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Abstract

Ultrawideband technology can be used to measure the distance between two
device equipped with ultrawideband transceivers. Multiple ultrawideband devices
known as anchors can localize a device that supports ultrawideband communic-
ation after each anchor measures the distance between itself and the device. The
anchor and the tag can measure the distance between themselves by measuring
the time of flight of the ultrawideband messages exchanged between them. If
the location of the anchors are known, the location of the device can be com-
puted. However, errors in range measurements can cause errors in localization
of the device. There are many sources that can cause errors in the measured
range between the anchor and the tag. For example, when the tag transmits
a signal, and the path between the anchor and the tag is blocked, the signal
may be attenuated to such an extent that it may go undetected at the anchor,
causing the anchor to measure the time of arrival of a delayed reflection.

In this thesis, we aim to find a solution to improve the ranging accuracy
when an anchor is equipped with two antennas. We target approaches that
can be implemented on an embedded processor with limited resources. In order
to improve the ranging accuracy, we first investigate various machine learning
based classifiers that can identify non-line of sight and line of sight signals. Next,
for each of the classified signal, we train and test various machine learning based
regression models that will predict the true distance from the distance measured
by the anchor. We conclude the thesis, by assessing the robustness of the derived
classification and regression models by evaluating the range improvements in
measurements taken in different scenarios.
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Chapter 1

Introduction

The approval of ultrawide band (UWB) technology in 2002 by the Federal Com-
munication Council (FCC) [11] has triggered a wide range of research related
to use cases of UWB. One of the widely used applications of UWB is ranging.
Two devices embedded with UWB transceivers can accurately measure the time
of arrival (TOA) of the received UWB signal and using that information calcu-
late the distance between themselves. Multiple UWB devices known as anchors
measure the distance between themselves and a device they are trying to locate.
With prior knowledge of the location of the anchors and the range measurement
derived by each anchor, the location of the device can be deduced.

(a) Anchors around the vehicle loc-
alizing with a tag

(b) Multipath environment and the
accumulated signals at the receiver

Robert Bosch GmbH has been investigating the localization aspect of UWB,
and its application in automotive under the Perfectly Keyless project. Anchors
are installed with UWB transceivers and are placed at fixed known locations
around the chassis of the vehicle as shown in figure 1.1a. Each anchor is connec-
ted to the master device via a Control Area Network (CAN) bus. The master
has prior knowledge of the location of each anchor. When a UWB device comes
in range with the vehicle, each anchor on the vehicle measures the range between
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itself and the device which is sent to the master over the CAN bus. The mas-
ter device extracts the range information from the CAN bus and estimates the
location of the device.

The accuracy of localization depends on the accuracy of the range measure-
ments reported by the anchors. However, due to inaccurate estimates of the
TOA of the received signal, the range measurements reported by each anchor
may have a ranging error that results in inaccurate localization of the device.
One such reason is the orientation of the device antenna with respect to the an-
chor antenna. That is, the gain of the antenna is dependent of the polarization
and the pattern of the antenna. Due to the non-existence of isotropic antennas,
in this thesis, we investigate the performance of range improvement using two
cross polarized antennas.

1.1 The Problem

In an ideal world, if all anchors provide an accurate estimation of the range, one
can estimate the exact location of the device. However, like any other electro-
magnetic signal, UWB is prone to (i) interference and noise from background
sources (when multiple users are using the same frequency at the same instant),
(ii) Multipath interference when the signals reflect off surrounding objects caus-
ing multiple copies of the signal arriving at the receiver (iii) Non-line of sight
(NLOS) issues when an obstacle blocks the direct line of sight path between the
transmitter and receiver [15].

UWB devices can range with other devices by accurately measuring the TOA
of the signal corresponding to the direct path. Depending on the environment,
UWB waveform reflect from surrounding objects, that creates multiple copies
of the transmitted signal, that arrive at the receiver with different delays and
intensities as shown in figure 1.1b. The receiver then has to correctly identify
and measure the TOA of the first received signal. This is because the direct path
is the shortest distance a signal has to travel, hence, corresponds to the first peak
received at the receiver. As shown in figure 1.1b, the signal corresponding to
the straight line joining the tag and the anchor, is received first at time instant
t1. When there are no obstacles blocking or placed around the transmitter and
receiver, the receiver receives a single copy of the signal which is identified as
the first path. However, when an obstacle blocks the direct path between the
transmitter and the receiver, the signal corresponding to the direct path may
be attenuated that it may go unnoticed at the receiver. This may cause the
receiver to measures the TOA of a time delayed multi-path signal, that results
in a positive bias error in the final distance measurement. From figure 1.1b,
the signal has to measure the time of the first arriving signal (t1). But due to
the attenuation offered by the blockage, the first arriving signal will be received
with a low amplitude. This may cause the receiver to assume the signal to be a
noise signal, and measure the timestamp of the second or third arriving signal
at t2 or t3 respectively.

The intensity with which a signal is received at the receiver also depends on
the orientation of the antenna. Hence, a signal arriving with a high energy
may be significantly attenuated by the orientation of the receiving antenna.
This may cause the signal to be attenuated at the receiver. The amount of
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power extracted by the antenna depends on the difference in polarization of the
antenna and the incoming signal [2].

1.2 Related Work

As discussed, range measured in a NLOS scenario have a high error associated
with them which can lead to bad localization results. One method to avoid
inaccurate localization due to errors in ranging is by knowing the anchors that
have detected a NLOS scenario. This way, only the range measurement with low
ranging error can be used for localizing the tag. Chen Huang [17] and Jiancun
Fan [10] are among researchers that have developed machine learning based
classification models that can identify the nature of a signal (LOS or NLOS).
However, all these models and metrics were derived for a system with a single
antenna.

Range measurements identified as LOS can be used for localization due to
low ranging error, while errors for NLOS signals need to be mitigated before
using it for localization due to the large positive bias error associated with
them. Chen [25] and Li Cong [21] tried solving the problem of localization
using statistical techniques however (i) their methods require the availability
of range measurements from all anchors present, and (ii) at least three of these
measurements should have a direct LOS. This can cause blackouts in our system
if none of the anchors have a LOS path.

1.3 Solution Approach

In this thesis, we introduce techniques to improve the ranging accuracy when
an anchor is equipped with two antennas positioned orthogonal to each other.
We approach the problem by classifying signals as LOS or NLOS by training
machine learning based classification models using input features extracted from
two antennas. We compare our model with some of the state-of-the-art solutions
based on the classification accuracy, input feature size and complexity. And
then, for each class, we train a regression model to predict the true range from
the measured range. We focus on investigating classification and regression
models that have low complexity in terms of memory and runtime. For this
thesis, we target to restrict the error in ranging to less than 30 cm.

1.4 Research Questions

In this thesis we try to answer two research questions.

• RQ1: What is the impact of a second antenna on identifying NLOS signals
using machine learning based classifiers?
With this question, we want to understand the effect of using features
from a second antenna in identifying whether the signal is a LOS or an
NLOS signal.

• RQ2: How can machine learning based regression methods be used to
improve the accuracy of ranging? What is the impact on ranging accuracy
when two antennas are used?.

9



By answering this question, we want to understand how well can regression
based models be used to predict the true range measurements and the
improvement in prediction when features are extracted from the second
antenna.

1.5 Contributions

To answer RQ1, we

• evaluate the classification accuracy improvement when they are extracted
from two antennas using the binary hypothesis theorem.

• evaluate the performance of different classification models on classifying
LOS and NLOS signals when trained on the features extracted from two
antennas.

• show the improvement in classification accuracy of some of the state-of-
the-art classification models using features from two antennas.

For RQ2, we train regression models to predict the true distance for signals
classified as LOS and NLOS. We compare the performance of different regression
models for mitigating LOS and NLOS error based on the measured root mean
squared error and the size of the model. The regression models are trained using
features extracted from a (i) single antenna and (ii) two antennas to understand
the impact of using a second antenna. We conclude our thesis by testing our
classification and regression models on unseen data, that were collected when a
second vehicle is parked next to the vehicle on which our anchor is placed.

