areas of the land along the Norghli8delow mean Sea
level. The North Sea is characterized by strong tides arminssnirges which have
strong impact on Dutch coast. Another important aspectasttie coast is open. It
has many inlets since the country serves as last passagefilagy three main river
systems (Rhine, Meuse and Scheldt) before they enter iathléith Sea.

Considering the geophysical conditions and the fact thgelareas of the land
lie below mean sea level, it is very important to protect thertry against flooding.
On the other hand, these waters are used for drinking watkm§j, transport and for
similar kind of activities. In predicting thefiects of the various activities of interests
along the Dutch coast and to use the rivers, estuaries ard aeafe and economical
way, numerical flow modeling plays an important role. It iscahn important part of
successful water management.

Figure 1.1: Eastern Scheldt barrier at North Sea duringrstor
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The numerical models are conceptual approximations thetdritee physical sys-
tems by means of mathematical equations. So the appligediiihe numerical mod-
els is actually dependent on how closely these mathematipstions approximate
the physical phenomenon. Although in the last few years timepuitational resources
have grown immensely but the approximation scale is alwalgad to the available
computing power.

For the last few decades computers have been fast enouglitd tidal flow using
large numerical flow models. The predictions made by theseenigal flow models
always contain errors due to the numerical approximatiahthe fact that a part of
the inputs for these models is not known accurately (e.g depth, bottom friction,
open boundaries, etc). The model results can be improveddnyifying these uncer-
tain parameters using real observations.One method thiatitstes observations data
into a model simulation to estimate uncertain parametedaia assimilation. The
main objective of the research presented in this thesis éxamine and develop ef-
ficient methods with low computational costs to identify thecertain parameters in
the numerical flow models.

This chapter serves as an introduction to the work presémtie thesis. Section
[L.7 briefly explains the storm surge forecasting systemar\itherlands. Sectign 1.2
covers the basic concepts of data assimilation. Sectidhigl8ights the importance
of using model reduction and more specifically Proper Ortimad) Decompaosition.
Sectior 1.4 gives a description of the motivation of the woréisented as well as an
overview of the thesis.

1.1 Storm surge forecasting

In the Netherlands there is a long tradition of building dilend dams to protect the
country against floods. When a storm develops and the wirglgti the waves, the
Dutch coastal area can become flooded. The last time thisshagmon a large scale
was around fifty five years ago. OfitFebruary 1953, the Dutch coast was hit by a
very strong storm surge that inundated large areas in theemegart of the country.
The damage was enormous and nearly two thousand peoplavieed.than 150,000
hectares of land were flooded and tens of thousands of liekstwere killed. The
damage to buildings, dikes, dams and other infrastructasetwge ([36]).

In order to prevent such a catastrophe in the future the D@tkernment intro-
duced a plan that aimed at reinforcing the water defenceslamrtiening the coastline
by closing estuaries with large dams. This plan became kra@xthe Delta Plan [28].

This huge project aimed at protecting the coast in a manmérdéiauced the risk
of a disaster such as the 1953 flood to a probability of one fnyg@rs for the most
densely populated areas. However, the Delta Plan was rtdirjuted to the coastal
areas but stretched along the rivers all the way up to the &etrorder. The key rec-
ommendation of the Delta Plan was the full closure of EasBefreldt with a regular
dam to create a closed coastline (www.eh-resourcgfiamds.html).

The reinforcement of dikes in the river area of the Netheltalpegan in 1968.
Soon this kind of river dike reinforcement attracted heaxitioism from the local
population. Concerns regarding economical and ecologisaés were raised by dif-
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ferent social groups. People were concerned that the usajti@ater environment of
the Eastern Scheldt would cease to exist. Specifically, niytthe environment, but
also the fishing industry would fier from a dam.

In 1976, the Dutch government agreed to an alternative platrthe unique fresh-
water environment and the favourable fishery conditionsldvba maintained. Thus,
instead of building a closed dam, a move able storm surgébaras built. Sixty two
openings, each forty metres wide, were installed to allomash salt water through
as possible. These openings are closed when the water $eliiglhier than a safety
threshold to protect the land from the water. The New Watgmvavable storm surge

Figure 1.2: The Eastern Scheldt storm surge barrier, orébadielde. (photo by Rob
Broek/iStockPhoto.com)

barrier was the final element of the Delta project. This steurge barrier was the
largest hydraulic project constructed in the Netherlandss nearly as long as the
Eiffel tower in Paris and weighs four times as much. This stormeshbarrier together
with dikes reinforcement protects around 1 million peopldéhe province of South
Holland from severe storm surges in the North Sea.

One of the major reasons for the construction of a movabledvaat New Water-
way is the enormous economical activity at the Rotterdarh @dvis barrier connects
the North Sea with this port. The port of Rotterdam is diresttuated on the North
Sea and is the biggest seaport in Europe. The port serves gatiway to European
market and has an annual throughput of more than 400 miltionds of goods. The
port and surrounding industrial area stretch over a lenfjt0kilometres and cover
around 10,000 hectares. Considering the economical gctitrthe port, the movable
storm surge barrier should be closed only in extreme sadnati

The above discussion demonstrates the importance of megairim surge bar-
riers to fulfil the safety, economical and ecological densanth addition to better
defence against flooding from the North Sea, the warningsystas also improved.
It was decided that in the case of severe storms the dikeddsbheustdfed in time
to prevent them from breaching. The Dutch storm surge wgrsérvice (SVSD) in
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close cooperation with Royal Netherlands Meteorologicstitute (KNMI) is respon-
sible for the water level predictions. Accurate water |deebcasts at least six hours
ahead are required for timely closure of the movable stonmesharriers in Eastern
Scheldt and New Waterway. Besides being required for theuctoof these movable
barriers, water level predictions are also required fosingi alarms in extreme situ-
ations. These alarms are used to ensure that the people varsifiicient time to
evacuate from the area in case of flood prediction.

Figure 1.3: Storm surge barrier at the New Waterwey. (phatern from Microsoft
Encarta Online Encyclopaedia 2008)

Since mid 198Gs these forecasts are based on numerical hydrodynamic model
called the Dutch Continental Shelf Model (DCSM). The modssatibes how the wa-
ter level and velocities are related and evolve in time aspmese to the wind forcing
exerted on the sea surface as well as to the tidal waves cdromghe Atlantic Ocean.
A large scale numerical model such as DCSM usualffess from inaccurately known
parameters or boundary conditions. Contrary to the nuralemodel, which covers
the whole area and time interval of interest, measuremebtefvations) are usually
sparse. Typically, there are only few points in the modehavhere the measurements
are available. The measurements are often quite accurateecovVier measurements
are expensive and several quantities cannot be measurkd at a

Numerical flow models and observations are usually appkpausately to obtain
information about the water levels and currents. Howeveseéms logical to tune
the model by adapting some of the uncertain model paramigtaristain a better fit
with available measurements. One method to assimilate ureagnts data into a
model simulation to get a better estimate of the uncertaidehparameters is data
assimilation which is main topic of the following chaptefgtus thesis
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1.2 Data assimilation and model calibration

Data assimilation (DA) is a method in which the observatiofihe state of a system
are combined with the results from numerical model to predaccurate estimates of
all the current (and future) state variables of the systenda#a assimilation system
consists of three components: a set of observations, a dgabmodel, and a data
assimilation scheme.

The central concept of the data assimilation is the condegtrors, error estima-
tion and error modeling. The observations have errorsrgyisiom various sources:
e.g. instrumental noise and the representativeness eblirdynamical models are
imperfect with errors arising from: the approximate phgsjor biology or chem-
istry), which parametrizes the interaction of the statéaldes and the discretization
of continuum dynamics into a numerical model. An aspect comfor all the data
assimilation schemes is that the quantitative basis ofsherdlation is formed by the
relative uncertainties of the dynamics and observatiohsisTthe new estimate does
not degrade the reliable information of the observatioa#hdbut rather enhances that
information content.

The most well-known application of DA is in weather foredagtproblems in
which it was applied in real life for the first time in 19%0and 1960s to improve
the weather forecasts. A good description of the developwfetata assimilation in
meteorology can be found in [27]. The method has alreadygrtwbe useful in other
fields of application like tidal model$ [42], oceanograpBg]; nonlinear shallow-
water storm surge models [96] and atmospheric chemistryrandport modeling (e.qg.
[29], [[76]). Among all the data assimilation methods, foimednsional variational
data assimilation (4DVAR) called as adjoint method is the ofithe most fective
and powerful approaches. The method has an advantage cylassimilating all the
available observations distributed in time and space imortumerical model while
maintaining dynamical and physical consistency with thelei¢83].

i output ohservations
%»@—> Original Model i J—}:

Inverse model

Figure 1.4: The inverse structure of the data assimilatioblems
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One possible application of data assimilation is modebcation, which is also
called parameter estimation (inverse modeling). Physicadels usually contain one
or more empirical formulae which involve some constant galthat must be tuned for
a good performance of the model. Using the constant paranatees, the model can
be used to compute simulated observations. If the paramaliges in the model are
incorrect, the simulated observations will not be equahtoreal observations. This
provides the means for the estimation of parameters. Galigiit was done manually
by comparing both simulated and true observations for vari@lues of the param-
eters and thereafter adapting the parameters for eachatiorul Many automated
calibration algorithms also operate in a similar iterativanner. To speed up this it-
erative procedure, the derivatives with respect to thenaddd parameters are used in
several automated calibration methods.

One of the very flicient ways to compute these derivatives is by using the adjoi
method. In the adjoint method the dynamical model plays&abé strong constraint.
The objective function is defined, which is usually the sunpehalty terms. These
penalty terms are usually weighted sums over time of all-daddel misfits at ob-
servation locations. Weights are determined by the observarror covariances. At
each iteration of the adjoint method, the the gradient ydéxie) of the objective func-
tion is computed using one forward simulation with the arainonlinear model and
another simulation backwards in time with the adjoint moddlinimization along
the gradient’s direction at the end of each iteration leadsew parameter values.
Another forward and backward iteration can then be stagted,so on, until the con-
vergence is achieved. A detailed description of the apjitinaof the adjoint method
in atmosphere and ocean problems can be fourid in [64].

The estimation of uncertain parameters in shallow water fltmdels using the ad-
joint method has been studied elg.|[2B],1[24],/[92].|[43B][H23] shows that bottom
friction codficient and depth corrections could be inferred from sea lglysérvations
at given tidal stations| [92] studied the spatial varidpitif the bottom friction coffi-
cient in a tidal model of the lower Hudson estuary by usingatiint method.[[43]
developed an inverse 3D shallow water flow model in which kdgptues, bottom fric-
tion codficients and boundary conditions were estimated. The metasdlso been
studied in groundwater flow models (e.lg. [16].][84]).

These inverse (adjoint) models require adjoint codes ttuate products of the
transposed Jacobian of the underlying numerical model. @nbke drawbacks of
the adjoint method is the programminficet required for the implementation of this
adjoint model code. Research has recently been carriednoatitmmatic generation
of computer codes for the adjoint, and adjoint compilersehaaw become available
(see e.q.[138],147]). Even with the use of these adjoint citerg this is a significant
programming &ort that hampers new applications of the method.

1.3 Model reduction

Despite the continued rapid advances in computing speednanabory, the increase
of the complexity of numerical models used by engineersigtsrin outpacing them.
Nowadays, numerical modeling of physical processes usethgineers requires a lot
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of computer resources. Even when there is an access to #st fetrdware, simula-
tions are often extremely computationally intensive anteticonsuming when full-
numerical models of dimensions40 10° are under consideration. The numerical
simulations in such large-scale settings lead in turn toamageably large demands
on computational resources, which is the main motivatiarsfetem approximation
(model reduction).

In system and control theory we associate model reductitim nvodel-order re-
duction (MOR). Model order reduction aims at reducing theptexity of large-scale
dynamical systems, while preserving (to the possible éxtbeir input-output be-
haviour. The goal of the model reduction is to produce a lometisional system
that has the same response characteristics as the origétahs Low dimensionality
means far less storage and thus far less evaluation time chiieva this by suppress
ing redundant data that exist within the multi-dimensiogyatem of full order. So
model reduction can be referred as data compression.

The desire to approximate a complicated function with senfbrmulation goes
back to 1807 when Fourier gave an idea to approximate a fumutith few trigono-
metric terms, although fundamental automated methodsefi¢gtd of model order
reduction were published in 1980and 1990s. In 1981 Moore published the method
of truncated balanced realizatidn [62]. In 1984 Glover gineeHankel-norm reduc-
tion method [[39]. In 1987 snapshot proper orthogonal deasitipn method was
proposed by Sirovich [78]. Full description of these methodn be found in [11],
[[75].

1.3.1 Proper Orthogonal Decomposition

Computers have also increased our capacity to not only abmabmplicated systems,
but also to collect and analyze large amounts of data. Ontitign process hundreds
of millions of data points to obtain a few quantities of finatérest. For example,
expensive machinery might be instrumented and monitored days with the sole
objective of dficiently scheduling maintenance.

Proper orthogonal decomposition (POD), which is also naamthe principal
componentanalysis (PCA) or the discrete Karhunen-Loewstorm (KLT), is a pow-
erful and elegant method of data analysis aimed at obtalomglimensional approx-
imate descriptions of high-dimensional processes. Itlire®a mathematical proce-
dure that transforms a number of possibly correlated viasaibto a smaller number
of uncorrelated variables called principal components filst principal component
accounts for as much of the variability in the data as poss#d each succeeding
component accounts for as much of the remaining variatabtpossible.

It is a data driven projection based method invented by KadrBon (see [68]).
[48] and [56] had used it as a statistical tool to analyze ocamghrocess datal [59]
gave the name POD, when the method was used to study thedntifldw. The
POD method has application in many fields like image proogssignal processing,
data compression, oceanography, chemical engineerinfiladidnechanics (seé [71]
for details). The method involves the calculation of theeeigplue decomposition
of a data covariance matrix or singular value decompositfandata matrix obtained
from numerical simulations of high a dimensional model,aihis expected to provide
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information about the dynamical behaviour of the system.

Nowadays significant researcfi@ts are made to reduce the computational bur-
den of the data assimilation by reducing the dimension ofsgfetem. For oceanic
models the use of POD modes to identify a low-rank controtsgeas shown promis-
ing results in the studies df [72], [44] arld [15]. The commeatiire of these studies
is that the computation of the principal components reliegh® model dynamics.
Recently [22] used the information of data assimilatiorteysinto the reduced-order
procedure by implementing a dual-weighted proper orthagdacomposition (DW-
POD). The advantage of using DWPOD basis is that it may ireliesver energy
modes that are more significant to the representation of BNAR objective func-
tion. For atmospheric models [90] has recently used PODnigale in combination
with Monte Carlo method. The method not only simplifies theadessimilation pro-
cedure but also maintains the main advantages of the oadItdDVAR.

In recent years, POD has also been applied for parametenagstn problems.
POD analysis has been applied to inverse problems in hyglydtodetermine the un-
certainty by[[26]. [[102] has used POD basis that includes#esitivity with respect
to different set of the parameters. Recently [99] has proposed leochétr the pa-
rameter estimation with computationdfieiency comparable to the adjoint method,
but that does not require the implementation of the adjomd@hcode for the original
nonlinear model.

1.4 Motivation and overview

It has been shown that variational data assimilation baseatipint approach is suit-
able for estimating uncertain parameters in the shallovemfaaw models. This re-
quires the implementation of the adjoint code which is a hpiggramming &ort.
This limitation of the adjoint method for the large scale raniwal models has led to
the search of suboptimal algorithms, which still presehesadvantages of the adjoint
method.

POD based calibration method has been developed which diaquire the
implementation of the adjoint method (]99]). The method besn used successfully
for the 3D ground water flow modeling by [101]. This thesisesxts the previous
work by investigating the new application of POD based catibn method to the
large scale tidal model of the entire continental shelf BI@SM. The thesis describes
the potential use and benefits of this approach for estimatitertain parameters in
both ideal and real settings.

Balanced proper orthogonal decomposition (BPOD) is a maatkiction method
which considers both inputs and outputs of the system wigterchining the reduce
subspace [73, 46]. The current thesis also investigatepdbsible usage of BPOD
model reduction method within the framework of variatiodata assimilation.

The next chapter of this thesis consists of general intrbolito the research. This
is followed by four chapters describing the content of threied out study. Finally, in
the last chapter the most important results of this work anersarized.

Chapter 2 introduces the concept of the Sea level preditiothe Netherlands.
The chapter provides a brief introduction to the Dutch awarital shelf model (DCSM),
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the numerical model mostly used in this study. The chaptaesiders topics mainly
related to model equations, numerical approximationstagjmaal forecasting using
DCSM and model calibration. The Chapter also describesratdjethod commonly
used for inverse modeling. Thefliculties in the practical implementation of the ad-
joint method are also mentioned and discussed.

Chapter 3 presents a parameter estimation algorithm basB®® model reduc-
tion which does not require the implementation of the adjoiethod [99]. Results
of several synthetic experiments to estimatudion codficient in a 2D advection
diffusion model are presented to show tlffeetiveness of the POD based estimation
method. The method has been extended by including balamfedgation from the
observations) transformation in the model reduction pilace referred as balanced
proper orthogonal decomposition (BPOD). Results obtafread several twin exper-
iments for the estimation of fiusion codicient for both POD and BPOD procedures
are also presented and discussed [4].

Preliminary results in Chapter 3 shows the validity of theCPlkased model re-
duction methods for parameter estimation. The POD basdatabn algorithm was
then developed to estimate the depth values in a tidal mddieedNorth Sea, DCSM
[5]. In Chapter 4, results of several twin experiments aesented which were used
to evaluate the performance of the POD based calibrationoapp for the model
DCSM.

A large scale tidal model for storm surge forecasting in trehidrlands has re-
cently been developed. This model has approximatehcbenputational grid points.
As a next step to real life application, the POD based cdlitmaapproach was then
implemented for the estimation of the water depth and spangng bottom friction
codficient values in this large-scale DCSM model. This was thé dittempt to im-
plement and evaluate the method with a very large-scale hamdiereal data [9]. In
Chapter 5, the results of these experiments are presentedisoussed. The compu-
tational costs of the POD based calibration method is doméhlay generation of an
ensemble of forward model simulations. Itis also found mphesent study that a new
ensemble is not always required with the new set of estinadeaimeters. Instead of
defining a new model subspace of the leading eigenvectonsupilated parameters
by generating a new ensemble of the forward model simulstithe reduced model
is obtained by projecting original model with the updatedapaeters onto the same
subspace.

In Chapter 6, simulation perturbation method is presentedagplied for the es-
timation of depth values in the model DCSM. Both twin and regberiments are
discussed and thefiiency of the method is compared with the steepest descdnt an
the POD based calibration methods|[10].

Finally, in Chapter 7 the most important results of this aesk work are summa-
rized and the conclusions of this thesis are formulated.
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Chapter

The Dutch Continental Shelf
Model

Accurate water level forecasts at least six hours aheadgrered for timely closure
of the movable storm surge barriers in Eastern Scheldt amd\Materway. Besides
being required for the closure of these movable barriersemlavel predictions are
also needed for raising alarms in extreme situations. Simce1980s these fore-
casts are based on numerical hydrodynamic model called theh@ontinental shelf
model (DCSM). The model describes how the water level andcitis are related
and evolve in time as a response to the wind forcing exerted®B8ea surface as well
as to the tidal waves coming from the Atlantic Ocean.

This chapter is intended to provide a brief introductionwttibe storm surge pre-
diction model DCSM the numerical model used in this studye TCSM is based
on WAQUA software package which is used for 2D modeling ofevat/stems. The
use of a 2D model implies that flow related quantities are agtegbin depth-averaged
form, which is a commonly used approximation for tidal maaig! The details re-
garding the basic developments and WAQUA software are thkemtechnical docu-
mentation of WAQUA [1] and[[98](www.waqua.nl).

Section[ 2.1l gives details of the basic equations of the mfadlelved by their
finite difference discretizations in Sectibn2.2. Secfioh 2.3 elabsthe commonly
used adjoint method for model calibration. Secfion 2.4flyrimverviews the historical
efforts made in calibrating the DCSM model. Finally, Secfids discusses issues of
operational forecasting situation of the storm surges ampthens how forecasts are
made in operational setting.

2.1 The model equations
The governing equations used in DCSM are the non-linear Zllest water equa-

tions. The shallow water equations describe large scalerwabtions and depth-
integrated horizontal flow. These equations are well sddethe numerical tidal flow

11
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Figure 2.1: Area of the operational DCSM.

modeling. The equations of the model state, the conservafimass and momentum
read in a Cartesian coordinates system as

V2 22
@_Fu@_k\/@_kga_h_fv.’_guu—*_v:iz_i%’ (21)
ot Tox  ay  Tox HCZ, owH  pw OX

VIZ 22
a_v+ua_v+va_v+ga_h+fu+wziﬂ_i%, (22)
ot ox oy “oy HCZ, owH  pw 0y

oh OHu oOHv
o o +6—y_0’ (2.3)

Cartesian coordinates in horizontal plane

time coordinate

depth-averaged current in x and y direction respectively
water level above reference plane

water depth below the reference plane

total water depth (Bh)
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f = codficient for the Coriolis force

Cxp» = 2D Chezy coficient

Ty, Ty = wind stress in x and y direction respectively
Pw = density of sea water

Pa = atmospheric pressure

g = acceleration of gravity

The Chezy cofficient C,p used to account for bottom friction is a largely empiri-
cal parameter and assumed to be a function of depth. It is etadgoth inu andv
points according to the one of the following two formulaton

65, if D < 40m,
Cop = {65+ (D -40), if40m< D < 65m, (2.4)
90, if D > 65m,
or .
{H}s
Cop = , 2.5
= (2.5)

wherecy, is the manning cd@cient. Without wind the stress at the free surface is zero.
With wind the wind stress is prescribed using the wind véjoat the water surface as

follows
7x = Cgpaly /U2, + V2, (2.6)
7y = CypaViw /U3 + V2, (2.7)

where:

Pa = density of the air

Cq = wind stress co@cient

Uw = wind speed 10 m above the water surface in x direction

Viy = wind speed 10 m above the water surface in y direction

In order to obtain a unique solution to the above shallow watpiations, a set of
boundary conditions is prescribed at closed and open boi@sdaAt closed bound-
aries, such as coastlines and dams, the velocity norma¢thdtndary is zero:

v, =0. (2.8)

So no inflow and outflow can occur through these boundariethedpen boundaries
no physical boundaries exist and thus artificial ones willehto be specified. Two
boundary conditions are specified at open sea boundariedirshis specified as

V| = 0. (29)

For the second open boundary condition the water lbvglspecified in terms of the
amplitude and phase of the harmonic components as follows

h(t) = ho + )" Aj cosgujt - 6y), (2.10)
i
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where

ho = mean water level

A = amplitude of tidal constituent
Wj = angular velocity of j

0; = phase of

The open boundaries of the model are located in deep wateder ¢0 model ex-
plicitly the non-linearities of the surge-tide interactid-or simulations which include
meteorological fects, the fects of atmospheric pressure are parametrized by a cor-
rection term at the boundaries. This correction is a fumatibthe deviation from the
average pressufyg:

ho = 2 Pavg. (2.11)
Prad

wherep is the actual pressure amgyg = 101ZhPa[43].

2.2 Numerical approximation

In this section the discretization method used to solve Bis discussed.
The dimension of the state vector for tidal models is usualige and implies that the
numerical codes should be optimized with respect to requinemory access and
computation time. Considering this optimization, the kivalwater equations are
solved on a standard staggered C-grid using an alternatieetion implicit (ADI)
finite difference method. Since the model is used in a wide variatiotr@draing
conditions, unconditional stability and at least secondkeoraccuracy are basic re-
qguirements of the discretiztion method used. The ADI metisdzhsed on the work
of Leendertse [55]. Stellind [82] stabilized the method tkgpacial higher-order dis-
sipative approximation of the cross advection term.

To improve the computationaffeciency the ADI method splits one time step into
two stages. Each stage consists of half a timestep. In bagestall the terms of the
model equations are solved in a consistent way with at lesxsirgl order accuracy
in space. For each term the time levels are alternating. tnie stage a term is
discretized implicitly in time, this term will be discreéd explicitly in time in the
other stage. As a result each term of the equations is sok@uhd-order accurate
in time. The splitting in an implicit and explicit part is ammged in such a way that
implicit coupling only occurs along grid lines without cding in the other directions.

