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Abstract

Nowadays, autonomous driving has been researched for decades, especially with advanced automo-
tive radar. However, there is no common agreement for the best approach to simulations of real-world
scenarios of automotive radar. In the academic field of automotive radar research, one of the main
obstacles for advanced algorithm development, for instance those based on machine learning, is the
lack of real data for developing such algorithms and training them to ensure generalization capabili-
ties. As a strong supplement to experimental measurements, radar signal simulation has made great
progress, keeping pace with the revolution in computation and software capabilities. With this, high-
fidelity models have become an essential aspect of radar simulation for realistic results with the help of
the powerful computer. However, to the best of the author’s knowledge, there is no extensive research
combining high-fidelity target models with conventional radar simulation techniques.

Therefore, this thesis analyzed the recent radar simulation techniques and proposed a pipeline for
an FMCW MIMO automotive radar signal simulator for realistic extended targets and their movement
in automotive scenes of interest. Within the proposed simulator, a motion control coordinate system is
proposed with high freedom selection of the target model. The shadowing/occlusion condition is also
investigated for single and multiple targets cases to increase the reality of the simulation. In the end,
by an analysis of the simulated results with the preset ground truth fro CAD models, the simulator has
been proved to be able to simulate realistic extended targets with high-freedom for the user.
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Introduction

In this chapter, an introduction about the need and the differences between radar simulators for au-
tomotive and autonomous driving scenes is provided. It is briefly described how in this context a bal-
ance between the electromagnetic realism of the simulations and their computational complexity must
be found. Specifically, the problem of developing a simulator is formulated for the thesis, which can
simulate the radar signatures of extended targets common in automotive scenarios and their (simple)
movements. The usefulness of such a simulator for the development of radar signal processing algo-
rithms is highlighted, despite some assumptions to simplify the electromagnetic modeling aspect. The
contributions and outline of the thesis are also provided.

1.1. Background

After the 5G era came, with the rapid development of sensing devices and the computing power revolu-
tion, automotive driving had become a popular field not only in the car industry but also in the academic
community[1]. Nowadays, some application as advanced driver assistance systems (ADAS) has al-
ready been used in real life, such as in the Tesla autopilot systems. However, although the concept
of (fully) autonomous driving has been widely advertised for many years, there is no commonly estab-
lished solution for it, also considering the paramount safety of drivers and passengers.

The real-world driving scenario is complex, with many different objects in motion, therefore correct
understanding of the scene with suitable sensors is always a bottleneck to making autonomous driving
a reality. Focused on situation awareness of automotive driving, computer vision technology based on
optical equipment such as the camera or Lidar combined with machine learning had been deeply ex-
ploited in the academic field, especially in the past decade [2],[3]. However, the radar-based solution is
still in its infancy despite a recent surge of interest. To address the challenges of realistic traffic circum-
stances, in today’s sensing sensor stack, radars have definite perception advantages, especially under
low visibility conditions such as rainy days and foggy days, and can provide unique information on the
relative velocity and direction of arrival (DOA) of objects, which are crucial for autonomous driving[4].

By applying machine learning (ML) for data processing, an algorithm could reach high-level maturity
in a short time with the availability of massive data. In recent years, with advanced radars, ML-based
algorithms on radar data have made great progress[5],[6]. At the same time, several experimental
radar data sets are openly published for research. In 2018, one of the most famous automotive driving
data sets, nuScene[7], was published, which included radar, Lidar, and camera data. Later, Oxford
University[8] and the Astyx[9] company released their recorded radar, Lidar, and camera data to the
public in 2019. Until 2021, another seven automotive driving data sets contained radar data, namely
NLOS[10], CRUW[11], RADIATE[12], CARRADA[13], Zendar[14], RaDICal[15], and Radar Scenes[16],
and they were made available for academic research. Comparing the aforementioned data sets (with
additional comparison details provided in Appendix A of the thesis), one noticeable characteristic is that
all of them include other sensor data such as Lidar and camera, which are mainly used for annotation.

1



1.2. Radar simulators: brief State of Art 2

However, with the help of images, it is still time-consuming and complex to manually or semi-manually
label all the road users and objects present in the scene. In addition, within different radar data sets,
the ground truth categories and the radar data format are different due to the different applied radars,
for instance, their resolutions and their operational parameters. Conclusively, experimental radar data
sets are relatively small compared with image-based data sets, and this might create difficulties for
the implementation of ML algorithms that require a large amount of data for training, such as those for
classification and scene segmentation.

Facing inadequate measurement and lack of experimental data, simulation is always regarded as
a strong supplementary source of data to perform research. In the radar field, simulation plays an
important role before being applied to the practice and great progress had been made in the past
years[17]. The revolutionary development in computation power made it possible to model radar sig-
nals as realistically as possible since the complex electromagnetic wave propagation could be calcu-
lated with exact solvers and/or with the ray tracing method. Specifically, full-wave simulation, using
the method of moment (MoM)[18], finite element method (FEM)[19], and finite-difference time-domain
method (FDTD)[20], implements and solves the complete Maxwell equations’ set during wave propa-
gation, and can provide high-accuracy simulated data. However, they require relatively heavy com-
putation, which increases with larger scenes and with higher operation frequencies, such as indeed
the mm-wave band occupied by automotive radar. Nevertheless, for automotive radar simulations, the
simplified asymptotic method is more widely used [21].

To conclude, radar simulators for automotive scenes are needed and a lot of research is performed
to make them efficient and effective, with several variants proposed to address the need of the specific
application at hand and strike the balance between computational requirement and electromagnetic
fidelity.

1.2. Radar simulators: brief State of Art

In the past years, several automotive radar signal simulators have been proposed. These are briefly
summarized here and described in detail in the Literature Review chapter. One of the most famous
applications is the backscatter radar signal function integrated into MATLAB with the walking pedes-
trian model and the bicycle model, using simplified point scatters [22],[23]. In 2020, X. Lin proposed an
automotive radar simulator structure concerned with realistic interference in signals such as measure-
ment errors [2]. Later, an automotive radar simulator that could generate micro-Doppler information
based on the high-fidelity physics model was put forward by U.Chipengo[24],[25]. Contemporaneity,
C. SchiRler and J. Thieling published the paper for the simulator using an improved ray-tracing model
and scalable and physical radar sensor simulation[26][27]. The latest research about radar simulation
is published in 2022 by M. Moore, which simulated the micro-Doppler signal for unmanned aerial ve-
hicles (UAV) with dynamic point clouds [28]. Additionally, S. Xu from the MS3 group of TU Delft built
a car model for automotive radar in his research for joint parameters estimation using FMCW UWB
waveform [29]. Last but not least, commercial software simulators, such as FEKO and Ansys, provide
the solution of virtual traffic scene simulation for automotive radar.

Reviewing the different simulators and their characteristics, it appears that nearly most of them are
designed for special cases, and some of them require rather heavy computation, especially involving
complex ray tracing calculation. Therefore, there is still a gap in designing a simulator with realistic
models of common automotive targets of interest and their flexible motion control, using a simplified
ray tracing calculation concerned with shadowing problems between objects. Albeit simple, such a
simulator can still be extremely useful for the development of radar signal processing algorithms in the
field of automotive radar, prior to their extensive verification with experimental data.
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1.3. Problem formulation and thesis contribution

Except for advanced commercial software, radar simulators for realistic extended targets in automotive
are an active area of research, especially because there are many possible ways to characterize the
complexity of the targets’ shape and their motion information. Therefore, the problem of this thesis is
formulated to establish a simulator for realistic extended targets in automotive radar, such as vehicles
and pedestrians. The simulated radar signal should be able to reflect the authenticity of the targets’
signatures to the point that they can be used for the development and initial verification of radar signal
processing algorithms while maintaining computational feasibility. However, it is important to note that
the implementation of a fully accurate EM simulator goes beyond the scope of this thesis.

The main contributions of this thesis can be summarized as follows:

 Established a processing pipeline for an FMCW MIMO radar simulator, starting from the funda-
mental raw, complex-valued signals.

» Set up a series of coordinate systems and equations of motion to describe the main movements
of targets of interest in automotive.

+ Verified the proposed simulator with several target categories and their dynamic point clouds.

1.4. Thesis outline

This thesis proposed an extended target radar signal simulator for the FMCW MIMO radar, scoping on
the motion control of the target and involving shadowing calculation based on realistic 3D models. The
outline of the thesis is as follows.

In chapter 2, a detailed literature review is presented for recent radar signal simulators, including a
comparison at the end of the chapter. Chapter 3 describes the procedure and methodology of building
the proposed simulator. Specific details for the signal model, target model, and motion control are stated
in the chapter. The following chapter, chapter 4 introduces the theoretical derivation of traditional radar
signal processing techniques which are then used in the later simulated results. In chapter 5, simulated
results of the proposed simulator are shown. The last chapter, chapter 6, concludes the thesis.



Literature Review

In this chapter, a review of recent papers and studies about automotive radar simulators will be provided
in the different sections, starting from the single target simulator in MATLAB to the more complex
electromagnetic commercial software. At the end of the chapter, a comparison of the simulators and
an analysis of the gaps are introduced, as a closure for the literature review and a motivation for the
work of the thesis.

2.1. MATLAB-based simulator [22],[23],[30]

As one of the most widely-used engineering tools in the world, MATLAB provides radar signal simula-
tion with preset functions and toolboxes. Two of the most famous models are specially designed for a
walking pedestrian and a cyclist shown in Fig.2.1 from version R2019a and R2021a.

