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SUMMARY

The analytical expressions for the ultimate load bearing capacity of the RC structures do
not provide the generalized notion of ultimate load bearing capacity, which can be ob-
tained through nonlinear finite element analysis (NLFEA). In order to obtain an accurate
estimate of failure probability of a RC structure it is necessary to use NLFEA based limit
state function in a reliability analysis. However, there is a relative lack of NLFEA based
reliability analysis efforts in the literature. Whatever efforts there are, none of them ex-
plicitly attempts to account for the uncertainty introduced by the NLFEA model, called
modeling uncertainty, in the reliability analysis. Nor has there been much effort to study
the impact of the numerical noise from NLFEA on the accuracy and efficiency of the
reliability algorithms. Since the run time of each NLFEA is high, for a NLFEA based re-
liability analysis to be practically feasible it is imperative that the reliability algorithm is
efficient and capable of handling different kinds of limit state functions (with multiple
failure modes, for example). Keeping this in mind two adaptive response surface based
methods, directional adaptive response surface method (DARS) and adaptive Kriging
Monte Carlo simulation (AK-MCS), are selected based on the preliminary literature sur-
vey, for the investigation of NLFEA based reliability analysis of RC structures. The key
objective of this thesis is to study the strengths and limitations of these two algorithms
for RC structures and make necessary modifications in the DARS algorithm to make it
more suitable for the reliability analysis of RC structure.

A NLFEA solution strategy is formulated for RC beams and the modeling uncertainty
is quantified based on 53 experimental results. Three RC beams, are selected as demon-
strative cases. One of these beams fails in shear, another in bending and the last one can
switch in failure modes between shear and bending. Based on these three beams it is
demonstrated in this thesis that there is pronounced numerical noise in the NLFEA pre-
dicted bearing capacity whenever the beams fail is shear failure mechanism. Whereas
for the bending failure mechanism the NLFEA solution strategy produces a much more
smooth capacity prediction. Clear indications are found to the effect that the shear fail-
ure mechanism is more sensitive to certain choices adopted in the NLFEA solution strat-
egy.

It is found out that the inclusion of the modeling uncertainty in the reliability anal-
ysis makes a substantial difference in the reliability estimate. This huge difference un-
derscores the importance of accounting for the modeling uncertainty in a NLFEA based
reliability analysis. Since the modeling uncertainty term is multiplied with the ultimate
load bearing capacity term in the limit state function, this makes the limit state function
an explicit function of the modeling uncertainty.

The verification of the performance of the DARS algorithm for the RC structures re-
vealed that the number of exact function evaluations (NLFEA based) depends on the
target coefficient of variation of failure probability, line search tolerance and the added
offset to the current minimum distance of the limit state surface. The line search tol-
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x SUMMARY

erance is used to find the intersection with the limit-state function for each direction.
The added offset determines whether NLFEA or response surface function evaluations
are used. It is demonstrated that a strict line search tolerance criterion only marginally
improves the reliability index, even though the number of exact function evaluation in-
creases significantly with stricter tolerance. A moderate value of the line search tolerance
will be sufficient to efficiently obtain a very accurate reliability index. As for the influence
of the added offset, it is found out that using a fixed value of the offset throughout the re-
liability analysis increases the number of exact limit state function evaluations. Using an
adaptive offset instead of a constant offset value increased the efficiency of DARS. Just
these two adjustments however could not keep the NLFEA based function evaluations
low for the RC beam case which fail in shear. The pronounced numerical noise in the
limit state function for this case made DARS inefficient. DARS’s polynomial interpola-
tion based uni-variate line search scheme is found to be a major source of inefficiency.
Such scheme works well for well behaving, smooth limit state functions. But for highly
noisy limit state functions such strategy is found to be inefficient. Instead of the inter-
polation based line search method Brent’s uni-variate root finding algorithm is used to
improve the efficiency of DARS. For the adaptive response surface a Gaussian process
regression (GPR) based response surface is used instead of quadratic response surface
function because such a response surface provides better initial guess for a line search.
Brent’s method restricts the use of interpolation as long as the bracket of the sign change
around the root is wide. In narrow interval, where the effect of numerical noise is most
severe, Brent’s method switches to the Bisection method, which is unaffected by noise.
This, combined with the initial guess provided by the GPR based response surface im-
proved the efficiency of DARS method for noisy cases.

The AK-MCS method is examined for the RC beam cases. This method uses a learn-
ing function to find samples close to the limit state surface. It is found that the AK-MCS
has no trouble in dealing with the smooth limit state function of the beam failing in
bending. But for the shear dominated beam cases it is much more inefficient compared
to DARS. The reason is that because of the noisy behavior of the limit state function
samples which are not in the closest proximity to the actual limit state surface often get
misidentified for design enrichment by the learning function. This unnecessarily in-
creases the overall number of NLFEAs, delaying the convergence.

It is shown in this thesis that the existing DARS method is not efficient when the RC
structure in consideration undergoes shear failure. This implies that the existing DARS
method cannot be applied in a black box fashion for a RC structure, without first con-
sidering its possible mode of failure. But such shortcoming has been overcome with
the novel improvement forwarded in this thesis, because now the line search scheme
of DARS is just as efficient for shear failure cases (with limit state functions under the
influence of numerical noise) as bending failure cases. This makes the improved DARS
method a versatile reliability algorithm, capable of working in any case without requiring
any prior knowledge of the behavior of the structure.

With the improvements forwarded in this thesis for DARS (coined as BDARS in this
thesis), together with the fact that the number of exact function evaluations for DARS
does not strongly depend on the number of input random variables and only a mod-
erate value of line search tolerance suffices to obtain an accurate reliability estimate,
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makes the improved DARS method particularly useful in terms of practical utility. This
improved DARS method makes it possible to obtain an accurate estimate of failure prob-
ability for any type of RC structures within a feasible number of NLFEA. It is no longer
necessary to be content with just semi-probabilistic safety checks, out of concerns for
efficiency.





SAMENVATTING

Analytische formules voor het draagvermogen van de gewapende betonconstructies bie-
den niet het algemene raamwerk voor de uiteindelijke draagkracht, zoals die wel kan
worden verkregen met niet-lineaire eindige-elementenanalyses (NLEEA). Om een nauw-
keurige schatting van de faalkans van een gewapende betonconstructie te verkrijgen, is
het noodzakelijk de op NLEEA gebaseerde grenstoestandfunctie te gebruiken in een be-
trouwbaarheidsanalyse. In de literatuur is er echter een relatief gebrek aan op NLEEA
gebaseerde analyses van de betrouwbaarheid. Nergens wordt geprobeerd expliciet re-
kening te houden met de onzekerheid die het NLEEA-model, de zogenaamde modelon-
zekerheid, introduceert in de betrouwbaarheidsanalyse. Evenmin is er veel moeite ge-
daan om de impact van numerieke ruis van NLEEA op de nauwkeurigheid en efficiëntie
van de betrouwbaarheidsalgoritmen te bestuderen. Omdat de looptijd van elke NLEEA
hoog is, is het voor de praktische haalbaarheid van een op NLEEA gebaseerde betrouw-
baarheidsanalyse nodig dat het betrouwbaarheidsalgoritme efficiënt is en in staat om
verschillende soorten grenstoestandfuncties aan te kunnen (bijvoorbeeld met meerdere
bezwijkmechanismen). Met dit in gedachte worden twee op adaptieve responsopper-
vlak gebaseerde methoden – op basis van adaptief richtingsgewijs bemonsteren (DARS)
en op basis van adaptieve Kriging Monte Carlo-simulatie (AK-MCS) – geselecteerd voor
het onderzoeken van op NLEEA gebaseerde betrouwbaarheidsanalyse van gewapende
betonconstructies. Het belangrijkste doel van dit proefschrift is om de sterktes en be-
perkingen van deze twee algoritmen voor gewapende betonconstructies te bestuderen
en noodzakelijke wijzigingen aan te brengen in het DARS-algoritme om het meer ge-
schikt te maken voor de betrouwbaarheidsanalyse van gewapendbetonconstructies.

Een NLEEA-oplossingsstrategie is geformuleerd voor gewapende betonbalken en de
modelonzekerheid wordt gekwantificeerd op basis van 53 experimentele resultaten. Als
voorbeeld worden drie gewapende betonbalken geselecteerd. Een van deze balken be-
zwijkt op afschuiving, een andere op buiging en in de laatste ligt het bezwijkmechanisme
tussen afschuiving en buiging in. Op basis van deze drie balken wordt in dit proefschrift
een duidelijke numerieke ruis aangetoond voor het voorspelde draagvermogen op ba-
sis van NLFEA wanneer de balken falen op afschuiving, terwijl voor het bezwijkmecha-
nisme op buiging de NLEEA-oplossingsstrategie een veel gladdere capaciteitsvoorspel-
ling oplevert. Er zijn duidelijke aanwijzingen dat het mechanisme van afschuiving meer
gevoelig is voor bepaalde keuzes in de NLEEA-oplossingsstrategie.

Geconstateerd is dat de opname van de modelonzekerheid in de betrouwbaarheids-
analyse een wezenlijk verschil maakt in de betrouwbaarheidsschatting. Dit verschil on-
derstreept het belang van het meenemen van de modelonzekerheid in een op NLEEA
gebaseerde betrouwbaarheidsanalyse. Omdat de modelonzekerheid wordt vermenig-
vuldigd met de draagcapaciteit in de grenstoestandfunctie geeft dit een grenstoestand-
functie die een expliciete functie van de modelonzekerheid is.

De verificatie van de prestaties van het DARS-algoritme voor gewapendbetoncon-
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structies liet zien dat het aantal exacte functie-evaluaties (gebaseerd op NLEEA) afhangt
van de beoogde variatiecoëfficiënt van de faalkans, de tolerantie voor het vinden van
een oplossing per zoekrichting en de offset voor de minimale afstand tot het grenstoe-
standoppervlak. De genoemde tolerantie wordt gebruikt om het snijpunt met de grens-
toestandfunctie voor elke richting te vinden. De genoemde offset bepaalt of NLEEA- of
responsfunctie-evaluaties worden gebruikt. Er wordt aangetoond dat een strikte tole-
rantie de betrouwbaarheidsindex slechts marginaal verbetert, terwijl het aantal exacte
functie-evaluaties significant toeneemt. Een ruime waarde voor deze tolerantie zal vol-
doende zijn om efficiënt een nauwkeurige betrouwbaarheidsindex te verkrijgen. Wat
de invloed van de toegevoegde offset betreft is gevonden dat het gebruik van een vaste
waarde van de offset tijdens de betrouwbaarheidsanalyse het aantal exacte grenstoe stand
functie-evaluaties verhoogt. Het gebruik van een adaptieve offset in plaats van een con-
stante offsetwaarde verhoogde de efficiëntie van DARS. Alleen deze twee aanpassingen
konden echter het aantal op NLEEA gebaseerde functie-evaluaties voor de gewapende
betonbalken die falen op afschuiving niet laag houden. De numerieke ruis in de grens-
toestandfunctie maakte, voor dit geval, DARS inefficiënt. De polynoominterpolatie van
DARS voor het vinden van een oplossing per richting blijkt een belangrijke oorzaak van
de inefficiëntie te zijn. Een dergelijk schema werkt goed voor goed gedragende, gladde
grenstoestandfuncties, maar voor grenstoestandfuncties met veel numerieke ruis blijkt
een dergelijke strategie inefficiënt. In plaats van de op interpolatie gebaseerde zoekme-
thode wordt het univariabele algoritme van Brent gebruikt om de efficiëntie van DARS
te verbeteren. Voor het adaptieve responsoppervlak wordt een op Gaussiaans procesre-
gressie (GPR) gebaseerd responsoppervlak gebruikt in plaats van de kwadratische res-
ponsoppervlakfunctie omdat een dergelijk responsoppervlak een betere initiële schat-
ting biedt voor een oplossing per richting. De methode van Brent beperkt het gebruik
van interpolatie zolang de insluiting rondom de wortel breed is. Bij een klein interval,
waar het effect van numerieke ruis het grootst is, schakelt de methode van Brent over op
de bisectiemethode die niet wordt beïnvloed door ruis. Dit, in combinatie met de initiële
schatting van het op GPR gebaseerde responsoppervlak, verbeterde de efficiëntie van de
DARS-methode voor gevallen met numerieke ruis.

De AK-MCS-methode is onderzocht voor de gewapende betonbalken. Deze me-
thode maakt gebruik van een leerfunctie om monsters dichtbij het grensgebied te vin-
den. Gebleken is dat de AK-MCS geen problemen heeft bij het verwerken van de gladde
grenstoestandfunctie van de balk die faalt op buiging, maar voor de door schuifkracht
gedomineerde balken is het in vergelijking met DARS veel inefficiënter. De reden hier-
voor is dat door de numerieke ruis van de grenstoestandfunctie functie-evaluaties die
zich niet in de buurt van het werkelijke grenstoestandoppervlak bevinden vaak verkeerd
worden geïdentificeerd door de leerfunctie. Dit onnodig verhoogt het totale aantal functie-
evaluaties op basis van NLEEA, waardoor de convergentie vertraagd wordt.

In dit proefschrift wordt aangetoond dat de bestaande DARS-methode niet effici-
ënt is wanneer de desbetreffende gewapendbetonconstructies bezwijkt op afschuiving.
Dit impliceert dat de bestaande DARS-methode niet op een blackboxmanier kan wor-
den toegepast voor een gewapendbetonconstructie zonder eerst de mogelijke bezwijk-
mechanismes te bestuderen. Een dergelijke tekortkoming is echter verholpen met de
nieuwe verbetering die in dit proefschrift wordt aanbevolen, omdat nu het lijnzoek-
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schema van DARS net zo efficiënt is voor gevallen met bezwijken op afschuiving (met
limietstatusfuncties onder invloed van numerieke ruis) als gevallen met bezwijken op
buiging. Dit maakt de verbeterde DARS-methode een veelzijdig betrouwbaarheidsalgo-
ritme dat in staat is om in elk geval te werken zonder voorafgaande kennis van het gedrag
van de constructie.

De in dit proefschrift aanbevolen verbeteringen voor DARS (als BDARS in dit proef-
schrift gebruikt), samen met het feit dat het aantal exacte functie-evaluaties voor DARS
niet sterk afhankelijk is van het aantal variabelen en dat een ruime waarde van de lijn-
zoektolerantie volstaat om een nauwkeurige schatting voor de betrouwbaarheid te krij-
gen, maken de verbeterde DARS-methode bijzonder nuttig voor de praktijk. Deze ver-
beterde DARS-methode maakt het mogelijk om een accurate schatting te maken van de
kans op falen voor elk type gewapendbetonconstructie binnen een haalbaar aantal eva-
luaties op basis van NLEEA . Het is niet langer nodig om genoegen te nemen met alleen
semiprobabilistische veiligheidscontroles op basis van efficiëntie.





1
INTRODUCTION

1.1. BACKGROUND: RELIABILITY OF RC STRUCTURES

R EINFORCED concrete (RC) structures account for a vast majority of civil infrastruc-
tures, like bridges. Existing structures like these are expected to be loaded beyond

their intended capacity due to increased traffic loads. It is then necessary to confirm
whether the structures are safe operating under increased loading condition. In fact, the
quantification of the chances of a structure’s survival is always of paramount importance
from public safety’s point of view. The safety assessment of these structures is based
on uncertain or incomplete information, because it is not possible to obtain full infor-
mation about structural parameters like material properties, boundary conditions etc.
through experiments. In such cases, a useful decision-making tool is reliability analysis,
where the safety assessment is done within the framework of probability. In a reliability
analysis the failure probability of a structure is quantified based on the limit state func-
tion of the structure. A limit state function of a structure is a mathematical expression
which gives the measure of safe state and failure state for the structure. The failure prob-
ability of a structure is essentially the measure of the likelihood of a structure attaining
the failure state, given the state of available information and predictive models.

1.1.1. IMPORTANCE OF NONLINEAR FINITE ELEMENT BASED LIMIT STATE

FUNCTION
Limit state functions are defined based on the mechanical response of the structure. It is
a common practice in RC literature to define the limit state function in terms of the ulti-
mate load bearing capacity. There are several ways to determine the ultimate load bear-
ing capacity of a RC structure. The simplest are the analytical formulas which express
the ultimate bearing capacity as analytical function of the material properties of the RC
structure. Such formulas, or analytical models, are derived based on assumptions and
experimental observations. The analytical models can range from the most basic one to
the highly sophisticated models, based on the level of assumptions and approximations
involved. A discussion of this topic can be found in Muttoni & Ruiz [1]. The application

1
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of the analytical models are limited to the kind of structures they are derived for. So for
structures with complicated configuration such formulas will not hold good. Finite ele-
ment analysis is a better choice in this regard, because its application is not restricted by
the type and shape of the structures. Nonlinear finite element analysis (NLFEA) in par-
ticular constitutes a system level evaluation in which all structural parts interact leading
to a generalization of the notion of ultimate load bearing capacity [2]. The redistribution
of internal stresses owing to complex phenomena such as micro cracks in concrete cover,
plastic yielding of the reinforcement bar etc. can only be accounted for in a NLFEA. So,
NLFEA presents the best opportunity to determine the ultimate load bearing capacity
accurately for a RC structure.

1.1.2. COMPUTATIONAL COST OF A NLFEA BASED RELIABILITY ANALYSIS
Since the probability density function of the limit state function is usually not known a
priory, a reliability analysis process typically entails repeated evaluation of the limit state
function in order to determine the failure probability. The number of such evaluations
depends on the kind of reliability algorithm used and the geometrical nature of the limit
state function. If the limit state functions are not available as a simple, explicit function
of the input stochastic properties, it might require large number of limit state function
evaluations to obtain the failure probability. Large number of limit state function evalua-
tions are not a problem as long as such evaluations are not time consuming. The NLFEA
involves repeated solving of linearized system of equations to determine the ultimate
load bearing capacity. This means that each NLFEA can be time consuming, especially
for large structures or finer mesh discretization. A computationally expensive NLFEA
prohibits large number of evaluations of the NLFEA defined limit state functions. This
makes the reliability analysis of RC structure with NLFEA quite challenging. Because al-
though it is important to estimate the failure probability accurately, computational cost
forces such analysis to use as less number of NLFEA as possible. Reliability algorithms
which can produce an accurate failure probability estimate in limited number of NLFEAs
are of paramount interest.

1.1.3. NUMERICAL NOISE ASSOCIATED WITH NLFEA AND ITS IMPACT ON

RELIABILITY ANALYSIS
While there are many advantages of nonlinear finite element based reliability analysis,
the use of NLFEA is also a source of numerical noise, which can pose major difficulty for
the reliability method. This numerical noise can be understood as fluctuations around
an expected smooth response. The reason behind such fluctuations is the discrete na-
ture of the finite element algorithm, such as inadequate discretization, convergence cri-
terion in the iterative solution procedure for the system of nonlinear equations, round off
error etc. This numerical noise in the predicted ultimate load bearing capacity is man-
ifested in the limit state function. The resulting limit state function will be addressed
as ’noisy limit state function’ in this thesis. The influence of this numerical noise in the
outcome of the reliability analysis can be quite significant, in terms of accuracy and ef-
ficiency (efficiency in the sense of the total number of NLFEA). For example, Henriksen
[3] have reported that the adaptive response method construction was impeded by the
difficulties in producing consistent NLFEA response and it was only the bending failure
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mechanism for which the author achieved a consistent (and accurate) performance of
the reliability algorithm.

1.2. EXAMPLES OF RELIABILITY ANALYSIS OF RC STRUCTURES

IN LITERATURE AND DIRECTIONS OF IMPROVEMENT

The reliability analysis examples in the literature for RC structure are often limited to re-
liability analysis based on analytical limit state functions [4–6]. Such approach is popular
because the analytical model based limit state functions can undergo a large number of
simulations in a reliability analysis, owing to their fast execution time. NLFEA based re-
liability analysis of RC structures can account for a much greater scope of complexity in
the mechanical response of the RC structures. But such examples are relatively scarce in
the literature due to the (possible) high run time of each NLFEA. A selected set of NLFEA
based reliability analysis examples are discussed here in order to find possible directions
of improvement in the existing literature.

Val et al. [7] used the First Order Reliability Method (FORM) in combination with NLFEA
to determine the reliability of plane frame RC structures. FORM is a highly efficient
method in terms of number of function calls. It employs constrained optimization meth-
ods to determine the design point and its distance from the origin in the standard normal
space. The constrained optimization methods require the calculation of gradient of the
limit state surface, with respect to each input random variables. But it is not always easy
to compute this gradient. Depending on the material property, such a gradient may not
even always exist. FORM is also known to be inaccurate for cases with a highly non-
linear limit state function. These limitations of FORM have motivated the development
of other structural reliability algorithms. The simplest and the most robust way to deal
with any kind of limit state functions is the Monte Carlo simulation (MCS). Biondini et
al. [8] evaluated the reliability of a materially and geometrically nonlinear pre-stressed
RC bridge by MCS with a limited number of samples. The samples were drawn close
to the mean values of the input random material properties. Darmawan et al. [9] used
MCS to investigate the spatial time dependent reliability of corroded RC bridge girder,
however it is not clear how many samples they used. In civil engineering structures, it
is expected that the failure probability are typically in the range 10−3 − 10−6. The pure
randomness with which MCS draws samples in the sample space means that an accu-
rate estimation of the failure probability of a structure would require an impractically
large number of limit state evaluations. If the sampling is done around the design point
then limited number of samples would suffice. It is not possible to predict the design
point beforehand however. If the limited number of samples are not around the design
point then the failure probability estimate can be completely wrong. Especially if there
is non-linearity in the structural response then such estimates are of little use. An effi-
cient simulation technique compared to MCS is the Latin Hypercube sampling (LHS),
which is a stratified sampling technique which divides the sample space in several non-
overlapping equal probability regions and draws one sample from each of these regions.
Delgado et al. [10] applied LHS to a RC beam and concrete problem, with two random
variables. Using only 30 samples the authors managed to achieve a low variation in the
failure probability estimate. While LHS is an effective variance reduction technique, it
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does not necessarily lead to optimal space-filling designs, which can be a shortcoming
for problems with higher stochastic dimension. Another efficient simulation technique
is the Subset simulation (SS). This method expresses a small failure probability as a prod-
uct of larger conditional probabilities, by introducing intermediate failure events. The
SS however is shown to be less efficient compared to Directional simulation [11]. Di-
rectional methods try to avoid the pure randomness in sampling by trying to determine
failure probability contents along random directions in the sample space. To do so, these
methods measure the distances to the limit state function along those directions in a line
search procedure. But line search procedure incurs limit state function evaluations, so
indiscriminate sampling of directions could still make directional methods impractically
inefficient for RC structures.

Response surface based reliability algorithms are a promising prospect for the reliabil-
ity analysis of RC structures. Such an approach tries to construct a surrogate function
of the actual limit state function based on limited number of samples. Especially, if the
samples are selected through some intelligent strategy, this method can be vastly more
efficient compared to MCS. One way to reduce the number of limit state function evalu-
ation would be to use machine learning methods, like artificial neural network (ANN) to
construct the response surface. Cheng et al. [12] used an ANN based response surface
method for reliability analysis of pre-stressed RC bridges. But such fixed response sur-
face would still require relatively larger number of samples to train the machine learning
functions to produce accurate response surface. Response surface methods are particu-
larly accurate if the response surface is constructed around the design point in the space
of random variables. Adaptive response methods are ideal in this respect. It is because
these methods actively try to fit the response surface around the most vulnerable parts
of the limit state function. This is accomplished by adaptively improving the response
surface in successive iteration. In this process the total number of actual (NLFEA based)
function evaluations are reduced. Henriksen [3] used a FORM based adaptive response
surface method to perform reliability analysis of RC beams. FORM was used this ap-
proach to guide the sampling closer to the design point. This method however retained
the inherent short coming of FORM to deal with multiple failure modes. A better strategy
is to combine directional approach with adaptive response method, because directional
methods are much more robust in dealing with variety of limit state functions. This ap-
proach, the so called directional adaptive response surface (DARS) method, was pro-
posed by Harbitz et al. [13]. Waarts [14] found DARS to be the most efficient and robust
reliability algorithm based on several finite element based limit state functions. It is be-
cause the adaptive response surface makes sure that the exact function evaluation takes
place only close to the design point. However, numerical noise was not part of any of the
examples considered by Waarts. One other example of a NLFEA based reliability analy-
sis with DARS is by Evangeliou [15], where the procedure is demonstrated for a RC beam
failing in shear. The basic premise of DARS method makes it a promising candidate for
reliability analysis of RC structure. Another interesting candidate is the adaptive Krig-
ing Monte Carlo simulation (AK-MCS) method. This method uses a machine learning
technique, Gaussian process regression, to construct an adaptive response surface. Cur-
rently not many examples of the application of AK-MCS exists in RC literature, except the
work of Rózsás et al. [16]. This specific work compared the performance of DARS with
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AK-MCS. The comparison was made based on the examples of an RC deep beam and an
RC continuous girder. The result was inconclusive with regards to the comparison of the
efficiency for DARS and AK-MCS. Also, the effect of numerical noise on the efficiency of
DARS and AK-MCS was not addressed in that work. This leaves scope for exploration.
One key element is missing in the current literature for the NLFEA based reliability anal-
ysis of RC structure. It is the study of the impact of uncertainty introduced by the NLFEA
solver itself, on the reliability outcome. Finite element model of a structure is an ab-
straction of the physical structure with a number of assumptions, generalizations, and
idealizations [17]. It entails assumptions and simplifications regarding to what extent
and to what detail the structure has to be modeled, how the boundaries of the model are
described, etc. In the process of abstraction from the structure to the mechanical model,
and then the abstraction from the mechanical model to the finite element model, NLFEA
introduces a potential for significant uncertainties in all steps from idealization of the
physical problem, discretization into finite elements, numerical material modeling and
selection of solution procedures. This uncertainty is termed as Modeling uncertainty in
literature. It is usually quantified on the basis of comparison between experimental re-
sults and numerical predictions of the failure load. Introducing modeling uncertainty as
a separate random entity in the reliability analysis incorporates the scope of uncertainty
that comes from the finite element solver itself. The failure probability estimate without
accounting for this modeling uncertainty can be completely wrong, so it is essential to
include modeling uncertainty in the reliability analysis of RC structures.

1.3. OBJECTIVES OF THIS THESIS
The discussions in the preceding sections highlights the relative lack of NLFEA based
reliability analysis efforts in the literature. Whatever efforts there are, none of them at-
tempted to include the NLFEA modeling uncertainty in the reliability analysis. Nor has
there been much effort to study the impact of the numerical noise from NLFEA on the ac-
curacy and efficiency of the reliability algorithms. For a NLFEA based reliability analysis
to be practically feasible, given its computational cost, it is imperative that the reliabil-
ity algorithm is efficient and capable of handling different kinds of limit state functions
(with multiple failure modes, for example). Keeping this in mind two adaptive response
surface based methods, DARS and AK-MCS, are selected for the reliability analysis of RC
structures, based on the preliminary literature survey. It needs to be studied under what
circumstances and to what extent the numerical noise influences the performance of
these algorithms. These key threads of investigations are outlined in the following steps,

• To formulate a NLFEA solution strategy for RC beams and to quantify the model-
ing uncertainty for the adopted NLFEA solution strategy based on experimental
results. The formulation is done within the frame work of the guidelines issued by
Dutch Ministry of Infrastructure and the Environment [18] in order to minimize
the user factors in such modeling as much as possible.

• To investigate to what extent the noise in the NLFEA prediction of ultimate bearing
capacity is related to the failure mode. This investigation is done based on three RC
beam cases, the first one failing in shear, the second in shear or bending (mixed)
and the last one in bending.
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• To include the modeling uncertainty associated with solution strategy, along with
material parameters, as an additional random variable in the reliability analysis of
the beam failing in shear and study its effect on the outcome.

• To verify the DARS method for the RC beam failing in pure shear. Of particular
interest is the behavior of the line search procedure in DARS method under nu-
merical noise in the limit state function. Assessing the strength and weaknesses of
DARS and exploring the possibility of its improvement is the key focus.

• To study the performance of AK-MCS method for the selected beam cases. Based
on this study a comparative analysis, with respect to the RC beams, between DARS
and AK-MCS is performed.



2
STRUCTURAL RELIABILITY

METHODS

2.1. BASIC CONCEPTS OF STRUCTURAL RELIABILITY

T HE concept of structural reliability is introduced in this chapter. Various reliability
algorithms are discussed from the point of view of their relative strengths and weak-

nesses. The discussions of this chapter have been predominantly taken from existing
literature such as Sudret et al. [19]. But for the sake of brevity the concepts are discussed
in necessary details.

ξ denote the set of all basic random variables pertaining to the a given structure de-
scribing the randomness in geometry, material parameters and loading. For each real-
ization of ξ the state of the structure is determined by the mechanical response of the
structure, such as displacements, strains, stresses. Alternatively, ultimate load bearing
capacity is also used to determine the state of the structure. Let S denote a vector of
such effects, whose values enter in the definition of the failure of the system. These two
vectors are related through the mechanical transformation,

S = S(ξ) (2.1)

which is defined, in all but simple situations, in an algorithmic sense, e.g. through finite
element computer code. To assess the reliability of a structure, a limit state function g
depending on mechanical response is defined as follows,

• g (S) > 0, define the safe state of the structure.

• g (S) ≤ 0, define the failure state of the structure.

In a reliability context, failure state does not necessarily mean the breakdown of the
structure, but the fact that certain requirements of serviceability or safety limit states
have been reached or exceeded. The value of S satisfying g (S) = 0 describes the limit
state surface of the structure. There can be various kinds of limit state functions, like

7
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for example, g (S) = δthr eshol d −δ, where δ can be deflection of a beam. The definition
of the limit state function can also be based on maximum sustained load. If the joint
probability density function of S is denoted by fS(S), then the probability of failure of the
structure can be defined as,

P f =
∫

g (S)≤0
fS(S)dS (2.2)

There are two practical difficulties associated with the above integral,

• The joint PDF of the response quantities, fS(S) is usually not known, the available
information being given in terms of the basic variables .

• The multi-fold integral 2.2 over the failure domain is not easy to compute.