The finite diference discretization scheme for the model equatfonsHALZ®) is
illustrated here. We denote the index of a grid cell in thg/ coordinate by i, n)
and the time index bk, as shown in Figure2.2. In the first part of the computation

1
the velocityvﬁ;fn2 is determined explicitly based mhm, vfn’n. The remaining variables
1
2

k+3 k+3 . . .. .
um? andhy, 2 are found as the solution of implicit equations
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Figure 2.2: The computational grid

Step 1:timektok + 3

2 kel . el VKD kel kel g ‘
E{Vm,n2 ~ Vi) + Ui SxlVimd ] + m{vm,nzu Vil + E{hmml — hol+
k+1
o SV (? (Plnes — Pl (212)
us,, + = - 9 - Ponls )

mn (HV)IrﬁanCSD PW(HV)Ir(nn PwlY mn+1 mn
2 K+l K Uﬁrn% Kk K k+1 K g | k+i k+1
—{Umn — Ul + 2AX {Umi1n = Um-1n} + Vimn Soy[Umnl + B({hmfl,n —hmii }-

At

k+1 k+i
BRI R s I

fVmp

P s — Pl (2.13)

(Hu)rlsn,nch - PW(HU)Eln - PwAX
k+3 k+3
2 o (HOs = (O, (HE = (H),
_{hlr:rr% _ hﬁln} + mn m-in mn mn-1 _ 0, (2.14)
At AX Ay

In the second part, the roles of tleand n directions are changed. The velocity
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k+1 i key kb3 ke i +1 k+1 i
componenult is based onum?, Vs andhyZ, while vkl andhk:! are again the

solutions of implicit equations:
Step 2:timek + 3 tok + 1

k+1

2 kil Ump k k+3 k 9 (3 ke
E{Un{% = Unp )+ 2AX {Un;ll,n - urr:ll,n} +Vmp S+y[un{r}] + B({hmfl,n =P )=
k+3 k3
o, ORI OB n 1
fvmn + k+3 o - k+i _,0 Ax{pm,n+1_ pm,n}’ (219
(H)mr Cop pu(HYms T
2 k+i K k+3 V‘é{% k+3 k+3 9 1k k
E{Vﬁ{% ~Vmn } + un{r%SOX[Vm,nz] + Z_Ay{vmnzﬂ Vit * A_y{hn{rirl - hmfr}}"'
k+1
L g\)(n{r} (Uiia)? + (Vn{nz)z _ Ty _ k., —pk.t (2.16)
m,n (HV)EIn%CgD ,Ow(HV)Ir;{r%Z owAY mn+1 mn/> .
Huu) <2 ()<t HW)KHL _ (Hv)k+L
E{hk"'l ~ hk+%} . ( u)mn —( u)m—l,n N ( V)m,n _( V)m,n—l -0 (2 17)
attmnomn AX Ay S

where the numerical operatd®sy[Umn], Soy[Umn], S+x[Vmn] @aNdSex[Vmn] are defined
as

3Umn - 4Umn_1 + Umn_z

, f >0,
Suyltmn] = (2.18)
_3Umn + 4Umn+1 - Uran+2’ |f an < O’
INY
_ Umps+2 + 4Umn+1 — 4Umn-1 — Ump-2
Soy[um,n] = 1ony , (2.19)
3an - 4Vm_1 n + Vm_2 n .
: e >
PAx ,  ifVvpn =0,
S+X[an] = (220)
—3Vmn + 4Vimi1n — Vme2, .
mn 22:( n mH+ n’ if U < 0,
\ + 4y, — Ny — V)
Sox[Vm,n] — m+2,n m+1,;_2AX m-1n m—2,n’ (2'21)

To ensure the well-posedness of the numerical tidal modelctlet conditions
are imposed on boundaries. The conditions are derived imigasiway to the finite
difference equations just described.
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2.2.1 State space model

The main aim of the present work is to develop diiceent calibration method for
general tidal models. The state space representation @ihtteedifference equations
(212) and[(Z2.117) for the deterministic model DCSM is givgn b

X(tir2) = Mi[X(t), y]. (2.22)

where the nonlinear and deterministic operdrconsists of the cdBcients repre-

senting the ADI scheme and the forcings af(tl,1) € R" is a state vector containing
water levelsh and velocitiess andv at time { + 1) for all the grid points in the DCSM
area.y is a vector of uncertain parameters which need to be detednifihe state

space representation is used to provide a convenient angazmway to analyze the
model DCSM with multiple inputs and outputs.

2.3 Adjoint method

In recent years there have been a large developments ofigataia assimilation ap-
plications based on variational methods. The approacts@sraferred to as four di-
mensional variational data assimilation (4DVAR). It cortgsia particular solution of
the numerical model which matches in the best way the avaitidta during a certain
time interval. The approach is conceptually equivalentidgrming a least square fit
of a set of model parameters to the available data. The p&eesrie be estimated may
be the unknown cd#cients in the model equations, boundary conditions or fagyci
terms.

As explained earlier, data assimilation is a method of irettigg observations with
physically based mathematical models. The observatitesiom the actual system
are never perfect. Suppose now that we have imperfect aismmgY(tj) € R that
are related to the model state at titnghrough

Y(ti) = HX(t) + n(t), (2.23)

whereH : R" — RYis a linear observation operator that maps the model fields
on observation space(t;) is a white Gaussian observation noise process with zero
mean and covariance matfk introduced to model the uncertainties associated with
observation process.

The idea of parameter estimation is to estimate the unoertatdel parameters by
minimizing the measure of residuals. We first define an objedtunctionJ(y) as a
measure for distance between the observations and modé#kres

JO) = Z[Y(ti) ~ HOXEDITRTY () — HOX()] (2.24)

Here, we have chosen a most commonly used measure to defihe generalized
least square criterion d§ norm. The optimal parameter is obtained by minimizing
this objective function]. If the information regarding observations is limited, &pr
information about the parameters can also be included inlfextive function

) = Z[Y(ti) — HOXAEDITRTY () = HOXA] + (v =) POy 7). (2.25)
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where the prior information term is referred to as backgobi@nm and prevents un-
realistic parameter estimates. Thus the estimated pagasnetll remain close to the
prior parameter values.

The dficient minimization of the objective functiod is often based on quasi-
Newton methods. In the case of the quadratic objective fonthe quasi-Newton
routine iterates approximatelpf + 1) times [33], whereaP is the number of param-
eters to be estimated. These methods require the computdtibe gradient of the
objective functionJ. The gradient gives information about the direction (pesior
negative) and the size of adjustments for each individuedrpater. The gradient of
the J is usually obtained either by finiteféiérence method or adjoint methods.

In most situations it is not possible to establish explicilgtical expressions for
the gradient. It is however possible to numerically and apipnately determine the
gradient through finite-dlierence method (perturbation method). To obtain the gradi-
ent of the objective functiod with respect to the componenjgwe can use the one
sided perturbation

V3 ~ Iy + AAyk) - J(Vk),k —{L---.nP), (2.26)
Yk

whereAyy is the perturbation size. Since only one compontentis perturbed at a
time and each perturbation requires one simulation runeobtfginal nonlinear model

to evaluatel(yk + Ayx), the method is not applicable when there is a large number of
uncertain parameters to estimate.

Spall [80] proposed simultaneous perturbation stochagtproximation (SPSA)
algorithm in which all the estimated parameters were pkeat one time stochasti-
cally. Since the perturbation are stochastic, the caledlgtadient is also stochastic.
However its expectation is the true gradient/[80]./[34]. Tinethod has recently been
used successfully by [7] for shallow water flow models. Thehuod has also been
applied in petroleum engineering by [34] for history matghproblems and by [103]
to production optimization, but the results demonstrated the computational cost
of the method is comparable to finiteffgirence method.

In most data assimilation problems the number of uncertaiampeters is usually
large. In such a case, the variational or adjoint approattfeisnost suitable approach
to efficiently compute the gradient of objective functidnThe adjoint method com-
putes the exact gradientfigiently. The principle of the adjoint method is based on
the systematic use of the chain rule fofferentiation.

Since for every parameterthe system stat¥(tj.1) has to satisfy the model con-
straint [2.22), the objective functiahin equation[(2.24) can be re-written as

I) = DY) = HXEDITRATY () = HOXE)]+ > v(tiea) TIX(ta) - MiIX (), 11,
i=1 i=1

(2.27)
wherev(t;) is the vector of Lagrange multipliers or adjoint state &blés. Now the
incremental changes il X(t;) andy due to incremental change in one of the compo-
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nents ofy gives

N

m—

AJ() = D v(tin) {AX (i) -

i=0

m-1
Z Av(tio) T (X(tis1) — Mi[X(t), 7]} -

OMi[X(t), ]

) AX(t)}+

IMi[X(ti), 7]
Z v(tiv1 )TT

HTRY(6) - HOX()]- (2.28)

'PI\?B n

||
-

The above expression after rearrangement yields

AJy) = D AX@E)T Iv(t) - [%((:j))’y]
i—1 ,

2HT|;|‘_1[Y(ti) — HX(®)] + v(tm)AX(tm) " —

]Tv(ti+l)_

m-1
()T DX (2.29)
=y oy
The adjoint states(t;) are still free variables. An expression for the adjoint relod
v(tiy1),1 € {m—-1,---, 1}, solved backward in time follows from
IM[X(), _
(1) = [T ) + 2HTR V) - HOXO) (230
1

with v(ty,) equal to zero. Once the adjoint stai) are known, the gradielgty1 of the
objective functionJ can be computed using the following expression

wk_ St TM

i=0

(2.31)

Regardless of the number of parameters, the time requiredripute the gradi-
ent using adjoint technique is more or less identical ancdieparable to the com-
putational time needed for a single simulation run of thelinear model[([2.22). It
requires one forward simulation with the original nonlinesdel [2.22) and a second
additional simulation backward in time with the adjoint nebd

The main hurdle in the use of adjoint method is its implemigonia The adjoint
model requires adjoint code to determine the tangent limeattel of the original non-
linear model. This implies that tremendous programmifiigreis required to obtain
the adjoint model which is approximately equivalent to tmegpamming &ort re-
quired to build an original model. Moreover, if the origimabdel needs to be mod-
ified, as in the case of tidal models studied in this thesis,atijoint model should
also be modified and thus the maintenance costs of the sefinereases. In recent
years research has been carried out on automatic genevhtiomputer codes for the



20 Chapter 2. The Dutch Continental Shelf Model

adjoint, and adjoint compilers have now become availatde €sg.[[38],[[4/7]). Even
with the use of these adjoint compilers, this is a signifigamagramming &ort that
hampers new applications of the method. Moreover sincedfura equations need
to be integrated backward in time, the determined statdseobtiginal problem must
be stored for all the time steps. The memory access will foegde huge for large
scale problems.

2.3.1 Procedural flow for the classical adjoint method

Variational schemes are used to minimize the objectivetfand iteratively. The fol-
lowing steps are performed for the estimation of uncertanameter with the classical
adjoint method.

1. Choose an initial valug® for the parameter to be determined.
2. Run the original nonlinear model to obtain the objectivectionJ.

3. Runthe adjoint model backward in time to compute the gratdif the objective
functionJ.

4. Minimize the objective functiod based on the quasi-Newton method to get the
updated parameters.

5. Repeat from step 2 if the parameter value improves sigmifig or the prede-
fined convergence criterion is achieved. The final valueaingd in this way
will give the optimal parameters.

2.3.2 The LBFGS method

For the problem of minimizing a multivariable function quakewton methods [41]
are widely employed. These methods involve the approxonati the Hessian matrix
(or its inverse) of the objective functiah The LBFGS (Limited memory-Broyden-
Fletcher-Goldfarb-Shanna)[65] method is basically a médtio approximate the Hes-
sian matrix in the quasi-Newton method of optimization slaivariation of the stan-
dard BFGS method.

yer=n-aHgm).1 =01, (2.32)
wherea, is a step lengthg; is the local gradient of the objective function, aHdis

the approximate inverse Hessian matrix which is updateseiydteration by means
of the formula

|:||+1 = V|T|:||V| + Q|d|d|T (2.33)
where 1
= 2.34
o] ya (2.34)
Vi=1-oyd' (2.35)
and

d=y.1-n (2.36)
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Yi=0:1-0 (2.37)
Using this method, instead of storing the matriesone stores a certain number
of pairs, saym, of pairss, y; that define them implicitly. The product ¢d,g; is
obtained by performing a sequence of inner products inaglgi and them most
recent vector pairs, y; to define the iteration matrix. Line minimization is needed
for determiningy in equatio 2.3P.

2.4 Anoverview on DCSM calibration

The task of calibration in the current application, is toamstruct the physical pro-
cesses under astronomical conditions as accurately athlgosdhe mathematical
models always include some undetermined parameters thanér known with lim-

ited accuracy. These parameters are adjusted to ensutbéhabdel represents the
selected known cases withfBaient accuracy. The adjustments of uncertain parame-
ters must be physically acceptable, since the aim of modibration is obtaining the
model that can be used in the forecast mode.

Depth

Bottom friction DCSM
without wind

Y

\

omputed waterlevelt

Boundary
conditions

Observed waterlev - Objective function

Adjustment of
Depth
Bottom friction

Adjoint model No

A

Boundary
conditiors Yes

Calibration accepted

Figure 2.3: Block diagram of calibration process using adjmethod [2]

The objective of DCSM calibration is to make best estimafaéh®uncertain pa-
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rameters, i.e. find parameters such that the water levelpetmt by the DCSM are
as close as possible to the observed water levels. Bathywietne DCSM was ob-
tained from nautical charts. Since the main purpose of thieads is to allow ships a
safe course in any tidal situation, they usually give dstaflshallow rather than deep
water areas. Hence, depth is a parameter on which model cealibeated. At the
open boundaries the water level is described in terms of baicitomponents. These
tidal components were estimated on the basis of encompassidels matched with
nearby coastal and pelagic tidal data. Hence, the amp$tadd phases of these har-
monic components are also the parameters on which the DC8Meaalibrated.
The bottom friction in DCSM is described in terms of the Cheaficient, which is
largely empirical model parameter.

In the early development of DCSM the calibration was donegisensitivity stud-
ies and making changes manuallyl[93]. Later, automatedepires based on a vari-
ational method were developed for this purpase [86], [2Jv Eforts were also made
in calibrating DCSM using the adjoint methad [97]). Locahdges were made in the
model to compensate for the lack of resolution. This was doamly near narrow
channels between islands where a small misrepresentdtioa lbathymetry may lead
to large changes in the flow. The calibration of the DCSM was pkerformed to asses
the potential impact of satellite altimeter sea level ostons [63], [61]. Although
the impact of the satellite observations proved to be smiéii iegard to the amount
of data and level of accuracy available, it has provided siompeovements to the cal-
ibration of the DCSM. Figure213 presents flowchart of thebcation process with
the adjoint method for DCSM model.

The dfficulty in the use of adjoint method is the implementation améhtenance
of adjoint model code. The implementation of adjoint modelerequires significant
programming &ort that hampers its application. Moreover, every time thevard
model code is altered the adjoint code also needs to be whd&te for the adjoint
model it is necessary to keep track of all these alteratimsnaodifications. In this
thesis we have developed a method for the estimation of taiocgrarameters in the
model DCSM. The advantage of this method is thafficently estimates the uncer-
tain parameters without the implementation of the adjodnate:

2.5 Operational forecasts using DCSM

The Dutch coast is divided in several zones, where each zasédt$rown warning
threshold according to tidal amplitude and time of high walable[2.1 presents the
warnings and alarm levels forférent zones along Dutch coast. As described earlier,
the forecasts regarding storm surges are made using the XCBRMMI. If the water
levels in such forecasts exceed certain thresholds the S¥Biflbrmed. If the SVSD
hydrologists on duty decide that one or more warning level beareached in response
to these forecasts, the SVSHioe is stéfed. These warnings are made at least 6 hours
ahead to provide required time which is necessary for pegjoer.

For operational correction of forecasts with observatiarsgeady-state Kalman
filter was developed [42]. This filter assimilates the seldatater level observations
from tide gauge stations along the British and Dutch coastsdlected set of stations.
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Zone Reference station| Warning (cm) | Alarm level (cm)
Schelde Vlissingen 330 370
West Holland| Hoek van Holland 220 280
Den Helder | Den Helder 190 260
Harlingen Harlingen 270 330
Delfzijl Delfzijl 300 380

Table 2.1: Warning and alarm levels used by SVSD (levelikaddab normal Amster-
dam level (NAP))

Since the shallow water equations for water much deepentidital tidal range are
nearly linear, the Kalman filter can approximate in a vefficeent manner. This re-
quires only 10% additional computational cost. The filtar carrect the forecasts up
to 12 hours ahead if the forecasts deviate from the availabter level observations.
The DCSM model including the steady state Kalman filter itaithesd in the KNMI

for daily operational forecasting [25], where it is the paftautomatic production
line (APL). This APL was developed to produce regular nuceriorecasts with a
minimum of human intervention. The heart of APL is a limitega atmospheric
circulation model (HIRLAM), which currently provides analysis of the state of the
atmosphere and a forecast for up to 48 h ahead four times pavittaa resolution of
approximately 22 km.
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Chapter

Using POD and BPOD within
variational data assimilatic%

3.1 Introduction

Proper Orthogonal Decomposition (POD) method providesticient means of de-
riving the reduced basis for high order nonlinear systentss #echnique essentially
identifies the most energetic modes in a time dependentsythtes provides a means
of obtaining a low dimensional description of the systemaiyits. The POD method
has been extensively used in recent years and applied sficiteso different fields
[33], [49], [51], [6Q], [3], I57], [100], [14]. A detailed decription of POD research
can be found in[40].

Another obvious application of POD is four dimensional &fidnal data assimila-
tion (4DVAR) which can be seen as an optimal control probl86].[ The variational
(adjoint) method aims at adjusting a number of unknown abptirameters on the ba-
sis of given data. The control parameters might be modéhirdonditions or model
parameters|([88]/[69]). Memory storage requirements isepe severe limitation on
the size of assimilation studies. The POD has recently bpplea successfully in
data assimilation for the state and parameter estimdtidh [B6], [102], [15]. An-
other drawback of the adjoint method is the computationeftadient which requires
the implementation of adjoint model code. The implemeatatind maintenance of
the adjoint model is very expensive and thus hampers itScatigins.

The POD method however, can yield unpredictable results rmegiects low en-
ergy modes that may be important to the dynamics and POD naodaensitive to the
empirical data used and the choice of inner produdt [73]. Kermative POD method
(referred as Balanced proper orthogonal decompositiofO{B) is to combine the
concepts from both POD and balanced truncation methodsbalamced truncation
method uses both controllable and observable subspacés atitaining a low rank
subspace for the reduced model. The balanced truncatidmoatetire designed for

1This chapter is a slightly revised version [of [4]
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stable and linear systenis [104]. The balanced truncatistadifie linear system is
stable, but POD models of nonlinear systems may be unstabteitthe nonlinear
system is linearly stable at the origin ([79]). The main goBPOD is to achieve
approximate balanced truncation with computational ceshaPOD. It has already
been applied by [104], [52] and recently toy [73], [46].

The main motivation for the work presented in this chapt@ispired by the work
done by [[73],[[99]. Vermeulen and Heemink [99] proposed ahmeétased on POD,
which shifts the minimization into lower dimensional spaed avoids the imple-
mentation of the adjoint of the tangent linear approxinratibthe original nonlinear
model. In their approach, an ensemble of snapshot vectdmrwhrd model simu-
lations is used to determine an approximation of the comaganatrix of the model
variability and a small number of leading eigenvectors &f thatrix are used to define
a model subspace. By projecting the original model ontoghlsspace, an approxi-
mate linear reduced model is obtained. Due to the linearactar of the reduced
model, its adjoint can be implemented easily and the miriigiproblem is solved
completely in reduced space with very low computationat.cdsis process is re-
peated several times while generating new set of snapsrstfible) which is closer
to the new estimated parameters.

Rowley [73] computed the balancing transformation digefitbm snapshots of
empirical Gramians using singular value decompositionjWvithout needing to
compute the Gramians themselves. The method allows therieaipibservability
Gramian to be computedtiiently even when the number of outputs is large. The
work presented here, uses POD and BPOD in the context ofticeréh data assimi-
lation. Employing the examples of POD and BPOD techniquesgemonstrate the
usefulness of these techniques to parameter estimatioprasdnts experiments with
the 2D-advection diusion model for the transport of pollutant. We have shown tha
the use of model reduction allows the optimization to be mefihient than the one
with the original model.

In the next section we briefly describe the projection basedatreductions tech-
niques used in this chapter and Secfion 3.3 explains theeguwe for collecting snap-
shots and the basis vectors (patterns) required for thelaiimo of reduce model in
the context of variational data assimilation. The numénieaults with 2D advec-
tion diffusion model to estimate space varyinfuakion are presented in Section|3.4.
Conclusions are given in SectibnB.5.

3.2 Model reduction

Model reduction represents the solution to a problem asrecated series of known
basis function and independent @deents. Roughly speaking, the goal of model re-
duction methods is to replace the initial data by data thebatimal in terms of stor-
age capacity. This is achieved by suppressing redundaantfuiitexists within multi-
dimensional datasets. Two of the most well-known methodaadel reduction used
in control are the proper orthogonal decomposition (PORI)tar method of balanced
truncation. Balanced proper orthogonal decompositiorQBJPis a model reduction
method which combines the ideas and methodology from batheske methods. This
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Section briefly explains the methodology of these modelctgdn methods.

3.2.1 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD), also known axiple components
analysis, has been widely used for a broad range of apgitatiThe main idea is,
given a set of data that lies in a vector sp¥¢#o find a subspacé of fixed dimension
r, such that the error in the projection onto the subspacensmzed.

We start by collecting the set af snapshots of some physical process. Each sam-
ple of snapshotX; which is defined on a set afnodeX stands for am dimensional
vectorX;. i.e.,

XI = {Xli’X2i9”' ,Xni}/’i € {19 2"” 95} (31)

The elements within a snapshot represent the signal for cifgpkocation in the
model, possibly for multiple quantities. Define the veckyrof background state
and correct each snapshot vector so that

E=X-Xie{l,2,--,9 (3.2)

These corrected snapshots are arranged in mafrhich denote the new ensemble.
The covariance matri§) can be constructed from the ensemiblef the snapshots by
taking the outer product:

Q=EE (3.3)

The dimensiom often exceeds 10 so direct solution of eigenvalue problem is not
feasible. To shorten the calculation time necessary fairspkhe eigenvalue problem
for this high dimensional covariance matrix, we define a davece matrixG as the
inner product. In the method of snapshots{[78]), one tharesdhensx n® eigenvalue
problem

GZ =E'EZ = AZ,ie{1,2,---,9) (3.4)

with 4; are the eigenvalues of the above eigenvalue problem. Teewgtors; may
be chosen to be orthonormal and the POD maalese then given by

p=EZ/A (3.5)
i.e., in matrix form;

P=EZA Y2 (3.6)
WhereZ = {Z1,2Z,,--- ,Zs} andP = {p1, p2,- - - , Ps} andA is a diagonal matrix con-

taining the eigenvalues.

A physical explanation of POD modes is that they maximizea¥wrage energy
in the projection of data onto subspace spanned by the mobes.eigenvalues;
provide a measurey() for the relative energy associated with corresponding POD
modesp;:

Aj
l//.

= ———100%i={1,2,---,s 3.7
I lezl/h { } ( )
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We collectp; (r < s) modes such that; > 2 > ... > ¢ and they totally explain
at least the required variangé.

r
ve=> (3.8)
I=1
3.2.2 Balanced Truncation
Given a linear system defined by
dX
i AX+ Bu (3.9
Y = HX (3.10)

whereA € R™": B e R™ andH € R"™". The main idea behind balanced trunca-
tion is to consider both inputs and outputs of the system ig@deby equation 319 and
[3:10 when determining which states to keep in the reducedhsoaicture.