Bicyclist Trajectory Pedestrian Trajectory

18 -
16
1.4
12

14
NCER
06
0.4 4
02

Figure 2.1: Pedestrian model and cyclist model implemented in MATLAB for their radar simulator[22],[23]

It is noticeable that this simulator is mainly for micro-Doppler signal generation based on the theory
that came up by V. Chen [31] in 2011. Focused on the targets models, the walking pedestrian model
was first put forward by R. Boulic [32], and the cyclist model was introduced by M. Stolz[33]. In detail,
The height and the walking speed of the pedestrian are adjustable to generate different reflected sig-
nals. More flexible parameter presetting integrated with the cyclist model with the changeable number
of scatters, gear transmission ratio, and RCS patterns.



2.1. MATLAB-based simulator [22],[23],[30] 5

Additionally, there is another scene simulator for automotive radar integrated into MATLAB named
'Radar Signal Simulation and Processing for Automated Driving’. This simulator is specially designed
for simulated highway scenarios for automotive radar in a long range. The illustration figure is shown
as followed in Fig. 2.2
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Figure 2.2: Highway radar scene simulator implemented in MATLAB[30]

In this simulator, the target model is simplified into the cuboid box with a certain velocity for generat-
ing the reflected signals from radar. Atthe same time, considering the radar signal propagation in reality,
it provides the multi-path radar signal generation, specified for a one-time bounce on the road surface.
As a result, the target signal will be spread more widely in range compared with free-space propagation.

In summary, MATLAB, as a powerful tool, provides a convenient platform for radar signal simu-
lation, especially in signal generation. It is a friendly-used startup for learning radar signal simulators.
However, due to the limit of integrated functions, it could not always generate specific radar data for use.
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2.2. Car simulator by S.Xu [29]

As part of his Ph.D. research of joint parameters estimation using FMCW UWB waveform, Dr. Xu set
up this simulator to simulate the validation data to testify the algorithm of motion-based separation and
imaging of closely-space extended target [34]. In his simulator, there are two parts for radar signal gen-
eration, radar, and target. Firstly, because of his interest in research, the integrated function in MATLAB
could not generate the desired signal which contained Doppler shifts under high-speed velocity with an
ultra-wideband (UWB) signal. Therefore, he provided the details of the process of generating FMCW
radar signals with mathematical expression.

The target model in his simulator originated from a single-car model shown in Fig. 2.3. To model the
reflection signal, 137 dominant scatter points are selected from the car model with a uniform distribution
of amplitudes on each point. Additional complex Gaussian noise was added in the simulation as well.
Later, the validation scene for target separation was built with preset car velocity and acceleration,
starting at different initial positions in 2D space illustrated in Fig. 2.4 a), and the reconstructed scene
showed in Fig. 2.4 b).

Figure 2.3: Single car model made of multiple radar scatter points used by S. Xu [34]
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Figure 2.4: An example of a simulated scene with two cars seen by an automotive radar on a third car at the origin using the
model proposed by S. Xu [34]

Compared with other radar signal simulators, Dr. Xu'’s car simulator is highly customized based on
his interest in research. Only the line of sight(LOS) in the azimuth domain, without elevation, information
is concerned in the simulation.
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2.3. Simulator by X. Li [35]

In 2019, X. Li introduced their research on the millimeter wave simulation model for automotive driving.
Performance analysis of the radar detection was invested. Therefore, the automotive radar simulator
is separated into two parts, the radar physical model and the radar geometry model, and the modeling
architecture illustration is shown in Fig. 2.5.

All target
in the current scenario

A
Radar geometry model

T
Targets meeting
radar geometry model
requirements

Radar physical model v
Ra_dnr Py nmdc]- - RCS estimation model
based on energy decay

v
Targets meeting
radar physical model
requirements

L ] ]
Radar Radar missed
False alarm model detection model
Radar simulation
targets list

R ange measurement

' error model

Radar simulation
targets list (including =—+—
measurement u.‘rmr}

Angle measurement
error model

Velocity measurement
error model
v
Intelligemt driving algorithm
development

Figure 2.5: Radar simulator architecture proposed by X.Li [35]

Before radar signal generation in the radar physical model, the target geometry information is first
calculated in the radar geometry model to figure out the intersection and occlusion between different
targets based on the distance to the radar shown in Fig.2.6. Specifically, green target 2 and red target
1 are detectable by radar, while purple target 3 is unable to be observed by radar due to the occlusion
with red target 1.

As another output from the radar geometry model, the RCS estimation process was illustrated in
Fig. 2.7, where the left part showed the target model of car and pedestrian, and the right part showed
the RCS value calculation equation. In his simulator, the target list contained simplified car and pedes-
trian models from different observation angles by radar, which referred to the D value in the right part
equation. S value represented the surface area in the simplified target model. Material reflectivity of
the target surface also was a concern in the RCS estimation referred to as the W in the equation.
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Figure 2.6: Target geometry relationship in the radar simulator proposed by X. Li [35]
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Figure 2.7: RCS estimation model for car and pedestrian in the simulator proposed by X. Li [35]
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In the radar physical model, false detection signals, missed detection signals, and measurement
errors are concerns in the simulation as one of the innovations for the simulator architecture based on
the system analysis of influence factors on both radar and environment scenes. Figure 2.8 indicated
the scene for the false detection case and the missed detection case. In reality, multipath propagation
may lead to incorrect detection for radar and limit radar velocity ambiguity may fold the high-speed
target into background noise caused by stationary targets or the environment. Therefore, in X. Lin’s
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research, false detection and missed detection model are introduced to simulate the influence of the
real scene.

7
V_ g v =
. R - R
7. a2 contt
Radar detection range boundary — = — = — P~ w})’ Sl m f,.:z“:ulcmﬂ.
False propagation route ===+~ " pe ilimeter radar = :
~ = cost,
False detection model Missed detection model

Figure 2.8: False detection and Missed detection model [35]

Additionally, measurement error caused by radar is also formulated based on real radar experiments.
Three new factors, range measurement error, velocity measurement error, and angle measurement
error, are put forward with the equations shown in the inset Fig.2.9.

AV

1 exp(_ fz]
0.14x.27 0.0

Ag= <= exp(x)

Figure 2.9: Measurement errors equations[35]

Conclusively, X.Li work systematically analyzed the radar simulation for automotive radar and pro-
vide a good example for future development. Meanwhile, a comparison with the commercial software
FEKO validated that the radar simulator design significantly reduces the computation time and could
provide likely simulated data.
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2.4. Simulator by U. Chipengo [25]

As part of work related to the Ansys simulator, U.Chipengo published his research involving micro-
doppler signal generation for CNN-based classification in 2021. In the paper, a comprehensive, large-
scale, spectrogram-based classification study involving pedestrians, cars, cyclists, and dogs, and a
high-fidelity, physics-based simulation approach related to mentioned road users were proposed. Fig-
ure. 2.10 shows the difference between different models-based methods for generated signals in radar
research.

Measurements Primitive-Based Simulation High Fidelity Physics-Based Simulation

4 (a)
Length 4.2m
3 5 Width 2m
; Height
| 2.2m
X (m)

Figure 2.10: Signal generation methods with different models, as proposed by Chipengo [25]

Compared to each other, high-fidelity physics-based simulation is more accurate than primitive-
based simulation with less cost considering the real measurements. To be more specific, the radar
signal is generated based on the shooting and bouncing ray approach for accurate spectrograms for
full-scale representatives of the models. Meanwhile, the micro-doppler information is generated with
a modified coordinate system shown in the left of Fig. 2.11. In detail, the anchor points and rotation
points are defined in 3D models of road users to calculate the rotation or oscillation movement which
leads to the micro-doppler signals. The right figure in Fig. 2.11 shows the linear velocity calculation
based on the equation vj;,.qar = w * r, Wwhere the spheres represent the non-rigid target rotation or
oscillation parts in addition to the bulk translation.

With the help of High-Frequency Structure Simulator (HFSS) Shooting and Bouncing Rays (SBR+)
solver from Ansys, the simulated data is available for further CNN classification. The real measurement
of single pedestrian and cyclist validated the simulated results. Figure 2.12 shows the simulated results
at different angles of arrivals.
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Figure 2.12: Simulated data for different targets under different angles of arrival, as generated by the simulator proposed by
Chipengo [25]
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2.5. Simulator by C. SchiiRler [10]

SchaRler published his large MIMO arrays simulator in 2021, focused on the elimination of phase errors
caused during radar signal propagation between the transmitter antenna and receiver antenna. The
left figure in Fig. 2.13 illustrated the case which leads to the phase error. Based on his simulator, the
propagation path from different transmitter antennae to the same receiver antenna would merge at the
first hit point. Due to the large computation on the calculation of wave propagation between antennae,
Nvidia raytracing Engine is merged in the simulator, where right figure Fig. 2.13 shows the structure of
the software architecture mainly contains the radar trace generation and IF-signal generation.

Raytracing Engine
Radar Trace (Nvidia Optix)
Generation

C++ Implementation

C-Wrapper

x

Transmil-Anbennas

x x Python-Interface
Transmit-Antenrs

Receive-Antennas

IF-Signal —  Signal-Generation/Processing

(1) (b

Figure 2.13: lllustration the cause of phase error, and proposed radar simulator structure [10]
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Figure 2.14: Measurement and simulation comparison of a scene to validate the simulator proposed by SchuBler [10]

Figure.2.14 shows the validation procedure between measurement data and simulated data. Com-
pared with other simulators, Schifdler’s simulator is only available for the static scene, however, one
advantage of his simulator that could not be ignored is that the camera scene shown in the above figure
could be simulated simultaneously.
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2.6. Simulator by J. Thieling [27]

A generalized and physical radar sensor simulation model came up by J Thieling in 2021, which focuses
on providing a solution for functional validation of radar-based applications independent of their domain
or manufacturer based on highly detailed but generic virtual 3D environments. In Fig. 2.15, the reusable
structure of the modeling radar sensor is given by J. Thieling, where the system is made of three parts,
radar sensor, information carrier, and 3D scene object.