1.6 Thesis Structure

Chapter 2 provides a brief introduction to the channel estimation parameters
that are used to derive features for the classification and regression models.
Chapter 3 introduces some of the state-of-the-art solutions. Chapter 4 provides
an overview on the classification and regression models used, ranging accuracies
measured in different scenarios. Chapter 5 elucidates the experiments that were
conducted to answer the research questions. Lastly, chapter 6 concludes the
thesis and chapter 7 lists down possible directions for future research.
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Chapter 2

Background

2.1 Introduction

In this chapter, we first introduce the two way ranging method, that is used to
calculate the time of flight (TOF), and consequently, the distance between the
two UWB devices. Then we introduce the method of measuring the TOA used
by our system and the available channel estimation parameters available that
can be used to extract features.

2.2 Two way ranging

The distance between two devices can be estimated using the two way ranging
protocol, that requires both the devices involved in ranging to measure the
timestamp corresponding the transmission and reception of a signal within one
ranging round. A ranging round is a series of messages exchanged, which at the
end computes one distance measurement. The anchor and the tag run their own
clocks, and no clock synchronization is required for this method. The ranging
round starts with the tag sending a poll message followed by the anchor sending
the response message, and ending by the tag sending the final message [8]. The
anchor and the tag record the transmit and receive time for the poll, response
and the final message as shown in figure 2.1.

At the end of the round, the tag sends the timestamp results to the anchor.
These results are sent in the form of tag round time (Trnd) and tag reply time
(Trep), that is computed as:

Trnd = tT2 − tT1 (2.1)

Trep = tT3 − tT2 (2.2)

The anchor computes the anchor round time (Arnd) and the anchor reply
time (Arep) as:

Arep = tA2 − tA1 (2.3)

Arnd = tA3 − tA2 (2.4)

11



Figure 2.1: Two way ranging

Trnd, Trep, Arnd and Arep can be used to derive the TOF:

TOF =
Trnd ∗Arnd − Trep ∗Arep

Trnd +Arnd + Trep +Arep
(2.5)

The distance between the two devices can be calculated my multiplying the
TOF with the speed of light.

2.3 Timing Measurement

Section 2.2 talks about the ranging protocol that is used to measure the TOF
by measuring the transmit and receive time of UWB signals. This section talks
about the method for accumulating a timestamp for a received signal.

2.3.1 Channel Impulse Response

Radio signals are electromagnetic waves that propagate in different directions
on leaving the antenna. These signals may interact with surrounding objects.
Based on the object physical characteristics, these signals may be reflected or
may pass through the object. Hitting the objects may also cause a phase shift
in the colliding signals. Due to different distances travelled by the radio signal,
these signals are received as delayed time signals at the receiver as shown in
figure 1.1b. CIR is a measure of the intensity of the multipath component
received by the receiver. It is the plot of the signal strength received over time.

12



(a) NLOS scenario

(b) LOS scenario

Figure 2.2: Channel impulse response accumulated in (a) NLOS and
(b) LOS scenario

From [1], received CIR can be expressed as:

h(t) =

L∑
i=1

aiξ(t− δi) (2.6)

13



(a) NLOS scenario

(b) LOS scenario

Figure 2.3: CIR accumulated in LOS and NLOS scenario

where ai is the complex amplitude and δi is the time delay associated with a
received signal. ξ(.) is the pulse distortion function[1]. However, for this thesis,
it is important to understand that h(t) denotes the series of signals arriving
with different delays and different amplitudes. CIR plot accumulated in a NLOS
scenario and LOS scenario is shown in figure 2.3a and 2.3b respectively. It can
be seen that in a LOS scenario, there is a single peak of the highest magnitude,
followed by reflections from the surroundings. In a NLOS scenario, one can
identify multiple peaks in the CIR, indicating a large amount of reflections from
surrounding obstacles.

2.3.2 Time of Arrival Estimation

A time of arrival algorithm on the UWB transceiver determines the signal cor-
responding to the first path from the received channel impulse response. The
time of arrival of the detected first path signal is used to calculate the distance
between the two devices. The accuracy of ranging is dependent on the perform-
ance of the TOA estimation algorithm. The TOA estimation on our system is
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predefined and is taken as the leading peak. From figure 2.3b, the leading peak,
which is also the highest peak is identified as the first path.

2.4 Channel Estimation

In our system, a digital signal processor (DSP) is responsible for accumulat-
ing the signal, plotting the CIR, performing the time of arrival estimation and
returning the timestamp. When requested, the DSP can provide additional in-
formation regarding the received signal to the main processor. This information
is used to form input features that will be used as inputs to the classification
model. The channel estimation parameters available from the DSP are:

• CIR: The CIR is a result obtained after performing a cross correlation of
a known preamble with the preamble of the received signal. The preamble
is a terenary code that is present in the beginning of a UWB message.
The raw CIR values for a received signal is captured and can be read by
the application. A total of 1024 CIR values can be read from the DSP,
and is available in a discrete format sampled at 1GHz. Each CIR sample
occupies 4 bytes of memory (2 bytes of imaginary part and 2 bytes of real
part). The DSP allows the main processor to limit the number of CIR
values to read. Hence, we can read 50 CIR samples as shown in figure 2.3,
and the CIR will occupy 200 bytes of memory in RAM.

• Edge Index (τedgeindex): The position on the CIR buffer, where the
first threshold crossing of a signal was detected. The edge index helps to
determine the starting index in the CIR buffer.

• First Path Power (PFP): The power of the multipath component signal
that was detected as the first path signal by the time of arrival estimator.
This value is available in raw form and can be linearly transformed to its
decibel value.

• Max Tap Power (PMaxtap): The power of the multipath component
corresponding to the maximum power of the accumulated signal. In a LOS
scenario, the max tap power is the same as the first path power as shown
in figure 2.3b. Although the CIR returns the raw values, the max tap
power returns the power corresponding to the maximum raw value in the
CIR. This value is available in raw form and can be linearly transformed
to its decibel value.

• First Path Index (τfirstpath): The index on the CIR buffer where the
time of arrival estimator estimated the signal as the first path. Figure
2.3b and 2.3a mark the first path index in the CIR.

• Max Tap Index (τmaxtap): The position on the CIR, where the signal
with the maximum amplitude was detected. As marked in figure 2.3, the
first path index and max tap index coincide in a LOS scenario as the direct
path signal arrives without attenuation at the receiver.

• Noise Power (PNoisePower): The noise floor power measured by the
receiver.
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• Overall Power (POverall): The total power received by the receiver.

For the experiments, we only consider a 50 nanosecond window of the chan-
nel impulse response, staring from 10 nanoseconds before detected edge index.
Figure 2.2 shows the entire CIR accumulated in a LOS and a NLOS scenario,
and figure 2.3 plots the window that we use to extract the features for the
classification model. The reason for doing this are two fold:

• We were able to capture the first path signal, and the max tap signal
within this snapshot.

• No useful information was observed beyond the 50 nanosecond snapshot.
This can be seen in figure 2.2.
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Chapter 3

Related Work

In this chapter, we discuss the some of the research that has been conducted
in order to identify NLOS signals and mitigate the error associated with them.
In section 3.1, we discuss some of the statistical features that can be derived
from the received signal that can classify LOS and NLOS signals. Some of
these techniques are used to train machine learning based classification models
to predict the scenario with higher accuracy. Different classification models
and the features used are discussed in section 3.1.2. In section 3.2, we shed
light on some of the NLOS error mitigation techniques that have been adopted.
Finally, we show the extent of research that has been performed on dual antenna
solutions in section 3.3 and conclude the related work in section 3.4.

3.1 Line of sight and non-line of sight identific-
ation

The need for identifying NLOS signal in performing localization stems from the
high ranging error reported by these signals. This is due to the high attenuation
offered by blocking obstacles, causing the direct path signal to go undetected
at the receiver. Researchers have proposed TOA estimators [16] to accurately
identify the first path signal from the received CIR. However, for this thesis,
the TOA estimation is out of scope, as the digital signal processor performs the
TOA estimation, which is company proprietary to the chip manufacturer.