Reduction of the systems will be achieved by retaining omlgtain states in the
representation. This is equivalent to defining a certaisgabe within the state space.
Two important subspaces are the controllable and obsergalblspaces. The control-
lable subspace is the space that can be obtained with z&ab $téte and a given input
u(t)., whereas the observable subspace comprises thosetbtdtas initial conditions
could produce a nonzero outp¥t;) with no external input. The controlability and
observability GramiangJ; andW, are each an x n matrix whose eigenvectors span
the controllable and observable subspaces, respectiVblyse matrices are defined
for the linear systen (3]9) and (3]110) as

W, = f BB dt (3.11)
0

wozf M H HMdt (3.12)
0

where the asterisk denotes the complex conjugate transpbseGramians are sym-
metric, positive-semi definite matrices usually computgdsblving the Lyapunov
equations given by

AW, + W,A" + BB =0 (3.13)

AW, + WoA + H*H = 0 (3.14)

In order to obtain balanced realization of the system (38)(&.10), a state trans-
formationT is chosen such that controlability and observability Grmsiare diagonal
and equal. This transformation is obtained by computing@mate scaled eigenvec-
tors of the product of both the Gramiang,

Weo = WeWp = TAT? (3.15)
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whereT;;i = {1,---, n} are the eigenvectors that describes the balancing tranafor
tion. here the eigenvaluasare positive and real. The square root of these eigenvalues
Ai gives the Hankel singular values.

Vai = o (3.16)

The process of balanced truncation is completed by firstrfgpdine balancing
transformatiorm and then truncating those controllable-observable stetésh have
less dfect on inputs and outputs.

Method of snapshots

Instead of solving the Gramians by solving Lyapunov equetif8.18) and[{3.14),
one may compute them from data by the numerical simulatidhis. was the original
approach used by [62]. The quanti#$'B in equatior{ 3.1 is simply the impulse
response of the single inppsingle output system. So if so we hawénumber of
inputs can writé\. as

W, = f T OAOXa)" XX ()7t (3.17)
0

Note the similarity to the POD dataset of snapshioid (3.1)thedabove expression.
The POD modes for this dataset of impulse responses ardgiktrgest eigenvectors

of W.. If data from simulations is used to find the impulse respsyisen it is usually
given at discrete timetg, - - - , t, and the integral above becomes a quadrature sum as
in (3.1). Thus we can writd\, as:

W, = EET (3.18)
For the observability Gramians, we need to consider thetdjgstem
zZ=Az+H"y, (3.19)

If n%is the number of outputs then the observability Gramians/isngby

Wo = f @Mz )"+, -, +Za(t)Zza(t)")dt (3.20)
0
One then form the data matrix F, asfin(3.1) and observal@igmians becomes
W, = FFT (3.21)

The method requires?® integrations of the adjoint system, where q is the number of
outputs. Thus it is not feasible to use the method with largelmer of outputs.

3.2.3 Balanced POD

Balanced POD (BPOD) is an approximation to balanced trimeatl he main goal of
BPOD is to achieve approximate balanced truncation withpaational cost compa-
rable to POD. The BPOD method presented here has two comisonen
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1. compute the balancing transformation directly from shays of empirical Grami-
ans using singular value decomposition (SVD), without firegetb compute the
Gramians themselves.

2. enable traceable computation even when the number ofitsutplarge.

As described in previous section, the balancing transfoom#s obtained from the
dominant eigenvectors of the product of two Gramians giveklMy,. The Gramians
are two @ x n) matrices. For large scale real time systems, where nunftetates
are large, the idea of finding eigenvectors from these nesticnot feasible. Here the
balancing modes are therefore obtained from the data reai@andF by forming
the SVD of the matri¥TE

T 0)\( V]

T _ _ 1 1

F'E=UXV= (U Uy ( 0 0)( vi ) (3.22)
wherezZ; € R™" is invertible, r is the rank of matrif'E andU U, = V[ V; = I,.
The advantage in using this method is balancing transféomét obtained by SVD

of matrix of dimensionif“ x n9). We can now define the transformation matrices S
and T as

S =3 Y2UTFT, (3.23)

T=EVz"% (3.24)

If r = n, then the matrix2; contains the Hankel singular valuék,determines
the balancing transformation aiglis its inverse([7B]. Moreover, if < n, then the
columns ofT form the firstr columns of the balancing transformation and the rows
of S form the firstr rows of the inverse transformation. The major advantageioigu
the above method for computing the balancing transformatighat the Gramians
themselves are not computed. Only one SVD of matrix with disienn® x n% are
required. Thus overall computation time is similar POD @tdbat here one also
needs to compute adjoint snapshots, which are required ihiR€thod.

Outer Projection

As explained earlier, using impulse responses to compytenagnapshots is not
feasible with large number of outputs. The outer projec{idoR) method can be used
to compute adjoint snapshots in this case. The main idea sdject the output

onto an appropriate subspace in such a way that the inpptiboehavior is almost

unchanged(73]. Instead of the linear system giver[ byl (3€)(&.10), consider the
related system

dX
o = AX+Bu (3.25)

Y = P,HX (3.26)
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whereP; is an orthogonal projection with rank r. The projectignwill allow us to
compute the observability GramiaW using only r simulations of the adjoint system
instead ofn? simulations. We choos, such that the input-output behavior bf (3.25-
[3:28) is almost similar to the input-output behavior[of 13.90). Now we can write
the adjoint system as

z =Az+ H*P,u, (3.27)

and the corresponding observability Grami&sbecomes
W, = f e~ tH*P, PTHeMdt (3.28)
0

Thus, the following steps are performed in the BPOD methathusuter projec-
tion.

1. Generate an ensemble of snapshots E and project theshetsapn observa-
tional space to ggHey, - - - , Heg}.

2. Compute r dominant POD modBs of this matrix.

3. Integrate solutiom (1), . .., z (t) of the adjoint systere = A*z with initial con-
ditionsz(0) = H*Pk. This will give the data matrix F.

4. Compute the SVD df T E and the BPOD modes are given by (3.23) dnd (3.24).

Relation to POD

There are deep connections between the POD methods and @ie B@®cedure ex-
plained here. BPOD may be viewed as bi-orthogonal decoriposhstead of or-
thogonal decomposition given by POD. One of thidilties with the POD method
is that the inner product used for computing POD modes idrarlgj specially for
the compressible flow, the inner product is not obvious affémint choices can give
different results ([74]). BPOD may be viewed as a special cas®bfising impulse
responses and observability Gramians as an inner produatefll consequence of
using the observability Gramians as an inner product isithttis case the reduced
order model preserves the stability of an equilibrium patrthe origin, even if the full
model is nonlinear [([73]). The balanced truncation of stdlrlear system is stable,
but POD models of nonlinear systems may be unstable evea ifdhlinear system is
linearly stable at the origin[([79]).

3.3 Inverse modeling using reduced models

The discrete model for the evaluation of dynamical systesmftimet; to timet;,;
can be described by an equation of the form

X(tiv1) = Mi[X(t), 7] (3.29)

whereX(ti;1) € R" denotes the state vector at tifig, andy is the vector of the
uncertain parameters which needs to be determiédis the nonlinear and deter-
ministic dynamics operator that includes inputs. Suppasethat we have imperfect
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observation¥(t;) € R™ of the dynamical systerfi (3.29), that are related to the model
state at time; through
Y(t) = HX(t) + n(t) (3.30)

whereH : R" —» RY being a linear observation operator that maps the modekfield
on observation space amgt;) is an unbiased, random Gaussian error vector with
covariance matriR;.

We assume that theftirence between data and simulation results is only due to
measurement errors and incorrectly prescribed model paeam The problem of the
estimation is then solved by directly minimizing the objeetfunctionJ

) = Z[Y(ti) = HOXENITRTTY () — HOX()] (3.31)

with respect to the parameteys satisfying the discrete nonlinear forecast model
(3.29).

The dficient minimization of the objective function require themuoutation of the
gradient of the objective functiobh (3131). The gradienttee¢VJ) gives information
about the direction (positive or negative) and the size ¢gsithents for each indi-
vidual parameter. The adjoint method computes the exadigradficiently. The
principle of the adjoint method is based on the systema#mfishe chain rule of dif-
ferentiation. Regardless of the number of parametersirtteerequired to compute the
gradient using adjoint technique is more or less identindlia comparable with the
computational time needed for a single simulation run ofrtbwelinear model%?). It
requires one forward simulation with the original nonlinemdel [3.29) and a second
additional simulation backward in time with the adjoint neaid

v(ti) = ( )TV(t|+1) 2HRY(6) - HX(®))] (3.32)

aX(t)

wherey(t;) represents the solution of the adjoint model. The gradidnif the objec-
tive functionJ with respect to each componentof the uncertain parameters vector
v is given by:

Va= Y- el T B i

L.k={L...,n" (3.33)

The adjoint method is flexible as the number of parameterseeaily be changed.
The main hurdle in the use of adjoint method is its implemtona especially when
the forward model contains nonlinearities. For the shallmater flow computations,
the original model is very complicated and it igfiult to implement the adjoint for
these type of models.

3.3.1 Linearization and reduced model formulation

The classical adjoint problem for a general model is a nealirconstrained opti-
mization problem which is diicult to solve. The problem can be simplified with
the hypothesis that the objective functidrcan be made quadratic by assuming that
the nonlinear dynamics operatlk can be linearized. The linearization of nonlinear
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high-order model(3:29) using the first order Taylor's fotenaround the background
parametey gives

Sy _ OMIXP().7"] < IMI[X°(t), "]
X)) = =550 Axa.>+;7ayk A (3:34)

whereX is linearized state vectoX® is the background state vector with the prior
estimated parameters vecidrandaX is a deviation of the model from background
trajectory.

A model can be reduced if the incremental sta¥t;.1) can be written as linear
combination:

AX(t) = Pé(tiza) (3.35)
whereP = {py, p2,- - - , pr} is a projection matrix such th& P = I, and¢ is a reduced
state vector given by _

— oM
£ltivn) = M) + D oot A (3.36)
. Yk
or in matrix form L
E(tiva) |\ _( M M) ()
( Ay Lo II Ay (3:37)

HereAy is the control parameter vectdy; and Miy are simplified dynamics operators
which approximate the full Jacobiaégui and%—';’l': respectively:

oM
M, = PT ' 3.38
M? = PT M ,%) (3.39)
: dv1 Oyne

The Jacobiargl"g, is obtained by approximating the nonlinear dynamics dpeid;

by linearizing it with respect to background staf® Instead of computing this huge
Jacobian by approximating the partiaffdrential with finite dfference by perturbing
the nonlinear operatdvl; in the direction of each node, we perturb along the direction
ofpr:h={1,---,r}only

M MIXP(t) + epn, "] = Mi[XP(t:), ¥"]
axe(t) " e

h=1(1,....r) (3.40)

with £ being the size of the perturbation. The reduced dynamicsatmeM; can now
be computed by pre multiplying the above formulamy.

OM; AL
5Xb(t|) pl? ’ 8Xb(t|) pl’

Notice also that only the original model simulations aredeskhere. The reduced
model requires less computational time as it simulates acedi state within the di-

mensiorr instead of the original dimensianwherer < n. The dimension on which

the reduced model operatesiis-(P) x (r + nP) with nP being the number of estimated
parameters.

M; = P'(

) (3.41)
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3.3.2 Collection of the snapshots and the reduced basis

Since the reduced model is used here to estimate uncerta@mpters, the snapshots
should be able to represent the behavior of the system feeth@rameters. Therefore
the snapshot vectois € RS are the perturbed model simulatio%% with respect to
each estimated parametgrto get a matrix:

E={Ey---,Eshi={1,2,---,5 (3.42)

The dimension of this ensemble matifixis s = u x n%, wheren® is the number
of snapshot collected for each individual parameier The operator® used in the
previous subsection are obtained from this ensemble ofs$iépectors by applying
either POD or BPOD reduced order methodologies. In case @BRve have an
bi-orthogonal decomposition such thiai= T = S,

3.3.3 Approximate objective function and its adjoint

In reduced model approach, we look for an optimal solutiothef(3.29) to minimize
the approximate objective functiod)(in an incremental way:

J(ay) = Z[{Y(ti) — HOXP(4))} — Ha(t, Ay TRY () — HOXP())} — HE(, Ay)]

(3.43)

The value of the approximate objective functidis obtained by correcting the obser-
vationsY(t;) for background statX®(t;) which is mapped on the observational space
through a mapping and to the reduced model st@{#, Ay) which is mapped to the
observational space through mapptigwith H = HP.

Since the reduced model has linear characteristics, itsig ®abuild an approxi-
mate adjoint model for the computation of gradient of theragjmate objective func-
tion (3:43). The gradient of with respect ta\y is given by:

a3 T 0E(ta)
30y Z —[v(t.+1)]TW (3.44)

where{tiy1) is the reduced adjoint state variable. Once the gradiembkan com-
puted, the process of minimizing the approximate objedtivetion J is done along
the direction of the gradient vector in the reduced space.

After the minimization process the initial parametetare updated and new set of
updated parametesP® is obtained

PP =y 4 Ay (3.45)

This process of minimization is repeated several times mgstracting new reduced
model with new set of updated parametgt® to get optimal parameters. Figurel3.1
presents the flowcharts of the parameter estimation proeesiith classical adjoint
method and two projection based model reduction methods.
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Initial Parameters Initial Parameters Initial Parameters
Snaphots Snaphots

Original Model l l

Reduced Model Based Reduced Model Based
on POD modes ™| on BPOD modes

Adjoint Model l

l Reduced Adjoint Model Reduced Adjoint Model
Gradient
| Gradient | | Gradient
Updated Parameters Updated Parameters

Optimized Parameters Optimized Parameters Optimized Parameters

Figure 3.1: Flowcharts of the parameter estimation proee=gith the classical adjoint
method (left) and the reduced model approaches (middle jR@®right (BPOD))

Convergence Criterion

To decide what will be optimal values of estimated parametercan use the criterion
p. The outer iteration cycle is aborted when the terminal@alip is obtained

p=lds— s, 1<k (3.46)

whereg; stands for thé™" outer iterationx is the terminal value. We have chosen
k = 1075 for all the numerical experiments.

3.4 Numerical experiments
3.4.1 The Model

We consider the advection4tlision of concentration(x, t) for the transport of pollu-
tant in two space dimensions. The evaluatiog gfves

oc ogc gc 9 dc a9 dc

— +U— +V— = —ug— + —vug— + S 3.47

at TYax TVay T axViax T ayYiay T (3.47)
with the square domain [@] %[0, d], herevy contains difusion codicient, [u, v]is the
velocity field andS, the source term. The experiments are performed on theZD
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grid. In analyzing the system equation, we have assumedhéatelocity field [1, v]

is known and constant with respect to time (see Figure 3 @}adifusion tensor is
also constant. A solution to the partiafigirential equation is obtained by imposing
boundary conditions and applying Euler time stepping taaximate the time deriva-
tive, the second derivatives are approximated with therakfihite diference, while
the upwind scheme is used for the first order spatial deveatilnitially the concen-
tration is zero for the whole model domain. A uniform soureenrt is introduced at

two grid points during the course of simulation.
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Figure 3.2: Velocity Field

3.4.2 Experiment 1

The POD based reduced model approach described above vehbarseto estimate
the difusion codicientuy for the 2D advection diusion model defined Hy 3.47. In
experiment 1 three cases were considered to estimadecording to the flow rate
and complexity with respect to number of estimated pararsefiéhe original model
was simulated for 50 timesteps with = 1s and a 20x 20 grid withdx = dy =
1m constitutes the model domain. The estimated parametesmsre dfected by the
parametery. A set of simulated observatioigt;); i€ {1, - - - , 50} were obtained for

each case.

Case 1:

The POD based model reduction method works well féiiudive systems [11]. Thus,
diffusion was considered to be more dominant than advectioneifir$t instance.
The number of parameters estimated for this case were twe.nlimerical domain
was divided into two regions for eagh. The true value for both the parameters was
y' = 0.18. A set of simulated observatioNgt;) ; i € {1,---, 50} with true values of
the parameters were obtained at Zatient grid points one in each region of the model
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Figure 3.3: The 2D pollution model domain; The locationshef selected data points
(circles) and straight line divides the model domain in twgions one for each esti-
mated parameter

domain as shown in Figufe_3.3. Initiallyy = 0.12 andy, = 0.20. For the initial
values of the parameters, a set consisting of 100 shapsbiatrsevas generated and
we were able to form a basis consisting of only 8 dominantreigetors that captured
99.99% of the relative energy (see Figlirel3.4). So a reduced Imadebuilt using
these basis vectors which finally operates on the dimerRfA.
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Figure 3.4: The POD modes captured energy for an ensemb@0driapshot vectors

With this reduced model approximate objective functibmas minimized and
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new values of estimated parameters were four’;éf%lt: 0.1641 andy;p =0.1944. A
significant improvement was observed in the objective fioncl which was reduced
by more than 90% after the outer iteratjn The minimization process was repeated
several times with the new values of updated parameigrdy first constructing a
new reduced model and than minimizing the approximate tisgetunctionJ in the
reduced space. Talle B.1 shows the results of the minirizafitwo estimate vari-
ables.

®) Y1 Y2 J J a
1 0.12 0.2 0.8434 0.0504 4
2 0.1641 | 0.1944 0.0865 0.0172 4
3 0.1751 | 0.1899 0.0167 0.0056 4
4 0.1830 | 0.1783 0.0035 45%x10% | 4
5 0.1811 | 0.1792 | 512x 104 | 9.11x10° | 4
6 | 0.18039] 0.17944] 999x10° | 3.79x10° | 4
7 | 0.17998] 0.17969| 1.08x10° | 477x10° | 4

Table 3.1: The results of the estimation of two parameteendy,. Herea andg are
the number of inner and outer iterations respectively.

With classical adjoint method, aftéf gradient computation, the objective func-
tion J reached a minimum value 7472x 10°° with y; = 0.18000121 and, =
0.18000219.

Two separate reduced models were also constructed thared®5% and 99% of
the relative energy respectively. Using these reduced tagithe approximate objec-
tive functionJ was minimized in reduced space and the new values of the astim
parametersg*P are found. Figuré3l5 shows the reduction of objective fionci in
the POD based calibration approach after each outer egseparately for each of
the reduced models. It can be seen from Figure 3.5 that rdduoeel converged in
all the cases but the rate of convergence is slow with thecestimodels that captured
95% and 99% of the relative energy as compared to the reduoddlrthat captured
99.99% relative energy. The basis for the reduced model mustfihve be chosen
intelligently.

Case 2:

To see the #ect of dominant advection, the flow rate was increased incise. The
initial values for both the parameters were = 0.12 andy, = 0.24, and the true
value for both parameters was = 0.18. A set of simulated observatiot;) ;

i €{1,---,50} with true values of the parameters were obtained atfferdint grid
points of the model domain as shown in Figlurg 3.6.

For the above initial parameters values, a reduced modet@rasgtructed that cap-
tured 9999% of the relative energy with only 10 basis vectors. Witis tieduced
model of dimensioM 1%+2, the approximate objective functiahwas minimized and
new values of the estimated parameters were foumgfai 0.1773 anoy;p =0.1974.
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Figure 3.5: The value of the objective functidnat successive outer iterations for
reduced models with fferent relative energy attained

A significant improvement was again observed in the objedtimctionJ, which was
again reduced by more than 90% after the outer iterg@ionThe process was re-
peated several times and updated values of the estimatachetars were used as
initial values to construct the reduced model in each otgeations. Tabld3.2 shows
the minimization results and the convergence of two esgthparameters. It is clear
from the results that although the flow rate and the obsenvatbints were increased,
the estimated parametersandy, converged to true parameter vahlde= 0.18 with
similar dficiency.

[B)] »n 2 | J J a |
1] 012 024 | 20.8776 1.7673 | 4
2 | 0.1773 | 01974 | 1.2699 0.0894 | 4
3 | 01787 | 0.1848 | 0.1061 0.0070 | 4
4 | 01795 | 0.1812| 00072 | 449x10°% | 4
5 | 0.17982| 0.18027| 428x 107 | 256x10° | 4
6 | 0.17993| 0.18006| 259x 10° | 221x10° | 4

Table 3.2: Results of the estimation of two parametgrandy, with the reduced
model that captured 999% of the relative energy.

Case 3:

The validity of the reduced model also depends on the numbestonated param-
eters. The parameters estimated in this case were four. Umencal domain was
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Figure 3.6: The locations of the selected data points @s)chnd straight line divides
the model domain in two regions one for each estimated pasxme

divided into four regions for eacj. The true value for all the four parameters was
y' = 0.18. A set of simulated observations were obtained with talaes of the pa-
rameters at 12 dlierent grid points in the model domain as shown in Figure 3he T
initial values for the estimated parameters weye- 0.12,y, = 0.20,y3 = 0.14 and

v4 = 0.22.
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Figure 3.7: The locations of the selected data points @s)cnd the four subdomains
used used in case 3 to estimate four parameters

As in the previous cases, the initial values of the estima@@metergamma
were used to collect a set of 200 snapshot vectors and a loasisting of 6 dominant
eigenvectors was used to construct a reduced model thaired88% of the relative
energy (see Figufe 3.8[a)). Here the reduced model wasisinig only few dominant
modes to get the initial direction of the update of the estédg@arameterg and once
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the direction is known the reduced model can be built usirgatgd parameteng,,
with more relative energy attained for fast convergence.

Captured Eneray ¢ w)

0 L L L 0 Il Il Il
5 5 1 5 0 5
No.of modes (1)

(b)

0
No.of modes 1)

(@

Figure 3.8: The POD modes captured energy for an ensemb@Os2apshots in the
outer iterations gp; b) 3>

With this reduced model of dimensi@®+4, the approximate objective functigh
was minimized and new values of the estimated parameteesfoend aty; = 0.176,
v2 = 0.188,y3 = 0.164 andy, = 0.206. Although only 6 dominant POD modes were
used to build the reduced model, the objective functlomas reduced by more than
75% after the outer iteratiqfy.

The updated parameters obtained after outer itergtiomere used again to con-
struct a new reduced model that capture®9% of the relative energy with 15 basis
vectors (see Figufe 3.8(b)). Tablel3.3 shows the minindratsults and the conver-
gence of four estimated parameters. The results from TaBlsi®ws that the POD
based estimation procedurgieiently minimizes the objective functiahand all the
estimated parameters converge to true parameter yal®.18 after few outer itera-
tions.

1Bl n y2 Y3 iz J J

1] 012 0.20 0.14 0.22 43277 | 0.6073
2 0176 0.188 0.164 | 0206 | 09485 | 0.1101
3| 0.18285 | 0.185388| 0.17701 | 0.188588| 0.1637 | 0.0227
4| 0.185666| 0.182784| 0.180184| 0.184586| 0.0446 | 0.0027
7 [ 0.180158| 0.180092| 0.180164| 0.18014 | 65x10° | 41x10°

Table 3.3: Results of the estimation of four parameters,, vz andy, with the POD

based estimation procedure.
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3.4.3 Experiment 2

In this experiment we have applied the BPOD procedure totgebasis of reduced
model and compare results with POD based reduced-orderlmlydexperiment 2
two cases were considered to estimatevith dominant advection as in thé®case
of Experiment 1 according complexity with respect to the benof observations.

Case 1l

The number of parameters estimated for this case were twe.nlimerical domain
was divided into two regions for each. The true value for both the parameters
was againy' = 0.18. A set of simulated observatioNgt;) ; i € {1,---,50} with
true values of the parameters were obtained at #8réint grid points scattered in the
model domain as shown in Figure B.9. Initiajly = 0.12 andy, = 0.20. For the initial

y(grid—index)
.

x(grid-index)

Figure 3.9: The 2D pollution model domain; The locationshaf $elected data points
(circles) and straight line divides the model domain in tegions one for each esti-
mated parameter

values of the parameters, a set consisting of 100 snapstiatrsevas generated and
the BPOD method was applied to get reduced basis for the eglduodel. The first 10
balancing modes were used to construct the reduced moditl.this reduced model
of dimension®R1%2, the approximate objective functichwas minimized and new
values of the estimated parameters were foungd&t= 0.19 andy,” = 0.194. The
process was repeated several times and updated values eétthmated parameters
were used as initial values to construct the reduced modsc¢h outer iteratiog.