Radar Sensor 3D Scene Object
* Antenna Characteristic * Geometry

* Signal Modulation information Carrier * Shape

a) Pulsed * \Velocity
cw

Atmospheric Attenuation

Multipath Reflections
e Rain Scattering a) Fresnel

Chirp-Sequence - Diffuse
Polarization

Pulse-Doppler Specular

Rough

* Velocity Retroreflective

+* Material Reflection

Figure 2.15: Physical structure of modeling radar sensor with reusable building blocks proposed by Thieling [27]

In the radar sensor part, three factors are considered, antenna power distribution and signal mod-
ulation shown in Fig. 2.16, and receiver noise. Due to the purpose of generalized simulation, the
Fibonacci-lattice method is chosen because of its even distribution feature. Several typical modern
automotive radar modulation technique is introduced with correlated resolutions in range and velocity,
and the noise on the receiver antenna is also mentioned as the

Pr,min = Pn * SNRmzn

Modulation Type Distance Resolution  Velocity Resolution
Pulsed Radar Ad = ? n.a.
C
CW Radar n.a. A= ——
27’cwf 0
c c 1
FMCW Rad: Ad = = —
adar AF Y= S T
c c
Chirp-S Rad Ad = Av=—
irp-Sequence Radar AT v for
Pidiad Pulse-Doppler Radar Ad = ? Av = %
(a) Constant subsampling angles (b) Fibonacci-lattice method JoTew
Antenna Power distribution Signal modulation technique

Figure 2.16: Radar sensor characteristics, as implemented in the simulator by Thieling [27]

Focused on the information carrier, atmosphere attenuation, and rain scattering are detailed and
explained, where multi-path propagation is merged into the 3D object part considered different reflec-
tions on the surface of the targets. An intensity function at the radar receiver is derived from the radar
equation shown below, where the coefficient changes under different environments such as rainy days.
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In the 3D object model, the target is a set of triangle mesh with generic geometry shown in Fig. 2.17.
With the help of GPU, all the algorithms mentioned before combine together for simulation. Figure. 2.18
indicates the structure of GPU use.

Figure 2.17: Car model in 3D as an object for the simulator [27]
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Figure 2.18: GPU structure for simulation as proposed in [27]
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2.7. Simulator by M.Moore [28]

In 2022, the simulation for UAV micro-Doppler using dynamic point clouds is introduced by M. Moore.
Based on his paper, point clouds derived from a 3D CAD model are used to generate the micro-Doppler
information for the classification of the different UAVs. Figure. 2.19 illustrates the pipeline of simulation.
After the superposition of returned radar signals from observed points, the simulated spectrograms are
available for classifying different UAVs.

CAD model

Convert to
point cloud

Hidden
point
removal
Loop

Calculate
radar return

Rotate

Signal
processing/

STFT

Figure 2.19: Flow chart of simulation proposed in [28]

With the help of the hidden point removal algorithm, the point clouds of the UAV propeller shown in
Fig. 2.20a could be filtered out the points that are not in the line of sight of radar. Figure.2.20b shows
the dynamics of the system with respect to the radar

(a) Point clouds of the UAV propellers [28] (b) Dynamics of the simulated system [28]
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2.8. Comparison of reviewed simulators and gaps

Before comparing the aforementioned simulators from the literature, it is notable that, nowadays, ad-
vanced commercial software is available to simulate radar signals with very high accuracy by fully
simulating the radar signal during the propagation using powerful solvers, such as FEKO, and Ansys.
However, although very accurate, this software is relatively costly in terms of licensing and may not
scale well to the large, complex scenes required in realistic automotive radar scenarios, especially at
the mm-wave frequency band.

Table 2.1: Comparison between different simulators reviewed in this chapter

Simulator Radar signal model Object Extra servers Dynamics
Primitive model Yes
MATLAB[22],[23],[30] FMCW (pedestrian, cyclist, cars on the highway) No (translational)
S. Xu [29] FMCW MIMO 2D car model No (trans\l(:;onal)
. Primitive model Yes
X Li[39] FMCW (car and human) No (translational)
. Yes
U. Chipengo[25] FMcw 3D Target Yes (translational and rotaional)
. 3D Target
C. SchiiRler[10] FMCW MIMO (scene simulator for CARLA) Yes No
L Multi-type 3D Target Yes
J. Thieling[27] (FMCW/Pulsed) (triangle meshes) Yes (translational and rotational)
3D Target Yes
M.Moore[28] FMCW (point clouds of UAV propellers) No (rotaional)

Based on the listed literature review, it is clear that in the research of radar signal simulators, im-
provement of signal realism is significant, especially with the help of advanced servers, such as Nvidia
ray-tracing engine or other servers from commercial software. A lot of attention has been focused on
the improvement of simulated realistic wave propagation. Table 2.1 shows the difference between the
aforementioned simulators. It is clear that there is a gap in combining realistic 3D extended objects with
a conventional radar simulator, i.e., a simulator that does not aim for extreme electromagnetic fidelity,
and yet can generate signals and signatures helpful to develop and assess the feasibility of radar signal
processing algorithms. Even if not focused on automotive scenarios, M. Moore’s simulator [28]shows
the possibility of applying 3D point clouds to generate multi-targets radar signals for classification.

2.9. Summary

In summary, the analysis of the literature on existing simulators for radar signals and scenarios has
shown that there are many multiple variants with different characteristics, depending on the application
to target. In general, a trade-off is present between computational requirements and electromagnetic
fidelity. A gap is found in the development of a simulator to reproduce radar signatures of extended 3D
targets common in automotive scenarios and their simple movements. Such simulator can be useful to
support the validation of radar signal processing algorithms beyond very simplistic, ideal point targets,
prior to more extensive validation with real, experimental data. This is what the following work described
in the thesis will focus on.



Methodology of the Proposed
Simulator

In this chapter, the methodology for the proposed simulator will be introduced. Specifically, its pipeline
will be described, starting from the structure of the simulator design, followed by its sub-system blocks,
such as signal model, target model, shadowing calculation, and motion control of the targets of interest.

3.1. Simulator structure

As the basis for the radar signal simulation, the structure design of the radar system plays an important
role in the simulation of the radar signal. In literature reviews, X. Lin and J. Thieling mentioned the
general radar system structure as shown in Fig 2.5 and Fig.2.15. Besides that, S. Xu provided another
basic radar simulator case for radar signal simulation. In general, a radar simulator could be made
of three main sub-systems, namely the radar physical model, the target model, and the radar signal
propagation model between radar and targets in the scene. Specifically, the radar model defines the
simulated signal/waveform based on the radar settings, while the target model includes the geome-
try/shape information and radar cross-section (RCS) information for the reflected radar signal. Within
the signal propagation model, multi-path propagation, radar signal power attenuation, and other pos-
sible error signals can be considered, for instance, interference from the environment or other radar
emitters. Inspired by the above cases, the automotive radar simulator in this thesis is designed as
shown in the flow chart below, see Fig.3.1.

Target model
Target Coordinate

Frame Shadowing
generator calculation

Signal generator (point scatter)

Intermediate-Frequency(IF) signal

" in one frame
TUDelft 4

Figure 3.1: Proposed radar simulator structure with its main blocks (models)
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In detail, the radar simulator contains four sub-models, radar, target, propagation, and signal model.
The radar setting and frame generation are defined in the radar model, with input parameters of radar
and observation time. The frame information is generated simultaneously for later signal generation.
Within the target model, the target 3D point scatterer characteristics and target motion information
including translation and rotation movements are generated by the simulator. The propagation model
calculates the shadowing in 3D spatial coordinates based on the target model information frame by
frame. In the end, the reflected signal is generated for only the observed point scatterers, i.e. those
that are not occluded by direct propagation path with respect to the radar.

3.2. Radar model

In this model, the radar signal/waveform is defined with the desired settings including radar charac-
teristics, and observation time of the whole simulation. As an example to demonstrate the simulated
signals in the later simulation results chapter (chapter 5), the widely-used FMCW MIMO radar signal is
chosen, as the main type of radar employed in state-of-the-art automotive applications.

3.2.1. Radar (FMCW MIMO radar)

As one of the most widely-used automotive radar, in addition to the common radar advantage of weath-
er/light robustness, FMCW MIMO radar has superiority [36] in:

 Relatively large RF bandwidth and low interference with other radar sensors

» High accuracy in range, velocity, and angular measurement for multi-target cases

» Small compact size and complementary capabilities to other sensors such as camera and Lidar
* Relatively low cost in power consumption and manufacture

FMCW signal design:

In the designed simulator, linear frequency-modulated continuous wave (LFMCW) is applied to signal
generation. The range information of the target can be extracted from the FMCW waveform by calcu-
lating the phase difference/frequency change caused by round-trip delay based on the characteristics
of the waveforms. Figure. 3.2 demonstrates the LFMCW signal modulated technique, where T" and T
represent chirp duration and pulse repetition interval (PRI), respectively.
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Figure 3.2: lllustration of the LFMCW signal modulation (upward ramp sawtooth modulation)[34]

MIMO Channel design:

As another important part of the radar signal simulation, MIMO channels provide the additional dimen-
sion of angular information, simultaneously with range and Doppler information. Figure. 3.3 shows an
example of a uniform linearly antenna (ULA) MIMO channel with two transmitted antennae and four re-
ceived antennae, which provides eight channels in signal processing by transforming the real antenna
array into a virtual antenna array. These can then be used to estimate the angle of arrival of the signal,
i.e., the angular position of targets of interest.
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Figure 3.3: MIMO channel array illustration

T | Pulse repetition interval(PRI) | B Bandwidth of the radar signal
Ty | Chirp duration Nr, | Transmitter
fe | Center frequency of the radar | Ng, | Receiver

Table 3.1: Main radar parameters to be defined in the simulator

In summary, based on the previous analysis, Table 3.1 shows the crucial radar parameters for
signal/waveform simulation. With additional preset radar coordinates in a 3D Cartesian system, also
known as the world coordinate system, the radar waveform can be generated as described in the
following content.