One way around this problem of evaluating P f from Eq.2.2 is by a sampling tech-
nique, called Monte Carlo simulation (MCS). In MCS a set of random samples are gen-
erated based on the probability density function fS(S). Then taking each of those sam-
ples as input it is determined whether it leads to a failure state or safe state of the limit
state function. The failure probability of a structure is obtained as the relative frequency
of the number of times the failure state occurs. The failure probability directly follows
from the number of occurrences of failure state over the total number of simulations.
While MCS is conceptually simple, an accurate estimation of the failure probability of a
structure typically requires a large number of simulations (i.e. limit state function evalu-
ations). If the limit state function is not explicitly available, a costly numerical methods
such as finite element method has to be used, which makes large number of simulations
practically not viable. Other alternative ways need to be adopted to evaluate the failure
probability in that case.
One of the alternative ways of determining the failure probability is to determine the
second moment statistics of the resistance and demand variables. Suppose these are
lumped into two random variables denoted by R and F respectively. The limit state func-
tion is defined by,

Z = R −F (2.3)

Now,let’s define an entity β which is given by,

β= µZ

σZ
(2.4)

Here µZ and σZ are the mean and standard deviation of the safety margin Z . If R and
F are jointly normal, so would be Z . The probability of failure of the system in that case
would be,

P f = P (Z ≤ 0) = P
( Z −µZ

σZ
≤−µZ

σZ

)
=Φ(−β) (2.5)

Here Φ is the standard normal cumulative distribution function. Let us consider now a
general case where Z is actually a limit state function,
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Z = g (S) (2.6)

If the mean µS and covariance matrix ΣSS are known then by Taylor expansion of Z
around the mean of S we have,

Z = g (µS)+ (∇Sg )T
S=µS

.(S−µS)+O‖(S−µS)2‖ (2.7)

Here, O(.) signifies the higher order terms. The following first order approximations are
obtained,

µZ = g (µS ) (2.8)

σ2
Z = (∇Sg )T

S=µS
ΣSS(∇Sg )S=µS

(2.9)

With these values of µZ and σZ , the so called mean value first order second moment
reliability index can be found out from the equation 2.4 [19].

βMV FORM = g (µS )√
(∇Sg )T

S=µS
ΣSS(∇Sg )S=µS

(2.10)

While the method outlined here for obtaining the βMV FORM is convenient, there are
couple of problems with this method. First one is that R and F are in general not Gaus-
sian, so Z will not be Gaussian either, and in that case the relationship which leads to
the failure probability P f will not be valid. Besides, the βMV FORM is not invariant with
respect to changing the limit state function for an equivalent one. The problem of non-
Gaussian input variables can be circumvented by transforming them to corresponding
Gaussian variables. This also solves the problem of invariance. Second problem is the
fact that expansion of Z around the mean value of S does not lead to an accurate esti-
mate of the value of reliability index. The point of linearization should be selected as
the point on the limit state surface nearest to the origin in the standard normal space.
This point is called the design point. The distance to the Design point is the first order
reliability index βMV FORM .

2.2. TRANSFORMATION OF RANDOM VARIABLES
The estimation of failure probability P f becomes easier if the input random variables are
(Standard) Normally distributed, because in that case many structural reliability meth-
ods are available to evaluate the Design point. It is also easier to construct a response
surface in the space of (input) standard normal variables. But a Gaussian distribution
for input parameters is not always an available option, because physical parameters,
like Young’s Modulus in our case, cannot attain negative values, and with a normal dis-
tribution there is a finite probability of physical properties attaining absurd value. Log-
normal distribution is best suited for where physical parameters like Young’s modulus
are the input stochastic quantity. But even if the input quantities are non-normally dis-
tributed, they can be transformed like the following,

Y = Y(ξ) (2.11)
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such that Y is a Gaussian random vector with zero mean and unit covariance matrix,
which means that Yi are independent. The input variables ξi are correlated though. The
transformation is done in two stages. In the first stage non-Normally distributed vari-
ables ξi are transformed in Gaussian random variables Zi in such a manner that the
correlation of the random variables ξi among themselves are maintained. One of the
most convenient method to perform such transformation is Nataf’s transformation [20].
This is a transformation process which helps transforming the input random variables ξ
without altering the covariance structure Aξξ of ξ. The steps of such a transformation is
outlined here.
The goal is to produce

Zi =Φ−1(Fi (ξi )) (2.12)

where Fi is non-Gaussian cumulative distribution(CDF) function andΦ is the joint CDF
of Gaussian variables Zi which is given by,

ϕn(Z,R0) = 1

(2π)
n
2
√

det(R0)
exp

(
− 1

2
ZT R−1

0 Z
)

(2.13)

The covariance matrix, R0 needs to be simulated in such a way that the corresponding
(target) covariance matrix of ξi remain R. PDFs of ξi and Zi are related as,

fξ(ξ) = f1(x1) · · · fn(xn)
ϕn(Z,R0)

ϕ1(z1) · · ·ϕn(zn)
(2.14)

Here ϕn(Z,R0) is the joint PDF of the n Gaussian variables Zi and ϕn(zn) is the marginal
PDF of the Gaussian variable Zn . The problem comes down to numerically solving the
integral equation,

ρi j =
∫ ∫ ∞

−∞

(ξi −µi

σi

)(ξ j −µ j

σ j

)
ϕ2(zi , z j ,ρ0,i j )dZi dZ j (2.15)

Here ρi j are the target correlation coefficients and ρ0,i j are correlation coefficients of Zi

we need to solve for. Once Zi is obtained then the second stage of the transformation
is needed to be done where the independent standard normal random variables Yi are
produced from Zi by the straight forward transformation,

Z = LY (2.16)

where L is the lower triangular Cholesky matrix of R0, or,

R0 = LLT (2.17)

These two stages of transformation can be combined to establish the direct relationship
between Yi and ξi

Y = L−1.diag
( fi (ξi )

ϕi (yi )

)
[ξ−M] (2.18)

M is the diagonal matrix containing the mean values of ξi . The equation 2.18 is signif-
icant because it establishes a functional relationship between a vector of independent
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Table 2.1: The comparison of target and simulated correlation coefficients by Nataf’s transformation

Correlation coefficient Target Simulated

ρ12 0.6766 0.6767

ρ13 0.2096 0.2097

ρ14 0.0297 0.0296

ρ15 0.0019 0.0017

ρ23 0.6766 0.6767

ρ24 0.2096 0.2098

ρ25 0.0297 0.0297

ρ34 0.6766 0.6768

ρ35 0.2096 0.2098

ρ45 0.6766 0.6766

standard normal variables with a vector of correlated Non-Gaussian random variables
with specific correlations among themselves. The procedure of Nataf’s transformation is
demonstrated with an example of an one dimensional case. The correlation coefficients
are described by the following equation,

R(xi , x j ) = exp
(
− (xi −x j )2

a2

)
(2.19)

xi suggests the co-ordinate associated with the i th node. The entity a is called correla-
tion length. Let there be five Log-normally distributed random variables with identical
mean and variances. The result of target and simulated correlation coefficients of these
5 random variables are given in the Table 2.1. It should be noted however that in the
case of Nataf’s distribution with Log-normal marginals, there are closed form relations
between the correlation coefficients in the Log-normal and normal spaces [20]. There is
no need for numerical analysis, as described in the Table 2.1. The table is only shown for
illustration.

2.3. STOCHASTIC FINITE ELEMENT BASED STRUCTURAL RELIA-
BILITY METHODS

At the beginning of this chapter it has been discussed how Monte Carlo simulation (MCS)
is impractical for a finite element based reliability analysis. In this section several re-
liability methods, alternative to MCS, will be presented from literature. Methods like
Perturbation method, First order reliability method (FORM), Second order reliability
method ( SORM), various kinds of Response surface methods, Directional simulation
(DS), Directional adaptive response surface method (DARS) and Adaptive Kriging Monte
Carlo simulation method (AK-MCS) will be described briefly, in key details.
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2.3.1. PERTURBATION METHOD
In the context of a finite element analysis for quasi-static linear problems, the equilib-
rium equation obtained after discretizing the geometry generally reads,

K.U = F (2.20)

Suppose the input parameters ξ used in constructing the stiffness matrix K and the load
vector F are varying around the mean of the input. As a consequence, the three quanti-
ties appearing in the above equation will also vary around the values K0, U0, F0 they take
for these mean values of the input parameters [19]. The Taylor series expansions of the
terms appearing in Eq.(2.20) around the mean values of ξ read,

K = K0 +
N∑
i

KI
i ξi + 1

2

N∑
j

N∑
i

KI I
i j ξiξ j +o‖ξ‖2 (2.21)

F = F0 +
N∑
i

FI
i ξi + 1

2

N∑
j

N∑
i

FI I
i j ξiξ j +o‖ξ‖2 (2.22)

U = U0 +
N∑
i

UI
i ξi + 1

2

N∑
j

N∑
i

UI I
i j ξiξ j +o‖ξ‖2 (2.23)

Here N is the number of random variables. For the first and second order derivatives
the corresponding quantities evaluated at the mean values of ξ ( the mean of ξ is 0) are

KI
i = ∂K

∂ξi
and KI I

i j = ∂2K
∂ξi ∂ξ j

. Collecting the coefficients the similar order coefficients on

both sides of the equation, the following expressions are obtained successively,

U0 = K−1
0 F0 (2.24)

UI
i = K−1

0 (FI
i −KI

i U0) (2.25)

UI I
i j = K−1

0 (FI I
i j −KI

i UI
j −KI

j UI
i −KI I

i j U0) (2.26)

From the Eq.(2.24), Eq.(2.25), Eq.(2.26) and Eq.(2.20) an expression for U in terms of a
polynomial of ξ is obtained. This expression then can be used for the reliability analysis
with Monte Carlo method. But the reliability obtained from such a process will be poor.
To improve the reliability it is better to expand K, F and U around their own mean, like
the following [21],

K = K̄+δK

F = F̄+δF

U = Ū+δU

(2.27)

Instead of collecting coefficients, if the first moment is taken now, then after some rear-
rangement,
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AŪ = F̄−E[δKK̄−1F̄] (2.28)

where,
A = K̄−E[δKK̄−1K̄] (2.29)

The covariance matrix can be found from,

cov(U,UT ) = K̄−1CK̄−1 (2.30)

Using the Eq.(2.30) in Eq.(2.9) will produce the standard deviation of the limit state func-
tion (here S = U). Using this standard deviation the mean value first order second mo-
ment reliability index βMV FORM can be found from the Eq.(2.10).

2.3.2. FIRST ORDER RELIABILITY METHOD
The mapping of the limit state function onto the standard normal space by using the
probabilistic transformation is described by,

g (S) = g (S(ξ)) = g (S(Y −1(Y))) =G(Y) (2.31)

With such transformation, the failure probability can be conveniently estimated from,

P f =
∫

G(Y)≤0
ϕY(Y)dY (2.32)

Where ϕY is the standard normal PDF of Y given by,

ϕY(Y) = 1

(2π)
n
2

exp(−1

2
‖Y‖2) (2.33)

This PDF has two interesting properties, namely it is rotationally symmetric and decays
exponentially with the square of the norm ‖Y‖. Thus the points making significant con-
tributions to the integral Eq.(2.32) are those with nearest distance to the origin of the
standard normal space. This leads to the definition of the reliability index β,

β=αT Y∗ (2.34)

Y∗ = argmin(‖Y‖|G(Y) ≤ 0) (2.35)

The solution Y∗ of the constrained optimization problem Eq.(2.35) is called the design
point or the most likely failure point in the standard normal space. When the limit state
function G(Y) is linear in Y , it is easy to show that,

P f =Φ(−β) (2.36)

For determination of the design point, the optimization problem above can be re-formulated
as,

Y∗ = argmin(
1

2
‖Y‖2|G(Y) ≤ 0) (2.37)
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The Lagrangian of the above problem is,

L (Y,λ) = 1

2
‖Y‖2 +λG(Y) (2.38)

Assuming sufficient smoothness of the functions involved, the partial derivatives of L

have to be zero at the solution point. Hence,

Y∗+λ∗∇G(Y)|Y=Y∗ = 0 (2.39)

G(Y∗) = 0 (2.40)

The Eq.(2.39) yields,

λ∗ = ‖Y∗‖
‖∇G(Y)|Y=Y∗‖ (2.41)

Putting this back into the Eq.(2.39) produces the first-order optimality conditions,

Y∗‖∇G(Y)|Y=Y∗‖+‖Y∗‖∇G(Y)|Y=Y∗ = 0 (2.42)

For FORM the first-order reliability index β i.e. the minimum distance from the origin of
the standard normal space to the limit state surface, is numerically the most challeng-
ing task. One source of difficulty is the calculation of the gradient ∇G(Y). Many of the
well known optimization algorithms, like sequentially quadratic programming (SQP) or
gradient projection method (GPM) requires calculation of the gradient (even hessian in
case of SQP). The direct differentiation method [22], [23] is used to compute the gradient,
where possible. Through finite elements the gradient of the limit state surface with re-
spect to the stochastic variables can be elegantly obtained. In a stochastic finite element
problem the stiffness matrix K, the vector of degrees of freedom U and load vector F are
all functions of the input stochastic variables ξ. The resulting global system of equations
in that case is,

K(ξ)U(ξ) = F(ξ) (2.43)

In direct differentiation method the above equation is differentiated w.r.t stochastic in-
put variable ξi , which yields,

K(ξ)
∂U(ξ)

∂ξi
+ ∂K(ξ)

∂ξi
U(ξ) = ∂F(ξ)

∂ξi
(2.44)

From this follows,

∂U(ξ)

∂ξi
= K(ξ)−1

[∂F(ξ)

∂ξi
− ∂K(ξ)

∂ξi
U(ξ)

]
(2.45)

If the limit state function is defined as g (U(ξ)) in the space of original input variables ξ
and as G(Y) in the transformed space of independent standard normal variables Y, then
the gradient ∇YG(Y) can be obtained by chain rule,

∇YG(Y) =∇Ug (U)∇ξ(U)Jξ,Y (2.46)
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Here Jξ,Y is the inverse of the Jacobian JY,ξ,

JY,ξ = L−1diag
( fi (ξi )

ϕi (Yi )

)
(2.47)

If material non linearity is considered then the resulting Finite Element formulation
would be nonlinear. Direct differentiation based FORM can be still used to determine
the reliability, the equations need to be adjusted on account of the non linearity. For
example, in elastic nonlinear case, due to non linearity the stiffness matrix would be a
direct function of the displacement vector U, So, the set of algebraic equations would
look like,

K(U(ξ),ξ)U(ξ) = F(ξ) (2.48)

The residual,

R(U(ξ),ξ) = K(U(ξ),ξ)U(ξ)−F(ξ) (2.49)

The Newton-Raphson iteration formula,

Ur+1(ξ) = Ur (ξ)−T(Ur (ξ),ξ)−1R(Ur (ξ),ξ) (2.50)

where T(Ur (ξ),ξ) = ∂Rr (U(ξ),ξ)
∂Ur (ξ) . Upon differentiation of Eq.(2.48) with respect to ξi and

after some rearrangement,

∂U(ξ)

∂ξi
= T(U(ξ),ξ)−1

[∂F(ξ)

∂ξi
− ∂K(U(ξ),ξ)

∂ξi
U(ξ)

]
(2.51)

More details on the derivation of the gradient for nonlinear finite element analysis can be
found in [24]. Calculating the gradient in this manner would require extensive intrusion
into the finite element program down to the elemental level. Besides, the non-linearity
in reality could be much more involved. A closed form expression for gradient will be
quite difficult to obtain in that case. Also, it is difficult to generalize this method of ob-
taining gradient for any kind of non-linearity. Currently few finite element softwares,
like OpenSees, has the provision to calculate the gradient with the direct differentiation
method [25]. This limits the possibility of using different commercial FE softwares in
black box fashion and exploit their specific area of expertise. One alternative to the di-
rect differentiation method could be the Finite difference method (FDM), facilitating the
computation of gradient in a non intrusive manner. However, the use of FDM can result
into wrong estimate of gradient if there is numerical noise in the limit state function.
There are cheaper alternative methods to update the gradient. Also, there are some op-
timization methods which do not require the gradient. A few widely used optimization
methods are discussed here.

HLRF
Hasofer and Lind suggested an iterative algorithm, called HLRF [26], to solve Eq.(2.42).
This algorithm may not always converge. This algorithm generates a sequence of points
Yi from the recursive rule,
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Yi+1 = ∇G(Yi )T Yi −G(Yi )

‖∇G(Yi )‖
∇G(Yi )

‖∇G(Yi )‖ (2.52)

From Eq.(2.52) the expression for design point is obtained in a straight forward fashion,

β=
√

YT
i+1Yi+1 (2.53)

SEQUENTIALLY QUADRATIC PROGRAMMING

In the sequentially quadratic programming [27] the objective function is formed in the
following fashion,

W =∇2
(
− 1

2
‖Yi‖2

)
+λ∇2G(Y) (2.54)

Where λ is the Lagrange multiplier. Now the Newton-Lagrange equation for the SQP is,

[
W ∇G(Yk )T

∇G(Yk ) 0

](
sk

λk+1

)
=

(
∇

(
− 1

2‖Yk‖2
)

G(Yk )

)
(2.55)

Here sk is the search direction at k th iteration step and λk+1 is the Lagrange multiplier
for (k + 1)th step. For small number variables and constraint the size of the matrix is
small, so it can be directly inverted to obtain sk and λk+1. From this the new candidate
solution at (k +1)th iteration can be obtained,

Yi+1 = Yi +αsk (2.56)

α is the step size in the search direction.

GRADIENT PROJECTION METHOD

In the Gradient projection method [28] the projection matrix P is found by,

P = I−∇G(Yk )(∇G(Yk )∇G(Yk )T )∇G(Yk )T (2.57)

The search direction is found by,

sk =−P∇
(
− 1

2
‖Yk‖2

)
(2.58)

But, this solution lies at the tangent space of the constraint surface, so in order to bring
it on the constraint,

c =−(∇G(Y
′
k+1)∇G(Y

′
k+1)T )−1G(Y

′
k+1) (2.59)

From Eq.(2.58) and Eq.(2.59) the solution is finally found,

Yk+1 j+1 = (Y
′
k+1 −∇G(Y

′
k+1)c) j (2.60)
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2.3.3. SECOND ORDER RELIABILITY METHOD
In Second order reliability method or (SORM), the failure probability , which is basically
a multidimensional integral, is approximated by replacing the limit state surface G(Y) = 0
with a paraboloid in the transformed normal space [29]. The steps involved in the SORM
are similar to FORM to the point of obtaining the design point. Once the design point is
obtained, the Jacobian matrix J can be computed as the following,

J =
N∑

i=1

N∑
i=1

Y ∗
i Y ∗

j cof
(
δi j − 1

‖∇G(Y)‖
∂2G

∂Yi ∂Y j
|Y=Y∗

)
(2.61)

where Y ∗
i is the i th component of the Design point. The δi j is called the Kronecker

delta, which is such that δi j = 1 if i = j , else δi j = 0. Once the design point is found, the
corrected failure probability can be found as per SORM by,

P f =Φ(−β)‖J‖− 1
2 (2.62)

The difficulty with above method is that the Hessian matrix ∂2G
∂Yi ∂Y j

at the Design point.

For linear problems evaluation of this Hessian matrix is not difficult but for nonlinear
stochastic problems Hessian matrix could be intractable. There is a SORM method that
avoids computing the Hessian [30].

2.3.4. RESPONSE SURFACE METHOD
Some authors have used response surfaces (also referred to as surrogate models) to re-
place the performance function in order to reduce the computational burden [31]. The
response surface is constructed based on a selected set of samples. The obtained closed-
form expression of the performance function is then used to calculate the failure proba-
bility. The response surface approach provides a fast approximation of the performance
function that can be used to identify important combination of variables and discern the
nature of the input-output relationships. Often polynomial based response surfaces are
used; however, with the increasing number of random variables the number of perfor-
mance function evaluations greatly increases thus making the approach computation-
ally expensive. In this method we express the limit state function in the space spanned
by the input variables, like the following,

g (ξ) ≈ ĝ (ξ) = a0 +
N∑

i=1
aiξi +

N∑
i=1

N∑
j=1

ai jξiξ j (2.63)

Here, N is the number of input random variables, ai are the unknown coefficients which
can be determined from the least square process of the error given by,

error(a) =
N F∑
k=1

(g (ξk )− ĝ (ξk ))2 (2.64)

Here k denotes the selected sample points of the input variables. Minimization of the
Eq.(2.64) leads to,

ĝ (ξk ) = (1,ξk
i ,ξk

i ξ
k
j )T (a0, ai , ai j ) = VT (ξk )a (2.65)
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or,

a = (VT V)−1VT g (ξk ) (2.66)

As sample points 2N fitting points from all the possible combinations of (±ξ1, · · · ,±ξN ).
Here ξi =µi ±σi .

2.3.5. CURTAILED RESPONSE SURFACE METHOD
To reduced the number of performance function evaluations Artificial neural network
(ANN) based or Gaussian process regression (GPR) based response surfaces have been
proposed and tested [32],[33],[34]. It is necessary to construct the response surface in the
neighborhood of the most probable failure region in order to obtain an accurate estimate
of reliability, especially for nonlinear, multimodal performance functions [35],[36]. An-
other way of constructing the response in the neighborhood of the failure regions is the
curtailed response surface [37] given by,

g (ξ) ≈ ĝ (ξ) = a0 +
N∑

i=1
aiξi +

N∑
i=1

ai iξ
2
i (2.67)

Here Exactly 2N +1 fitting points are selected as follows,

ξ1 = µξ

ξ2i = µξ− f σi ei

ξ2i+1 = µξ+ f σi ei

ξM = µξ+ (ξ∗−µξ)
g (µξ)

g (µξ)− g (ξ∗)
(2.68)

Here f is a constant number. The value f = 3 is used in this Chapter. ξ∗ is the vector
of design values obtained by HLRF method. ∇Yg (Y) is obtained by chain rule ∇Yg (Y) =
∇ξg (ξ)Jξ,Y, where, from Eq.(2.67) d g (ξ)

dξi
= ai +2ai iξi . This approach requires 4N +3 eval-

uations of the limit state functions in total.

2.3.6. RESPONSE SURFACE BY POLYNOMIAL CHAOS EXPANSION
The response surface can be prepared in the space of Hermite polynomial also [38]. The
response U(x,ξ) of a structural system can be represented as a Polynomial Chaos Expan-
sion (PCE) as following,

U(x,ξ) =
P−1∑
i=0

ψi (ξ)Ui (x) (2.69)

Here P is the number of terms in the expansion, ψi (ξ) are the Hermite polynomials,
ξ is the vector of independent standard normal variables and Ui (x) are the associated
coefficients. Hermite polynomials have the property of ortho-normality, so,

<ψi (ξ) >= 0, <ψi (ξ)ψ j (ξ) >= 0, i 6= j , ψ0(ξ) = 1 (2.70)
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The ortho-normal property of Hermite polynomials can be exploited in the method of
Galerkin’s projection [39] where the associated coefficients of each Hermite polynomial
in the response surface expansion can be obtained as the following,

Ui (x) = < U(x,ξ)ψi (ξ) >
<ψi (ξ)2 > (2.71)

The idea is to evaluate the response U(x,ξ) at some collocation points (like Gauss-Patterson
collocation points) and also find the values ofψi (ξ) at those particular collocation points.
With those values at the disposal the expectation < U(x,ξ)ψi (ξ) > can be computed nu-
merically, which leads to the desired coefficient Ui (x) at a location x. Alternatively, in-
stead of Galerkin’s projection method, least square method can be employed to obtain
the coefficients Ui (x) [40]. This process will follow the very same path as outlined for the
quadratic response surface.

2.3.7. IMPORTANCE SAMPLING METHOD
A class of method, called Importance sampling (IS) is developed to improve the effi-
ciency issue of MCS [41]. In IS the generation of samples is controlled by a sampling
distribution concentrated in the important (high-probability density) region of the fail-
ure domain. This method combines the fast convergence of FORM with the robustness
of Monte Carlo simulation. The basic idea is to recast the expression for failure proba-
bility P f in Eq.(2.32) to,

P f =
∫

G(Y)≤0

ϕY(Y)

ψY(Y)
fY(Y)dY (2.72)

where fY(Y) is the M dimensional sampling distribution. The estimate of P f given a

sample Yk drawn from f is therefore given by,

P f ,I S = 1

N

N∑
k=1

1D f (Yk )

ϕYk (Yk )

ψYk (Yk )
(2.73)

here 1D f (Yk ) = 1 whenever G(Yk ) ≤ 0 and 0 otherwise.

Exact convergence of FORM is not necessary to obtain accurate results, even an ap-
proximate sampling distribution can significantly improve the convergence rate com-
pared to standard MC sampling. In this Chapter maximum 1000 samples are for IS. It is
reported in literature that for systems with a high number of stochastic input variables,
the computational effort needed to construct a suitable sampling distribution in Impor-
tance sampling may exceed that of MCS [42],[43],[44],[45].

2.3.8. DIRECTIONAL SIMULATION
A method that treats high dimensional reliability problem efficiently is the Directional
Sampling (DS) method. A detailed discussion on this can be found in the work of Groote-
man [46] and Waarts [14]. In this method, instead of sampling random points in the
entire stochastic domain like in MCS, random directions are generated and the failure
probability content is determined for each of these directions. This technique takes ad-
vantage of an implicitly available LSF through finite element response to obtain samples
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extremely close to the LSF. In DS, for each simulated direction, a line search is performed
to locate the intersection point of that direction with the limit state function. At the be-
ginning of the process, the actual stochastic space of the problem is transformed to stan-
dard normal space u. A direction vector ui in the u space can be written as,

ui =λiθi (2.74)

Here, θi is the unit vector in i th direction. λi is the distance to the limit state surface
G = 0 from the origin, along the i th direction. The Figure 2.1) demonstrates the line
search procedure for a particular direction θi , in the space where G is a function of the
uni-variate parameter λi alone. At λi = 0, (denoted by the point 0 in Figure 2.1) the
point on the limit state surface (denoted by the point (a)), is obtained by finite element
method. Then along θi a starting value for λi (point 1) is assumed. Equivalent sample
point within the u space is found through Eq.(2.74) and the corresponding point, (b), on
G is evaluated.

−2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

10 23

λi

G

(b)

(a)

(c)

Figure 2.1: Demonstration of the line search for a particular direction θi . The limit state function G is plotted
as a function of the uni-variate parameter λi , along the direction θi .

A linear interpolation is done by joining the two points (a) and (b). The intercept of
G = 0 and this interpolated line is obtained. From this, a new value of λi , (point 2), is
obtained. This gives a third point (c) on the curve G . Using the three available points, (a),
(b) and (c), a quadratic interpolation is done and a new value of λi at G = 0 is obtained
(point 3). This process continues till the intercept point of G and i th direction (final
λi ) is found having a pre-defined limit-state function error tolerance (denoted as tol ).
Usually this line search takes 3−4 iterations per direction. The failure probability for N
such directions can be estimated as,

P f =
1

N

N∑
i=1

P f i =
1

N

N∑
i=1

(1−χ2
n(λ2

i )) (2.75)
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where n is the number of random variables. χ2
n(λ2

i ) is the cumulative Chi-square dis-
tribution of dimension n. DS can be applied for any irregular limit state surface and
operates only on data points obtained directly from FE analysis. The advantage of this
method is particularly evident when the number of stochastic input variables is low, but
for high stochastic dimension DS can be just as inefficient as MCS.

2.3.9. DIRECTIONAL ADAPTIVE RESPONSE SURFACE
Several authors have used response surfaces in conjunction with directional important
sampling methods to improve the efficiency of directional important sampling. Nie et al.
[47] made an adaptive directional sampling technique which applies a neural network
in order to distinguish important regions on the surface of unit hyper sphere. Groote-
man [46] developed a response surface based adaptive directional importance sampling
where a quadratic response surface is used as the functional type of the response sur-
face to account for the failure probabilities in the unimportant regions of the limit state
function. Waarts [14] compared the efficiency of DARS method against various other re-
liability algorithms for simple finite element based cases. DARS works along the same
principle outlined for DS. However, instead of carrying out actual function evaluation
based line searches for all directions, DARS distinguishes the important part(s) of the
limit state surface with the unimportant part. The actual line searches are reserved for
the important part only. This way around increases the efficiency of DS. For the un-
important part of the LSF a fully quadratic response surface of the nature of Eq.(2.76) is
used for line search.

Ĝ(u) = a0 +
n∑

i=1
ai ui +

n∑
i=1

n∑
j=1

ai j ui u j (2.76)

This response surface is used instead of the real limit-state function, for the directions
pointing towards distant regions of the limit state surface from the origin of u. This
method is called the Directional adaptive response surface method (DARS), which is
adopted in this thesis. Unlike DS, which uses NLFEA based exact line search for all sam-
pled directions, DARS requires exact line search for only few ‘important’directions . The
whole procedure completes over several iterations. In each iteration the algorithm tries
to find out new important directions from the set of all sampled directions, in addition
to the important directions already found from the previous iterations. At the end of
each iteration an exact line search is performed for the newly found important direc-
tions and the response surface (Ĝ) is updated, based on all the important limit state
points. Whether an i th direction is important or not is judged based on the criterion
λi ≤ λmi n +λadd . The sum λmi n +λadd is the threshold radius enclosing the closest re-
gion of the limit state surface from the origin. Here λmi n is the current shortest distance
from the origin to the exact limit state surface G = 0. The term λadd works as an offset
which increases the chances of finding an important direction. λi is the distance found
by inexact line search (based on Ĝ = 0). This iterative process continues over and over
again till no new important direction emerges. In the end, all the λi (whether found
based on G or final Ĝ) are used in Eq.(2.75) to obtain P f . As such, the λi s based on final
Ĝ makes only minor contribution to the overall P f . But the response surface plays a crit-
ical role in steering the procedure towards the most important region of the limit state
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surface G = 0. The fact that Ĝ is updated in each iteration, makes the process adaptive
and despite several iterations, eventually takes less number of NLFE evaluations com-
pared to DS to attain comparable accuracy in P f . While it is expected that un-important
directions would intersect the limit state surface further from the important ones, some
rare exceptions do occur. This is because during the iterations, the premature response
surface might deem some direction to be important. In later iterations, with an updated
response surface, it might turn out that those directions are not close to the important
region.

2.3.10. ADAPTIVE KRIGING MONTE CARLO SIMULATION

The adaptive Kriging Monte Carlo simulation (AK-MCS) is a state of the art reliability al-
gorithm which employes Gaussian process regression based meta model to approximate
the behavior of the actual limit state function [48], [49]. Experimental design based sam-
ples are generated at the beginning and initially the meta model is only accurate close
to these points. Then samples are added in a guided way so that the meta model up-
dates in each iteration and the experimental design gradually concentrates in the region
close to the limit state surface. Once this meta model finally converges based on a pre-
determined criterion, it is used as a surrogate function in a Monte Carlo simulation to
determine the failure probability.