Figure[3.10 shows the minimization of objective functibfor BPOD and POD
reduced models of ord@ %2, The Figurd_3.10 demonstrates that the optimization
using BPOD based reduced model perforifi€iently in the first few outer iterations
B of the minimization process as compared to the POD basededduodel. More-
over, the same minimum value of the objective functibis achieved with both the
reduced order models aft@g of the minimization process.
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Figure 3.10: The successive outer iteratigngf the objective functionJ) for the
POD and the BPOD based reduced order models of GRd&r

Case 2

The only diference here from the previous case is the number of selebsmha-
tions. The experiment was designed to compare the resalts hhe BPOD method
with and without outer projection procedure. Since outejgmtion procedure is use-
ful when the number of outputs (observations) are largeetbes a set of simulated
observation¥(t;) ;i € {1,--- , 50} with true values of the parameters were obtained at
every other grid point in the model domain. So in total 200eptation points were
selected.

To quantify the performance of both the reduce models we tsed the following
metric, i.e. relative root mean square error (RRMSE) [1GQhe difference between
the full order and the reduced order simulation. This wasiokd by first taking the
full order approximation results and the correspondingiced order results within
the inner iteration of the variational data assimilation.

_ Lom [lIYGE) - Y(®)IP
RRMS E= m2|=1 FW (3.48)

wheremis the number of time steps. Talblel3.4 shows the comparistredRRMSE
in the full and reduced order approximations obtained bygithe POD method, the
BPOD method and the BPOD method with outer projection procedespectively
with respect to the size of the reduced order models. Heeegtiter projection pro-
cedure was used by selecting a projection ma®ixof 12 dominant POD modes as
explained in Section 3.2.3. So instead of 200 simulationis thie adjoint system, only
12 simulations with the adjoint system were needed to coenhgt balancing modes.
The Tabld3.4 demonstrates that there are no significéfgreinces in the RRMSE
errors for the BPOD with and without outer projection. Altlgt the BPOD method
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performs better as compared to the POD method, thiierénce is not significant if

number of modes selected for the reduced model are more €han 1

(Mode§ | POD | BPOD | OP(12)
2 0.5071| 0.3658| 0.3728
3 0.4965| 0.3617| 0.3704
4 0.2191] 0.1383| 0.1388
5 0.2197] 0.1375| 0.1380
6 0.1187] 0.1012| 0.1009
7 0.1178] 0.0947| 0.0995
8 0.0845] 0.0777| 0.0766
9 0.0717| 0.0659| 0.0660
10 | 0.0534] 0.0527| 0.0530
15 | 0.0267| 0.0258| 0.0257
20 | 0.0267]| 0.0247| 0.0247
25 | 0.0225] 0.0209] 0.0213

Table 3.4: RRMSE in the forward simulation withfidirent model reduction methods

Figurd3.11 shows the minimization of the objective functiovith the outer pro-
jection and the POD based reduced models of oRf€f?. The Figuré 3.11 demon-
strates that the optimization based on both types of reducei®!| performsgiciently
and converge to almost similar value of the objective fuorcdiin each outer iteration
B. This means that although lots offert had been made in constructing a reduced
model using outer projection procedure but the results efdptimization with the
POD method and the BPOD method are the same.
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Figure 3.11: The successive outer iteratignsf the objective functionJ) for the

POD and the outer projection based reduced order modelsief B2
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3.5 Conclusions

In variational data assimilation it is necessary to implatikee adjoint model for the
computation of gradient of the objective functidmvhich is dificult and laborious for
large scale real time systems. In this work we have appliedthod which simplifies
this problem using a projection based POD model reductigmagzh. The method
approximate the full dynamical system while retaining itsgerties. An ensemble of
forward model simulations is used to determine the appration of the covariance
matrix of the model variability and the dominant eigenvesiof this matrix are used
to define a model subspace. An approximate linear reduceeélrisoobtained by pro-
jecting the original model onto this reduced subspace. @i@ra of the tangent linear
model is replaced by the adjoint of this linear reduced fodvaodel. The minimiza-
tion process is carried out in reduced subspace and hengeagthe computational
costs. Numerical experiments were performed in a pollutiaael of concentration
c(x,t) with the POD based estimation method to estimafeision codficients. The
results demonstrates that the POD based estimation appsoacessfully estimate
the ditusion codficient for both advection dominated problems as féiudion dom-
inated problems.

BPOD is a model reduction method which combines the ideasvattiodology
of two model reduction methods, i.e. POD and balanced ttiorca The balanced
truncation method uses both controllable and observatdspaces while obtaining
a low rank subspace for the reduced model. A state transfamis chosen such
that controllability and observability Gramians are diagband equal. The BPOD
method presented here allows computation of the balancamgfiormation directly
from snapshots of empirical Gramians using SVD, withoutdieg to compute the
Gramians themselves. The method also allows the empitisgroability Gramian to
be computedféciently even when the number of outputs is large.

Identical twin experiments were performed to estimaféudion codficients in a
pollution model with both POD and BPOD methods. The resutsianstrated that
the reduced model obtained from BPOD performs better thaD B&sed reduced
model in the beginning of the minimization but both the meéthoonverged to similar
value after &' outer iteration of the minimization process. An experimeas also
performed to compare the two BPOD procedures when the nuoifibetputs is large.
We were able to form a reduced model with similar accuracih @@ simulations of
the adjoint system using outer projection procedure inst#200 simulations with
the adjoint system using usual BPOD method. Although lotffires had been put
in constructing a reduced order model by BPOD method, thenniation results
demonstrated that both the POD and the BPOD methods perdasimédarly.

Preliminary results shows the validity of the POD based rhoelduction meth-
ods for parameter estimation and now the method needs testeal tor large scale
application which is the topic of the next chapter.
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Chapter

Inverse shallow water flow
modeling using model reducti(%

4.1 Introduction

Variational data assimilation has often been used for mealddration (e.g.[[8/7]/[153],
[92], [43]). The method aims at adjusting a number of unknparameters on the ba-
sis of given data. One first defines a scalar function whichafty model solution
over the assimilation interval, measures the “distancetrasfit” between that solu-
tion and the available observations. The so-catleggctive (cost) functiois typically

a sum of squared flerences between the observations and the corresponding mod
values. One then looks for the model solution that minimihesobjective function.
To obtain a computationallyfigcient procedure this objective function is minimized
with a gradient-based algorithm where the gradient is d@texd by solving the ad-
joint problem. Variational data assimilation usually regs the implementation of
an adjoint model. Research has recently been carried ouitomatic generation of
computer code for the adjoint and adjoint compilers have beeome available (see
[47]). Even with the use of these compilers coding an adjsiatlaborious program-
ming &fort that hampers new applications of the method.

In the last years the studies of complex systems have tat@rgsidvantage of the
development of mathematical methods coming from the thebnpn-linear dynam-
ical systems. Proper orthogonal decomposition (POD) is dain@duction method
considered as an application of the singular value decoitmogSVD) to the ap-
proximation of general dynamical systernsi[11]. POD is tlebtéque leading to the
system of low-dimensional ordinaryftérential equations that approximate the model
formulated in terms of partial ffierential equations, allowing to take full advantage
of dynamical systems theory. The method was originally tper by Karl Pearson
(seel[68]) and has application in many fields like image pssicey, signal processing,
data compression, oceanography, chemical engineerinfiladanechanics (see e.g.

1This chapter is a slightly revised version [of [5]
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[49], [69], [3], [14]). For a detailed description on POD gecand research see [40].

Another application of POD in operational occeanography weather forcast-
ing is four dimensional variational data assimilation (4R}, which is based on an
optimal control theory([88]. POD has recently been applieckessfully in 4DVAR
(e.g. [64], [22], [32], [31]). Previous experiences showttthe POD is valuable in
parameter estimation (e.g. [|26]), especially the recemkwy [102] shows that POD
based model reduction technique can be successfully dppliénverse modeling of
3D groundwater flow.

In the POD model reduced approach, an ensemble of snapstiotsef forward
model simulations is used to determine an approximatioh@tbvariance matrix of
the model variability and a small number of the leading eigetors of this matrix is
used to define a model subspace. By projecting the origindkefranto this subspace
an approximate linear reduced model is obtained. Once thecesl model is avail-
able its adjoint can be implemented easily and the miningngproblem is solved
completely in reduced space with very low computationat.cdsiecessary this pro-
cess of minimization is repeated several times by generatinew set of snapshots
(ensemble) which is closer to the new estimated parameters.

Compared with the classical variational method the adjofrihe tangent linear
model is replaced by the adjoint of the linear reduced fodwaodel. While the
adjoint of the tangent linear approximation of the origimadel produces the exact
local gradient, the reduced order approach is based ostatally linearised model
and hence produces an averaged gradient. As a result thé raddeed approach can
be less sensitive for local minima for certain applicatifg®j.

The present work is mainly inspired by the recent work donestuced order
modeling by [[99],[54]. These methods are based on derivipgaximate low-order
data assimilation system in the context of incremental 4R\Wkocedure for parame-
ter and state estimation respectively. In the present werkensider 1) a new appli-
cation of reduced-order calibration approach. The mettasdbeen used for a model
based on shallow water equations which ifetent in behaviour from the one used
in [99]. We also consider 2) usage of extended time horizopémameter estimation.
The generation of an ensemble involves running the forwardehseveral times. The
computational cost of the method is dominated by the geioeraf this ensemble. In
this study it is found that if the dynamics of the system doatschange significantly
then a smaller simulation period can be chosen to genera¢asemble of forward
model simulations for an optimization problem over largeriqd.

A shallow water model of the continental shelf, the Dutchtowental shelf model
(DCSM) is used in the Netherlands to forecast the storm suirgéhe North Sea.
Accurate predictions of storm surges are of vital imporeatocthe Netherlands. The
decision whether or not to close the storm surge barrierassdbon these predictions.
A number of twin experiments is performed with DCSM to evadue performance
of proposed approach. This allows us to evaluate the rdsyttemparing them to the
truth.

The chapter is organized as follows. Secfiod 4.2 explaiassatal inverse mod-
eling methods. Procedure required for the construction@D Projection based re-
duced model is described in Sectionl4.3. In Sediion 4.4 thiahadelogy of POD
projection based reduced method for the calibration isarpt. Sectioh 415 contains
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results from the twin experiments with the operational midolestorm surge predic-
tion, the DCSM, to estimate the water depth. The chapterludes in Section 416 by
discussing the results.

4.2 Inverse modeling

Consider the data assimilation problem for a general nealidynamical system. The
discrete system equation for the state vecKits 1) € R" is given by;

X(tir1) = Mi[X(t), 7], (4.1)

whereM; is nonlinear and deterministic dynamics operator thatige$ inputs and
propagates the state from tirh¢o timet, 1, y is vector of uncertain parameters which
needs to be determined. Suppose now that we have imperfaiions/(t) € R™

of the dynamical systen (4.1) that are related to model staimet; through

Y(t) = HX(t) + n(t), (4.2)

whereH : R" — R™ is linear observation operator that maps the model fields on
observation space anmgt;) is unbiased random Gaussian error vector with covariance
matrixR,.

The idea of parameter estimation is to identify the valuesrafertain model pa-
rametersy. We assume that the fikrence between data and simulation results oc-
curs only due to measurement errors and incorrectly presttrinodel parameters. A
most commonly used measure that determines tiisrdnce is the weighted sum of
squared residuals. The problem of estimation is then sdbyedirectly minimizing
the cost functiord

) = Z[Y(ti) = HOXENITRTTY () — HOX(@), (4.3)
i=1

with respect to the parameterssatisfying the discrete nonlinear forecast modell(4.1).
The minimization of the cost functiohis often based on quasi-Newton methods.
These methods require the computation of the gradient afdkEfunction. The gradi-
ent vectoVJ gives information about the direction (positive or negaliand the size
of adjustments for each individual parameter. The adjoiathrod [18] computes the
exact gradientféiciently. The principle of the adjoint method is based on ystem-
atic use of the chain rule of flierentiation. Regardless of the number of parameters,
the time required to compute the gradient using adjointriggke is more or less iden-
tical and is comparable with the computational time neededafsingle simulation
run of the nonlinear mod€l(4.1). It requires one forwardwation with the original
the nonlinear mode[{4l.1) and a second additional simulddgckward in time with
the adjoint model:

oM

v(ti) = (ax—(':i))TV(ti+l) - 2HRY(t) - HX(®)], (4.4)
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wherev(t;) represents the solution of the adjoint model. The gradvenof the cost
functionJ with respect to each componentk = {1, ..., nP}, of the uncertain param-
eter vector is given by

IMi[X(t), 7]

ot (4.5)

V= Z — vt

i=1

The main hurdle in the use of adjoint method is its implemigoia Even with
the use of adjoint compilers that have become availableettags this is a huge pro-
gramming &ort that hampers new applications of the method. Moreokieratjoint
equation needs to be integrated backward in time and theréfe states of the for-
ward model have to be stored at each grid point for all timpsst&he memory access
will therefore be huge for large scale problems.

4.3 Reduced order modeling

The problem of obtaining a lower-dimensional approximato a high-dimensional
system is known as model reduction. The method used in tpisrfall in the category
of projection methods, which involve projecting the systmations onto a subspace
of the original phase space.

4.3.1 Proper Orthogonal Decomposition

The proper orthogonal decomposition, also known as pri@dpmponents analysis,
has been widely used for a broad range of applications. PQIYsis yields a set of
empirical eigenfunctions which describes the dominantlin or dynamics of the
given problem. POD can be described as the method that ezartie linear relation-
ship between variables with the aim of reducing the dimeradity of the problem.

The main idea is the following. Given a set of data that liea wector spac¥,
find a subspac¥, of fixed dimensiorr such that the error in the projection onto the
subspace is minimized. We start by collecting the setsfapshots of some physical
process. Each sample of snapshgtsvhich is defined on a set of nodesX stands
for ann dimensional vectok;. i.e.,

XI = {Xli’XZi”" ,Xni}/,i € {1’ 29”' ’S}’ (46)

The elements within a snapshot represent the signal for cifgpkocation in the
model, possibly for multiple quantities. Define the veck¥r of background state
and correct each snapshot vector so that

E|:X|_xb,|€{1’2"’s}’ (4'7)

These corrected snapshots are arranged in nfatrvhich denotes the new ensemble.
The covariance matri§) can be constructed from the ensemiblef the snapshots by
taking the outer product

Q=EFE, (4.8)
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The dimensiom often exceeds T)so direct solution of eigenvalue problem is not
feasible. To shorten the calculation time necessary faisgkhe eigenvalue problem
for this high dimensional covariance matrix, we define a ceveee matrixG as the
inner product. In the method of snapshots![78], one thenesaw s eigenvalue
problem

GZ =E'EZ =1Z.,ic{1,2,---,8}, (4.9)

where; are the eigenvalues of the above eigenvalue problem. Tleenaigtors;
may be chosen to be orthonormal and the POD m@dase then given by

pi = EZ/ A (4.10)

A physical explanation of POD modes is that they maximizea¥wrage energy
in the projection of data onto subspace spanned by the mobes.eigenvalues;
provide a measurg; for the relative energy associated with the correspond@B P
modesp;:

Aj .
i = 100%i ={1,2,---,s 4.11
V=S { } (4.11)

We collectp; (r < s) modes such that; > ¢ > ... > ¢ and they totally explain

at least the required variangé:

¥e=> . (4.12)
=1

4.4 Inverse modeling using reduced models

An approximate linear reduced model in variational datansitgtion presented here is

based on the principle of POD model reduction technique. #semble of snapshots
vectors is generated from the original model. The reducediaimperates on the space
defined by the dominant eigenvectors of the generated erisemb

4.4.1 Linearization and reduced Basis

Linearization of non-linear high-order model(#.1) witlspect to parametédrgives

IXO(E), AP
X(ti1) = MIXO(E), 7 IX(t) + | 3M.[>;;|t.),7 !

k=1

Ay, (4.13)

with X is linearized stateX? is the background state for which the corresponding
parametef® are linearized. The partial derivativgy% can be computed using pertur-
bation method with respect to each parameger

. M'th‘,b+A —M‘th',b
% N i[XP(t), v Yl i[X(ti) ?’k], (4.14)
Ay« Ayk

whereAyy is the perturbation. The snapshot vectBrs ‘RS are the perturbed model
simulations% with respect to each parameter These snapshots are collected in



52 Chapter 4. Inverse shallow water flow modeling using modekduction

matrix E = [Ey,---, Eg]. We then simplify the eigenvalue problem as explained in
Sectior4.B to obtain the POD basis (modes¥ [ps,- - , pr] of r dominant eigen-
vectors. The total number of eigenmodem the basisP depends on the required
accuracy of the reduced model.

4.4.2 Reduced model formulation

A model can be reduced if sta¥t;) can be written as linear combination

X(tie1) = X°(ti1) + P&(ti11), (4.15)
wherei is the approximate linearized statgis a reduced time-varing state vector
given by

Etin) \_ [ M M (L)
( Ay 1700 Ay (4.16)
, hereM; and IW are simplified dynamics operators which approximate tHeJado-
bians24 and%—';’t respectively:
— oM,
Mi = PT —— 4.17
— M M
M) = PT(&’... , Q) (4.18)
on Oyne

The Jacobiarg% is obtained by linearizing the nonlinear dynamics operadpr
with respect to background sta¥®. Instead of computing this huge Jacobian with
finite difference method (i.e. by perturbing the nonlinear opensttdn the direction
of each node), we perturb along the direction of POD modes onl

M Mi[XP(t) + epn. 7] — MIDX(t). "]

axe(G) " e (4.19)

with & being the size of the perturbation. The reduced dynamicsatgeéVl; can now
be computed by premultiplying the above formulaey

OM: OM: ) (4.20)

M = T — e —
- P (6Xb(t|) pl, s 8Xb(t|) pl’ .

The dimension of the subspace on which reduced model ogatafeends on the
number of eigenmodeasselected in the POD basis and the number of estimate vari-
ablesnPi.e. (r + nP) x (r + nP).

4.4.3 Approximate objective function and its adjoint

The value of the approximate objective functidiis obtained by correcting the ob-
servationsY(t;) for the background staté®(t;) which is mapped on the observational
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space through a mappirtyand for the reAducedAmodeI stat) which is mapped on
the observational space through mappthwith H = HP:

J(ay) = DY) = HOC())) - Hét, A]TRHIY() - HOC®)) - HE, Ayl
i=1

(4.21)
As the dimension of the reduced model is smaller than thatiginal model and
reduced model has linear characteristics, it is easy tal lauil approximate adjoint
model for the computation of gradient of the approximatesotiye function[(4.211).
The gradient of] with respect to parametayy is given by:

AJ o T O&(tis1)
v Z pCE e yet (4.22)

wherey{ti,1) is the reduced adjoint state variable (see Appendix A).€ahe griadi—
ent is computed, the process of minimizing the approximateative functionJ is
performed along the direction of the gradient vector in #xuced space.

4.4.4 Procedural flow with reduced model

In order to perform the whole parameter estimation prodes<dllowing steps are
executed.

1. Outer lteration.
e Background initial parametes® are used to generate an ensemble of for-

ward model simulations.

e A POD reduced model and its adjoint model are establishenutiis
ensemble.

¢ Inner Iteration. Perform optimization iterations in reddspace to obtain
the optimal solution of the approximate objective functibn

e The background initial parametey8 are updated and new set of initial
parametersy"P) is obtained.

PP = 9P+ Ay. (4.23)

2. Return to step 1 with new set of initial parameters unttiroplity condition is
achieved.
Convergence criterion for inner and outer iterations

We have defined two criteria both for the inner and outeri@na of the optimization
process. We stop the present inner iteration and switch ewaauter iteration with
new set of parameters following the criteriepwhich is defined as

p= D 1939 doy N6, (4.24)
k=1
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wherevJ},1 is the value of the gradient at start of inner iteratimim is the value of
the gradient after each inner iteration. The valué &f chosen considering that the
gradient should decrease by at least three orders of magrfitom the initial gradient
[15]. The outer iteration cycle is said to converge when thtneal valuea of the
objective function] is achieved:

o=l Js — g, < . (4.25)

whereg; is thei" outer iteration. We have chosen= 0.5 for all the numerical
experiments.

4.45 Computational cost

The computational costs of the reduced model approach anendted by the gener-
ation of the ensemble of forward model simulations. If tha@alyics of the system
does not change significantly during the course of simutaii@n a smaller simula-
tion period can be chosen for the generation of ensemblenglibis ensemble the
optimization problem can then be solved over the whole pesfomodel simulation.

The dficiency of optimization process is also influenced by the eide size. A large

ensemble size leads to a huge eigenvalue problem. It islpp@ssiinclude only those
shapshots in the ensemble where data is available.

The method needs to be updated in each outer itergtimy constructing a new
POD model by generating a new ensemble of forward model sitionls. The number
of outer iterationg is influenced by the chosen abortion criteriorit should not be
chosen too small as this causes jumping of objective fundtgince it is possible that
reduced model overestimatgsdue to the process of linearisation.

4.5 Application: The Dutch Continental Shelf Model

The Dutch continental shelf model (DCSM) is an operatiotwis surge model used
in the Netherlands for real-time storm surge predictionantN Sea. Accurate predic-
tions of the storm surges are of vital importance to the Né&thds since large areas
of the land lie below sea level. Accurate forecasts at léastaurs ahead are needed
for proper closure of the movable storm surge barriers ingeasscheldt and the New
Waterway. The governing equations used in DCSM are the imea#l 2-D shallow
water equations. The shallow water equations, which daesdarge scale water mo-
tions, are used to calculate the movements of the water argeeunder consideration.
These equations are

ou O6u du  oh ; +guVu2+v2_ 17 109pa

2w VE T - —x__—Tva 4.26
ot Yax TVay T T YT TTRCE,, T T pwH pw Ox (4.26)
V2 2
8_\/+u6_\/+va_\/+ga_h+fu+w=iﬂ_i%’ (427)

ot ox oy “oy HC%, pwH  pw Oy
oh  OHu OHv _, (4.28)

ot " ox oy
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Figure 4.1: DCSM area and assimilation stations: 1. N51p2tl8nd, 3. Innerdows-
ing, 4. Oostende, 5. H.v.Holland, 6. Den Helder, 7. N4

where

X,y = Cartesian coordinates in horizontal plane

t = time coordinate

u,v = depth-averaged currentin x and y direction respectively
h = water level above reference plane

D = water depth below the reference plane

H = total water depth (Bh)

f = codficient for the Coriolis force

Cxp» = 2D Chezy coficient

Ty, Ty = wind stress in x and y direction respectively
Pw = density of sea water

Pa = atmospheric pressure

g = acceleration of gravity
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These equations are descretized using an alternatingidiveémplicit (ADI) method
and the staggered grid that is based on the method by [55]maptbved by [[82].
In the implementation the spherical grid is used instea@ctangular (see e.d. [04]).
Boundary conditions are applied at both closed and opendarigs. At closed bound-
aries the velocity normal to the boundary is zero. So no infilag outflow can occur
through these boundaries. At open boundaries the watdrisettescribed in terms of
ten harmonic componentdlg, So, No, Ko, O1, Ky, Q1, Py, Ug, L) as follows

10
h(t) = hO+Z fiH; cos;t — 6;) (4.29)
j=1

where
ho mean water-level
fiH; amplitude of harmonic constituent j
Wj angular velocity of
0; phase of |

The DCSM covers an area in the north-east European cordirsh#lf, i.e. 12W
to 13’E and 48N to 62°N as shown in Figure 4. 1. The resolution of the spherical grid
is 1/8° x 1/12°, which is approximately & 8 km. With this configuration there are
201x 173 grid blocks with 19809 computational grid points. Thedistep isat=10
minutes. All open boundaries of the model are located in degjer (more than
200m), see Figuife 4.1. This is done in order to model explicthe non-linearities of
the surge-tide interaction.

4.5.1 Estimation of depth

The bathymetry for a model is usually derived from nauticalps One of the pur-
poses of these maps is to guide large ships safely throudlowhmaters. Therefore
these maps usually give details of shallow rather than destpr areas. If we use
these maps to prescribe the water depth, it is reasonabéstone that such prescrip-
tion of the bathymetry is erroneous. So depth can be a paearaetwhich model
can be calibrated. In the early years of the developmentseoDICSM the changes
to bathymetry were made manually. Later automated caldsratrocedures based on
variational methods were developed starting from the wgrf8a]], [63]. The com-
plete description on the development of these calibratedgutures for DCSM can be
found in [98].