3.2.2. Frame generator

In real radar data measurement, such as using Tl radar board[37], the radar received signals are
collected beats by beats, also known as frames by frames, wherein each beat/frame several chirps
signals are generated based on different radar settings. Therefore, in simulation, the total number of
chirps in the frame needs to be determined in advance with the mathematical expression shown below,
where F,, represents the total number of chirps in the frame, T,pscrvation refers to the total observation
time for the simulation, N, and T is related to the radar waveform setting of chirp number and
pulse repetition interval for signal generation. Considering the uneven case during the calculation, the
rounding ceiling function is added to generate a correct, integer number of chirps per frame.

Tobservation
F,=|————+ 3.1
|— Nchirp * T ( )

3.3. Signal model

In this section, the detailed derivation of the simulated signals backscattered from the target will be
given. Prior to starting with the mathematical expression, some assumptions need to be defined about
the generality of the chosen approach:

* Monostatic antenna array with one transmitter and L receivers
 Uniformly distributed linear array (ULA) with omnidirectional elements

« Points scatterers with identical RCS values/distributions located in the far field of the antenna
array

In terms of subsequent signal processing in the pipeline of the simulator, techniques such as
matched filter and de-chirping technique are widely used to process the received signal to remove
the frequency modulation and extract the target signal depending on the later intended application
such as detection and classification. Compared with matched filters, the de-chirping technique has the
advantage of withdrawing the target signal from the modulated frequency and down-converting it to
the baseband signal with reduced sample frequency, especially for linear frequency modulation (LFM)
chirp signals. Figure 3.4 shows a sketch of the process of the de-chirping technique. The green and
blue lines represent the transmitted and received signals, respectively, while the red line refers to the
de-chirped signal obtained by the instantaneous frequency difference, also known as the ’beat signal’,
containing range information as well as Doppler information. However, in a single-beat signal, the
Doppler information is usually neglected since it is much smaller for objects of interest in automotive.
The Doppler information can however be estimated by using multiple beat signals.
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Figure 3.4: lllustration of the de-chirp technique at the receiver of an FMCW radar [34]

3.3.1. Point scatterer signal model
Based on the aforementioned assumptions, the radar signal is defined for / observed point scatterers
in one captured frame, assumed to be within one coherent processing interval(CPI). They have known
initial range r = { Ry, Ra, R3, ..., R;}, velocity v = {V;, V5, V3, ..., V;}, and angle with respect to the radar
O = {61, 60,,0s,...,0;}. An FMCW chirp transmitting signal with chirp duration (7) and pulse repetition
interval (T') can be written in the normalized mathematical expression shown below based on the Fig.
3.2

solt) = {em(m“ﬂ’ t € [0, To) (3.2)

reset/resettle, t € (Tp,T)

where in this form f, represents the starting frequency calculated with fo = f. — g = fehirp,start, @aNd
1 refers to the frequency modulation rate p = T%.

Extending the single chirp transmitted signal to multi-chirps and introducing T;,;,; which refers to the
total observation/simulated time, the transmitted signal would become as in Equation (3.3), where ¢t =

t* +mT, and m represents the chirp number within the whole observation time (m = 0,1,2,3,..., M —1).
s(t) = s(t* + mT) = s(m,t*) = so(t*),t € (0, Tyotar), t* € (0,T) (3.3)

Therefore, we can write the expression for the known round trip delay of the ith point target shown in
Equation (3.4), where R; and v; are initial range and radical velocity, and ¢ is the light speed in free
space.
2(R; i (t* T 2R;  2v;(t* T
() = (R +v(c +m )):%_‘_ v ( Cer ) (3.4)
The reflected/backscattered signal including the MIMO channel of the ith single point target is ex-

pressed in Equation (3.5) with respect to the transmitted signal s(¢),

rgl)(t) = aie”’y)s(t* +mT — 1;(m,t"))

W X wyy g M mT =7 (m,t*))? (3.5)
= q;el® 32 (fo(t"+mT—7i(m,t"))+=————Ft——")
« is the reflected signal amplitude related to the RCS of the target, and the operator ¢i%” indicates
the reflected signal phase delay with respect to the ith receiver in the virtual array discussed in the
previous paragraphs. From the previous equation, the instantaneous frequency could be derived from
the phase change shown below,

dd _ fo(t* +mT — Ti(m,t*)) + #(t*erTCﬁ:i(m"t*)y

dt dt*
= fo1 = )y e () 1

dt*
~ fo+ pt*

dr;(m, t*) (3.6)
O at )

The simplification of the term in the above equation is because of the short-range assumption Tl-(l) (m,t*) <<
Ty and v; << c. So the phase delay of the ith receiver is formulated as:

o on(fo+ ut*)%sin& (3.7)
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where [ indicates the sequence of the receiver and d is the spacing distance between neighboring
receivers in the virtual array.

By correlating the received signal with the conjugate copy of the transmitted signal, the received ith
receiver de-chirped signal of the ith point scatterer is shown as follows:

2D (m, ) = rD () x s*(m, t%)
= 609! ea2m(fo(t"—r) TR (ot + 2002
= 0,009 i2n (ot —ri) LTI (for U002 )
= el #t @i (—forit i -t )

(é) a; 63805[) e]27r(—f0'r,-—ut*n)

(1)

. 2R; | 2v;t* | 20;mT
= i et g i (o5

p 2ot 2ogmTy e (2B 2t

* | 20;mT 3.8
S ) (3.8)

c

2v,

mT+p=—% 2V 42y 200 2”’ mTut™)

)+f0

Q) R;
= q;el% e —52m(fo 2pk 41" (fo 2t

(2) ) v

. r 2 2
~ a;el¥i e—i2m(p 2R fo 2 mT+ 2 mTput™)

— 2 (fout™) M sind; —j2m(p 2"+ (fotpt™) 2 mT)
- 3

3 ld 2R; . 2v;
@ a; x exp(j2m(fo—sinb;)) x exp(—j2m(p——r1t")) emp(—jQW(fo—va))
c c c

In the above derivation, some approximations are involved to simplify the computation under certain
reasonable conditions or assumptions.

* (1): With the previous equation of the round-trip delay, it is notable that under a single chirp, the
round-trip delay time is much smaller than the sampling time concerned the relatively much larger
value of light speed in free space, which leads to the first approximation in the fifth line, namely:

/L 2 7Lt

-ttt R —pttr

* (2): In this step, s constant, therefore it could be removed by merging with «;. Then
u%t” is neglected due to its much smaller value (t*2) compared with other operators (t*, mT).
Lastly, t*(fo2% + p28) ~ t*p2fi as the Doppler frequency is negligible with respect to the
beat frequency under the conditions of fo22 < p2%, and fo2% < Nyquistbound \where f, is the
sampling frequency.

* (3): The assumption for computation simplification is that the automotive FMCW MIMO radar is a
narrow-band radar, which means the bandwidth is much smaller than the center frequency, and
there is no range and angle migration within the beat frequency signal.

After an analog-digital converter (ADC) with sampling frequency f, the analogous signal is discretized
and shown below,

ld 2R; . 2v;
2D (m, ) = aq + exp(j2n(fo 2 sind,)) « eap(—j2m(u2nit))  exp(—j2n(fo + i)
C C C

DU (3.9)
=" 2" (m, k) = a; * eap(2m(a(0;)1) * exp(j2m(fa(vi)m)) * exp(j2r(f.(Ri)k))
where q %, J2R,;
a(0:) = for_sinbi, fa(vi) = —fo==, fr(Ri) = T

where k& = fsxt* is the index of fast-time samples (i.e., k =0, 1, 2..., K- 1, and K is the total number
of samples in one PRI).

For simplification of subsequent signal processing, the radar data is always reshaped into the radar
cube matrix shown in Fig. 3.5. In this project, one radar cube contains a single frame of simulated radar
data, where three axes are corresponding to the fast-time (K), slow-time (M), and number of channels
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(L). Stacking the generated signal into matrix form from the aforementioned equation, the signal model
could be written as:

where:
3(01) _ [17 6j27ra(6i)’ . 6j27ra(9i)(L71)]T’ c (CL><1
fa(v;) = [1, ejQWfd(Ui)’ - 6]'27de(Ui)(M—l)}T7 c CMx1

]T c (CK><1
y

£ (R;) = [1, 2 (Ra)oeo 2 RIED
Therefore, the initial radar cube can be decomposed into three radar cube subsets that are only related
to a single parameter with given values based on the above equation. It is notable that the sub-cube
should have the same size and origin as the original radar cube, and each sub-cube should be homol-
ogous on the dimension of the corresponding aforementioned vector.

Fast time

Slow time .