The details of Gaussian process regression method or Kriging is discussed in Chapter 5.
The rest of the algorithm is described here. The AK-MCS algorithm is described here
following the algorithm outlined by Schöbi et al. [49]. An initial experimental design
χ is generated by a Latin Hypercube sampling and corresponding exact response Υ is
computed. A Kriging meta model is constructed based on [χ,Υ]. A large set of candidate
samples are generated and the corresponding limit state function values are predicted by
the meta model. These candidate samples are then ranked according to an enrichment
criterion. A selection step determines the sample(s) χ∗ to be added to the experimen-
tal design of the meta model and their corresponding exact limit state function values
Υ∗ are evaluated. The meta model is then updated based on these enriched set of ex-
perimental design. This process continues till the iterations are terminated through a
convergence measure (stopping criterion) with respect to the statistics of interest in or-
der to stop the design enrichment algorithm reliably.

The ranking of the candidate samples are done by learning functions. A learning func-
tion estimates the expected value of information gained with respect to the statistics of
interest when a sample x is added to the experimental design of the meta model. There
are various learning function proposed in the literature, one among them, the U function
[48] is used in this work. The U-function is based on the concept of miss-classification
and it is intrinsic to the nature of Gaussian process meta model. For each sample x
there is a nonzero probability that the prediction mean µĜ (x) > a (safe domain), in re-
ality S(x) ≤ a (failure domain, where S(x) is the mechanical response of the structure).
This event is termed as miss-classification. Prediction by Gaussian process regression
for a given sample is a Gaussian random variable described by the first two moments
µĜ (x),σĜ (x). The probability of miss-classification is then,
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Pm = min
{
Φ

[µĜ (x)−a

σĜ (x)

]
,Φ

[ a −µĜ (x)

σĜ (x)

]}
= Φ

[
− |µĜ (x)−a|

σĜ (x)

]
(2.77)

This function U (x) =− |µĜ (x)−a|
σĜ (x) is called the U-function. The probability of miss-classification

is maximum when |µĜ (x)−a| is close to zero, or in other works, the sample x is extremely
close to the limit state surface. When the sample is far from the limit state surface, the
probability of miss-classification is low. For each candidate sample its associated prob-
ability of miss-classification is evaluated based on Eq.2.77. The sample with maximum
Pm is added to the existing set of experimental design for enrichment of the experimen-
tal design. The convergence measure (or stopping criterion) is based on the accuracy of
the meta model around the limit state surface rather than on the estimation of the statis-
tics of interest. The learning function U is seen to give more weight to the points in the
close neighborhood of the predicted limit state rather than further ones with high Krig-
ing variance. This learning function is therefore faster in converging towards an accurate
probability of failure at the stopping condition. The choice of this learning function U is
rather natural, because it is easy to understand that the U value is directly linked to the
Kriging variance and prediction. Echard et al. [48] used the stopping criterion

min[U (x)] ≥ 2 (2.78)

which indicates that the probability of miss-classification must be smaller than Φ(−2)
for all candidate samples in order to stop the iteration. Schöbi et al. [49] used a different
strategy for convergence criterion. They defined a lower and upper boundary of the limit
state function with,

µĜ (x)±kσĜ (x) = a (2.79)

where k typically has the value 1.96. Based on these limit state boundary a convergence
criterion is set as,

P̂+
f − P̂−

f

P̂ 0
f

≤ εP̂ f
(2.80)

here P̂±
f = P [µĜ (X)±kσĜ (X) ≤ a] are the upper and lower bound failure probabilities and

P̂ 0
f = P [µĜ (X) ≤ a]. X is the set of all the samples. When the lower and upper limit state

boundaries are close to each other (i.e., a small limit state margin), then the estimate of
the statistics are of interest (such as failure probability) is accurate.
As the meta model Schöbi et al. used the polynomial chaos Kriging model, which has a
set of orthogonal basis functions, instead of simple Kriging used by Echard et al. The au-
thors called the resulting method PC Kriging (or PC-AK-MCS) The authors also exploited
high performance computing architecture by selecting multiple candidate samples at a
time (and evaluating their exact response parallelly) instead of single candidate sample
for enrichment. In this work however, multiple candidate selection is not used.
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2.4. RANDOM VARIABLE METHOD VERSES RANDOM FIELD MODEL
The issue of how the randomness in the material properties can be modeled, requires
due consideration. One simple approach is to model the randomness as random vari-
able. However, this implies homogenization of material property in the spatial extent
of the structure, which in turn, introduces additional epistemic uncertainties into the
model. To make matter worse this variation does not confine itself in spatial extant of
the structural component, but also varies from sample to sample. For some cases ignor-
ing this spatial inhomogeneity while modeling material randomness could significantly
undermine the accuracy of the reliability analysis. A more accurate representation of the
uncertainties within the spatial extent of the structural component would be to adopt
random field models. Random field models are more robust and can model the spatial
fluctuations in the properties, as well as the ensemble variations. On the other hand
modeling the uncertainty as a random field demands sophisticated means of analysis.
Two among the random field modeling approaches found in the literature are discussed
briefly in the sequel.

2.4.1. OPTIMAL LINEAR EXPANSION
The Optimal linear expansion (OLE) method is termed as a point discretization method.
In this method a spatial discretization of the system geometry (the mesh) is utilized for
the approximation of the mechanical response of the structure [50]. An input random
field can be expressed by OLE as the following,

E(x,ξ) ≈ Ê(x,ξ) = E0 +
N∑

i=1
ϕi (x)ξi (2.81)

The shape functionsϕi (x) at every point x are determined by minimizing the variance of
the error given by var[E(x,ξ)− Ê(x,ξ)] subject to the condition that Ê(x,ξ) has the same
mean as E(x,ξ) (or expectation[E(x,ξ)− Ê(x,ξ)]).

OLE is particularly attractive when Finite Element method is used to assess the prop-
agation of the uncertainty of the input to the response of the structural system, because
OLE allows the use of different set of discretization than FE discretization for the same
problem.

2.4.2. KARHUNEN-LOEVE EXPANSION METHOD
The Karhunen-Loeve expansion method or K-L expansion method is a series expansion
method, where the random field is exactly represented as a series involving random vari-
ables and deterministic spatial functions. The approximation is then obtained as a trun-
cation of the series. In this method a random field E(x,θ) is described in the space of
standard normal variables θ like the following,

E(x,θ) =
N∑

i=0
θi Ei (x) (2.82)

where,

< θi >= 0, < θiθ j >= 0, i 6= j ,θ0 = 1 (2.83)
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The coefficients Ei (x) are obtained by using the covariance matrix REE of random field
E(x,θ), ∫

REE (x,m)Φi (m)dm =λiΦi (x) (2.84)

Ei (x) =
√
λiΦi (x) (2.85)

One issue with K-L expansion is that bases of this expansion are the standard normal
variables. So, it is best used to expand a Normally distributed random field. A log-Normal
random field with K-L expansion can be obtained by the following,

f (x,θ) = exp(E(x,θ)) = exp
( N∑

i=1
θi Ei (x)

)
(2.86)

In order to maintain the correlation structure of the input random field through this pro-
cess of nonlinear transformation it is necessary to simulate an intermediate covariance
matrix R

′
EE . There is an exception in the case of transformation between normal and

log-normal spaces however. There exists an exact relationship between correlation co-
efficients in normal and log-normal spaces.

2.4.3. RELEVANCE OF RANDOM FIELD FOR RC STRUCTURES
Some comments are in order regarding the applicability of random field discretization
for RC structures. The consideration of spatial inhomogeneity while modeling material
randomness makes the reliability estimates more realistic. On the other hand, random
field discretization introduces additional random variables. The number of additional
random variables due to random field discretization depends on the correlation length
of a random field in the spatial extent. Correlation length is a measure of inhomogene-
ity of a material property. For small correlation length, the homogenization effect, dis-
cussed in material science, takes over. Effective properties are average ones over a critical
window width. Smaller correlation length leads to finer random field discretization, re-
sulting in more number of input random variables. Increase in random variables puts
additional computational burden and complexity on the reliability calculation. So un-
less there is a significant improvement in the accuracy of the reliability estimate, the ad-
ditional computational burden can be a wasteful endeavor. According to the JCSS Prob-
abilistic Model Code the default correlation length for concrete compressive strength is
5m [51]. The correlation length of 5m means that only for structures in excess of 15−20
meters the random field approach is going to be effective. For structures of smaller di-
mensions there will be little variation in the material property for concrete in the spatial
domain. It is expected that a random variable model will be sufficiently accurate in such
cases.

One concern could be that how to quantify modeling uncertainty for a FE model
when random field is considered, because when random field modeling is considered,
it is necessary to use the same spatial distribution of material property as used in the
experiment. Random field for a material property is obtained by testing the material
properties in from several different locations of the structure. In the NLFEA model those
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same measured values needs to be considered in those exact same locations. This is how
the modeling uncertainty for the random field can be quantified.

2.5. NUMERICAL EXAMPLES
The reliability methods discussed in this chapter are demonstrated with two numeri-
cal examples in this section. These two example serves as a demonstrative examples to
compare the performance of various different structural reliability algorithms discussed
in this chapter.

2.5.1. FIRST EXAMPLE

For the first example a point mass hanging from the ceiling by wire is considered (Fig-
ure 2.2). The weight is S = 100kN, the diameter and the tensile strength of the wire are
denoted by d and f . The limit state function for this problem is given by,

g = πd 2 f

4
−S (2.87)

Figure 2.2: Ball hanging from ceiling

The mean and standard deviation of f are 290N/mm2 and 25N/mm2. The mean and
standard deviation of d are 30mm and 3mm. In this problem f and d are distributed
Log-Normally. The reliability of this problem is attempted with various methods dis-
cussed in this chapter. The number of limit state function evaluations (LSFE) and the
corresponding β are summarized in the Table 2.2.

Table 2.2: The comparison of reliability results for the first example

MCS FORM SORM IS DARS PC-AKMCS

β 3.25 3.24 3.24 3.25 3.26 3.30

LSFE 105 20 32 1020 63 13
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2.5.2. SECOND EXAMPLE
For the second example a slender beam is considered for which the Young’s modulus E
is modeled as a log-normal random field (Figure 2.3). The length, depth and width of the
beam are 10m, 0.16m and 0.5m respectively. The beam has a uniformly distributed load
of 1000N/m. 10 finite element discretization have been taken (11 nodes with 2 degrees
of freedom per node).

Figure 2.3: Beam with random Modulus of elasticity

The mean value of Young’s modulus E is taken to be 2× 1011 N/m2 with 20% coef-
ficient of variation. The correlation structure of the random field is represented with
Eq.(2.19). This random field has been discretized using an Optimal linear expansion
scheme described earlier in this Chapter. Along the length of the beam, four OLE dis-
cretization has been considered, which gives 5 OLE nodes and as many correlated ran-
dom variables (in the original Log-normal space) and OLE shape functions. The log-
normal random field is described in the space of log-normal random variables ξi . Here,

ξi = exp(µln +σl nR
′
i j Z j ) (2.88)

Where, Zi are Gaussian random variables. The quantitiesµln andσln are Log-normal
mean and standard deviation corresponding to Gaussian mean and variance µn and σn .
These quantities are related according to the following relations,

µln = ln
( µ2

n√
µ2

n +σ2
n

)
(2.89)

σln =
√(

ln
(µ2

n +σ2
n

µ2
n

))
(2.90)

R
′
i j in the equation signifies the transformed correlation coefficient between ξi and ξ j

obtained through Nataf’s transformation.
As a limit state function the following has been used,

g (U(ξ)) = g (U(ξ((Y )))) =G(Y) = 1− Umi d poi nt

0.0006
(2.91)

where Umi d poi nt is the deflection at the midpoint of the beam.
Various reliability methods like FORM, SORM, DS, PCE (Galerkin), IS, DARS and PC-

AKMCS are used to obtain the reliability, and these results are compared with the Monte
Carlo method. The number of finite element analysis (FEA) and the corresponding β
are given in the Table 2.3. For MCS, DS and DARS a coefficient of variation of failure
probability of 0.1 is used as termination criterion for sampling. The PDF of the deflection
at the midpoint by Response surface is plotted and compared to Monte Carlo simulation
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Figure 2.4: Comparison of probability density functions of the mid point deflection

Table 2.3: The comparison of reliability results for the second example

MCS FORM SORM DS PCE IS DARS AK-MCS

β 2.37 2.37 2.37 2.37 2.34 2.37 2.38 2.35

FEAs 105 35 92 1197 243 1035 84 41

in Figure 2.4. The PDF by the final response surface obtained from DARS is also provided
in the same figure.

2.5.3. DISCUSSION ON THE EXAMPLES
Perturbation method has not been considered for the numerical examples. Because for
a finite element problem implementation of this method is relatively difficult as it re-
quires extensive intrusive manipulations of the stiffness matrix. The result obtained by
this method is reported to be less accurate since the reliability index is evaluated at the
mean value but not at the design point [52]. The manipulations and implementation
effort required by Perturbation method for nonlinear problems are even more involved
while they still suffer from the same shortcomings. Curtailed response surface method
also has been ignored in the examples. Because The lack of cross terms in curtailed re-
sponse surface means that only 4N +3 function evaluations may not be sufficient to get
an accurate result. FORM gives quite accurate result with least number of function eval-
uations for both the examples, but it requires the gradient of the limit state function.
Also design point is obtained by an iterative optimization scheme where convergence
can be an involved issue for large number of random variables. SORM is even better in
terms of result for the second example, while it requires some additional computational
effort in comparison to FORM, but calculation of the hessian of the limit state function
is most definitely not a viable option for non-linear problems. Some methods which do
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not require hessian can remedy this situation [30]. IS, DARS, PC-AKMCS all these meth-
ods produced highly accurate results for the example. DS however took substantially
larger number of function evaluations compared to DARS. Implementation of Galerkin’s
projection method can be problematic for large number of input random variables, as
with increase in input random variables result in exponential increase in the number of
collocation points and as a result the number of finite element analysis.

2.6. CONCLUDING REMARKS FOR THE SECOND CHAPTER
Several finite element based reliability methods have been reported in this Chapter and
they are demonstrated through some numerical examples. Based on the results of these
examples we can speculate about their suitability for the reliability of RC structure prob-
lems. First order reliability method (FORM) and Second order reliability method (SORM)
are among the earliest reliability algorithms. FORM and SORM approximate the limit
state function at the design point with a first order and incomplete second order func-
tion respectively. They employ constrained optimization methods to determine the de-
sign point and its distance from the origin in the standard normal space. The FORM and
SORM algorithms are known to have difficulty converging to a correct failure probability
when the structure in question has multiple failure modes (system effect). The resulting
failure probability can be incorrect if all the failure modes are described using a single
limit state function. FORM can be applied in cases with system effect when different
parts of the limit state function, corresponding to each failure mode, can be expressed
as distinct functions. But for the cases where the limit state function is described us-
ing finite element analysis, expressing each part of the limit state function as distinct
functions is too difficult. This is especially unlikely in nonlinear finite element analy-
sis of reinforced concrete structures that are based on (2D or 3D) continua formulations
and that simulate the failure process, as is applied in the thesis. A modified FORM (and
SORM) algorithm has been described by Der Kiureghian and Dakessian [53] which can
detect multiple design points, when the failure modes are described by a single limit
state function. FORM and SORM’s inaccuracy in case of highly non-linear limit state
function has been attested by several authors [46]. Highly nonlinear limit state function
is also quite likely for a NLFEA based limit state function of a RC structure. Monte Carlo
simulation (MCS) is the simplest method for calculating response variability. But even
though convergence and accuracy is guaranteed in MCS, the randomness of the sam-
pling points demands large number of samples, especially for estimation of small failure
probability with low variance. Run time of each NLFEA computationally a RC struc-
ture prohibits the use of large number of simulations. Higher stochastic dimensions also
rule out methods like the non-intrusive Galerkin’s projection method [19]. Directional
sampling (DS) offers improved performance over crude MCS, it samples directions in
the standard normal space. The probability content for each direction is evaluated by
an one-dimensional integral which has a closed-form solution in the standard normal
space. This method has poor efficiency for high number of random variables.

The Directional adaptive response surface method (DARS) is known to be efficient as
well as accurate and robust from the literature. It overcomes practical obstacles associ-
ated with many other structural reliability algorithms concerning efficiency, robustness
and accuracy. Based on several different kinds of limit state function Waarts [14] demon-
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strated that the number of exact limit state function evaluations for DARS is not signif-
icantly influenced by the number of input random variables. The author stated that for
high dimensional problems only few directions are likely to have influence. DARS will
perform significantly better than DS in terms of efficiency for these problems. Waarts
also concluded that FORM and DARS are equivalent in terms of efficiency on component
level. Grooteman [46] compared the efficiency of DARS and FORM for a linear limit state
function (a linear-hyper plane limit state surface), for different numbers of input ran-
dom variables. He showed that with the increase of the input random variables, DARS
becomes more efficient compared to FORM as long as linear or incomplete quadratic re-
sponse surfaces are used for DARS. It must be pointed out though that these conclusions
are based on few selected cases, and they may not hold generally.

The effectiveness of DARS and AK-MCS have been demonstrated mainly for simple
algebraic limit state functions or at best, simple finite element based limit state func-
tions in the literature [46],[14],[54], [49]. For most practical structures (or systems), the
structural responses have to be calculated by a numerical procedure such as finite ele-
ment analysis, because the limit state function is not available as an explicit, closed-form
function of the input variables. In many applications the limit state function described
by finite element is smooth and poses little difficulty for the reliability algorithm. But in
some applications, like reinforced concrete (RC) structures, the nonlinear finite element
analysis (NLFEA) failure simulations can be a source of irregularity, leading to a noisy
limit state function. Computational noise occurs in all nonlinear FE problems, where
a tolerance criterion determines the convergence of the iterative solution. Noisy limit
state functions or performance functions are not exclusive to the failure analysis of RC
structures only but often encountered in computational fluid dynamics based optimiza-
tion problems [55],[56],[57]. Directional integration along each direction is performed
by finding the distance of the limit state surface G(X) = 0 along that direction from the
origin. This is done by an iterative process called line search. Even though small noise in
finding the distance to the limit state surface is immaterial in calculating the probabil-
ity, a highly noisy limit state function can pose major difficulties for the uni variate root
finding and the overall efficiency might decrease. The practical issues concerning the
reliability analysis for cases of limit state functions under numerical noise have gained
little attention in literature. The performance of adaptive directional importance sam-
pling algorithms or adaptive Kriging algorithms for such cases has not been reported. In
the subsequent chapters RC structural examples will be introduced which will help to
test the performances of DARS and AK-MCS for limit state functions under numerical
noise.
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NLFEA MODELING IN STRUCTURAL

RELIABILITY

3.1. INTRODUCTION

T HE NLFEA solution strategy is an essential element of reliability analysis of RC struc-
tures. It was mentioned in the Chapter 1 that in the process of abstraction from the

structure to the mechanical model, and then the abstraction from the mechanical model
to the finite element model, NLFEA introduces a potential for significant uncertainties
and scatter in the result in all steps from idealization of the physical problem, discretiza-
tion into finite elements, numerical material modeling and selection of solution proce-
dures. Guidelines are often used to streamline the choices made in tailoring the solution
strategy. The Dutch Guideline is used in this thesis for formulating such solution strat-
egy. The formulation is done after extensive review of the solution strategies found in
the RC literature. This solution strategy will serve as the foundation for the NLFEA based
reliability analysis in the forthcoming chapters.

3.2. NLFEA SOLUTION STRATEGY FOR RC BEAM
In the context of NLFEA, solution strategy means choices made regarding kinematic re-
lationship, constitutive modeling, equilibrium, material modeling, boundary conditions
etc [17]. The modeling choices and parameters influence the predicted structural re-
sponse significantly. If the choices are not calibrated properly the scatter in results will
be big, with some results being unrealistic. NLFEA guidelines for RC structures have
been prescribed in order to minimize the error associated with human judgment. The
framework issued by Dutch Ministry of Infrastructure and the Environment or Dutch
Guideline (DG) [18, 58] in short, lays a framework for devising such a solution strategy.
For the solution strategy in this thesis several options have been experimented with, re-
maining within the framework of the Dutch Guideline. In this work the adopted solution
strategy draws its inspiration from other Dutch Guideline based solution strategies in
literature, like [59] (DG based) and [60]. However, the major influence has been the solu-
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tion strategy developed by Evangeliou [15]. Each major aspects of the solution strategies,
like constitutive modeling, kinematic compatibility, loading and boundary conditions
are discussed separately. The similar strategies found in literature are also discussed in
parallel.

3.2.1. CONSTITUTIVE MODELING

CONCRETE

• For concrete, a total strain based rotating crack or fixed crack model was recom-
mended in [18] as constitutive model. Compared to the fixed model, the rotat-
ing model usually results in a lower limit failure load because it does not suffer as
much from spurious stress locking. In this thesis the smeared cracking approach
is used with a fixed total strain crack model.

• When using a fixed crack model, it is necessary to assign a shear retention factor
(SRF). The SRF reflects the relative amount of shear stiffness that should be re-
tained at an integration point after cracking, and should be assigned a sufficiently
high value to avoid numerical instabilities due to ill-conditioning of the material
stiffness matrix and a sufficiently low value to reduce the transfer of shear stresses
across cracks due to rotation of the stress field after cracking.

• A constant SRF of 0.1 was used in [59] (DG based) and [60]. An isotropic linear-
elastic material model based Young’s modulus and Poisson ratio has been pre-
scribed in [18]. Regarding shear behavior, for fixed crack models a variable shear
retention model was strongly recommended in [18]. The aggregate interlock effect
is modeled with a damage based variable SRF in this thesis. This implies that the
secant shear stiffness degrades at the same rate as the secant tensile stiffness does
due to cracking.

• An exponential softening diagram was recommended in [18] for tensile behavior
of concrete. In the absence of exponential softening a multi-linear approximation
of the exponential uni-axial stress-strain diagram can be used. The exponential
softening model in tension is chosen in this thesis.

• The apparent Poisson ratio should be reduced after crack initiation. Poisson’s ratio
was kept constant at the value of 0.15 until initiation of cracking in [59] (DG based)
and [60]. The reduction of the Poisson’s effect upon cracking is accounted with a
damage based concept [61] in this thesis. The effect of confinement, although of
limited importance for a 2D model, is modeled as suggested by Selby and Vecchio
[62].

• The compressive behavior should be modeled such that the maximum compres-
sive stress is limited. Parabolic stress strain diagram with softening branch was
suggested in [18], which is adopted in the chosen solution strategy. The soften-
ing branch should be based on the compressive fracture energy value in order to
reduce mesh size sensitivity during compressive strain localization. The lateral ef-
fect of cracking on the compressive strength is modeled with the model suggested
by Collins and Vecchio [63].
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• As per the recommendation in [18], tension-compression interaction needs to be
addressed and taken into account in the modeling of concrete structures subjected
to multi-axial stress state, where as compression-compression interaction could
be ignored as per the strategies.

• Existing cracks in the structure should be taken into account when ever detailed
information about location and crack widths is available, because existing cracks
basically reduce the stiffness in a local region of the structure. This can be modeled
using a reduced tensile strength, reduced Young’s modulus and reduced fracture
energy [18]. Since the amount of reduction is difficult to assess, the existing crack
pattern should be recreated using multiple load cases that lead to the observed
pattern. Alternatively the cause of existing cracks is modeled explicitly.

• An automatic procedure for determining the crack band width is recommended
[18]. The preferred method is a method based on the initial direction of the crack
and the element dimensions. Alternatively, a method based on the area or volume
of the finite element can be used. In this thesis an automatic procedure, avail-
able in DIANA, to determine crack band width has been chosen based on area of
element.

REINFORCEMENT

• As model for reinforcement, an elasto-plastic material model with hardening was
recommended for both steel bar and pre-stressing steel by the authors in [18].
The stress-strain behavior of the reinforcement bars is modeled as elastic-perfectly
plastic in this thesis.

3.2.2. KINEMATIC COMPATIBILITY
• Regarding finite element discretization, elements with quadratic interpolation of

the displacement field was recommended by the authors in [18]. Preferably a
quadrilateral shape or a hexahedral shape in 2D and 3D, respectively.

• Quadrilateral eight node iso-parametric plane stress elements and twenty node
iso-parametric solid brick elements were used in the 2D and 3D based model re-
spectively in [60]. A rectangular mesh of aspect ratio 1 is applied in this thesis.
2D plane stress quadrilateral elements of length 25mm are chosen with quadratic
interpolation and 3× 3 Gauss integration. The steel plates are modeled with the
same quadrilateral elements.

• As for numerical integration, full integration was recommended in [18], because
reduced order integration for quadratic elements can lead to spurious modes when
the stiffness of the element becomes small due to extensive cracking. The solution
strategy in [59] used 20 node solid elements and three-node truss elements for
concrete and reinforcement respectively. This gives rise to the danger of under
integration, which is circumvented by selecting reduced integration.

• For reinforcement, the same order of interpolation as the concrete elements should
be used [18].
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• It was suggested in [18] that the finite element mesh has to be generated using an
algorithm that produces regular meshes with less than 5% of distorted elements.

• While there is no restriction regarding minimum element size, the maximum ele-
ment size is limited to ensure that the constitutive model does not exhibit a snap-
back in the stress-strain relationship.

• Concrete-reinforcement interaction is the main mechanism for stress redistribu-
tion after cracking in concrete structures with bonded reinforcement. Effects like
tension stiffening is governed by the number of cracks that are present after a sta-
bilized crack patterns has developed.

• A conservative assumption is to ignore the tension-stiffening component and only
account for the energy dissipated in the cracks that develop during the loading
process. If the element size is smaller than the estimated average crack spacing,
the tension-softening model can be used. Otherwise, the amount of energy that
can be dissipated within a finite element should be related to the average crack
spacing and the size of the element.

• Slip between reinforcement and concrete and dowel action of reinforcement should
also be accounted for with appropriate model. Embedded reinforcement elements
with no slip were used in [18], [58] and [60]. The reinforcement is modeled as em-
bedded in this thesis, i.e. perfect bond is assumed between the reinforcement bars
and the surrounding concrete surface.

• Bond slip and tension softening are recommended to be used in [59] for medium
scale analysis, i.e. when the element size is in the order of the reinforcing bar diam-
eter, and perfect bond and tension stiffening should be used for large-scale analy-
sis.

3.2.3. LOADING AND BOUNDARY CONDITIONS
• It was recommended in [18] that unless the objective of the analysis is to study

the detailed behavior of the loading and support points, the support and loading
plates should be modeled such that local stress concentrations are reduced.

• It was suggested in [18] that interface elements having no-tension behavior should
be inserted between the loading plate and concrete in order to properly repro-
duce the actual load transfer mechanism. Linear interface elements are applied
between the concrete beam surface and the steel plates used for loading and sup-
port.

• For 2D model a fully reinforced and cantilevered upper beam, with linear elastic
concrete was used in order to avoid damage of the upper beam due to the concen-
trated load in [60].

• During analysis dead weight, permanent loads, and, if appropriate, pre-stressing
should be applied first to the structure, the variable loads are increased until a clear
failure mode is present or if a significant load reduction has been achieved [18].
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3.2.4. EQUILIBRIUM
• Equilibrium between internal and external forces should be achieved iteratively

using a Newton-Raphson method with an arc-length procedure [18]. A standard
Newton-Raphson solution procedure with line searches was used in all the anal-
ysis, for a stable and robust solution procedure [58], [60]. For the equilibrium it-
erations in this thesis, a Quasi-Newton method based on a secant stiffness is se-
lected. A line-search technique is adopted to boost the convergence rate. The
maximum number of iterations for each load step is set at 100, in order to relieve
convergence requirements for few possible spurious load steps where the amount
of crack opening rate is high.

• Energy-norm together with a force-norm should be used as convergence criterion
to determine equilibrium [18], which is adopted in this thesis. A norm based on
displacements only should be avoided. 10−2 tolerance for force norm and 10−4

tolerance for energy norm were suggested in [58]. Convergence criteria on both
force-norm and energy-norm with tolerances of respectively 10−2 and 10−3 was
used, in [58], [59](DG based ) and [60], though allowing the analysis to proceed
beyond non-converged load steps as non-convergence does not necessarily imply
failure. A tight tolerance of 10−3 is selected in order to avoid load path sensitivity.

• In [60] The load steps were explicitly defined with initial steps about a third of the
displacement value that initiated flexural cracking. The loading sequence com-
prised five initial load steps of 0.1mm, with following step sizes of 0.5mm until fail-
ure. In this thesis a displacement control based loading is selected. The displace-
ment corresponding to the loading capacity of the beam has been determined for
the mean values of the material properties. 1.25% of this displacement is selected
as the incremental load step size.

3.3. PERFORMANCE OF THE NLFEA SOLUTION STRATEGY FOR

RC BEAM
The comparative performance of this solution strategy, for the mean material proper-
ties, can be seen in Figure 3.1. The results are based on beam A75A2, selected from the
experiments of Yang et al. [64]. RN LF E A and RE X P are the predicted and experimentally
obtained response respectively.

In Figure 3.1 the predicted load displacement curve is observed to have a steep gradi-
ent initially. Later the two load displacement curves become almost parallel. The steep
inclination is absent in the experimental result because a used beam, with cracks, is used
in the experiment. For the NLFEA a loading-unloading-loading cycle can be used. How-
ever, we are following here the basic assumption that was made in the test setup. The test
procedure assumes that when the supporting condition does not change, and there is no
clear flexural shear crack, the crack pattern of the previous loading-unloading does not
affect the shear capacity of the loading that follows [64]. This assumption implies that an
initial difference in stiffness will have a minor influence on the obtained failure load. The
figure shows that the predicted capacity is indeed reasonably close to the experimental
one.
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Figure 3.1: Comparison of load vs displacement curve

3.3.1. DEMONSTRATIVE TEST CASES: THREE RC BEAMS

Figure 3.2: Schematics of the reinforced concrete shear beam and the point of loading

Figure 3.3: Schematics of the reinforced concrete mixed beam and the point of loading

Figure 3.4: Schematics of the reinforced concrete bending beam and the point of loading
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Three RC beams are selected in this thesis as demonstrative examples. These beams
are largely inspired by RC beams experimentally studied by Yang et al. [64]. The first
beam fails in shear (Figure 3.2), the second one fails in mixed mode (Figure 3.3) and the
third one fails in bending (Figure 3.4). These beams will be referred to as shear beam,
mixed beam and bending beam respectively in this work. The concrete compressive
strength ( fc ), tensile strength ( ft ), tensile fracture energy (GF ), compressive fracture en-
ergy (Gc ), Young’s modulus (Ec ) and reinforcement yield strength ( fy ) represent all the
possible random variables considered for these three beams. The stochastic properties
for the random variables are obtained from Yang et al. and Wiśniewski et al. [65] (sum-
marized in Table 3.1). All the stochastic variables for this beam are properties which
cannot have negative values. Therefore, they are assumed to follow log-normal distribu-
tion. For concrete, the compressive fracture energy Gc has been obtained by the relation
Gc = 250GF , provided by Nakamura et al. [66], where the mean value of GF is used.