3.1.1 Statistical Techniques

Based on the received UWB signal, different channel estimation parameters
were derived that can be used to identify NLOS scenarios. Researchers have
shown that channel information gathered while receiving the signal can be used
to classify signals. Jie Zhang et.al [36] and Bruno et.al [29] showed that the
kurtosis of the channel impulse response, Bo You et.al [33] showed that the
ratio between the first path power and the overall power can be used to can be
used to identify NLOS scenarios. Bruno et.al [29] also showed the performance
the skewness of channel impulse response, difference between the total power
and the first path power identify non-line-of-sight scenarios with high accuracy.
Ali et.al [24] shows the use of root mean square delay and max spread delay in
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Author Metric
Jie Zhang[36] Kurtosis of CIR

Bruno[29] Skew of CIR
Ali[24] Peak-to-lead-delay
Ali[24] Root mean square delay
Ali[24] Max spread delay

Bruno[29] Power difference
Bo You[33] Power Ratio

Table 3.1: Statistical metrics based on channel parameters

NLOS identification which is used as parameters to a gaussian mixture model
in [10]. The contribution of researchers to identify NLOS signals is summarized
in table 3.1. In this thesis, we extract some of these statistical features and use
them as an input to our classification models.

3.1.2 Machine learning techniques

The last decade showed an increase in research on machine learning(ML) tech-
niques to identify NLOS signals using features discussed in 3.1.1 as inputs to
the classification model.
The effect of distance versus the received signal strength (RSS) follow a pathloss
model in a LOS scenario, which changes when the LOS is blocked. Fabrizio et.
al [5] and Valentin et.al [3] trained their models using a features extracted from
a series of distance and the measured signal strength.
The CIR of the received signal was investigated in order to identify NLOS by
Jeppe Bro Kristensen[19] using support vector machine and linear discriminant
analysis models (LDA). Each nanosecond for the CIR was used as an individual
input.
Chen Huang et.al [17] derived and compared three machine learning models(
SVM, random forest and artificial neural networks) to identify NLOS scenarios.
Chen and his team investigated angular features for identification and showed
that it provided high error rates on all three models. The work of some other
researchers that used classification models to identify NLOS scenarios is sum-
marized in table3.2. All the above discussed classification models are trained
on features extracted from a single antenna. In this thesis, we will investigate
the classification performance with two antennas.

Although most of the research focuses on discarding NLOS range measure-
ments due to high ranging error, it is possible for some NLOS signals to provide
low error in its range measurement. Shing in [20] and Valentin in [3] performed
classification with three classes, treating the NLOS with low error as the third
class. As it will be discussed later in the thesis, we consider LOS and NLOS
signals with low range error as the same class.

Data collected by researchers to train classification models lacked randomiz-
ation. For example, in [17], LOS and NLOS data were collected after placing
the antennas at fixed orientation on the top of the vehicle. In [5], data was
collected at fixed locations distanced 0.5 meters apart, inside a building, while
in [27], data was collected in an open area with no obstacles placed around the
measurement setup. Bruno et.al [29] collected data in a factory environment,
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Author Model Parameters
Fabrizio Carpi Threshold Kurtosis, skew, hyperskew

[5] Detection mode of measured RSS
Valentin Barral Support Vector Mean of RSS and Distance

[3] Machines
Jeppe Bro Kristensen Support Vector Channel Impulse Response

[19] Machines
Jeppe Bro Kristensen Linear Discriminant Channel Impulse Response

[19] Analysis
Chen Huang Support Vector Kurtosis, Skew, Rise time,

[17] Machine Max power, root mean
square delay, Rician K factor

Chen Huang Random Forrest Kurtosis, Skew, Rise time,
[17] Max power, root mean

square delay, Rician K factor
Jiancun Fan Gaussian Mixture Mean spread delay,

[10] Models root mean squared delay,
CIR taps crossing threshold

Weijie Li Support Vector Kurtosis, mean excess delay,
[32] Machines maximum power, root mean square delay,

Strongest Power, max amplitude,
total energy, mean and variance of CIR

Reza Zandian Logistic regression Peak Path Power,first path power, Skew,
[34] Kurtosis, Peak to lead delay,

received signal strength,
Power difference,
signal-to-noise ratio

Zhuoqi Zeng Support Vector Maximum amplitude of CIR,
[35] Machine rise time, mean excess delay,

root mean square delay, Kurtosis, Skew

Table 3.2: Work performed on machine-learning solutions for non-line-
of-sight identification

after placing the transmitter and receiver at fixed heights. For this thesis, the
location and orientation of the device was varied to a high extent. Data was
collected in the presence of human interference, device inside a backpack, and
device held at varying heights.

3.2 Error mitigation

When a non-line-of-sight measurement is made, the localization system can
either ignore its measurement or can perform mitigation techniques to correct
the range measurement. Contrary to this belief, Lorenz [27] used artificial neural
networks with channel estimation parameters as inputs to estimate the true
distance in a line-of-sight environment. The need for error correction in LOS
environments is due to under ranging(measured distance is lower than the true
distance) which occurs because of TOA estimation error as stated in [32].

19



Most of the literature focuses on correcting localization measured by multiple
anchors using maximum likelihood estimation[21] or measuring the residual of
ranging error[25]. These methods generally involve taking all possible combin-
ation of anchors, 3 at a time, and measuring the residual in each combination.
The final localization estimate is the anchor combination with the least residual.
Regression methods on NLOS identified signals has not been performed. In this
thesis, we use various regression models, namely random forest, gradient boost-
ing and cubist for single as well two antennas to reduce the range error measured
in NLOS scenarios. For the regression models, we use the input features used
by [27].

3.3 Dual antenna solutions

Using multiple antennas can be beneficial, as the second antenna can provide
a different perspective on the channel, that the first antenna may have missed.
Based on the antenna configuration, one can expect different improvements.

• Spatial Diversity: In spatial diversity, multiple antennas are placed
less than half a wavelength apart. Spatial diversity helps achieve angle
of arrival estimation(AOA) where the angle of the incoming signal can
be determined. This can be achieved using phase difference of arrival
PDOA [9] (where the difference in the phase received between the two
antennas) and time difference of arrival (TDOA) (Time difference of the
signal arrival times at the two antenna) [14][18][30].

• Polarization Diversity: Polarization diversity can be achieved by pla-
cing the antenna poles orthogonal to each other. The need of polarization
stems from the concept of antenna gain being proportional to the cosine
of the difference between the transmitting and receiving antenna. Hence,
LOS scenarios can report high ranging errors as the signal is highly at-
tenuated by the antenna. The gain of using two antennas with cross
polarization is shown in [28].
Malik et. al [22] showed the use of polarization diversity with dual antenna
can improve the bit error rate (BER) and the coverage area. He was also
able to show insignificant improvement in coverage and BER using more
than 2 antennas.

To the best of our research, ranging improvements with the use of two antennas
has not been investigated. Since light cannot travel faster than its natural speed,
selecting the least range measured by the two antennas as the final distance is
shown in [7]. However, this may not be the best approach, due to the possibility
of under range measurements reported by the receiver.

3.4 Conclusion

There is no study that considers dual antenna solutions for LOS and NLOS
identification or for LOS and NLOS error mitigation. Our research will focus
on investigating the influence of a second antenna on the classification accuracy
of LOS and NLOS identification, and regression models to improve ranging
accuracy for LOS and NLOS identified signals.

20



Chapter 4

System Design

4.1 Solution Overview

Figure 4.1 provides an overview of the chapter. We first discuss the method
of accumulating data, and the scenarios we have considered. In section 4.3,
we describe how channel estimation parameters gathered in section 4.2 can be
used to extract features which are then used to train our model to identify LOS
and NLOS signals in section 4.4. Regression models are trained and tested on
signals identified as LOS as well as signals identified as NLOS (Section 4.5).

4.2 Data accumulation

4.2.1 Dataset

In order to train and test the classification models, channel estimation paramet-
ers labelled LOS and NLOS were collected in three scenarios: (i) open garage
(figure 4.2a), (ii) second vehicle parked on the right of the vehicle (figure 4.2b)
(iii) second vehicle parked in front of the vehicle (figure 4.2b). Data accumulated
from scenario (i) is used to train the classification and regression model, while
data accumulated from scenario (ii) and (iii) are used to test the robustness of
the trained models. LOS labelled data was collected by performing a random
walk around the vehicle, such that there is no obstacle between the direct path

Figure 4.1: Solution overview
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(a) Open Garage
(b) Scenario 1 configur-
ation

(c) Scenario 2 configur-
ation

Figure 4.2: Three scenarios in which data was collected (a)open garage
(b)two vehicle parked next to each other (c)two vehicles parked in
front of each other

(a) Motion capture setup with
vehicle

(b) Median error reported by the
system

Figure 4.3: System setup

between the transmitter and receiver. NLOS data is collected after performing
a random walk around the vehicle, such that there is no direct path between
the anchor and the tag. It was ensured that the data collected is exhaustive:
The device was kept at different orientation, and heights.