Range cube(K*M*L) Doppler cube(K*M*L) Channel cube(K*M*L)
Fast-time Slow-time

Figure 3.5: lllustration of the radar cube and decomposition along specific directions with their meaning, namely fast-time,
slow-time, and number of MIMO channels

Then the received data of the f,,th frame in the presence of radar line of sight (LOS) with the Gaussian
noise A is written as

I
Z0D =3 "X+ N (3.11)
=1

3.4. Target model

As one of the most important parts of the radar signal simulation, different possible approaches take a

significant influence on the accuracy of the target model. As listed in the literature review, U.Chipengo[25]
illustrated three main models for signal generation in this context. It is obvious that the primitive base

model could simplify the computation in wave propagation by reducing the complexity in geometry. In

contrast, high-fidelity physics-based models provide more accurate radar signals, especially for later

target tracking and classification. However, heavy computation of wave propagation is required. In

this part of the designed simulator, a realistic target model based on detailed CAD models which are
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widely used in industrial design is proposed. Based on the CAD models, the grid of scattering points
for the radar signals is generated and demonstrated in this section with examples of car(sedan) and
human(pedestrian).

3.4.1. Scatter Model

It is important to note that the scatterers in the CAD models do not aim to precisely mimic electromag-
netic scattering behavior from the actual objects. Rather, they serve as a representation of the object’s
body shape and extent, with denser scatterers located in the areas where more detailed physical struc-
tures are present in the objects. Figure 3.6, 3.7, shows the target model extracted from the 3D CAD
model. Depending on the CAD source and the target’'s shape and complexity, the total number and
distribution of extracted point scatters can be very different, therefore, pre-processing for scaling the
target model is necessary to get an acceptable target size in terms of the considered scattering points.
The sub-figures on the right-hand side below show the corrected point scatterers distribution.

Compared between models, the human model contains more scatterers concerned with the com-
plexity of the human shape with its curved surfaces and body parts. As for the car and bus, their wheels
contain more point scatterers compared to the flat surfaces of the chassis.

LI R — LI — 0 T T T T T T T T T 1
x T ne o8 07 08 0F o4 o0& b2 W 3 45 a4 35 3 25 2 15 1 05 0

Figure 3.6: Car model used in the simulator
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Figure 3.7: Man/pedestrian model used in the simulator

Radar Cross Section (RCS) In radar simulations, the RCS value is an important feature for target
models that can significantly influence the resulting simulated signals. In this part, the RCS is specified
according to the Swerling model, also known as fluctuation loss. For MIMO radar, the Swerling model
influences the performance with respect to the DoA estimation [38].
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Based on the general definition of the Swerling model, there are various types with different RCS
definitions, namely Swerling model |, Swerling model I, Swerling model 1ll, Swerling model IV, and
Swerling model V (also known as Swerling model 0),

» Swerling model V (Swerling model 0): The RCS values of scatter points are constant at infinite
degrees of freedom.

» Swerling model I: In this model, the RCS varies according to a chi-squared probability density
function, with two degrees of freedom scan to scan. Specifically, in the proposed simulator, the
RCS varies from frame to frame, as the frame is the common unit of data generated by current
automotive radars.

» Swerling model Il: It is similar to the Swerling model |, but with faster changes from pulse-to-pulse
(chirp to chirp) with the same chi-squared probability density function with two degrees of freedom
as the Swerling model I.

» Swerling model lllI: In this model, the RCS values change scan to scan as in the Swerling model
[, but with a different chi-squared probability density function with four degrees of freedom.

» Swerling model IV: In this model, the RCS values have the same probability density function as
in the Swerling model Ill, but with faster changes from pulse to pulse (chirp to chirp).

It needs to be outlined that in the following chapter 5, the Swerling model V (Swerling model 0)
is selected in the simulation presented for feasibility, where all scatter points of the point clouds have
identical values. A further improvement for the proposed simulator could be to investigate the influence
of applying different Swerling models, and how to accurately estimate the RCS values for point clouds.
Such modifications is expected to be not complicated, as it would only entail the modification of the
intensity values from constant ones to those statistically drawn from a distribution.

3.4.2. Coordinate system

With the derived signal model and target model given in the previous sections, to accurately describe
the space information for point scatterers, a 3D coordinate system is established shown in Fig.3.8 with
an example of a single point target in the radar line-of-sight. To be more specific, the coordinate system
is made of two parts, the world coordinates system and the radar observation system, where the blue
labels are related to the parameter in the world coordinate system (XYZ-O) and black labels are related
to the radar observation system (X'Y’Z-O’).

Z Vradial
4 “
! ™ Viarget
@ target
{
yARE (xyzmrger)
elevation R .
Y Y »
Y //
—~_ azimuth
O (xyzradar)

Figure 3.8: World coordinate systems and radar observation
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The world coordinate system (3D Cartesian coordinate system) is the basis of the radar observation
system which is used to generate the radial velocity (v,q.4:a1), range (R), and azimuth angle (6;) used
in Equation (3.8).

With the known initial position of radar (zyz,.4q-) @and single-point target (zyziarge:), the range and
azimuth angle between radar & target can be calculated with the below equation:
R= nyztarget - xyzradarH
_ 3.12
sm(&) _ ( Hmradar xtarget” ( )
||xy7“adar - xymrgetH

while the radial velocity (v...4:41) Can be calculated with projected v, the given velocity of radar (v;-q4ar)
and target (v;qrge:) in wWorld coordinates by using Equation (3.13).

(Uradar - Utm’get) * x/y/zéarget l‘/y/Zl |
1"y 2t arger |1 (3.13)
1o

ry Ztarget = TYZtarget — TYZradar

Uradial = |

where z'y'z;,, .., refers to the target position in the radar observation system.

However, to accurately describe the dynamic information of the target and the radar, the motion
information is divided into two parts, translational motion, and rotational motion.

Translational motion: Within the measurement time (), the target position would be changed in
the world coordinate system based on the below equation:

TYZtranslation (t) = Ut¢ranslantion (t) * ¢+ xyztarget(t = O) (314)

Rotational motion: Compared with translational motion, rotational motion is more complex due to
an extra rotation coordinate system involved. For simplification, the sphere coordinate is introduced to
define the rotational motion shown in Fig.3.9.

Z r 3
target
B (xy Ztarge t)
Y
Y ,
0“6

(xyzratati;;j% B X

Figure 3.9: Rotational motion coordinate system
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With set rotation center (xyz,otation ), rotation direction (49, ), and rotation speed(w), the target po-
sition can be calculated using the equations below:

TYzr = nyztarget - xyzrotation”
Ugys = [Sinpcostd, sinpsind, coscp]T
er()tati(m(t) =w*t

xyzafterrotation (t) - xyztarget + Tm(t) * TYZy

(3.15)

where zyz, refers to the target coordinate in the rotation coordinate system, u,,. represents the unit
rotation direction vector (u2 + “5 +u? = 1) according to the Right-hand rule, and the rm is the rotation
matrix defined as follows by substituting 6 = 0,.,tati0n (t)

cost) — u2 (1 — cosf) Ug Uy (1 — cosh) —u, sind  uy u, (1 — cosh) + uy sind
rm(t) = |uy ug (1 — cosb) + u, sind cost — uz (1 — cost) Uy u, (1 — cost) — uy sind
Uy Uy (1 — cosb) — uy sind  uy uy (1 — cosh) + u, sind cost) — u? (1 — cosh)
(3.16)

Meanwhile, the instant linear velocity in the world coordinate system would be:
'Ulinear(t) = (wuzyz) X Tm(t) * TYZp (317)

where (wi,,,) is the angular velocity in vector form.

Therefore, for the single-point scatter shown in Fig.3.9, the instant position and radial velocity are
the combined translational motion and rotational motion together shown in the equation below:

TYZtarget (t) = TYZtranslational (t) + TYZafterrotation (t) + TYZtarget (t = O)

(3.18)
Vradial (t) = Utranslation (t) + Viinear (t) + Vradial (t = O)

3.5. Propagation model

As discussed before, only line-of-sight targets (point scatterers) are considered in the radar signal
simulation in this project. Therefore, the shadowed/occluded part of the targets needs to be filtered out
and eliminated before the final signal generation.

3.5.1. Shadowing estimation

To accurately estimate the hidden points with respect to the radar line-of-sight, a hidden point removal
algorithm is applied based on the research of S. Katz[39],[28]. In MATLAB, a function has already been
published and testified by M. Moore according to his paper for simulating Micro-Doppler information of
unmanned aerial vehicles (UAV) with dynamic point clouds.

Figure.3.10 shows the implementation of the hidden point removal (HPR) algorithm with an example
of the sphere in 3D space. As shown in the figure, after being filtered with the HPR algorithm, observing
from the red star point considered to be the radar, only the points marked by the "X’ are visible.
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Figure 3.10: lllustration of hidden point removal algorithm applied in the proposed simulator, where out of the whole cloud of
points belonging to a sphere object, only those marked by "X’ are visible to the radar located in the view point

Summarizing this chapter, with preset motion information for each target model and with user-
defined radar parameters, the proposed simulator can generate simulated radar signals and signatures
with and without the HPR algorithm to model occlusion/shadowing. This algorithm uses the ground truth

information from the original CAD models in every frame to mark only a subset of points to be the actual
radar scatter points for further processing.



Implementation Details

In this chapter, several radar signal processing techniques such as Fast Fourier Transform, and Direc-
tion of Arrival (DoA) estimation are introduced. These are then applied to the simulated radar signals
and signatures to evaluate the performance of the simulator developed in this work. The actual results
will be shown in the next chapter, while the following content describes their derivation based on the
signal model introduced in the previous chapter.