Table 3.1: The mean properties for the three RC beams

Cases fc [MPa] ft [MPa] GF [N/mm] Ec [MPa] fy [MPa] Gc [N/mm]

Shear 78.2 5.13280 0.1266 42675 550 31.64

Mixed 77.5 5.09860 0.1258 42547 550 31.45

Bending 78.5 5.14739 0.1269 42729 550 31.73

The bending beam represents the more general structural reliability problem of RC
structures where a ductile failure mode is expected. Typically, these include all struc-
tures where the primary flexural reinforcement start to yield and finally rupture and the
moment of failure. On the contrary the shear beam represents the RC structures where
the concrete properties are dominant. Typically, this category includes various exam-
ples of RC beams and slabs with expected shear and punching failures. The mixed beam
represents practical RC structures in which the failure mode is unknown on beforehand.
A typical example is a multi-girder bridge structure in which the individual girders are
expected to have limited shear capacity and in which the joints between the girders are
supposed to provide sufficient load redistribution via the other girders.

3.3.2. NUMERICAL NOISE ASSOCIATED TO THE NLFEA PREDICTION
The NLFEA solution strategy can numerically introduce pronounced noise in the capac-
ity prediction for RC structures. This noise will result into a noisy limit state function,
which may entail performance and efficiency related issue for the reliability analysis.
To demonstrate this noise three stochastic cases are conceived based on the three RC
beams. For these three cases the concrete tensile strength ft , tensile fracture energy GF

and reinforcement yield strength fy are considered random. The mean values for these
parameters are already given in Table 3.1, the standard deviations are summarized in Ta-
ble 3.2. The variables ft and GF are considered to be perfectly correlated, so that ft and
GF can be described by just one random variable, u ft , in the standard normal space.
The random variable fy is considered to be independent with the other two variables.
All three random variables are considered to be log-normally distributed. The limit state
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function G is given by Eq.(3.1),

G = RN LF E A

F
−1 (3.1)

Table 3.2: Standard deviations of stochastic properties for the three beams considered

Case ft [MPa] GF [N/mm] fy [MPa]

Shear 0.8503 0.0309 30

Mixed 0.8503 0.0309 55

Bending 0.8503 0.0309 65

where R is the load capacity of the beam and F is the applied load on the beam whose
value is 80kN. The calculations are done in the standard normal space, so the variables
ft , GF and fy are transformed to their corresponding standard normal variables u ft , uGF

and u fy . Several equally spaced points along the negative u ft axis are created for the
shear and mixed beams. Along this specific direction only the concrete tensile strength
ft (along with fracture energy GF ) decreases, both of which have major influence on
shear resistance. For the bending beam, the same exercise is done along the negative
u fy , since reinforcement yield strength primarily governs bending failure. From Figures
3.5 and 3.6 it follows that NLFEA predictions are noisy for shear dominant (where con-
crete governs the failure) cases. A Gaussian process regression (GPR) is performed on the
data. The noise variance of the noisy data is calculated as the mean square error, where
the mean value of G at some particular value of u ft (or u fy for the bending beam) is ob-
tained by GPR. For bending dominated cases (where reinforcement govern the failure)
the NLFEA predictions fall in a relatively smooth pattern (Figure 3.7).
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Figure 3.5: Shear beam. Noise variance is 0.0043



3.3. PERFORMANCE OF THE NLFEA SOLUTION STRATEGY FOR RC BEAM

3

39

-6 -5 -4 -3 -2 -1 0
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.6: Mixed beam. Noise variance is 0.0019
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Figure 3.7: Bending beam. Noise variance is 9.66×10−6

To gain further insight into the reason behind this noise in G for the shear domi-
nated beams, several equally spaced points along the negative u ft axis are created for
the shear beam and the NLFEA predicted capacities are plotted. In Figure 3.8 the ca-
pacity of the beam doesn’t always decrease with decrease in ft . The third point from
the right side suddenly shows more capacity than the adjacent second point, which had
lower concrete tensile strength. The displacement versus capacity comparison for these
three points (in Figure 3.9) shows that the three load paths are almost coincident for the
large part. This is expected, as the difference of ft values are little for these three points.
None of the three curves suddenly stop during ascendency due to non convergence. All
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three of them fail in shear. The reason to why the curve with ft = 2.62 would show more
capacity than that of ft = 2.64, lies with the plot of relative energy variation correspond-
ing to the NLFEA iterations (Figure 3.10), for the 3r d point.
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Figure 3.8: ft vs G , along the negative u ft axis. The line search tolerance used is 0.01
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Figure 3.9: Displacement versus capacity curve for the first three consecutive points on the negative u ft axis.

A convergence criterion in a NLFEA can be a source of noise in the predicted capac-
ity. There are several occasions in Figure 3.10 when an iteration, for a load step, almost
converged. Even though small load steps are chosen, load path sensitivity cannot com-
pletely be ruled out.



3.3. PERFORMANCE OF THE NLFEA SOLUTION STRATEGY FOR RC BEAM

3

41

0 50 100 150 200 250 300 350
−5

−4

−3

−2

−1

0

Iteration

 

 

L
o
g
o
f
re
la
ti
v
e
en

er
g
y
v
a
ri
a
ti
o
n

Energy norm at iteration

Energy norm at load step

Energy convergence norm

Figure 3.10: The relative energy variation with each load step during a deterministic NLFEA iterations. For this
deterministic NLFEA the value ft = 2.62MPa is used.

3.3.3. PREDICTION OF FAILURE MODE

The failure mode predicted by NLFEA for RC structures during a reliability analysis is an
object of interest in the reliability literature. The possibility that the failure mode can
change between mean and design parameters, during a reliability analysis, was voiced
by Schlune et al. [67]. It is for this reason the failure mode of the three stochastic cases
at their respective design points are looked into with interest. From Figures 3.11 and
3.12 it follows that the shear beam and the bending beam fails in shear and bending
respectively, as indicated by the maximum principle strain contour plots. The Mixed
beam however has two design points. At the design point on the failure boundary where
reinforcement yield strength fy remains constant, the mixed beam fails in shear (Figure
3.13). The other design point, on the failure boundary where concrete tensile strength
ft remains constant, the mixed beam fails in bending (Figure 3.14). The locations of
the design points in the standard Normal space for all the different failure modes are
summarized in the Table 3.3.

Table 3.3: Design points for the three beams. The design point is specified both in the 2-D standard Normal
space and the original Log normal space.

Beam type, failure mode u ft [-] u fy [-] ft [MPa] GF [N/mm] fy [MPa]

Shear beam, shear failure −5.43 0 2.07 0.03 549.18

Bending beam, bending failure 0 −3.53 5.08 0.12 360.41

Mixed beam, shear failure −3.60 0 2.77 0.05 547.27

Mixed beam, bending failure 0 −4.13 5.03 0.12 362.48
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Figure 3.11: Maximum strain contour at the design point for the shear beam. The contour plot indicates shear
failure.

Figure 3.12: Maximum strain contour at the design point for the bending beam. The contour plot indicates
bending failure.

3.4. MODELING UNCERTAINTY FOR NLFEA SOLUTION STRAT-
EGY

The assessment of reliability of RC structures needs to incorporate the uncertainty that
arises from the numerical scheme used for the analysis. If the reliability calculation of
a RC structure does not account for this additional scope of uncertainty, then the esti-
mated reliability will be incorrect.

Modeling uncertainty is a measure of discrepancy between experimentally obtained
peak load and predicted peak load by FE, when the same material properties are used
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Figure 3.13: Maximum strain contour at one of the two design points for the mixed beam. This design point is
on the failure boundary for which fy remains constant. The contour plot indicates shear failure.

Figure 3.14: Maximum strain contour at one of the two design points for the mixed beam. This design point is
on the failure boundary for which ft remains constant. The contour plot indicates bending failure.

in both experiments and FE model. The actual load bearing capacity (experimentally
obtained) RE xp of a structure can be related to the predicted load bearing capacity of the
structure RF E M by the following relations,

RE xp =ϑRF E M (3.2)

RE xp =ϑ+RF E M (3.3)

Among these two relations, the one given by Eq.(3.2) has been adopted in the present



3

44 3. NLFEA MODELING IN STRUCTURAL RELIABILITY

report as it has been used in the reliability context by Eurocodes. Following that, the
modeling uncertainty ϑ can be expressed as,

ϑ= RE xp

RF E M
(3.4)

The philosophy behind multiplying ϑwith RF E M follows straight from the definition of ϑ
in Eq.(3.4). The idea is that each realization of the material parameters would produce a
capacity prediction RF E M by NLFEA, which will then be multiplied with the correspond-
ing realization of ϑ.

The literature in the context of modeling uncertainty can be divided in two approaches
[68]. In the first approach the modeling uncertainty is determined based on blind predic-
tion contests. Several participants come with their own solution strategies and model an
RC structure, whose experimental results are withheld from the participants. The ratios
ϑ are calculated by each contestant based on their own respective solution strategies.
From the population of different values of ϑ, the mean µϑ and coefficient of variation
covϑ are determined. In the second approach one particular solution strategy is applied
to several different RC structures of a particular type. From the population of predicted
peak loads for each of these structures µϑ and covϑ are obtained. These two approaches
are discussed in the sequel.

3.4.1. QUANTIFICATION BASED ON CONTEST

The first approach was taken by Schlune et al. [67]. The authors collected the results
from the modeling completions for various RC structure types, grouped them accord-
ing to the failure modes and computed the modeling uncertainty specific to each fail-
ure mode. Modeling uncertainty for bending failure was computed based on the round
robin test of over-reinforced beams under 4-point bending [69]. Four beam types were
tested, three times each. One small beam with normal strength concrete, one large beam
with normal strength concrete, one beam made of high strength concrete and one beam
of fiber reinforced high strength concrete. For shear type failures, the modeling uncer-
tainty is quantified based on a competition on four different types of shear panels [70].
For shear and bending failures in slabs Jaeger et al. were referred [71, 72]. In these pa-
pers, the slabs without shear reinforcement failed in shear, the rest failed in bending. The
beams failing in shear were not part of the investigation by Schlune et al. A TNO report
[73] can be referred for this part, where three different types were tested for shear fail-
ure. The summary of modeling uncertainties corresponding to different failure modes
are presented in Table 3.4.

One interesting observation can be made from Table 3.4. The shear failure mode
consistently produces a higher coefficient of variation compared to bending. Two rea-
sons can be identified behind this. One reason is that the shear failure is dominated
by the concrete tensile strength. Whereas bending failure is often due to reinforcement
yielding, so the failure is dominated by the reinforcement yield strength. The variability
associated with concrete properties is higher compared to steel properties. As a result,
failure modes dominated by concrete show a higher variability. Another reason is the
numerical noise associated with the NLFEA prediction of shear failure.
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Table 3.4: ϑ based on round robin contest

Failure mode µϑ covϑ (%)

Bending in RC beams 0.93−1.02 10−26
Bending in RC slabs 0.89−1.12 3−11
Shear in RC beams 0.77−1.02 21−42
Shear in RC panels 0.73−1.05 11−39
Shear in RC slabs 0.72−1.00 24−34

3.4.2. QUANTIFICATION BASED ON UNIFORM SOLUTION STRATEGY
The second approach of calculating the modeling uncertainty is relatively more frequent
in literature. In a validation study of guidelines issued by the Dutch Ministry of Infras-
tructure and the Environment (also called Dutch Guidelines), Hendriks et al. [18] applied
the guidelines based solution strategy to thirteen different RC structures, mostly consist-
ing of beams and some slabs. Nygaard [60] formulated a solution strategy for RC walls
based on the Dutch Guidelines and applied it on six different RC walls. Engen et al. [17]
used thirty eight benchmark cases, consisting of short and slender walls, beams, deep
beam and frames, to quantify the modeling uncertainty. The summary of the results is
given in Table 3.5.

Table 3.5: ϑ based on single solution strategy

Contribution µϑ covϑ (%)

Hendriks et al.[18] 1.11 23
Nygaard [60] 1.21 6.6

Engen et al.[17] 1.10 10.9

The values µϑ and covϑ can be used directly as modeling uncertainty mean and co-
efficient of variation if the number of samples is high. Because high number of samples
diminishes the statistical uncertainty associated with these parameters. In the case of
small number of sample cases Bayesian inference has to be used in order to account for
the uncertainty in the modeling uncertainty mean and coefficient of variation.

3.4.3. DISCUSSION ON THE HIGH SPREAD OF RESULTS IN SOME OCCASIONS
One interesting phenomena is the fact that some authors find large covϑ for their solu-
tion strategies. Before we try to explain why that might be, it is useful to note that there is
apparently no correlation between the complexity of the analytical model and the accu-
racy of the resulting prediction. Simple models can produce predictions that are just as
good or just as bad as those arrived at by use of complex models [70]. The many diverse
analytical methods available are quite sensitive to the material properties and adopted
modeling techniques. While most of these methods can be vigorously defended on a
theoretical basis, they do not always represent actual concrete response.
At the very outset it can be remarked that it is expected that the uncertainties of the struc-
tural response depend on whether the failure mode is governed by the concrete or the
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reinforcement, and expected to be particularly high if the failure mode is governed by
the tensile strength of the concrete. In fact from the work in [74] it can be concluded that
resistance of reinforced concrete beams failing in bending is found to have a lower co-
efficient of variation than beams failing in shear, something we observe in the results in
Table 3.4 as well. But it would be interesting to know the reason for this. It is seen that if
all the redistribution, i.e. the plastic dissipation, is assigned to the concrete, the structure
is likely to fail in a brittle manner due to the low redistribution capacity of the concrete.
The brittle failure modes governed by the concrete have a higher inherent physical un-
certainty and are often more difficult to predict with a high accuracy compared to the
ductile counterpart of failure modes governed by the reinforcement, which results into
higher variance of reaction force for this failure mode. The modeling uncertainty of the
ductile failure modes, on the other hand, have a lower contribution from physical un-
certainties due to the lower physical uncertainties inherent to the reinforcement steel.

The sources for the high inherent uncertainty of the brittle failure modes are the spatial
variability and the mean and standard deviation of the material properties within the
concrete batch, and the correlation between the cylinder strength and other parameters
of the concrete [17]. The brittle failure can be represented by a series system failure,
where the minimum value (or the weakest) value of the material property governs the
failure. Ductile failure on the other hand can be represented by parallel system, where
the failure happens at the aggregate value of the material property. Aggregate value of
a material property is less prone to statistical uncertainty compared to the minimum
value. Even though these variations are not controlled in the underlying experiments,
and are usually not considered explicitly in the NLFEA, they are implicitly included in
the modeling uncertainty.

However, this only partly explains why shear failure modes have higher co-efficient
of variation compared to the bending ones. Another possible reason is the numerical
noise associated with the NLFEA prediction for shear failure, as demonstrated earlier in
this chapter. Shear failure has been observed to be quite sensitive to the arbitrary choices
made in the solution strategy. For example, it was seen in the Figure 3.10 that shear fail-
ure cases could be highly load path sensitive. Slight variation in the convergence crite-
rion might produce significantly different outcome of capacity prediction. This irregular
behavior of NLFEA prediction for shear failure cases can be a potential source of high
co-efficient of variation.

3.4.4. CRITIC OF DIFFERENT APPROACHES TO FIND MODELING UNCERTAINTY

The accuracy of the mechanical models depends on the approximations in the numer-
ical solution procedure and the mathematical idealization of the problem, and as such,
nobody expects that the solution strategies adopted in engineering analysis will be spot
on. The blind round robin prediction contests are a way to select an optimal solution
strategy, where different authors came with their own solution strategies, based on their
own assumptions for constitutive relations, element discretization etc. to find out which
solution strategy results into the closest prediction.

It is a fact that different sets of solution strategy can result into a wide variety of predicted
response, like it is seen from the prediction contests. But, then, it is also a reasonable
expectation that the average of these predictions (for a specific case) might even out the
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deviations and produce a response which is closer to the actual response. For example
like in [70] it was observed that the average of the predicted response was within 15% of
the actual response.
The concept of modeling uncertainty is associated with a model (or solution strategy). A
change of solution strategy is expected to result in different parameters for the model-
ing uncertainty that need to be quantified. Individual modeling uncertainties can have
biases, but if we take inspiration from the above discussion and obtain cumulative mod-
eling uncertainty based on several solution strategies, then the resulting modeling un-
certainty might be an even better one. In this approach, the modeling uncertainty is

obtained by taking an arithmetic mean of all the
RE xp

RF E M
ratios from different authors. It

is the same as saying that all the solution strategies used are assigned equal probability,
and the mean modeling uncertainty is obtained as the weighted sum (where associated
probability works as weight) of all the individual means from each authors.
This is how Schlune et al. [75] obtained the modeling uncertainty mean and covϑ, for
different kind of structures. However, the weakness in Schlune’s approach was that he
used one type of structure, he used only one contribution from each authors to calculate
the mean and covϑ of the modeling uncertainty, specific to that type of structure. Even
though the mean can be calculated this way, determining the standard deviation this
way is perhaps not mathematically meaningful. Because this standard deviation will not
represent the variability of any particular solution strategy.
Of the two approaches to modeling uncertainty described in this section, the second
approach has better justification in favor of it. Because a modeling uncertainty charac-
terizes the bias and variability of a specific solution strategy. The first approach is based
on the philosophy that a cumulative modeling uncertainty based on several different so-
lution strategies mitigates the biases of individual solution strategies. In doing so, the
resulting modeling uncertainty does not represent any specific solution strategy. How-
ever, in a reliability analysis, only one particular solution strategy is used. The modeling
uncertainty by the first approach may not reflect the true variability and bias associated
with the solution strategy used for the reliability analysis.

3.4.5. STATISTICAL INFERENCE OF MODELING UNCERTAINTY FROM LIMITED

DATA
In assessing a model, or in using a model for prediction purposes, one has to deal with
two broad types of uncertainties, aleatory uncertainties also known as inherent variabil-
ity or randomness and epistemic uncertainties. The former are those that are inherent
in nature; they cannot be influenced by the observer or the manner of the observation.
The epistemic uncertainties are those that arise from our lack of knowledge, our delib-
erate choice to simplify matters, from errors in measuring observations, and from the
finite size of observation samples [76]. It is important to account for these uncertain-
ties in the model prediction, particularly when the sample size is relatively small. The
Bayesian updating framework is ideally suited for this purpose. In the Bayesian approach
to statistics, anything unknown (like the truth of hypotheses or the values of parameters)
is treated as random, and as such, is described by a probability distribution. A typical
Bayesian analysis can be outlined in the following steps [77, 78]. The data is assumed
to be outcomes of a random variable. First we need to formulate a probability model
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for the data, i.e. the type of distribution the random variable follows. Then decide on a
prior distribution, which quantifies the uncertainty in the values of the unknown model
parameters (such as mean and variance) before the data are observed. Based on the
data and the probability model formulated, the likelihood function is constructed. The
likelihood is then combined with the prior distribution to determine the posterior dis-
tribution, which quantifies the uncertainty in the values of the unknown model param-
eters after the data are observed. Based on the posterior distribution, most likely value
of the parameters can be estimated and predictive distribution of the random quantity
can constructed. For example, let’s say there are observations x1, x2, · · · , xn of a random
variable X . All these observations are independent of each other. Let’s assume that X
has a probability density function fX (x|θ) conditioned on the unknown parameter θ.
The individual observations of X can be described by independent random variables
X1, X2, · · · , Xn all of which can be assumed to have same marginal PDFs, conditioned on
θ. As all these random variables are independent, according to the multiplication theo-
rem for independent events, the conditional density can be obtained as,

fX1,X2,··· ,Xn (x1, x2, · · · , xn |θ) =
n∏
i

fX (xi |θ) (3.5)

The above equation can be written as,

L(θ|x̂) =
n∏
i

fX (xi |θ) (3.6)

where the left hand side of equation 3.6 denotes likelihood function. θ|x̂ signifies that
x̂ is fixed as data and it is the parameter θ which varies. Parameter values where the
likelihood is high are those that have a high probability of producing the observed data.
The prior distribution of the unknown parameter θ is assumed to be fθ(θ). Combining
the likelihood with the prior density, by means of Bayes’ theorem, we obtain the posterior
distribution of θ conditioned on the observed data x̂ as,

fθ(θ|x̂) = L(θ|x̂) fθ(θ)

fX (x̂)
(3.7)

The term fX (x̂) = ∫ ∞
−∞ L(θ|x̂) fθ(θ)dθ is a constant at the time when the data is observed,

so we can say that the posterior density is proportional to the product of the likelihood
and the prior density,

fθ(θ|x̂) ∝ L(θ|x̂) fθ(θ) (3.8)

where fX (x̂) is merely the required constant to normalize the product of the likelihood
and prior density. It is necessary to find this constant though, because this constant
makes the right hand side of Eq.(3.8) a proper PDF (which integrates to one).
We can combine the posterior density of the parameter θ and the probabilistic model
for the random variable X (i.e. fX (x|θ)) to obtain the predictive distribution of X condi-
tioned on the observed data set x̂.

fX (x|x̂) =
∫ ∞

−∞
fX (x|θ) fθ(θ|x̂)dθ (3.9)
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In the event of multiple models (denoted by Mk with associated parameter set θk ), the
predictive density of a random quantity X can be written as [78],

fX (x) =
m∑
k

P (Mk )
∫ ∞

−∞
fX (x|θk , Mk ) fθk

(θk |Mk )dθk (3.10)

Upon an observation x of the random quantity X , the posterior probability can be up-
dated as,

P (Mk |x) = P (Mk )
∫ ∞
−∞ fX (x|θk , Mk ) fθk

(θk |Mk )dθk∑m
k Pk (Mk )

∫ ∞
−∞ fX (x|θk , Mk ) fθk

(θk |Mk )dθk
(3.11)

and the posterior density of the parameters θk can be updated as,

fθk
(θk |Mk , x) = fX (x|θk , Mk ) fθk

(θk |Mk )dθk∫ ∞
−∞ fX (x|θk , Mk ) fθk

(θk |Mk )dθk
(3.12)

The choice for likelihood and prior density varies from case to case. In the absence of
any knowledge of the parameters, defuse priors are assumed. One such choice of defuse
prior can be 1, which is also improper prior since this does not result in 1, when in-
tegrated from negative to positive infinity. The parameter X , in our case is modeling
uncertainty ϑ. In the context of structural reliability, the limit state function can be ex-
pressed as,

G = ϑRF E M

F
−1 (3.13)

Where F is the action effect. Once we have the posterior distribution fϑ(ϑ|ϑ̂) we can
generate samples for ϑ along with other input stochastic quantities. This posterior dis-
tribution fϑ(ϑ|ϑ̂) accounts for the uncertainty in the mean and standard deviation of ϑ.
These samples will be useful in quantifying the reliability based on some structural re-
liability algorithm. Reliability analysis in this approach will account for the epistemic
uncertainty associated with the mean and standard deviation of ϑ in the failure proba-
bility outcome. It can be assumed that ϑ is independent (hence un-correlated) to other
input stochastic parameters (like material properties).

3.4.6. PROBABILISTIC MODELING OF MODELING UNCERTAINTY
The probability density function of modeling uncertainty ϑ, has two parameters, mean
(µ) and standard deviation (σ). In the Bayesian analysis frame work, these two parame-
ters need to be estimated, contingent on the observations. Several probabilistic models
can be chosen to model the modeling uncertainty distribution, and the prior probability
density of the parameters. Here we are going to discuss a few of them.

The Gaussian or normal distribution is one of the most widely used in statistics. Esti-
mating its parameters using Bayesian inference and conjugate priors is also widely used.
Conjugate prior is the one where prior and post prior distribution belongs to the same
distribution family. If we assume that the standard deviation σ is known a priory, then
it is only the mean that needs to be estimated based on our data set. Let’s assume that
the modeling uncertainty is normally distributed, fϑ(ϑ) ∝ N (ϑ|µ,σ2) where σ is known.
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Let’s assume a conjugate prior fµ(µ) ∝ N (µ|µ0,σ2
0) for the unknown µ. Here µ0 and σ0

are mean and standard deviation of µ. Based on Eq.(3.12) the posterior density of µ can
be obtained as, fµ(µ|ϑ̂,σ2) ∝ N (µ|µn ,σ2

n), where,

σ2
n = σ2σ2

0

nσ2
0 +σ2

(3.14)

µ2
n =σ2

n

(µ0

σ2
0

+ nϑ̄

σ2

)
(3.15)

Here ϑ̄ is the population (data) mean and n is the size of the data. The posterior predic-
tive density of ϑ can be given by, fϑ(ϑ|ϑ̂) = N (ϑ|µn ,σ2

n +σ2).
If we chose to believe that both µ and σ are unknown, then we need an estimate of
both these parameters based on our observations. Like before we assume that fϑ(ϑ) ∝
N (ϑ|µ,σ2) but for the parameters, we assume a prior density as Normal-Inverse-Chi
Squared distribution, i.e. joint density function, fµ,σ(µ,σ) ∝ N Iχ2(µ0,κ0,ν0,σ2

0). Here
µ0 and σ0 are prior estimates of mean and standard deviation of ϑ, where as κ0 and
ν0 are the measures of how strong our believe is in prior mean and standard deviation
respectively. The post prior density of the parameters is estimated as, fµ,σ(µ,σ|ϑ̂) ∝
N Iχ2(µn ,κn ,νn ,σ2

n).
where,

νn = ν0 +n

κn = κ0 +n

µn = κ0µ0 +nϑ̄

κn

σ2
n = 1

νn

(
ν0σ

2
0 +

∑
i

(ϑi − ϑ̄)2 + nκ0

κn
(µ0 − ϑ̄)2

)
(3.16)

The posterior mean is µn and the posterior variance is νn
νn−1σ

2
n . The predictive posterior

distribution can be given as, fϑ(ϑ|ϑ̂) = tνn (µn , 1+κn
κn

σ2
n), a non-central t distribution.

If the mean value µ is assumed to be known, then standard deviation σ needs to be
estimated from the data. Like before we assume fϑ(ϑ) ∝ N (ϑ|µ,σ2). For the parameter
σ we can assume an inverse chi-squared prior distribution inverse χ2(ν′, s′) with prior
parameters ν′ and s′. Then the posterior distribution would be inverse χ2(ν", s") with
posterior parameters ν" and s" which are given by,

ν" = ν′+n

s"2 = ν′s′2 +ns2

ν′+n
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here n is the sample size and s is the sample standard deviation. With no prior knowl-
edge, the posterior distribution will have the parameters ν" = n and s" = s. The predic-
tive probability density of the modeling uncertainty is given by,

fϑ(ϑ|ϑ̂) = 1

s"
p
ν"B( 1

2 , ν"
2 )

(
1+ (ϑ+µ)2

s"2ν"

)− ν"+1
2

(3.17)

While it is convenient to assume Normal distribution for the Likelihood of ϑ, liter-
ature strongly suggests use of Log-Normal distribution. The predictive density, mean
and variance obtained for ϑ with normal assumption for the Likelihood, can be easily
adjusted for Log normal assumption of the Likelihood. If it is indeed assumed that ϑ is
Log normally distributed, then for the ease of operation ϑ is first converted into Normal
distribution. The corresponding values of mean λ and and standard deviation ς in the
normal space can be adjusted by the following equations,

λ= ln(µ)−0.5ln
(
1+ σ2

µ2

)
(3.18)

ς2 = ln
(
1+ σ2

µ2

)
(3.19)

3.5. QUANTIFICATION OF MODELING UNCERTAINTY
The solution strategy tailored by Evangeliou [15] has been discussed in Section 3.3. The
modeling uncertainty for this solution strategy is determined on the basis of beams
tested in labs by Yang [64].

3.5.1. DESCRIPTION OF THE EXPERIMENTS
Yang et al. carried out a large test series in order to determine the minimum average
shear stress that can cause shear failure of a specimen with different depth and concrete
strength. The experiments were conducted by varying the reinforcement ratio and load-
ing conditions. In the report, the Eurocode [79] provisions on vmi n were discussed and
compared with the test results.
The Eurocode vmi n expression defines the shear capacity of reinforced concrete mem-
bers without shear reinforcement and with relatively lower longitudinal reinforcements.
This concept has been widely applied in the evaluation of the concrete slabs in buildings
or bridges. It is believed that many of the bridges designed according to the old design
code could not fulfill the requirements of the Eurocode, and preliminary analysis on the
concrete slab bridges, according to the Dutch ministry of Infrastructure and the Envi-
ronment, showed that a large amount of the slab bridges in the Dutch highway system
do not have sufficient shear capacity as per the requirement outlined by Eurocode. The
authors attempted to determine the actual vmi n through experiments.
Yang et al. used in total 107 reinforced concrete beam specimens without shear rein-
forcement. All the specimens are 5000mm long prismatic beams. The depth of the
beams varied between 300mm, 500mm and 800mm. Most of the specimens have the
same longitudinal reinforcement in both tensile and compressive zone. The concrete
cover was 25mm. A limited number of stirrups were placed in the center and the ends



3

52 3. NLFEA MODELING IN STRUCTURAL RELIABILITY

of the specimens to guarantee the anchorage and support the reinforcement cage. No
shear reinforcement was present in the tested span. Five test series were planned in the
research program. Within each test series, several specimens with different reinforce-
ment configurations were casted. Of the five test series used in the experiments, the
series A, B and C are of interest for this work. The differences between them are listed in
Table 3.6

Table 3.6: The details of the experimental RC beams of Yang et al. [64]

Specimen h mm d mm Concrete Rebar mm ρl

A12 300 265 HC 3Φ20 1.16%
A90 300 265 HC 1Φ12+2Φ20 0.90%
A75 300 267 HC 3Φ16 0.74%
A60 300 267 HC 1Φ10+2Φ16 0.58%
B70 500 465 HC 3Φ20 0.67%
B50 500 465 HC 1Φ16+2Φ20 0.58%
C 90 300 265 LC 1Φ12+2Φ20 0.90%
C 75 300 267 LC 3Φ16 0.74%
C 60 300 269 LC 3Φ12 0.42%

Where h is height, d is the depth of the reinforcement from the top and ρl is the
reinforcement ratio, i.e. the ratio of the area of cross section of the reinforcement and
the area of cross section of the concrete beam cover. Within each test series, the rein-
forcement ratio of the specimens varies. For each reinforcement ratio, several tests with
different shear slenderness ratio were executed. The names of the tests were defined to
indicate the basic variables of the tests.
The effect of concrete strength to the shear capacity is limited. To investigate the in-
fluence of the concrete strength, a large difference of concrete strength was applied be-
tween test series A, B and C. Compressive tests and splitting tensile tests were carried
out on 150mm cubes. A summary of the concrete strengths of both mixtures is given in
Table 3.7.