In order to validate the need to classify signals as LOS and NLOS, data
was collected in an open garage after placing the anchor on the front bumper
as shown in figure 4.3b. The ground truth measurements were accumulated
by the motion capture system, that uses infrared cameras positioned at fixed
locations around the vehicle to calculate the position of objects installed with IR
reflectors with millimetre level accuracy. This system allowed us to collect data
in an exhaustive approach. The anchor and the tag were installed with infrared
reflectors, which enabled the motion capture system to record the accurate
location of the two devices. The sub micrometer accuracy of the motion capture
system helped us gain very accurate ground truth range measurements. A
conceptual representation of our setup is shown in figure 4.3a.
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(a) Range error reported by the
two antennas in LOS and NLOS
scenerio

(b) Range error when NLOS is di-
vided into soft NLOS and hard
NLOS

Figure 4.4: Ranging error in (a) LOS and NLOS, (b) LOS, soft NLOS
and hard NLOS scenarios

The ranging error calculated using the root mean square error (RMSE) meas-
ured by the two antennas in LOS and NLOS scenarios is plotted in figure 4.4a.
It is evident from the plot that LOS scenario report much lower errors than
that reported in NLOS scenario. Hence, in the perspective of localization, the
system can ignore anchor range measurements that are identified as NLOS by
the anchor due to large positive bias error. This can prevent localization errors,
by eliminating the the presence of NLOS range measurements in the final loc-
alization calculation.
From figure 4.3b, y coordinate greater than 0 and x coordinate less than 0 re-
ported lower error compared to the left of the trunk, that reported ranging error
greater than 2 meters, even though there is no direct LOS path between the
anchor and tag in that region. This is probably because of the nature of the ob-
struction. Signals originating from these regions are able to arrive at the anchor
with sufficient energy to be detected, as the obstructions does not attenuate
the signals to a huge extent. Hence, based on this observation, NLOS signals
can be further classified as soft NLOS and hard NLOS based on the nature of
obstruction. In this thesis, we create three classes of data:

• LOS: Data was collected such that there were no obstructions between
the direct path joining the transmitter and receiver antenna

• Soft NLOS: Soft NLOS data were collected in the region reporting a me-
dian error of less than 1 m and greater than 0.3 m as shown in figure 4.3b.
Soft NLOS was also collected in LOS scenarios, with a human blocking
the path between than anchor and the tag.

• Hard NLOS: Hard NLOS data was collected in regions reporting a me-
dian error greater than 1 m as shown in figure 4.3b. The entire body of
the vehicle blocks the path between the anchor and tag, hence attenuating
the direct path signal.

The corresponding RMSE error in table 4.4b. We can see an increase in the
measured RMSE for the range measurement in hard NLOS scenario after re-
moving the soft NLOS labelled range measurements. The RMSE error reported
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by soft NLOS region is closer to the errors reported in the LOS region than to
the errors reported from the hard NLOS region.

4.3 Feature Extraction

In this section, we discuss the features we used, and their extraction from the
channel estimation parameters (Section 2.4). These features are used to train
the classification model to identify LOS and NLOS signals.

Kurtosis[29] (K): The kurtosis is a statistical measure that gives an indica-
tion of how well the distribution resembles a Gaussian distribution. It gives an
indication of the peakness of the distribution.

K =
E[(|h(t)| − µ|h(t)|)4]

E[(|h(t)| − µ|h(t)|)2]2
=
E[(|h(t)| − µ|h(t)|)4]

σ4
|h(t)|

(4.1)

where h(t) is the CIR as described in equation 2.6, and µ|h(t)| and σ|h(t)| is
the mean and standard deviation of the amplitudes of the CIR.

Skewness[29] (S): The skewness is a statistical measure that gives an indic-
ation of the asymmetry of the distrubution.

S =
E[(|h(t)| − µ|h(t)|)3]

E[(|h(t)| − µ|h(t)|)2]1.5
=
E[(|h(t)| − µ|h(t)|)3]

σ3
|h(t)|

(4.2)

where µ|h(t)| and σ|h(t)| is the mean and standard deviation of the amplitudes
of the CIR.

Mean Excess delay[24] (τmed) The max delay spread provides an indica-
tion of the multipath richness of the CIR.

τmed =

∫∞
−∞ t ∗ |h(t)|2 dt∫∞
−∞ |h(t)|2 dt

(4.3)

where h(t) is the accumulated channel impulse response, at time t.

Power Difference[29] (PDiff): The power difference can be estimated as
the difference between the total power received by the antenna, and the power
of the signal identified as the first path by the TOA estimation algorithm.

PDif = POverall − PFP (4.4)

Power Ratio[29] (PRatio) : The power ratio is the ratio of the received first
path power to the total power received. In a LOS scenario, with no obstacles,
it is expected that the first path power approaches the total power, hence the
power ratio approaches 1.

PRatio =
PFP

POverall
(4.5)

Peak to lead Delay[29] (PLD) The peak to lead delay is defined as the time
difference between the first multipath component and the strongest multipath
component. For a LOS scenario, the PLD should be close to 0 compared to a
non line of sight scenario.

PLD = τmaxtap − τedgeindex (4.6)
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MaxCIR[23]: The max CIR is the maximum amplitude of the CIR. The
index of the CIR with the maximum amplitude can be indexed on the CIR
buffer using the max tap index (τMaxTap).

maxCIR = max(|h(t)|) (4.7)

where h(t) is the CIR (equation 2.6).

Count of energy taps[10](Np) The number of signals on the CIR whose
energy exceeded 85% of the total energy received. The energy of the signal can
be expressed as[23] :

εr =

L∑
i=1

|h(t)|2 (4.8)

4.3.1 Feature Performance

Probability density function (PDF) of the features discussed in section 4.3 is
plotted in figure 4.5. As it can be seen for all the features, there is a clear
difference in the distribution for data collected in LOS and NLOS scenarios.
This proves the ability of these features to identify LOS and NLOS signals.

4.3.2 Feature Sets

In order to evaluate the performance of the classification model, we train differ-
ent models with different sets of features, which are generated using the 7 out
of the 8 features plotted in figure 4.5. We divide the features into sets based on
their computation complexity:

• Set0: Training a model with Set0 will utilize all the eight features as
inputs to the model.

• Set1: Training a model with Set1 will utilize the features that can be
extracted only by parsing through the CIR. That is, these features have
a computation complexity of at least O(n), where n is the size of the CIR
window under consideration. Kurtosis, skewness and the max delay spread
fall under set1.

• Set2: Set2 contains features that can be derived without parsing through
the CIR. That is, these features have O(1) computation complexity. Power
ratio, power difference and peak to lead delay and maxCIR fall under Set2.

• Set3: Set3 is the combination of the best performing features from Set1
and Set2. The classification performance of different features is discussed
in section5.2.