4.1. Fast Fourier Transform (FFT) algorithm

As one of the fundamental techniques for radar signal processing, the FFT (Fast Fourier Transform)
algorithm is widely used to estimate the targets’ range, velocity, and angle with respect to the radar.
It is particularly effective in radar systems that use Linear Frequency Modulated Continuous Wave
(LFMCW) or Frequency Modulated Continuous Wave (FMCW) waveforms due to the inherent charac-
teristics of these waveforms. Depending on the application in radar signal processing, range-Doppler
image, range-azimuth (cross-range) image, and Doppler-azimuth (cross-range) image could be plotted
by using multi-dimensional FFT.

Specifically, the range-Doppler image could be generated by applying the 1D FFT algorithm on the
fast-time domain (range) and then another 1D FFT on the slow-time domain (Doppler). Similarly, the
range-azimuth image could be derived by changing the second 1D FFT on the azimuth domain (which
is referred to as the channel domain in the previous chapters). As for the Doppler-azimuth image, It
could be derived from applying a third 1D FFT on the Doppler domain of range-azimuth, or channel
domain of range-Doppler.

Back to the theoretical derivation, the mathematical equation of the introduced signal with respect
to the ith scatter point in the previous chapter is shown below:

2 (m, k) = o * exp(j2m(a(8:)1)  exp(52r(fa(v)m)) = exp(j2m(f+(R:)k))

. ‘ (4.1)
where, a(6;) = fo%smei’ falvs) = _fo%Jr(Ri) = _Mff}:zz

Therefore, the de-chirped received signal in one frame for all targets is:

I
D)y =32 (m, k) + N 4.2)

i=1

where A is the additive Gaussian noise.

28
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After applying 1D FFT on the fast-time domain with sample number N on the signal, the signal model
Y(n) of the nth range cell can be written as:

K () —j2m
Y (n) = {g:k—l Y (k) % e=92

(<n71]>\§k71))

(4.3)
where n € [1, N],k € [1, N].

Similarly, by applying another 1D FFT on the slow-time domain and azimuth (channel) domain with
sample numbers P and Q respectively, the signal model Yl(,l)(n) and Y9 (n) are defined as:

! _jom(@=Dim=1)
YO ) = S Yol () e 2m 0 € [,
’ 0 pe[M+1,P]

(4.4)

! _iom(la=D0=1)
Y(q)(n) _ Zlel an)(n) x e J27( Q ) pe [LL}
" 0 pe[L+1,Q]

Lastly, with proper FFT sample numbers, the signal after applied 3D FFT to the radar cube is shown
below:

K M
Y:E)Q)(n) = Z Z ZY%) (k) = e S e IR L IR L Cey e (4.5)
k=1m=1 (=1

In general, for a conventional 3D radar cube as the one mentioned in the previous chapter, the
target features of range, velocity, and angle with respect to the radar, including their elevation-azimuth
coupling information, could be extracted from raw data intuitively after applying multi-dimensional FFT,
shown in Fig. 4.1.

Radar cube(K*M*L) FFT Radar cube(N*P*Q)

3D FFT

) "

Fast time

Figure 4.1: lllustration of the 3D FFT radar cube in MIMO FMCW radar

4.2. Direction of Arrival (DoA) estimation

As one of the key advantages of Multiple-Input Multiple-Output (MIMO) radar systems compared with
traditional single-antenna radar systems, Direction of Arrival (DOA) estimation techniques had been
deeply studied, even if ongoing research is still active to find new methods to improve angular reso-
lution. With simple 2D FFT on the radar data, DOA estimation could be realized by detecting peaks
on range-azimuth images, i.e., finding the maximum magnitude Doppler bins (m) of |Y£,‘§) (n)|. How-
ever, sometimes due to the limitation of conventional angular resolution, enhanced DOA estimation
algorithms are applied to improve the performance of the results for the classification of closely-spaced
targets.
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Three commonly used enhanced DOA estimation algorithms, namely Beamscan, Capon[40], and
Multiple Signal Classifier (MUSIC)[41], are introduced as follows, with the rewritten signal model related
to the steering vector (azimuth) from Equation (3.10) with respect to the sample time index K, and array
elements L:

X(k) = a(6;) - x(k) + N (4.6)

4.2.1. Beamscan

Beamscan, also known as conventional beamforming or delay-and-sum beamforming is a fundamen-
tal technique used in array signal processing to focus the sensitivity of an antenna array in a specific
direction while attenuating signals arriving from other directions.

With known received signal X(k), a weight related to all possible angles of arrival (steering vector)
is added and denoted as w. Therefore the output mean power of the beamformer is:
P(0) = E[[w" - X(k)[*
= wEX(k)TX(k)|w 4.7)
=w «xRxw
where R is the spatial correlation matrix of the received signal.

From Equation (4.6), when the direction of arrival is equal to 6;, the mean power in Equation (4.7)
reached to maximum by substituting all possible angle a() for w.

Thus, the arrival angles 6 are determined by evaluating the power peaks:

Preamscan = a(G)H * R * a(9> (48)

4.2.2. CAPON

CAPON, also known as Minimum Variance (MV) beamforming, is more advanced than simple beam-
scan method. Instead of detecting the peak of the output power as beamscan, Capon approach aims
to minimize the variance of the estimated output power by constraining the beamformer gain to be 1.

Therefore, the mathematical derivation of the Capon is:
min w7 « R« w,
w

set wHa(g) =1, (4.9)
1
Pca on —
P a(f)? xR-1xa(f)

4.2.3. Multiple Signal Classifier (MUSIC)

Multiple Signal Classifier (MUSIC), is an advanced beamforming technique using the special property
between steering vectors and noise, i.e., that the steering vector, as the subspace of signal, is orthog-
onal to the noise subspace.

Therefore, the value of Py s1c(0) implies a relatively large value when angle 6 is equal to the DoA
related to one of the signals. The definition of Py s1¢(0) is shown below:

1
P]\/IUSIC(Q) = a(@)HQnQﬁa(e)

(4.10)

where Q,, refers to the noise subspace matrix.



Simulated Results and Analysis

In this chapter, all the representative results for simulated signals based on different target models
and scenarios are presented. Specifically, the simulations are presented in two parts, one showing a
simpler scene with one single target, and one part with multiple targets. The simulated results contain
the ground truth of the target, range-azimuth images, and range-Doppler map(only for the moving
targets). Prior to showing the results, the radar settings for the simulation are shown in the following
Table 5.1.

Table 5.1: Simulated radar parameters for the presented simulations in this chapter

Center Frequency(Fc) 77GHz | Radar position (0,0,0.5) | System Noise(wgn) 3dB
Bandwidth(B) 1GHz | Sampling Frequency(Fs) | 12.8MHz | Range resolution 0.15m
Chirp Time(Tc) 20us Frame sample time 0.5s Max unambiguous range 38.4m
Number of transmitter antenna(nTx) | 3 Signal Channel 12 Velocity resolution 0.3805m/s
Number of receiver antenna(nRx) 4 Radar velocity (0,0,0) Max unambiguous velocity | 48.703m/s

5.1. Single target scenes

In this section, there are three parts involving multiple different target models including the car model
and pedestrian model mentioned in 3. Simulated results without and with the HPR algorithm are listed
to evaluate the simulator performance with different DoA estimation algorithms. Figure.5.1 shows an
example of the single-target simulation ground truth in the world coordinate system.

car model
radar
man model

Figure 5.1: Target position with respect to radar in world coordinates(meter), 3D example visualization with car and pedestrian

31
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5.1.1. Man model simulation

Applying the man model shown in Fig. 5.1, the target man is located in front of the radar, where the
human body center is at (0,3,0) in world coordinates, which means the distance is 3m between human
standing position and radar position on ground (xy-plane). The man model is about 1.8m high, while
the radar is lifted to the height of 0.5m to simulate the real case, mounted on the car’s front bumper.
The radar signal is generated under a static state, where the heading direction of the pedestrian is
changed in each simulation.

In Fig. 5.2, the visible scattering points after the application of the HPR algorithm are marked on
the previously-shown frames for demonstration where the different headings of the target in the 3D
Cartesian space can be seen as well. It should be noted that these are the only points that will be
considered as actual scattering points of the targets for the radar simulator, essentially excluding those
that are occluded by other points with respect to the radar line of sight, and the RCS value for all
the point scatters in the target model is identical, default setting as 1. The following sub-figures in
Fig.5.3 then show the range-azimuth images generated by applying different imaging algorithms such
as 2D FFT, beamscan, capon and MUSIC. These algorithms are applied on a frame-by-frame basis,
essentially mimicking what would happen in an experimental automotive radar producing a stream of
frames.



5.1. Single target scenes 33

= man model = man model
x  Detected points x  Detected points

(a) Heading to -x direction (b) Heading to -x-y direction

= man model = man model
x  Detected points x  Detected points

(c) Heading to -y direction (d) Heading to -yx direction

= man model = man model
x  Detected points x  Detected points

(e) Heading to x direction (f) Heading to xy direction

x Dok 5
»  Detected points *  Detected points

(g) Heading to y direction (h) Heading to -xy direction

Figure 5.2: Visible points used as scattering target points for the radar signal after the application of the HPR algorithm. The
frames represent the man/pedestrian model with different headings considered as an example in this section.
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Figure 5.3: Range-azimuth figures generated for different heading directions for the man model and by applying imaging
algorithms (i.e., by columns left to right simple range-azimuth, Capon, beamscan, MUSIC)
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Figure 5.3: Range-azimuth figures generated for different heading directions for the man model and by applying imaging
algorithms (i.e., by columns left to right simple range-azimuth, Capon, beamscan, MUSIC)
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Figure 5.3: Range-azimuth figures generated for different heading directions for the man model and by applying imaging
algorithms (i.e., by columns left to right simple range-azimuth (2D-FFT), Capon, beamscan, MUSIC)

Through the results shown in Fig.5.3, under different head directions, except when the pedestrian
facing to -y direction and y direction, an extra highlighted point-like signal distributed on another range
bin could be observed in the simulated results applied HPR algorithm. This finding is caused by change
the distribution of scattered points after shadowed points are removed. Without HPR algorithm, the
point clouds of the target are concentrated distributed, which leads to a single strong point-like signal
in the range-azimuth image. Therefore, there is no possibility to distinguish the heading direction of the
pedestrian.