Table 3.7: The summary of the input parameters used in the experiments by Yang et al. [64]

Concrete type High strength (HC) Low strength (LC)

Strength MPa cov Strength MPa cov

Compressive strength 76.67 4.34% 27.2 3.49%

Tensile strength 5.9 16.87% 2.9 4.19%

The normal ribbed bar with characteristic yield strength 500MPa was employed in
the tests, while the mean yield strength was about 550MPa.

The target of the experimental research was to search the boundary shear stress un-
der which the flexural shear failure occurs on the specimen while the strain of the longi-
tudinal reinforcement approaches or reaches the yielding strain in the steel bars. Within
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the test program, all the specimens were loaded by three point bending. The test series
started from placing the point load at a location relatively further away from the support
so that flexural failure was obtained, which is defined by the yielding of the longitudinal
reinforcement. The specimen was unloaded afterward, and the point load was moved to
a loading position closer to the support. The same loading procedure was repeated until
flexural shear failure was obtained. The distance between two loading points was usually
constant. After the shear failure was reached, the integrity of the shear span of the spec-
imen was affected. Additional tests have to be carried out on specimens with different
supporting conditions. The additional tests were executed with the point load located
between the last flexural failure and the first shear failure, so that a refined critical posi-
tion is obtained. The test procedure assumes that when the supporting condition does
not change, and there is no clear flexural shear crack, the crack pattern of the previous
test does not affect the shear capacity of the next test. Nevertheless, an additional test
with the same boundary conditions were carried out, whenever possible, on un-cracked
span, so that the effect of the existing cracks can be evaluated. The testing procedure was
designed to ensure that as much information could be obtained from every beam. The
basic assumption is that an observed onset of bending failure will not affect the results
of the shear capacity once the load has been subsequently moved in the direction of the
support. The other end of the beam is tested subsequently to verify this assumption by
immediately applying the load at the critical loading position.

The so called flexural failure was defined by the yielding of the longitudinal rein-
forcement in this test program. By shear failure the authors referred to the flexural shear
failure. In such failure mode, the specimen loses its capacity at the moment when un-
stable secondary cracks develop along the tensile reinforcement and the compressive
zone. When such failure occurs, no additional test was carried out in the same span.
The mixed mode is, on the other hand a failure mode between flexural failure and shear
failure. With this failure mode, the yielding of the tensile reinforcement usually occurred
first, meanwhile, the secondary cracks initiated at the tips of one of the flexural cracks
further away from the loading point. Such failure mode typically occurs when the posi-
tion of the point load is between that of a flexural failure test and a shear failure test.

3.5.2. EVALUATION OF MODELING UNCERTAINTY

The ratio
RE xp

RF E M
has been calculated for 53 of the beam cases of Yang. The results are tabu-

lated in the Table A.1. In that Table the specifications of each beam, such as the distance
a of the loading point from the left support, depth d of the reinforcement bars from the
top fiber, concrete compressive strength fc , the diameter of the reinforcement bar, is
registered. Along with these specifications the experimental capacity of the beams RE xp ,

NLFEA predicted capacity RF E M and the ratio ϑ= RE xp

RF E M
are tabulated. The repeated ex-

periments are grouped together. Modeling uncertainty is in fact itself influenced by the
random material parameters. This is why it is useful to have repeated experiments, in
order to uncouple the modeling uncertainty from the material uncertainty.

Due to the sufficiently large number of data Bayesian inference is not used for determin-
ing the statistical properties of ϑ from the data. The mean (0.971) and standard devia-

tion (0.1327) for ϑ are directly found from the data set Since the ratios
RE xp

RN LF E A
are posi-
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tive quantities, it is hypothesized that ϑ for the adopted NLFEA solution strategy is Log-
normally distributed. The Lilliefors test is performed to test whether the null hypothesis
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Figure 3.15: Probability plot of the logarithm of the data. The figure shows that the logarithm of the data follows
Normal distribution.

that the data (for ϑ) follows Log-normal distribution is true or not. The Lilliefors test is a
two-sided goodness-of-fit test suitable when the parameters of the null distribution are
unknown and must be estimated. From the test the null hypothesis is confirmed with
1% confidence level. The probability plot of the logarithm of the data from Figure 3.15
also shows that the logarithm of the data follows Normal distribution. This corroborates
with the Lilliefors test result.

3.6. SEMI-PROBABILISTIC VERIFICATION FROM LITERATURE
Semi-probabilistic reliability methods are often used in RC literature [80] to avoid using
a large number of NLFEA. In such a semi-probabilistic reliability method it is assumed
that the probability distribution of resistance is already known. In semi-probabilistic re-
liability method it is assumed that the probability distribution of resistance is already
known. Based on this assumption it is checked whether the safety criterion, Rd ≥ Fd is
met or not. Rd is the design resistance and Fd is the design action effect. The design re-
sistance could be obtained by the partial safety factor method, where the representative
values of the parameters (either mean or characteristic) are divided by respective safety
factors (calculated based on the parameters’ distribution type and coefficient of varia-
tion) to obtain the design values of those parameters. If it is assumed that the stochastic
parameters are log normally distributed, then according to Eurocode 1990 [79], the de-
sign value fi d for the parameter fi can be found as,

fi d = µi exp(−αiβnσi −0.5σ2
i )

γRd
(3.20)
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Here αi is the sensitivity factor of the parameter fi , µi is the mean, βn is the target re-
liability index and σi = ln(1+ cov2

i ) can be found from the updated coefficient of varia-
tion covi . γRd is the parameter quantifying the uncertainty associated with the NLFEA
model. In the partial safety factor method it is assumed that the NLFEA with design pa-
rameters as input leads to the design resistance Rd .

Another approach to find Rd is the global resistance safety factor where,

Rd = Rm

γRγRd
(3.21)

here, Rm is the mean value of the resistance, which is obtained by NLFEA at the mean
parameter values. γR is the global resistance safety factor. This expression has been
prescribed by fib Model Code 2010 [80]. A slightly different expressions for Rd , based
on mean material resistances, is given by Allaix et al. [81]. If the structural resistance is
assumed to follow a lognormal distribution, then following Cervenka [82], we have the
expression,

γR = exp(−αRβncovR ) (3.22)

where, αR is the sensitivity factor of resistance, βn is target reliability and covR is the
coefficient of variation of resistance, which depends on the coefficient of variations of
material, model and geometrical uncertainties. covR can be determined with any of
the methods by Cervenka [83], Schlune et al. [67] or Roseblueth [84]. The use of the
partial safety factor approach is better suited for member level safety evaluation. Global
resistance safety factor approach on the other hand is applicable to the safety evaluation
at the system level, which automatically takes into account the interactions of different
parts of the whole structural system [2].
The semi-probabilistic reliability methods require only few NLFEA. Their efficiency makes
them attractive methods. However, the underlying assumptions which go into these ap-
proaches are might produce conservative estimates of the reliability. For example, the
values of influence coefficients (αi ) in partial safety factor approach, are assumed to be
0.8 for dominating and 0.32 for non-dominating parameters [85].These values are pre-
scribed based on calibration. Moreover, semi-probabilistic methods disregard correla-
tions between the input random variables, which may have significant influence on the
outcome. In order to confirm whether semi-probabilistic methods produce conservative
estimates of safety, it is necessary that the performance of semi-probabilistic safety for-
mats are compared with a NLFEA based full probabilistic reliability method at member
level.

3.7. CONCLUDING REMARKS FOR THE THIRD CHAPTER
The NLFEA solution strategies for the RC structures are reviewed in this Chapter. A so-
lution strategy is adopted based on the review. The test cases, three RC beams, one fail-
ing in shear one in bending and one in mixed mode, are selected in this Chapter. These
beams will serve as the subject of demonstration in the coming Chapters. The numerical
challenges associated with NLFEA solution strategies are demonstrated in this Chapter.
It is seen, that the shear beam has a pronounced noisy limit state function, where as the
bending beam has a relatively smooth limit state function. It is also seen that the mixed
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beam has two design points, one leading to a bending failure another leading to a shear
failure.
The modeling uncertainty pertaining to the adopted solution strategy is determined
based on experimental results. Two approaches to finding modeling uncertainty are re-
viewed. The approach where the modeling uncertainty for an NLFEA solution strategy
is determined based on the results for several RC structures, is adopted in this thesis.
Due to the relatively large number of data set Bayesian updating method is not used, be-
cause with large number of data the statistical uncertainty for the stochastic parameters,
mean and standard deviation, diminishes significantly. Instead the mean and standard
deviation for ϑ are calculated directly, while assuming that ϑ follows a Log-normal dis-
tribution.

It can be questioned whether the choice of combining the data for all failure modes
to calculate the modeling uncertainty is justified or not. Because the standard deviation
of ϑwould be much larger for shear failure than for flexural failure. A different modeling
uncertainty parameter ϑ for each failure mode would have been more reasonable. How-
ever, the data for all failure modes were combined (to obtain a single ϑ) from the sake
of simplifying the reliability analysis. Because if different modeling uncertainty parame-
ters were used for different failure modes, then all those different modeling uncertainty
parameters have to be used as separate random variables. During the reliability analysis,
for a particular realization, whenever the structure fails in some failure mode, only the
corresponding modeling uncertainty realization would be used to produce the value of
the limit state function. This approach has the practical difficulty that during a reliabil-
ity analysis failure mode needs to identified quantitatively for each of the NLFEA, from
one realization to another. One possibility is to measure the Ductility index, introduced
by Engen et al. [17], for each NLFEA of RC structure. The Ductility index quantitatively
determines whether the failure is brittle or ductile in nature. Such approach is not con-
sidered in this thesis however.
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RELIABILITY ANALYSIS OF A RC

BEAM FAILING IN SHEAR BY A DARS
METHOD, ACCOUNTING FOR

MODELING UNCERTAINTY

4.1. INTRODUCTION

T HE limited examples of available literature on NLFEA based full probabilistic relia-
bility study of RC structure is lacking in one major aspect. In none of these works the

modeling uncertainty associated with a NLFE model has been accounted for. A finite
element model of a structure is an abstraction of the physical structure with a number
of assumptions, generalizations, and idealizations. In NLFEA the process of abstraction
from the structure to the mechanical model, and then the abstraction from the mechan-
ical model to the finite element model, introduces a potential for significant uncertain-
ties. The assessment of reliability of RC structures needs to incorporate the uncertainty
that arises from the numerical scheme used for the analysis. This uncertainty, termed
as modeling uncertainty in literature, was quantified in the previous chapter based on
experimental results of 53 benchmark cases [64].
In this chapter the reliability of RC beams has been investigated with one of the impor-
tant sampling methods, called directional adaptive response surface (DARS) method.
The specific implementation of DARS with commercial FE package DIANA [61] has been
validated with a couple of simple test problems. The test problems were chosen such
that they had reference reliability results with Monte Carlo analysis. Then a case study,
a RC beam failing in shear, is chosen. The NLFE solution strategy for RC beams have
been formulated following the guidelines issued by Dutch Ministry of Infrastructure and
the Environment [18]. Along with material parameters, the modeling uncertainty associ-
ated with the solution strategy is used as an additional random variable in this work. The
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spatial variability of the random variables is ignored in this work, i.e., only the random
variable method is used. Sensitivity analysis with FORM on the final response surface
obtained from DARS, is performed to obtain the sensitivity factors αi for each random
variables. These factors give a quantitative measure of the relative importance of the
random variables.

4.2. VALIDATION OF THE SPECIFIC IMPLEMENTATION OF DARS
The algorithm of DARS has been discussed in the Chapter 2. The specific implementa-
tion of DARS in the commercial FE package DIANA has been validated based on three
test cases. For these simple test cases the limit state functions are available in analyti-
cal form. This makes reliability analysis by means of Monte Carlo simulation possible,
which is used as benchmark for comparison. The relative simplicity of the test cases also
allow the opportunity to study the effects of three parameters used in DARS and crit-
ically asses their appropriate values. Two of the parameters, λadd and tol , have been
introduced in subsection 2.3.8. The third parameter is the threshold coefficient of varia-
tion of the failure probability estimator P f (from Eq.(2.75)), covP f .

4.2.1. THE TEST PROBLEMS

Figure 4.1: Two concrete element under compression

Figure 4.2: A single concrete element under compression

As test cases, a two element model (one concrete element on top of the other, Fig-
ure 4.1) and a single element model (Figure 4.2) have been chosen. The dimension of
each element is 100×100×300mm3 where 300 denotes the thickness of the plane stress
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element. The compressive strengths of the two elements in Figure 4.1, fc1 for the top
element and fc2 for the bottom element are the two stochastic quantities. The single
element (Figure 4.2) has a compressive strength fc2. The modeling uncertainty ϑ is also
an input stochastic variable for some cases. In total three cases are considered. Table
4.1 lists the random variables for each case. The schematizations should be conceived
as academic test cases in which we can also study the numerical process. It is not the in-
tention that these should represent detailed analyses of compressive tests, which would
require more thought on the boundary conditions and the required FEM discretization.

Table 4.1: Input random variables

Cases fc1 fc2 ϑ Structure

First random random - Figure 4.1
Second - random random Figure 4.2
Third random random random Figure 4.1

The modeling uncertainty ϑ is included just for the sake of demonstration. The sum-
mary of all the input random variables for these three cases is given in Table 4.2. All the
random variables are considered to be independent.

Table 4.2: Input random variables

Stochast. Distribution Mean Std.

ϑ Normal 1 0.1
fc1 Normal 60 MPa 9 MPa
fc2 Normal 30 MPa 4 MPa

The NLFEA solution strategy, common for all three test cases, is different compared to
the one that is specific to RC beams. The solution strategy chosen for the test cases is
specific for compressive loading. A parabolic stress strain behavior has been chosen
for concrete in compression. A deterministic value of compressive fracture energy of
Gc = 11.037N/mm is selected. A displacement controlled compressive load has been
applied in 170 load steps. The load increment in each step is 0.004mm. The regular
Newton Raphson method is used for solving the system of nonlinear equations. A force
convergence norm is used as a convergence criterion for the equilibrium iterations, as
force equilibrium is better satisfied with a force norm.

The total load bearing capacity in analytical form for the first and third case is Ac min( fc1, fc2)
and for the second case it is Ac fc2. Ac = 100×300mm2 is the cross section area. The limit
state function has been defined based on the total support reaction force R. As force on
the structure F = 200000N is considered for all three cases. So, for the first case the ana-
lytical limit state function G A is,

G A( fc1, fc2) = Ac min( fc1, fc2)

F
−1 (4.1)
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and the corresponding FE based limit state function G is denoted as,

G( fc1, fc2) = R( fc1, fc2)

F
−1 (4.2)

Similarly, for the second case,

G A( fc2,ϑ) = ϑAc fc2

F
−1 (4.3)

G( fc2,ϑ) = ϑR( fc2)

F
−1 (4.4)

and for the third case,

G A( fc1, fc2,ϑ) = ϑAc min( fc1, fc2)

F
−1 (4.5)

G( fc1, fc2,ϑ) = ϑR( fc1, fc2)

F
−1 (4.6)

Note that for the second and third case that, even though G is function of all three ran-
dom variables, the modeling uncertainty ϑ does not enter the nonlinear finite element
analysis to calculate R. However, ϑ is used as a base variable to construct the response
surface to approximate G . Also note that, the reliability calculations are not done in the
space of original random variables. The random variables are transformed into indepen-
dent standard normal variables, with 0 mean and standard deviation 1. The variables
fc1, fc2 and ϑ are transformed into u fc1 , u fc2 and uϑ respectively in the standard normal
space. The response surface is then fitted in the space of standard normal variables.

4.2.2. STUDY OF THE PARAMETERS covP f , λadd , tol
The accuracy of the result of DARS is directly influenced by the number of sampled direc-
tions and line search convergence criterion tol . The line search convergence criterion
has been defined as

∣∣ϑR
F −1

∣∣≤ tol (ϑ to be ignored when it is not an input random vari-
able). The parameter λadd also has an influence on the outcome. While it is intuitively
understood that a larger number of sampled directions would increase the accuracy of
the reliability analysis, the price paid in terms of computational cost puts a prohibitive
limit on sampling large number of directions. A compromise, balancing in terms of ac-
ceptable accuracy and viable amount of computation, has to be reached. The accept-
able degree of accuracy is a more involved question however. In most cases it is unlikely
that the limit state function would be available in analytical form. So, it would be im-
possible to know the actual reliability with Monte Carlo simulation, which could have
served as a reference. There needs to be some indirect measure of accuracy, which can
be used as a criterion to stop sampling directions, as soon as that criterion is met. covP f

is used as such criterion for DARS. From Eq.(2.75) it is seen that failure probability P f i

for i th sampled direction is dependent on λi . For large numbers of sampled directions,
the important directions will band together around the nearest region of the limit state
surface from the origin, resulting in relatively low variability among the corresponding
distances λi to the origin. Consequently, the corresponding failure probabilities, P f i ,
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will also have less variability. This is the rational behind choosing the coefficient of vari-
ation of P f , covP f as a stopping criterion for sampling directions. In each iteration of
DARS directions are sampled until the value of covP f becomes less than or equal to a
user prescribed threshold value. By the end of the last iteration many of the sampled
directions, which started out unimportant in the first iteration, will turn out to be im-
portant, yielding a substantial value of associated P f i . As a result the final variability of
P f will be lower compared to the first iteration.
As a measure of confidence on the procedure, a confidence interval has been constructed
based on the variability of P f . If P f from Eq.(2.75) is the estimator of failure probabil-
ity with standard deviation σP f , then for a given confidence level of γ the confidence
interval would be,

P f −Zγ
σP fp

N
≤ P f ≤ P f +Zγ

σP fp
N

(4.7)

where,

Zγ =Φ−1(
γ+1

2
) (4.8)

Φ is the CDF of the Normal distribution. This interval is the range in which the failure
probability is expected to belong. γ is the probability that DARS would be able to pro-
duce a failure probability within this bound. When no reference result for P f is available,
the length of confidence interval gives an extra measure of how trustworthy the estimate
of P f is. To study the performance of covP f as a threshold criterion of sampling, P f has
been plotted against varying covP f , along with confidence interval and number of re-
quired NLFEA, for all the three test cases in Figures 4.3, 4.4 and 4.5. A confidence level of
95% (or γ = 0.95) is used. The reference P f by Monte Carlo simulation have been indi-
cated with horizontal dashed lines. λadd = 1 and tol = 0.01 have been assumed for this
study.
Some discussions are in order regarding the appropriate choice of covP f . The Eurocode
[79] recommends a β = 3.8 for a 50 years reference period for the ultimate limit state
of ordinary structures. Based on this recommendation Waarts [14] worked out that a
convergence criterion of covP f = 0.57 would be sufficient to ensure with 95% confidence
that the error in β is within acceptable limit of 8% error in the estimation of β. This was
shown in [14] to lead to enough accuracy for practical structural engineer problems in
relation to safety classes defined in [79].
For the first and second case, covP f has been varied from 0.2 to 0.45 in steps of 0.05. For
the third problem however, the range of covP f considered was 0.3−0.55, as DARS failed
to achieve a covP f lower than 0.25 with in 300 sampled directions.
From Figures 4.3, 4.4 and 4.5 it follows that for all three cases, the difference of P f by
DARS with the reference value (by MCS) increases as covP f increases. In these figures
the mean value(s) of the P f , corresponding to each covP f are marked with a star (∗),
which appears exactly at the midpoint of each of these confidence interval lines (vertical
blue lines). The corresponding number of NLFEAs are also indicated along side the con-
fidence intervals. One thing to notice in these examples is that there is significant bias in
the estimate of mean failure probability P f , compared to the reference value (obtained
with MCS), when the target covP f is relatively higher. For example, covP f = 0.45 pro-
duced the highest bias in the estimate of P f in all the three examples, and at covP f = 0.2
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Figure 4.3: First case: Random fc1, fc2. covP f
vs P f : λadd = 1 and tol = 0.01
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Figure 4.4: Second case: Random fc2, ϑ. covP f
vs P f : λadd = 1 and tol = 0.01

the estimated P f almost matched the reference value by MCS. The explanation is that the
total number of randomly sampled directions decreases with the increase in covP f . This
can make the failure probability estimator, P f , biased for larger value of covP f . Low sam-
pling density also increases the standard deviationσP f . This fact is attested by the distri-
butions of P f (which is Normally distributed), given against covP f for all three problems
as inset. Consequently, according to the expression of Eq.(4.7), the confidence interval
(for a confidence level γ= 0.95) increases with increasing covP f .
One interesting observation from the Figures 4.3, 4.4 and 4.5 is that the confidence in-
terval shrinks much more rapidly when the value of covP f is higher. But as the value
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Figure 4.5: Third case: Random fc1, fc2, ϑ. covP f
vs P f : λadd = 1 and tol = 0.01

of covP f reduces, the width of the confidence interval does not decrease as drastically
(for example, at covP f = 0.25 and covP f = 0.2). It suggests that lowering the covP f , and
thereby increasing the sampling density beyond a certain level, the obtained information
about the failure probability through directional simulation does not differ significantly.
It can be argued that too small covP f unnecessarily increases the number of (exact) sim-
ulated directions around the important region of the limit state surface, without adding
any additional information.

To study the influence of λadd and tol on the reliability analysis, covP f = 0.4 for the first
case and covP f = 0.45 for the second and third problem have been selected.

The entity β=Φ−1(P f ), the number of NLFEA and the number of sampled directions
are plotted against λadd and tol for all three problems, to see what influence these two
parameters have on the reliability analysis. From Figures 4.6, 4.7 and 4.8 it follows that
the test cases the β doesn’t depend on λadd , as for a given value of tol β doesn’t change
along the λadd axis. Also, beyond tol = 0.1 for first problem (Figure 4.6) and tol = 0.01
for second and third problem (Figure 4.7 and Figure 4.8), β remains constant along the
tol axis. The number of NLFEA however, as can be seen from Figures 4.9, 4.10 and 4.11,
depends on λadd and tol . So for these test cases the λadd doesn’t influence the accu-
racy of the reliability analysis, but it certainly influences the computational effort, for
the simple cases considered in this section.

In light of the discussion of the DARS procedure in Section 2.3.8, it can be said that
a large λadd improves the possibility of finding an important direction, by relaxing the
criterion of deciding whether a direction is important or not. This is particularly useful
when the limit state surface has uneven fluctuations. But a too large λadd would mean
that a larger number of directions would be deemed as important, thereby increasing
the total number of NLFEA. But many of these directions will actually be further from
the important region and contribute insignificantly to the P f (or to β = Φ−1(P f )). This
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Figure 4.6: First case: Random fc1, fc2. λadd and log10 tol vs β=Φ−1(P f ): covP f
= 0.4

Table 4.3: Reliability results of the test problems with DARS

C ase covP f λadd tol Directions G∗
N LF E A NLFEA λmi n β βRe f

First 0.4 2 0.01 33 10 30 4.17 4.06 4.16

Second 0.45 1 0.01 24 7 34 3.88 3.76 3.84

Third 0.45 1 0.01 80 13 61 3.88 3.78 3.82

notion is supported by Figures 4.12, 4.13 and 4.14 where it can be seen that the number
of sampled directions does not increase with increasing λadd . A too small λadd however
might discard nearly all directions as un-important, resulting in a slow update of the re-
sponse surface, requiring a lot of iterations and hence, increasing the number of NLFEA.
Depending on the nature of of the limit state surface, there can be an optimum λadd , as
is the case in Figure 4.9, where the number of NLFEA is lowest at λadd = 2 for a tol less
than 0.1. tol acts as a termination criterion of line search. While it is desired to get as
close as possible to the limit state surface, a too tight tol will not contribute significantly
to the accuracy of the analysis beyond a certain value, except increasing the computa-
tional cost. Also, the limit state surface, which is defined based on capacity estimates by
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Figure 4.7: Second case: Random fc2, ϑ. λadd and log10 tol vs β=Φ−1(P f ): covP f
= 0.4

NLFEA, is itself not exact. Because NLFEA uses a convergence criterion of its own. So, it
will not be meaningful to try to satisfy the limit state equation exactly.

4.2.3. COMPARISON AGAINST REFERENCE RESULTS

With appropriate choices of covP f , λadd and tol in due consideration of accuracy and
computational effort, the reliability results for the three problems are summarized in Ta-
ble 4.3. Theβ is defined asβ=Φ−1(P f ), where P f is the failure probability from Eq.(2.75).
βr e f denotes the reference value found by Monte Carlo, by β = Φ−1(Pr e f ). Pr e f is the
failure probability by Monte Carlo. The reference results have been generated by Monte
Carlo simulation on the analytical limit state functions. The number of samples for the
Monte Carlo is selected based on the criterion, N ≥ 1

cov2
P f

( 1
P f

−1). A target covP f = 0.1

and an expected P f in the order of 10−5 is used in this criterion to determine the min-
imum number of required Monte Carlo samples (107) for all three cases. It should be
mentioned that based on this target covP f = 0.1 the required number of samples in MCS
can be determined dynamically during the MCS. However, the purpose of this exercise
here is not to compare the efficiency of DARS against MCS, but rather obtaining a ref-
erence value in order to verify the accuracy of DARS results. That’s why 107 samples are
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Figure 4.8: Third case: Random fc1, fc2, ϑ. λadd and log10 tol vs β=Φ−1(P f ): covP f
= 0.4

used. The λmi n denotes the minimum distance, obtained by DARS, from the origin to
the limit state surface. DARS manages to produce β values which are reasonably close to
the reference results for all the cases. The G = 0 and the final Ĝ = 0 are plotted along with
directions (important or otherwise) in Figures 4.15 and 4.16 for first and second case re-
spectively. For the third case, only the Ĝ = 0 is plotted to increase the visibility (Figure
4.17).
The intersection points of the G = 0 hyperplane with the important directions and Ĝ =
0 with un-important directions have been denoted with G∗

N LF E A and G∗
RS respectively

throughout this thesis. Along the important directions, the line search interim points are
denoted by GN LF E A . The G∗

N LF E A point with minimum distance λmi n from the origin to
G = 0, is considered to be the design point obtained by DARS.

From Figures 5.1 and 5.2 it can be seen that the final Ĝ = 0 coincides with G = 0 in the
most important region (in the vicinity of the design point) of G = 0. For the first problem
the analytical limit state surface consists of two half lines in the space of the standard
Normal space as,

u fc1 ≥−5.22

u fc2 ≥−4.25 (4.9)
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Figure 4.9: First case: Random fc1, fc2. λadd and log10 tol vs No. of NLFEA: covP f
= 0.45

Table 4.4: The design point and λmi n for the first and second case

Method First case Second case

u fc1 u fc2 λmi n u fc2 uϑ λmi n

FORM 0 −4.25 4.25 −3.49 −1.68 3.88

DARS 0 −4.17 4.17 −3.53 −1.61 3.88

For the second problem, the analytical limit state surface in the standard normal space
is,

15000(0.1uϑ+1)(4u fc1 +30)−200000 = 0 (4.10)

the design point for the first and second problems can be obtained by FORM analysis on
Eq.(4.9) and Eq.(4.10). The result compares reasonably well with the design point and
λmi n obtained by DARS (Table 4.4).
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Figure 4.10: Second case: Random fc2, ϑ. λadd and log10 tol vs No. of NLFEA: covP f
= 0.45

4.3. CASE STUDY: BEAM FAILING IN SHEAR
In the previous section the simple test cases had relatively smooth limit state surfaces.
The shape of the limit state functions of actual structures may be more complicated and
irregular compared to those simple problems. Waarts [14] applied DARS on a number
of structures, which are typical of civil engineering practice. He compared those results
with other methods for accuracy and efficiency. But even those structures were so cho-
sen such that the finite element part was relatively simple and the limit state functions
were relatively well behaving. When it comes to DARS reliability analysis of RC struc-
ture, there is a paucity of demonstrative examples in literature. NLFEA based reliability
analysis of RC structures with DARS has several critical elements of its own, which will be
studied in detail in Section 4.3.1. Among the several RC beams experimentally studied by
Yang et al. [64], a beam A122A1 (Figure 3.2) which failed in shear in the experiment, has
been selected for a case study. In the experiments stirrups were also part of the beam
configuration, which is not used in this work. The stochastic properties are obtained
from Yang et al. and Wiśniewski et al. [65] (summarized in Table 4.5). The model un-
certainty ϑ has been quantified from the 53 experimental beams considered by Yang et
al. Given the large number (53) of benchmark cases, Bayesian inference is not used. All
the stochastic variables for this beam, including ϑ, are properties which cannot have
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Figure 4.11: Third case: Random fc1, fc2, ϑ. λadd and log10 tol vs No. of NLFEA: covP f
= 0.45

negative values. Therefore, they are assumed to follow Log-normal distribution.

Table 4.5: Stochastic properties for the beam in shear

Properties fc [MPa] ft [MPa] GF [N/mm] Ec [MPa] fy [MPa] ϑ [-]

Mean 78.2 5.13280 0.1266 42675 550 0.971

Std. 9.645 0.8503 0.0309 3198.4 30 0.1327

To gain a deeper insight into the reliability analysis of the RC beam, in total seven cases
have been considered. The cases are summarized in Tables 4.6.

The NLFEA solution strategy is a key element of any RC reliability analysis, which has
been discussed already in 3. In this Section the line search phenomena in DARS for the
RC beam case is expounded first. The modeling uncertainty (ϑ) is not yet considered for
that case. Later in this Section four cases with Modeling uncertainty are considered and
their results are discussed.
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Figure 4.12: First case: Random fc1, fc2. λadd and log10 tol vs No. of Sampled Directions: covP f
= 0.45

Table 4.6: Summary of all the beam cases

Case fc [MPa] ft [MPa] GF [N/mm] Ec [MPa] fy [MPa] ϑ [-] tol

1st (a) - X X - X - 0.01

1st (b) - X X - X - 0.1

2nd - X X - - X 0.1

3r d - X X - X X 0.1

4th(a) X X X X X - 0.1

4th(b) X X X X X X 0.1

5th X X X X X X 0.1

* For the cases 1st (a) to 4th (b) ft and GF are considered to be perfectly correlated, rest are mutually inde-

pendent. For the 5th case the concrete correlation matrix given by Zimmermann et al. [86] is used.