A summary of all the feature sets is provided in table 4.1. While forming an
input feature set for a classification model with two antennas, individual feature
sets from the two antennas are concatenated to form a set which is used as an
input to the classification model. NP feature showed less than 70% (section 5.2)
classification accuracy because of which, it is not used in any of the feature sets.
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(a) Kurtosis (b) Skewness

(c) Peak-lead-delay (d) Power ratio

(e) Power difference (f) Max delay spread

(g) Max CIR (h) Max Count

Figure 4.5: Probability density function of all features in LOS and
NLOS scenerios
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Set K S PDiff PRatio PLD τmed Max CIR
Set 0 X X X X X X X
Set 1 X X X
Set 2 X X X X
Set 3 X X X

Table 4.1: Feature sets

Model nickname
Support Vector Machines [6] SVM

Decision Tree [31] decision tree
Random Forest [4] RF classifier

Gradient boosting [13] GBM classifier
AdaBoost [12] adaboost classifier

Table 4.2: Classification Algorithms

4.4 Classification Model

In terms of machine learning, classification models aim at defining a model
that relates a set of input features to a discrete output. A collection of input
dataset, and the known outcome, is used to derive a function (or a model) that
can predict the outcome. In classification models, the model predicts a discrete
outcome. Data containing the features (as inputs) and the outcome (as output)
is used to train the model. Since our first research question aims in predicting
whether a given signal is a LOS or a NLOS signal, classification algorithms are
used to make predictions given the accumulated features as inputs. For this
thesis, we consider five classification algorithms. We choose these algorithms
keeping in mind that the final model will be implemented on a processor with
limited resources. The model is evaluated based on the classification accuracy,

(a) Support Vector machine (b) Decision Tree

Figure 4.6: Classification and Regression Models
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which is a ratio of the correct prediction by the total number of predictions. If
we have two classes positive and negative, the overall accuracy of the model is
calculated as:

Accuracy =
TP + TN

TP + FP + TN + FN
(4.9)

where TP and TN are the number of times the model predicted a positive signal
and a negative signal accurately, while FP and FN are the number of times the
model predicted a positive signal to be negative and vice verse.

Support Vector Machine: The svm classifier models a linear or polynomial
equation of a hyper plane that best separates two classes of data in N dimensions,
where N is the number of input features to the model. The class of any input
data is determined by the sign of the output when the input features are plugged
into the hyperplane equation. An example for a svm classifier is given in figure
4.6a. Since the example plot has two features, the hyperplane is a line in two
dimensions.

PredictedOutcome =

{−→w ∗ −→x − b < 0, class 0 identified
−→w ∗ −→x − b > 0, class 1 identified

where −→w are the weights, −→x is the input feature vector and b is constant.
Decision Trees: A decision tree is formed by a series of conditional nodes

and terminating leaf nodes that finally define the class of the test data. The
feature space is broken down into decision nodes, until a terminating condition
is reached. Decision trees are prone to over fitting and do not perform well when
treated with a large feature set. An example of a decision tree is given in figure
4.6b. For an incoming signal, the PRatio value measured by the first antenna is
compared in the first decision node. If the value is greater than 1.8, the signal is
labelled as a LOS signal. If the PRatio value is less than 1.8, the kurtosis of the
CIR accumulated by the second antenna is checked. If the kurtosis is greater
than 12, the signal is labelled as LOS, else the signal is labelled as a NLOS
signal.

Random Forest: Random forrest is an ensemble based classification model,
where multiple decision trees are formed by training them on subsets of the
input data and features. Each decision tree makes a prediction on an input
dataset, and the class of the input signal is class with the highest number of
predictions by the decision trees.

Gradient Boosting Classifier: Gradient boosting classifier is a tree based
classification model, that builds trees based on weak learners from the previously
formed trees. An initial decision tree is formed, and the next tree is trained on
the wrongly predicted dataset by the first decision tree. Unlike random forest,
each tree has unequal say in the final decision of the model.

Adaboost Classifier: Adaboost classifier is a boosting based ensemble clas-
sifier that generates multiple weak learners called stumps that are decision trees
with depth as 1. Each stump is assigned a weight. The final outcome decision
is taken place via voting, however, each stump has a vote corresponding to the
assigned weight.
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Binary Hypothesis test: The classification accuracy for individual features
is evaluated using the binary hypothesis test [24][29]. Given two hypotheses:

H1: Signal is LOS
H2: Signal is NLOS

we can determine the scenario as LOS or NLOS by evaluating:

P (F |H1)

P (F |H2)

H2

≶
H1

1, (4.10)

where F represents individual features.
In order to determine the conditional probability P(F|Hi), we approximate the
probability distribution function for each feature in LOS and NLOS to follow
a normal distribution. That is, from figure 4.5, we determine the mean and
variance of each feature in LOS and NLOS.

P (F |H1) = N(µ1, σ
2
1) (4.11)

and

P (F |H2) = N(µ2, σ
2
2) (4.12)

where µ1, µ2 are the means and σ1, σ2 are the variance for the probability
density function for LOS and NLOS scenarios for feature F respectively.
The binary hypothesis theorem, when extended for multiple inputs as:

P (f0, f1|H1)

P (f0, f1|H2)

H2

≶
H1

1 (4.13)

where f0 and f1 are the feature extracted from antenna 0 and antenna 1 respect-
ively. This can be simplified if the features are considered to be independent
variables, and hence

P (f0, f1|Hi) = P (f0|Hi) ∗ P (f1|Hi) (4.14)

where Hi are the initial hypotheses.

4.5 Regression Model

Regression models aims at predicting the relation between a set of input fea-
tures and a continuous outcome. We use regression models to predict the true
distance, using the measured distances by the antennas and some of the channel
estimation parameters as inputs to the model. We predict the accuracy of the
model by measuring the relative error:

RelativeError[%] =
ytrue − ymeasured

ymeasured
∗ 100 (4.15)

where ytrue is the true distance measurement and ymeasured is the model pre-
dicted range. The relative error is measured for each range measurement and is
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Model nickname
Random Forrest regressor [4] RF regressor

Gradient boosting regressor [13] GBM regressor
cubist regression [26] cubist regressor

Table 4.3: Regression Algorithms

shown in the form of box plots. The overall ranging accuracy is evaluated using
the root mean squared error expressed as:

RMSE =

√∑N
i=0(ymeasured

i − ytruei )2

N
(4.16)

Where N is the number of measurements, and ymeasured
i is the model predicted

range and ytruei is the true range measurement for the ith measurement.
We train and test three regression models on data identified as LOS and

NLOS. The three regression models are different in their approach at generat-
ing the model. Random forest is a bagging based ensemble method, gradient
boosting is a boosting based ensemble technique, and cubist generates applies
a linear function at every leaf of the tree.

Random Forest Regression: Similar to random forest classifier, the final
decision of a random forest regressor is the average of outcome from individual
trees. The leaf nodes are continuous values.

Gradient Boosting Regression: Similar to the gradient boosting classifier,
the output is the weighted average of the prediction from individual trees. Just
like gradient boosting classifiers, decision trees for gradient boosting regressor
is trained on the wrong predictions of previous decision trees.

Cubist: Cubist model generates a set of rules, and at the end of each rule,
a linear equation as a function of the input feature is used to reduce the cost
function for regression.
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Chapter 5

Experiments and Results

This chapter elucidates the experiments conducted and results obtained for the
classification and regression models. We begin our investigation by evaluating
the performance of some of the commonly used features in identifying whether
the signal is a LOS or a NLOS signal. In order to do this, we use the binary
hypothesis test (section 5.2). These features are used as inputs to the machine
learning based classifiers for predicting the nature of the signal (LOS or NLOS)
with a higher accuracy (Section 5.3).

Once we have classified LOS and NLOS signals, we aim to reduce the ranging
error of the classified signals. In order to do this, we use machine learning
based regression models (section 5.4) that will predict the true range from the
measured range. We will develop two regression models, one will be used for
LOS identified signals, and the second will be used for NLOS identified signals.

Lastly, in section 5.5, we show the performance of our classifier (from section
5.3) and regression models (from section 5.4) in reducing the range error in
various parking scenarios. In this chapter, we refer to all the classifiers and
regression models using their abbreviations listed in table 4.2 and table 4.3
respectively.

5.1 Experimental Setup

All measurements were taken on an anchor housing two UWB silicons and two
antennas. The silicon and antenna on the anchor identical, except for the fact
that the two antenna orientation are orthogonal to each other. Figure 5.1 shows
the two antennas placed 90 degrees to each other on the anchor. All decisions
that will be made on selecting models are on the overall performance(accuracy)
and the model size but not on the basis of the number of antennas used.

As discussed in section 4.2, we were able to identify a region around the vehicle
that although being NLOS, reported range measurements with low range error.
We evaluate the similarity of soft NLOS with LOS or hard NLOS by creating
three datasets. For Dataset 1, soft NLOS signals and hard NLOS signals belong
to the same class. This methodology has been used by most of the researchers.
Classification for Dataset 3 is a 3 class classification problem, wherein, soft
NLOS signals are treated as a different class. This approach was adapted by
Shing in [20] and Valentin in [3]. In Dataset 2, soft NLOS signals are treated
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Figure 5.1: Anchor hardware marking the two antennas used

as LOS signals. A summary of the Dataset and the splits into different classes
is tabulated in table 5.1.