Another insightful observation is that the range-azimuth figures generated with Capon and MUSIC
has a relative clearly view among all the results, more centralized power distribution. Comparing the
performance of the MUSIC and Capon algorithms with that of the Beamscan method, and 2D-FFT
method. The former two techniques exhibit superior resolution capabilities, evidenced by their ability to
delineate targets with more distinct contours and enhanced separation within the human model, i.e. its
distinct body parts. Furthermore, the images derived from diverse frames exhibit distinct characteristics,
such as varying peak distributions. This proves that the frame generator operates in accordance with
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its intended functionality, effectively capturing different aspects of the scene across frames.

5.1.2. Car model simulation

Similar to the simulated setting mentioned in the pedestrian model, however, the car model center is
placed at (0,10,0), 10 meters away from the radar on the ground, concerned with the length of the car
model, to avoid car collision in the real world. The radar signal is simulated under a static state as well
but changing the car heading directions with identical RCS value for all the scatter point. Figure.5.4
gives the visualization of simulation top view ground truth including detected points distribution filtered
by HPR algorithm in different frames which is corresponding to one heading direction starting from
positive y direction.
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Figure 5.5: Range-azimuth figures generated for different heading directions for the car model and by applying imaging
algorithms (i.e., by columns left to right simple range-azimuth(2D-FFT), Capon, Beamscan, MUSIC)
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Figure 5.5: Range-azimuth figures generated for different heading directions for the car model and by applying imaging
algorithms (i.e., by columns left to right simple range-azimuth, Capon, beamscan, MUSIC)
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Figure 5.5: Range-azimuth figures generated for different heading directions for the car model and by applying imaging
algorithms (i.e., by columns left to right simple range-azimuth(2D-FFt), Capon, beamscan, MUSIC)

Comparing the different results shown in the previous figures, it is clear that the HPR algorithm has
better performance on the car model, concerning the target shape influence of the HPR algorithm.

Another valuable observation is that the simulated signals in range-azimuth images are highly sim-
ilar with respect to two pairs of heading directions, (xy,x-y,-x-y,-xy) and (-x,x). The HPR algorithm only
affected the energy distribution due to the eliminated shadow points, but did not affect the similarity of
the target shape. However, for y, and -y heading direction, the simulated results are the same without
removed hidden points, but still they show some difference after the application of the HPR algorithm.

More importantly, with the HPR algorithm, the simulated results became more realistic, especially
for car models, as the shadowed/occluded parts are eliminated under different cases (different heading
direction).
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5.1.3. Different car types' simulation

In this section, additional two car models, the F1 racing car model (McLaren MP4/4,1988) and the
Ferrari car model (Ferrari concept car) are applied to the simulator with the same settings as the car
model mentioned before. The simulation is simplified to five heading direction concerned conclusion
from single car model Another noticeable condition for different car type simulation is that, to keep the
simulation academic, all the car models are scaled down the point scatters to a constant by random
selection from original point clouds. Figure 5.6, 5.8, 5.10, 5.12, 5.14 are the top view ground truth
of the models’ position with respect to the radar location, whereas Fig.5.7, 5.9, 5.11, 5.13, 5.15 is

the corresponding range-azimuth images based on the simulated data generated by the proposed
simulator.
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Figure 5.6: Ground Truth of different car models from top view with detected points illustration of heading to y direction
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Figure 5.13: Simulated range-azimuth images of the car models shown in the previous figure without (top row) and with
(bottom row) HPR algorithm to model occlusion of points with respect to the radar. The heading is to the -x-y direction

Figure 5.14: Ground Truth of different car models from top view with detected points illustration of heading to -y direction
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Figure 5.15: Simulated range-azimuth images of the car models shown in the previous figure without (top row) and with
(bottom row) HPR algorithm to model occlusion of points with respect to the radar. The heading is to the -y direction

From the above results, it is noticeable that the different target car models could generate different
results under different heading directions with and without HPR algorithm, which proves the initial steps
to render realism of the proposed simulator. However, it needs to be outlined that the results are highly
dependent on the specific car or vehicle model used. The higher the density of model points clouds,
the better performance with the HPR algorithm could be achieved. This is important to notice as a
characteristic of the developed simulator, whereby the number of points used for the generation of the
actual radar signatures will strongly depend on the definition/resolution of the original CAD model.

5.2. Multi-targets simulation

To evaluate the performance of the simulator under different scene simulations, referred to as multi-
target simulations, in this section, two simplified scenes containing different target models are built
and presented with the aim of capturing two interesting situations in automotive scenarios, namely a
pedestrian crossing the street in front of a parked car, and cars overtaking each other. Under these two
scenes, the automotive radar is mounted on another approaching vehicle which will not be shown in
the ground truth, but the radar position will be marked as a green star, as done before in other figures.

5.2.1. Car and crossing pedestrian

In this sub-section, the man and car models used before in single-target simulations are combined to
build the traffic scene where a pedestrian is walking across the street in front of a parking car, while
the radar-mounted car is moving toward the pedestrian. Figures 5.16,5.17,5.18 demonstrate the corre-
sponding top view ground truth, range-azimuth images, and range-Doppler images in different frames,
respectively.
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Figure 5.16: Pedestrian crossing from the side near a parked car in front of the radar. Different frames of ground truth (CAD
models with HPR algorithm applied) are shown in top view

Through the ground truth figures, it could be found that, the pedestrian is supposed not to be visible
by the radar in first two frames since there is detected labels on the pedestrian model which is a single
right point located on the top left of car model. Since the third frame, the HPR algorithm predicates the
pedestrian model is partially detectable with few detected points labeled. With frame changes, more
and more blue labels are marked on the pesdestrian model and the marked points changed location
on the pedestrian model, which satisfied the expectation of the assumption that, the pedestrian model
will gradually appear in the radar view with more points being detected.
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From the range-azimuth image shown above, it is obvious that beamscan and capon algorithms
perform worse(rare points are detected) than traditional 2D FFT and beamscan algorithms for the sim-
ulated results without the HPR algorithm especially when the pedestrian is not visible. The reason for
this is that, compared to the car model, the point clouds of the pedestrian model is more centralized
in space which leads to the power concentrated on the position where the pedestrian model is located
when the RCS value are identical for all the points. With HPR algorithm, the car model is more de-
tectable when the pedestrian model is not visible at the first two frames. The range-azimuth images of
the following four frames satisfied the ground truth described before.

Combined with the range-Doppler map shown below in Fig.5.18, The HPR algorithm could improve
the signal reality in multi-target scene. The range-Doppler maps satisfied the illustration of ground
truth that, the pedestrian is detectable since frame 3 and proved the feasibility of motion control in the
coordinate systems.



5.2. Multi-targets simulation

50

Range-Doppler map without HPR

-

-20 -10 0 10 20
Velocity,m/s
Range-Doppler map with HPR

r.
?T' -100
=120
-20 -10 0 10 20
Velocity,m/s
(a) Frame 1

Range-Doppler map without HPR

o
-20
-40
-
-60
-80
0 0 10 20

20 -1

Velocity,m/s
Range-Doppler map with HPR

o
20

-40
-60
-80

100

-20 -10 o 10 20
Velocity,m/s

(c) Frame 3

Range-Doppler map without HPR

o

-20
-40
-60
-80

-
-20 -10 0 10 20
Velocity,m/s
Range-Doppler map with HPR

o
20
40

B0
100

-60

120

-20 -10 o 10 20
Velocity,m/s

(e) Frame 5

Range-Doppler map without HPR

-20
-40
60

-80

-10 0 10 20
Velocity,m/s

Range-Doppler map with HPR

-20

-40

60

-80

-100

-120

Velocity,m/s

(b) Frame 2

Range-Doppler map without HPR

-10 0 10 20
Velocity,m/s

Range-Doppler map with HPR
-20
-40
-60
-80
-100
-120

Velocity,m/s

(d) Frame 4
Range-Doppler map without HPR

-20

-40

-60

-80
-10 0 10 20

Velocity,m/s

Range-Doppler map with HPR

-20

-40

60

-80
-100

0

-20
-40
-60
-80

<120

Velocity,m/s

(f) Frame 6

Figure 5.18: Range-Doppler images of a pedestrian crossing from the side near a parked car in front of the radar. Six different
frames are shown (a-f), with the difference of applying the HPR algorithm or not to model occlusion

5.2.2. Car overtaking

In this section, the traffic scene of car overtaking is simulated with two identical single-car models used
in the previous section with identical point scatter RCS value. Basically, in this simulated scene the
radar is mounted on a vehicle travelling in the direction of the positive y axis and two other cars are

travelling in front, of which one is overtaking the other.
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During the car overtaking shown above, both car are heading to the y direction where the second
car is overtaking the first one by steering to -x direction first and then drive to y direction. The overtaking
drive is divided into to parts, the first four frame steering to -x direction and the rest four frame speed
up to y direction. In the first four frames, since there is always a velocity heading to y direction, the
overtaking car is doing shift motion to -xy direction with a different component velocity on y and -x
direction while the overtaken car has a constant velocity to -y direction, acted like the mounted-radar
car speeding up. Starting from the fifth frames, both car are only have velocity on y and -y direction
until the end.
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Figure 5.20: Car overtaking simulated range-azimuth images. Eight different frames are shown (a-h), with the difference of
applying the HPR algorithm or not to model occlusion
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Figure 5.20: Car overtaking simulated range-azimuth images. Eight different frames are shown (a-h), with the difference of

applying the HPR algorithm or not to model occlusion
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Figure 5.20: Car overtaking simulated range-azimuth images. Eight different frames are shown (a-h), with the difference of
applying the HPR algorithm or not to model occlusion