The experiments are performed to assimilate data near theh@oast, i.e. for
domainQ (see Figure??). Obviously, not every depth poifd,y, can be conceived
as an unknown parameter of the simulation model. Includbagnbany parameters,
identifiability will become a problem [97]. The parameteogps should be selected
in accordance with the physical properties of the model.e#nss logical to avoid
parameter groups in which the flow varies widely|[43]. The eual domainQ is
divided into subdomaing, k= 1,---,7. These subdomaing, are chosen based on
uniformity of the depth inQx. For each subdomaif, a correction paramete,ffj is
defined that is related yy by

D" = Dy + 7 if (X Y) € Dk, (4.30)
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Figure 4.2: (a) The domaif2 (dashed rectangle) of DCSM; (b) The subdomd&iis
02,03,04,05,06 andQ7

The parametersE are treated as unknown parameters that are to be estimated.
They act as a correction for the mean leveDaf, in a subdomain2, and leave the
spatial dependence insid® unaltered.

Experiment 1

Seven observation points are included in the assimilatiwa,of which are located
along the east coast of the UK, two along the the Dutch coakbar at the Belgian
coast (see Figure?). The truth model is run for a period of six days from 13 Decem-
ber 1997 00:00 to 18 December 1997 24:00 with the specificatiovater depttD,

as used in the operational DCSM to generate artificial dataesssimlation stations.
The first two days are used to properly initialize the simala. The set of observa-
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tionsY of computed water levels is collected for last four days with an interval of
every ten minutes at seven selected assimilation grid goivtiich coincide with the
points where data are observed in reality. We have assuraeththobservations are
perfect. This assumption is made in order to see how cloagrisgiimate to the truth.

5(m) is added t®,, at all the grid points in domaif? to get the initial adjusments
yE. With this specification of the background initial pararmei;éj, an ensemble E of
210 snapshot vectors is collected for the period where dadsdilable, i.e. from 15
December 1997 00:00 to 18 December 1997 24:00. The snagsleatiosen with an
equal interval of 20 timesteps, so 30 snapshots are calléoteeachyy.

w—
0.85r 1

0.701

Captured Energy

0.55r

0.40 ‘
1 10 20 30
No. of modes (r)

Figure 4.3: The energy captured by POD modes for an enserhBlEOsnapshots of
the water level h, velocities andv

Each snapshot vector consists of predicted water levelgelocitiesu and v.
Therefore it is necessary to scale the snapshot vectorsebedtving the eigenvalue
problem [4.9). The state vector should be scaled such thste#d variables become
equally observable. For the shallow water equations thiengdaased on energy pro-
duced at the output can be used to find a practical scalingad¢®%]. The potential

and kinetic energies for one grid cell are
En = 1/2ghPowAXAy, (4.31)

Euv = 1/2(U? + V2) DpwAXxAy, (4.32)

Assume one measures surface elevations. Through propogsdtihe model kinetic
energy may become potential energy. Since the model igpdibat the sum of the two
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can only decrease or at most remain the same. This suggatstsdling state variables
according to the energy they represent creates approxinegpeal observability if the
dissipation is small. In this case, the water leveshould be scaled witR/g and the
velocitiesu andv with VD [95].
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Figure 4.4: Value of the objective function J versus the nenb outer iterationg

After applying the above scaling to each snapshot vecton ersemble E we are
able to form a basis consisting of only 15 dominant eigen radbat captured 97%
relative energy. Figure 4.3 shows energy captured by PODemtmt 210 snapshot
vectors. So a reduced model is built using these 15 modes @ty foperates on
R157_ The low-dimensional model is defined by assuming that theeixnisl remains
stationary througout the experiment.

The numerical solution of the optimal control problem isadbed by quasi-Newton
method with LBFGS (limited memory Broyden Fletcher Goldf&hanno) updating
formula. With this reduced model approximate objectivection J is minimized and
new values of estimate variables are found. The objectimetion J is reduced by
more than 80% after the inner minimization. We have stoppedrtner minimization
process and switched to a new outer iteration with the newfgerameters following
the criterionu, that the gradient should decrease by at least three orfleragnitude
from the initial gradient value. A new POD model is requiradhie outer iteration if
the old POD model cannot substantially reduces the obgftimctionJ. Figure[4.4
shows the history of the minimization of the objective fuantJ in the POD based
estimation approach with respect to number of outer itenaf. It is clear from Fig-
ure[4.4 that after four outer iterations the objective fioretl is approximately equal
to its optimal value.

In the beginning of minimization process there is a signiftazhange in param-
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Figure 4.5: Convergence of the depth parameters that dgiratong the UK, Dutch
and Belgium coasts

eters for regions coinciding with the UK, Dutch and Belgiaast, but there is not
much improvement in deep water regiafs and Q;. The subdomains containing
deep areas are less sensitive as compared to the subdoowtaising shallow areas,
so it is dificult to estimateyl'f in these areas. However in the third and fourth outer
iterations, we have found improvement in the deep wateoreg?; andQ;. Figure
[4.3 shows the convergence of parameters that coincide wétbtal areas.

Figure[4.6 presents water level timeseries at Den Heldetm®k van Holland
respectively for the period of 16 December 1997 00:00 - 18ebdwer 1997 24:00.
These timeseries refer to water levels obtained from sitedldata (truth), timeseries
using deterministic model without data assimilation, anteseries with data assimi-
lation after four outer iterations respectively. Theserfégudemonstrate that theffir-
ences between the timeseries with data assimilation anulutieare always smaller
as compared to the fiierence between the timeseries without data assimilatidn an
the truth. It is also clear from the figures that both phas# ahd correct amplitude
are compensated.

To quantify the performance of the POD based estimation ok assimilation
stations we use root-mean-square-error (RMSE) metriceofuiditer level errors over
the whole simulation period

RMS E= \/ %Zﬁl(ht(ti) - h(t;))? (4.33)
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Figure 4.6: Water level timeseries for the period from 16 &@eber 1997 00:00 -
18 December 1997 24:00 for simulated data (truth), detastiérmodel without as-
similation (background), deterministic model with dataiaslation after four outer
iterations (reduced estimation) at a) Den Helder; b) Hoekhtalland

19—Dec

whereht is the true water level arfulis the analysed water level. To check whether the
data assimilation works at fierent locations, the RMSE of water level innovations
is also computed for some validation stations where no éisgion was performed.
Six validation stations are selected for this purpose. feigui shows RMSE of water
levels for assimilation and validation stations respetyivihe POD based estimation
procedure reduces the RMSE at both assimilation and validatations.

In order to get an idea of the required computational cost xpeess it in terms
of number of simulations with the original model. In this eximent seven param-
eters are estimated, so eight model simulations for a pefiéddays are performed
to generate an ensemble. The snapshots are collected fdolasiays only, since
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observations are available for this period. As the numbenapshots chosen is only
210, the computational time to solve eigenvalue problemtamdnstruct the reduced
model is much less than that of running the full model. Corabliwith seven parame-
ters to be estimated, the reduced model operated eveniu&#y instead of~ RE*17".
Simulating the POD reduced model and its adjoint model dvemthole simulation
period requires approximately/30 of the time for simulating the full model. The
number of outer iterationg in this experiment is four. Therefore the time required
to estimate seven parameters with POD based reduced éstimabcedure is equal
to approximately 40 simulations with the original model.eT$ame amount of time
is required in case of the classical adjoint method see [BAiis the POD calibration
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Figure 4.7: RMSE for water level observations at a) asstinitestations and b) vali-
dation stations
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method dfers an #ficiency comparable to the classical adjoint method withbat t
burden of implementation of the adjoint.

Experiment 2

In this experiment we have computed POD reduced model frohoé simulation
and used it for calibration over a longer period. For boupndiarcing and water depth
Dy specified as in the previous experiment, a truth model is aurl$ days, i.e.
from 13 December 1997 00:00 to 27 December 1997 24:00, targenartificial data
(observations) for the last 13 days. These observati@rs again the computed water
levels for the same assimilation stations.
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Figure 4.8: Value of the objective function J versus the nendf outer iterationg
for the calibration over 15 days

The specification of the background initial parametﬁsﬁs the same as in the
previous experiment. We have used the same POD reducedroaitl which was
constructed from an ensemlideof 210 snapshot vectors of forward model simulations
for the period from 15 December 1997 00:00 to 18 December 24900 (4 days) as
in the previous experiment. The calibration period is nowda$s, i.e. 13 December
1997 00:00 to 27 December 1997 24:00.

The approximate objective functiahreduces its value with similar magnitude.
Figure[4.8 shows the minimization of the objective functibim the experiment with
respect to the number of outer itertiofs The existence of the same trend in this
graph as compared to the minimization of objective functidn calibration over 6
days indicates that the POD reduced model constructedioeasntall time period can
be used for calibration over a much larger period.
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Figure 4.9: RMSE for water level observations at assintifatitations for calibration
over 15 days

Figure[4.9 shows RMSE for water level at the assimilatioti@ta. The estima-
tion procedure reduces the RMS values of the water leveteaball assimilation
stations. Figure4.10 gives an idea about the model perfocenafter calibration. The
figure presents the water-level time series at Hoek van Halfar the period of 24
December 1997 00:00 - 24 December 1997 24:00 for the ingisihg of the calibra-
tion parameters, the true calibration parameters and tliteatton parameters after
four outer iterations with the reduced estimation procedur

In this experiment seven parameters are estimated duriraditaation over 15
days. Seven model simulations for a period of 4 days and orehsimulation with
background initial parameters for a period of 15 days aréopmed to generate an
ensemble. The total number of outer iteratigria this experiment is four, therefore
the time required to estimate seven parameters is now ajppaitedy 20 simulations
with the original model. Thus for the current experiment P@Buced model required
1/2 of the computational time of the classical adjoint methblok use of POD based
estimation procedure has significantly reduced the contiput cost.

4.6 Conclusions

The adjoint method is a powerful tool for sensitivity anayand model calibration,
but it is laborious to implement adjoint model for the congiign of the gradient
for large scale systems. The POD based model reduction agippresented here is
used to simplify this problem using a projection based POl@hteduction method.
An optimal order-reduction approach to model calibratiarstcapture accurately the
properties of full dynamical model. The presented apprasclesigned to approx-
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Figure 4.10: Water level timeseries at Hoek van Holland fierperiod from 24 De-
cember 1997 00:00 - 24 December 1997 24:00 for simulated(ttath), the initial
setting of the calibration parameters (background) anerdenistic model after cali-
bration (reduced estimation)

imate the data assimilation system in a restricted spacke wétiaining its essential
properties. The method fits into the theory of incrementabti@nal data assimila-
tion by using restriction and prolongation operators.

The method has been used to calibrate the operational modstdrm surge
prediction, the DCSM. Twin experiments have been perfortoegistimate the wa-
ter depth. The results show that the calibration methodopers very diciently. A
POD reduced model of much smaller sk has been constructed instead of original
model of size { RE*1%"). After four outer iterationg the objective functiord has re-
duced significantly and is very close to optimal value. TheFvat both assimilation
and validation stations have improved significantly.

Considering the model periodicity in time an experiment basn done to cal-
ibrate the model for longer period with a reduced order madelr shorter period.
The same trend in the minimization of objective functibhas been observed for the
calibration over 15 days from the same POD model that is ugethé calibration
over six days. This result demonstrates the potential usbtie method to calibrate
DCSM model for much longer period. Moreover, the POD catibraoffers a rela-
tively efficient method compared to the classical adjoint method wittie burden of
implementation of the adjoint.

The classical method employs the adjoint of tangent lineadehwhich is re-
placed here by the adjoint of linear reduced model. Comp@aréte classical adjoint
method the minimization in reduced space converges fasterta better condition
number of the reduced Hessian. The method has a limitatatritthas to be updated
at each outer iteration by constructing a new POD model bgigdimg an ensemble
of forward model simulations. Moreover, the quality of eméde and the process of
generating ensemble is crucial for a reduced order proeddure &ective.
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Chapter

Case Study: ldentification of
uncertain parameters in a large
scale tidal mod@l

5.1 Introduction

Accurate sea water level forecasting is crucial in the Nedinels. This is mainly be-
cause large areas of the land lie below sea level. Foreaastsae to support storm
surge flood warning system. Timely water level forecastsiacessary to support the
decision on closure of the movable storm surge barriersaretistern Scheldt and the
New Waterway. Moreover, forecasting is also important farbdor management, as
the size of some ships has become so large that they coulantdy the harbor dur-
ing high water period. Storm surge warning service (SVSZJase cooperation with
royal Netherlands meteorological institute (KNMI) is resgible for these forecasts.
The surge is predicted by using a numerical hydrodynamicehdke Dutch conti-
nental shelf model (DCSM) (see [82], [94]). PerformancehefDCSM regarding the
storm surges is influenced by its performance in forecastirgastronomical tides.
Using inverse modeling techniques, these tidal data carsée to improve the model
results.

The adjoint method is a well-known approach to inverse rmindelThe method
aims at adjusting a number of unknown control parametere®basis of given data.
The control parameters might be model initial conditionsnmdel parameters [88],
[89]. An objective function is defined which measures thefinigtween the solu-
tion and the available data for any model solution over tisg@tation interval. This
objective function is typically a sum of squaredfdirences between the data and the
corresponding model values. One then looks for the modetisal that minimizes
this objective function. To obtain a computationalifi@ent procedure this objective

1This chapter is a slightly revised version [of [9]
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function is minimized with a gradient-based algorithm wehére gradient is deter-
mined by solving the adjoint problem. The adjoint approacbamputationally very
efficient because one gradient calculation requires just dessiguulation of the for-
ward model and a single simulation of the adjoint model baokhin time, irrespective
of the number of parameters. The adjoint method has beeramskdpplied success-
fully to many types of inverse problems in ground water floudgts (e.g.[[16]), in
meteorology (e.g[[20]), in oceanography (e.a. [91]) anshiallow water flow models
(e.g. [87], [53], [92], [43)).

One of the drawbacks of the adjoint method is the programrefifayt required
for the implementation of the adjoint model. Research hesntly been carried out
on automatic generation of computer codes for the adjaint aajoint compilers have
now become available (see [47]). Even with the use of theggraadtompilers de-
veloping an adjoint model is often a significant programnaefiigrt that hampers new
applications of the method. Courtiér [21] had proposed areimental approach, in
which the forward solution of the nonlinear model is reptabg a low resolution ap-
proximate model. Reduced order modeling can be used in aanmental approach to
obtain an éicient low order approximate linear model [54].

Proper orthogonal decomposition (POD) is a model reductiethod considered
as an application of the singular value decomposition (S¥¥Dhe approximation of
general dynamical systems [11]. It is a data driven prajecbased method origi-
nally developed by Karl Pearson |68]. Karhunen|[48] and leoB6] had used it as
statistical tool to analyze random process data. Lumley §&®e the name POD,
and used the method to study turbulent flow. The POD methodhppbcation in
many fields like image processing, signal processing, datspcession, oceanogra-
phy, chemical engineering and fluid mechanics (5eé [40])thénPOD method the
projection subspace is determined by processing datanggtfiom numerical simu-
lations of high dimensional model which is expected to pdevinformation about the
dynamical behavior of the system. The high dimensional ggsiare projected onto
the low dimensional subspace resulting in a low dimensioradel. In this way, the
POD method reduces the CPU time of model simulation but doeshange the com-
plexity of the problem and consequently does not solve thdmentation problem
of the adjoint model. The method has recently been investibly (e.qg. [[15],[[12P],
[32]). The POD method has also been applied successfullpdameter estimation
(e.g. [26]).

Vermeulen and Heemink [99] proposed a method based on PO&hwhifts the
minimization into lower dimensional space and avoids thpl@mentation of the ad-
joint of the tangent linear approximation of the originalntinear model. In their
approach, an ensemble of snapshot vectors of forward minaellegions is used to de-
termine an approximation of the covariance matrix of the el@driability and a small
number of leading eigenvectors of this matrix is used to @edimodel subspace. By
projecting the original model onto this subspace an appraie linear reduced model
is obtained. Due to the linear character of the reduced mitglaljoint can be im-
plemented easily and the minimization problem is solvedpetely in reduced space
with very low computational cost. The method has recentgnmiccessfully applied
to the 2D-DCSM to estimate water deplth [5]. Several synthedses were used to
show that the depth parameters were correctly identifiedérselected regions of the
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model domain. The generation of an ensemble in the POD métivotyes running

the forward model several times. The computational cost®@htethod is dominated
by the generation of this ensemble. It was also found in theysthat if the dynam-
ics of the system does not change significantly then a sneftaulation period can
be chosen to generate an ensemble of forward model simmgdto an optimization

problem over larger period|5] 8].

The first version of DCSM was developed in the 1988nd has been through
numerous improvements since then. Among the developmersshe increased res-
olution of the wind forecast input from 55 to 22 km, which adslightly increase the
forecast quality in storm situations. Another attempt veagefine further the resolu-
tion of the wind input to 11 km. However case studies compmarasolution 22 km
and 11 km input for DCSM showed that the 11 km resolution cowtimprove the
prediction. Besides works on improving the wind input, adbstudies had also been
devoted to model calibration([87], [63], [43]). The lastibeation was performed
in 1998 using the adjoint method [61]. It was assumed that e limited model
resolution of approximately 8 km and certain quality of tletHymetry information
further calibration was not worthwhile. For further desadin the development of the
DCSM seel[98].

DCSM version 6 is the recently designed large-scale spdilegitd based water
level model for the northwest European continental shetiuad 16 computational
grid points). It covers a much larger deep water area thaopleeational version of
DCSM (see Figur€5l1) and has a spatial resolution that istarf® finer in both
latitudinal and longitudinal directions. The flow exchagagéth the non-modeled part
of the Atlantic Ocean are modeled by prescribing the tiddkwkevel variation along
the open boundary of the domain. One of the objectives ofrtévg development is
to extend the time horizon of the water level forecasts innbar future and to make
these forecasts for a denser distribution of locationsgatbe Dutch coast. At this
moment the forecasts are made for just the five 5 main statidmch are taken as
representative for a specific coastal section.

In this chapter, the POD based model reduced approach idaste: estimation
of the water depth and space varying bottom frictionfioient values in large-scale
DCSM model. This is the first application of the method to ayvarge-scale model
and real data. The computational costs of the method arerdded by the generation
of an ensemble of forward model simulations. The simulapieriod of the ensemble
is equivalent to the timescale of the original model. Her@aerurate reduced model
is obtained from an ensemble with a relatively short sinioiteperiod as compared to
the calibration period. A new ensemble is usually requirét the suboptimal esti-
mated parameters until the convergence criterion is aelielt is also found in the
present study that a new ensemble is not always requiretiéarew set of estimated
parameters. Instead of defining a new model subspace of @ldentg eigenvectors
by generating a new ensemble of the forward model simulstiare obtained a re-
duced model by projecting original model with the updateghpeters onto the same
subspace.

The chapter is organized as follows. Section 5.2 briefly diess the DCSM
model used in this study. The methodology of POD projectiaseldl reduced method
for the calibration is explained in Sectibnb.3. Secfioddistusses the experiments
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with the newly developed DCSM to estimate the water depththedbottom friction
codficient. Sectiofh 515 presents the conclusions.

5.2 The new Dutch continental shelf model

Since the mid-1988, the storm surge forecasts in the Netherlands are based on a
numerical hydrodynamic model DCSM. This model uses fortsaafthe meteorolog-

ical high-resolution limited area model (HIRLAM) as inputhe model is based on
shallow water equations. The use of a 2D model implies that fldated quantities

are computed in depth-averaged form, which is a commonlgt approximation for

tidal modeling. The model is based on the worklofi [55] and ioved by [82]. In the
implementation the spherical grid is used instead of regtkan (see e.gl[[94]).

The time between warning for dangerous high water and theabatcurrence of
the high water is an important parameter in the planningeféisponse, e.g. decisions
on the closure of the storm surge barriers, dike watch arehpiatly even an activation
of an evacuation scenario. The objectives of this new deweémt include obtaining
better quality of the forecasts, forecasts for a densetiloligion of locations along the
Dutch coast and increasing the forecasts horizons.

5.2.1 Model computational grid of the new model

The newly developed DCSM covers an area in the northwestdearo continental
shelf, i.e. 18W to 12E and 43N to 64°N, as shown in Figurie 5.1. The spherical grid
has a uniform cell size of/4(0° in eastwest direction and &C° in northsouth direction
which corresponds to a grid cell size of abowt 2 km. With this configuration there
are 1120 grid cells in eastwest direction and 1260 grid éeli®rth-south direction.
The grid cells that include land are excluded form the model tae model finally
contains 869544 computational grid points. The grid rasmbuof the spherical grid
is factor five finer than of the operational DCSM.

5.2.2 Model bathymetry and bottom roughness

The bathymetryD for a model is usually derived from nautical maps. One of the
purposes of these maps is to guide large ships safely threlgllow waters. The
bathymetry for the new DCSM is based on a NOOS gridded datarskfor some
areas in the model ETOPO2 bathymetry data are interpolate¢tieocomputational
grid. The model bathymetry is presented in Fiduré 5.2. ThetN8ea is much shal-
lower, with maximum depth around 200m. In southern North @&alish Channel)
the depths are mostly less than 50m. In the southwestern @mtigenn parts of the
model domain the depth exceeds 2000m.

To account for the bottom friction, the empirical 2D-Chexngfiecient is com-
puted in the direction of the velocitiesandv according to the following formulation:

Comp = , (5.1)
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Figure 5.1: Newly developed hydrodynamic DCSM area. Th&eddine represents
the area of the operational DCSM extent

where
H total water depth
Cm the manning co@cient
A uniform value of 0028s/m? has been applied for the manning fiagentcp,.
This initial value of thec, has been obtained through manual calibration.

5.2.3 Model boundary conditions

Boundary conditions are applied at both closed and opendaigs. At closed bound-
aries the velocity normal to the boundary is zero. So no infilog outflow can occur
through these boundaries. The dashed line in Figute 5.1sstimcomparison of the
new DCSM area with the operational DCSM. The model area ohtéve DCSM is

extended significantly in order to ensure that the open bagrzbnditions are located
further away in deep water. At the northern and western sifléise model domain
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Figure 5.2: DCSM model bathymetry in meters. The bathymgteater than 2000m
is shown as 2000m

water levels are specified at 205fdrent locations along the open boundaries. These
water leveldh at the open boundaries are described in terms of the amghitad phase
of the ten harmonic componentel{, S,, No, Ko, Oy, K1, Q1, P1, U, L) as follows:

10
h(t) = hO+Z fiH; cosit — 6;), (5.2)
=1

where
ho mean water-level
fiH; amplitude of harmonic constituent j
Wj angular velocity of
0; phase of |
The tidal conditions of these ten main diurnal and semisdiliconstituents have
been derived by interpolation from a dataset that is obthiren the GOT00.2 globall
tidal model.
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5.2.4 Initial conditions and computational time

A uniform initial water level of Om mean sea level (MSL) is dsé&irst four days of the
model run are considered as the spin-up period. Zero flowitiond are prescribed
for the initial velocity. The time zone of the model is GMT. Amputational time step
of 2 minutes is applied. So it takes more than 2 days to complene year model run
on eight 3.6 MHz CPUs.

5.3 Inverse modeling using POD

The discrete model for the evaluation of shallow water sydtem timet; to timet;,;
can be described by an equation of the form

X(ti+1) = Mi[X(t), 7], (5.3)

where state vectoX(ti,1) € R" denotes the vector of water levdis velocitiesu
andv at timet;,; andvy is the vector of the uncertain parameters which needs to be
determinedM; is nonlinear and deterministic dynamics operator thatiges inputs.
Suppose now that we have imperfect observatihy € R™ of the dynamical system
(5.3) that are related to the model state at ttmbrough

Y(ti) = HX(t) + n(t), (5.4)

whereH : R" — R™ is a linear observation operator that maps the model fields
on observation space angt;) is an unbiased, random Gaussian error vector with
covariance matrig,.

We assume that theftitrence between data and simulation results is only due to
measurement errors and incorrectly prescribed model gaeasn The problem of the
estimation is then solved by directly minimizing the objeetfunctionJ

J) = Z[Y(ti) — HOXEDITRTTY () — HOX()] (5.5)

with respect to the parametersatisfying the discrete nonlinear forecast modell(5.3).