We use the features evaluated in section 5.2 to train and evaluate the per-
formance of 5 classification models namely SVM, decision tree , RF classifier,
GBM classifier, adaboost classifier. All classification models are dependent on
their hyperparameters. For each model, the hyperparameters were calculated
using a grid search approach, where all the parameters are varied, and 5 fold
cross validation is performed. In 5 fold cross validation, the Dataset is divided
into 5 subsets (without repetition), 4 of which are used to train the model, and
the accuracy is evaluated on the 5th subset. In the next iteration, the another
of the 5 subsets becomes the testing data, while the other 4 subsets are used to
train the model. This continues 5 times, until all the subsets was treated as a
testing dataset. The hyperparameter configuration that provides the highest 5
fold mean accuracy is plotted along with the 95% confidence interval of the 5
fold cross validation accuracy.

Signals classified as LOS and NLOS are corrected after using regression mod-
els to predict the true range given the measured ranges and the channel estima-
tion parameters as inputs. The same method of hyperparameter tuning is used
to predict the best parameter configuration for regression models. Firstly, the
dataset is split into a 80:20 ratio, where 80% forms the training data, while
20% data is the test data, on which the RMSE and relative error is plotted. In
order to tune the hyperparameters, 5 fold cross validation is performed on the
training dataset, and the model parameter configuration with the highest cross
validation mean score is taken as the final model, and the RMSE and relative
error is plotted for the selected model.

Our classification and regression models are concatenated and evaluated on
data collected from two parking scenarios discussed in section 4.2. We evaluate
the range error in the form of RMSE and the relative error of the received signals
before classification, after classification and after applying the regression model
to show the robustness of our solution.
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Dataset Scenario Class 1 Class 2 Class 3

Dataset 1
LOS 4000 0 0

Soft NLOS 0 2000 0
Hard NLOS 0 2000 0

Dataset 2
LOS 2000 0 0

Soft NLOS 2000 0 0
Hard NLOS 0 4000 0

Dataset 3
LOS 3000 0 0

Soft NLOS 0 3000 0
Hard NLOS 0 0 3000

Table 5.1: Dataset formulation for classification problem

5.2 Feature evaluation

5.2.1 Introduction

In this section we evaluate the performance for some of the state-of-the-art
features that were discussed in section 4.3 on single and dual antennas. We test
the accuracy on classifying signals based on three datasets shown in table 5.1.
From this experiment, we want to answer the following questions:

• What is the effect of adding a second antenna to the anchor?

The classification for each feature is performed using the binary hypothesis
theorem discussed in section 4.4. For testing the classification accuracy from two
antennas, the same feature is extracted from both the antennas. For example, to
test the classification accuracy of PLD using two antennas for Dataset1, PLD
for either class is extracted from both antennas, and the normalized PDF is
calculated. The binary hypothesis theorem uses the normalized PDF for LOS
and NLOS from both classes as discussed in equation 4.13.

5.2.2 Impact of Second antenna

Figure 5.2 shows the classification accuracy of each feature on the three datasets
when two antennas are used. From the plots, it can be deduced the for all
three datasets, the classification accuracy increased when two features from two
antennas are extracted.

5.2.3 Feature Comparison

MaxCIR recorded the highest classification accuracy among the rest of the fea-
tures on Dataset2 and Dataset3, while τmed feature performed the best on Data-
set1. Maxcount (Np) reported the least classification accuracy as compared to
the rest of the features. As shown in figure 5.3, the NP feature has an accuracy
of a low 60% as compared to the rest of the features that have a classification
accuracy around 80% for Dataset1 and Dataset2. For this reason, Np is not
used as a dataset.
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Author Model
Jeppe Bro Kristensen[19] Support Vector Machines
Jeppe Bro Kristensen[19] Linear Discriminant Analysis

Chen Huang[17] Support Vector Machine
Chen Huang[17] Random Forrest

Weijie Li[32] Support Vector Machines

Table 5.2: State of the art solutions for comparisons

5.2.4 Dataset Comparison

Figure 5.3 compares the performance of features from two antennas on the
three datasets considered. All features report higher classification accuracy as
compared to Dataset 1 and Dataset3. Moreover, Dataset 3 reported the lowest
classification accuracy. For any future classification performance evaluation, we
train our models on Dataset2.

5.3 Binary Classification

5.3.1 Introduction

In this section, we will train and evaluate different binary classification models
using the features that were evaluated in section5.2 as inputs to different binary
classification models and evaluate their accuracy on our system. We use Dataset
2 to train our models. As presented earlier, the features can classify Dataset
2 with the highest accuracy. Moreover, the NP feature is not used to train
the model due to the low classification accuracy as discussed earlier. From this
experiment, we want to:

• Evaluate the performance of different classification algorithms with using
different feature sets as inputs from the two antennas.

• Compare our classification models against the state-of-the-art solutions.

We first divide the list of features into 4 feature sets as shown in table 4.1. Since
each antenna can form their own feature set, we perform a grid search approach,
where different feature sets from both antennas are concatenated and used to
train different classification models tabulated in table 4.2.

We then compare two of our best models against some of the state of the art
solutions. The best models are evaluated based on the classification accuracy,
feature extraction complexity and the model size (number of trees, and depth
of trees).

5.3.2 Results

5.3.3 Evaluating Feature sets

Figure 5.6a-(e) show the accuracy obtained when using features from two an-
tennas to train SVM, decision tree, RF classifier, GBM classifier and adaboost
classifier models respectively. For all classification models, Set1 from antenna 0
and antenna 1 reported the lowest accuracy. The reason for this can be traced
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(a) Dataset1: Single vs dual antenna classification accuracy

(b) Dataset2: Single vs dual antenna classification accuracy

(c) Dataset3: Single vs dual antenna classification accuracy

Figure 5.2: Accuracy comparison for single and dual antenna solutions
for different datasets
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Figure 5.3: Classification accuracy of different datasets with 2 antennas

back to the classification accuracy of K and S feature, which was the lowest as
compared to the rest of the features. Feature Set0 from both the antennas report
the highest accuracy for all classifiers except for decision tree classifier. This
may be because decision tree classifier does not perform well with increasing
number of features, and Set0 use all features extracted from both antennas.

5.3.4 Narrowing Selection

All model configurations, except for configurations using feature Set1 from either
antennas, are able to classify LOS and NLOS signals with an accuracy greater
than 90%. In order to narrow down our search, we select the models based on
the complexity of feature extraction. As discussed in section 4.3.2, feature Set2
contains features that have O(1) computation complexity. We focus on the 5
classification models, using feature Set2 configuration from both antennas. Fea-
tures from Set2 can be computed directly from the received channel estimation
parameters with the use of simple mathematical operations.

5.3.5 Model Selection

The 5 models using Set2 configurations are compared based on their classific-
ation accuracy and the model size. The model size is compared based on the
number of trees used and the maximum depth of trees for tree based classifiers,
and is considered 0 for non-tree based classifiers (like SVM classifier). Figure
5.5a and 5.5b plots the classification accuracy and the model size obtained for
different classification models using feature Set2. Rf classifier has the highest
accuracy but also has the largest model size. On the other hand, decision tree
reported the lowest classification accuracy and the lowest model size for a tree
based model. SVM and adaboost classifier models are able to classify with
similar accuracy, however, SVM is a linear function, while adaboost classifier
requires 36 trees to classify. GBM classifier has similar accuracy as compared
to RF classifier and requires only 14 estimators to classify a signal.
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Figure 5.4: Approach to evaluate classification accuracy

5.3.6 Concluding Model Selection

Based on our observation, we will use GBM classifier for its high classification
accuracy and small model size, and SVM classifier for to its simple implementa-
tion for further investigation. We will compare the two models against some of
the state-of-the-art solutions, and will discuss the overall system performance
in robust scenarios.

5.3.7 State of the Art Solutions

The two classifiers, namely SVM and GBM classifier trained with features from
feature Set2 is compared with some of the state-of-the-art solutions tabulated in
table 5.2. The state of the art solutions is trained on Dataset 2 from table 5.1.
Although the state-of-the-art solutions were implemented on a single antenna,
our extension of the these solutions to two antennas show an improvement over
the single antenna implementation.