4.3.1. DEMONSTRATION OF LINE SEARCH FOR RC SHEAR BEAM
The key philosophy behind DARS is that instead of simulating large numbers of samples,
as typically done in Monte Carlo simulation, only the samples in the most important
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Figure 4.13: Second case: Random fc2, ϑ. λadd and log10 tol vs No. of Sampled Directions: covP f
= 0.45

region of the limit state surface are considered. Such samples are found by a line search
along the important directions. The line search procedure has been described in section
2.3.8. The algorithm for the line search works in such a way that after each iteration a
new point in the search direction is found, which is then used to improve the polynomial
describing the G function. For a smooth and well behaving G function this takes about
3−4 iterations to locate the important sample near/on the limit state surface G = 0.

Table 4.7: Comparison of DARS results for two different values of tol

Case tol Directions G∗
N LF E A NLFEA λmi n β βFORM

1st (a) 0.01 44 7 63 5.51 5.53 5.51

1st (b) 0.1 24 5 17 5.70 5.63 5.35

The G function along a search direction for RC structures however, is rarely smooth.
The 1st cases ((a) and (b), Table 4.7), where only the concrete shear strength ( ft ), fracture
energy (GF ) and reinforcement yield strength ( fy ) are random, are selected in this sub-
section to expound the irregularity that can occur during a line search. The choice of the
random variables is inspired by the fact that shear failure is governed by concrete tensile
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Figure 4.14: Third case: Random fc1, fc2, ϑ. λadd and log10 tol vs No. of Sampled Directions: covP f
= 0.45

properties. A model uncertainty (ϑ) is not taken into account for this case because the
exclusion of ϑ make the results more visually explicit. ft and GF are considered to be
fully correlated. fy is independent of the other two random variables. This choice of cor-
relations means that the standard normal space would be described by only two random
variables, u ft and u fy . The limit state function, G , in this case is given by,

G = RF E M

F
−1 (4.11)

where R is the reaction capacity and F is the applied load on the beam.
In section 4.2.2 the influence of the target covP f was studied, based on simple test prob-
lems. In that same section it was discussed that a covP f = 0.57 results in ≤ 8% error in
β. While this is a relatively large error, based on the accuracy demanded by Eurocode
[79] for engineering practices, this relaxation of error in β is allowed. This consideration
is entirely from the perspective of feasibility. In theory, keeping a tight covP f as conver-
gence criterion for sampling would result in more accurate result.
However, an unnecessarily too tight covP f certainly means larger number of sampled
directions and hence NLFEA. Considering how taxing each NLFEA is for RC structures,
the number of sampled directions should be kept at bare minimum. So covP f = 0.57 is
used as termination criterion for sampling in rest of this work.
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Figure 4.15: G = 0, final Ĝ = 0 for the first case

In order to explore the line search phenomena more closely, the two separate cases,
1st (a) with line search tolerance tol = 0.01 (Figure 4.18) and 1st (b) with tol = 0.1 (Figure
4.19) are considered. The important samples G∗

N LF E A , unimportant samples G∗
RS and the

final response surface Ĝ = 0 are described in the standard normal space for an applied
load of 80kN. The comparison of the DARS analysis for these two cases is given in Table
4.7. The symbols β and λmi n are used in the same sense as before in previous section.
βFORM in the Table is the reliability index found based on the FORM analysis on the final
response surface Ĝ = 0.

The final response surface Ĝ = 0 in Figure 4.18 is parallel to the u fy axis. The Ĝ = 0
surface in Figures 4.19 and 4.18 look similar, except that in Figure 4.19 it has a slight
negative slope. Since the chosen beam fails in shear, the reinforcement yield strength
fy has almost no influence in the failure of the beam. So the failure surface Ĝ = 0 curve
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Figure 4.16: G = 0, final Ĝ = 0 for the second case

parallel to the u fy axis for this problem is expected.

The final β value for these two cases are not significantly different. With the less
demanding tol = 0.1 for case 1st (b) the obtained G∗

N LF E A points are not as closely lo-
cated to the G = 0, defined by Eq.4.11, compared to 1st (a). It is tempting to deduce that
tol = 0.01 leads to more accurate estimate of reliability. However, close inspection of the
line search would reveal that there is more nuance to it than what is apparent. The di-
rection leading to the G∗

N LF E A for one specific direction in Figure 4.18 took 10 iterations
along that direction (marked in the figure). The plot of the residual G values against the
corresponding λ for this direction (Figure 4.20) shows pronounced irregularities. The
same direction took only 3 iterations in Figure 4.19 to reach the G∗

N LF E A . Also, there
are directions in Figure 4.18 which even after 10 iterations could not produce a G∗

N LF E A
point.
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Figure 4.17: G = 0, final Ĝ = 0 for the third case

This means, it is entirely possible that during a line search the capacity prediction by
NLFEA itself is noisy. In such circumstance, the line search, even after consuming a
large number of NLFEA, would lead to an erroneous G∗

N LF E A . Keeping a demanding
tol , where the NLFEA convergence criterion leads to inaccurate estimates of capacity,
will not lead to a realistic reliability estimate.

There is another source of justification for using a relaxed tol . As illustrated in sub-
section 2.3.8, during a line search the G∗

N LF E A point is sought by progressively improving
the polynomial describing G function, with each newly available point on the search di-
rection. The hope is that this procedure would guide the line search to locate the G∗

N LF E A
point. But in presence of irregularities, it might be unrealistic to expect that the polyno-
mial is consistently indicating any trend. In the end, the discovery of a G∗

N LF E A point
might just be a lucky shot. Spending too many expensive NLFEA in that case would be
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Figure 4.18: The shear beam 1st (a) case with ft , GF and fy random. λadd = 3, tol = 0.01 and covP f
= 0.57

wasteful. The total number of NLFEA required for tol = 0.01 is 63, where as it took only
17 for tol = 0.1 (Table 4.7).

The comparison of the total number of NLFEA is given in Figure 4.21, for varying
λadd and tol . The choices for λadd are inspired by Waarts [14] in all cases. From the
Figure 4.21 it seems that irrespective of λadd , the relaxed tol = 0.1 takes less number of
NLFEA. For higher value of λadd = 3.0, the number of NLFEA increases drastically with
tol = 0.01. This observation, that smaller a λadd results into more efficiency, is in agree-
ment with the conclusion drawn by Waarts [14]. However, based on a large number of
different kind of test examples Waarts concluded that a low value of λadd might com-
promise the accuracy of the analysis. Keeping the accuracy of result in mind, λadd = 3.0
value has been used in rest of this chapter.
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Ĝ = 0

G∗

NLFEA

G∗

RS

Figure 4.19: The shear beam 1st (b) case with ft , GF and fy random. λadd = 3, tol = 0.1 and covP f
= 0.57

4.3.2. RELIABILITY ESTIMATION OF RC BEAM, CONSIDERING ϑ
The assumptions, generalizations and idealizations involved in a NLFEA solution strat-
egy give rise to a source of uncertainty, in addition to the random physical properties.

If the reliability calculation of a RC structure does not account for this additional
scope of uncertainty, then the estimated reliability will not be the true reflection of real-
ity. ϑ in a full probabilistic frame work is used by recasting the limit state function given
in Eq.(4.11),

G = ϑRF E M

F
−1 (4.12)

The philosophy behind multiplying ϑ with RF E M follows straight from the defini-
tion of ϑ in Eq.(3.4). The idea is that each realization of the material parameters would
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Figure 4.22: The shear beam 2nd case with ft , GF and ϑ random. λadd = 3, tol = 0.1 and covP f
= 0.57

produce a capacity prediction RF E M by NLFEA, which will then be multiplied with the
corresponding realization of ϑ. One of the opportunities of a full probabilistic reliability
analysis with NLFEA is that it allows detail assessment of the effects of the input random
variables. Four different cases, described as 2nd , 3r d , 4th(b) and 5th in the Table 4.8, are
considered in this work. The applied load of F = 80kN is considered for all the cases.
For concrete, the compressive fracture energy Gc quantity has been assumed to be de-
terministic in all cases. Its value has been obtained by the relation given in Model code
2010 [87], Gc = 250GF , where the mean value of GF is used.

The choice for covP f = 0.57 has been explained earlier in this section. λadd = 3, which
has been used in the previous subsection, is used here as well. Because in the case of
noisy limit state functions, a larger λadd = 3 increases the chances of finding the impor-
tant directions.
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Figure 4.23: The shear beam 3r d case with ft , GF , fy and ϑ random. λadd = 3, tol = 0.1 and covP f
= 0.57

Table 4.8: Summary of DARS results for all four RC shear beam cases considering ϑ

cases Directions G∗
N LF E A NLFEA λmi n β βFORM

2nd case 13 4 21 3.00 3.72 3.45

3r d case 23 12 30 3.00 3.55 3.18

4th(b) case 31 20 65 3.93 3.16 2.94

5th case 56 33 100 3.86 3.06 3.28

A tighter tol should lead to a more accurate reliability estimate. However, the irregularity
of the capacity estimates during a line search cannot be guaranteed against. As discussed
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in the previous subsection, a strong scatter of capacity predictions during a line search
would render the line search strategy ineffective. So, to avoid this situation the value of
tol = 0.1 is persisted with.
It is usual practice in semi-probabilistic methods to disregard the correlations between
the random variables. For cases 2nd to 4th(b) the input random variables are considered
uncorrelated, except ft and GF which are perfectly correlated. The correlations between
the random variables can have substantial effect on the outcome of reliability analysis. In
the 5th case the input random variables have a specified correlation matrix. The correla-
tion between all the concrete properties is relatively scarce in literature. The correlation
between the compressive strength and other properties of concrete is studied by Rashid
et al. [88], where a large volume of experimental data was collected from existing litera-
ture and analyzed the correlation between various concrete properties. The correlations
were determined only for the concrete compressive strength with other properties. In
the 5th case the results given in the study by Zimmermann et al. [86] is used. The cor-
relation matrix of the concrete properties is given in Table 4.9. In the Table 4.9 there
are some negative correlation coefficients. This is however unlikely to happen. There
are inadequate references in literature for the correlation of ϑ with other input material
parameters. Engen et al. [17] found, for a given set of experimental beams, that the cor-
relation coefficient between fc and ϑ is only 0.013. The model uncertainty ϑ and the
reinforcement yield strength fy are assumed to be independent with respect to all other
stochastic parameters for all the cases.

Table 4.9: Correlation of concrete properties

fc GF Ec ft

fc 1 −0.25 0.4 −0.11
GF 1 0.04 0.79
Ec 1 0.00
ft 1

The important samples G∗
N LF E A , unimportant samples G∗

RS and the final response sur-

face Ĝ = 0 for the 2nd and 3r d cases are plotted in Figures 4.22 and 4.23 respectively. The
important samples, the final response surface etc. are difficult to visualize in higher-
dimensional space of the 4th(b) and 5th cases. The summary of the reliability results is
given in Table 4.8. The comparison of β, βFORM , the total number of sampled directions
(along with important directions) and total number of NLFEA calls are shown in the Fig-
ures 4.24, 4.25 and 4.26. The total number of directions required to satisfy the sampling
criterion covP f ≤ 0.57 depends on the geometry of the LSF. It is observed in Figure 4.25
that for the chosen RC beam model the increase in stochastic dimension consistently in-
creases the required number of sampled directions (along with important directions) to
satisfy the sampling criterion. Consequently the total number of NLFEA also increases
consistently (Figure 4.26). The total number of NLFEA however does not depend on the
number of important directions alone. As seen in the 1st (a) case, some directions may
take much more NLFEA to meet the convergence criterion than others. So it is possi-
ble that even with less number of important directions the number of NLFEA could be
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Figure 4.25: Comparison of No. of directions for the shear beam cases.

higher compared to larger number of important directions, if each of them take only 2−3
iterations to satisfy the tol criterion.
The relative influences that the input random variables in the standard normal space
have on the reliability outcome are assessed by comparing the direction cosines, called
the influence coefficients (denoted by α), of the direction vector of the design point.
Unlike FORM, the DARS algorithm does not try to find the design point. The λmi n , in
Figure 4.22 and 4.23 for example, is only the smallest distance found among the direc-
tions sampled. The comparison of the αi is presented in Figures 4.27, 4.28 and 4.29.
The αi of 4th(a) case, where ϑ is not considered, is also included in Figure 4.29 for com-
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Figure 4.27: Influence coefficients for the shear beam 2nd case.

parison. The influence coefficients were not investigated for the 5th case, as it has no
physical significance when the random variables are correlated. Because there exists
no one to one correspondence between the correlated random variables in the original
space (log-normal in this case) with transformed variables in the standard normal space.
For all the three cases ϑ consistently has a significant influence in the reliability estima-
tion. The reason follows directly from the way the limit state function is defined. The LSF
ϑRF E M

F −1 is an explicit function of ϑ. So, unlike the other random variables whose effect
on the LSF is expressed implicitly, ϑ effects the LSF directly, i.e. the variability of ϑwill be
induced into the limit state function directly. As long as the covϑ is high, it will certainly
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Figure 4.28: Influence coefficients for the shear beam 3r d case
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Figure 4.29: Influence coefficients for the shear beam 4th (a) and 4th (b) cases.

have a significant influence in the reliability analysis because of the way it enters the LSF.
Implicit variables can only significantly influence if they have high sensitivity factor.
The pattern of α for cases 2nd to 4th(b) in Figures 4.27, 4.28 and 4.29 is consistent with
the notion of shear failure. αu ft

is quite high and for all other variables, exceptϑ,αi ≤ 0.2.

For example, the αi values for the 2nd and 3r d case are almost identical. Because fy in
the 3r d case does not influence the LSF at all. It is important to note that FORM analysis
on the final response surface Ĝ = 0 produces an approximate design point. Because
Ĝ = 0 is best fit around the most important region of the limit state surface, there will be
small inaccuracies in α values. As long as the available points to obtain a fit for Ĝ = 0 is
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sufficiently high, the error would be negligible however.

4.4. CONCLUDING REMARKS FOR THE FOURTH CHAPTER
This Chapter illustrated the full probabilistic reliability analysis of an RC beam by DARS.
The use of the model uncertainty in the full probabilistic format is a novel addition to
the RC structure reliability literature. The specific implementation of DARS has been
validated against single element test cases first.
From the test cases, as well as the RC beam case without model uncertainty, it was
demonstrated that the efficiency of the DARS analysis depends on the value used for
λadd . Low values of λadd generally result into better efficiency, however there can be
exceptions. λadd = 3 has been used to ensure accuracy disregarding the economic con-
cern.
It is revealed that for RC structures with a brittle failure mode, NLFEA predictions of the
loading capacity during the line search in DARS could produce large scatter. In such
circumstance, the line search algorithm does not help much in guiding the process to
locate an important sample on the failure surface. The present implementation circum-
vents this problem by using a relaxed line search tolerance tol = 0.1, which results in low
NLFEA consumption. Comparison with the result of tol = 0.01 suggests there is no big
difference in the final prediction of the reliability index β, while the number of NLFEA is
significantly low for tol = 0.1.
Along with the modeling uncertainty ϑ several combination of random variables are
studied in four cases. Among the four cases, the β value varies within the range 3.06−
3.72. However, the reliability index β is completely out of this range (β = 5.63) when
compared with the case where ϑ is not considered an input random variable.
The modeling uncertainty in this work is obtained by combining the results of shear
failure and bending failure cases. Had they been calculated distinctly, corresponding
to the failure modes, the resulting modeling uncertainty of shear failure mode would
have had much larger variance. Considering different modeling uncertainties for shear
and bending failure modes would have significantly influenced the result of reliability
analysis. It is quite likely that considering different modeling uncertainty for different
failure modes will improve the reliability estimate even further. But in order to make
such implementation possible, it is necessary to be able to quantitatively determine the
failure mode, during a reliability analysis. The ductility index introduced by Engen et
al. [17] can be useful in this regard, to quantitatively distinguish between the brittle and
ductile failure modes during a reliability analysis.
The sensitivity analysis of all the four cases reaffirms the notion that concrete tensile
strength ft plays a more important role in shear failure compared to other physical pa-
rameters. However, it is also found that the significance ofϑ can be comparable to ft . It is
apparent that both covϑ and cov ft are important for shear failure case. This underscores
the importance of having a good estimate of covϑ and cov ft . The cov ft followed from
the mean of ft provided by Yang et al. [64] and the standard deviation of ft provided by
Wiśniewski et al. [65]. The covϑ followed from the Equation 3.4, based on 53 RC beam
cases. In this work it is assumed that the statistical uncertainty of ϑ is independent of ft .
However, if the experiments are repeated, the loading capacities RE X P are likely to vary
for each case, primarily due to the statistical uncertainty of ft . In that sense, the covϑ
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depends indirectly on the cov ft .
Several such case studies will provide an idea of the range of αi for each variables. From
this the appropriate values ofαi can be inferred and used in semi probabilistic reliability
methods.



5
IMPROVEMENTS IN DARS

ALGORITHM FOR NOISY CASES

5.1. INTRODUCTION

O NE crucial observation in the previous chapter was that the prominent numerical
noise in the limit state function of the shear beam made DARS quite inefficient, in

terms of number of NLFEA based limit state function evaluations. The source of this
inefficiency was found to be the interpolation based line search method employed by
DARS. Eventually the line search tolerance had to be relaxed in order to reduce the num-
ber of limit state function evaluations. Such compromise can have serious consequence
on the accuracy of the reliability estimate. But more importantly, such measure may
not even always work. Impact of numerical noise associated with nonlinear finite ele-
ment predictions in structural reliability methods is underappreciated in the structural
reliability literature. The uni-variate line search strategy used in adaptive directional
importance sampling is particularly susceptible to such noise, which effects the over-
all performance of the algorithm. Other reliability algorithms, like first order reliabil-
ity method, also struggle against noisy limit state function. This chapter highlights the
performance aspect of the surrogate-based adaptive directional importance sampling,
or directional adaptive response surface (DARS) method, when applied to nonlinear fi-
nite element based noisy limit state functions. As will be shown later in this chapter,
DARS shows reduced performance due to the reduced performance in finding the root
of a noisy uni-variate function in each direction. To overcome this, several alternate
line search strategies are explored in this chapter. The alternative strategies are centered
around the key theme that the surrogate function, or response surface, is used not just
for distinguishing the important region, but also to assist the line search itself. A stochas-
tic non-parametric Bayesian approach to regression, Gaussian process regression (GPR),
is used to construct the response surface instead of a polynomial response surface typi-
cally associated with DARS. The GPR works on the principle that the regression errors as-
sociated with nearby locations are strongly correlated. This allows GPR to sense obvious
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trends or patterns in the data and make better predictions with small sample learning,
which helps the line search and contributes to the overall efficiency.

5.2. MINOR ADJUSTMENT TO THE EXISTING DARS METHOD

The DARS method used in the previous chapter (4) lacked in two aspects, which impeded
the efficiency of DARS. Firstly, the line search in each direction started with an initial
guess λ= 3. Waarts [14] discussed that if this initial guess is set at the λ corresponding to
G∗

RS for that direction, the line search iteration becomes more efficient. This adjustment
is made in the basic DARS method in this chapter. Secondly, in the previous chapter a
constant λadd is used through out the entire process. It was discussed in the previous
chapter that a large λadd improves the possibility of finding an important direction by
relaxing the criterion of deciding whether a direction is important or not. This is par-
ticularly useful when the limit state surface is noisy. But a too large λadd would mean
that a larger number of directions would be deemed as important, thereby increasing
the total number of NLFEAs. While Waarts [14] kept λadd as constant, Grooteman [46]
introduced a method to update λadd in each successive iteration. This increases the ef-
ficiency of the overall procedure in terms of the number of function calls, without com-
promising the accuracy. This strategy of adaptive λadd is incorporated in the DARS algo-
rithm in this chapter. The procedure to find the adaptive λadd is based on the principle
that as the DARS process progresses, the total contribution of the unimportant direc-
tions to the failure probability increases. In this method the total failure probability due
to all the unimportant directions are calculated. An already existing important direction
is looked for whose associated λ is such that its contribution to the failure probability
just surpasses the total failure probability by all the unimportant directions. This spe-
cific λ is termed as λthr es . The value of λadd is then found by subtracting λmi n from the
λthr es . Needless to say, as the DARS procedure proceeds, the value ofλthr es reduces, and
consequently the value of λadd also reduces. The algorithm can be summarized as fol-
lows: after the completion of an iteration, the individual failure probabilities are ranked
in the ascending order in an array. The particular value of the probability in that array,
for which the cumulative sum of probabilities till that value exceeds the total probabil-
ity due to unimportant directions, is obtained. The corresponding distance to the limit
state surface is termed as λthr es . The value of λadd at the beginning of the next DARS
iteration then becomes λadd = λthr es −λmi n . Following Grooteman’s recommendation,
the adaptive λadd starts with an initial value λadd = 0.1.

The DARS algorithm starts off with line searches for a few chosen directions. A quadratic
response surface is fitted based on those available samples. Then the actual DARS iter-
ation starts. Based on this primitive response surface it is judged whether a direction is
important or not, until the response surface is updated in the next iteration. In struc-
tural reliability applications, it is useful to do the initial exact line searches along the
‘axis’directions in the standard normal space. These axes are defined by the transformed
random variables in the standard normal space. Waarts [14] termed these initial line
searches as ‘axis directional line searches’or ADI. This strategy is adopted in this work.
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5.3. DARS: PROPOSED IMPROVEMENT
As illustrated in Chapter 2, during a line search the G∗

N LF E A point is sought by progres-
sively improving the polynomial describing the G function with each newly available
point on the search direction. The hope is that this procedure would guide the line
search to locate the G∗

N LF E A point for a given direction. For a smooth and well behaving
G function this takes about 3−4 iterations to locate the important sample near/on the
limit state surface G = 0 depending on the tol . But in presence of noise in the NLFEA
prediction of G function, it might be unrealistic to expect that the polynomial is consis-
tently indicating any trend. In such circumstance, the line search might consume a large
number of NLFEAs to obtain a G∗

N LF E A , or might even fail to obtain one.

Other alternative root location schemes, like Brent’s method [89] might stand a bet-
ter chance of finding the uni-variate root instead of polynomial interpolation. Brent’s
method is an improvement of the Bisection method, which has the robustness of brack-
eting methods (like Bisection) and the convergence rate of open methods (like Secant).
Similar to the Bisection method, Brent’s algorithm assumes the root can be bracketed
in an interval of sign change. Brent’s algorithm first attempts to find the root using
the inverse interpolation scheme. If the estimate of the root falls outside the interval,
then Bisection is used to narrow the interval and the process is repeated. Eventually,
either the interpolation scheme will directly locate the root, or it will narrow the inter-
val sufficiently such that the Bisection scheme will locate the root. The advantage of
Brent’s method over polynomial interpolation for noisy limit state cases is that the in-
verse quadratic interpolation will only help to guide the line search iterations to a narrow
interval of sign change. Once the interval is narrow enough, the Bisection method, which
is faster in a narrow interval compared to interpolation, will locate the root. Brent’s algo-
rithm fits an inverse quadratic interpolation based on the three latest iterates. For noisy
equations the trend indicated by this interpolation is only weak (or even wrong) when
the iteration is close to the root, where the effect of noise is most severe. This switching
to the Bisection method in a narrow interval of sign change mitigates the possibility of
the interpolation step to be entangled in the noise of the uni-variate equation. However,
while otherwise reliable and fast, Brent’s method might also be inefficient in case of an
irregular limit state function if the line search starts far off from the root. The inverse
quadratic interpolation steps can be slow to guide the iteration to the narrow interval in
that case. Only in the case of excessively noisy limit state function the interpolation step
would be completely erroneous Because in presence of noise the inverse quadratic in-
terpolation step may produce bad estimates for next possible roots. This would virtually
turn Brent method into simple Bisection method which has only linear rate of conver-
gence. But such degree of noisy limit state function would only occur in case of poorly
conceived nonlinear finite element model.

The limitation of one dimensional line search is that for every direction, the line search
is done independently. A new direction starts the line search with no other information
about the limit state surface other than the value of G function at the origin. In other
words, such a procedure does not make use of the neighboring directions for which line
searches have already been carried out. There exists examples in the literature where the
λ obtained from the adjacent important direction is used as an initial guess to increase
the efficiency of line search in a new direction [54].
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The fact that for neighboring important directions the G∗
N LF E A samples on the limit state

surface G = 0 are close to each other is utilized in this chapter to make the subsequent
line search processes more efficient. In fact the strategy of using the λ corresponding
to G∗

RS as the initial guess discussed in the previous section works on the same philoso-
phy. As the surrogate function a Gaussian process regression based response surface is
used. It is preferred because GPR makes direct use of closely located samples to make
prediction for a nearby location. If a couple of line searches are already completed, then
the initial guess for λ obtained from the response surface for a new direction will al-
ready be quite close to the actual uni-variate root along that direction. So when coupled
with Brent’s method, the line search will not have to entirely depend on the interpola-
tion to bring the iteration to a narrow interval. The DARS algorithm with this new line
search strategy will be called BDARS in this chapter, as opposed to DARS for the existing
method.
The GPR based response surface can be so accurate in the important region that it is
contemplated whether the response surface itself can be used to conduct the line search,
instead of doing it in the uni-variate manner. In contrast with the traditional line search
scheme, where the next prediction depends only on the earlier predicted points on a
direction, the GPR based response surface guided line search makes use of the G∗

N LF E A
and GN LF E A samples of the surrounding directions through correlation to make the next
prediction. In surrogate function based important sampling the surrogate function is
improved progressively to obtain samples around the design point. The line search will
work on the same principle. Along a direction the response surface would improve pro-
gressively, getting closer to the eventual G∗

N LF E A point. This method will be addressed as
GDARS in this chapter. All the three methods are summarized in Table 5.1.

Table 5.1: Summary of the methods

Method DARS BDARS GDARS

RS Quadratic GPR GPR
Line search Interpolation Brent RS

5.3.1. GAUSSIAN PROCESS REGRESSION BASED SURROGATE FUNCTION
In principle, a quadratic response surface, which is usually used in DARS, can be used to
guide the line search as well. The regression problem like this has the general form,

g (x) = f (x)T ζ+Z (x) (5.1)

where f (x)T = [ f1(x), .., fm(x)]T is the vector of basis functions of variables x, ζ= [ζ1, ..,ζm]T

is the vector of regression coefficients and m denotes the number of basis functions. Z (x)
is the error of the regression model.

Applying regression to a reliability problem has the practical limitation that the func-
tional form of the objective function is unknown. Hence quadratic only regression terms
may not be sufficient. Of course, one can consider using a flexible functional form that
assumes different shapes via different parameter settings. But flexible functional forms,
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Figure 5.1: First test case with DARS. Random fc ,ϑ. covP f
= 0.1, adaptive λadd and tol = 0.01

by their very nature, have many parameters, and so it would require many function eval-
uations to estimate these parameters, making the process inefficient. There is also a
conceptual problem with regression. It is assumed that the regression errors Z (xi ) and
Z (x j ) associated with two locations xi and x j are independent. But this assumption of
independent errors is unjustified when using a deterministic computer code. Since a de-
terministic computer code produces reproducible result, any lack of fit can be entirely
ascribed to regression error (incomplete set of regression terms), not measurement er-
ror or noise. If the points xi and x j are close, then the associated errors Z (xi ) and Z (x j )
should also be close. It is more reasonable to assume that these error terms are related
or correlated and that this correlation is high when xi and x j are close. Similarly, when
the distance between the points is large, the correlation will approach zero.

In the stochastic process approach the independence of error assumption is dis-
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Figure 5.2: First test case with BDARS. Random fc ,ϑ. covP f
= 0.25, adaptive λadd and tol = 0.01

carded. The error instead is assumed as a Gaussian process with zero mean, like the
following,

cov[Z (xi ), Z (x j )] =σ2R(xi ,x j ) (5.2)

where N is the number of samples. σ2 is the process variance, R is the correlation func-
tion. The covariance is defined such that the correlation between errors is related to the
distance between the corresponding points. A weighted distance formula is used in the
correlation function, as defined below,

R(xi ,x j ) = exp(−
n∑

l=1
θl |xi l −x j l |pl ) (5.3)

here n is the dimension of the space spanned by x, the exponent pl determines the
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Figure 5.3: First test case with GDARS. Random fc ,ϑ. covP f
= 0.1, adaptive λadd and tol = 0.01

smoothness of the function in the l th coordinate direction. pl = 2 is widely used since it
leads to a smooth function. θl is the correlation parameter, xi l and x j l are the l th com-
ponent of position vector xi and x j respectively. θl can be interpreted as measuring the
importance of the l th input variable. Saying that l th input variable is important means
that even small values of |xi l −x j l | may lead to a large difference in the function values
in those respective locations. In statistical terms, this implies that even small values of
|xi l −x j l | lead to low correlation between the errors Z (xi ) and Z (xi ).
Now if a set of N training samples [x1,x2, ..,xN ] is used and corresponding response set
g = [g (x1), g (x2), ..., g (xN )] is obtained from Eq.5.1, then the unknown parametersσ2 and
ζ can be obtained as,

ζ̂= (F T R−1F )−1F T R−1g (5.4)
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σ̂2 = 1

N
(g −F ζ̂)T R−1(g −F ζ̂) (5.5)

Here F = [ f (x1), f (x2), ..., f (xN )] and the correlation matrix R based on these N training
samples can be explicitly written as,

R =

 R(x1,x1) · · · R(x1,xN )
...

. . .
...

R(xN ,x1) · · · R(xN ,xN )

 (5.6)

It can be noted that the unknown parameters σ2 and ζ are the implicit functions of the
correlation function parameters θl (Eq.5.3). In order to calculate σ2 and ζ, the values of
θl needs to be determined first. This is done by minimization of the likelihood function,
1
2 (2N ln σ̂+ ln |R |). The details behind the selection of this likelihood function can be
found from [90]. Once the parameters θl are obtained, the regression coefficients ζ and
the process variance σ2 are estimated from Eq.5.4 and Eq.5.5 respectively.

If r (x)T = [R(x,x1), ..,R(x,xN )]T is the correlation vector between a point x and other
sample points (x1, ...xN ), then the best unbiased predictor µĜ of the Gaussian process
regression model prediction at a point x is,

µĜ (x) = f (x)T ζ+ r (x)T R−1(g −F ζ̂) (5.7)

and the variance σ2
Ĝ

of the prediction at that point is,

σ2
Ĝ

(x) =σ2 − [
f (x)T r (x)T ][

0 F T

F R

]−1 [
f (x)
r (x)

]
(5.8)

From the above expression for the prediction µĜ (x) at a location x it is apparent that
the predicted value is effected by the neighboring sampled points, through correlations.
The variance associated with the prediction (and hence, the confidence interval) also
depends on the closely located sampled points.