The dficient minimization of the objective function requires theputation of
the gradient of the objective functidn (5.5). The gradiestterVJ gives information
about the direction (positive or negative) and the size @istithents for each indi-
vidual parameter. The adjoint method computes the exadignaéficiently. The
principle of the adjoint method is based on the systemagafishe chain rule of dif-
ferentiation. Regardless of the number of parametersirtteerequired to compute the
gradient using adjoint technique is more or less identindlia comparable with the
computational time needed for a single simulation run ofthelinear mode[(5]3). It
requires one forward simulation with the original nonlinesdel [5.8) and a second
additional simulation backward in time with the adjoint nebd

oM

axy) ) - ZHR V() ~ HOKW)L, (5.6)

v(ti) = (
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wherey(t;) represents the solution of the adjoint model. The gradidnif the objec-
tive functionJ with respect to each componentof the uncertain parameters vector
v is given by

V= - el TG P e 5.7)
I
The adjoint method is flexible as the number of parameterseeaily be changed.
The main hurdle in the use of adjoint method is its implemtona especially when
the forward model contains nonlinearities. For the shallater flow computations
the original model is very complicated and it igfdiult to implement the adjoint for
this type of models.

5.3.1 Linearization and reduced model formulation

The classical adjoint problem for a general model is a nelirconstrained opti-
mization problem which is diicult to solve. The problem can be simplified with
the hypothesis that the objective functidrcan be made quadratic by assuming that
the nonlinear dynamics operatlk can be linearized. The linearization of nonlinear
high-order model[{(5]3) using the first order Taylor’s foraakound the background
parametey? gives

OMI[XP(t), "] AX(t) + Z IMI[XP(t), 7] Ay

aXa) = 500) o

(5.8)

whereX is linearized state vectoX® is the background state vector with the prior
estimated parameters vectidrandaX is a deviation of the model from background
trajectory.

A model can be reduced if the incremental sta¥t;.1) can be written as linear
combination

AX(t) = Pé(tiva), (5.9)
whereP = [py, P2, - - - , Pr] is a projection matrix such th&' P = |, andé¢ is a reduced
state vector given by

Etia) \_( Mi M) ()
( PO Bl II Ay (5.10)

HereAy is the control parameter vectdd; and IW are simplified dynamics operators
which approximate the full Jacobia@%ui and%—';’l': respectively:

W, = pr M

i = ) 5.11
L axXP(t) (-41)
T, OM; oM
CALISUNCALRY 5.12
PT( Ty ) (5.12)

The Jacobiarg%, is obtained by approximating the nonlinear dynamics dpeid;
by linearizing it with respect to background sta® Instead of computing this huge
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Jacobian by approximating the partiaffdrential with finite dfference by perturbing
the nonlinear operatdvl; in the direction of each node, we perturb along the direction
of pn only:

OM; MI[XP(t) + epn. ¥°] — MI[XP(t). "]
axe() " e

h={1,---,r}, (5.13)

with £ being the size of the perturbation. The reduced dynamicsatmeM; can now
be computed by premultiplying the above formulaey

oM, oM,
) e
Notice also that only the original model simulations aredezkhere.The reduced
model requires less computational time as it simulates acesdi state within the di-
mensiorr instead of the original dimensianwherer < n. The dimension on which
the reduced model operatesiis-(P) x (r + nP) with nP being the number of estimated
parameters.

Mi = P'(

). (5.14)

5.3.2 Collection of the snapshots and POD basis

The POD method is used here to obtain an approximate low-fwdaulation of the
original tangent linear model. POD is an optimal techniglinaling a basis which
spans an ensemble of data (snapshots) collected from aniraep¢ or a numerical
simulation of a dynamical system. The POD modes are optitnabproximating a
given dataset. Since the reduced model is used here to &stimeertain parameters
(depthD and manning cd&cientcy,), the snapshots should be able to represent the
behavior of the system for these parameters. Thereforentiqgshot vectorg € R*
are obtained from the perturbatio%% along each estimated paramejgrto get a
matrix

E={e, - ,e};i={L2---,sh (5.15)

The dimension of this ensemble matfxis s = nP x n®, wheren® is the number of
snapshot collected for each individual parameferThe covariance matri®Q can be
constructed from the ensemiiteof the snapshots by taking the outer product

Q=EFE' (5.16)
The projection matrix P used in the previous section is basetthe dominant eigen-
vectors (POD modes) of this covariance matrix which areiobthas explained in
Section??.
5.3.3 Approximate objective function and its adjoint

In reduced model approach, we look for an optimal solutiothef[5.3) to minimize
the approximate objective functiahin an incremental way:

J(Ay) = YY) ~ HOCW)) - et An]TRIY() ~ HOC))) ~ Aedt. A7),
' (5.17)
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The value of the approximate objective functidis obtained by correcting the obser-
vationsY(t;) for background statX®(t;) which is mapped on the observational space
through a mappingl and for the reduced model statg, Ay) which is mapped to the
observational space through mapptigvith H = HP.

Since the reduced model has linear characteristics, itsig ®abuild an approxi-
mate adjoint model for the computation of gradient of theragjmate objective func-
tion (5.17). The gradient of with respect ta\y is given by

03 _ N gy O€tin)
3oy = 2 T Gy (5.18)

wherey{ti,1) is the reduced adjoint state variable (see Appendix A).e3he gradient
has been computed, the process of minimizing the approgiotgective function]
is done along the direction of the gradient vector in the cedispace.

After the minimization process the initial parametgm@re updated and new set of
updated parametesP is obtained:

PP =y + Ay. (5.19)

This process of minimization is repeated several times sttacting new POD
model with new set of updated parametgt&to get optimal parameters.

5.3.4 Workflow with POD algorithm

In order to perform the whole parameter estimation proddesfollowing steps are
executed.

1. Outer Iteration:
(a) Generate an ensemble of forward model simulations usitigl parame-
tersy®.
(b) Solve eigenvalue problem to get dominant eigenmgqxles
(c) Establish a POD reduced model and its adjoint model usiggnmodes
pi.
2. Inner Iteration:
(a) Perform optimization iterations in the reduced spaa#btain the optimal
solution of the approximate objective function
(b) Update the initial parametey8 after the minimization process obtain new

set of updated parameters’.

3. Return to stepl1 with new set of updated parametétantil optimality condi-
tion is achieved.
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5.3.5 Convergence criterion for inner and outer iterations

The minimization is performed using a quasi-Newton optatian algorithm where
the Hessian of the objective function is updated using tiééid Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) method. The minimization aldoritrequires conver-
gence criteria to terminate. We have defined two criterions, is for inner iterations
and one is for outer iterations of the optimization proceak stop the present in-
ner iteratione and switch to a new outer iteratighwith updated parametes® by
criterionu, which is defined as

‘iy - j{lf’
U= Mo = da | € (5.20)
max| J,, |, 1}

whereq; represents thé" inner iteration. The value of theis chosen such that the
approximate objective functiof stops to change, i.e. = 10 (see[66]). The outer
iteration cycle is aborted when the terminal valug @ obtained

_ | ‘]ﬁi _‘]ﬁm | <

<K 5.21
3 (5.21)

whereg; stands for thé" outer iterationg is the terminal value.

5.3.6 Computational dficiency of the algorithm

The computationalféiciency of the model-reduced approach is influenced by three
factors.

1. Ensemble generation: The computational costs of theceztlmodel approach
are dominated by the generation of the ensemble of forwadkfrsimulations.
If the dynamics of the system does not change significantiynduhe course of
simulation then a smaller simulation period can be chosethéogeneration of
ensemble [5]. Using this ensemble the optimization proldamthen be solved
over the whole period of model simulation.

To achieve convergence, the POD method needs to be updatadhrouter it-

erations, so the ensemble of snapshot vectors is required in egchnstead of

defining a new model subspace of the leading eigenvectoesinsby gener-

ating a new ensemble of the forward model simulations, ibissfble to obtain
the reduced model by projecting the original model with updgarameters
onto the same subspace.

2. Ensemble size: Thefficiency of optimization process is also influenced by
the ensemble size. A large ensemble size leads to a hugeveigeproblem.
On the other hand, since the ensemble gives the representdtthe model
behavior with respect to each, it is important that the number of snapshot
vectors included in the ensemble must give this repredenteio the quality of
ensemble is crucial for a reduced-order procedure tdleeté/e. It is possible
to include only those snapshots in the ensemble for the ghevitere data is
available.
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3. Outer iteration: The convergence criteriprshould be carefully chosen. It
should not be chosen too small as this causes jumping of theteq parameters
v"P around the optimal global solution [99]. For the currentlagpion we have
choserx = 0.05.

5.4 Parameter identification for the new DCSM

In this section, the POD based calibration approach desttiefore is used for the
calibration of the newly developed DCSM. The following paeters are estimated:

1. correction parameter for the depth,
2. correction parameter for the manning roughnessficoent.

Inthe early years of the developments of the DCSM these peteaswere adapted
manually. Later automated calibration procedures basetti@rariational methods
were developed starting from the work bf [87], [63]. An oview of the development
of these calibration procedures for DCSM can be found in.[98]

Both depth and bottom friction have to be prescribed at eadrcgll of the model.
Thus, theoretically it is possible to consider depth anddmfriction at each grid cell
as a parameter to adapt. Practically it is not possible te tak adaptation values
of every grid point as a parameter since far too many parasetsuld then have to
be estimated in proportion to the available amount of datalutling too many pa-
rameters, identifiability will become a problem [97]. Hehetrectangular areas are
chosen, for which adaptation parameters are consideresselectangular areas are
chosen based on the previous calibrations of the DAOSM [881tl@ spatial correla-
tions within the rectangular regions.

5.4.1 Measurement data

The model performance can be assessed by comparing it togasumed (observed)
dataset. The available data used in this research con$ist® aatasets of the tide
gauge stations are used, namely,

1. water level measurement data from the Dutch DONAR datbas

2. BODC (British Oceanographic Data Centeffsbore water level measurement
data.

In the operational system the astronomical tide componktiteoobserved data
is replaced by the one predicted using the DCSM, obtainedubging the DCSM
without any wind input forcing[37]. The target of the cahiltion of the parameters
(i.e. depth and bottom friction cfecient) is to optimize the model for its reproduction
of the astronomical tide. The tide gauge data are thereédrieved from the results
of the harmonical analysis to exclude the meteorologidaiémces.
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Figure 5.3: DCSM area with stations included in the modeabcation

5.4.2 The calibration and validation datasets and time peond

For the calibration 50 water level locations are selected Fguré 5.13). Observations
obtained by the harmonic analysis from these 50 stationgeay difth time step (10
minutes) are used for the calibration experiments. Théiaion runs are performed
for the period from 28 December 2006 to 30 January 2007 (38)daye first 4 days
are used to properly initialize the simulation. The measeat data are used for the
remaining 30 days. This period is selected such that 2 sprérap tide cycles are
simulated. We have assumed that the observatoofthe computed water levels
contain an error described by white noise process with stahdeviationr, =0.10
(m).

For the validation 32 water level locations are selected Bgurd 5.14). The vali-
dation runs are carried out with validation dataset fromgdeod 12 January 2007 to
14 February 2008 (34 days). The first four days are again wsddifialization. The
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stations that are used for the calibration are not includete dataset that is used for
the validation. The model validation withftirent dataset and time period prevents
the model to be adjusted too much to one specific dataset redpriod. Another
validation dataset, a so-called Dutch dataset, is pregassFiguré 515). It includes
the stations from both calibration and validation dataakiag the Dutch coast. This
dataset is used as an extra control to closely monitor theavgment along the Dutch
coast for the validation time period.
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Figure 5.4: DCSM area with stations included in the valiolatiataset

5.4.3 Time and frequency domain analysis

The tidal predictions have been made using amplitudes aasgshderived from the
harmonic analysis of the DONAR and BODC measurements. fhwaly the water
level variation resulting from the tides is the only signth. measure the overall per-
formance of the model in time domain, the root-mean-sqearer (RMSE) is deter-
mined for each station over the calibration and validatieriquls. The RMSE metric
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is also used to measure the quality of model simulation fifedint datasets used for
calibration and validation periods.

Although the calibration is performed in time domain, it sually more conve-
nient to interpret the results in the frequency domain. Rerftequency analysis a
vector diference ¥ D) is defined[[70]:

VD = [{AccoSGe) — AsCogGo)} + {AcSIN(Ge) — Aosin(Go)1]?, (5.22)

where Ac and G, represent the computed amplitude (in cm) and phase (inmadia
respectively, whiled, andG, represent the observed amplitude and phase respectively
for the tide gauge stations. The RMS(VD) is also obtainedlicivthe mean is taken
over the datasets of tide gauge stations used for the cé@dibrand the validation
periods.
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Figure 5.5: Stations along the Dutch coast included in thieelDdataset for the vali-
dation period
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5.4.4 Ensemble generation

As explained in Section 5.3.1, the generation of the enseinlablves perturbations
% with respect to each parameter for the whole simulationogerif the dynamics
of the system does not change significantly then a smallaulation period can be
chosen to generate an ensemble of forward model simulat@nsn optimization
problem over larger period?]. The ensembldt is generated using forward model
simulations for a period from 28 December 2006 00:00 to 04dan2007 24:00. The
shapshot vectors in the ensemble are collected for thegetiere data is available,
i.e. from 01 January 2007 00:00 to 04 January 2007 24:00. d&eshots are chosen
with an equal interval of 03 hours, so 33 snapshots are ¢etldor eachyy.

5.4.5 Scaling

Each snhapshot vector consists of predicted water leveglocitiesu andv. Before
solving the eigenvalue problem as explained in the se¢fi@@ 30 find dominant
eigenmodes, it is necessary to scale the snapshot vectoesstate vector should be
scaled such that all state variables become equally oliderv@ne approach here is
based on the energy. The potential energy of a surface mleveabove the reference
plane for one grid cell is

En = 1/2gFPowAxAy (5.23)

and the kinetic energy of the grid cell is
Euv = 1/2(U? + V2) DpyAXAy, (5.24)

where
g the gravitational acceleration
Pw the density of the water

Assume one measures surface elevations. Through propagétihe model ki-
netic energy may become potential energy, and because ttiel isalissipative, the
sum of the two can only decrease or at most remain the same stigests that scal-
ing the state variables according to the energy they repteseates approximately
equal observability if the dissipation is small. In thiseathe water levels should be
scaled with/g and the velocities andv with VD (see[[95]).

5.4.6 Model calibration

The tidal calibration of the DCSM was carried out in stepsreBhexperiments are
performed during the calibration process, two with theneated parameter depth and
one with the bottom friction.

Experiment 1

For this experiment, the numerical domans divided into four subdomaingy, k =
1,...,4 (see FigurE5l6). For each subdom@jra correction paramet@ﬁ is defined
that is related td,y by

DR = Dy(L+70), if (% y) € Q. (5.25)
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Figure 5.6: The four subdomai of the DCSM used in Experiments 1 and 3

The parameter$E are treated as unknown parameters that are to be estimated.

They act as correction for tHe,, in a subdomai®y and leave the spatial dependence
inside Q¢ unaltered. The adaptation in depth is relative. This ismgslkeeping in
mind that the model is quite sensitive for the shallow areas.

After the initial adjustments«E, an ensembl& of 132 snapshot vectors is gener-
ated using the forward model simulations. As explained atise[5.4.4, the snapshot
vectors in the ensemble are collected for the period whaeeidavailable, i.e. from
1 January 2007 00:00 to 04 January 2007 24:00. After applyiagcaling to each
snapshot vector in an ensemble E, we are able to form a bassistng of only
24 dominant eigenmodes that capture more than 97% of thiveeknergy. Figure
shows energy captured by POD modes for 132 snapshotrse@o a reduced
model is built using these 24 modes and finally operates da sg@ceR?#4. The
low dimensional model is defined by assuming that the matrislemains stationary
throughout the experiment.

With this reduced model the approximate objective functiois minimized in
reduced space and the new values of the estimated varigiilese found. We have
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Figure 5.7: The energy captured by POD modes for an enserhb&2snapshots of
the water leveh, velocitiesu andv (Experiment 1)

stopped the inner minimization process and switched to acwger iteration with the
new set of parameters following the criterienThe objective functiod is reduced by
more than 50% with the updated parametéfsafter the inner minimization (Figure
[5.8). The RMSE for the calibration dataset has decreaseu 2575 cm to 1474 cm
after the ' outer iteratior; of the minimization.

A new POD modelis required in the outer iteratigyif the old POD model cannot
substantially reduce the objective functidnHere the new POD model is constructed
usingy“P. The POD modes however are the same as ipiles explained in section
E.3.8. In this way, the generation of the new ensemble E anddthution of the eigen-
value problem to get the dominant eigenmogesan be avoided. Again a significant
improvement is observed in the objective functibafter the inner minimization (see
Figure[5.8) with the new values fP. The RMSE for the calibration dataset has now
decreased to 128 cm after the outer iteratigsy of the minimization process.

Figure[5.9 shows the reduction dfand the convergence of with respect to
the inner iterations for the outer iterationg; andg». In the case of the quadratic
objective function the quasi-Newton routine iterates agjnately oi°+ 1) times [33].

It can be seen from Figuke 5.9b that the convergence critarie achieved within the
specified range of the quasi-Newton routine.

Three validation runs are performed, ttRévith the initial values for the calibra-
tion parameters® and two with the updated parametet® after each of the outer
iterationsB; andg, respectively. As explained in sectibn 514.2, the validaggperi-
ments have to clarify whether these parameter adaptatiaily improve the model.

Tableg[5.1 shows the RMSE in the POD based calibration appaféer each outer
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iterationB; andg, for the tide gauge stations, separately for thedént datasets
used for the calibration and validation periods. The RMSHable[5.1 shows that
significant improvements are found foffidirent locations and fierent time periods.
Table[5.1 also demonstrates that aftethe RMSE for the stations near Dutch coast

is reduced to 125 cm as compared to the 2B cm with the initial parameter values

ol

Outerlteration$B) | Calibration | Validation | Dutch
Initial 21.75 19.94 27.15

B 14.74 13.22 15.24

B2 12.98 11.72 12.05

Table 5.1: RMSE results for the minimization process with #7% relative energy
after tand 29 outer iteration (Experiment 1)

Another reduced model is constructed that captures 90%eofdlative energy.
15 POD modes are required in this case to built a reduced ntloakfinally operates
on state spac®&!>*4. Using this reduced model, the approximate objective fonct
J is minimized in reduced space and the new values of the estihparameterg-?
are found. Tabl€5]2 shows the RMSE in the POD based caliorapproach that
captured 90% relative energy after each outer iteragifor the tide gauge stations,
separately for each of the datasets used for the calibratohvalidation periods.
The RMSE is again reduced significantly for both the calibratind the validation
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Figure 5.8: The reduction of the value of the objective fiorct at successive outer
iterationsB; andB, (Experiment 1)
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Figure 5.9: The values of a),~hat}, and b) convergence criterignat successive
inner iterationsy for the outer iterationg; andg, (Experiment 1)

Outerlteration$B) | Calibration | Validation | Dutch
Initial 21.75 19.94 27.15

B 15.44 13.85 16.42

B2 13.80 12.42 13.57

Table 5.2: RMSE results for the minimization process with 8#9% relative energy
after IStand 29 outer iteration (Experiment 1)

datasets and time periods as in the previous case. The cedwudel that captured
more relative energy has performed slightly better sineeetigenmodeg; that are
not included in the second case describe the part of the nvadahce which is rel-

evant to the observations. Therefore the accuracy of thémization procedure is
really dependent on the size of the reduced model and alsortemze of the selected
eigenmodeg; with respect to the observations included in the calibratiatase([99].

In order to compare the results, a new POD model is consttuagté the updated
parametergP after the outer iteratioB;. Here a new ensemblge of 132 snapshot
vectors is generated using the forward model simulatioresak¥¥ able to form a basis
consisting of 28 dominant eigenmodes that captures 97%eofefative energy (see
Figure[5.10). Based on 28 modes the approximate objectivaifin J is minimized
and the new values of the estimate variabfgsare found.

Table[5.3 shows the comparison of the minimization resulitsioed from the
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Calibration | Validation | Dutch
NewEnsemble 12.33 11.41 11.13
SameEnsemble 12.98 11.72 12.05

Table 5.3: Results aftef"®outer iteration obtained by generating new ensemble and
using the same ensemble as fduter iteration (Experiment 1).

POD model that uses the POD modgshased on a new ensemltiiein the outer
iterationB, with the one that uses the same POD mopless inB;. It is clear from
the Tabld 5.B that the results obtained by generating neanalnieE with new set of
updated parametess8P are slightly better. But the computational cost of genarati
this ensemblé& is much higher especially when the number of parametersge la

In this experiment, we have found that the largest adjustsierthe depth are in
the southern part of the North Sea with the channel areahieeDutch coast and the
east-coast of UK. This is because the initial RMSE in subdora is quite big as
compared to the other parts of the model domain. Also theatzarvation points are
concentrated in this area of the model domain (see Figu)e 5.3
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Figure 5.10: The energy captured by POD modes for a new ede@it32 snapshots
of the water leveh, velocitiesu andv in the outer iteratiom, (Experiment 1)
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Figure 5.11: The 12 subdomaif2z of the DCSM used in Experiment 2

Experiment 2

In order to further improve the model results, the numeram@hainQ is divided
into the 12 subdomaingy,k = 1,...,12 (see Figur€ 5.11). The influence of the
depth adjustments is quite significant and also depth hasagstocal é¢fect. This

is one of the reasons for increasing the number of subdomainsther reason for
this subdivision is to separate the subdomains contairotigdeeep and shallow areas
(see Figur€5.11). As described earlier the data obsenvatimts are concentrated in
the English Channel, so this region is divided into 5 subdamto further improve
the results by considering the locdtects of the depth in each subdomap k =
3,---,7,inthis area.

With this new selection of subdomains an ensenibé®nsisting of 396 snapshot
vectors is generated for the same time period as in the prewrperiment. Figure
[5.12 shows energy captured by POD modes obtained from thés@nleE. A reduced
model is then built using 49 dominant POD modes that capt9@&d of the relative
energy. The model finally operates on state spAé&'2. These dominant POD
modes are used in outer iteratighisandB, of the minimization process to reduce the
approximate objective functiof
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Outeriteratior(B) | Calibration | Validation | Dutch
Initial (82) 12.98 11.72 12.05

B3 10.97 9.87 9.15

Ba 10.55 9.86 9.20

Table 5.4: RMSE results for the minimization process with 8#9% relative energy
after 39 and 4" outer iterations (Experiment 2)

The initial values of the depth parameters used here areaflnewvobtained after
B>. Figurd5.18 shows the reduction of the objective functlon the outer iterations
B3 andB4. The objective function] is reduced by more than 30% after thg of
the minimization process as compared to the objective fomc at the start of this
experiment. The overall RMSE has decreased froA&2m to 1055 cm.
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Figure 5.12: The energy captured by POD modes for an ensevhBR6 snapshots
of the water leveh, velocitiesu andv in the 39 outer iteratiornBs (Experiment 2)

Table[5.4 shows the RMSE in the POD based calibration apprafaer the outer
iterationsBsz andB, of the minimization process for the tide gauge stationsassply
for the datasets used for the calibration and validatiomopger The RMSE for the
Dutch dataset of the tide gauge stations along the Dutch fayake validation period
is reduced to 20 afters, which is in acceptable range now.

The larger adjustments in the bathymetry are again foundgatbhe east-coast
of the UK. The preliminary bathymetry along the UK coast i atquestion. It is
believed that the prescribed bathymetry in this area of tbdehis not satisfactory
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and that it has also a strong¢fect on the model results. The adjustments along the
southern Dutch coast (subdoma?g) are larger as compared to the rest of the Dutch
coast (subdomaif?;). Compared to the initial bathymetry an overall adjustraerit
around 8- 11% are applied along the Dutch coast. It has also been datie the
deep water regions are not adjusted significantly. Also fegphysical point of view,
the estimation of the depth in subdomains containing dedpshallow areas is more
or less the estimation of the depth in the shallow arieds [85].
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Figure 5.13: The reduction of value of the objective funetibat successive outer
iterationsB; andB, (Experiment 2)

Experiment 3

As mentioned in section 2, a uniform value ab28s/m3 has been applied for the
manning co#icientcy. In this experiment we have calibrated the uniform manning
codficient. The numerical domai€ is again divided into four subdomait, k =
1,...,4, as in experiment 1 (see Figurel5.6). For each subdofaim correction
parametey is defined that is related &} by

chew = Cm+7||2,k= 1,---,4, (5.26)

wherec,, is the value used in the model.