Accuracy : Figure 5.7a compares the accuracy of some of the state of the
art classification models with our solution. Weijie’s solution showed the greatest
improvement when the second antenna is used. Jeppe Bro’s solution to use SVM
and LDA classifier with the accumulated CIR as inputs reported the highest
accuracy. Our dual antenna GBM classifier model performs has similar accuracy
to Chen Huangs random forest solution. However, GBM classifier has a much
smaller model size as compared to the random forest solution by Chen Huang,
as shown in figure 5.7b.

Feature size: Figure 5.7c compares the feature size of some of the state of
the art classification models with our solution. Chen Huang’s classifier from [17]
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(a) Classification accuracy for
Set2 configuration

(b) Number of trees and depth of trees

Figure 5.5: Set2 accuracy and model size

uses 6 features as inputs to a SVM and RF classifier, 5 of which have O(n) com-
putation complexity, while Jeppe in [19] uses individual CIR values(accumulated
every nanosecond) as inputs to a SVM and a (Linear Discriminant Analysis)
(LDA) classifier. Weijie Li in [32], uses 8 features, 7 of which have O(n) com-
putation complexity. The two classification models discussed in this thesis uses
4 features having O(1) complexity from each antenna.

5.4 Range Prediction Using Regression

Regression models are used to predict the true range for signals identified as
LOS and NLOS. Although a LOS signal has a low range measurement error,
the classifiers classify soft NLOS and LOS signals as the same class, hence
increasing the overall ranging error for the signals identified as LOS. For the
regression based approach, we use the estimated channel parameters as inputs
to the regression model. This is because, unlike classification models, we did not
observe any relation between the channel estimation parameters except for the
measured distance as shown in figure 5.8. The input to the regression models
used to predict the true range are: (i) Measured distance (ii) Power of the
signal identified as the first path (PFirstPath), (iii) Noise power measured by
the receiver (PNoisePower) (iv) and the overall power (POverallPower).

We first discuss the use of regression models if a signal is identified as LOS.
Since signals identified as LOS has a high range error due to soft NLOS signals,
we will also investigate improving the range measurements for LOS identified
signals. We then expand our investigation to NLOS signals, that produces high
positive bias in its range measurements. For all the models, we use the same
set of input features.
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(a) Support Vector Machine (b) Decision Tree

(c) Random Forrest

(d) Gradient Boosting (e) adaboost classifier

Figure 5.6: Accuracy comparison for different classification algorithms
with dual antennas by varying feature sets
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(a) Accuracy comparisons with the state of the art

(b) Model size comparisons with
the state of the art

(c) Feature size comparison

Figure 5.7: Accuracy and model size comparison with state of the art
solutions

5.4.1 LOS Error Mitigation

Figure 5.9a and 5.9c show the relative error when regression models are trained
on features extracted from antenna 0 and antenna 1 respectively, and figure 5.9e
shows the relative error when regression models are trained on features extracted
from both antennas. Lastly, figure 5.9g compares the RMSE for antenna 0 and
antenna 1 before and after regression models are applied. All three regression
models (models trained on data from single and dual antennas) were able to
reduce the measured RMSE from 38 cm in antenna 0 and 36cm in antenna 1 to
less than 25cm. It can be observed that dual antenna regression models repor-
ted a lower RMSE than single antenna regression models. From the box plots,
it is observed that the cubist reported the least minimum-maximum interval of
ranging error (within 40%) among the three regression models and the lowest
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(a) LOS and soft NLOS (b) Hard NLOS

Figure 5.8: True Distance vs Measured Distance for LOS and NLOS
signals

measured RMSE of 21.2cm when two antennas are used. GBM regressor repor-
ted the highest percentage of outliers, while cubist model reported the least for
the dual antenna solution.

5.4.2 LOS regression model size

Figure 5.10a plots the number of estimators and the maximum depth of estim-
ators for each regression model and configuration. Dual antenna configuration
for cubist trees require only 4 rules(depth of 2), as compared to 5 rules(depth
of 3) required by cubist model trained on features from a single antennas. It
was observed that the correlation between the input feature and the outcome
impacts the number of rules required. This correlation coefficient is returned
whenever the cubist model is trained. The high correlation coefficient reported
during cubist regression is probably because of the individual range measure-
ments from both antennas report low errors and the measured range is close to
the true range. On the other hand, RF regressor and gradient boosting regres-
sion models require 46 trees and 41 trees respectively when two antennas are
used to train the model.

5.4.3 NLOS Error Mitigation

Figure 5.10b plots the number of estimators and the maximum depth of estim-
ators for each regression model and configuration. Figure 5.9b and 5.9d show
the relative error when regression models are trained on features extracted from
a antenna 0 and antenna 1 respectively, and figure 5.9f show the relative error
when regression models are trained on features extracted from both antennas.
Lastly, figure 5.9h compares the RMSE for antenna 0 and antenna 1 before
and after regression models are applied. All three regression models were able
to reduce the RMSE by at least 78%, using a single antenna, while combined
antenna configuration reported an approximate reduction by 79.8% . Antenna
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(a) LOS with antenna0 (b) NLOS with antenna0

(c) LOS with antenna1 (d) NLOS with antenna1

(e) LOS with both antennas (f) NLOS both antennas

(g) RMSE plot for LOS signals (h) RMSE plot for NLOS signals

Figure 5.9: Relative error and RMSE plots for LOS and NLOS signals
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(a) Model sizes for regression models in LOS scenarios

(b) Model sizes for regression models in NLOS scenarios

Figure 5.10: Model size comparison for RF, GBM, cubist regression
models using single and two antennas

1 configuration for cubist, RF regressor, GBM regressor had approximately the
same variance intervals, while antenna 0 showed high variance in the measured
relative error than antenna 1.

5.4.4 NLOS Regression Model Size

The cubist regression model trained on features from antenna 1 used 14 rules,
and when inputs from both antennas were used, the model used 35 rules to
predict the true range. RF regressor and GBM regressor required 46 and 16
estimators respectively when antenna 1 is used, and 36 and 46 estimators when
combined antenna configuration is used.
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5.4.5 Conclusion

Cubist regression model trained on features from two antennas reported the
smallest model size and the lowest RMSE among the rest of the regression
models for LOS signals. For NLOS signals, all models reported similar RMSE,
however, cubist regressor model trained on antenna 1 reported the smallest
model size of only 14 rules.

5.5 Assessing Robustness

Once we have our trained classification and regression models, we validate our
models by assessing the robustness. We have trained and tested the classification
and regression models on data collected in an open garrage with no vehicles
parked around the system under test. Our solution should not fail in a real
world environment, where multiple vehicles are parked.

Data is collected from 2 different scenarios as discussed in section 4.2.1. For
each of the two scenarios, 2000 points from LOS and 2000 points from NLOS
were collected. The NLOS labelled data is an uneven mixture of soft and hard
NLOS data. We use the SVM and GBM classifiers to classify signals as LOS
and NLOS. Next, two regression models for predicting range measurements are
used: (i) cubist regression trained with features from two antennas on LOS
and soft NLOS data is used to predict the range for LOS identified signals (ii)
cubist regression model trained with features from antenna 1 on hard NLOS
data is used to predict the range measurements for NLOS identified signals. For
both the scenarios, we test the performance of both the classifiers along with
the cubist regression model. The RMSE and relative error is measured in the
following three steps:

• Before the signals are passed to the classifier. This way, we know the true
range error of the LOS and NLOS signals.

• After classification: Since NLOS signals are a mixture of soft and hard
NLOS signals, there should be a rise in the measured RMSE for LOS
and NLOS identified data from the true LOS and NLOS data, since soft
NLOS signals with higher ranging error than LOS range measurements
are classified as LOS.

• After regression: The RMSE and relative error is remeasured on the re-
gression model predicted distances for LOS and NLOS classified signals.
We expect the RMSE of the predicted range after regression should be
less than the RMSE measured before and after classification.