In this work only the constant function is used as the basis function. As covariance
function of the error model a squared exponential function is used. This is the most
commonly used covariance function which uses same characteristic lengths θl (Eq.5.3)
for all predictor variables. GPR in this work has been implemented through MATLAB’s
Gaussian process regression function.

5.3.2. SUMMARY OF THE PROPOSED ALGORITHMS
The outline of the DARS, BDARS and GDARS is summarized in the sequel.

1. The axis directional integration: For ADI the traditional one dimensional adaptive
polynomial based line search (DARS, GDARS) or Brent’s method (BDARS) is used.
Based on the available samples after ADI, a Gaussian process regression is carried
out to fit a response surface.

2. Search for important directions: From the set of sampled directions it is searched
which of them are important. Based on the distance to the response surface from
the origin along a direction, it is decided whether a direction is important or not.
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3. NLFEA based line search for important directions: For a direction deemed as im-
portant, the NLFEA based line search is initiated. The λ corresponding to G∗

RS is
used as initial guess. During the iteration, with each available sample the response
surface is updated for GDARS. Line search stops when the value of G falls below a
prescribed line search tolerance tol .

4. Checking the convergence: Whenever the coefficient of variation of failure proba-
bility covP f is below a prescribed value, go back to step two.

5. Final round: When no new important direction emerges, the algorithm stops.
Compute the final failure probability by Eq.(2.75) using the last updated param-
eters.

5.4. VERIFICATION OF THE IMPLEMENTATION BASED ON TEST

CASES
The specific implementation of BDARS and GDARS have been verified based on three
test cases. The performance is compared against DARS. The directions are generated
using random seed for the three test cases. The reliability analysis are repeated for these
test cases in order to have an estimate of the standard error of the reliability results. For
the each test case, the reliability analysis is repeated 20 times. If the resulting βs and
the number of limit state function evaluations (LSFE) are considered to be Normally dis-
tributed, then the standard error σ̂ associated with the estimate (mean) of β and LSFE
can be approximated from the expression σ̂≈ Sp

2n(n−1)
. Here n is the number of reliabil-

ity analysis. This expression is valid as long as n > 10. Also note that, the reliability calcu-
lations are not done in the space of original random variables. The random variables are
transformed into independent standard normal variables. In due consideration of accu-
racy and computational effort choices of covP f = 0.1 and tol = 0.01 have been made for
all the test cases.

For the first and the last test cases the limit state functions are also available in analyt-
ical form. This makes reliability analysis by means of Monte Carlo simulation possible,
which is used as benchmark for comparison.

As the first test case, a single element concrete model (Figure 4.2) described in Chap-
ter 2 has been chosen. The details of the stochastic parameters are already given in Table
4.2.

Table 5.2: Summary of reliability results for the first test case

Method MCS DARS BDARS GDARS

β 3.8402 3.8238 3.8180 3.8128

σ̂β - 0.0008 0.0011 0.0008

NLFEA 107 67.65 60.95 59.60

σ̂N LF E A - 0.5595 0.4074 0.3269
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The reliability results are summarized in the Table 5.2. Theβ is defined asβ=Φ−1(P f ),
where P f is the failure probability from Eq.(2.75). The βr e f denotes the reference value
found by Monte Carlo, by βr e f = Φ−1(Pr e f ). The failure probability by Monte Carlo is
denoted by Pr e f . The reference results have been generated by Monte Carlo simulation
on the analytical limit state functions. The number of samples for the Monte Carlo is
selected based on the criterion, N ≥ 1

cov2
P f

( 1
P f

−1). A target covP f = 0.1 and an expected

P f in the order of 10−5 is used in this criterion to determine the minimum number of
required Monte Carlo samples (107). This produced a value of βr e f = 3.84. The results of
the reliability analysis for the first test case is summarized in the Table 5.2. The reference
analytical limit state surface G A = 0 and the final Ĝ = 0 are plotted along with directions
(important or otherwise) in Figures 5.1 to 5.3.
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Figure 5.4: Shear beam 1st case with DARS. Random ft , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

As the second test case a slender steel beam with distributed load is considered (Figure
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Figure 5.5: Mixed beam 2nd case with DARS. Random ft , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

2.3), simulated with linear finite element analysis (FEA). The length, breadth and depth
of the beam is 10m, 0.16m and 0.5m respectively. A distributed load of 1000N/m is ap-
plied on the beam. 10 beam elements are used, with two degrees of freedom for each
node. The Young’s modulus (E) of the steel beam is considered as a Log normally dis-
tributed stationary random field with a mean 2.1GPa and coefficient of variation 0.1.
The characteristic length of the random field is assumed to be half the length of the
beam. Optimal linear expansion (OLE) [50] is used to discretize the random field. 8 OLE
discretization nodes are used, which means 8 input random variables. Nataf’s transfor-
mation [20] is used to maintain the target correlation structure of the random field. The
limit state function is described in the Eq.(5.9).

G(E(x)) = 1− ymi d poi nt

yr e f
(5.9)
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Figure 5.6: Bending beam 3r d case with DARS. Random ft , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

Here x denotes the spacial variable, ymi d poi nt is the downward deflection at the mid
point of the beam and yr e f = 0.00055 is the examination value for the same. The relia-
bility results are presented in Table 5.3.

Table 5.3: Summary of reliability results for the second test case

Method FORM DARS BDARS GDARS

β 3.8821 3.8754 3.8824 3.8834

σ̂β - 0.0008 0.0008 0.0008

FEA 51 43.90 43.67 45.35

σ̂F E A - 0.3267 0.3372 0.3036
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Figure 5.7: Shear beam 1st case with BDARS. Random ft , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

G(x1, · · · , x6) = x1 +2x2 +2x3 +x4 −5x5 −5x6

+ 0.001
6∑

i=1
sin(100xi ) (5.10)

The third test case is a noisy limit state function described in the Eq.5.10 [91]. The six
Log normally distributed independent random variables x1, · · · , x6. x1 to x4 have mean
120 and standard deviation 12. x5 has a mean 50 and a standard deviation 15. x6 has a
mean 40 and a standard deviation 12. covP f = 0.1 and adaptive λadd are used. The LSF
in Eq.5.10 is not non-dimensionalized, unlike Eq.4.4 or Eq.5.9. So a line search tolerance
tol = 0.01 is a stricter condition compared to the other three test cases. The results for
the third test case are summarized in the Table 5.4. The Monte Carlo results for the third
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Figure 5.8: Mixed beam 2nd case with BDARS. Random ft , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

test case is obtained from Grooteman [46].

Table 5.4: Summary of reliability results for the third test case

Method MCS DARS BDARS GDARS

β 2.2507 2.2334 2.2512 2.2346

σ̂β - 0.0019 0.0010 0.0013

LSFEs 7655 84.4000 64.6667 95.4762

σ̂LSF E - 1.0003 0.6083 0.8262

DARS, BDARS and GDARS, all the three methods are observed to predict accurate
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Figure 5.9: Bending beam 3r d case with BDARS. Random ft , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

estimate of β when compared to the reference results, with a similar standard error σ̂β.
For the first two test cases with smooth limit state functions, the efficiency of the three
methods are comparable, as measured by the average number of FEA (or LSFE) and their
associated σ̂LSF E . DARS is observed to be only slightly less efficient compared to the
other two. For the third case however, with noisy limit state function BDARS stands
out from the other two, in terms of efficiency. Not only the average number of LSFE
by BDARS is markedly lesser compared to DARS, its associated standard error σ̂LSF E is
also much lesser compared to DARS for the third case. For the test case the best per-
formance for BDARS and GDARS is obtained by using a quadratic basis function in GPR
instead of just the correlation function. The high value of limit state function around the
mean implies that only the correlation function alone will not be sufficient to capture
the global behavior of the limit state function. The performance of DARS, BDARS and
GDARS are found to be comparable in terms of efficiency and accuracy for the first two
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Figure 5.10: Shear beam 1st case with GDARS. Random ft , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

test cases. For the noisy limit state function in the third case GDARS is found to be least
efficient compared to DARS and BDARS. It was found that stricter line search tolerance
criterion made GDARS inefficient for this case, where as DARS or BDARS had faced no
difficulty. The reason is that for GDARS the line search is done based on the response
surface, which is fitted through regression. After a stage the response surface does not
change much. This might be an impediment to achieve a stricter tolerance with GDARS,
because after a while the estimate for λ will change only in third decimal place or be-
yond. Despite the limit state function being a noisy one, the performance of DARS is
not found to be far worse compared to BDARS. The reason is that the contribution of the
noisy terms (Eq.5.10) to G in terms of absolute value is quite low compared to the non-
noisy terms. It is lower even compared to the line search tolerance tol = 0.01 for this
case. As a consequence the polynomial interpolation based line search strategy of DARS
had little difficulty in locating the root. If the contribution of noise were substantial, as is



5.5. CASE STUDY: DEMONSTRATIVE EXAMPLES WITH RC BEAM CASES

5

103

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

Figure 5.11: Mixed beam 2nd case with GDARS. Random ft , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

the case in Figure 3.5, polynomial based interpolation would have struggled to find the
root in a line search. Such cases will be demonstrated in the subsequent section.

5.5. CASE STUDY: DEMONSTRATIVE EXAMPLES WITH RC BEAM

CASES

Waarts [14] applied DARS on a number of different structures. He compared those re-
sults with other methods for accuracy and efficiency. But those structures were so cho-
sen such that the finite element part was relatively simple and the limit state functions
were relatively well behaved. When it comes to DARS reliability analysis of RC structures
based on simulating failure of the structure by means of NLFEA, there is a paucity of
demonstrative examples in literature. NLFEA based reliability analysis of RC structures
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Figure 5.12: Bending beam 3r d case with GDARS. Random ft , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

with DARS has several critical elements of its own, which merits detailed study of its
own. The three RC beam cases introduced in the Chapter 3 are selected in this chapter
as demonstrative examples. In total six cases have been considered based on these three
beams. The cases are summarized in Table 5.5.

The correlations between the random variables can have substantial effect on the
outcome of reliability analysis. However, the information on correlation between all the
concrete properties is relatively scarce in literature, as discussed in the previous chapter.
In this chapter it is assumed that the stochastic properties are mutually independent.
Only the concrete tensile strength ft and tensile fracture energy GF are considered to
be fully correlated. Also, the concrete compressive strength fc and compressive fracture
energy Gc are considered to be fully correlated.

A covP f = 0.57 has been considered as a convergence criterion in Chapter 4 for the
shear beam, following the work of Waarts [14]. This was done in order to avoid exces-
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Figure 5.13: Shear beam 4th case with DARS. Random ft , fc , fy . covP f
= 0.25, adaptive λadd and tol = 0.01

Table 5.5: Standard deviations of stochastic properties for various cases considered

Case Beam type fc [MPa] Gc [MPa] ft [MPa] GF [N/mm] fy [MPa]

1st Shear beam - - 0.8503 0.0309 30

2nd Mixed beam - - 0.8503 0.0309 55

3r d Bending beam - - 0.8503 0.0309 65

4th Shear beam 9.645 31.64 0.8503 0.0309 30

5th Mixed beam 9.645 31.45 0.8503 0.0309 55

6th Bending beam 9.645 31.73 0.8503 0.0309 65
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Figure 5.14: Mixed beam 5th case with DARS. Random ft , fc , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

sive number of NLFEAs. But since the goal is to compare different methods in terms of
efficiency, in this chapter a convergence criterion covP f = 0.25 is used. For line search a
relatively strict criterion of tol = 0.01 is used.

To enhance the chance of finding the G∗
N LF E A the width of the interval of sign change

is looked at [14]. For the computationally intensive RC beam cases, when the interval is
narrower, a secant step is carried out in that interval to locate the G∗

N LF E A point, without
doing an additional NLFEA. However, while this way around increases efficiency, it still
may not be sufficient against irregular NLFEA predictions, as will be shown later in the
examples.
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Figure 5.15: Bending beam 6th case with DARS. Random ft , fc , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

5.6. RESULTS AND DISCUSSIONS

The proposed BDARS and GDARS algorithm are tested for efficiency and accuracy against
DARS. The six cases described in Table 5.5 served as the benchmark for this comparison.
Except for the 1st case, the results are not verified with any other independent method.
It can be argued that the different types of DARS algorithms used in this chapter count
as independent methods by themselves, so their results can be seen viewed as corrob-
orative evidence. Since each reliability evaluation for the RC beams are time consum-
ing multiple runs with random seeds are not attempted. The reliability assessments are
done using fixed seed only.

The reliability results are summarized in Table 5.6, indicating the β value and num-
ber of NLFEAs in the bracket. Theβ estimates by all three methods are in close proximity
to each other for all the cases. For the 1st case alone an independent verification has been
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Table 5.6: Summary of reliability results for all the RC beam cases. The β values are given with associated
number of NLFEAs indicated in the bracket.

Case 1st 2nd 3r d 4th 5th 6th

DARS 5.12(94) 3.88(18) 3.60(35) 5.15(66) 3.86(34) 3.59(20)

BDARS 5.17(15) 3.82(23) 3.63(26) 5.12(22) 3.82(29) 3.61(26)

GDARS 5.13(36) 3.80(20) 3.62(19) 5.11(18) 3.82(45) 3.62(19)
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Figure 5.16: Shear beam 4th case with BDARS. Random ft , fc , fy . covP f
= 0.25, adaptive λadd and tol = 0.01

performed. In order to verify the reliability result 122 = 144 roots of a 12th order Hermite
polynomial is generated as samples. Inspiration is drawn from the paper of Berveiller
et al. [38], where a subset of the roots is used as samples in regression problem. How-
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Figure 5.17: Mixed beam 5th case with BDARS. Random ft , fc , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

ever, here all 144 samples are used. The order of the Hermite polynomial is deliberately
selected to be high to capture the irregularity of the response surface. A feed forward
neural network based response surface is fitted. Only single hidden layer is chosen. To
avoid over fitting, regularization is used. Number of neurons in the hidden layer is opti-
mized based on cross validation error. From Figure 5.4 it can be seen that the resulting
response surface Gr e f = 0 in the standard normal space of u ft and u fy is almost a vertical
line. The line is located at a distance −5.15 from the u fy axis. So, it can be stipulated that

the failure probability for the 1st case is P (u ft ≤−5.15). This is equivalent to a β= 5.15,
which is quite close to the result obtained by all three methods.

The important samples G∗
N LF E A , intermediate line search iteration points GN LF E A ,

unimportant samples G∗
RS and the final response surface Ĝ = 0 for all cases are plotted

in the transformed space of standard normal variables (Figures 5.4 to 5.21).
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Figure 5.18: Bending beam 6th case with BDARS. Random ft , fc , fy . covP f
= 0.25, adaptive λadd and tol =

0.01.

In terms of efficiency it is observed from the Figure 5.22 and Table 5.6 that except for
the 1st and 4th cases the number of function evaluations are comparable for all three
methods. The number of function evaluations depend on variety of factors, such as the
failure probability, shape of the limit state function. Given the simple shape of the limit
state surface in 1st and 4th cases there is good reason to suspect that the significantly
larger number of function calls for DARS is solely due to the noisy limit state function of
the shear beam. The pronounced noise for the shear dominated cases render the usual
line search mechanism ineffective.

This fact is corroborated in the Figure 5.4 (1st case). It is observed that for DARS there
are some line search directions, which took lot of iterations to locate the G∗

N LF E A . Even
though there are closely located neighboring important directions. This is precisely the
reason why DARS took more NLFEAs than the other two methods. BDARS for this case
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Figure 5.19: Shear beam 4th case with GDARS. Random ft , fc , fy . covP f
= 0.25, adaptive λadd and tol = 0.01

consumed much fewer function evaluations. However, that fact can be primarily at-
tributed to the extremely low number of important directions (Figure 5.7). For the 4th

case also BDARS had fewer function evaluations because of low number of important
directions (Figure 5.16). In order to depict a fair comparison of the line search perfor-
mances between DARS and BDARS the 1st case is re-attempted with DARS and BDARS.
But this time the λmi n is not updated immediately after each exact line search. Instead
it is updated at the end of each loop. Also, instead of using adaptiveΛadd a fixed value of
Λadd = 1.1 is used. These two strategies increase the number of exact line searches. The
results are depicted in Figure 5.23. The comparison of Figures 5.23a and 5.23b clearly es-
tablishes the superior performance of BDARS over DARS, when it comes to line search.
The total number of function call is 62 by DARS, where as it is 26 by BDARS. Majority of
directions for BDARS converged in 2−3 iterations, where as it took as many as 5−7 iter-
ations for some directions with the polynomial interpolation based line search of DARS.
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Figure 5.20: Mixed beam 5th case with GDARS. Random ft , fc , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

The effectiveness of BDARS over DARS in noisy case is also visible in the 2nd case. DARS
is the most efficient for this case, however the efficiency is primarily due to low number
of important directions. In Chapter 3 it was shown that for the mixed beam there is pro-
nounced noise along the u ft axis (Figure 3.6). In Figure 5.5 it can be seen that around
the important region there is one direction which did not converge to a G∗

N LF E A after
couple of iterations. The non convergence can be attributed to the failure of polynomial
interpolation scheme due to noisy limit state function. The Brent method employed
by BDARS however had no difficulty in obtaining a convergence for the same direction
(Figure 5.17). The bracketing method in Brent makes sure that any bad estimate pro-
vided by the inverse interpolation is ignored. After couple of line searches the shape of
the GPR based response surface is stable.In that case the initial guess provided by the
response surface may even converge just in one shot. Many such instances are observed
in Figures 5.9 for the 3r d case with smooth limit state surface. But if convergence is not
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Figure 5.21: Bending beam 6th case with GDARS. Random ft , fc , fy . covP f
= 0.25, adaptive λadd and tol =

0.01.

obtained at the initial guess then it is checked whether the initial guess and the origin
bracket the root. If the root is not bracketed then another NLFEA is done at a λ, which is
obtained by a linear interpolation between the origin and the initial guess. If no interval
of sign change can be found between this third point and the initial guess, then it is de-
cided that the limit state surface is too far away along that direction and the line search
is abandoned for that direction. It can be questioned however, whether a linear inter-
polation is a safe choice in this context, when the limit state function has pronounced
numerical noise.

What happens when the initial guess for the line search provided by the response
surface is far off from the actual root, a glimpse of that can be found for one direction in
Figure 5.16. It took 5 iterations to locate the root for that direction. Interpolation steps
were slow to bring the iteration from a bad initial guess to a narrow interval. Such cases
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Figure 5.22: Comparison of the number of NLFEAs for all six RC beam cases.
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Figure 5.23: comparison of line search between performances DARS and BDARS for the shear beam 1st case.
covP f

= 0.57, λadd = 1.1 and tol = 0.01. BDARS clearly outperforms DARS

might occur immediately after ADI, when the sample set of learning for GPR is relatively
low. As more exact line searches take place GPR based response surface becomes a better
surrogate function for the limit state function in the important region.

The benefit of GPR based response surface can be particularly evident for GDARS in
the 1st case. It follows from Figure 5.19 that for a good number of directions the line
search converged at the initial guess provided by the response surface itself. Figure 5.24
brings deeper insight into the line search process with GPR for the 1st case. After ADI
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is over, GPR based line search takes over. For all directions line search starts with the λ
corresponding to G∗

RS . Based on all the available NLFEA based samples GPR then makes
the initial prediction about the location (λ value) of G∗

N LF E A along a direction. Accord-
ing to the response surface, value of G is 0 at this λ value. The confidence interval (blue
vertical lines in Figure 5.24) around the GPR predicted value of G is constructed based
on Eq.5.8. Then NLFEA calculation finds the actual value of G at this λ value. With the
addition of each new sample during a line search, the response surface is updated. At
G∗

N LF E A the GPR prediction and NLFEA prediction coincides. For each direction finding
the G∗

N LF E A takes about 2−4 iterations. Some times due to irregularity of NLFEA predic-
tion the actual value of G does not seem the coincide with the GPR prediction even after
3−4 iteration. If the interval of sign change of G is quite narrow, a secant step is carried
out to locate the G∗

N LF E A without an additional NLFEA. The variance associated with the
GPR prediction (Eq.(5.8)) and hence the confidence interval, depends on the availability
of samples in the neighboring locations and the noise associated with NLFEA prediction
of G .
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Figure 5.24: Confidence intervals for GPR predictions in the shear beam 1st case. All the NLFEA based esti-
mates of G fall within the confidence interval produced by GPR.

The GPR based response surface is seen to form a close shape in many of the cases
(Figures 5.8, 5.11, 5.17, 5.20 for example). This is an unexpected behavior. This gives rise
to an implication that the structure is exhibiting a physically impossible behavior. For ex-
ample in the 2nd case, with the mixed beam, the GPR based response surface in BDARS
and GDARS separated the failure boundaries corresponding to the two different failure
modes (Figure 5.8). This creates the impression that the structure is safe at the point
u ft =−5,u fy =−5, which is impossible. The explanation is that the GPR based response
surface is only an accurate predictor close to the G∗

N LF E A points (based on which the re-
sponse surface is constructed), where the Gaussian process error correlation is stronger.
But away from the G∗

N LF E A points, or the important region of the limit state function, the
correlation is weak. As a result the response surface is not an accurate predictor away
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Figure 5.25: Mixed beam 2nd case with BDARS. Random ft , fy . covP f
= 0.25, adaptive λadd and tol = 0.01.

This time a quadratic basis function is considered instead of constant basis function. The resulting β = 3.91
and Number of NLFEA is 20. For comparison the result by AK-MCS, with polynomial chaos Kriging Meta model
is also given.

The GPR model considered in this Chapter has only constant basis function. So the
response surface is entirely constructed by the error correlation function in GPR. It has
been attested by Echard et al. [48] that the correlation function is good at capturing the
local behavior, around the experimental design (the samples used for fitting), but it is
not good at capturing the global behavior of the limit state function. In the Figure 5.8
the failure boundaries separated because the samples (G∗

N LF E A and GN LF E A) based on
which the response surface is constructed cluster around two separate failure modes.
Because the Gaussian process error correlation is good at capturing local behavior of the
limit state function, but it is not good at capturing the global behavior. Echard et al. ad-
vocated using a non constant basis function in order to better predict the behavior of the
limit state function. Such an example is shown in the Figure 5.25a for the 2nd case. An
incomplete quadratic basis function for GPR is considered in this example. Here in the
Figure 5.25a it can be observed that the response surface is not separated any more. The
two failure boundaries pertaining the two failure mechanisms appear to be almost or-
thogonal. This detailed behavior close to the important region has been captured quite
well by the error correlation function. On the other hand, the quadratic basis function
has ensured that away from the important region the behavior of the response surface
is not absolutely wrong. As a reference , for the mixed beam 2nd case, the result with
AK-MCS is also provided 5.25b. It can be observed that the response surface by AK-MCS
is also separated at the two failure modes. It should be mentioned at this place, that
unlike AK-MCS, which samples in all parts close to the limit state surface, the DARS ac-
tively tries to sample close to the design point. This strategy implies that the response
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surface from DARS will be only accurate close to the design point. The inaccuracy of
response surface away from the important region is however not a concern for DARS
method. Because even though the response surface directly contribute to the calcula-
tion of the failure probability, that contribution is only minor compared to the actual
limit state surface.

GDARS is found to be reasonably efficient for many cases, for the 3r d and 6th cases
for instance (Figures 5.12 and 5.21). However, conducting the line search solely based
on the response surface can be risky, particularly for complicated limit state functions.
Any flaw in the response surface will have severe consequence for the line search. A
glimpse of such instance can be found in the Figure 5.20. Also, for the third test case in
the Section 5.4 it was seen that the response surface based line search can be inefficient
for tighter line search tolerances, because the response surface will evolve slowly after
a while. Uni-variate root finding scheme of BDARS is more reliable and robust in that
regard.
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Figure 5.26: Number of exact LSFE versus the number of problem dimension for BDARS. An incomplete
quadratic basis function is used in GPR. A covP f

= 0.1 is used.

G(x1, ...xn) = 3
p

n −
n∑

i=1
xi (5.11)

The basic principle of BDARS discussed in this Chapter is the same that of DARS,
so it is expected that BDARS will behave in a similar way to DARS, when dealing with
problems of higher dimension. For DARS Grooteman [46] showed based on a linear
hyper-plane limit state surface (Eq.5.11) that the number of exact limit state function
evaluations does not shoot up with the increase in the number of input random vari-
ables, as long as linear or incomplete quadratic response surfaces are used. Waarts [14]
came to a similar conclusion based on number of different limit state surfaces, while us-
ing an incomplete quadratic response surface. However, when full quadratic response
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surface is used, Grooteman showed that the number of exact limit state function eval-
uations increases considerably. Since BDARS uses a fundamentally different nature of
response surface compared to DARS, it is important to investigate its efficiency for cases
with higher number of random variables. This is done using the linear hyper-plane limit
state problem, following Grooteman.

The linear hyper-plane limit state in Eq.5.11 is at a distance β= 3 from the origin. xi

are standard Normally distributed. The total number of exact limit state function evalu-
ations (LSFE) with BDARS for this case are plotted against the number of random vari-
ables in the Figure 5.26. The number of LSFE for the ADI process is also marked in the
same Figure. It follows from the Figure 5.26 that the number of LSFE for ADI increases
linearly with the number of random variables. The total number of LSFE for BDARS also
exhibit a linear behavior for increasing dimension. The difference between the number
of exact LSFE for ADI with BDARS diminishes as the problem dimension increases.

5.7. CONCLUDING REMARKS FOR THE FIFTH CHAPTER
In this Chapter it is demonstrated that the polynomial interpolation based line search
method employed in DARS suffers from inefficiency when dealing with noisy limit state
functions. To reduce the number of function calls a novel improvement is proposed
in this work where a Gaussian process regression based surrogate function is used to
distinguish the important region of the failure boundary and the line search is done
with Brent’s algorithm. Three computationally intensive examples of RC beams have
been chosen as demonstrative examples. Based on these beams six cases with different
set of random variables have been studied. To make a clear assessment how much the
GPR based response surface by itself contributes to the overall efficiency an additional
method is also conceived where the response surface is directly used to conduct the line
search. It is observed that the GPR based response surface is so good near the important
region of the limit state surface that the initial guess provided by the response surface for
the uni-variate root often converges in just one shot. This trait, combined with the brack-
eting method of Brent’s algorithm worked well in cases of noisy limit state functions. It is
because Brent’s method does not rely on interpolation method alone to locate the root.
Interpolation only helps to steer the iteration in a narrow interval, from where Bisection
method takes over. If the initial guess provided by the GPR is already close to conver-
gence, the role of interpolation diminishes even further. It is observed that the proposed
method is substantially more efficient for the cases where shear is the dominant mode of
failure. For bending failure cases, which have relatively smoother limit state functions,
the performance of the proposed method (BDARS) is comparable to DARS.

DARS’s ability to distinguish the different parts of the limit state surface, in the case of
strong system effect has been investigated by Grooteman [46]. It was remarked that un-
less the different parts of the limit state functions are described with distinct limit state
functions, DARS will produce erroneous result. DARS has the propensity to concen-
trate the exact directional sampling around the most vulnerable part of the limit state
function. This attribute makes it difficult for it to identify all different parts of the fail-
ure surface, when there is system effect. For the multi-modal mixed failure RC beam
cases in this Chapter the proposed method managed to distinguish the different failure
modes. But that was mostly because the failure surfaces could be reached along the axes
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directions (in the standard normal space). If the failure surfaces do not intersect the axes
directions, then DARS (also BDARS and GDARS) can be inefficient. One possible way to
ensure that all the different parts of the limit state surface is identified is to start with
a Latin Hypercube sampling. This suggestion is inspired from the AK-MCS algorithm,
which also starts off with Latin Hypercube sampling. The BDARS method can also ben-
efit significantly in this regard, if a more advanced GPR meta model is used, which can
learn from relatively small sample set.

For a linear hyper-plane limit state surface it is shown that the number of exact LSFE
for the BDARS increases almost linearly with increasing dimension. This exercise pro-
vides some evidence that BDARS could be efficient for problems with higher dimension
as well.

One disadvantage of BDARS is that the interval of sign change needs to be found
first for any direction, before the actual of the line search starts, unless the initial guess
provided by the GPR based response surface is already an accurate estimate of the uni-
variate root for that direction. However, if the initial guess does not manage to converge,
or close the bracket of sign change, a linear interpolation is used in the current develop-
ment of BDARS. It can be questioned however, whether linear interpolation is an ideal
choice, particularly for noisy limit state functions. In such situations updating the re-
sponse surface immediately and using this updated response surface to predict the next
iteration could be a better choice. This is in principle what GDARS does.





6
RELIABILITY ANALYSIS WITH

ADAPTIVE KRIGING MONTE CARLO

SIMULATION

6.1. INTRODUCTION

T HE focus of the previous chapter was the performance issues of traditional the DARS
algorithm when dealing with noisy limit state functions. An upgrade in the DARS

algorithm has been forwarded, which was found to work quite well for different kind of
problems, even for noisy limit state functions. Gaussian process regression played a key
role in that upgrade. In this chapter the focus will be on another response surface based
reliability method, which builds the surrogate function using Gaussian process regres-
sion or Kriging. Adaptive Kriging Monte Carlo simulation (AK-MCS) has been introduced
and described in the Chapter 2. To the author’s knowledge, the performance of AK-MCS
method for computationally intensive RC structure cases have not been reported in the
literature except the work of Rózsás et al. [16]. That specific work compared the per-
formance of traditional DARS, with cubic order polynomial response surface, with AK-
MCS. The comparison was made based on the examples of an RC deep beam and an RC
continuous girder. The result was inconclusive with regards to the comparison of the
efficiency for DARS and AK-MCS. Also, the effect of numerical noise on the efficiency of
DARS and AK-MCS was not addressed in that work. In this chapter the RC beam cases
introduced in the previous chapter will be examined with AK-MCS, in order to illustrate
AK-MCS’s performance in detail for RC structure cases. Of particular interest will be the
performance of AK-MCS for the RC beam cases whose limit state functions evince pro-
nounced numerical noise. The AK-MCS module developed by UQLab is used in this
work [92].
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6.2. DISCUSSION ON THE CONVERGENCE CRITERION USED IN

AK-MCS
AK-MCS uses the two convergence criterion outlined in Eq.2.78 and Eq.2.80. These con-
vergence criterion are given here again for reference. The first convergence criterion has
been proposed by Echard et al. [48],

min[U (x)] ≥ 2 (6.1)

where x is vector of random variables. The second convergence criteria is proposed by
Schöbi et al. [49],

P̂+
f − P̂−

f

P̂ 0
f

≤ εP̂ f
(6.2)

here P̂±
f = P [µĜ (X)± kσĜ (X) ≤ 0] are the upper and lower bound failure probabilities

and P̂ 0
f = P [µĜ (X) ≤ 0]. X is the set of all the samples considered for the Monte Carlo

simulation.
It is important to understand how the convergence criterion given in the Eq.2.78 and
Eq.2.80 works in order to understand how AK-MCS works. AK-MCS builds response sur-
face (or meta model) based on actual limit state function evaluations. Instead of the
actual limit state function this response surface is used in a Monte Carlo simulation
to determine the failure probability (P f ). Based on the current response surface new
candidate sample is selected by a learning function. Based on the current state of the
response surface this sample is the closest to the limit state function, according to the
learning function. The response surface is updated with the addition of each new candi-
date samples (this process is termed as design enrichment by Schöbi et al. [49]), making
the response surface adaptive. This selection of new candidate samples for the improve-
ment of the response surface continues till all the samples (from the set X) located in the
close proximity of the limit state function are added for design enrichment. The con-
vergence criterion given in the Eq.2.78( or Eq.2.80) sets the maximum limit within which
a sample can be considered close to the limit state function. Once the convergence is
achieved, the algorithm stops adding new samples any further and the response surface
is considered to be in its final state. The Monte Carlo simulation with this final response
surface (based on the set of all samples X) gives the failure probability (P f ), along with
the coefficient of variation of P f , covP f . It can be remarked that there is no relationship
between covP f and the convergence criterion given in Eq.2.78 or Eq.2.80, because these
convergence criteria are strictly a quantitative measure of how good a surrogate function
the response surface is to the actual limit state function. These two convergence criteria
will be referred to as cv1 and cv2 throughout this chapter.