With the above specification, an ensemBlef 132 snapshot vectors is generated
from the perturbation%% along the estimated paramete«% Figure[5.1# shows
energy captured by POD modes obtained from this enseEibfereduced model is
then built using 32 dominant POD modes that capture 97% aktlagive energy. The
reduced model finally operates on state sghé&*. These dominant POD modes are
used ings to reduce the approximate objective functibn



5.4. Parameter identification for the new DCSM 91

100 - ---=-===+
9o  _.--"" .
’
. 8o ! .
@ )
= 1
= 70f 1 .
E, ]
o eof, 1
el
D 1
=2 50n i
=3 1
S '
40 1 4
30t .
20 L L L
1 15 30 45

No. of modes (r)

Figure 5.14: The POD modes captured energy for an ensemilg@2oénapshots of
the water leveh, velocitiesu andv in the outer iteratioBs (Experiment 3)

Outeriteratior(8) | Calibration | Validation | Dutch
Initial (84) 10.55 9.86 9.20
Bs 10.25 9.82 9.22

Table 5.5: RMSE results for the minimization process with 7% relative energy
after 8" outer iteration (Experiment 3)

Figure[5.15 shows the reduction dfand the convergence gf after each inner
iteratione for the outer iteratiogs. AlthoughJ is reduced, the reduction is not very
significant as compared to the experiments with depth paemeThis is because
the influence of the depth adjustments is usually far grahter the adjustments to
the bottom friction cofficient. Moreover, the manning cfieient is already being
calibrated manually. Nevertheless any further reductioobjective functionJ is
considered to be an improvement in the model results.

Table[5.5 presents the RMSE obtained in fiaeof the POD based calibration
approach, separately for the datasets used for the cadibramd validation periods.
The results show that the POD based calibration proceddeces the RMSE for
the datasets of the calibration period, but for the valaaperiod there is no further
improvement.
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5.4.7 Discussion on results

Five outer iteration® have been performed during the calibration process. Figure
summarizes the RMSE after each outer itergiidor the datasets used for the
calibration and the validation periods respectively. Ti@DPbased calibration ap-
proach, reduces the RMS values of the water lelidtsr the tide gauge stations for
both the calibration and the validation periods with simifeagnitude, except for the
the outer iterationg, andBs where there is not much improvement for the datasets of
the validation periods.

Figure[5.1V presents the mean value of the total depth atlaptdter each outer
iteration. The depth is adapted significantly in each otéeation of the minimization
process.

Figure[5.18 presents water leveisat the two tide gauge stations Delfzijl and
Vlissingen along the north and south of the Dutch coast iy for the period of
15 January 2007 00:00 - 16 January 2007 24:00. These tiressefer to water levels
obtained from observations, forecast using deterministidel without data assimila-
tion and forecast with data assimilation afferespectively. The figure demonstrates
that the POD based calibration approach significantly resitive diterences between
forecast time series with data assimilation and the obiensaas compared to the
differences between the forecast time series without dataikeg8m and the obser-
vations. It is also clear from the Figure 5118 that both tfeats, phase shift and
amplitude are compensated.

Figure[5.19 shows RMSE of water level at the selected st@dong the Dutch
coast for the validation period with the initial values o frarameters and with the up-
dated parameteng'’P after the outer iteration®y, 83 andgs respectively. As explained
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inner iterationsy for the outer iteratio®s (Experiment 3)
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Figure 5.16: RMSE for the calibration and validation datsisdter each outer itera-
tionsg of the minimization process

earlier, the target of the calibration of the depth and botfaction parameters is to
optimize the model for reproduction of the astronomicat tespecially for the sta-
tions along Dutch coast. The Figlire 5.19 demonstratesttb&®®D based calibration
procedure significantly reduces the RMS values of the wetel krrors at all the tide
gauge stations along the Dutch coast except for the statiBS WWSLG where the
improvement in RMSE is not significant.

Although the calibration is done in time domain, its impaitto analyze the per-
formance of the model in frequency domain after calibratibigure[5.20 illustrates
the model performance after the calibration by means of thenétric for the seven
important constituents for the three selected locatioesl irs the calibration for the
initial values of the parameters and with the updated patensg“P after the outer
iterationsBy, B3 andgs respectively. The figure shows large improvements espgcial
in the constituents M2 and M4. The model performance is &rrifustrated by Fig-
ure[5.21, in which the RMS(VD) is shown for the seven impartzonstituents for
the three datasets of the tide gauge stations used for tineatadn and the validation
periods for the initial values of the parameters and withuhdated parametesd'®
after the outer iterationg;, 83 andBs respectively. The estimation procedure reduces
the RMS values for all the constituents for all the datass¢sidor the calibration and
validation periods.

The computational cost of the calibration experiments apFessed in terms of
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Figure 5.17: The mean value of the total depth adaptati@n efich outer iteration

the number of simulations with t he original model. Tdblg présents the computa-
tional costs of the calibration experiments. Four paramsetee estimated during the
outer iterationg;, 82, andgs (experiment 1 and 3), while 12 parameters are estimated
during the outer iterationg; andg, (experiment 2) of the minimization process. In
the outer iteratiom; one forward model simulation is required for the calibratie-
riod, i.e. from 28 December 2006 to 30 January 2007, to oltkerinitial value of
the objective functiord. As four parameters are estimated duriiagso four forward
model simulations are performed from 28 December 2006 taa@4dakry 2007 to ob-
tain an ensemble of the perturbatio%% alongyk. The snapshots are collected for
last four days only, since observations are available fisrghriod. As the number of
snapshots chosen is 132 (every three hours), the commahtime to solve eigen-
value problem and to construct the reduced model is neggigiBombined with four
estimated parameters, the reduced model simulates a gkdtate within the dimen-
sion of a subspac 2 instead of the original state spacé’ 3% Similarly the cost
of optimization in the reduced space is negligible and ayadht the time required to
estimate 4 parameters in the outer iterajgns equal to approximately.2 forward
model simulations.

An ensemblé= of the forward model simulations is obtained in the outewsitens
B1, B3 andgs while in the outer iterationg; andg, the same ensembles are used as in
the case oB; andps respectively. In this way the computational cost of genegead
new ensembl& and solving the eigenvalue problem to get the dominant POBano
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can be avoided in the outer iteratigiisandg, as shown in Table 5 6. Tadle 5.6 also
summarizes the computational cost for each outer itergtadthe POD based calibra-
tion approach. So approximately only 11 full forward modeidations are required
to fine tune the model with respect to 16 depth and 4 bottortidricodficients.

Observed = = = 'Deterministic ‘== = Calibrated

Water Level [m]

Time [Days]

(@)

Water Level [m]

15—-Jan 16—Jan
Time [Days]

(b)

Figure 5.18: Water level timeseries for the period from 15uday 2007 00:00 - 16
January 2007 24:00 obtained from measurement data (oltises)a forecast using
deterministic model without data assimilation and for¢éwath data assimilation (cal-
ibrated) afte, respectively at the two tide gauge stations a) Delfzijl andlissingen
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Figure 5.19: RMS of water level at the selected tide gaug@stalong the Dutch
coast with the initial values of the parameters and with theated parameterg'?
after the outer iteration®y, B3 andgs respectively

Outeriteratior(B) | Parameters| NewEnsemble PODmodes| No.ofsimulations
B 4 Yes 24 ~2.2
B2 4 No 24 ~1.1
B3 12 Yes 49 ~4.2
Ba 12 No 49 ~1.1
Bs 4 Yes 32 ~2.2
Total ~11

Table 5.6: Computational costs of the calibration expenitnafter each outer iteration

B of the minimization process
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Figure 5.20: Model performance for a) Hoek van Holland; byv&o c) Wick ex-
pressed as vectorftirences of the 7 important constituents with the initialieal of
the parameters and with the updated paramet&rsfter the outer iterations;, 83
andps respectively
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andps respectively
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5.5 Conclusions

The adjoint method is a powerful tool for sensitivity andyand model calibration,
but it is laborious to implement adjoint model for the conadign of the gradient for
large scale systems. The model-reduced approach predered used to simplify
this problem using a projection based on POD model reduatiethod. The present
approach is designed to approximate the data assimilatsiars in a restricted space
while retaining its essential properties. By using retisitand prolongation operators
the method fits into the theory of incremental variationahdessimilation. Compared
to the classical adjoint method, the minimization in redlispace converges faster
due to better condition number of the reduced Hessian.

In this chapter, the POD based calibration approach hasusshto calibrate the
two-dimensional large-scale shallow water flow model, tees DCSM, defined over
the entire European continental shelf. The method has besghto calibrate the new
DCSM with respect to the bathymetry and a space-varying Lhegficient. The
results show that the calibration method performs vdfigiently. A POD reduced
model of much smaller size is constructed instead of origmadel with state space
~ R¥I The RMS errors for the tide gauge stations used for botlvredion and
validation periods have improved significantly with an ateimprovement of more
than 50% is observed after the calibration in comparisoh thi¢ initial model.

The computational costs of the method are dominated by therggon of an
ensemble of forward model simulations. The simulationqukiof the ensemble is
equivalent to the timescale of the original model. Here aueate reduced model is
obtained from an ensemble with a relatively short simufagieriod of first four days
that is used for calibration over the whole calibration pdmf one month.

To achieve the convergence, the method needs to be updatechaduter iteration
B by constructing a new POD model by generating an ensembleraffd model
simulations. We have found in the present study that it isahways required to use
the new ensemble in each outer iteratioto construct the new POD based reduced-
order model. Instead, the same ensemble can be used inlsavieraterations. The
results also demonstrate that in total only 11 full modeluations are required to
calibrate the DCSM with 20 degrees of freedom. Thus the PQibration method
offers a very fficient minimization technique compared to the classicaliatimethod
without the burden of implementation of the adjoint.
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Chapter

Parameter Estimation using
Simultaneous Perturbati@n

6.1 Introduction

Most dficient optimization algorithms require a gradient of theeative function.
This usually requires the implementation of the adjointecfot the computation of
the gradient of the objective function. The adjoint methmdsaat adjusting a number
of unknown control parameters on the basis of given data. cbimrol parameters
might be model initial conditions or model parametérs (83, 8A sizeable amount
of research on adjoint parameter estimation was carriednotiite last 30 years in
fields such as meteorology, petroleum reservoirs and ogeapby for instance by
[771, [12], [19], |20], [97], [87], [53], [92] , [43].

One of the drawbacks of the adjoint method is the programrefifayt required
for the implementation of the adjoint model. Research hesnty been carried out
on automatic generation of computer code for the adjoirtt,adjoint compilers have
now become available (see [47]). Even with the use of theggradompilers, this is
a huge programming®rt, that hampers new applications of the method.

Vermeulen and Heemink [99] proposed a method based on Poaipegonal de-
composition (POD) which shifts the minimization into lowgimensional space and
avoids the implementation of the adjoint of the tangentdma&pproximation of the
original nonlinear model. Due to the linear character ofR@D based reduced model
its adjoint can be implemented easily and the minimizatimbfem is solved com-
pletely in reduced space with very low computational coscétly [6[ 9] applied this
POD based calibration method for the estimation of depthesashnd bottom friction
codficients for a very large scale tidal model.

This chapter focuses on a method referred to as simultapestisbation stochas-
tic approximation (SPSA) method. This method can be easilpkined with any
numerical model to do automatic calibration. For the calilon of numerical tidal

1This chapter is a slightly revised version 0f[10]
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model, the SPSA algorithm would require only the water |alegia predicted from
the given model. SPSA is stochastiffspring of the Kiefer-Wolfowitz algorithm
[50] commonly referred as finite fierence stochastic approximation (FDSA) method.
This algorithm uses objective function evaluations to obthe gradient approxima-
tions. Each individual model parameter is perturbed one t@ha and the partial
derivatives of the objective function with respect to theleparameter is estimated
by a divided dfference based on the standard Taylor series approximateapaftial
derivative. This approximation of each partial derivatireolved in the gradient of
the objective function requires at least one new evaluaifahe objective function,
thus this method is not feasible for automated calibratibemwe have large number
of parameters.

The SPSA method uses stochastic simultaneous perturlzd@irmodel parame-
ters to generate a search at each iteration. SPSA is basdughmaefficient and eas-
ily implemented simultaneous perturbation approximatitihe gradient. This gradi-
ent approximation for the centralftBrence method uses only two objective function
evaluation independent of the number of parameters beitimized. The SPSA al-
gorithm has gathered a great deal of interest over the lasid#eand has been used for
a variety of applications [45], [80], [81], [35], [34], [1(P3As a result of the stochastic
perturbation, the calculated gradient is also stochdsbwever the expectation of the
stochastic gradient s the true gradiént [34]. So one woxje:et that the performance
of the basic SPSA algorithm to be similar to the performaricterepest descent.

The gradient based algorithms are faster to converge thaolgactive function
based gradient approximations such as SPSA algorithm whesdsis measure in
terms of the number of iterations. The total cost to achig¥ectve convergence
depends not only on the number of iterations required, lsat ah the cost needed to
perform these iterations, which is typically greater indieat based algorithms. This
cost may include greater computational burden and ress{B¢€], additional human
effort required for determining and coding gradients.

Accurate sea water level forecasting is crucial in the Nedinels. This is mainly
because large areas of the land lie below sea level. For@easstade to support storm
surge flood warning system. Timely water level forecastsnaeessary to support
the decision of the proper closure of the movable storm shaggers in the Eastern
Scheldt and the New Waterway. The surge is predicted by usingerical hydrody-
namics model, the Dutch continental shelf model (DCSM) B4, Performance of
the DCSM regarding to storm surges is influenced by its perémice in forecasting
the astronomical tides. Using inverse modelling techrégtieese tidal data can be
used to improve the model results. SPSA algorithm is appie¥d for the estimation
of depth values in the tidal model DCSM of the entire Europeamtinental shelf.
Experiments are performed with both simulated and real esae the performance
of the SPSA algorithm in terms of the accuracy of the estimated computational
efficiency.

The chapter is organized as follows. Section 2 describeSBE®A algorithm.
The following section contains results from experimentthwihe model DCSM, to
estimate the water depth. The paper concludes in sectiordisbyssing the results.
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6.2 Parameter estimation using SPSA

Consider a data assimilation problem for a general nonlidgaamical system. The
discrete system equation for the state vecKits 1) € R" is given by;

X(tir1) = Mi[X(t), 7], (6.1)

whereM; is nonlinear and deterministic dynamics operator thatige$ inputs and
propagates the state from tirgeo timet;, 1, y is vector of uncertain parameters which
needs to be determined. Suppose now that we have imperfeatvaibionsy(t) € RY

of the dynamical systen (8.1) that are related to model staimet; through

Y(ti) = HX(t) + n(t), (6.2)

whereH : R" — R™ is linear observation operator that maps the model fields on
observation space anmgt;) is unbiased random Gaussian error vector with covariance
matrixR,.

We assume that theftierence between data and simulation results is only due to
measurement errors and incorrectly prescribed model gaeas The problem of the
estimation is then solved by directly minimizing the objeetfunctionJ

JO) = Z[Y(ta) — HXEDTTRATY () — HOX(E)] (6.3)
i
with respect to the parametersatisfying the discrete nonlinear forecast modell(6.1).
Inthe SPSA algorithm, we minimize the objective functit{) using the iteration
procedure

Y=y —ad@)), (6.4)

wheregi(y') is a stochastic approximation Bfl(y'), which denotes the gradient of the
objective function with respect tpevaluated at the old iteratg, if §,(y') is replaced
by VJ(y"), ther{6.2 represents the steepest descent algorithm.

The stochastic gradiemj(3') is SPSA algorithm is calculated by the following
procedure.

1. Define thenP dimensional column vectar; by

A =[o11, 812, Bl (6.5)
and

A=A A AT (6.6)
wherea;,i =1,2,---,nP represents independent samples from the symmetric

+1 Bernoulli distribution. This means thatl or—1 are the only possible values
that can be obtained for eagly. It also means that

A[il = Ay, (6.7)

and
E[a;] = E[a2] =0, (6.8)

whereE denotes the expectation.



104 Chapter 6. Parameter Estimation using Simultaneous P&urbation

2. Define a positive cdBcientc; and obtain two evaluations of the objective func-
tion J(y) based on the simultaneous perturbation around the curtedty' +
aa) andJ(y —qay).

3. A realization of the stochastic gradient is then cal@daiy using central dif-
ference approximation as

JO +ca) - 30 —aa)
2¢

Sincex, is a random vectog;is also random vector. So by generating a sam-
ple of A;, we generate a specific samplegpf The FDSA algorithm involves
computation of each component%fl by perturbing one model parameter at a
time. If one does a one-sided approximation for each paféavative involved

in VJ(y"), then computation of the gradient requirés+ 1 evaluations of for
each iteration of the steepest descent algorithm. In csirtina SPSA requires
only two evaluations of the objective functidity' + ¢a;) andJ(y' + ga)) at
each iteration.

At (6.9)

60" =

6.2.1 Choice ofg and ¢

Returning to equatioris 8.4 ahd 6.9, we see that we have lsftdcify witha andc;.
These are specified here according to the guidelines giv&phif [80]. The relevant
formulas fora; andc are given by

a
q = m, (6.10)

and c
C| = W, (611)

where a, ¢, Ap"andj3 are positive real numbers such thak0i < 1, @ -8 < 0.5
andd > 23. The given choices far, 3 will ensure that the algorithm, equatidn (6.4)
converges to a minimum &¥in a stochastic sense (almost surely). The choice of a, c,
A, & andj is to some extent case dependent and it may require somereepéation
to determine good values of these parameters. Althoughsymatotically optimal
values ofe”andp are 10 and 16 respectively [[17]), but choosing smaller values
e.g. @ = 0.602 and3 = 0.101 ([80]) appear to be morefective in practice. One
recommendation for A is to set A equal to 10% of the maximum peinof iterations
allowed.

The value of constamtshould be chosen so thais equal to the standard deviation
of the noise in objective functiod If one has perfect objective function, then c should
be chosen as small positive number.

6.2.2 Average stochastic gradient

One of the motivations for SPSA is that for a quadratic oljjedunction such ag,
the expectation of the stochastic gradient is the true gradqi34]), i.e.

E[6(")] = 6(/) = VIR, (6.12)
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wheregi (') is defined as
e
60N =5 2,80, (6.13)
i=1

with eachgi(y') is obtained from equatidn 8.9 usimydifferent samples of;. Due
to the relationship given in equatign 6115 one would hopé 8RSA would have
convergence properties similar to those of steepest descarms of the number of
iterations required to reduce the objective functibto a certain level. In this case
SPSA could be much moréfieient than the steepest descent algorithm.

6.3 Numerical experiments

The algorithm presented in Sectonl6.2 was tested in a ediliiorexperiment using the
model DCSM. The DCSM is an operational storm surge modelj irs¢he Nether-
lands for real-time storm surge prediction in North sea.

6.3.1 Experiment 1

The DCSM model used in this experiment covers an area in thte+east European
continental shelf, i.e. 2V to 12E and 48N to 62°N, as shown in Figure 8.1. The
resolution of the spherical grid ig8°x 1/12°, which is approximately & 8 km. With
this configuration there are 264173 grid with 19809 computational grid points. The
time step isat=10 minutes.

In chaptef# several twin experiments were performed tonesé depth values in
the English channel of the model DCSM (see Fiduré 6.2) usid Pased calibra-
tion method. Similar twin experiment was performed as inti®a¢.5.1 to estimate
depth values using SPSA algorithm. The numerical dorfaivas divided into seven
subdomain), k = 1,---, 7. For each subdomainy, a correction parameteﬁ is
defined that is related 0Oy, , by:

b
Dnn, =D

Ng,Np

+y2;if (ng, np) € O (6.14)

with Dﬁl,nz, the initial value. The parameteys were treated as unknown parameters.
They act as a correction for the mean level of ihen, in a sub domaiif, and leave
the spatial dependence insifg unaltered. Seven observation points were included
in the assimilation, two of which are located along the eaastof the UK, two along
the the Dutch coast and one at the Belgium coast (see Higilye Bhe truth model
was run for a period of 15 days from 13 December 1997 00:00 oetember 1997
24:00 with the specification of water depiﬂﬁhn2 as used in the operational DCSM
to generate artificial data at the assimilation stations fiist two days were used to
properly initialize the simulations and set of observadigrof computed water levels

h were collected for last 13 days at an interval of every tenutgis in seven selected
assimilation grid points, which coincide with the pointsewvé data are observed in
reality. The observations were assumed to be perfect. Bsisnaption was made in
order to see how close the estimate to the truth. 5[m] wasdattn‘dﬁl,n2 at all the
grid points in domairf2 to get the initial adjustmem;z{.
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Figure 6.1: DCSM area with calibration stations: 1. N51, @utBend, 3. Innerdows-
ing, 4. Oostende, 5. H.v.Holland, 6. Den Helder, 7. N4

For the SPSA optimization algorithm, two methods were auplo calculate the
stochastic gradient. In the first method, the stochastidigragi(y') was computed
according to equatidn 8.9. In the second method the gradi@atomputed by equa-
tion[6.13 referred as Average SPSA where expectation ismtaker two independent
stochastic gradients.

The values of a, ¢, Ay and3 were obtained according to the guidelines given
in Sectio 6.21. These values were determined as best fweara forward model
simulations. The iteration cycle for the SPSA algorithm wherted when the value of
the objective functiod did not change for the last three iterations of the mininidzat
process.[103].

Figure[6.8 shows a plot of the objective function versus nemnabiterationgs for
the two implementations of the SPSA algorithms compareH thi¢ steepest descent
and the POD based calibration methods. Note that the gradisena in the steepest
descent algorithm was obtained from the finitfetience method using one-sided
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Figure 6.2: (a) Shows the domaih (dashed rectangle), of DCSM. (b) Shows the
subdomain€21, Q2,Q3,Q4, Q5, Q6 andQ7

perturbation. The graph shows that both SPSA and Averagé $R® comparable
results, although for Average SPSA the decrease in the tigdanctionJ is more at
early iterations. Also the rate of convergence of Averag8/HR slightly better than
the SPSA. However, in terms of rate of convergence both SP8Aeerage SPSA are
less dficient than steepest descent and POD based calibration dsethibe steepest
descent algorithm converges in 10 iterations as compar€@ tnd 15 iterations in
SPSA and Average SPSA respectively. However, the cost gfesiteration in SPSA
algorithm is far less than the steepest descent algorithm.

For all the algorithms, there was a significant improvemémtgarameters for
regions coinciding with the UK, Dutch and Belgian coast, thére was not much
improvement in deep water regiof2s andQ-. Since the subdomains containing deep
areas are less sensitive as compared to the subdomainmauntiallow areas, so it
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Figure 6.3: Successive iteratiof®f the minimization process

is much dificult to estimateyy in regionsQ; andQy.

Table[6.1 lists the measurg) (between the updated estimated parametétsb-
tained after calibration with éfierent optimization algorithms and the true parameter
estimatey!. The measure is defined as the two norm of tHEedénce between esti-
mated parameteng'P obtained after optimization and the true parameter estintat
divided by the norm of the true parameter estimatg34]).

Y=l

= 6.15
= T (6.15)

By this measure, steepest descent (21%) performed thedlestéd by Average
SPSA (29%) and SPSA (35%). Since the stochastic gradiehtisPSA algorithm
is based on two perturbations of the independent randomlsanipis more likely
that the SPSA algorithm improves more sensitive areas. dthle ailso lists the same
measure for shallow regions. In this case, all the algorsteteepest descent48%),
Average SPSA (29%) and SPSA (95%) performed very well. Here Average SPSA
matched the performance of steepest descent algorithnvdrage SPSA the gradient
was the average of only two independent stochastic gradi€©mte would expect better
performance by the inclusion of more stochastic gradientserage SPSA.