5.5.1 Scenario 1

Figure 5.11a, 5.11b, 5.11c, 5.11d show the measured RMSE before classification,
after prediction and after regression is applied on LOS and NLOS identified
signals using SVM and GBM classifier classifier respectively in scenario 1. Figure
5.12a and 5.12b compares the measured RMSE for the three cases for LOS and
NLOS signals. When GBM classifier is used, we can observe a 48% reduction
in RMSE for NLOS identified signals and a 17% reduction in RMSE for LOS
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(a) SVM classifier in LOS scenario
1

(b) SVM classifier in NLOS scenario
1

(c) Gradient boost classifier in LOS
scenario 1

(d) Gradient boost classifier in
NLOS scenario 1

(e) SVM classifier in LOS scenario
2

(f) SVM classifier in NLOS scenario
2

(g) Gbm classifier in LOS scenario
2

(h) Gbm classifier in NLOS scenario
2

Figure 5.11: Box plot of relative error measured before classification
on LOS and NLOS signals, after classification on SVM and gbm clas-
sifiers and after range prediction using cubist
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(a) LOS classified signals (b) NLOS classified signals

Figure 5.12: RMSE plots LOS and NLOS signals before prediction,
after prediction and after applying regression when a signal is iden-
tified as (a)LOS or (b)NLOS, in scenario 1 and scenario 2

identified signals as compared to 50.9% reduction in RMSE for NLOS identified
signals and 17.4% reduction on LOS identified signals when a SVM classifier is
used. The both classifiers and regression models were able to limit the RMSE
for LOS identified signals to less than 30 cm but NLOS identified signals still
reported errors greater than 30cm.

5.5.2 Scenario 2

Figure 5.11e ,5.11f ,5.11g ,5.11h shows the measured RMSE before classification
, after prediction and and after regression is applied on LOS and NLOS identified
signals using SVM and GBM classifier classifier respectively. Figure 5.12a and
5.12b compares the measured RMSE for the three cases for LOS and NLOS
signals. From the RMSE plots, there is a significant rise in the RMSE for the
classified LOS signals from the true RMSE of LOS signals, for both classifiers.
However, there is a small increase in the classified NLOS RMSE from the RMSE
of the true NLOS signal. This indicates the possibility of NLOS signals, with
high range error being classified as a LOS signal. From the box plots for true
LOS signal, there is one outlier signal that has a relative error greater than
400%, and is truly identified as LOS. From the box plots of true NLOS signals,
there is one signal that has a relative error greater than 300% and is identified as
LOS signal by the both the classifier. Although the regression models are able
to reduce the range error of the outlying signals, the reduction is not significant.
We were still able to restrict the RMSE for LOS identified signals to less than
30 cm, but failed to do so for NLOS identified signals.

Classifier Label Data size Total True RMSE of RMSE after
identified identified misclassification Regression

SVM
LOS 1884 2097 1872 40.79cm 20.65cm

NLOS 1012 799 787 33.76cm 24.16cm

GBM
LOS 1884 2135 1868 47.05cm 28.98cm

NLOS 1012 761 745 28.45cm 23.96cm

Table 5.3: Scenario 1 classification accuracy
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Classifier Label Data size Total True RMSE of RMSE after
identified identified misclassification Regression

SVM
LOS 1921 2402 1908 85.17cm 56.935cm

NLOS 1500 1019 1006 26.55cm 36.62cm

GBM
LOS 1921 2509 1910 85.24cm 52.948cm

NLOS 1500 912 901 30.25cm 52.714cm

Table 5.4: Scenario 2 classification accuracy

5.5.3 Discussions

From the RMSE plots for LOS figure 5.12a for scenario 2, we can see that cubist
regression is able to reduce the RMSE of predicted signals by approximately
44%, the measured RMSE after regression is still greater than the RMSE of
the LOS signals in the dataset. That suggests that if we use a classifier with
100% classification accuracy of LOS and NLOS signals on Dataset 1 (soft NLOS
and hard NLOS belong to the same class), the LOS signals will report a lower
RMSE without without using regression. This result goes against our approach
of treating LOS and soft NLOS signals as the same class.

Table 5.3 and table 5.4 summarizes the performance of classifiers in scenario
1 and 2 respectively. The table shows the initial size of the robust dataset,
the total number of data classified as LOS or NLOS, the number of correctly
classified signals, the measured RMSE of misclassification, and the RMSE of
misclassified data after cubist regression model is applied. In scenario 2, the
GBM classifier classified 2509 signals as LOS, out of which 1910 (out of 1921)
signals were collected from a LOS scenario. The RMSE of the misclassified
signals was 85.24 cm, which was reduced to 52.948 cm after applying regression.
For LOS signals in scenario 2, the reported RMSE after regression in figure
5.12a is calculated over 2509 LOS classified signals as compared to the true
LOS RMSE calculated over 1921 signals. Hence, although our classification and
regression models were unable to reduce the measured RMSE lower than the
RMSE of the true LOS signals, our model is able to classify 588 more signals as
LOS and reduce the RMSE of the predicted signals.

Another interesting observation is the contribution of the misclassified signals
by both classifiers in both scenarios. This is an indication on how well can the
cubist regression model back up misclassification by the classifier. In scenario
1, we can see that the regression model is able to reduce the overall RMSE of
misclassified signals for LOS and NLOS classified signals. However, in scenario 2,
we see an increase in the RMSE after applying cubist regression on misclassified
NLOS signals.
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Chapter 6

Conclusion and Future
Work

6.1 Summary

In this thesis, we evaluated the classification accuracy for LOS and NLOS signals
when features from more than one antenna are used to train the model and
then applied regression models to reduce the ranging error. We investigated the
performance of 5 classification models (support vector machine, random forest,
decision tree, gradient boosting and adaboost) using features that have been
frequently used in the literature to train the model. We compared different
models based on the classification accuracy, model size and the complexity of
deriving the input features.

We used regression models were used to predict the true range for signals
classified as LOS and as NLOS. We trained and tested regression models (ran-
dom forest, gradient boosting and cubist regression) using features extracted
from one and two antennas. We compared the 3 regression models based on the
ranging error of the predicted range and the model size.

We evaluated the robustness of the classification and regression models after
collecting LOS and NLOS data when the vehicle was parked in two parking
configurations. We were able to show the improvement in ranging accuracy
after classifying the signals as LOS or NLOS using SVM and gradient boost
models, and then applying cubist regression for either sets of signals.

6.2 Research Questions

RQ1: What is the impact of a second antenna on identifying NLOS signals
using machine learning based classifiers?
With the help of binary hypothesis test, we were able to show the improvement
in classification of LOS and NLOS signals by some of the features that have been
frequently used in the literature when they are extracted from two antennas.
We further showed the improvement in classification accuracy on some of the
state-of-the-art solutions when features from two antennas are used as inputs
to the classification model (figure 5.7).
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RQ2: How can machine learning based regression methods be used to improve
the accuracy of ranging? What is the impact on ranging accuracy when two
antennas are used?
Rf regression, gbm regression and cubist regression models were able to reduce
the ranging error by approximately 79.8% in a NLOS scenario, and by 42% in
a LOS scenario. For all three models, regression models that used inputs from
two antennas reported a lower ranging than when features from a single antenna
was used to train the model.

6.3 Discussions

As discussed in the thesis, features from the second antenna helped better
identify NLOS signals, as well as reduce the measured error in LOS and NLOS
scenario. From the regression models, the use of features from the second an-
tenna did not result in a significant reduction in ranging error. Although we
were able to reduce the ranging error for LOS identified signals below 30cm,
we observed a large reduction in the range errors after applying regression to
NLOS signals, but was unable to restrict the error to less than 30cm. This may
be due to the absence of relation between the input features to the regression
model and the predicted range.

6.4 Future Work

In this thesis, we used some of the channel estimation parameters as inputs
to different regression models to predict the true range. Since distance meas-
urements use the timestamps to measure the distance between two devices, it
would be interesting to explore if it is possible to extract features from the
timestamps measured that can be used as inputs to regression models to obtain
lower ranging error.

All our experiments were conducted based on data accumulated on the anchor.
One possible direction to improve the classification accuracy is by using features
extracted by the tag. When the tag receives a signal, it can measure the channel
parameters and send it across to the anchor, allowing the anchor to model a
system where the perspective of the channel is given by both devices involved.
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