6.3. DEMONSTRATIVE EXAMPLES WITH SIMPLE TEST CASES
Before testing the RC beam cases with AK-MCS, the three test cases (with computation-
ally inexpensive limit state functions) introduced in the Section 5.4 of the previous chap-
ter have been attempted with AK-MCS. Both ordinary AK-MCS and polynomial chaos
Kriging AK-MCS have been used for the test cases.
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Table 6.1: Summary of reliability results for the first test case. For cv2 εP̂ f
= 0.05 is considered.

Method AK-MCS, cv1 AK-MCS, cv2 PC-AK-MCS, cv1 PC-AK-MCS, cv2

β 3.8381 3.8381 3.8330 3.8330

LSFEs 29 29 21 17

Table 6.2: Summary of reliability results for the second test case. For cv2 εP̂ f
= 0.05 is considered.

Method AK-MCS, cv1 AK-MCS, cv2 PC-AK-MCS, cv1 PC-AK-MCS, cv2

β 3.8906 3.8906 3.8461 3.8461

LSFEs 36 36 25 25

Table 6.3: Summary of reliability results for the third test case. For cv2 εP̂ f
= 0.05 is considered.

Method AK-MCS, cv1 AK-MCS, cv2 PC-AK-MCS, cv1 PC-AK-MCS, cv2

β 2.2524 2.2524 2.2530 2.2724

LSFEs 113 85 47 21

The results for the three test cases are summarized in Tables 6.1, 6.2 and 6.3. The
results are fairly close to the reference results for these cases in the Chapter 5 (Section
5.4). For the first two test cases AK-MCS is observed to be less efficient compared to
PC-AK-MCS. For third test case, with noisy limit state function, the contrast among per-
formances the AK-MCS and PC-AK-MCS becomes really prominent. The convergence
plots for the AK-MCS and PC-AK-MCS are plotted in Figure 6.1 for comparison.
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(a) Convergence for AK-MCS
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(b) Convergence for PC-AK-MCS

Figure 6.1: comparison of the convergence between AK-MCS and PC-AK-MCS for the third test case. cv1 is
used as convergence criterion

Polynomial chaos Kriging is better compared to simple Kriging at capturing the global
and local behavior of the limit state function. PC-AK-MCS owes its efficiency to this par-
ticular feature of PC-Kriging.
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6.4. DEMONSTRATIVE EXAMPLES WITH RC BEAM CASES
The RC beam cases (based on the shear, mixed and bending beams) discussed in the
previous chapters are examined with PC-AK-MCS. Ordinary AK-MCS is not used for the
RC beam cases, so PC-AK-MCS will be generally addressed as AK-MCS from here on-
wards. The beam cases are selected such that their β< 4. This ensures that the resulting
covP f ≤ 0.40 within 105 Monte Carlo simulations with the response surface. The RC
beam cases are summarized in the Table 6.4 for reference. The beam cases will be ad-
dressed with the names introduced in the previous chapter for the sake of consistency.
An additional beam case, refereed by the name 7th case is introduced in this chapter.
This case is based on the shear beam. It has the random variables ft (with fully corre-
lated GF ) and model uncertainty ϑ. This case was analyzed previously in the Chapter 4
with DARS. The limit state function for this case was given in the Eq.4.12. The mean value
of ϑ is 0.971 (refer Table 4.5). This case will serve as the example of limit state function
with numerical noise in this chapter.

Table 6.4: Standard deviations of stochastic properties for various RC beam cases considered

Case fc [MPa] Gc [MPa] ft [MPa] GF [N/mm] fy [MPa] ϑ [-]

2nd - - 0.8503 0.0309 55 -

3r d - - 0.8503 0.0309 65 -

5th 9.645 31.45 0.8503 0.0309 55 -

6th 9.645 31.73 0.8503 0.0309 65 -

7th - - 0.8503 0.0309 - 0.1327

The results are summarized in the Table. 6.5.

Table 6.5: Summary of reliability results for all the RC beam cases with AK-MCS. The β values are given with
associated number of NLFEAs indicated in the bracket. For cv2 εP̂ f

= 0.30 is considered.

RC Beam cases Mixed 2nd Bending 3r d Mixed 5th Bending 6th Shear 7th

PC Kriging, cv1 3.85(92) 3.58(44) 3.89(125) 3.53(61) 3.23(310)

PC Kriging, cv2 3.81(97) 3.56(31) 3.85(107) 3.52(58) 3.29(310)

6.5. DISCUSSION ON THE RESULTS FOR THE RC BEAM CASES
The results in the Table 6.5 for the RC beam cases pretty much fall into the consistent
pattern seen in the previous chapter. The bending beam is found to be easiest for the
reliability analysis. The smooth limit state surface for the 3nd case (Figure 6.3) makes
it easier for the PC kriging meta model to predict the behavior of the limit state func-
tion around the limit state surface, even with smaller sample learning. This helps the
U-function (learning function) to select candidate samples close to the limit state sur-
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(a) Mixed beam 2nd case, for cv1
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(b) Mixed beam 2nd case, for cv2

Figure 6.2: Mixed beam 2nd case with the mixed beam for convergence criterion cv1 and cv2.
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(a) Bending beam 3r d case, for cv1
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Figure 6.3: Bending beam 3r d case with the bending beam for convergence criterion cv1 and cv2.

face. The PC-Kriging based meta model in turn progressively gets improved around the
limit state surface, till the convergence is achieved. For the mixed beam 3r d case it took
many more NLFEA. The reason could be partially attributed to the fact that there are two
branches of failure boundary for this particular case. However, Schöbi et al. [49] demon-
strated that AK-MCS has no trouble dealing with system effect in the limit state function.
Figures 6.3a and 6.3b reveal that most of the samples are concentrated around the shear
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(a) Shear beam 7th case, for cv1
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Figure 6.4: Shear beam 7th case, with the shear beam. No convergence is obtained after 310 NLFEA.

dominated failure boundary for this case. So the noisy limit state surface at the shear
dominated failure boundary can be possible reason for high number of NLFEA.

The role of noisy limit state function in the inefficiency of AK-MCS is particularly evident
for the 7th case. AK-MCS could not manage to get a convergence even after 310 NLFEA
The effect of noise is vividly depicted in the Figure 6.4 for this case. From the Figure it
follows that around the failure boundary no clear distinction could be found between the
region with samples GN LF E A ≤ 0 and GN LF E A > 0 and the response surface is extremely
irregular.

Why this is such an impediment for convergence is illustrated in light of the convergence

criterion cv1 in Eq.6.1. For a candidate sample x the learning function U (x) = − |µĜ (x)|
σĜ (x)

judges whether it is close to the limit state surface or not. This µĜ (x) is the mean value
found by the Kriging meta model with the associated noise variance σĜ (x). For a candi-

date sample located extremely close to the limit state surface the quantity
|µĜ (x)|
σĜ (x) should

be close to zero. The method converges when no more such candidate samples can be
found in the close proximity of the limit state surface, or in other words, all the possi-
ble samples which are closer to limit state surface have already been added for the en-

richment of the meta model. If the noise variance σĜ (x) is high that means that
|µĜ (x)|
σĜ (x)

can still be close to zero, even when x is not absolutely close to the limit state surface.
Thus because of the noise candidate samples which are not the closest to the limit state
surface often times get misidentified for design enrichment, which in turn delays the
convergence.

The β estimate for the 7th case by AK-MCS (3.23 with cv1) is found to be quite close
to the estimate by BDARS (3.21) (Figure 6.5), even though AK-MCS did not converge
for this case. If the convergence criterion were based on the statistics of interest (fail-
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Figure 6.5: Shear beam 7th case with BDARS. covP f
= 0.25, adaptive λadd and tol = 0.01. The β = 3.21 with

26 NLFEA.

ure probability), AK-MCS would have converged with greater ease, it seems. However,
following the discussion in section6.2 it can be said that unlike DARS it is difficult to
consider a convergence criterion based on the coefficient of variation of failure proba-
bility (covP f ) in AK-MCS. Because AK-MCS executes the Monte Carlo simulation based
on the response surface. So when the response surface is at its initial stage, a low covP f

will be of no indication whatsoever for the accuracy of the failure probability estimate.
DARS could use the convergence criterion based on covP f because the failure proba-
bility for the most part is estimated based on the actual limit state function. Response
surface’s role in DARS is mostly limited in discerning the important region from unim-
portant one. Its contribution in calculating the failure probability is only minor. One ad
hoc way around can be to use less number of samples (i.e. total number of samples in
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the set X) in AK-MCS. This however runs the risk of not obtaining the β at all when β for
the problem in reality is high (β > 4 for examples). Because if the β is large, that means
the failure boundary in the space of standard normal variables is located far away from
the mean values. Small sample size may not even be able to generate sufficient num-
ber (or any) of samples close to the failure boundary in that case, rendering the Monte
Carlo simulation ineffective. Another possibility is that a relaxed convergence criterion
of the sort min[U (x)] ≥ 1 is considered. Meaning that only the samples extremely close
to the actual limit state surface be considered for design enrichment. This could how-
ever compromise the accuracy of the meta model, or the response surface, resulting in a
poor failure probability estimate.

The convergence criterion cv2 (Eq.(6.2)) is less conservative compared to cv1 [49], al-
though it works with the same philosophy as cv1. This criterion necessitates that the
confidence bound (obtained from the Kriging process) around the response surface is
sufficiently low. That can only happen when the samples close to the limit state surface
are added for the design enrichment. So as far as the selection of the close samples for
enrichment is concerned, cv2 pretty much faces the same problem for the noisy limit
state function as the cv1. It is observed for the noisy cases 2nd , 5th and 7th that even
a relatively high value of εP̂ f

= 0.30 could not make the reliability analysis substantially

more efficient. The confidence interval around the response surface would be wider for
cases with heavy numerical noise (this was observed in the Figure 5.24 also in the Chap-
ter 5), so setting a high value of εP̂ f

might make it easier to obtain a convergence. On the

other hand, a higher value of εP̂ f
would mean a premature termination of the reliability

analysis for smooth limit state functions, even when the response surface is far from its
final stage. The failure probability estimate with such a response surface would not be
the most accurate.

6.5.1. IMPLICATION OF THE FAILURE BOUNDARY FOR THE BENDING BEAM

In the Figures 5.9 and 5.12 from the previous chapter, it is observed that the failure
boundary is not a horizontal line for the bending case. The Figure 6.3 in this chapter
shows the same thing. This is counter intuitive because bending is solely dominated by
the reinforcement yield strength, with the concrete tensile strength ( ft ) playing no im-
portant role. The design point for the 3r d case is (0,−4.13). To investigate the possible
nature of the limit state function far from the design point, the displacement verses load
graph is plotted at λ= 8 along a direction (1,−1) (Figure 6.6). If it is found out that at this
point the value of limit state function is positive (i.e. G > 0) then that will be a sufficient
evidence that the failure boundary is indeed not horizontal. From Figure 6.6 it follows
that the load capacity is greater than the examination load F = 50kN. This implies that
G > 0 at this point (also, a horizontal plateau after the peak load clearly indicates rein-
forcement yield failure). Evidently, for high values of ft failure boundary is indeed not
horizontal. It must be noted though, that the response surface far away from the impor-
tant region is of no interest for DARS or AK-MCS, it matters little if the response surface
is inaccurate elsewhere, other than the important region.
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Figure 6.6: Displacement verses load plot for the bending beam 3r d case, at λ = 8 along the direction (1,−1).
The plot clearly suggests that the peak load is more than the examination load F = 50kN.

6.6. CONCLUDING REMARKS FOR THE SIXTH CHAPTER
For the test cases with computationally inexpensive analytical limit state functions or
linear finite element based limit state function, it was seen that AK-MCS’s performance
is often better compared to DARS (and BDARS). For the RC beams however the opposite
is found to be the case. The performance of AK-MCS is observed to be comparable to
DARS only for the smooth limit state functions of the bending beams. For the shear
dominated cases the performance of AK-MCS is found to be inferior compared to DARS.
It is stipulated that the samples which do not lie in the closest proximity to the actual
limit state surface often get misidentified for design enrichment by the learning function.
This unnecessarily increases the overall NLFEA, delaying the convergence.
One important distinction between AK-MCS and DARS is the nature of convergence cri-
terion in these two algorithms. The convergence criterion in AK-MCS is essentially a
quantitative measure of how good a surrogate function the response surface is to the ac-
tual limit state function. Unlike DARS, it is difficult to consider a convergence criterion
based on the coefficient of variation of failure probability in AK-MCS. Because AK-MCS
executes the Monte Carlo simulation based on the response surface. So when the re-
sponse surface is yet to converge to its final stage, a low coefficient of variation of failure
probability will not be a meaningful measure of the accuracy of the failure probability
estimate. DARS could use the convergence criterion based on coefficient of variation of
failure probability because the failure probability is chiefly estimated based on the ac-
tual limit state function in DARS. Nevertheless, it should be stressed that the comparison
of the performances of AK-MCS and DARS should be interpreted with caution. Because
the results by these two methods are effected by their respective stopping criterion, and
these criteria are potentially difficult to compare.
Some ad hoc remedies for the convergence issue were discussed in this chapter. How-
ever, they may not universally work in all cases. It is stipulated that only adding the
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samples extremely close to the actual limit state surface for design enrichment, by relax-
ing the convergence criterion, can make the process more efficient. However it might
compromise the accuracy of the meta model and which will result into a poor failure
probability estimate. Perhaps the learning function employed to select the candidate
samples is not ideally suited for limit state functions with pronounced numerical noise.
It could be that an additional stopping criterion needs to be considered. Detailed inves-
tigations are necessary to come up with a solution which works for all cases.



7
CONCLUSION

I N this thesis accurate and efficient methods have been developed for the reliability
assessment for structures analyzed with Non-Linear Finite Element Analysis (NLFEA)

where the presence of numerical noise plays an important role. It has been shown that
the numerical noise in the ultimate load bearing capacity, predicted by the NLFEA, is
closely associated with the shear failure mechanism. Whereas for the bending failure
mechanism NLFEA solution strategy produces a much more smooth capacity predic-
tion. It is shown in this thesis that slight variation in the convergence criterion in the
Quasi-Newton equilibrium iteration procedure for the solution of the system of nonlin-
ear equations can significantly alter the ultimate load bearing capacity predictions for
a beam failing in shear. Why shear governed failure mechanisms are more sensitive to
the choices adopted in the solution strategy has not been investigated in this thesis. This
remains an interesting research question for the future.

The uncertainty arising due to the idealizations and assumptions in the NLFEA so-
lution strategy, called the modeling uncertainty, has been accounted for in this thesis in
the reliability analysis of RC structures. Modeling uncertainty has been quantified based
on the ratio of experimentally obtained and NLFEA predicted ultimate load bearing ca-
pacity. Since the modeling uncertainty term is multiplied with the ultimate load bearing
capacity term in the limit state function, this makes the limit state function an explicit
function of the modeling uncertainty. So the variance of the modeling uncertainty will
directly influence the outcome of the reliability analysis. Inclusion of the modeling un-
certainty in the reliability analysis is observed to have a profound impact in the outcome
of the reliability estimate. It is shown for the RC beam failing in shear that without ac-
counting for the modeling uncertainty the reliability index is 5.6 whereas with the mod-
eling uncertainty the reliability index varies in the range 3.0−3.7 for different combina-
tions of random variables. This difference underscores the importance of accounting for
the modeling uncertainty in a NLFEA based reliability analysis. In this thesis no distinc-
tion is made in the modeling uncertainty corresponding to the failure mode. Given the
significant influence that modeling uncertainty has on the result of reliability analysis, it
is quite likely that considering different modeling uncertainty for different failure modes
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will improve the reliability estimate even further. But in order to make such implemen-
tation possible, it is necessary to be able to quantitatively determine the failure mode,
during a reliability analysis. The ductility index introduced by Engen et al. [17] can be
useful in this regard, to quantitatively distinguish between the brittle and ductile failure
modes during a reliability analysis.

The primary reliability algorithm examined in detail in this thesis is the Directional
adaptive response surface method (DARS). This algorithm measures failure probabil-
ity content along random directions, with a process called the line search. An adaptive
response surface is used to distinguish the important directions for which the NLFEA
based exact line searches are to be used. It is observed that in the absence of numeri-
cal noise in the limit state function, the number of exact function evaluations in DARS
method primarily depends on the shape of the limit state surface, i.e. concave, convex,
linear etc. It also depends on the target coefficient of variation of failure probability, line
search tolerance and the added offset to the current minimum distance of the limit state
surface. It is demonstrated that a strict line search tolerance criterion only marginally
improves the reliability index, even though the number of exact function evaluation in-
creases significantly with stricter tolerance. This is explained by the fact that DARS uses
the distance to the limit state surface (from the origin) to calculate the failure proba-
bility. A strict line search tolerance will ensure that those distances are calculated (in
an uni-variate root finding process, or line search) accurately up to third or even fourth
decimal places, at a heavy computational expense (in terms of number of exact function
evaluations). But measuring those distances in the standard normal space with an ac-
curacy beyond the second decimal place will not be particularly rewarding in terms of
the accuracy of the reliability index. A moderate value of the line search tolerance will
be sufficient to efficiently obtain an accurate reliability index. It is because due to the
law of large numbers the error in the probabilities from each direction tend to be inde-
pendent random variables. As a result these errors tend to cancel each other when the
probabilities are added up. The law of large numbers helps this. As for the influence of
the added offset, it is found out that using a fixed value of the offset throughout the reli-
ability analysis increases the number of exact limit state function evaluations. Using an
adaptive offset instead of a constant offset value increased the efficiency of DARS.

While the adaptive offset and moderate line search tolerance criterion sufficiently
ensures efficient reliability analysis with DARS for smooth limit state functions, such
measures alone are found to be inadequate for the RC beam case which fail in shear.
The pronounced numerical noise in the limit state function for this case made DARS
quite inefficient. The polynomial interpolation based uni-variate line search scheme
of DARS is identified to be the major source of inefficiency for this case. It is demon-
strated that in the presence of pronounced noise the interpolation based scheme fails
to consistently indicate the next best possible root, contributing to the inefficiency. The
effect of numerical noise on such an interpolation scheme is particularly severe closer
to the limit state surface, where the value of the limit state function is in the range of
the noise variance. It is also found out that starting the line search from a fixed initial
guess is less efficient. This limitations prompted the modifications in the uni-variate
line search scheme. Instead of polynomial interpolation method Brent’s method [89] is
used. Brent’s method uses inverse quadratic interpolation only when the interval of sign
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change is wider. In narrower interval it switches to the Bisection method. The Bisection
method is faster compared to interpolation in a narrow interval and it is not effected by
numerical noise. Since interpolation is quite erroneous close to the limit state surface
in noisy condition, switching to Bisection brings better outcome in terms of efficiency.
The response surface in DARS provides an initial estimate of the possible root along a
direction. Starting the exact line search from this initial guess profoundly reduces the
number of exact limit state function evaluations. To better exploit this initial guess pro-
vided by the response surface a Gaussian process regression is used to construct the
response surface instead of quadratic polynomial. This novel improvement in DARS is
called BDARS in this thesis. It is shown that if the line search is done purely on the basis
of this GPR based response surface alone, it is still more efficient compared to the in-
terpolation based traditional line search scheme. One disadvantage of Brent’s method
is that the interval of sign change for the root needs to be established at the beginning.
Currently, the line search procedure is abandoned for a particular direction if the interval
is not found within two NLFEAs. This strategy runs the risk of erroneously abandoning
the line search for an important direction, particularly for noisy limit state functions. A
possible improvement could be to update the response surface immediately and using
this updated response surface to guess the next iteration.

Another reliability method examined in this thesis is the Adaptive Kriging Monte
Carlo simulation (AK-MCS). This method tries to obtain samples close to the limit state
surface with help of a response surface. The samples are selected based on a learning
function. With each such selected samples, the existing response surface is updated,
making the process adaptive. Once the response surface has converged, it is used in a
crude Monte Carlo simulation to determine the failure probability. The study of the per-
formance of AK-MCS revealed that while this method performed equally well (or even
better) for smooth limit state functions, it is found to be inefficient under the presence of
pronounced numerical noise in the limit state functions of RC beams. The reason is that
the pronounced noise, due to higher noise variance associated with candidate sample,
can deceive the learning function employed by AK-MCS into selecting samples, which
are not the closest to the limit state surface, for design enrichment (in other words, im-
provement of the response surface). This can increase the total number of function eval-
uations, making the process inefficient. If the convergence criterion were based on the
failure probability, AK-MCS would have converged with greater ease. However, unlike
DARS it is difficult to consider a convergence criterion based on the coefficient of varia-
tion of failure probability in AK-MCS. Because unlike DARS, it is the quality and accuracy
of the response surface in AK-MCS which governs the accuracy of the failure probability
estimate. The convergence criterion of AK-MCS is strictly a quantitative measure of how
good a surrogate function the response surface is to the actual limit state function. Once
the convergence is achieved, the algorithm stops adding new samples any further and
the response surface is considered to be in its final state. AK-MCS executes the Monte
Carlo simulation based on the response surface. So when the response surface is not
at its final stage, a low coefficient of variation of failure probability will be of no indi-
cation whatsoever for the accuracy of the failure probability estimate. DARS could use
the convergence criterion based on failure probability because the failure probability for
the most part is estimated based on the actual limit state function in DARS. Response
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surface’s role in DARS is mostly limited in discerning the important region from unim-
portant one. Its contribution in calculating the failure probability is only minor. The
current convergence criterion in AK-MCS is clearly not a practical choice for cases where
numerical noise is involved. One possibility is that a relaxed convergence criterion for
the design enrichment is used. Meaning that only the samples extremely close to the
actual limit state surface be considered for design enrichment. This is not a general so-
lution because such a measure can compromise the accuracy of the meta model, or the
response surface, resulting in a poor failure probability estimate. Additional stopping
criteria might also be useful in this regard.

AK-MCS provides an opportunity to exploit high performance computer architec-
ture, by running the exact function evaluations in parallel (even though the candidate
samples selection may not be the most optimal). This is an attractive prospect because
most other efficient reliability algorithms, including DARS are inherently sequential. Be-
ing able to run multiple samples at a time can significantly reduce the computational
time. However, this gain in computational time is of little use if AK-MCS takes a high
number of function evaluations to converge.

The primary motivation behind the development of BDARS is to make it possible to
efficiently evaluate the reliability for noisy limit state cases. However, for BDARS to be
practically useful, it has to be efficient for problems with higher dimension as well. Some
authors have shown in the literature, based on few examples, that DARS can achieve an
efficiency in the same order of FORM when dealing with higher dimensionality. This ef-
ficiency however, is shown to be achieved only when linear or incomplete quadratic re-
sponse surface is used in DARS. For a case with linear hyper-plane limit state surface it is
shown the number of exact limit state function evaluations with BDARS increases almost
in a linear fashion, for increasing dimensionality. So there is at least some evidence that
BDARS, with its GPR based response surface, can retain its efficiency for higher stochas-
tic dimension problems as well.

With the improvements forwarded in this thesis for DARS, together with the fact that
only a moderate value of line search tolerance suffices to obtain a sufficiently accurate
reliability estimate reliability estimate, makes the improved DARS (BDARS) method po-
tentially suitable for the structural engineering community. The relevance of this con-
tribution in terms of practical utility can be highlighted by the fact that the improved
DARS has been demonstrated to consistently converge with around 20 NLFEA for RC
beam problems (with failure probability in the range of 10−3−10−4) examined in this the-
sis, irrespective of the presence of numerical noise or multiple failure mode in the limit
state function. The RC beam examples used in this thesis are so chosen that they do not
compromise in any aspect of computational challenges. The conclusions drawn in this
thesis with regards to the RC beam examples are expected to be valid for more complex
structures. This means that the structural engineering community will no longer have
to remain content with NLFEA based safety check with semi probabilistic verification
methods. The improved DARS method can be used directly to obtain an accurate esti-
mate of failure probability for computationally intensive RC structures, including model
uncertainty and notwithstanding considerable numerical noise, within a feasible num-
ber of NLFEA.
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A
MODEL UNCERTAINTY

CALCULATION

Table A.1: The summary of the ratios ϑ= RE xp
RF E M

calculated based on the experiments by Yang et al. [64]

Name a [mm] d [mm] fc [MPa] Rebar [mm] RE xp [kN] RF E M [kN] ϑ

A121A1 1500 269.5 77.5 3Φ20 115.3 127.4 0.90

A121A2 1255 269.5 77.7 3Φ20 138.8 131.9 1.05

A121A3 1000 269.5 77.7 3Φ20 144.6 142.7 1.01
A121B1 1000 269.5 77.8 3Φ20 157.6 139.1 1.13
A122B1 1000 270.5 78.5 3Φ20 152.3 134.6 1.13
A123A1 1000 270.0 79.2 3Φ20 136.5 137.6 0.99

A122A1 750 270.5 78.2 3Φ20 194.7 151.1 1.29
A122B2 750 270.5 78.5 3Φ20 139.1 151.0 0.92

A123A2 800 270.0 80.1 3Φ20 139.0 148.2 0.94

A123B1 1250 270.0 79.3 3Φ20 134.9 134.9 0.97

A123B2 1150 270.0 79.3 3Φ20 151.4 144.6 1.05

A901A1 1250 274.0 78.5 1Φ12+2Φ20 105.6 120.0 0.88

A901A2 1000 274.0 78.5 1Φ12+2Φ20 123.9 138.6 0.89

A901A3 750 274.0 78.5 1Φ12+2Φ20 145.0 141.9 1.02
A901B2 750 274.0 78.5 1Φ12+2Φ20 124.2 141.9 0.87

A901B1 880 274.0 78.5 1Φ12+2Φ20 127.5 132.5 0.96

A902A1 995 276.0 78.5 1Φ12+2Φ20 120.7 130.3 0.93
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A902A2 900 276.0 78.5 1Φ12+2Φ20 136.0 126.7 1.07

A902A3 800 276.0 78.5 1Φ12+2Φ20 149.4 137.5 1.09

A902B1 1100 276.0 78.5 1Φ12+2Φ20 121.5 128.3 0.95

A902B2 1000 276.0 78.5 1Φ12+2Φ20 124.2 130.8 0.95

A751A1 1000 274.5 78.5 3Φ16 97.1 116.2 0.83

A751A2 750 274.5 78.5 3Φ16 118.4 149.1 0.79

A751B1 800 274.5 78.5 3Φ16 106.7 116.4 0.92

A751B2 850 274.5 78.5 3Φ16 111.3 127.7 0.87

A752A1 900 273 78.5 3Φ16 108.7 126.6 0.86

A752A2 850 273 78.5 3Φ16 119.0 149.1 0.80
A752A3 850 273 78.5 3Φ16 121.6 149.1 0.82

A752B1 750 273 78.5 3Φ16 122.1 139.4 0.88

A752B2 700 273 78.5 3Φ16 142.0 126.4 1.12

A601A1 1000 275.5 78.5 1Φ10+2Φ16 80.3 93.7 0.86

A601A2 750 275.5 78.5 1Φ10+2Φ16 102.1 103.5 0.99
A602A1 750 275.5 78.5 1Φ10+2Φ16 98.9 103.5 0.96

A601B1 700 275.5 78.5 1Φ10+2Φ16 118.7 115.1 1.03

A601B2 600 275.5 78.5 1Φ10+2Φ16 114.2 105.1 1.09

A602A3 695 272.5 78.5 1Φ10+2Φ16 114.2 105.1 1.09

A602B2 650 272.5 78.5 1Φ10+2Φ16 117.5 126.7 0.92

B701A1 2250 471.5 81.0 3Φ20 175.5 200.6 0.87

B701A2 2000 471.5 81.0 3Φ20 179.5 206.1 0.87

B701A3 1750 471.5 81.0 3Φ20 185.7 201.7 0.92

B701B1 1700 471.5 81.1 3Φ20 193.6 211.0 0.92

B701B2 1500 471.5 81.1 3Φ20 202.4 217.3 0.93

B702A1 1250 471.5 81.7 3Φ20 183.2 143.3 1.28

B702B1 1450 471.5 81.7 3Φ20 164.9 181.9 0.91

C451A1 1250 272.5 23.7 3Φ12 41.4 49.4 0.83

C451A2 1000 272.5 23.7 3Φ12 52.9 57.1 0.93

C451A3 750 272.5 23.7 3Φ12 73.5 67.6 1.09

C451B1 850 272.5 23.7 3Φ12 58.5 63.7 0.92

C451B2 800 272.5 23.7 3Φ12 70.6 67.0 1.05

C451B4 700 272.5 23.7 3Φ12 77.2 70.5 1.09
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C751A1 1250 270.0 23.7 3Φ16 76.5 71.9 1.06

C901A1 1250 271.5 23.7 1Φ12+2Φ20 101.7 76.7 1.33

C901A2 1000 271.5 23.7 1Φ12+2Φ20 103.4 88.4 1.17
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