Table[6.2 presents the RMSE between estimated paramgt&raid the true pa-
rameters ) after iterationgss, S10, B15 andB, of SPSA algorithm for calibration
stations and compares it with Average SPSA and steepestritesigorithms. The
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4 SPSA | Average SPSA Steepest Descent
All parameters 35.11% 29.27% 21.02%
Sensitive parameters 9.95% 6.29% 6.49%

Table 6.1: Comparison of estimated parameters to true paeaigfor the twin exper-
iment

RMSE for SPSA algorithm after iteratigds is 9.95 compared to.82 and 605 in Av-
erage SPSA and steepest descent algorithm respectivéBPSA and Average SPSA
are comparable at this point. The RMSE for SPSA after 10titera is comparable

to the RMSE of steepest descent method after only 5 itemtiBimce the cost of one
iteration of steepest descent is 8 model simulations coeapiar3 model simulations

in SPSA algorithm, SPSA is/# times dficient than steepest descent at this point and
one would expect SPSA to be mor@eent if we have large number of parameters.

The RMSE with SPSA afte;s and average SPSA aftgiy is similar. At this
point the computational costs of both SPSA and Average SR8Alao comparable.
Itis also clear from the table 8.2 that the smallest RMSEe/#achieved by steepest
descent method in 10 iterations.

SPSA (cm)| Average SPSA (cm) Steepest Descent (cm)
Initial 22.80 22.80 22.80
Bs 9.95 8.92 6.05
B1o 5.63 4.09 2.91
Bis 4.10 3.27 -
B20 3.55 - -

Table 6.2: RMSE results for the minimization process aftér 50", 15" and 24"
iterations

Figure[6.4 presents water levéisat the two tide gauge stations Den Helder and
Southend along the Dutch and English coasts respectivethégeriod from 18 De-
cember 1997 00:00 - 18 December 1997 24:00. These time sefézdo water levels
obtained from true values of the parameters, the initialeslof the parameters and
the estimated values of the parameters using SPSA algorébpectively. The fig-
urel6.4 demonstrates that the estimation methods sigrifja@duces the dierences
between time series obtained from initial parameters aadrtte parameters as com-
pared to the dferences between time series obtained from the estimatadptars
and true parameters.



110 Chapter 6. Parameter Estimation using Simultaneous P&urbation

Truth  ====-- Initial i SPSA

Water Level [m]

Time [Hours]

(@)

Truth  ====- Initial === SPSA

Water Level [m]

12 18 24
Time [Hours]

(b)

Figure 6.4: Water level timeseries for the period from 18 &eber 1997 00:00 - 18
December 1997 24:00 obtained from truth model, deterniémsodel with initial val-
ues of the estimated parameters and deterministic modeglatibration respectively
at the two tide gauge stations a) Den Helder and b) Southend

6.3.2 Experiment 2

The DCSM model used in this experiment is a newly designegklacale spherical
grid model. This newly developed DCSM covers an area in thithreast European
continental shelf, i.e. 8V to 13’E and 43N to 64°N, as shown in (see Figuke 6.5).
The spherical grid has a uniform cell size g#1° in east-west direction and & in
north-south direction which corresponds to a grid cell sizabout~ 2 x 2 km. With
this configuration there are 1120 grid cells in east-westation and 1260 grid cells
in north-south direction. The grid cells that include lamé excluded form the model
by the enclosures and the model contains 869544 compuahtdad points. The grid
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Figure 6.5: Newly developed hydrodynamic DCSM area. Th&eddine represents
the area of the operational DCSM extent

resolution of the spherical grid is factor five finer then the$M model grid used in
the previous experiment. The idea was to perform numeriqad@ment with a very
large scale model and with real data using SPSA algorithm.

The bathymetry of the model here is based on a NOOS griddedsagatand for
some areas in the model, ETOPO2 bathymetry data is intdgubtan the computa-
tional grid. The dashed line in Figure 6.5 shows the comparid the newly devel-
oped DCSM model area with the old DCSM. The model area of thdyngeveloped
DCSM is extended significantly in order to ensure that thendpmundary conditions
are located further away in deep water. A computational step of 2 minutes has
been applied.

The model performance can be assessed by comparing it to ¢hsumed (ob-
served) dataset. The available data used here consiste datasets of the tide gauge
stations are used, namely,
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Figure 6.6: The 12 subdomaifk of the DCSM used in Experiment 2

1. water level measurement data from the Dutch DONAR databas

2. BODC (British Oceanographic Data Centefisbore water level measurement
data.

The target of the calibration of the parameters (i.e. depthes) is to optimize the
model for its reproduction of the astronomical tide. Thetifhuge data are therefore
retrieved from the results of the harmonical analysis tduge the meteorological
influences.

Similar experiment was performed as in Seclion .4.6 tonegé depth values us-
ing SPSA algorithm. The numerical domaihwas divided into the 12 subdomains
Q. k=1,...,12 (see Figure_6l6). 50 water level locations were selectethé cali-
bration experiment (see Figure6.7). Observations ohdaiyehe harmonic analysis
from these 50 stations at every fifth time step (10 minutegewesed for the cal-
ibration experiments. The calibration runs were perforffardthe period from 28
December 2006 to 30 January 2007 (34 days). The first 4 dayswsed to properly
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Figure 6.7: DCSM area with stations included in the modeabcation

initialize the simulation. The measurement data were ugethé remaining 30 days.
We assumed that the observatidhsf the computed water levellscontained an error
described by white noise process with standard deviatjpe0.10 (n).

Figure[6.8 shows a plot of the objective functidiwersus number of iterations
for the SPSA algorithm compared with the POD based calimatiethod. The SPSA
method is compared here with POD based calibration methogréztical reasons.
One reason is we have seen in the previous experiment th&QbRebased calibra-
tion method &iciently estimated the depth values with the fastest comrerg rate
as compared to SPSA and steepest descent algorithms. $8gdtsnaot worthwhile
to compute gradient by finite fiierences in this large scale model. The graph shows
that both the calibration methods give comparable resultsrims of reduction in the
objective functionJ. Though the rate of convergence of the POD based calibration
method is far better than the SPSA.

The POD based calibration method converged in only 2 itematas compared
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Figure 6.8: Successive iteratiof®f the minimization process

to 14 iterations with the SPSA respectively. However, thet @b single iteration in
the POD based calibration method is much higher and is dgmémoh the number
of parametersP and the POD modesused to construct the reduced model [5]. So
for this experiment the POD method required 13 initial siatiohs of the model to
get the ensemble and then additional simulations of the hMod®nstruct the POD
reduced model in each iteratighof the optimization process . The SPSA method
on the other hand required only two objective function eaibns to compute the
gradient in each iteratiof of the optimization procedure. For this application the
POD method is also fast since it is not needed to use a fulllaiious of the original
model for the generation of the ensemlbile [9]. For both theesrpents performed
the SPSA algorithm converged in almost similar iteratioliscagh the number of
parameters were flierent. So it is expected that the SPSA algorithm will workreve
with more parameters and the algorithm is independent afdingber of the estimated
parameters.

6.4 Conclusions

In the absence of adjoint model, the gradient is usuallyinbthby objective function
evaluations to obtain the gradient approximations. Eagividual model parameter is
perturbed one at a time and the partial derivatives of theative function with respect
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to the each parameter is estimated. This method is not fedsibautomated calibra-
tion when we large number of parameters are estimated. &inadus perturbation
stochastic approximation (SPSA) method uses stochasticltsineous perturbation
of all model parameters to generate a search at each itered@BSA is based on a
highly eficient and easily implemented simultaneous perturbatigmagimation to
the gradient. This gradient approximation for the centrfiedence method uses only
two objective function evaluation independent of the nundig@arameters being op-
timized.

SPSA algorithm is applied to calibrate the model Dutch Guerttal Shelf Model
(DCSM). The DCSM is an operational storm surge model, uséteiiNetherlands for
real-time storm surge prediction in North sea. A number dibcation experiments
was performed both with simulated and real data. The reBolts twin experiment
showed that SPSA has a lower convergence rate than the stelseent and POD
based calibration methods. The steepest descent algaréhwerged in 10 iterations
as compared to 20 and 15 iterations in SPSA and Average SPpaatvely. How-
ever, the computational cost of single iteration in thessedescent method is much
higher and dependent on the number of parametersAlthough both SPSA and
steepest descent methods converged to similar value obfbetive function, none of
the optimization algorithms achieved the expected redndéti the objective function.

The results from a very large scale tidal model and with resa dhowed that
SPSA algorithm gives comparable results to POD based atitiormethod. The POD
based calibration method converged in only 2 iterationsoaspared to 14 iterations
with the SPSA respectively. The POD based calibration ntethough required 13
initial simulations of the original model to get the enseednhd then extra simulations
to construct the POD reduced model in each itergfiaf the optimization process.
The SPSA method on the other hand required only two objefitivetion evaluations
to compute an approximation of the gradient in each itengiof the optimization
procedure independent of the number of estimated parasneter this application
the POD method is also fast since it is not needed to use aifaillgtions of the
original model for the generation of the ensemble. Thus SBIgArithm proved to
be a promising optimization algorithm for model calibratimr cases where adjoint
code is not available for computing the gradient of the abjedunction.
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Chapter

Conclusions

Identifying uncertain parameters in large-scale numefloaw models can be done
using the variational method. However, directly impleniegthe variational method
would require the adjoint model, which requires highly cdempcomputer code and
maintenance and thus hampers its applications. This @sdas explored several
methods for #iciently identifying uncertain parameters in a large-stidi@l model of
entire European continental shelf which does not requierttplementation of these
complex adjoint code.

An estimation method based on model reduction is developedhaestigated first
for a simple 2D-advection ffusion model. We have developed estimation procedure
for two projection based model reduction methods.

e Proper Orthogonal Decomposition(POD).
In POD based estimated procedure an ensemble of forward sioddations is
used to determine the approximation of the covariance rmaftthe model vari-
ability and the dominant eigenvectors of this matrix aredusedefine a model
subspace. An approximate linear reduced model is obtaipguidjecting the
original model onto this reduced subspace. The method jslsita implement.

e Balanced Proper Orthogonal Decomposition (BPOD).
In BPOD estimation procedure the model subspace is obtaitdd consid-
ering both inputs and outputs of the system. Thus both clhaitle and ob-
servable subspaces are considered while obtaining a Idastagyspace for the
reduced model. The presented method alloflisient computation of observ-
able subspace when the number of outputs is large.

In both the estimation procedures the adjoint of the tanfipear model is re-
placed by the adjoint of this linear reduced forward modéle minimization process
is carried out in reduced subspace and hence reduces theutadiopal costs. The
method and results from the experiments have been presen@thptefB. Numer-
ical results from a simple pollution model of concentratagr,t) demonstrated that
the POD based estimation approach successfully estimageditusion codicient
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for both advection dominated problems as fdfulion dominated problems. Another
important message in that chapter, although lotdfoirehad been put in constructing
a reduced order model by BPOD method, the minimization tesi@monstrated that
both the POD and the BPOD methods performed similarly.

For a feasible approximation of the model variability, a PO&sed estimation
approach is attractive as it avoids the implementation gdiaticode and save con-
siderable computationatiert for optimization compared to the usual gradient based
iterative procedures where gradient is obtained from tligiral nonlinear model in
each iteration. In Chaptét 4 the POD based estimation methoded to calibrate
numerical tidal models. Results from twin experiments sidthat the POD based
calibration method performed veryhigiently to estimate depth values in the selected
regions of the model domain. The computational costs of ththad are dominated
by the generation of an ensemble of forward model simulatidrhe simulation pe-
riod of the ensemble is equivalent to the timescale of thgimad model. It is also
found in that study that an accurate reduced model is olitdinen an ensemble with
a relatively short simulation period as compared to théocation period and the POD
based calibrationfbers an éicient method compared to the classical adjoint method.

As a next step, the POD based model reduced approach is usttefestima-
tion of the water depth and space varying bottom frictionficcient values in a very
large-scale DCSM model. The model used here is the receesligded large-scale
spherical grid based water level model for the northwesbpean continental shelf
(around 16 computational grid points). It covers a much larger deeewatea than
the operational DCSM and has a spatial resolution that istarf® finer in both lat-
itudinal and longitudinal directions. This is the first aipption of the POD based
calibration method to a very large-scale model and with de#d. To achieve conver-
gence, the method needs to be updated by constructing a nBwri®@el by generat-
ing an ensemble of forward model simulations with subopitestimated parameters.
We have also found in the present study that a new ensembte &ways required
with the updated parameters. Instead of defining a new matispsice of the leading
eigenvectors by generating a new ensemble with suboptiarahpeters, we can ob-
tain a reduced model by projecting original model with thelated parameters onto
the same subspace.

Results from numerical experiments showed that the caiidranethod again per-
formed very diciently. A POD reduced model of much smaller size is consgaic
instead of original model with state spaseR31®. The RMS errors for the tide
gauge stations used for both calibration and validatiofoperhave improved signifi-
cantly with an overall improvement of more than 50% is obsdrafter the calibration
in comparison with the initial model. The results also destmate that in total only
11 full model simulations are required to calibrate the DC8ith 20 degrees of free-
dom. Thus the POD calibration methoffers a very &icient minimization technique
compared to the classical adjoint method without the bucdémplementation of the
adjoint.

In the absence of adjoint model, the gradient is usuallyinbthby objective func-
tion evaluations to obtain the gradient approximationghgaadividual model param-
eter is perturbed one at a time and the partial derivativeh@fobjective function
with respect to the each parameter is estimated. This meéshook feasible for au-
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tomated calibration when large number of parameters ammasid. Simultaneous
perturbation stochastic approximation (SPSA) method stmshastic simultaneous
perturbation of all model parameters to generate a seareachtiteration. SPSA is
based on a highlyfcient and easily implemented simultaneous perturbatipnap
imation to the gradient. This gradient approximation far tientral diference method
uses only two objective function evaluation independerthef number of parame-
ters being optimized. SPSA algorithm has applied to catibtfae model DCSM and
results are presented in Chadtér 6. The results from expatgshowed that SPSA
has a lower convergence rate than steepest descent and R@ddadibration meth-
ods, however the computational cost in each iteration oSfAR8A method is far less
then these methods. The results demonstrated that the S§&#han proved to be a
promising optimization algorithm for model calibratiorr frases where adjoint code
is not available for computing the gradient of the objecfiuection.
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Appendix l \

The Reduced Adjoint State

Equation[(5.1B) introduces the adjoint modil.1), that is elaborated here. The ap-
proximate objective functiod can be written as:

J(ay) = DY () = HOXP(W))) - Rt An1TRTHY (6) — HXP())) - HEt, AY)]
i=1

(A1)
The reduced adjoint state variableare introduced in equatioh (A.1) as:
R _ m
J(Ay) = I(Ay) + ) (tia1)T[E(tea, Ay) = Aé(t, AY)] (A.2)
i=1
whereJ = J. The matrixA; is defined here as:
N MY
A= ( '\c/l)' '\fi ) (A.3)

The incremental changes h £(t;, Ay) andy due to incremental change in one of the
components oly gives:

m-1
AT =3 () T[AE(t1, Ay) — AAE(, Ay)]+
i=0
m-1

AV(ti1) T[E( 1, Ay) — A, Ay)] -
0

o7 6t A) 0J
2 M) =AY + [ ST AL A) (A-4)
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The above expression after simple calculations yields:

AJ= ZAf(tu,Ay)[V(t)T AT(ti)T] + [ 1T AE(t, Ay)+

aé:(tl’ A )
m-1
- . O&(t
) A A7) — Y 3(t)T et o (A5)
e Ny
An expression for the reduced adjoint modgl,1); i € {m-1,---, 1} solved backward
in time is followed from above expression:
P(t) = Al V(tisg) + B(t) (A.6)

with ¥(tm) equals zeroB(t;) is given by:

B() = [ 2HTRHIY(W) - H(gb(ti»} ~ At A)] )

Once the reduced adjoint stat€t) are known, the gradierg% is found as:

iy = BT ) (A7)
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Summary

Identifying uncertain parameters in large-scale numefloaw models can be done
using the variational method. However, for implementing tariational method the
adjoint model have to be available, which requires highiyptex computer code and
maintenance and thus hampers its applications. To easprttitem, this thesis has
explored several methods foffieiently identifying uncertain parameters in a large-
scale tidal model of the entire European continental shbl€lwdoes not require the
implementation of these complex adjoint code.

In this study, as a first step an estimation method based orelnneduction is
developed and investigated for the estimation @fudion codicient in a simple 2D-
advection difusion model. Two projection based model reduction methaate won-
sidered, namely proper orthogonal decomposition (PODBatahced proper orthog-
onal decomposition (BPOD). In the POD based estimation otkin ensemble of
forward model simulations is used to determine an approtimanf the covariance
matrix of the model variability and a small number of the liegceigenvectors of this
matrix is used to define a model subspace. By projecting tignat model onto this
subspace an approximate linear reduced model is obtaineck the reduced model
is available its adjoint can be implemented easily and tha@mikzation problem is
solved completely in reduced space with very low computaticost. BPOD is also a
model reduction method which considers both inputs andutsitpf the system while
determining the reduce subspace. The estimation methobe®masextended by in-
cluding BPOD procedure into the estimation procedure. Nigakresults from a
simple pollution model demonstrate that the POD based atimapproach success-
fully estimate the dtusion codicient for both advection dominated problems as for
diffusion dominated problems. Anotherimportant messagesrsthidy, although lots
of effort had been made in constructing a reduced order model IBR@D method,
the minimization results demonstrated that both the PODilae@&POD methods per-
formed similarly.

Preliminary results showed the validity of the POD based ehogduction meth-
ods for parameter estimation. As a next step, the POD basmdagiosn method is
used to calibrate numerical tidal models. Results fromr(jwiumerical experiments
showed that the POD based calibration method performedefiéciently to estimate
depth values in the selected regions of the model domainc@hmgputational costs of
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the POD based calibration method are dominated by the gi#orecd an ensemble of
forward model simulations where the simulation period efémsemble is equivalent
to the timescale of the original model. It has also been faarttie study that it is
not needed to use a full simulations of the original modeltfa generation of the
ensemble.

The POD based calibration method has also been implememtétuef estimation
of the water depth and space varying bottom frictionfioient values in a very large-
scale DCSM model. The recently designed large-scale sgaigrid based water level
model for the northwest European continental shelf (ardl@@D000 computational
grid points) has been used for this purpose. This has bedirshapplication of the
POD based calibration method to a very large-scale modeldihdreal data. Re-
sults from numerical experiments showed that the calibnathethod performs very
efficiently. An overall improvement of more than 50% was obseéwafter the calibra-
tion in comparison with the initial model. The results algmbnstrated that the POD
based calibration methodfered a very flicient minimization technique compared to
the classical adjoint method without the burden of impletaton of the adjoint.

As a concluding step, to estimate depth values in the mod&NDG Simultane-
ous perturbation stochastic approximation (SPSA) metlagdleen used. The method
uses stochastic simultaneous perturbation of all modelpaters to generate a search
at each iteration. SPSA is based on a higlficeent and easily implemented simulta-
neous perturbation approximation to the gradient. Thidigra approximation for the
central diference method uses only two objective function evaluatiodspendent
of the number of parameters being optimized. The resulta gaperiments showed
that SPSA has a lower convergence rate than POD based Galibnaethod, how-
ever the computational cost in each iteration of the SPSAatkis usually far less
then the POD based calibration method. The results also isnaded that the SPSA
algorithm proved to be a promising optimization algorithon fnodel calibration for
cases where adjoint code is not available for computing thdignt of the objective
function.



Samenvatting

Het schatten van onbekende parameters in grootschaligeriek® stromingsmod-
ellen kan gedaan worden met behulp van de variationele rdetf@m deze methode
te kunnen implementeren moet men de beschikking hebbenhetayeadjungeerde
model. Het daarvoor noodzakelijke programmeerwerk is zearplex, hetgeen het
toepassen van de variationele methode onaantrekkelijktmiaadit proefschrift wor-
den enkele methoden onderzocht voor H&ti&nt schatten van onbekende parame-
ters zonder gebruik te maken van het geadjungeerde modeé methoden worden
toegepast op grootschalige getijde modellen van het Essopentinentale plat.

De eerste stap in dit onderzoek bestaat uit het bestuderenteikkelen van een
schattingmethode voor defflisiecodficient in een eenvoudig 2D advectiefdsie
model, gebaseerd op model reductie. Hierbij zijn twee ptaegebaseerde meth-
oden beschouwd, te weten 'proper orthogonal decompositR@D en ‘balanced
proper orthogonal decomposition’, BPOD. Het idee achteedhattingmethode is
als volgt: Eerst wordt een ensemble voorwaartse simulatiashet model gebruikt
om een benadering te krijgen van de covariantie matrix vawveadiabiliteit van het
model. Vervolgens worden enkele dominanteeigenvect@prleze matrix gebruikt
om een deelruimte van het model te bepalen. Door het orgimeldel op deze
deelruimte te projecteren, verkrijgt men een lineaire deniag van het model (het
‘gereduceerde model’). De geadjungeerde van het gerediecemdel kan eenvoudig
worden bepaald, en ook de complexiteit van het minimaliggprobleem in de gere-
duceerde ruimte is laag. BPOD is ook een model reductie rdettiee zowel de input
als de output van het system betrekt bij het bepalen van hetigeeerde model. De
hierboven genoemde schattingsmethode is uitgebreid do®@RDD procedure toe
te voegen in de schattingsprocedure. Numerieke result@emren eenvoudig con-
centratie model tonen aan dat POD erin slaagt ffesleco#icient goed te schatten,
zowel voor advectie-gedomineerde problemen als vatusle-gedomineerde proble-
men. De numerieke resultaten tonen ook aan dat de twee negtf@D en BPOD
vergelijkbaar presteren, terwijh de implementatie van BRIOmplexer is.

De volgende stap is om de POD model reductie methode toe sempap de kali-
bratie van numerieke getijdemodellen. Een ‘tweeling’ ekpenten toont dat de op
POD gebaseerde kalibratie methode zd#ciénte schattingen geeft van de water-
diepte in vooraf bepaalde delen van het model domein. Denkekelige complexiteit
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van de op POD gebaseerde kalibratie methode wordt gedordideer de generatie
van het ensemble voorwaartse modellen, waarbij de sireydatiode voor het ensem-
ble equivalent is aan de tijdschaal van het oorspronketijkdel. Uit ons onderzoek
blijkt dat het genereren van het ensemble mogelijk is zohdepriginele model ver

de hele calibratie periode te simuleren.

Het onderzoek heeft zich vervolgens gericht op het toepagae de op POD
gebaseerde kalibratie methode voor het schatten van dediegie en de plaatsafhanke-
lijke bodemwrijvingsco#icient in een zeer grootschalig DCSM model. Hiervoor
is het recent ontwikkeld model van het noordwesten van hebase continentale
plat op basis van een grootschalige bolvormig grid gebrmidt ongeveer 1000000
rekenkundige gridpunten). Dit is de eerste toepassing gapdOD gebaseerde kali-
bratie methode op een grootschalig model met ‘echte’ dataétieke experimenten
tonen dat de kalibratie methode zediigent functioneert. Na kalibratie werd een
algehele verbetering van meer dan 50% waargenomen in ijkigelmet het oor-
spronkelijke model. Deze resultaten tonen ook dat de op P€dagperde kalibratie
methode een zeeffiént alternatief vormt voor de klassieke methode gebdsae
het gebruik van geadjungeerde model.

Als laatste stap in dit onderzoek is een stochastische ajppatie op basis van
simultane perturbatie (‘simultaneaous perturbationtsistic approximation’, SPSA)
uitgevoerd. Deze methode gebruikt iteratief stochastisimultane perturbaties van
alle model parameters om een zoekrichting te bepalen. SP§éhbaseerd op hoog-
stdficiente en eenvoudig te implementeren simultane stocltastiperturbatie be-
naderingen van de gradiént. Deze approximatie van de&nhii de centrale dif-
ferentie methode maakt gebruik van slechts twee doelfeiewtiluaties, ongeacht het
aantal parameters dat geschat dient te worden. De expdél@eesultaten tonen dat
SPSA een lagere convergentiesnelheid heeft dan de op POCasepable kalibratie
methode, echter, de berekeningen per iteratie zijn in lgena¢en veel lager dan voor
de op POD gebaseerde kalibratie methode. De resultaten tmikeaan dat het SPSA
algoritme veelbelovend is voor model kalibratie waarbtjdgeadjungeerde model niet
beschikbaar is om de gradiént van de doelfunctie te bepalen
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