Figure.5.20 above shows the range-azimuth images based on the previously introduced car over-
taking process. It is obvious that without HPR algorithm, multi-signals can be seen among the whole
process, where HPR algorithm simulated more realistic signals starting with single reflected signal gen-
erated by overtaking car, and the overtaken car is fully invisible. With overtaking taking place, the
overtaken car is gradually detected and reach to single line signal in the end when overtaking car and
overtaken car drive parallel in the eighth frame.
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Figure 5.21: Car overtaking simulated range-Doppler maps. Eight different frames are shown (a-h), with the difference of
applying the HPR algorithm or not to model occlusion
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Compared with range-azimuth images, the range-Doppler image could illustrate the overtaking more
vividly, since the change of velocity is more visible in the range-Doppler map. In the first frame, it can be
seen that the overtaking car has already steered the wheel, because a positive velocity could be seen,
and without the HPR algorithm, the overtaken car’s velocity could also be seen in the first frame. Sim-
ulated data without the HPR algorithm proved the feasibility of motion control since the overtaken car
velocity could be kept seen, and the range between if and radar is decreasing. Additionally, the range-
Doppler images without and with the HPR algorithm directly demonstrate the influence and accuracy
of using the HPR algorithm for shadow point detection.

5.3. Simulator performance analysis

From the above-simulated results, the proposed simulator which uses dynamic point cloud generation
from CAD models of targets, combined with the HPR algorithm to model occlusion and shadowing,
could be employed to simulate complex single-target radar signatures and more elaborated scenes
with multiple targets and their movements.

Compared to the integrated MATLAB simulator discussed in Chapter 2, the designed simulator in-
creases the flexibility of model selection and provides extra features for detection and classification
tasks, such as the change of shape/appearance under different heading directions, and the difference
in the range-azimuth image of different car models. Another benefit of this simulator is high freedom in
control, which means two aspects, the first one is motion control, which involves translational motion
and rotational motion in 3D space. The second control aspect is depending on the user demand of
trade-off between computation time and the reality, fidelity of the results.

Using realistic point clouds from CAD models for radar simulation increases the required computa-
tion, although the HPR algorithm can significantly reduce the load by removing the shadowed/occluded
points. Based on the author’s experience, the computation time is proportional to the point cloud’s size,
with an average of 300s of computation time on university servers for 8000 points in one frame, based
on the simulation setting described at the beginning of the chapter. After applying the HPR algorithm,
the computation time averagely shortens by ten times.

Nevertheless, it is important for future improvements of the proposed simulator to consider whether
different approaches are possible to select the most salient points from the CAD models to be actually
used for the radar simulator. A typical example is what happens with the wheels of the vehicles. In the
original CAD models, the wheels contain a lot of points to model their curved shapes and many points
remain even after the application of the HPR algorithm. However, these points are in terms of electro-
magnetic behavior weak scatterers due to the material (e.g. tires) and curved shape, with respect for
instance to the flat metallic parts of the car chassis. Hence, additional work to refine the selection of
points from the CAD model to the simulator can be an interesting direction of improvement.

Besides that, another point of improvement is related to the HPR algorithm. For multi-targets scenes,
this could not accurately remove the shadowed points as for single-target. Due to the discontinuous dis-
tribution in space between two targets, the HPR algorithm could not effectively detect the non-shadowed
points in the corner that occurred in 3D space. This is determined by its principle of the convex hull,
which is accurate for detecting raised points on the surface.



Conclusion

As one of the strong supplements for lacking experimental data sets, simulation plays an important role
in research. In the radar area, this is an even more important challenge than in other fields, since col-
lecting experimental radar data is difficult and requires effort and hardware. Also, it is difficult to get the
ground truth in real radar measurements. However, it is still a challenge to simulate good-quality radar
signals. In the past decades, great progress has been made in radar simulations, from single-point
targets to complex scene simulations.

By reviewing the development of radar simulation techniques and comparing the existing simula-
tors, it is clear that to obtain realistic radar signals and signatures, there is always a trade-off between
accuracy and computation. On the one hand, advanced simulation pursues accuracy with high-fidelity
target models and complex propagation computation with the help of powerful solvers. On the other
hand, conventional simulation aims at fast computation for acceptable results, but compromises the
simulation reality, i.e. the complexity and the realism of the scene depicted, for instance in terms of
number of targets or their movements.

Within this thesis, the work was focused on designing and building the FMCW MIMO radar simula-
tor for realistic extended targets under the balance between computation time and simulation accuracy.
The simulated results in this thesis proved that using dynamic point clouds with the help of the HPR
algorithm can enable to simulate more realistic results containing important features for target classifi-
cation, such as heading direction information and shapes of targets of interest.

The main contribution of the thesis could be briefly summarized below,

* The FMCW MIMO radar simulator is systematically analyzed and designed.

» A Motion control system containing coordinate transform is built

* Detailed analysis is provided and the simulated results using dynamic point clouds and HPR
algorithm are summarized for scenes of interest in automotive, such as pedestrian crossing in
front of the radar and cars overtaking each other

Future work could be focused on exploiting more advanced algorithms for accurate removal of shad-
owed/occluded points and adding multi-path into the simulation for more realistic simulation. Besides,
also mentioned by M.Moore[28], a further study could be related to the radar cross-section (RCS) in-
fluence on dynamic points clouds simulation results. Last but not least, adapting the radar design for
new generation 4D radar could be another challenging research direction.
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Comparison of datasets charastics
and radar data details

In this section, some comparisons between previous introduced nine automotive radar datasets are
shown below. From Table.A.1, it is noticeable that most of the automotive driving data set are released
in recent three years, which indicates the lack of research in this field. Additionally, the data size are
various from few gigabytes to hundreds of gigabytes (small size refers full data is smaller than 10GB,
large means the data set is over 100GB, and medium is the data size between 10GB to 100GB).

Considered complexity of the traffic in reality, scenarios and object category number are the other two
important conditions for the data set. Apparently, there is a trade-off between data size and scenarios
and object category. Only in the large dataset, it is possible to include various scenarios and more
object category. However, on the other hand, a large data size leads to the significantly increment
in annotation. Meanwhile, to correctly understand the scene for automotive driving, more annotated
objects means a better decision will be made by computer in the future. In the table, most of the data set
only contains several types of annotated targets. One commonly-mentioned challenge among these
data set is accurate annotation.

Table A.1: Dataset information

Dataset Year | Other Modalities | Data size | Object Category | Scenarios | Label
Radar Scenes | 2021 Camera Medium 11 ++ Yes
nuScene 2018 Lidar, Camera Large 23 ++ Yes
Asytax 2019 Lidar, Camera Small 7 - Yes
RaDICal 2021 | RGB-D Camera Large 2 - No
NLOS 2020 Lidar Small 2 - Yes
CRUW 2020 Camera Medium 3 ++ Yes
RADIATE 2020 Lidar, Camera Large 8 ++ Yes
CARRADA 2020 Camera Large 3 - Yes
Oxford 2019 Lidar, Camera Large 0 + No
Zendar 2020 Lidar, Camera Large 1 + Yes
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In Table. A.2, the radar related information is listed including radar resolution, data format, annotation
method, and training model availability. Among these data, raw data is only very rarely provided, as
most of the radar data are preprocessed radar point clouds. Some are range-azimuth images due to
the limit of the used-radar. At the same time, the annotation is different for different datasets.

Table A.2: Radar data information

Dataset Radar type Radar resolution Radar data format Annotation Help tools | Model
Detection range<100m,
Range resolution=0.15m,

Radar Scenes FMCW : L 2D point clouds Point wise Yes No
Velocity resolution=0.1km/h,
Angular resolution=0.5° at boresight to 2° at the FoV border
nuScene FMCW Detection rapge_<250m, 3D point clouds 3D box Yes No
Range resolution=0.1km/h,
Asytax FMCW N/A 3D point clouds 3D box No No
RaDICal FMCW N/A Raw data Spectral box Yes Yes
Detection Range<153m,
NLOS FMCW Range resolution=0.15m, 2D point clouds Point wise No Yes

Velocity resolution=0.087m/s,
Angular resolution=1.8°
CRUW FMCW N/A Range-azimuth array Spectral box Yes Yes
Detection range<100m,
Range resolution=0.175m,

RADIATE Scanning FMCW Azimuth resolution=1.8°, Range-azimuth image 2D Box Yes No
Elevation resolution=1.8°.
Detection range<50m,
CARRADA FMCW Range resolution=0.2m, Raw data Spectral box Yes Yes

Velocity resolution=0.42m/s,
Angular resolution=0.70°
Detection range<163m,
Oxford Scanning FMCW Range resolution=4.38cm, Range-azimuth image No Yes Yes
Angular resolution=1.8°
Detection range<90m,
Zendar FMCW Range resolution=18cm, Raw data, SAR image and BEV 2D point clouds | Not mentioned Yes No
Azimuth resolution=0.1°

In conslusion, it is extremely difficult to compare different datasets with or without related models. Ig-
nored the computation requirements, on the one hand, training models are limited and mainly designed
for one special data set. On the other hand, the diversity in terms of sensor using, radar parameters,
data format, annotation, and object category limits the evaluation performance of different state-of-art
neural network models using different datasets.
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